Science.gov

Sample records for lead-free piezoelectric ceramics

  1. KNN–NTK composite lead-free piezoelectric ceramic

    SciTech Connect

    Matsuoka, T. Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K.

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  2. Lead-free piezoelectric ceramics and thin films.

    PubMed

    Safari, Ahmad; Abazari, Maryam

    2010-10-01

    Recent progress in lead-free piezoelectric ceramics and thin films with special emphasis on alkaline niobatebased and bismuth sodium titanate-based systems is reviewed concisely. Modifications of potassium sodium niobate (KNN) ceramics are presented and subsequent improvements in the electrical properties are summarized. Special attention is devoted to the phase diagram of the KNN system when a solid solution is formed with other perovskite niobates and titanates. Impact of A-site and B-site dopants on the electromechanical properties of KNN ceramics are distinguished in view of transition temperatures. It is shown that the addition of most A-site and B-site dopants reduces the transition temperatures and improves the piezoactivity at room temperature. This is attributed to the shift of polymorphic transition from tetragonal to orthorhombic phase in the vicinity of room temperature. In contrast, formation of a solid solution of KNN with 18 mol% AgNbO₃ revealed a significant enhancement of properties without a notable change in the transition temperatures. Also, a bismuth sodium titanate (BNT) composition is introduced with particular emphasis on its binary and ternary derivatives. Moderate piezoelectric properties reported at the morphotropic phase boundaries, formed in BNT-based solid solutions are also represented. Advances on thin films based on these two compositions are evaluated and challenges involved with development of stoichiometric thin films with low leakage current are discussed. PMID:20889401

  3. Domain evolution in lead-free thin film piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Dubelman, Meredith Elissa

    Due to environmental and health concerns lead-free piezoelectric systems are currently being evaluated for use as replacements for lead-based ceramics. Sodium Bismuth Titanate, Na0.5Bi0.5TiO 3 (NBT) - based materials offer possible alternatives. NBT is a perovskite-type, ABO3, compound and is ferroelectric at room temperature. It has a relatively high Curie temperature, a large remnant polarization, and a high coercive field at room temperature. NBT can be modified by additives, such as BaTiO3 (BT), to improve its properties further. NBT-xBT was originally reported to have a morphotropic phase boundary which lies at x = 0.06. The structure transforms from rhombohedral for x < 0.06 to tetragonal for x > 0.06. However, recent studies have shown that for some compositions NBT-xBT develop a relaxor phase at room temperature. NBT xBT materials in the compositional range between 0.05 ≤ x ≤ 0.11have been shown to contain nanodomains embedded in a non-polar cubic matrix. The fluctuations of these nanodomains give rise to the relaxor behavior which in some cases is referred to as "relaxor antiferroelectric". In contrast to ferroelectric materials, in relaxor ferroelectrics thermal fluctuations can cause the poled nanodomains to relax to an unpoled state. It is necessary to understand local structure effects on the piezoelectric response at the grain level in order to develop materials with improved performance. Using Piezoresponse Force Microscopy (PFM), this study examines the domain motion within individual grains and domain evolution over time under locally applied electric fields as well as single-point hysteresis loop measurements in thin film NBT and NBT-xBT. These experiments provide an understanding of the domain behavior that cannot be acquired through bulk, macroscopic measurements. Thin films are fabricated using hydrothermal deposition and pulsed laser deposition. The films are highly oriented and exhibit relaxor behavior at room temperature.

  4. Structural, Dielectric, Piezoelectric and Ferroelectric Characterization of NBT-BT Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Shanmuga Sundari, S.; Kumar, Binay; Dhanasekaran, R.

    2013-05-01

    Lead free piezoelectric 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 (NBT-BT) ceramics were synthesized in MPB composition by conventional solid state reaction method. The crystalline nature of NBT-BT ceramic was studied by XRD and the size of the grains are determined by SEM. The X- ray diffraction results reveal that Ba2+ diffuse into the Na0.5 Bi0.5TiO3 lattices to form a solid solution with a pure perovskite structure. Because of the strong ferroelectricity and MPB, the ceramics exhibit high piezoelectric properties: d33 = 206 pC/N. Td (depolarization temperature) and Tm (temperature at with the dielectric constant epsilonr reaches a maximum) were observed through the phase transition in dielectric studies. In addition, the prepared ceramic exhibits relaxor characteristic, which probably results from the cation disordering in the 12fold coordination sites. Pr and Ec of the prepared ceramics were determined from the P-E hysteresis loop.

  5. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will

  6. Lead-free KNLNT Piezoelectric Ceramics for High-frequency Ultrasonic Transducer Application

    PubMed Central

    Wu, D. W.; Chen, R. M.; Zhou, Q. F.; Shung, K. K.; Lin, D.M.; Chan, H. L. W.

    2010-01-01

    This paper presents the latest development of a lead-free piezoelectric ceramic and its application to transducers suitable for high-frequency ultrasonic imaging. A lead-free piezoelectric ceramic with formula of (K0.5Na0.5)0.97Li0.03(Nb0.9 Ta0.1)O3 (abbreviated as KNLNT-0.03/0.10) was fabricated and characterized. The material was found to have a clamped dielectric constant ε33S = ε0 = 890, piezoelectric coefficient d33 = 245 pC/N, electromechanical coupling factor kt = 0.42 and Curie temperature Tc > 300 °C. High-frequency (40 MHz) ultrasound transducers were successfully fabricated with the lead-free material. A representative lead-free transducer had a bandwidth of 45%, two-way insertion loss of −18 dB. This performance is comparable to reported performances of popular lead-based transducers. The comparison results suggest that the lead-free piezoelectric material may serve as an alternative to lead-based piezoelectric materials for high-frequency ultrasonic transducer applications. PMID:19121835

  7. Lead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application.

    PubMed

    Wu, D W; Chen, R M; Zhou, Q F; Shung, K K; Lin, D M; Chan, H L W

    2009-03-01

    This paper presents the latest development of a lead-free piezoelectric ceramic and its application to transducers suitable for high-frequency ultrasonic imaging. A lead-free piezoelectric ceramic with formula of (K(0.5)Na(0.5))(0.97)Li(0.03)(Nb(0.9) Ta(0.1))O(3) (abbreviated as KNLNT-0.03/0.10) was fabricated and characterized. The material was found to have a clamped dielectric constant epsilon(33)(S)/epsilon(0)=890, piezoelectric coefficient d(33)=245 pC/N, electromechanical coupling factor k(t)=0.42 and Curie temperature T(c)>300 degrees C. High-frequency (40 MHz) ultrasound transducers were successfully fabricated with the lead-free material. A representative lead-free transducer had a bandwidth of 45%, two-way insertion loss of -18 dB. This performance is comparable to reported performances of popular lead-based transducers. The comparison results suggest that the lead-free piezoelectric material may serve as an alternative to lead-based piezoelectric materials for high-frequency ultrasonic transducer applications. PMID:19121835

  8. New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Jun; Zhu, Benpeng; Zhang, Yue; Chen, Shi; Yang, Xiaofei; Wei, Wei

    2015-03-01

    Based on new KNN-based piezoelectric material 0.96(K0.48Na0.52)(Nb0.95Sb0.05)O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 with a giant d33 of 490, a 37-MHz high-frequency ultrasound needle transducer with the aperture size of 1 mm was successfully fabricated. The obtained transducer had a high electromechanical coupling factor k t of 0.55, a good bandwidth of 56.8 % at -6 dB, and a low insertion loss of -16 dB at the central frequency. Its excellent performance is comparable to lead-containing transducer and is superior to that of any other lead-free transducer. This promising result demonstrates that this new KNN-based lead-free piezoelectric ceramic is a good candidate to replace lead-based materials for high-frequency ultrasound imaging.

  9. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    SciTech Connect

    Khansur, Neamul H.; Daniels, John E.; Groh, Claudia; Jo, Wook; Webber, Kyle G.; Reinhard, Christina; Kimpton, Justin A.

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  10. Sodium potassium niobate-based lead-free piezoelectric ceramics: Bulk and freestanding thick films

    NASA Astrophysics Data System (ADS)

    Li, Huidong

    2008-10-01

    Due to the toxicity of lead, there is an urgent need to develop lead-free alternatives to replace the currently dominant lead-based piezoelectrics such as lead zirconate titanate (PZT). (Na0.5K0.5)NbO 3 (NKN)-based piezoelectrics are promising because of their relatively high Curie temperatures and piezoelectric coefficients among the non-lead piezoelectrics. However, it is difficult to sinter. In this thesis study, a colloidal coating method was developed to improve the sintering of NKN. With this coating method, NKN with good piezoelectric properties can be produced without cold isostatic pressing. To improve the piezoelectric performance of NKN, we performed antimony (Sb) doping studies for a NKN-LN solid solution using the coating approach. It was found that Sb doping greatly improved the density and the piezoelectric properties of the NKN-LiNbO3 solid solution and optimized performance was found at 4%Sb. The reasons for the improved piezoelectric properties and density were discussed. Recently, a large enhancement in the piezoelectric performance under electric fields was discovered in polycrystalline lead magnesium niobate-lead titanate (PMN-PT) when the material was made into freestanding film geometry. Here, for the first time, we show a similar effect was also observed in a lead-free system, (Na0.5K0.5)0.945Li0.055Nb 0.96Sb0.04O3. At 6-8 kV/cm, a giant --d 31 value of 1700 pm/V was achieved, 20 times higher than the value of bulk counterpart. The enhancement was found to result from the ease of domain motion imparted by the freestanding film geometry, and the magnitude of the enhancement can be affected by the electrode layer (a non-piezoelectric) thickness. The freestanding geometry provides a new approach to greatly improve the piezoelectric performance of the current lead-free systems.

  11. Study of BNT-BKT-BT lead-free piezoelectric ceramics and their application in piezoelectric devices

    NASA Astrophysics Data System (ADS)

    Choy, Siu Hong

    Lead-free piezoelectric ceramics, 0.90Bi0.5Na 0.5TiO3-0.05Bi0.5K0.5TiO3-0.05BaTiO 3 (BNKBT-5), have been fabricated by a solid-state reaction method. The dielectric, piezoelectric and ferroelectric properties of the ceramics have been measured and the microstructures studied by X-ray diffraction and SEM. In the ferroelectric hysteresis loop measurements, Pr ˜ 28.5 muC/cm2 and Ec ˜3.5 MV/m have been observed. The electromechanical coupling coefficients kp and kt are 0.31 and 0.46, respectively. Those properties are comparable to that of lead-based ceramics such as PZT. Three different compounds, including CeO2, Ca2Fe 2O5 and (Bi0.5Li0.5)TiO3, have been used as additives/dopants to improve the properties of BNKBT-5. All the samples with different compositions have been characterized. The measured properties are compared with that of BNKBT-5. It has been found that the BNKBT-5 doped with 1.5 mol% of (Bi0.5Li0.5)TiO3, namely BNKLBT-1.5, has the best performance. It can enhance kp, kt, Qm, Pr, and can reduce tandelta but do not lower the depolarization temperature. Two different types of devices have been fabricated using BNKBT-5 and BNKLBT-1.5 ceramic rings. The first device is compressive-type accelerometers. A PZT accelerometer with similar structure has also been fabricated for comparison. The accelerometers are calibrated using a back-to-back calibration method against a standard reference accelerometer. Within the +/-2.5% tolerance, the mean sensitivity of PZT, BNKBT and BNKLBT accelerometer is 4.34 pC/ms -2 (50 Hz to 8.24 kHz), 2.24 pC/ms-2 (50 Hz to 10.1 kHz) and 2.97 pC/ms-2 (50 Hz to 12.45 kHz), respectively. The BNKLBT-1.5 accelerometer has a reasonably high sensitivity and the broadest sensing frequency range which would be the most preferable choice for structural health monitoring applications. The second device is ultrasonic wirebonding transducers for microelectronic packaging. It has been found that if titanium is used as the metal parts in the

  12. Piezoelectric/photoluminescence effects in rare-earth doped lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Qirong; Wang, Feifei; Jin, Chengchao; Tang, Yanxue; Wang, Tao; Shi, Wangzhou

    2013-10-01

    In the present work, we report the environmentally-friendly multifunctional effects—piezoelectric/photoluminescence effects, which originated from the combination of the electromechanical properties and the photoluminescence effect through introducing the rare-earth elements (Pr and Eu) into the (Bi0.5Na0.5)TiO3-BaTiO3 ceramics with the composition around the morphotropic phase boundary. Compared to the pure piezoelectric ceramic, the proposed system simultaneously exhibited enhanced ferroelectric, piezoelectric, dielectric properties along with strong photoluminescence effects, which exhibited potential applications in sensor, and electro-mechano-optical integration. In addition, the present work also provides a promising path for us to fabricate multifunctional composites.

  13. Effect of poling process on piezoelectric properties of BCZT - 0.08 wt.% CeO2 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chandrakala, E.; Praveen, J. Paul; Das, Dibakar

    2016-05-01

    The properties of lead free piezoelectric materials can be tuned by suitable doping in the A and B sites of the perovskite structure. In the present study, cerium has been identified as a dopant to investigate the piezoelectric properties of lead-free BCZT system. BCZT - 0.08 wt.%CeO2 lead-free ceramics have been synthesized using sol-gel technique and the effects of CeO2 dopant on their phase structure and piezoelectric properties were investigated systematically. Poling conditions, such as temperature, electric field, and poling time have been optimized to get enhanced piezoelectric response. The optimized poling conditions (50°C, 3Ec and 30min) resulted in high piezoelectric charge coefficient d33 ~ 670pC/N, high electromechanical coupling coefficient kp ~ 60% and piezoelectric voltage coefficient g33 ~ 14 mV.m/N for BCZT - 0.08wt.% CeO2 ceramics.

  14. Synthesis of lead-free piezoelectric powders by ultrasonic-assisted hydrothermal method and properties of sintered (K0.48Na0.52)NBO3 ceramics.

    PubMed

    Isobe, Gaku; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2014-02-01

    (K,Na)NbO3 ceramics have attracted much attention as lead-free piezoelectric materials with high piezoelectric properties. High-quality (K,Na)NbO3 ceramics can be sintered using KNbO3 and NaNbO3 powders synthesized by a hydrothermal method. In this study, to enhance the quality factor of the ceramics, high-power ultrasonic irradiation was employed during the hydrothermal method, which led to a reduction in the particle size of the resultant powders. PMID:24474129

  15. A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.

    2016-04-01

    Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.

  16. Morphotropic NaNbO3-BaTiO3-CaZrO3 lead-free ceramics with temperature-insensitive piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Zuo, Ruzhong; Qi, He; Fu, Jian

    2016-07-01

    A morphotropic NaNbO3-based lead-free ceramic was reported to have temperature-insensitive piezoelectric and electromechanical properties (d33 = 231 pC/N, kp = 35%, Tc = 148 °C, and low-hysteresis strain ˜0.15%) in a relatively wide temperature range. This was fundamentally ascribed to the finding of a composition-axis vertical morphotropic phase boundary in which coexisting ferroelectric phases are only compositionally driven and thermally insensitive. Both phase coexistence and nano-scaled domain morphology deserved well enhanced electrical properties, as evidenced by means of synchrotron x-ray diffraction and transmission electron microscopy. Our study suggests that the current lead-free ceramic would be a very promising piezoelectric material for actuator and sensor applications.

  17. Synthesis and piezoelectric properties of BaTiO3-doped lead-free Li0.12Na0.88NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mitra, Supratim; Rathore, Deepshikha

    2016-05-01

    New lead-free (1-x)Li0.12Na0.88NbO3-xBaTiO3 [(1-x)LNN-xBT] (x = 0.0, 0.1, 0.2, 0.3, 0.4) piezoelectric ceramics have been synthesized using conventional ceramics processing route. The phase analysis revealed that material undergoes two phase transition: orthorhombic to tetragonal around x = 0.2 and tetragonal to cubic for x ≥ 0.3. The microstructural analysis confirms a homogeneous solid solution, well developed grains and a high sintered density. Ferroelectric and piezoelectric properties were investigated and the material is found suitable for memory, piezoelectric vibrators and low power transducers applications.

  18. Phase Structures and Piezoelectric Properties of (K,Na,Li)(Nb,Sb)O3-(Bi,Ag)ZrO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Li, ZhiPeng; Zhang, Yang; Li, LingYu; Li, JianKang; Zhai, JiWei

    2016-06-01

    Samples in the pseudoternary lead-free piezoelectric ceramic system 0.94KNN-(0.06 - x)LiSbO3- x(Bi0.5Ag0.5)ZrO3 were prepared using a solid-state reaction technique and their phase transition behavior and electrical properties studied. Results showed that BAZ diffuses into KNN-LS to form a new solid solution, and induces a phase transition from tetragonal to rhombohedral phase with increase of x. At 0.02 ≤ x ≤ 0.03, coexistence of tetragonal and rhombohedral phases is observed, and enhanced piezoelectric properties are achieved in this composition range due to the polymorphic phase transition near room temperature. Doping with (Bi0.5Ag0.5)ZrO3 effectively promotes densification and further enhances the piezoelectric and dielectric properties of of the ceramics. Moreover, the ceramic with x = 0.025 possesses excellent electrical properties of k p = 42.3%, {d_{33}^{*}} = 320 pm/V and d 33 = 235 pC/N, tan δ = 0.039, and T c = 326°C. This result indicates that 0.94KNN-0.035LS-0.025BAZ ceramic is a promising lead-free material for practical applications.

  19. Phase Structure, Piezoelectric and Multiferroic Properties of SmCoO3-Modified BiFeO3-BaTiO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Jiang, Na; Tian, Mijie; Luo, Lingling; Zheng, Qiaoji; Shi, Dongliang; Lam, Kwok Ho; Xu, Chenggang; Lin, Dunmin

    2016-01-01

    (0.75- x)BiFeO3-0.25BaTiO3- xSmCoO3 + 1 mol.% MnO2 lead-free multiferroic ceramics were synthesized by a conventional ceramic fabrication technique. The effects of SmCoO3 on phase structure, piezoelectricity and multiferroicity of the ceramics were studied. All the ceramics can be well sintered at a low sintering temperature of 960°C. The crystalline structure of the ceramics is transformed from rhombohedral to tetragonal symmetry with increasing the amount of SmCoO3. A morphotropic phase boundary of rhombohedral and tetragonal phases is formed at x = 0.01-0.04. A small amount of SmCoO3 is shown to improve the ferroelectric, piezoelectric and magnetoelectric properties of the ceramics. For the ceramics with x = 0.01-0.03, enhanced resistivity ( R ˜ 1.2 × 109 Ω cm to 2.1 × 109 Ω cm), piezoelectricity ( d 33 ˜ 65 pC/N to 106 pC/N) and ferroelectricity ( P r ˜ 6.38 μC/cm2 to 22.89 μC/cm2) are obtained. The ferromagnetism of the materials is greatly enhanced by the doping of SmCoO3 such that a very high magnetoelectric coefficient of ˜742 mV/(cm Oe) is obtained at x = 0.01, suggesting a promising potential in multiferroic devices.

  20. Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts.

    PubMed

    Yang, Song-Ling; Chen, Shih-Ming; Tsai, Cheng-Che; Hong, Cheng-Shong; Chu, Sheng-Yuan

    2013-02-01

    CuO is doped into (Na(0.5)K(0.5))NbO(3) (NKN) ceramics to improve the piezoelectric properties and thus obtain a piezoelectric transformer (PT) with high output power. In X-ray diffraction patterns, the diffraction angles of the CuO-doped NKN ceramics shift to lower values because of an expansion of the lattice volume, thus inducing oxygen vacancies and enhancing the mechanical quality factor. A homogeneous microstructure is obtained when NKN is subjected to CuO doping, leading to improved electrical properties. PTs with different electrode areas are fabricated using the CuO-doped NKN ceramics. Considering the efficiency, voltage gain, and temperature rise of PTs at a load resistance of 1 kΩ, PTs with an electrode with an inner diameter of 15 mm are combined with the circuit design for driving a 13-W T5 fluorescent lamp. A temperature rise of 6°C and a total efficiency of 82.4% (PT and circuit) are obtained using the present PTs. PMID:23357915

  1. Improvement of the piezoelectric properties in (K,Na)NbO3-based lead-free piezoelectric ceramic with two-phase co-existing state

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-01

    Two phases of (K,Na)NbO3 (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-0.042K0.85Ti0.85Nb1.15O5-0.036BaZrO3-0.0016Co3O4- 0.0025Fe2O3-0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, kp = 0.56, has been observed at the composition x = 0.56.

  2. Polymorphic structure evolution and large piezoelectric response of lead-free (Ba,Ca)(Zr,Ti)O{sub 3} ceramics

    SciTech Connect

    Tian, Ye; Chao, Xiaolian E-mail: yangzp@snnu.edu.cn; Wei, Lingling; Liang, Pengfei; Yang, Zupei E-mail: yangzp@snnu.edu.cn; Jin, Li

    2014-03-17

    The polymorphic structure evolution of (Ba,Ca)(Zr,Ti)O{sub 3} piezoelectric ceramics was investigated by analysis of the in situ X-ray diffraction and dielectric spectra. The results indicated that a confined orthorhombic (O) phase region induced by the approach of the rhombohedral (R) and tetragonal (T) phases existed in an extremely narrow temperature range of (Ba{sub 0.85}Ca{sub 0.15})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} composition. The electric properties near the O–T phase boundaries of (Ba{sub 0.95}Ca{sub 0.05})(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} and (Ba{sub 0.85}Ca{sub 0.15})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} were compared. The results suggested that the confined O phase region is an important factor that contributes to the extremely large piezoelectric response.

  3. Improvement of the piezoelectric properties in (K,Na)NbO{sub 3}-based lead-free piezoelectric ceramic with two-phase co-existing state

    SciTech Connect

    Yamada, H. Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-07

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.

  4. Ultrahigh strain response with fatigue-free behavior in (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Hao, Jigong; Xu, Zhijun; Chu, Ruiqing; Li, Wei; Du, Juan; Li, Guorong

    2015-12-01

    In this letter, we report a lead-free piezoelectric ceramic system (Bi0.5Na0.5)1-x Ba x Ti0.98 (Fe0.5Sb0.5)0.02O3 which shows a surprisingly high field-induced nonlinear strain of 0.57% comparable to those obtained in Pb-based antiferroelectrics. The ultrahigh strain response of the composition stems from the composition proximity to the ferroelectric-nonpolar phase boundary, which leads to reversible transformation between a nonpolar phase and a polar ferroelectric phase under cyclic fields. In particular, this material is very attractive for its exceptionally good fatigue resistance (up to 106 cycles) and high temperature stability (25-100 °C) due to its stable nonpolar phase and lower defect density. These findings render the current material a great opportunity for novel applications in ultra-large stroke and nonlinear actuators demanding improved cycling and thermal reliabilities.

  5. Reactive sintering of (K0.5Bi0.5)TiO3-BiFeO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Kim, Min-Gu; Kim, Daeung; Cha, Su-Jeong; Vu, Hung Van; Nguyen, Dieu; Kim, Young-Hun; Moon, Su-Hyun; Lee, Jong-Sook; Hussain, Ali; Kim, Myong-Ho

    2015-05-01

    Ceramics based on BiFeO3 are potential lead-free replacements for Pb(Zr,Ti)O3 in a variety of applications such as sensors, transducers and actuators. Recently, ceramics in the (K0.5Bi0.5)TiO3-BiFeO3 system were developed which have excellent piezoelectric properties. However, these ceramics are difficult to sinter to high density. The present work studies the use of reactive sintering to prepare 0.4(K0.5Bi0.5)TiO3-0.6BiFeO3 ceramics. Undoped and MnO-doped powders were prepared by ball milling K2CO3, (BiO)2CO3, TiO2, α-FeO(OH) and MnCO3 in ethanol with zirconia milling media. The decomposition and calcination reactions of the starting materials were studied using differential scanning calorimetry/thermogravimetric analysis, X-ray diffraction and Fourier transform infra-red analysis. Samples were sintered in the temperature range from 1000 to 1075°C and their structures and microstructures examined using X-ray diffraction, micro-Raman scattering and scanning electron microscopy. MnO doping reduced the rhombohedral distortion of the unit cell. The dielectric, ferroelectric and piezoelectric properties of selected undoped and MnO-doped samples were measured. Both undoped and MnO-doped samples displayed relaxor-type behavior. MnO doping reduced the conductivity of the samples, which exhibit a well-defined activation energy of 1.21 eV. Undoped samples have strain vs. electric field properties comparable to those reported in the literature.

  6. Fabrication of Lead-Free Lithium-Doped Na0.5K0.5NbO3 Piezoelectric Ceramics with Dense Grain Structure Using Sol-Gel Surface Coating

    NASA Astrophysics Data System (ADS)

    Lim, Sun Kyung; Han, Jeong Seon; Yoo, Ae Ri; Lee, Seong Eui; Lee, Hee Chul

    2013-10-01

    Lead-free piezoelectric 0.06(LiNbO3)-0.94(Na0.5K0.5)NbO3 (LNKN) ceramics in disc form were fabricated and characterized to acquire good electromechanical properties. A molding method including cold isostatic pressing (CIP) was used to form a dense and regular microstructure and suppress the cracking problems of LNKN ceramics during the following high-temperature sintering. The LNKN ceramic sintered at 1040 °C showed a high piezoelectric constant d33 of 170 pC/N owing to its high density. Furthermore, perovskite LNKN films with the same composition as the ceramics were fabricated using 2-methoxyethanol-based sol-gel solution. The sol-gel surface coating on the LNKN ceramics was found to be very effective for increasing the piezoelectric constant because of the interface stabilization effect leading to a uniform electric field in piezoelectric elements. As a result, we obtained the highest piezoelectric constant d33 of 183 pC/N. The lead-free LNKN ceramics are promising for applications in eco-friendly ferroelectric and piezoelectric devices.

  7. Enhanced piezoelectric properties of BaZrO3-substituted 0.67BiFeO3-0.33BaTiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Lee, M. H.; Kim, D. J.; Kim, M.-H.; Song, T. K.; Kim, S. W.; Kim, W.-J.; Kumar, S.

    2015-04-01

    Lead-free ceramics with compositions of (1- x)[0.67Bi1.05FeO3-0.33BaTiO3]- xBaZrO3 ( x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05) [BF-BT-BZ x] have been prepared through a conventional solid-state reaction method. The effects of BZ substitution on the crystal structural, microstructural, piezoelectric, and electrical properties of the ceramics were investigated. The X-ray diffraction patterns revealed that all ceramics were formed with a mixed structure of rhombohedral and tetragonal perovskite phases. For x = 0.03, good ferroelectric and piezoelectric properties were observed: 2 P r = 43 μC/cm2 and 2 E c = 61 kV/cm. The static- and dynamic-piezoelectric constants were observed to be 52 pC/N and 330 pm/V, respectively.

  8. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    PubMed

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics. PMID:27357104

  9. Enhanced piezoelectricity and photoluminescence in Dy-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 lead-free multifunctional ceramics

    NASA Astrophysics Data System (ADS)

    Lei, Fengying; Jiang, Na; Luo, Lingling; Guo, Yongquan; Zheng, Qiaoji; Lin, Dunmin

    2015-12-01

    Lead-free multifunctional ceramics of Ba0.85Ca0.15Ti0.9Zr0.1O3-x mol% Dy have been prepared by an ordinary sintering method and the effects of Dy2O3 doping on structure, piezoelectric, ferroelectric and photoluminescent properties of the ceramics have been studied. The ceramics possess a single phase perovskite structure. The grain growth of the ceramics is prohibited and the ferroelectric-paraelectric phase transition at TC becomes more diffusive after the addition of Dy2O3. Dy2O3 doping improves the piezoelectricity of the ceramics and the optimal piezoelectric properties d33 = 335 pC/N is obtained at x = 0.5. The addition of 2 mol% Dy enhances the photoluminescent properties of the ceramics and strong emissions at ˜ 478 nm and ˜ 575 nm are observed. Our study shows that the ceramics with low Dy2O3 levels exhibit simultaneously the strong piezoelectricity, ferroelectricity and photoluminescence and may have a potential application in mechano-electro-optic integration and coupling device.

  10. Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} lead-free ceramics

    SciTech Connect

    Wei, Yongbin; Jia, Yanmin E-mail: ymjia@zjnu.edu.cn; Wu, Jiang; Shen, Yichao; Wu, Zheng E-mail: ymjia@zjnu.edu.cn; Luo, Haosu

    2014-07-28

    A mutual enhancement action between the ferro-/piezoelectric polarization and the photoluminescent performance of rare earth Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) lead-free ceramics is reported. After Pr{sup 3+} doping, the KNN ceramics exhibit the maximum enhancement of ∼1.2 times in the ferroelectric remanent polarization strength and ∼1.25 times in the piezoelectric coefficient d{sub 33}, respectively. Furthermore, after undergoing a ferro-/piezoelectric polarization treatment, the maximum enhancement of ∼1.3 times in photoluminescence (PL) was observed in the poled 0.3% Pr{sup 3+} doped sample. After the trivalent Pr{sup 3+} unequivalently substituting the univalent (K{sub 0.5}Na{sub 0.5}){sup +}, A-sites ionic vacancies will occur to maintain charge neutrality, which may reduce the inner stress and ease the domain wall motions, yielding to the enhancement in ferro-/piezoelectric performance. The polarization-induced enhancement in PL is attributed to the decrease of crystal symmetry abound the Pr{sup 3+} ions after polarization. The dual-enhancement of the ferro-/piezoelectric and photoluminescent performance makes the Pr{sup 3+} doped KNN ceramic hopeful for piezoelectric/luminescent multifunctional devices.

  11. First-principles calculation of the effects of Li-doping on the structure and piezoelectricity of (K0.5Na0.5)NbO3 lead-free ceramics.

    PubMed

    Yang, D; Wei, L L; Chao, X L; Yang, Z P; Zhou, X Y

    2016-03-01

    The crystal structures of the lead-free piezoelectric ceramics (K0.5Na0.5)NbO3 and (K0.5Na0.5)0.94Li0.06NbO3 prepared by a solid-state method were investigated using first-principles calculations. The calculated values of piezoelectricity were in good agreement with the experimental data. We found that the primary contribution to piezoelectricity in this material comes from the hybridization of the O 2p and Nb 4d orbitals, which causes a change in the Nb-O bond length and the distortion of the Nb-O octahedral structure. Analysis of the band structure and the total density of states revealed that Li-doped (K0.5Na0.5)NbO3 enhances hybridization of the O 2p and Nb 4d orbitals. This hybridization enhancement further reduces the Nb-O1 bond length and enhances the distortion of the Nb-O octahedron along the [001] direction, which may be the main reason for the improvement of the piezoelectric properties. In addition, the piezoelectric coefficients are calculated here, which show the same trend as the experimental results. PMID:26906892

  12. Microstructure, dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Ti0.95Zr0.05)O3 lead-free ceramics with CuO sintering aid

    NASA Astrophysics Data System (ADS)

    Lin, D.; Kwok, K. W.; Chan, H. L. W.

    2007-08-01

    Using an ordinary ceramic fabrication technique, we fabricated lead-free (1-x)(K0.5Na0.5)NbO3-xBa(Ti0.95Zr0.05)O3 ceramics with CuO sintering aid . Ba(Ti0.95Zr0.05)O3 diffuses into (K0.5Na0.5)NbO3 to form a new solid solution. The ceramics with perovskite structure possess orthorhombic phase at x≤0.04 and become tetragonal phase at x≥0.06. Both the paraelectric cubic-ferroelectric tetragonal and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition temperatures decrease with increasing the concentration of Ba(Ti0.95Zr0.05)O3. The doping of CuO effectively promotes the densification of the ceramics. The coexistence of the orthorhombic and tetragonal phases at 0.04ceramics significantly enhance the piezoelectric and dielectric properties at room temperature. The ceramics with x=0.04-0.06 and y=0.75-1.50 possess excellent properties: d33=119-185 pC/N, kP=37-44%, kt=35-49%, ɛ=341-1129, cosδ=0.7-4.4% and Tc=312-346 °C.

  13. Structure, ferroelectric and piezoelectric properties of (Bi0.98- x La0.02Na1- x )0.5Ba x TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Lin, Dunmin; Kwok, K. W.

    2009-10-01

    Lead-free (Bi0.98- x La0.02Na1- x )0.5Ba x TiO3 ceramics have been prepared by an ordinary sintering technique and their structure, ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction show that La2+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) exists at 0.04< x<0.10. Compared with pure Bi0.5Na0.5TiO3 ceramics, the (Bi0.98- x La0.02Na1- x )0.5Ba x TiO3 ceramics possess much smaller coercive field E c and larger remanent polarization P r. Because of the low E c (3.38 kV/mm), large P r (46.2 μC/cm2) and the formation of the MPB of rhombohedral and tetragonal phases, the piezoelectric properties of the ceramics are significantly enhanced at x=0.06: d 33=181 pC/N and k p=36.3%. The depolarization temperature T d reaches a minimum value near the MPB. The ceramics exhibit relaxor characteristic, which is probably a result from the cation disordering in the 12-fold coordination sites. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both polar and non-polar regions at the temperatures above T d.

  14. Tonpilz Underwater Acoustic Transducer Integrating Lead-free Piezoelectric Material

    NASA Astrophysics Data System (ADS)

    Rouffaud, Rémi; Granger, Christian; Hladky-Hennion, Anne-Christine; Thi, Mai Pham; Levassort, Franck

    A Tonpilz transducer based on lead-free piezoelectric material was fabricated, modeled and characterized. The stack is composed of two rings of doped BaTiO3. This composition was initially chosen due to good electromechanical performance (kt at 40%) and high mechanical quality factor (Qm over 500). Comparison of the displacement at the center of the head mass was performed with a PZT-based Tonpilz with the same design for a center frequency at 22 kHz.

  15. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    NASA Astrophysics Data System (ADS)

    Taghaddos, Elaheh; Hejazi, Mehdi; Safari, Ahmad

    2015-06-01

    Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  16. Lead-Free Intravascular Ultrasound Transducer Using BZT-50BCT Ceramics

    PubMed Central

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a −6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  17. Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics.

    PubMed

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K Kirk

    2013-06-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO4(BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a -6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  18. Diffuse phase transition and electrical properties of lead-free piezoelectric (LixNa1-x)NbO3 (0.04 ≤ x ≤ 0.20) ceramics near morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kulkarni, A. R.; Prakash, Om

    2013-08-01

    Temperature-dependent dielectric permittivity of lead-free (LixNa1-x)NbO3 for nominal x = 0.04-0.20, prepared by solid state reaction followed by sintering, was studied to resolve often debated issue pertaining to exactness of morphotropic phase boundary (MPB) location besides structural aspects and phase stability in the system near MPB. Interestingly, a diffuse phase transition has been observed in the dielectric permittivity peak arising from the disorder induced in A-site and structural frustration in the perovskite cell due to Li substitution. A partial phase diagram has been proposed based on temperature-dependent dielectric permittivity studies. The room temperature piezoelectric and ferroelectric properties were investigated and the ceramics with x = 0.12 showed relatively good electrical properties (d33 = 28 pC/N, kp = 13.8%, Qm = 440, Pr = 12.5 μC/cm2, Ec = 43.2 kV/cm, and Tm = 340 °C). These parameter values make this material suitable for piezoelectric resonator and filter applications. Moreover, a high dielectric permittivity (ɛ'r = 2703) with broad diffuse peak near transition temperature, and low dielectric loss (<4%) over a wide temperature range (50-250 °C) found in this material may also have a potential application in high-temperature multilayer capacitors in automotive and aerospace related industries.

  19. Properties of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 Lead-Free Piezoelectric Ceramics and Its Application to Ultrasonic Cleaner

    NASA Astrophysics Data System (ADS)

    Tou, Tonshaku; Hamaguti, Yuki; Maida, Yuichi; Yamamori, Haruo; Takahashi, Kazutoshi; Terashima, Yoshimitsu

    2009-07-01

    The lead-free piezoelectric ceramics 0.82(Bi0.5Na0.5)TiO3-0.15BaTiO3-0.03(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 (abbreviated as BNT-BT-BNMN) was prepared by a conventional process of ceramic engineering. The X-ray diffractometer (XRD) analysis showed that all compositions could form a single perovskite phase. The ceramics showed excellent piezoelectric properties with a coupling factor kt=41%, a mechanical quality factor Qm=500, a piezoelectric constant d33=110 pC/N, a relative permittivity ɛ33T/ɛ0=520, a dissipation factor tan δ=0.66%, a Curie point Tc=260 °C, and a density ρ=5.5 g/cm3. The physical properties of the ceramics were superior to those of hard Pb(Zr,Ti)O3 (PZT). The high-power characteristics of the ceramics were superior to those of hard PZT. A cylinder sample of lead-free ceramics was used to fabricate a bolt-clamped Langevin transducer (BLT) for application in the ultrasonic cleaner. The vibration velocity of BLT using the ceramics was higher than that of hard PZT under the same input power. The cleaning effect of an ultrasonic cleaner using the BLTs was very high and sufficiently good for commercial application.

  20. Phase structure and piezoelectric properties of (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Tan, Zhi; Jiang, Laiming; Chen, Qiang; Wu, Jiagang; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-01-01

    (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 [(1-x)KNNS-xBNLCZ] lead-free piezoceramics were prepared by the conventional solid state sintering method. The effects of BNLCZ contents on their phase structure, microstructure, and piezoelectric properties were investigated. All the samples show a pure perovskite structure, and no secondary phases were formed in the detected range. The rhombohedral and tetragonal phases of (1-x)KNNS-xBNLCZ coexist in the composition range of 0.0325 ≤ x ≤ 0.0425 at room temperature. A remarkably strong piezoelectricity was obtained by the addition of appropriate BNLCZ contents. The excellent piezoelectric properties of the ceramics with x = 0.04 were obtained: d33 ˜ 485 pC/N, kp ˜ 48%, and TC ˜ 227 °C. All the results show that the introduction of (Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 is a very effective way to form the rhombohedral and tetragonal phase coexistence of potassium-sodium niobate-based ceramics, which can improve its piezoelectric properties.

  1. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.

    PubMed

    Feng, Yu; Li, Wei-Li; Xu, Dan; Qiao, Yu-Long; Yu, Yang; Zhao, Yu; Fei, Wei-Dong

    2016-04-13

    The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000). A systematic analysis including theoretical analysis and simulation results indicates that the Li(+) and Al(3+) ions are inclined to occupy the neighboring A-sites in the lattice and constitute a defect dipole (ionic pairs). The defect dipoles possess a kind of dipole moment which tends to align directionally after thermo-electric treatment. A mechanism related to the defect symmetry principle, phase transition, and defect migration is proposed to explain the outstanding piezoelectric properties. The present study opens a new development window for excellent piezoelectricity and provides a promising route to the potential utilization of lead-free piezoelectrics in high power applications. PMID:27010869

  2. Sintering, microstructure and electrical properties of 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Park, Ha-Young; Song, Yeo-Ok; Baek, Sun-Joong; Vu, Hung; Kim, Jee-Hoon; Kim, Young-Hun; Lee, Jong Sook

    2016-01-01

    The effect of sintering temperature on the densification, microstructure and structure of 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 lead-free piezoelectric ceramics is assessed. The 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 powders were prepared by using the mixed-oxide method and were sintered at temperatures of 1000, 1050 and 1100 °C for 1 to 5 hrs. Unlike earlier work, the sintered samples showed high densities even when sintered at 1000 °C. X-ray diffraction revealed that the sintered samples shared the same rhombohedral structure as BiFeO3. With increasing sintering temperature, the rhombohedral distortion of the unit cell decreased. In addition to the relaxor-like broad peak around 400 °C, a low-temperature dielectric peak was found at temperatures below 190 °C by employing a low-frequency sweep down to 10 mHz. The DC conductivity of the 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 sample exhibited three temperature regions with activation energy values of 0.56 eV (T > 500°C), 0.72 eV (400°C < T <200°C) and 0.81 eV (T < 190°C). The characteristic transitions in the conductivity could be related to the Néel temperature (370°C) and the conductivity anomaly observed at ca. 190°C in BiFeO3.

  3. Development of lead-free piezoelectric thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Abazari Torghabeh, Maryam

    As a high performance piezoelectric material widely used in sensors, actuators and other electronic devices, lead zirconate titanate (PZT) ceramics have been the center of attention for many years. However, the toxicity of these materials and their exposure to the environment during processing steps, such as calcination, sintering, machining as well as problems in recycling and disposal have been major concerns regarding their usage all around the globe for the past couple of decades. Consequently, utilizing lead-based materials for many commercial applications have been recently restricted in Europe and Asia and measures are being taken in United States as well. Therefore, there is an urgent need for lead-free piezoelectrics whose properties are comparable to those of well-known PZT materials. Recently, the discovery of ultra-high piezoelectric activity in the ternary lead-free KNaNbO3-LiTaO 3-LiSbO3 (KNN-LT-LS) and (Bi,Na)TiO3-(Bi,K)TiO 3-BaTiO3 (BNT-BKT-BT) systems have given hope for alternatives to PZT. Furthermore, the demand for new generation of environment-friendly functional devices, utilizing piezoelectric materials, inspired a new surge in lead-free piezoelectric thin film research. In this study, an attempt has been made to explore the development of lead-free piezoelectric thin films by Pulsed Laser Deposition (PLD) on SrTiO 3 substrate. While the growth and development process of KNN-LT-LS thin films was the primary goal of this thesis, a preliminary effort was also made to fabricate and characterize BNT-BKT-BT thin films. In a comprehensive and systematic process optimization study in conjunction with X-ray diffractometry, the phase evolution, stoichiometry, and growth orientation of the films are monitored as a function of deposition conditions including temperature and ambient oxygen partial pressure. Processing parameters such as substrate temperature and pressure are shown to be highly dominant in determining the phase and composition of the

  4. Effect of composition on electrical properties of lead-free Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} piezoelectric ceramics

    SciTech Connect

    Jaita, Pharatree; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-14

    Lead-free piezoelectric ceramics with the composition of (1-x)Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-x(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} or (1-x) BNKT-xBNdT (with x = 0-0.20 mol fraction) have been synthesized by a conventional mixed-oxide method. The compositional dependence of phase structure and electrical properties of the ceramics were systemically studied. The optimum sintering temperature of all BNKT-BNdT ceramics was found to be 1125 Degree-Sign C. X-ray diffraction pattern suggested that BNdT effectively diffused into BNKT lattice during sintering to form a solid solution with a perovskite structure. Scanning electron micrographs showed a slight reduction of grain size when BNdT was added. It was found that BNKT-0.10BNdT ceramic exhibited optimum electrical properties ({epsilon}{sub r} = 1716, tan{delta} = 0.0701, T{sub c} = 327 Degree-Sign C, and d{sub 33} = 211 pC/N), suggesting that this composition has a potential to be one of a promising lead-free piezoelectric candidate for dielectric and piezoelectric applications.

  5. Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties.

    PubMed

    Rubio-Marcos, Fernando; López-Juárez, Rigoberto; Rojas-Hernandez, Rocio E; del Campo, Adolfo; Razo-Pérez, Neftalí; Fernandez, Jose F

    2015-10-21

    Until now, lead zirconate titanate (PZT) based ceramics are the most widely used in piezoelectric devices. However, the use of lead is being avoided due to its toxicity and environmental risks. Indeed, the attention in piezoelectric devices has been moved to lead-free ceramics, especially on (K,Na)NbO3-based materials, due to growing environmental concerns. Here we report a systematic evaluation of the effects of the compositional modifications induced by replacement of the B-sites with Sb(5+) ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1-xSbxO3]-0.04[BaZrO3] lead-free piezoceramics. We show that this compositional design is the driving force for the development of the high piezoelectric properties. So, we find that this phenomenon can be explained by the stabilization of a Rhombohedral-Tetragonal (R-T) phase boundary close to room temperature, that facilities the polarization process of the system and exhibits a significantly high piezoelectric response with a d33 value as high as ∼400 pC/N, which is comparable to part soft PZTs. As a result, we believe that the general strategy and design principles described in this study open the possibility of obtaining (K,Na)NbO3-based lead-free ceramics with enhanced properties, expanding their application range. PMID:26436199

  6. Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9-xZr0.1CuxO3 ceramics synthesized by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hunpratub, Sitchai; Phokha, Sumalin; Maensiri, Santi; Chindaprasirt, Prinya

    2016-04-01

    Ba0.85Ca0.15Ti0.9Zr0.1-xCuxO3 (BCTZC) nanopowders were synthesized using a hydrothermal method after which they were pressed into discs and sintered in air at 1300 °C for 3 h to form ceramic samples. The phase and microstructure of the powder and ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the ceramic samples exhibited a tetragonal structure and that CuO, BaZrO3 or CaTiO3 impurity phases, which had been present in the powder samples, were not observed. The average grain sizes in the ceramic samples were found to be 17.0, 16.1, 20.0, 18.1 and 19.6 μm for Cu mole fractions x of 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. The dielectric constants, ferroelectric hysteresis loops and piezoelectric charge coefficients of the BCZTC ceramic samples were also investigated. Optimum values for the relative dielectric constant (ɛ‧), tan δ and piezoelectric charge coefficient (d33) of the samples were 3830, 0.03 and 306 pC/N, respectively, in the Cu mole fraction samples with x = 0.002.

  7. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    PubMed Central

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential. PMID:27338376

  8. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential. PMID:27338376

  9. Piezoelectric properties of (K0.5Na0.5)NbO3-BaTiO3 lead-free ceramics prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Men, Tian-Lu; Yao, Fang-Zhou; Zhu, Zhi-Xiang; Wang, Ke; Li, Jing-Feng

    2016-07-01

    (K,Na)NbO3 (KNN)-based lead-free piezoceramics have been the spotlight in search for practically viable candidates to replace the hazardous but dominating lead-containing counterparts. In this work, BaTiO3 (BT) modified KNN ceramics were fabricated by spark plasma sintering (SPS) and the influence of BT content as well as sintering temperature on the phase structure, microstructure, and electrical properties were investigated. It was found that the 0.96(Na0.5K0.5)NbO3-0.04BaTiO3 (BT4) ceramics sintered at 1000∘C have the optimal performance. Additionally, in-depth analysis of the electrical hysteresis revealed that the internal bias field originating from accumulation of space charges at grain boundaries is responsible for the asymmetry in the hysteresis loops.

  10. Bright reddish-orange emission and good piezoelectric properties of Sm{sub 2}O{sub 3}-modified (K{sub 0.5}Na{sub 0.5})NbO{sub 3}-based lead-free piezoelectric ceramics

    SciTech Connect

    Hao, Jigong; Xu, Zhijun Chu, Ruiqing; Li, Wei; Du, Juan

    2015-05-21

    Reddish orange-emitting 0.948(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-0.052LiSbO{sub 3}-xmol%Sm{sub 2}O{sub 3} (KNN-5.2LS-xSm{sub 2}O{sub 3}) lead-free piezoelectric ceramics with good piezoelectric properties were fabricated in this study, and the photoluminescence and electrical properties of the ceramics were systematically studied. Results showed that Sm{sub 2}O{sub 3} substitution into KNN-5.2LS induces a phase transition from the coexistence of orthorhombic and tetragonal phases to a pseudocubic phase and shifts the polymorphic phase transition (PPT) to below room temperature. The temperature stability and fatigue resistance of the modified ceramics were significantly improved by Sm{sub 2}O{sub 3} substitution. The KNN-5.2LS ceramic with 0.4 mol. % Sm{sub 2}O{sub 3} exhibited temperature-independent properties (25–150 °C), fatigue-free behavior (up to 10{sup 6} cycles), and good piezoelectric properties (d{sub 33}{sup * }= 230 pm/V, d{sub 33} = 176 pC/N, k{sub p} = 35%). Studies on the photoluminescence properties of the samples showed strong reddish-orange emission upon blue light excitation; these emission intensities were strongly dependent on the doping concentration and sintering temperature. The 0.4 mol. % Sm{sub 2}O{sub 3}-modified sample exhibited temperature responses over a wide temperature range of 10–443 K. The maximum sensing sensitivity of the sample was 7.5 × 10{sup −4} K at 293 K, at which point PPT occurred. A relatively long decay lifetime τ of 1.27–1.40 ms and a large quantum yield η of 0.17–0.19 were obtained from the Sm-modified samples. These results suggest that the KNN-5.2LS-xSm{sub 2}O{sub 3} system presents multifunctional properties and significant technological potential in novel multifunctional devices.

  11. Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Lin, Dunmin; Zheng, Qiaoji; Xu, Chenggang; Kwok, K. W.

    2008-11-01

    (1- x- y)Bi0.5Na0.5TiO3- xBi0.5K0.5TiO3- yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050-1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤ x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB ( x=0.15-0.25 and y=0.05-0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147-231 pC/N and planar electromechanical coupling factor k P=20.2-41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.

  12. Structural And Electrical Analysis Of Lead Free BZT-xBCT Ceramics

    SciTech Connect

    Bhardwaj, Chandan; Kumar, Ashvani; Kaur, Davinder

    2010-12-01

    A comparative study of structural and electric properties of a recently discovered lead free electroceramic, Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} or BZT-xBCT, was conducted in the entire range from x = 0 to x = 1. This novel ceramic composite is being seen as a genuine understudy for commercially one of the most widely used piezoelectric ceramic, PZT, which is facing worldwide criticism due to its lead toxicity. The new system can be very extensively used like PZT in transduction applications as sensor, actuator and ultrasonic devices apart from numerous other utilities. The XRD, SEM and Ferroelectric studies establish the structural transition and different phases as function of Zr /Ti and Ba /Ca ratios.

  13. Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators

    PubMed Central

    Aksel, Elena; Jones, Jacob L.

    2010-01-01

    Piezoelectrics have widespread use in today’s sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [ZrxTi1−x] O3 (PZT), are comprised of more than 60 weight percent lead (Pb). Due to its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO3, Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, Na0.5K0.5NbO3, and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided. PMID:22294907

  14. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  15. Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites

    SciTech Connect

    Choy, S. H.; Li, W. K.; Li, H. K.; Lam, K. H.; Chan, H. L. W.

    2007-12-01

    Bismuth sodium titanate based lead-free ceramic fiber with the chemical formula of 0.885(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.05(Bi{sub 0.5}K{sub 0.5})TiO{sub 3}-0.015(Bi{sub 0.5}Li{sub 0.5}= )TiO{sub 3}-0.05BaTiO{sub 3}, BNKLBT-1.5, has been fabricated by a powder-based extrusion method. The ceramic fibers with 400 {mu}m diameter were well crystallized after being calcined at 800 deg. C and sintered at 1170 deg. C. The piezoelectric and ferroelectric properties of the single fiber were found to be 155 pC/N and {approx}34.5 {mu}C/cm{sup 2}, respectively, which is comparable with that in bulk sample. 1-3 ceramic/polymer composites were fabricated by two routes, including dice and filled method and fiber pick-and-place method. Theoretical models were used to calculate the piezoelectric properties of the composites and compared with experimental results.

  16. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    PubMed

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  17. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition

    PubMed Central

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  18. Development of Bismuth-based Lead-free Piezoelectric Materials: Thin Film Piezoelectric Materials via PVD and CSD Routes

    NASA Astrophysics Data System (ADS)

    Jeon, Yu Hong

    Piezoelectric materials have been widely used in electromechanical actuators, sensors, and ultrasonic transducers. Among these materials, lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) has been primarily investigated due to its excellent piezoelectric properties. However, environmental concerns due to the toxicity of PbO have led to investigations into alternative materials systems. Bismuth-based perovskite piezoelectric materials such as (Bi0.5,Na0.5)TiO3 - (Bi0.5K 0.5)TiO3 (BNT - BKT), (Bi0.5,Na0.5 )TiO3 - (Bi0.5K0.5)TiO3 - BaTiO3(BNT - BKT - BT), (Bi0.5K 0.5)TiO3 - Bi(Zn0.5,Ti0.5)O 3 (BKT - BZT), and (Bi0.5,Na0.5)TiO 3 - (Bi0.5K0.5)TiO3 - Bi(Mg 0.5,Ti0.5)O3 (BNT - BKT - BMgT) have been explored as potential alternatives to PZT. These materials systems have been extensively studied in bulk ceramic form, however many of the ultimate applications will be in thin film embodiments (i.e., microelectromechanical systems). For this reason, in this thesis these lead-free piezoelectrics are synthesized in thin film form to understand the structure-property-processing relationships and their impact on the ultimate device response. Fabrication of high quality of 0.95BKT - 0.05BZT thin films on platinized silicon substrates was attempted by pulsed laser deposition. Due to cation volatility, deposition parameters such as substrate temperature, deposition pressure, and target-substrate distance, as well as target overdoping were explored to achieve phase pure materials. This route led to high dielectric loss, indicative of poor ferroelectric behavior. This was likely a result of the poor thin film morphology observed in films deposited via this method. Subsequently, 0.8BNT - 0.2BKT, 85BNT - 10BKT - 5BT, and 72.5BNT - 22.5BKT - 5BMgT (near morphotropic phase boundary composition) were synthesized via chemical solution deposition. To compensate the loss of A-site cations, overdoped precursor solutions were prepared. Crystallization after each spin cast layer were required to

  19. Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation

    PubMed Central

    2014-01-01

    In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion exchange of ultra-long Na2Nb2O6-H2O nanowires, we synthesized long (approximately 50 μm in length) single-crystalline LiNbO3 nanowires having a high piezoelectric coefficient (d33 approximately 25 pmV-1). By blending LiNbO3 nanowires with poly(dimethylsiloxane) (PDMS) polymer (volume ratio 1:100), we fabricated a flexible nanocomposite nanogenerator having a low dielectric constant (approximately 2.7). The nanogenerator generated stable electric power, even under excessive strain conditions (approximately 105 cycles). The different piezoelectric coefficients of d33 and d31 for LiNbO3 may have resulted in generated voltage and current for the e33 geometry that were 20 and 100 times larger than those for the e31 geometry, respectively. This study suggests the importance of the blending ratio and strain geometry for higher output-power generation in a piezoelectric nanocomposite-based nanogenerator. PACS 77.65.-j; 77.84.-s; 73.21.Hb PMID:24386884

  20. Evaluation of the performance of a lead-free piezoelectric material for energy harvesting

    NASA Astrophysics Data System (ADS)

    Machado, S. P.; Febbo, M.; Rubio-Marcos, F.; Ramajo, L. A.; Castro, M. S.

    2015-11-01

    Vibration-based energy harvesting has been explored as an auxiliary power source, which can provide small amounts of energy to power remote sensors installed in inaccessible locations. This paper presents an experimental and analytical study of an energy harvesting device using a lead-free piezoelectric material based on {{MoO}}3-doped ({{{K}}}0.44{{Na}}0.52{{Li}}0.04)({{Nb}}0.86{{Ta}}0.10{{Sb}}0.04){{{O}}}3 KNL-(NTS)Mo. The harvesting model corresponds to a cantilever beam with a KNL-(NTS)Mo piezoelectric disc attached to it. We analyze the effect of electromechanical coupling and load resistance on the generated electrical power. Electromechanical frequency response functions that relate the voltage output to the translational base acceleration are shown for experimental and analytical results.

  1. Enhancement of the electrical-field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition

    NASA Astrophysics Data System (ADS)

    Quyet, Nguyen Van; Bac, Luong Huu; Dung, Dang Duc

    2015-04-01

    In this work, a strong enhancement of the electric-field-induced strain in Bi0.5(Na,K)0.5TiO3-based ceramics was observed via lithium(Li) addition. The Li-added Bi0.5(Na,K)0.5TiO3-based ceramics exhibited a strain of 0.40% under an electric field of 6 kV/mm, which was almost twice the value without the Li dopant (0.21%). We obtained the highest S max/ E max value of 668 pm/V for 4-mol% Li addition, which was due to the phase transition from pseudocubic to rhombohedral symmetry and/or to the distorted tetragonal structure. We suggest that controlling the phase transition in ferroelectric materials is a way to enhance the electric-field-induced giant strain and that the phase transition from the non-polar phase to the polar phase results in a giant electric-fieldinduced strain, which overcomes the result due to the phase transition from the polar phase to the non-polar phase and/or the distorted structure. We expect our work to open new ways to enhance the electric-filed-induced giant strain to a value that is comparable to the value for Pb(Zr,Ti)O3 (PZT)-based ceramics.

  2. Lead-free ceramic ball grid array: Thermomechanical fatigue reliability

    NASA Astrophysics Data System (ADS)

    Farooq, Mukta; Goldsmith, Charles; Jackson, Ray; Martin, Gregory

    2003-12-01

    Flip-chip carriers have become the preferred solution for high-performance, application-specific integrated circuit and microprocessor devices. Typically, these are packaged in organic or ceramic ball grid array (BGA) packages, which cover a wide range of package input/output (I/O) capabilities required for high-performance devices, typically, between 300 to more than 1,600 I/O. Recently, there has been a move toward Pb-free solders as replacement alloys for standard, eutectic Sn/Pb and other Pb-based BGAs. The leading solder that has emerged from various Pb-free solder evaluations by industry and academic consortia is the Sn/Ag/Cu (SAC) alloy. One of the primary issues with changing solders is the reliability of the joints when these are subjected to thermomechanical fatigue (TMF). This evaluation has previously been conducted on SAC ceramic ball grid array (CBGA) assemblies in a 1.27-mm pitch.1 However, with the need to shrink the I/O pitch to accommodate higher wiring density, it has become increasingly important to conduct TMF reliability assessments in a 1-mm pitch format. This paper describes such an evaluation conducted using SAC BGA assemblies. The results show that, for a 1-mm pitch, the Pb-free SAC CBGA solution provides superior reliability as compared to the standard Sn/Pb CBGA solutions. This finding is an added incentive for a new CBGA offering employing the new Pb-free, SAC, single-alloy, self-aligning system.

  3. Dramatic influence of Dy3+ doping on strain and domain structure in lead-free piezoelectric 0.935(Na1/2Bi1/2)TiO3-0.065BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, C. Q.; Yao, Q. R.; Zhang, J. Z.; Hu, Z. G.; Wang, F. F.; Liu, A. Y.; Shi, W. Z.; Chu, J. H.

    2015-12-01

    An electric-field induced giant strain response and doping level dependent domain structural variations have been studied in the dysprosium (Dy3+)-modified 0.935(Na1/2Bi1/2)TiO3-0.065BaTiO3(xDy : NBBT) ceramics with the doping levels of 0%, 0.5%, 1%, and 2%. X-ray diffraction and Raman spectroscopy analyses not only demonstrates the change in ionic configurations induced by Dy3+ doping, but also shows the local crystal symmetry for x ≥ 0.5% doping levels to deviate from the idealized cubic structure. Piezoresponse force microscopy measurement exhibits the presence of an intermediate phase with orthorhombic symmetry at the critical Dy3+ doping level of 2%. Moreover, at this doping level, a giant recoverable nonlinear strain of ˜0.44% can be observed with high normalized strain (Smax/Emax) of 728 pm/V. At the same applied field, the strain exhibits a 175% increase than that of NBBT ceramic. Such a large strain stems from the varying coherence lengths of polar nanoregions (PNRs) and an unusual reversible 90° domain switching caused by the symmetry conforming property of point defects, where the restoring force is provided by unswitchable defects. The mechanism reveals a new possibility to achieve large electric-field strain effect for a wide range of ferroelectric systems, which can lead to applications in novel "on-off" actuators.

  4. Large Field-Induced Strain Properties of Sr(K0.25Nb0.75) O3-Modified Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free piezoelectric ceramics with compositions of (1 - x)Bi1/2(Na0.82 K0.18)1/2TiO3 + xSr(K0.25Nb0.75)O3, which are abbreviated as (1 - x)BNKT- xSKN with x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05, were synthesized using a conventional solid-state reaction method. The effects of SKN addition on the BNKT system were examined in terms of the phase transition, strain behavior, and ferroelectric and dielectric properties. X-ray diffraction revealed a single perovskite phase for all compositions. The results showed that with increasing SKN content, BNKT-SKN underwent a phase transition from the coexistence of rhombohedral and tetragonal phases to a tetragonal phase. The addition of SKN shifted the depolarization temperature, T d, to a lower temperature and enhanced the diffuseness of the dielectric peaks. The polarization and bipolar strain hysteresis loops of BNKT-SKN showed that the addition of SKN induced a ferroelectric to ergodic relaxor phase transition with a disruption of the ferroelectric order of pure BNKT. As a result, the strain of BNKT-SKN improved significantly with increasing SKN content and reached the highest value of a normalized strain, S max/ E max, of 557 pm/V, when modified with 3 mol.% SKN.

  5. Composition dependence of electric-field-induced structure of Bi1/2(Na1-xKx)1/2TiO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Khansur, Neamul H.; Benton, Rachel; Dinh, Thi Hinh; Lee, Jae-Shin; Jones, Jacob L.; Daniels, John E.

    2016-06-01

    Microscopic origins of the electric-field-induced strain for three compositions of Bi1/2(Na1-xKx)1/2TiO3 (x = 0.14, 0.18, and 0.22) (BNKT100x) ceramics have been compared using in situ high-energy (87.12 keV) X-ray diffraction. In the as-processed state, average crystallographic structure of BNKT14 and BNKT18 were found to be of rhombohedral symmetry, while BNKT22 was tetragonal. Diffraction data collected under electric field showed that both the BNKT14 and BNKT18 exhibit induced lattice strain and non-180° ferroelectric domain switching without any apparent phase transformation. The BNKT22 composition, in addition to the lattice strain and domain switching, showed an electric-field-induced transformation from a tetragonal to mixed tetragonal-rhombohedral state. Despite the difference in the origin of microscopic strain responses in these compositions, the measured macroscopic poling strains of 0.46% (BNKT14), 0.43% (BNKT18), and 0.44% (BNKT22) are similar. In addition, the application of a second poling field of opposite polarity to the first increased the magnitude of non-180° ferroelectric domain texture. This was suggested to be related to the existence of an asymmetric internal bias field.

  6. Large strain under a low electric field in lead-free bismuth-based piezoelectrics

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Won Ahn, Chang; Ullah, Amir; Won Kim, Ill

    2013-07-01

    In this letter, the composition and electric field dependent strain behavior of (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Mg0.5Ti0.5)O3 (BNKT-BMT) were investigated to develop lead-free piezoelectric materials with a large strain response at a low driving field for actuator applications. A large strain of 0.35% (Smax/Emax = 636 pm/V) at an applied field of 55 kV/cm was obtained with a composition of 4 mol. % BMT. In particular, the electric field required to deliver large strains was reduced to a level that revealed not only a large Smax/Emax of 542 pm/V at a driving field as low as 35 kV/cm, but also remarkably suppressed the large hysteresis.

  7. Lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Saito, Yasuyoshi; Takao, Hisaaki; Tani, Toshihiko; Nonoyama, Tatsuhiko; Takatori, Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya

    2004-11-01

    Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly <001> textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300picocoulombs per newton (pCN-1), and texturing the material leads to a peak d33 of 416pCN-1. The textured material also exhibits temperature-independent field-induced strain characteristics.

  8. Disc piezoelectric ceramic transformers.

    PubMed

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power. PMID:25004532

  9. Structure and electrical properties of 0.80 Na0.5 Bi0.5 TiO3-0.16 K0.5 Bi0.5 TiO3-0.04 BaTiO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Aravinth, K.; Muneeswaran, M.; Babu, G. Anandha; Giridharan, N. V.; Ramasamy, P.

    2016-05-01

    Lead free pervoskite 0.80 Na0.5 Bi0.5 TiO3-0.16 K0.5 Bi0.5 TiO3-0.04 BaTiO3 (NKBBT) ceramics were fabricated via conventional solid state processing technique sintered at 1200 °C and their crystal structures and electrical properties were systematically studied. Structure of the prepared NKBBT ceramics was confirmed by Powder X-ray diffraction analysis. The dependence of dielectric constant on temperature for various frequencies (100 Hz-100 KHz) has been determined. The diffuse transition is observed in the variation of dielectric constant and it provides evidence for the relaxor characteristics. The ferroelectric response of the NKBBT ceramics with different frequency was studied. Polarisation electric field hysteresis loops revealed that the remnant polarization is 6.88 µC/cm2 and coercive electric field is 66.42 kV/cm.

  10. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics.

    PubMed

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN

    2016-01-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287

  11. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    PubMed Central

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN.

    2016-01-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287

  12. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  13. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; Bennett, James; Axelsson, Anna-Karin; Valant, Matjaz; Berenov, Andrey; Bell, Andrew J.; Comyn, Tim P.; Alford, Neil McN.

    2015-10-01

    The electrocaloric effects (ECEs) of the morphotropic phase boundary (MPB) composition 0.82(Na0.5Bi0.5)TiO3-0.18(K0.5Bi0.5)TiO3 (NBT-18KBT) are studied by direct measurements. The maximum ECE ΔTmax = 0.73 K is measured at 160 °C under 22 kV/cm. This corresponds to an ECE responsivity (ΔT/ΔE) of 0.33 × 10-6 K m/V, which is comparable with the best reported values for lead-free ceramics. A comparison between the direct and indirect ECE measurements shows significant discrepancies. The direct measurement of both positive and negative electrocaloric effect confirms the presence of numerous polar phases near the MPB of NBT-based materials and highlights their potential for solid-state cooling based on high field-induced entropy changes.

  14. Nanoscale Atomic Displacements Ordering for Enhanced Piezoelectric Properties in Lead-Free ABO3 Ferroelectrics.

    PubMed

    Pramanick, Abhijit; Jørgensen, Mads R V; Diallo, Souleymane O; Christianson, Andrew D; Fernandez-Baca, Jaime A; Hoffmann, Christina; Wang, Xiaoping; Lan, Si; Wang, Xun-Li

    2015-08-01

    In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation. PMID:26076654

  15. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    DOE PAGESBeta

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectricmore » materials.« less

  16. Ultrasonic transducers based on undoped lead-free (K0.5Na0.5)NbO3 ceramics.

    PubMed

    Bah, Micka; Giovannelli, Fabien; Schoenstein, Frederic; Brosseau, Christophe; Deschamps, Jean-Robert; Dorvaux, Frédéric; Haumesser, Lionel; Le Clezio, Emmanuel; Monot-Laffez, Isabelle

    2015-12-01

    Lead zirconate titanate (PZT) ceramics are the dominant piezoelectric elements for non-destructive evaluation (NDE) and ultrasonic transducers devices. However, the presence of lead content may impose the scientific community to develop lead-free ceramics, concerning human health and environmental safety. During the past ten years, many contributions have highlighted the potential properties of complex compositions like LiNbO3, LiTaO3 and LiSbO3 in the lead-free (K0.5Na0.5)NbO3 KNN system. In this context, for the first time, the practical applications and the effectiveness of simply undoped (K0.5Na0.5)NbO3 (KNN) ceramics are investigated. KNN powder is prepared by conventional solid state mixed oxide route. Ceramics of this material are prepared using conventional sintering (CS) and spark plasma sintering (SPS). Thickness coupling factor kt of 44-46%, planar coupling factor kp of 29-45%, relative permittivity at constant strain ε33,r(S) of 125-243 and acoustic impedance Z of 23-30 MRay are obtained for these two kinds of undoped KNN ceramics. Both ceramics are used to build single-element ultrasonic transducers. Relative bandwidth of 49-78% and insertion loss of -27 and -51dB are obtained for SPS and CS transducers, respectively. These results are suitable for use in non-destructive evaluation. The effectiveness of undoped KNN is evaluated using the KLM model, and compared to standard PZT based probe. Finally, chemical aging test of undoped KNN has demonstrated its stability in water. PMID:26117145

  17. Structural dependence of piezoelectric, dielectric and ferroelectric properties of K{sub 0.5}Na{sub 0.5}(Nb{sub 1−2x/5}Cu{sub x})O{sub 3} lead-free ceramics with high Q{sub m}

    SciTech Connect

    Tan, Xiaohui; Fan, Huiqing; Ke, Shanming; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Double hysteresis loops were observed in K{sub 0.5}Na{sub 0.5}(Nb{sub 1−2x/5}Cu{sub x})O{sub 3}. ► Cu substitution caused structural discontinuity in KNNC. ► Dimeric defect complex (Cu{sup ‴}{sub Nb}–V{sub O}··){sup ′} with a dipole moment was formed in KNNC. -- Abstract: (K{sub 0.5}Na{sub 0.5})(Nb{sub 1−2x/5}Cu{sub x})O{sub 3} (abbreviated as KNNC, x = 0–2%) lead-free ceramics were synthetized by the solid state solution method. Pure perovskite phase with orthorhombic symmetry was observed. The evolution of the structure of KNNC was examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectra techniques. Our results revealed that, defect dipoles (Cu{sup ‴}{sub Nb}–V{sub O}··){sup ′} were formed and provided a restoring force to reverse the switched polarization, which resulted in double P–E hysteresis loops in KNNC with Cu doping at x = 0.75% and 1%. However, non-polar defect complex (V{sub O}··–Cu{sup ‴}{sub Nb}–V{sub O}··)· caused a lattice shrinkage and the observed square shaped P–E loops in KNNC ceramics under high doping levels (x > 1%).

  18. Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Faqiang; Yang, Qunbao; Liu, Zhifu; Li, Yongxiang; Liu, Yun; Zhang, Qiming

    2016-05-01

    We report lead-free single crystals with a nominal formula of (K0.45Na0.55)0.96Li0.04NbO3 grown using a simple low-cost seed-free solid-state crystal growth method (SFSSCG). The crystals thus prepared can reach maximum dimensions of 6 mm × 5 mm × 2 mm and exhibit a large piezoelectric coefficient d33 of 689 pC/N. Moreover, the effective piezoelectric coefficient d33 * , obtained under a unipolar electric field of 30 kV/cm, can reach 967 pm/V. The large piezoelectric response plus the high Curie temperature (TC) of 432 °C indicate that SFSSCG is an effective approach to synthesize high-performance lead-free piezoelectric single crystals.

  19. Fabrication and characterization of Na0.5K0.5NbO3-CuNb2O6 lead-free step-down piezoelectric transformers

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Ru; Chu, Sheng-Yuan; Chan, I.-Hao; Huang, Sheng-Kai

    2011-08-01

    Lead-free (Na0.5K0.5)NbO3 (NKN) ceramics doped with 1 mol% CuNb2O6 (01CN) ceramics were prepared using the conventional mixed oxide method at a sintering temperature of 1075 °C. NKN + 1 mol% CuTa2O6 (NKN-01CN) ceramics sintered at 1075 °C exhibit excellent "hard" piezoelectric properties of kp = 40%, kt = 45%, and k33 = 57%, with ferroelectric property Ec = 23 kV/cm. The mechanical quality factor (Qm) is extraordinarily high (1933) and the temperature stability is excellent (Temperature coefficient of frequency (TCF) = -154 ppm/°C). The piezoelectric transformer (PT) was fabricated on NKN-01CN lead-free substrates, and the electrical characteristics were investigated. The devices were simplified into an equivalent circuit and analyzed using the MATLAB software package. The simulation results matched the experimental results. By reversing the input and the output, the step-down PT can be easily fabricated using a simple disk-type structure. A maximum efficiency of 93% with a voltage gain of 0.12 was measured, which was in good agreement with the simulation results (a maximum efficiency of 98.7% with a voltage gain of 0.13) for the step-down mode.

  20. Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Shan, Jiang; Xuan-Ming, Wang; Jia-Yu, Li; Yong, Zhang; Tao, Zheng; Jing-Wen, Lv

    2016-03-01

    We studied the influence of heat treatment time on the optical, thermal, electrical, and mechanical properties of strontium barium niobate (Sr1-xBaxNb2O6 hereafter SBN) piezoelectric glass-ceramics with tungsten bronze-type structure, which have good piezoelectric properties and are important lead-free piezoelectric materials. We found that the best heat treatment time is 4 h. The properties of the prepared materials are better than that of SBN ceramics and the glass-ceramic growth is faster than the SBN crystal when the heat treatment time of the SBN piezoelectric glass-ceramic is controlled, reducing the preparation costs greatly.

  1. Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-07-01

    Non-textured polycrystalline [Bi1/2(Na0.8K0.2)1/2](Ti1-xTax)O3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi1/2(Na0.8K0.2)1/2]TiO3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d33* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 ceramics show great potential for large displacement devices.

  2. A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker

    NASA Astrophysics Data System (ADS)

    Gao, Renlong; Chu, Xiangcheng; Huan, Yu; Sun, Yiming; Liu, Jiayi; Wang, Xiaohui; Li, Longtu

    2014-10-01

    A flat panel micro speaker was fabricated from (K, Na) NbO3 (KNN)-based multilayer piezoelectric ceramics by a tape casting and cofiring process using Ag-Pd alloys as an inner electrode. The interface between ceramic and electrode was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The acoustic response was characterized by a standard audio test system. We found that the micro speaker with dimensions of 23 × 27 × 0.6 mm3, using three layers of 30 μm thickness KNN-based ceramic, has a high average sound pressure level (SPL) of 87 dB, between 100 Hz-20 kHz under five voltage. This result was even better than that of lead zirconate titanate (PZT)-based ceramics under the same conditions. The experimental results show that the KNN-based multilayer ceramics could be used as lead free piezoelectric micro speakers.

  3. Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1-x)(Na0.5Bi0.5)TiO3-xBiAlO3 solid solution

    NASA Astrophysics Data System (ADS)

    Yu, Huichun; Ye, Zuo-Guang

    2008-09-01

    Lead-free piezoelectric ceramics derived from the solid solution of (1-x)(Na0.5Bi0.5)TiO3-xBiAlO3 (NBT-BA) (x =0-0.10) have been synthesized by solid state reactions. A pure perovskite phase was formed for x ≤0.08. The temperature dependence of dielectric constant indicates an increased broadness of the dielectric peak as the amount of BA increases. The large dielectric loss of NBT ceramics at low frequency and high temperature has been significantly reduced by the substitution of BA. The high coercive field is decreased and ferroelectric hysteresis loops were displayed at room temperature. The NBT-BA ceramics exhibit improved ferroelectric and piezoelectric properties compared to pure NBT ceramics, with Pr=52 μC/cm2, Ec=44 kV/cm, d33=130 pC/N, and kp=0.23 for 0.92NBT-0.08BA.

  4. Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.

    2011-04-01

    As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.

  5. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Xia, Xiang; Jiang, Xiangping; Chen, Chao; Jiang, Xingan; Tu, Na; Chen, Yunjing

    2016-04-01

    Lead-free ceramics (Ba0.85Ca0.15)(Zr0.9Ti0.1)O3-x wt.%Cr2O3 (BCZT-xCr) were prepared via the conventional solid-state reaction method. The microstructure and electrical properties of BCZT-xCr samples were systematically studied. XRD and Raman results showed that all samples possessed a single phased perovskite structure and were close to the morphotropic phase boundary (MPB). With the increase of the Cr content, the rhombohedral-tetragonal phase transition temperature (T R-T) increases slightly, and the Curie temperature (T C) shifts towards the low temperature side. XPS analysis reveals that Cr3+ and Cr5+ ions co-existed in Cr-doped BCZT ceramics, indicating the different impact on the electrical properties from Cr ions as "acceptor" or "donor". For the x = 0.1 sample, relative high piezoelectric constants d 33 (~316 pC/N) as well as high Q m (~554) and low tanδ (~0.8%) were obtained. In addition, the AC conductivity was also investigated. Hopping charge was considered as the main conduction mechanism at low temperature. As the temperature increases, small polarons and oxygen vacancies conduction played important roles.

  6. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Xia, Xiang; Jiang, Xiangping; Chen, Chao; Jiang, Xingan; Tu, Na; Chen, Yunjing

    2016-06-01

    Lead-free ceramics (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3- x wt.%Cr2O3 (BCZT- xCr) were prepared via the conventional solid-state reaction method. The microstructure and electrical properties of BCZT- xCr samples were systematically studied. XRD and Raman results showed that all samples possessed a single phased perovskite structure and were close to the morphotropic phase boundary (MPB). With the increase of the Cr content, the rhombohedral-tetragonal phase transition temperature ( T R-T) increases slightly, and the Curie temperature ( T C) shifts towards the low temperature side. XPS analysis reveals that Cr3+ and Cr5 + ions co-existed in Cr-doped BCZT ceramics, indicating the different impact on the electrical properties from Cr ions as "acceptor" or "donor". For the x = 0.1 sample, relative high piezoelectric constants d 33 (˜316 pC/N) as well as high Q m (˜554) and low tanδ (˜0.8%) were obtained. In addition, the AC conductivity was also investigated. Hopping charge was considered as the main conduction mechanism at low temperature. As the temperature increases, small polarons and oxygen vacancies conduction played important roles.

  7. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors

    SciTech Connect

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul

    2014-08-15

    With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{sub 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

  8. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul

    2014-08-01

    With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi0.5Na0.5)TiO3-0.07BaTiO3-0.02(K0.5Na0.5)NbO3 ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm-3 was obtained at 100 MPa applied stress (25oC). While a maximum energy density of 568 mJ.cm-3 was obtained for the same stress at 80oC. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

  9. Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Tomar, M.; Gupta, Vinay; Scott, J. F.; Kumar, Ashok

    2015-09-01

    We report the polarization, displacement current, and leakage current behavior of a trivalent nonpolar cation (Al3+) substituted lead free ferroelectric (Na0.46Bi0.46-xAlxBa0.08)TiO3 (NBAT-BT) (x = 0, 0.05, 0.07 and 0.10) electroceramics with tetragonal phase and P4 mm space group symmetry. Almost, three orders of magnitude decrease in leakage current were observed under electrical poling, which significantly improves microstructure, polarization, and displacement current. Effective poling neutralizes the domain pinning, traps charges at grain boundaries and fills oxygen vacancies with free charge carriers in matrix, thus saturated macroscopic polarization in contrast to that in unpoled samples. E-poling changes "bananas" type polarization loops to real ferroelectric loops.

  10. Phase transitional behavior and electrical properties of (1 - x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3-xCaZrO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Xue, Dandan; Ma, Yu; Liu, Kaihua; Chen, Zhiqian; Jiang, Xianquan

    2016-08-01

    Lead-free piezoelectric ceramics (1 - x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3-xCaZrO3 with perovskite structure were prepared by conventional ceramic sintering technique, and the effects of the CaZrO3 content on the phase transitions, dielectric and piezoelectric properties of the ceramics were investigated. With the increase of CaZrO3, the crystal structure of the ceramics transformed from the orthorhombic-tetragonal phase coexistence to the coexistence of rhombohedral and orthorhombic phases at x = 0.01. Furthermore, both the rhombohedral-orthorhombic and orthorhombic-tetragonal phase transitions of the ceramics were found adjusted to be near room temperature with x = 0.005, which results in a significantly enhanced piezoelectric activity.

  11. Fabrication of transparent lead-free KNN glass ceramics by incorporation method

    PubMed Central

    2012-01-01

    The incorporation method was employed to produce potassium sodium niobate [KNN] (K0.5Na0.5NbO3) glass ceramics from the KNN-SiO2 system. This incorporation method combines a simple mixed-oxide technique for producing KNN powder and a conventional melt-quenching technique to form the resulting glass. KNN was calcined at 800°C and subsequently mixed with SiO2 in the KNN:SiO2 ratio of 75:25 (mol%). The successfully produced optically transparent glass was then subjected to a heat treatment schedule at temperatures ranging from 525°C -575°C for crystallization. All glass ceramics of more than 40% transmittance crystallized into KNN nanocrystals that were rectangular in shape and dispersed well throughout the glass matrix. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties. The transparency of the glass samples decreased with increasing crystal size. The maximum room temperature dielectric constant (εr) was as high as 474 at 10 kHz with an acceptable low loss (tanδ) around 0.02 at 10 kHz. PMID:22340426

  12. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    SciTech Connect

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  13. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials

    PubMed Central

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-01-01

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. PMID:25716551

  14. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-01

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle. PMID:27334673

  15. Effect of B-site isovalent doping on electrical and ferroelectric properties of lead free bismuth titanate ceramics

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2016-06-01

    In the present work, zirconium modified bismuth titanate ceramics have been studied as potential lead-free ferroelectric materials over a broad temperature range (RT - 800 °C). Polycrystalline samples of Bi4Ti3-xZrxO12 (x=0.2, 0.4, 0.6) (BZrT) with high electrical resistivity were prepared using the solution combustion technique. The effect of Zr doping on the crystalline structure, ferroelectric properties and electrical conduction characteristics of BZrT ceramics were explored. Addition of zirconium to bismuth titanate enhances its dielectric constant and reduces the loss factor as it introduces orthorhombic distortion in bismuth titanate lattice which is exhibited by the growth along (00_10) lattice plane. Activation energy due to relaxation is found to be greater than that due to conduction thus confirming that electrical conduction in these ceramics is not due to relaxation of dipoles. Remanent polarization of the doped samples increases as the Zirconium content increases.

  16. Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor–ferroelectric ceramic composites

    DOE PAGESBeta

    Gobeljic, D.; Shvartsman, V. V.; Belianinov, A.; Okatan, B.; Jesse, S.; Kalinin, S. V.; Groh, C.; Rödel, J.; Lupascu, D. C.

    2016-01-05

    Relaxor/ferroelectric ceramic/ceramic composites have shown to be promising in generating large electromechanical strain at moderate electric fields. However, the mechanisms of polarization and strain coupling between grains of different nature in the composites remain unclear. To rationalize the coupling mechanisms we performed advanced piezoresponse force microscopy (PFM) studies of 0.92BNT-0.06BT-0.02KNN/0.93BNT-0.07BT (ergodic/non-ergodic relaxor) composites. PFM is able to distinguish grains of different phases by characteristic domain patterns. Polarization switching has been probed locally, on a sub-grain scale. k-Means clustering analysis applied to arrays of local hysteresis loops reveals variations of polarization switching characteristics between the ergodic and non-ergodic relaxor grains. Here,more » we report a different set of switching parameters for grains in the composites as opposed to the pure phase samples. These results confirm ceramic/ceramic composites to be a viable approach to tailor the piezoelectric properties and optimize the macroscopic electromechanical characteristics.« less

  17. Giant strain in lead-free relaxor/ferroelectric piezocomposite ceramics

    NASA Astrophysics Data System (ADS)

    Dinh, Thi Hinh; Kang, Jin-Kyu; Nguyen, Hoang Thien Khoi; Duong, Trang An; Lee, Jae-Shin; Tran, Vu Diem Ngoc; Pham, Ky Nam

    2016-06-01

    The crystal structural, ferroelectric, and electric-field-induced-strain (EFIS) properties of leadfree relaxor/ferroelectric piezocomposites were investigated. The relaxor-matrix phases were mixed with the ferroelectric-seed phases by using a conventional ceramic processing route. The addition of the ferroelectric seed phase dramatically enhanced the EFIS of the relaxor matrix phase at low electric fields. Giant strains of 745 pm/V at 4 kV/mm and 466 pm/V at 3 kV/mm were obtained when the seed contents were 30 wt% and 50 wt%, respectively, which are much higher than those of the relaxor matrix phase without ferroelectric seeds (575 pm/V at 4 kV/mm and 327 pm/V at 3 kV/mm).

  18. Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Sreenivas Puli, Venkata; Pradhan, Dhiren K.; Pérez, W.; Katiyar, R. S.

    2013-03-01

    This paper reports the development of a lead free {Ba(Zr0.2Ti0.8)O3}(1-x){(Ba0.7Ca0.3)TiO3}x - x=0.10, 0.15 and 0.20 - BZT-BCT ceramic solid solution system prepared using a solid-state reaction technique. The evolution of the Raman spectra with temperature was used to study the variation of the basic phase transition of BaTiO3 in these compositions. The phase transition temperature on heating was found to decrease to 310 K, 300 K, and 300 K, respectively, with increasing Ca content on BCT end and decreasing Zr content on BZT end of lead free pseudobinary ferroelectric BZT-BCT system. Tetragonal and rhombohedral phase coexistence is observed at room temperature from X-ray diffraction (XRD) spectra. Rhombohedral phase is identified between the 83 K and 273 K from temperature dependent Raman studies. Raman results are in excellent agreement with those obtained from temperature dependent dielectric measurements. Bulk ceramic BZT-BCT materials have shown interesting temperature dependent dielectric properties and as well as higher values of room temperature dielectric constant ˜7800, 8400, 5200, dielectric tunability ˜82%, figure of merit (FOM) ˜93.71 % with low dielectric loss (tan δ) ˜0.015 to 0.024 and good thermal stability at high sintering temperature (1600 °C); they might be one of the strong candidates for dielectric tunable capacitor applications in an environmentally protective atmosphere.

  19. Dramatic influence of Dy{sup 3+} doping on strain and domain structure in lead-free piezoelectric 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}−0.065BaTiO{sub 3} ceramics

    SciTech Connect

    Li, C. Q.; Zhang, J. Z.; Hu, Z. G. Chu, J. H.; Yao, Q. R.; Wang, F. F.; Liu, A. Y.; Shi, W. Z.

    2015-12-15

    An electric-field induced giant strain response and doping level dependent domain structural variations have been studied in the dysprosium (Dy{sup 3+})-modified 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-0.065BaTiO{sub 3}(xDy : NBBT) ceramics with the doping levels of 0%, 0.5%, 1%, and 2%. X-ray diffraction and Raman spectroscopy analyses not only demonstrates the change in ionic configurations induced by Dy{sup 3+} doping, but also shows the local crystal symmetry for x ≥ 0.5% doping levels to deviate from the idealized cubic structure. Piezoresponse force microscopy measurement exhibits the presence of an intermediate phase with orthorhombic symmetry at the critical Dy{sup 3+} doping level of 2%. Moreover, at this doping level, a giant recoverable nonlinear strain of ∼0.44% can be observed with high normalized strain (S{sub max}/E{sub max}) of 728 pm/V. At the same applied field, the strain exhibits a 175% increase than that of NBBT ceramic. Such a large strain stems from the varying coherence lengths of polar nanoregions (PNRs) and an unusual reversible 90° domain switching caused by the symmetry conforming property of point defects, where the restoring force is provided by unswitchable defects. The mechanism reveals a new possibility to achieve large electric-field strain effect for a wide range of ferroelectric systems, which can lead to applications in novel “on-off” actuators.

  20. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO3 epitaxial thin films grown on SrTiO3 (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-01

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO3 (KNN) epitaxial films on [100]-cut SrTiO3 single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO3 (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  1. Structural and dielectric properties of lead free Bi0.5Na0.5TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Pattipaka, Srinivas; Mahesh, P.; Pamu, D.

    2016-05-01

    The lead free Bi0.5Na0.5TiO3 (BNT) ceramics were synthesized by using a solid state reaction method. The effect of sintering temperature on structure and dielectric properties of BNT ceramics studied systematically. It was observed that the samples calcined at 800 °C and sintered at 1100 °C shown the maximum density (5.67 g/cm3), with larger crystallite size (52 nm), high dielectric constant (ɛr = 694 at 1 kHz), and low dielectric loss (tanδ = 0.103). The XRD pattern reveals that rhombohedral phase with R3c space group at room temperature. The temperature dependent ɛr and tanδ displayed the two phase transitions including ferroelectric to anti-ferroelectric low phase transition (198 °C) and anti-ferroelectric to para electric phase transition (330 °C). The high frequency dielectric analysis revealed that weak relaxor behaviour presented in the system.

  2. Composition-dependent structural, dielectric and ferroelectric responses of lead-free Bi0.5Na0.5TiO3-SrZrO3 ceramics

    NASA Astrophysics Data System (ADS)

    Maqbool, Adnan; Hussain, Ali; Rahman, Jamil Ur; Malik, Rizwan Ahmed; Song, Tae Kwon; Kim, Myong-Ho; Kim, Won-Jeong

    2016-06-01

    The influence of SrZrO3 (SZ) addition on the crystal structure, piezoelectric and the dielectric properties of lead-free Bi0.5Na0.5TiO3 (BNT-SZ100 x, with x = 0 - 0.10) ceramics was systematically investigated. A significant reduction in the grain size was observed with SZ substitution. The X-ray diffraction analysis of the sintered BNT-SZ ceramics revealed a single perovskite phase with a pseudocubic symmetry; however, electric poling indicated a non-cubic distortion in the poled BNT-SZ ceramics. With increase in the SZ content, the temperature of maximum dielectric constant ( T m ) shifted towards lower temperatures, and the curves became more diffuse. Enhanced piezoelectric constant ( d 33 = 102 pC/N) and polarization response were observed for the BNT-SZ5 ceramics. The results indicated that SZ substitution induced a transition from a ferroelectric to relaxor state with a field-induced strain of 0.24% for BNT-SZ9 corresponding to a normalized strain of 340 pm/V.

  3. The effect of CuO and NiO doping on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Kakroo, Sunanda; Kumar, Arvind; Mishra, S. K.; Singh, Vijay; Singh, Pramod K.

    2016-03-01

    In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3 -xCuO-yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT-CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ɛr = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.

  4. Relaxor nature in lead-free Sr5LaTi3Nb7O30 tetragonal tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Li Zhu, Xiao; Li, Kun; Asif Rafiq, Muhammad; Qiang Liu, Xiao; Ming Chen, Xiang

    2013-09-01

    Lead-free tetragonal tungsten bronze Sr5LaTi3Nb7O30 ceramics were prepared and the correlation of the relaxor nature and crystal structure was studied using dielectric spectroscopy and powder X-ray diffraction. Three dielectric relaxations were observed below the deviation temperature TD ˜ 330 K. Relaxation I and II followed the Vogel-Fulcher law with the freezing temperatures of 189 K and ˜90 K. Low temperature relaxation III, which was first observed in filled tungsten bronze, followed well the Arrhenius law. Dielectric response becomes static below 50 K. Polarization-field (P-E) hysteresis loops were evaluated from 183 K to 298 K. Pr value of 0.41μC/cm2 was observed at 183 K. Deviation of lattice parameter c from the linear contraction and increasing of tetragonality (c/a ratio) were observed below TD, reflecting the structure change during the formation of polar nanoregions and the following freezing process. Opposite tendency was observed below 100 K for all the lattice parameters, corresponding to relaxation III. Generally, the main dielectric relaxation I and II were attributed to flipping and breathing of polar nanoregions along c axis, while the concerted rotations of the oxygen octahedra in the ab plane were suggested as the origin of relaxation III.

  5. Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation

    NASA Astrophysics Data System (ADS)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sultana, Ayesha; Mandal, Dipankar

    2015-04-01

    A high-performance flexible piezoelectric hybrid nanogenerator (HNG) based on lead-free perovskite zinc stannate (ZnSnO3) nanocubes and polydimethylsiloxane (PDMS) composite with multiwall carbon nanotubes (MWCNTs) as supplement filling material is demonstrated. Even without any electrical poling treatment, the HNG possesses an open-circuit voltage of 40 V and a short-circuit current of 0.4 μA, respectively, under repeated human finger impact. It has been demonstrated that the output volume power density of 10.8 μW cm-3 from a HNG can drive several colour light emitting diodes (LEDs) and a charge capacitor that powers up a calculator, indicating an effective means of energy harvesting power source with high energy conversion efficiency (˜1.17%) for portable electronic devices.

  6. High-Temperature Piezoelectric Ceramic Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.; Dynys, Frederick W.

    2005-01-01

    Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines.

  7. Origin of giant piezoelectric effect in lead-free K1−xNaxTa1−yNbyO3 single crystals

    PubMed Central

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-01-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm3) K1−xNaxTa1−yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33* = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1−xNaxTa1−yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material. PMID:27160075

  8. Origin of giant piezoelectric effect in lead-free K1-xNaxTa1-yNbyO3 single crystals.

    PubMed

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-01-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm(3)) K1-xNaxTa1-yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33(*) = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1-xNaxTa1-yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material. PMID:27160075

  9. Origin of giant piezoelectric effect in lead-free K1‑xNaxTa1‑yNbyO3 single crystals

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-05-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm3) K1‑xNaxTa1‑yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33* = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1‑xNaxTa1‑yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material.

  10. Response of intergrown microstructure to an electric field and its consequences in the lead-free piezoelectric bismuth sodium titanate

    SciTech Connect

    Liu Yun; Noren, Lasse; Studer, Andrew J.; Withers, Ray L.; Guo Yiping; Li Yongxiang; Yang Hui; Wang Jian

    2012-03-15

    We investigate the R3c average structure and micro-structure of the ceramic Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} (BNT) in situ under applied electric fields using diffraction techniques. Electron diffraction implies the presence of significant octahedral tilt twin disorder, corresponding to the existence of a fine scale intergrown microstructural (IGMS) 'phase' within the R3c rhombohedral average structure matrix. A careful neutron refinement suggests not only that the off-centre displacements of the cations relative to the oxygens in the R3c regions increases systematically on application of an electric field but also that the phase fraction of the IGMS regions increases systematically. The latter change in phase fraction on application of the electric field enhances the polar displacement of the cations relative to the oxygen anions and affects the overall strain response. These IGMS regions form local polar nano regions that are not correlated with one another, resulting in polarisation relaxation and strain behaviour observed in BNT-containing materials. - Graphical abstract: The intergrown microstructure at very fine scales within the R3c rhombohedral phase matrix of BNT, originating from octahedral tilt twinning disorder, will increase with respect to an external field. Highlights: Black-Right-Pointing-Pointer The existence of an intergrown microstructural 'phase' within the average structure matrix. Black-Right-Pointing-Pointer This phase fraction of the intergrown microstructural regions changes. Black-Right-Pointing-Pointer Such regions form local polar nano regions that are not correlated with one another.

  11. Magnetoelectric coupling in lead-free piezoelectric Lix(K0.5Na0.5)1 - xNb1 - yTayO3 and magnetostrictive CoFe2O4 laminated composites

    NASA Astrophysics Data System (ADS)

    Fu, Jiyong; Santa Rosa, Washington; M'Peko, Jean Claude; Algueró, Miguel; Venet, Michel

    2016-04-01

    To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Lix(K0.5Na0.5)1 - xNb1 - yTayO3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d31, a crucial ingredient determining ME couplings, for several Li (x = 0.03 , 0.035 , 0.04) and Ta (y = 0.15 , 0.2 , 0.25) concentrations, and find that the highest d31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse (αE,31) and the longitudinal (αE,33) low-frequency ME coupling coefficients of our composites, for each the above composition of (x , y). At x = 0.03, we find the usual scenario of αE,31 and αE,33, i.e., the strongest ME coupling occurs when d31 is maximal, namely at y = 0.2. On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d31, e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04, following from the interplay of d31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with αE,31 in magnitude around twice of αE,33, are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.

  12. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  13. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  14. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future. PMID:26735739

  15. Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics.

    PubMed

    Bai, Wangfeng; Chen, Daqin; Zheng, Peng; Shen, Bo; Zhai, Jiwei; Ji, Zhenguo

    2016-05-17

    In this study, a lead-free ceramic system comprising (0.94 - x)Bi0.5Na0.5TiO3-0.06BaTiO3-xBi(Zn0.5Ti0.5)O3 (BNT-BT-BZT) was designed and prepared by a conventional solid-state reaction method. The effect of the addition of BZT on the phase transition characteristics and associated electromechanical properties of BNT-BT was systematically discussed and a schematic phase diagram was established. The addition of BZT had a strong impact on the phase transition as well as the strain and piezoelectric activity. The phase coexistence, which involves ferroelectric rhombohedral-relaxor pseudocubic phases, can be driven by modification with BZT and increases in temperature and can be confirmed by XRD measurements, analysis of Raman spectra and temperature-dependent changes in polarization and strain hysteresis loops. Accompanied by a shift in the ferroelectric-to-relaxor temperature TF-R to below room temperature on the addition of BZT, a compositionally induced ferroelectric-to-relaxor phase transition occurred, which gave rise to a large strain of 0.33% with a normalized strain Smax/Emax of 550 pm V(-1) at the critical BZT content x of 0.0275. The results were closely correlated with the composition and dependence on temperature of the phase transition, which significantly influenced the electromechanical properties, and the origin of the large strain observed in the present system was also addressed in detail. As a result, the design principles provided in this study open the possibility of obtaining BNT-based lead-free ceramics with enhanced electromechanical properties for actuator applications. PMID:27125262

  16. LARGE PIEZOELECTRIC EFFECT IN LOW-TEMPERATURE-SINTERED LEAD-FREE (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 THICK FILMS

    NASA Astrophysics Data System (ADS)

    Feng, Zuyong; Shi, Dongqi; Dou, Shixue; Hu, Yihua; Tang, Xingui

    2012-09-01

    High-quality piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films with dense and homogenous microstructures were fabricated at a low sintering temperature (900°C) using a CuBi2O4 sintering aid. The 10 μm thick film exhibited a high longitudinal piezoelectric constant d33,eff of 210 pC/N with estimated unconstrained d33 value of 560 pC/N very close to that in the corresponding bulks. Such excellent piezoelectric effect in the low-temperature sintered (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films is comparable to the case of lead-based PZT thick films, and may be a promising application in lead-free microdevices such as piezoelectric microelectromechanical systems (MEMS).

  17. Low electric-field driven ultrahigh electrostrains in Sb-substituted (Na,K)NbO{sub 3} lead-free ferroelectric ceramics

    SciTech Connect

    Fu, Jian; Zuo, Ruzhong E-mail: rzzuo@hotmail.com; Qi, He; Zhang, Chen; Li, Jingfeng; Li, Longtu

    2014-12-15

    Lead-free (Na{sub 0.52}K{sub 0.48})(Nb{sub 1−y}Sb{sub y})O{sub 3} (NKNS{sub y}) ferroelectric ceramics were reported to exhibit an ultrahigh electrostrain (dynamic d{sub 33}* (=S/E) of 800–1100 pm/V) in a relatively low driving electric field range (1–4 kV/mm). As evidenced by in-situ synchrotron x-ray diffraction and dielectric measurements, the mechanism of generating large strains was ascribed to both the low-field induced reversible rhombohedral-monoclinic phase transition (1–2 kV/mm) and the enhanced domain switching (2–4 kV/mm) owing to the normal to relaxor phase transformation, which contribute to ∼62% and ∼38% of the total strain, respectively. The results indicate that the NKNS{sub y} compositions would have excellent potentials for applications of lead-free actuator ceramics.

  18. Preparation and dielectric properties of the lead-free BaFe1/2Nb1/2O3 ceramics obtained from mechanically triggered powder

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Niemiec, Przemysław; Szafraniak-Wiza, Izabela; Adamczyk, Małgorzata; Skulski, Ryszard

    2015-10-01

    In the paper the influence of mechanical activation of the powder on the final dielectric properties lead-free Ba(Fe1/2Nb1/2)O3 (BFN) ceramic was examined. The BFN ceramics were obtained by 3-steps route. Firstly, the substrates were pre-homogenized in a planetary ball mill. Than, the powder was activated in vibratory mill (the shaker type SPEX 8000 Mixer Mill) for different duration between 25 h and 100 h. The influence of the milling time on the BFN powder was monitored by X-ray diffraction. The diffraction data confirmed that the milling process of the starting components is accompanied by partial synthesis of the BFN materials. The longer of the high-energy milling duration the powders results in increasing the amount of amorphous/nanocrystalline content. The mechanically activated materials were sintered in order to obtain the ceramic samples. During this temperature treatment the final crystallisation of the powder appeared what was confirmed by XRD studies. The performed dielectric measurements have revealed the reduction of the dielectric loss of the BFN ceramics compared to materials obtained by classic methods.

  19. The evolution mechanism of defect dipoles and high strain in MnO2-doped KNN lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihao; Dai, Yejing; Li, Xiaolei; Zhao, Zhe; Zhang, Xiaowen

    2016-04-01

    Defect dipoles in acceptor-doped (K0.5Na0.5)NbO3-based ceramics have a significant influence on their electrical properties. The present study examined the influence of the sintering atmosphere on the electrical properties of MnO2-doped (K0.5Na0.5)NbO3. The poled and aged samples sintered in the Ar atmosphere depicted unusual behavior related to the formation of defect dipoles ( M n2+ N b ‴ - VO .. ) ' , aligned in the poling direction having larger polarity. The S-E loop of the poled and aged MnO2-doped (K0.5Na0.5)NbO3 ceramics sintered in the Ar atmosphere revealed larger strains in the poling direction and restrained strains in the opposite direction. Furthermore, it is observed that the unipolar electro-strain could reach 0.28% (d33* = 800 pm/V) at 3.5 kV/mm, a value nearly 5.6-fold higher than those obtained in the air atmosphere (0.05%). This method based on the sintering atmosphere and process control provides a promising way to obtain substantial electro-strain values suitable for applications in high-displacement actuators.

  20. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    NASA Astrophysics Data System (ADS)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  1. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  2. Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Lee, Joonhee; Venugopal, Vineeth; Kim, Dong-Joo; Lee, Jinkee; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2016-06-01

    Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ˜10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ˜90 pm/V and -8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.

  3. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO{sub 3} epitaxial thin films grown on SrTiO{sub 3} (100) surfaces

    SciTech Connect

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-10

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  4. Large Piezoelectric Effect in Pb-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Wenfeng; Ren, Xiaobing

    2009-12-01

    We report a non-Pb piezoelectric ceramic system Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 which shows a surprisingly high piezoelectric coefficient of d33˜620pC/N at optimal composition. Its phase diagram shows a morphortropic phase boundary (MPB) starting from a tricritical triple point of a cubic paraelectric phase (C), ferroelectric rhombohedral (R), and tetragonal (T) phases. The high piezoelectricity of the MPB compositions stems from the composition proximity of the MPB to the tricritical triple point, which leads to a nearly vanishing polarization anisotropy and thus facilitates polarization rotation between ⟨001⟩T and ⟨111⟩R states. We predict that the single-crystal form of the MPB composition of the present system may reach a giant d33=1500-2000pC/N. Our work may provide a new recipe for designing highly piezoelectric materials (both Pb-free and Pb-containing) by searching MPBs starting from a TCP.

  5. Optimizing electrical poling for tetragonal, lead-free BZT-BCT piezoceramic alloys

    SciTech Connect

    Li, Binzhi; Ehmke, Matthias C.; Blendell, John E.; Bowman, Keith J.

    2014-02-13

    The piezoelectric properties of tetragonal BZT–BCT materials have been shown to be improved by using the field cooling poling method. It is shown that the piezoelectric coefficient of tetragonal BZT–BCT materials increases with higher poling temperature, and the optimum poling temperature lies near the Curie temperatures for a broad range of compositions. It is also observed from in situ X-ray diffraction measurements with an applied electric field that the magnitude of domain alignment is enhanced with electrical poling at higher electric fields, whereas the remnant ferroelastic domain texture is not affected. Furthermore, these results show a direct correlation between the development of internal bias field, which is induced by the accumulation of defect charge carriers, and the enhanced piezoelectric coefficient. These observations suggest an important role played by the alignment of defect charge carriers in achieving optimum piezoelectric coefficient in lead-free piezoelectric ceramics.

  6. Measurement of Micro Vibration of Car by Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Masuyama, Kosuke; Nakamura, Testuo; Bamba, Takeshi; Watanabe, Kajiro

    Recently, there are various accidents and crimes related to the car. In some cases, the accidents and the crimes can be prevented if it is possible to detect a human who is in the car. For example, we can prevent a baby who is left in a car under the hot weather from dehydration or death occurred by heat inside disease. In another case, it is estimated that the United States currently has as many as 12 million illegal immigrants. In order to prevent further influx of illegal immigrants, the police are physically searching incoming vehicles at national boundaries aiming at finding those who are hiding inside. However, the physical inspections require much manpower cost and time. An inspection method to see inside the vehicles through X-ray images has also been used for this end. But the cost and the installation places are the problems of the large-scale X-ray system. Proposed in this paper is a piezoelectric ceramic system to handily measure the micro vibrations of motor vehicles. And applying the algorithm of Support Vector Machine (SVM), the existence of human body inside vehicles can be detected. The experiment was carried out using four types of vehicles: a mini car; an auto mobile; a van; and a truck weighing 1.5 tons. As the results, the correct determination ratio was 91.2% for the experiment with the piezoelectric ceramic under the front wheels and 97.0% under the rear wheels, when the vehicle used for the examination had also been used together with other three types of vehicles to obtain SVM training data. When the vehicle used for the examination had not been used together with the other three to obtain SVM training data, on the other hand, the correct determination ratio was 93.7% for the experiment with the piezoelectric ceramic under the front wheels and 95.7% under the rear wheels.

  7. Relaxor nature in lead-free Sr{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30} tetragonal tungsten bronze ceramics

    SciTech Connect

    Li Zhu, Xiao; Li, Kun; Qiang Liu, Xiao; Ming Chen, Xiang; Asif Rafiq, Muhammad

    2013-09-28

    Lead-free tetragonal tungsten bronze Sr{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30} ceramics were prepared and the correlation of the relaxor nature and crystal structure was studied using dielectric spectroscopy and powder X-ray diffraction. Three dielectric relaxations were observed below the deviation temperature T{sub D}∼ 330 K. Relaxation I and II followed the Vogel-Fulcher law with the freezing temperatures of 189 K and ∼90 K. Low temperature relaxation III, which was first observed in filled tungsten bronze, followed well the Arrhenius law. Dielectric response becomes static below 50 K. Polarization-field (P-E) hysteresis loops were evaluated from 183 K to 298 K. P{sub r} value of 0.41μC/cm{sup 2} was observed at 183 K. Deviation of lattice parameter c from the linear contraction and increasing of tetragonality (c/a ratio) were observed below T{sub D}, reflecting the structure change during the formation of polar nanoregions and the following freezing process. Opposite tendency was observed below 100 K for all the lattice parameters, corresponding to relaxation III. Generally, the main dielectric relaxation I and II were attributed to flipping and breathing of polar nanoregions along c axis, while the concerted rotations of the oxygen octahedra in the ab plane were suggested as the origin of relaxation III.

  8. Piezoelectric lead zirconate titanate ceramic fiber/polymer composites

    SciTech Connect

    Waller, D.J.; Safari, P. )

    1992-06-01

    This papers on piezoelectric lead zirconate titanate (PZT) ceramic fiber/polymer composite were fabricated by a novel technique referred to as relic processing. Basically, this involved impregnating a woven carbon-fiber template material with PZT precursor by soaking the template in a PZT stock solution. Careful heat treatment pyrolized the carbon, resulting in a PZT ceramic relic that retained the fibrous template form. After sintering, the densified relic was backfilled with polymer to form a composite. Optimized relic processing consisted of soaking activated carbon-fiber fabric twice in an intermediate concentration (405-mg PZT/(1-g solution)) alkoxide PZT solution and sintering at 1285{degrees}C for 2 h. A series of piezoelectric composites encompassing a wide range of dielectric and piezoelectric properties was prepared by varying the PZT-fiber orientation and polymer-matrix material. In PZT/Eccogel polymer composites with PZT fibers orientated parallel to the electrodes, K = 75, d{sub 33} = 145 pC/N, d{sub h} = 45 {plus minus} 5 pC/N, and d{sub h}g{sub h} = 3150 {times} 10{sup {minus}15} m{sup 2}/N were measured. Furthermore, in composites with a number of PZT fibers arranged perpendicular to the electroded surfaces, K = 190, d{sub 33} = 250 pC/N, d{sub h} = 65 {plus minus} 2 pC/N, and d{sub h}g{sub h} = 2600 {times} 10{sup {minus}15} m{sub 2}/N.

  9. Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Bucur, Raul Alin; Badea, Iuliana; Bucur, Alexandra Ioana; Novaconi, Stefan

    2016-06-01

    (1 - x)(K0.5Na0.5)NbO3 - xGdMnO3 (KNN- xGM) ferroelectric ceramics (0 ≤ x ≤ 5 mol.%) were obtained through a solid state technique. For all the studied compositions, orthorhombic perovskite crystalline structures were obtained at room temperature. GdMnO3 suppresses the grain growth and gives rather homogenous microstructures as the concentration increases. The doped ceramics exhibita good dielectric response, a "hard" ferroelectric behavior and good piezoelectric properties. An improved mechanical quality factor of 1180 and a high Curie temperature T C = 400°C, coupled with k p = 0.426, makes the composition x = 1 mol.% GdMnO3 suitable for lead-free piezoelectric materials for high-power and high-temperature applications.

  10. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    NASA Astrophysics Data System (ADS)

    Wada, S.; Mase, Y.; Shimizu, S.; Maeda, K.; Fujii, I.; Nakashima, K.; Pulpan, P.; Miyajima, N.

    2011-10-01

    Porous potassium niobate (KNbO3, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  11. Three-dimensional ceramic molding process based on microstereolithography for the production of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku

    2014-03-01

    A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.

  12. Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1-xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Wu, Jiagang; Tao, Hong; Lv, Xiang; Wang, Xiangjian; Lou, Xiaojie

    2015-02-01

    To realize the enhancement in piezoelectric activities, the composition-induced phase boundaries in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1-xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics were designed and fabricated by the conventional solid-state method. We presented the evolutions of their phase structure, microstructure, and electrical properties with the change of Sb5+ and Bi0.5Na0.5ZrO3 contents. A rhombohedral-tetragonal phase boundary was successfully built in the composition region of 0.04 ≤ x ≤ 0.09 (y = 0.025) and 0.025 ≤ y ≤ 0.035 (x = 0.06), and then the desirable piezoelectric coefficients and bipolar strains (e.g., d33˜390 pC/N, kp˜0.45, Smax˜0.2%, and TC˜250 °C) were simultaneously induced. We think that this may provide a direction of designing high-performance (K,Na)NbO3-based ceramics.

  13. Fabrication of lead-free (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 0.5}TiO{sub 3} piezoelectric nanofiber by electrospinning

    SciTech Connect

    Chen, Y.Q.; Zheng, X.J.; Feng, X.; Dai, S.H.; Zhang, D.Z.

    2010-06-15

    (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 0.5}TiO{sub 3} nanofibers were synthesized by sol-gel process and electrospinning. Scanning electron microscopy was used to verify that the diameters and lengths are in the range of 150-600 nm and several hundreds of micrometer. Perovskite structure and grain size (20-70 nm) were verified by X-ray diffraction and transmission electron microscopy. The high effective piezoelectric coefficient d{sub 33} (96 pm/V) was measured by scanning force microscopy. It may be attributed to easily tilting the polar vector of domain for an electric field and the increase in the number of possible spontaneous polarization direction near the rhombohedral-tetragonal morphotropic phase boundary. The research shows that there are potentional applications for (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 0.5}TiO{sub 3} nanofiber in nanoscale lead-free piezoelectric devices.

  14. Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact

    NASA Astrophysics Data System (ADS)

    Garg, Rohini; Rao, Badari Narayana; Senyshyn, Anatoliy; Krishna, P. S. R.; Ranjan, Rajeev

    2013-07-01

    The structure-property correlation in the lead-free piezoelectric (1-x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc)+rhombohedral (R3c) for the precritical compositions, 0≤x≤0.05, (ii) cubiclike for 0.06≤x≤0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07≤x<0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (˜50 Å) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

  15. Some design considerations for small piezo-electrical ceramic transducers

    NASA Astrophysics Data System (ADS)

    Rijnja, H. A. J.

    1989-07-01

    The design parameters and the characteristics of small omnidirectional transducers, to be applied under water as projectors in the frequency range of about 1 kHz to 100 kHz and as hydrophones from very low frequencies up to again 100kHz are described. The transducers are constructed with piezoelectrical ceramic materials in the shape of hollow spheres, end capped tubes or piston (Tonpilz) elements. The highest source levels are obtained with spherical transducers as single omnidirectional sound sources. If larger arrays of sources are applied the array should be composed of single ended Tonpilz elements. The most sensitive receivers (hydrophones) are obtained with tangentially polarized end-capped tubes.

  16. Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.

    2007-01-01

    Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

  17. High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics.

    PubMed

    Lee, S T F; Lam, K H; Zhang, X M; Chan, H L W

    2011-10-01

    This paper describes the fabrication and evaluation of a high-frequency (40MHz) transducer based on lead-free piezoceramics for ultrasonic imaging. The transducer with an aperture size of 0.9mm has been fabricated using barium strontium zirconate titanate ((Ba(0.95)Sr(0.05))(Zr(0.05)Ti(0.95))O(3), abbreviated as BSZT) ceramics. The lead-free BSZT has a piezoelectric d(33) coefficient of 300 pC/N and an electromechanical coupling factor k(t) of 0.45. High-frequency ultrasound transducers were fabricated and a bandwidth of 76.4% has been achieved with an insertion loss of -26dB. Applications in high resolution biological and medical imaging could be possible with this lead-free material. PMID:21477833

  18. Long-period modulated structure and electric-field-induced structural transformation in N a0.5B i0.5Ti O3 -based lead-free piezoelectrics

    NASA Astrophysics Data System (ADS)

    Khatua, Dipak Kumar; Senyshyn, Anatoliy; Ranjan, Rajeev

    2016-04-01

    N a0.5B i0.5Ti O3 - based lead-free piezoelectrics exhibiting giant piezostrain are technologically interesting materials for actuator applications. The lack of clarity with regard to the structure of the nonpolar phase of this system has hindered the understanding of the structural mechanism associated with the giant piezostrain and other related phenomena. In this paper, we have investigated the structure and field-induced phase transformation behavior of a model system (0.94 -x )N a0.5B i0.5Ti O3-0.06 BaTi O3-x K0.5N a0.5Nb O3 (0.0 ≤x ≤0.025 ). A detailed structural analysis using neutron powder diffraction revealed that the nonpolar phase is neither cubic nor a mixture of rhombohedral (R 3 c ) and tetragonal (P 4 b m ) phases as commonly reported in literature but exhibits a long-period modulated structure, which is most probably of the type √{2 }×√{2 }×n with n =16 . Our results suggest that the giant piezoelectric strain is associated with a field-induced phase transformation of the long-period modulated structure to rhombohedral R 3 c structure above a critical field. We also demonstrate that the giant piezostrain is lost if the system retains a fraction of the field-induced R 3 c phase. A possible correlation among depolarization temperature, giant piezostrain, and its electrical fatigue behavior has also been indicated.

  19. Using Piezoelectric Ceramics for Dust Mitigation of Space Suits

    NASA Technical Reports Server (NTRS)

    Angel, Heather K.

    2004-01-01

    The particles that make up moon dust and Mars soil can be hazardous to an astronaut s health if not handled properly. In the near future, while exploring outer space, astronauts plan to wander the surfaces of unknown planets. During these explorations, dust and soil will cling to their space suits and become imbedded in the fabric. The astronauts will track moon dust and mars soil back into their living quarters. This not only will create a mess with millions of tiny air-born particles floating around, but will also be dangerous in the case that the fine particles are breathed in and become trapped in an astronaut s lungs. research center are investigating ways to remove these particles from space suits. This problem is very difficult due to the nature of the particles: They are extremely small and have jagged edges which can easily latch onto the fibers of the fabric. For the past summer, I have been involved in researching the potential problems, investigating ways to remove the particles, and conducting experiments to validate the techniques. The current technique under investigation uses piezoelectric ceramics imbedded in the fabric that vibrate and shake the particles free. The particles will be left on the planet s surface or collected a vacuum to be disposed of later. The ceramics vibrate when connected to an AC voltage supply and create a small scale motion similar to what people use at the beach to shake sand off of a beach towel. Because the particles are so small, similar to volcanic ash, caution must be taken to make sure that this technique does not further inbed them in the fabric and make removal more difficult. Only a very precise range of frequency and voltage will produce a suitable vibration. My summer project involved many experiments to determine the correct range. Analysis involved hands on experience with oscilloscopes, amplifiers, piezoelectrics, a high speed camera, microscopes and computers. perfect this technology. Someday, vibration to

  20. Long ranged structural modulation in the pre-morphotropic phase boundary cubic-like state of the lead-free piezoelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}-BaTiO{sub 3}

    SciTech Connect

    Garg, Rohini; Narayana Rao, Badari; Ranjan, Rajeev; Senyshyn, Anatoliy

    2013-12-21

    The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1−x)Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}-(x)BaTiO{sub 3} at x ∼ 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}-based ferroelectrics.

  1. Structural crossover from nonmodulated to long-period modulated tetragonal phase and anomalous change in ferroelectric properties in the lead-free piezoelectric N a1 /2B i1 /2Ti O3-BaTi O3

    NASA Astrophysics Data System (ADS)

    Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-06-01

    The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].

  2. Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics

    NASA Astrophysics Data System (ADS)

    Ochoa, D. A.; García, J. E.; Pérez, R.; Gomis, V.; Albareda, A.; Rubio-Marcos, F.; Fernández, J. F.

    2009-01-01

    Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O3 system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.

  3. Cement-based piezoelectric ceramic composites for sensor applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Dong, Biqin

    The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.

  4. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.

    PubMed

    Oh, Youngkwang; Noh, Jungrae; Yoo, Juhyun; Kang, Jinhee; Hwang, Larkhoon; Hong, Jaeil

    2011-09-01

    In this study, nonstoichiometric (Na(0.5)K(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics were fabricated and their dielectric and piezoelectric properties were investigated according to the CeO(2) addition. In this ceramic composition, CeO(2) addition improved sinterability, electromechanical coupling factor k(p), mechanical quality factor Q(m), piezoelectric constant d(33), and g(33). At the sintering temperature of 1100°C, for the 0.2wt% CeO(2) added specimen, the optimum values of density = 4.359 g/cm(3), k(p) = 0.443, Q(m) = 588, ε(r) = 444, d(33) = 159 pC/N, and g(33) = 35 × 10(-3) V·m/N, were obtained. A piezoelectric energy harvesting device using 0.2 wt% CeO(2)- added lead-free (K(0.5)Na(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics and a rectifying circuit for energy harvesting were fabricated and their electrical characteristics were investigated. Under an external vibration acceleration of 0.7 g, when the mass, the frequency of vibration generator, and matching load resistance were 2.4 g, 70 Hz, and 721 Ω, respectively, output voltage and power of piezoelectric harvesting device indicated the optimum values of 24.6 mV(rms) and 0.839 μW, respectively-suitable for application as the electric power source of a ubiquitous sensor network (USN) sensor node. PMID:21937318

  5. Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3-CoFe2O4 magnetoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Jarupoom, Parkpoom; Jaita, Pharatree

    2015-09-01

    This research was conducted to study the magnetoelectric ceramics with the composition belonging to (1- x)(Bi0.5Na0.5)TiO3- xCoFe2O4 or (1- x)BNT- xCF (when x = 0 - 0.02 mol fraction). All compositions have been synthesized by a conventional mixed oxide method and sintered at the temperature ranging of 900°C-1150°C. The ceramics were fabricated to investigate the effects of CF on crystal structure, microstructure, magnetoelectric effect (ME) and electrical properties of BNT ceramic. The optimum sintering temperature was found to be 1100°C for pure BNT ceramic and 1000°C for BNT-CF sample group. X-ray diffraction pattern revealed that all compositions exhibited a single perovskite structure without impurity phase. Diffraction peaks from the amount of CF were not observed in these patterns which may be due to the relatively low concentration of CF added into BNT ceramic and may be below the detection limit of the instrument. The reduction of grain size and dielectric improvement were observed when CF was added. The addition of CF improved the magnetic behavior as well as resulted in a slight change in ferroelectric properties. The addition of 2 mol. % CF into BNT was found to be the optimal composition for produce the magnetoelectric materials simultaneously exhibiting good ferromagnetic and ferroelectric properties at room temperature. [Figure not available: see fulltext.

  6. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    SciTech Connect

    Seol, Daehee; Seo, Hosung; Kim, Yunseok; Jesse, Stephen

    2015-08-21

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  7. New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature

    NASA Astrophysics Data System (ADS)

    Wu, Jiagang; Wang, Xiaopeng; Cheng, Xiaojing; Zheng, Ting; Zhang, Binyu; Xiao, Dingquan; Zhu, Jianguo; Lou, Xiaojie

    2014-03-01

    The objective of this work is to achieve a giant piezoelectric constant in (K,Na)NbO3-based lead-free ceramics, and then 0.96K0.46Na0.54Nb0.95Sb0.05O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 lead-free piezoceramics were designed and prepared by optimizing the sintering temperature (TS). The rhombohedral-tetragonal phase boundary is found in the ceramics sintered at 1070 ˜ 1105 °C and is suppressed when sintered at low TS of 1060 ˜ 1065 °C. The threshold for TS is 1070 °C in terms of their ferroelectric and piezoelectric properties owing to the difference in the phase boundary and the microstructure, and a large d33 of 388 ˜ 465 pC/N could be attained in a wide TS range of 1070 ˜ 1105 °C, benefiting their practical applications because of broad TS. More interestingly, the ceramic sintered at 1075 °C has a giant d33 of ˜465 pC/N. We think that such a giant d33 of this material system can benefit the development of (K,Na)NbO3-based piezoceramics.

  8. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.

    2016-08-01

    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  9. Radially composite piezoelectric ceramic tubular transducer in radial vibration.

    PubMed

    Shuyu, Lin; Shuaijun, Wang

    2011-11-01

    The radially composite piezoelectric tubular transducer is studied. It is composed of radially poled piezoelectric and a long metal tube. The electro-mechanical equivalent circuit of the radially poled piezoelectric and metal tube in radial vibration is obtained. Based on the force and velocity boundary conditions, the six-port electro-mechanical equivalent circuit for the composite tubular transducer is given and the resonance/anti-resonance frequency equations are obtained. The relationship between the resonance frequency and the dimensions is analyzed. Numerically simulated results obtained by the finite element method are compared with those from the analytical method. Composite piezoelectric tubular transducers are designed and manufactured. The resonance/anti-resonance frequencies are measured, and it is shown that the theoretical results are in good agreement with the simulated and experimental results. It is expected that radially composite piezoelectric tubular transducers can be used as high-power ultrasonic radiators in ultrasonic applications, such as ultrasonic liquid processing. PMID:22083782

  10. Study of methods for automated crack inspection of electrically poled piezoelectric ceramics.

    SciTech Connect

    Yang, Pin; Hwang, Stephen C.; Jokiel, Bernhard, Jr.; Burns, George Robert

    2004-06-01

    The goal of this project was to identify a viable, non-destructive methodology for the detection of cracks in electrically poled piezoelectric ceramics used in neutron generator power supply units. The following methods were investigated: Impedance Spectroscopy, Scanning Acoustic Microscopy, Lock-in Thermography, Photo-acoustic Microscopy, and Scanned Vicinal Light. In addition to the exploration of these techniques for crack detection, special consideration was given to the feasibility of integrating these approaches to the Automatic Visual Inspection System (AVIS) that was developed for mapping defects such as chips, pits and voids in piezoelectric ceramic components. Scanned Vicinal Light was shown to be the most effective method of automatically detecting and quantifying cracks in ceramic components. This method is also very effective for crack detection in other translucent ceramics.

  11. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin

    2015-12-01

    The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.

  12. Dielectric constant tunability at microwave frequencies and pyroelectric behavior of lead-free submicrometer-structured (Bi0.5Na0.5)1-xBaxTiO3 ferroelectric ceramics.

    PubMed

    Martínez, Félix L; Hinojosa, Juan; Doménech, Ginés; Fernández-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon; Pardo, Lorena

    2013-08-01

    In this article, we show that the dielectric constant of lead-free ferroelectric ceramics based on the solid solution (1-x)(Bi(0.5)Na(0.5))TiO(3)-xBaTiO(3), with compositions at or near the morphotropic phase boundary (MPB), can be tuned by a local applied electric field. Two compositions have been studied, one at the MPB, with x = 0.06 (BNBT6), and another one nearer the BNT side of the phase diagram, with x = 0.04 (BNBT4). The tunability of the dielectric constant is measured at microwave frequencies between 100 MHz and 3 GHz by a nonresonant method and simultaneously applying a dc electric field. As expected, the tunability is higher for the composition at the MPB (BNBT6), reaching a maximum value of 60% for an electric field of 900 V/cm, compared with the composition below this boundary (BNBT4), which saturates at 40% for an electric field of 640 V/cm. The high tunability in both cases is attributed to the fine grain and high density of the samples, which have a submicrometer homogeneous grain structure with grain size of the order of a few hundred nanometers. Such properties make these ceramics attractive for microwave tunable devices. Finally, we have tested these ceramics for their application as infrared pyroelectric detectors and we have found that the pyroelectric figure of merit is comparable to traditional lead-containing pyroelectrics. PMID:25004530

  13. Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics.

    PubMed

    Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie

    2015-09-16

    The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*<600 pm/V) due to the involvement of other phase structures (O-T or O). In addition, the underlying physical mechanisms for the relationships between piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate. PMID:26302094

  14. Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics.

    PubMed

    Zhao, Chunlin; Wang, Hui; Xiong, Jie; Wu, Jiagang

    2016-04-12

    In this study, we systematically investigated the composition dependence of the phase structure, microstructure, and electrical properties of (Ba0.94Ca0.06)(Ti1-xMx)O3 (M = Sn, Hf, Zr) ceramics synthesised by the conventional solid-state reaction method. The phase boundary type strongly depends on the composition, and then different electrical properties were exhibited. The addition of Hf and Zr can more quickly shift phase transition temperatures (TR-O and TO-T) to a higher temperature with respect to Sn, leading to the formation of different phase boundaries. In addition, different phase boundaries can also be affected by their doped contents. The R-O and O-T phase boundaries can be shown in the Sn-doped ceramics with x = 0.10, and the R-O phase boundary can exist in the Hf (x = 0.07) or Zr (x = 0.075)-doped ceramics. A high piezoelectric property of d33 = 600 pC N(-1) can be achieved in the Sn-doped ceramics due to the involvement of converging R-O/O-T phase boundaries, an enhanced ferroelectric performance with Pr = 14.54 μC cm(-2) and Ec = 1.82 kV cm(-1) can be attained in the Zr-doped ceramics, and Hf would benefit from obtaining a large strain behaviour (∼0.20%). We believe that the electrical properties and the related physical mechanisms of BaTiO3-based ceramics can be well unveiled by studying their chemical modification behavior. PMID:26952807

  15. Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications.

    PubMed

    Anton, Steven R; Erturk, Alper; Inman, Daniel

    2012-06-01

    The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads. PMID:22711404

  16. Lead-free Ba{sub 0.8}Ca{sub 0.2}(Zr{sub x}Ti{sub 1−x})O{sub 3} ceramics with large electrocaloric effect

    SciTech Connect

    Asbani, B.; Dellis, J.-L.; Lahmar, A.; Gagou, Y.; El Marssi, M.; Courty, M.; Djellab, K.; Amjoud, M.; Mezzane, D.; Kutnjak, Z.

    2015-01-26

    The electrocaloric effect was investigated in lead-free Zr doped Ba{sub 0.8}Ca{sub 0.2}(Zr{sub x}Ti{sub 1−x})O{sub 3} (BCTZ) ceramics synthesized by a conventional sintering process. Room-temperature x-ray diffraction analysis showed that the tetragonal structure is obtained in BCTZ for x ≤ 0.08 and a pseudo cubic phase for x > 0.08. The dielectric spectroscopy and calorimetry revealed that the Curie temperature decreases as a consequence of Zr doping and that the BCTZ exhibits a first order ferroelectric phase transition. The electrocaloric effect was determined by the calculation of the electrocaloric change of temperature (ΔT) using the Maxwell relation based on the P–E hysteresis loops measured at different temperatures. A large electrocaloric responsivity ΔT/ΔE = 0.34 × 10{sup −6 }Km/V was found for x = 0.04, which significantly exceeds of values found so far in other lead-free electrocaloric materials.

  17. Dielectric Properties of SrMnO3-doped K0.5Na0.5NbO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Deng, Jianming; Sun, Xiaojun; Liu, Laijun; Liu, Saisai; Huang, Yanmin; Fang, Liang; Elouadi, Brahim

    2016-05-01

    (1-x)K0.5Na0.5NbO3-xSrMnO3 (0.02 ≤ x ≤ 0.08) (KNN-xSM) ceramics were fabricated by a conventional solid-state technique. X-ray diffraction of the samples revealed that the crystal structure changes from orthorhombic to tetragonal, and finally to pseudocubic symmetry with increasing x. Temperature dependence of dielectric properties showed that the temperature (T m) corresponding to the maximum of dielectric permittivity decreased with increasing x. Two dielectric relaxation processes occurred at high temperatures, which were attributed to grain and grain boundary responses, respectively. Polarization hysteresis loops (P-E) at different electrical fields were displayed. P rmax degenerated with the increase of SM due to the thermally activated leakage current increases. The relationship between electrical properties and defect compensation mechanism is discussed.

  18. Dielectric Properties of SrMnO3-doped K0.5Na0.5NbO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Deng, Jianming; Sun, Xiaojun; Liu, Laijun; Liu, Saisai; Huang, Yanmin; Fang, Liang; Elouadi, Brahim

    2016-08-01

    (1- x)K0.5Na0.5NbO3- xSrMnO3 (0.02 ≤ x ≤ 0.08) (KNN- xSM) ceramics were fabricated by a conventional solid-state technique. X-ray diffraction of the samples revealed that the crystal structure changes from orthorhombic to tetragonal, and finally to pseudocubic symmetry with increasing x. Temperature dependence of dielectric properties showed that the temperature ( T m) corresponding to the maximum of dielectric permittivity decreased with increasing x. Two dielectric relaxation processes occurred at high temperatures, which were attributed to grain and grain boundary responses, respectively. Polarization hysteresis loops ( P- E) at different electrical fields were displayed. P rmax degenerated with the increase of SM due to the thermally activated leakage current increases. The relationship between electrical properties and defect compensation mechanism is discussed.

  19. Electro-caloric effect in lead-free Sn doped BaTiO{sub 3} ceramics at room temperature and low applied fields

    SciTech Connect

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra E-mail: vrreddy@csr.res.in; Bag, Pallab; Rawat, R.; Gupta, S. M.; Gupta, Ajay

    2014-09-15

    Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  20. Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Viola, Giuseppe; Ning, Huanpo; Wei, Xiaojong; Deluca, Marco; Adomkevicius, Arturas; Khaliq, Jibran; John Reece, Michael; Yan, Haixue

    2013-07-01

    In 0.95[0.94Bi0.5Na0.5TiO3-0.06BaTiO3]-0.05CaTiO3 ceramics, the temperature TS (dielectric permittivity shoulder at about 125 °C) represents a transition between two different thermally activated dielectric relaxation processes. Below TS, the approximately linear decrease of the permittivity with the logarithm of frequency was attributed to the presence of a dominant ferroelectric phase. Above TS, the permittivity shows a more complicated dependence of the frequency and Raman modes indicate a sudden increase in the spatial disorder of the material, which is ascribed to the presence of a nonpolar phase and to a loss of interaction between polar regions. From 30 to 150 °C, an increase in the maximum polarization with increasing temperature was related to three possible mechanisms: polarization extension favoured by the simultaneous presence of polar and non-polar phases; the occurrence of electric field-induced transitions from weakly polar relaxor to ferroelectric polar phase; and the enhanced polarizability of the crystal structure induced by the weakening of the Bi-O bond with increasing temperature. The occurrence of different electric field induced polarization processes with increasing temperature is supported by the presence of additional current peaks in the current-electric field loops.

  1. Realization of face-shear piezoelectric coefficient d36 in PZT ceramics via ferroelastic domain engineering

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Li, Faxin

    2015-09-01

    The piezoelectric face-shear ( d36 ) mode may be the most useful shear mode in piezoelectrics, while currently this mode can only exist in single crystals of specific point groups and cut directions. Theoretically, the d36 coefficient vanishes in piezoelectric ceramics because of its transversally isotropic symmetry. In this work, we modified the symmetry of poled PZT ceramics from transversally isotropic to orthogonal through ferroelastic domain switching by applying a high lateral stress along the "2" direction and holding the stress for several hours. After removing the compression, the piezoelectric coefficient d31 is found much larger than d32 . Then, by cutting the compressed sample along the Z x t ±45 ° direction, we realized d36 coefficients up to 206 pC/N , which is measured by using a modified d33 meter. The obtained large d36 coefficients in PZT ceramics could be very promising for face-shear mode resonators and shear horizontal wave generation in nondestructive testing.

  2. Optimizing structure and electrical properties of high-Curie temperature PMN-PHT piezoelectric ceramics via tailoring sintering process

    NASA Astrophysics Data System (ADS)

    Zhu, Rongfeng; Yin, Ying; Fang, Bijun; Chen, Zhihui; Zhang, Shuai; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu

    2016-06-01

    Pseudo-ternary high-Curie temperature 0.15Pb(Mg1/3Nb2/3)O3-0.4PbHfO3-0.45PbTiO3 (PMN-PHT) piezoelectric ceramics were prepared by the conventional ceramic processing via the columbite precursor method. The influences of sintering temperature and sintering time on structure and electrical properties of the PMN-PHT ceramics were investigated in order to tailor their performance further. The sintered PMN-PHT ceramics exhibit pure perovskite structure with composition locating at the rhombohedral side around the morphotropic phase boundary (MPB) of the PMN-PHT system. The PMN-PHT ceramics sintered at 1260 °C for 2 h exhibit the best dielectric, ferroelectric and piezoelectric properties. The high piezoelectric response of the PMN-PHT ceramics is considered as relating to the MPB effect and their dense microstructure obtained via tailoring sintering conditions. The sintered PMN-PHT ceramics exhibit good thermal stability of piezoelectricity and ferroelectricity within the common usage temperatures, indicating that such ceramics are promising candidates for piezoelectric devices at elevated temperatures.

  3. Piezoelectric response of BiFeO3 ceramics at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Rojac, Tadej; Makarovic, Maja; Walker, Julian; Ursic, Hana; Damjanovic, Dragan; Kos, Tomaz

    2016-07-01

    The high Curie temperature (TC ˜ 825 °C) of BiFeO3 has made this material potentially attractive for the development of high-TC piezoelectric ceramics. Despite significant advances in the search of new BiFeO3-based compositions, the piezoelectric behavior of the parent BiFeO3 at elevated temperatures remains unexplored. We present here a systematic analysis of the converse, longitudinal piezoelectric response of BiFeO3 measured in situ as a function of temperature (25-260 °C), driving-field frequency, and amplitude. Earlier studies performed at room temperature revealed that the frequency and field dependence of the longitudinal response of BiFeO3 is dominated by linear and nonlinear piezoelectric Maxwell-Wagner mechanisms, originating from the presence of local conductive paths along domain walls and grain boundaries within the polycrystalline matrix. This study shows that the same mechanisms are responsible for the distinct temperature dependence of the piezoelectric coefficient and phase angle and thus identifies the local electrical conductivity as the key for controlling the temperature dependent piezoelectric response of BiFeO3 and possibly other, more complex BiFeO3-based compositions.

  4. Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Dinh, Thi Hinh; Lee, Hyun-Young; Yoon, Chang-Ho; Malik, Rizwan Ahmed; Kong, Young-Min; Lee, Jae-Shin; Tran, Vu Diem Ngoc

    2013-04-01

    To clarify the effect of A-site donor doping on the phase transition and the strain enhancement, we investigated the crystal structure, as well as the piezoelectric, ferroelectric and electric-field-induced strain (EFIS) properties of La-doped Bi1/2(Na0.82K0.18)1/2TiO3 (BNKT) ceramics. Similarly to our previous studies on BNKT doped with B-site donors such as Nb and Ta, La doping was found to induce a ferroelectric-to-nonpolar (FE-NP) phase transition, leading to a large enhancement in EFIS just after the transition. The result provides strong evidence that a close relationship exists between the Goldschumidt's tolerance factor and the FE-NP transition in BNKT, which has been observed in B-site-donor or isovalent impurity-doped BNKT.

  5. High-frequency electromechanical properties of piezoelectric ceramic/polymer composites in broadband applications

    NASA Astrophysics Data System (ADS)

    Bowen, L. J.; Gururaja, T. R.

    1980-11-01

    Composites of piezoelectric ceramic (lead zirconate titanate) rods aligned in an epoxy resin matrix have been evaluated for broadband transducer applications. The rods are driven at their longitudinal mode resonance frequency and bandwidth is increased by fabricating the composite in a wedge configuration. The passband can be tailored as required by altering the surface profile of the device, and in principle bandwidths of almost 100 percent are possible. The attenuation properties of the polymer phase are of prime importance in mechanically decoupling adjacent piezoelectric elements. Acoustic signal attenuation in the polymer is accomplished by the series combination of acoustic impedence mismatch and classical transmission line attenuation. Experimental and theoretical considerations suggest the mechanical Q of the polymer is so low that the active elements are insignificantly damped. As a corollary, linear theory is not reliable for the prediction of dynamic mechanical properties of piezoelectric composites.

  6. A procedure for the efficient selection of piezoelectric ceramics constituting high-power ultrasonic transducers.

    PubMed

    Chacón, D; Rodríguez-Corral, G; Gaete-Garretón, L; Riera-Franco de Sarabia, E; Gallego-Juárez, J A

    2006-12-22

    The most characteristic narrow-band transducer structure for high-power ultrasonic applications is the well known piezoelectric sandwich which is reminiscent of the Langevin transducer. Such structure is generally used jointly with other components in the construction of industrial high-power transducers. One of the main objectives in the design and construction of such high-power transducers is to minimize energy losses. To that purpose the selection of the piezoelectric ceramic rings forming the sandwich requires clear and specific criteria. This paper deals with a numerical and experimental procedure for the accurate selection of the piezoelectric rings constituting high-power transducers, based on the analysis of the mechanical Q, the frequency and the resonance curve. The procedure was experimentally checked by constructing and characterizing several transducer structures. PMID:16797649

  7. Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2016-06-01

    The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1- x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol-gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.

  8. Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure

    SciTech Connect

    Guo Rui; Wang Changan; Yang Ankun; Fu Juntao

    2010-12-15

    Lead zirconate titanate (PZT) ceramics with one dimensional ordered pore structure (1-3 type porous PZT ceramics) were fabricated in this study. The special structure not only enhanced the piezoelectric and dielectric properties effectively but also further decreased the acoustic impedance. All samples exhibited excellent piezoelectric properties despite high porosities. The d{sub 33} value was 608 pC /N (remained 88% that of dense PZT) when the porosity was up to 68.7%. The d{sub 33} value was 690 pC /N (same as dense PZT) when the porosity was 41.7%. The lowest acoustic impedance (Z) reached 1.3 MRayls. These results are promising for improving performance in hydrophones applications.

  9. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  10. Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Huaqing; Jiang, Minlan

    2016-01-01

    PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.

  11. Characterization of multilayered piezoelectric ceramics for high power transducers.

    PubMed

    Dubus, B; Haw, G; Granger, C; Ledez, O

    2002-05-01

    In some circumstances, large vibrational displacements at ultrasonic frequency must be generated using a low voltage drive. This result cannot be obtained with monolithic PZT ceramics which require voltages larger than 1000 V to produce displacements of the micrometer order at resonance. The use of multilayered hard lead zirconate titanate ceramics as transduction material in resonant devices is experimentally investigated for Langevin-type transducers. Large amplitudes are obtained under low drive (5 microm under 10 V). Material constant (compliance, losses) variations under large dynamic stress are, at least, one order of magnitude larger than for monolithic ceramics. Depolarization is found to be a critical issue when the transducer is driven continuously. It is demonstrated that this problem can be solved by polishing the interfaces between different parts of the device and applying an electrical DC bias to the transducer. PMID:12160067

  12. Improved Piezoelectric Properties of LiTaO3 Family Solid Solution Ceramics with Modified Composition

    NASA Astrophysics Data System (ADS)

    Bamba, Noriko; Takaoka, Junpei; Chino, Takashi; Fukami, Tatsuo; Elouadi, Brahim

    2006-09-01

    Nonstoichiometric LiTaO3 ceramics doped with 15 mol % CaTiO3 have been prepared to improve the piezoelectricity of LiTaO3 ceramics and iron doping has been investigated to obtain a high mechanical quality factor, Qm. By increasing the ratio of B sites (Ta and Ti) from 49.5 to 52.0 mol %, crack generation was suppressed and resonance frequency in the radial vibration mode shifted. (Li0.84Ca0.15)(Ta0.86Ti0.15)O3 ceramics whose A and B site ratios were 49.5 and 50.5 mol %, respectively, caused a higher resonance frequency and a high piezoelectric activity than the stoichiometric LiTaO3. The optimum composition for the piezoelectric properties was obtained from the nonstoichiometric LiTaO3 expressed as (Li0.832Ca0.158)(Ta0.856Ti0.15Fe0.004)O3; the phase shift was 73° and the quality factor Qm was 7872 in the radial vibration mode. Although the phase shift is still not sufficiently high, it is expected to approach 90° by fixing it under better poling conditions. One of the possible applications of this material is as an oscillator element for signal processing circuits.

  13. Dielectric, piezoelectric, and electromechanical phenomena in (K0.5Na0.5)NbO3-LiNbO3-BiFeO3-SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Suzuki, Ryo; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2009-03-01

    The effect of the substitutions of BiFeO3 (BF) and SrTiO3 (ST) to (Na0.5K0.5)NbO3-LiNbO3 (KNN-LN) ceramics was studied as a candidate of lead-free piezoceramics. The piezoelectric property is enhanced near the phase transition composition caused by the distortion of crystal lattice by Li+ and also the strong ferroelectric nature of BF. The ST was found to be effective in improving the temperature dependence of the KNN ceramics. Small amount of ST also promoted the incorporation of LN and BF into the crystal lattice, and enhanced the piezoelectric performance furthermore. The 94.5(Na0.5K0.5)NbO3-4.5LiNbO3-0.5SrTiO3-0.5BiFeO3 ceramics showed excellent piezoelectric properties of d15=231 pC/N, d33=155 pC/N, and d31=70 pC/N.

  14. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Dong, Shuxiang; Li, Faxin

    2016-05-01

    The fundamental shear horizontal (SH0) wave in plate-like structures is extremely useful for non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive. However, currently, the SH0 wave is usually excited by electromagnetic acoustic transducers (EMAT) whose energy conversion efficiency is fairly low. The face-shear ( d 36 ) mode piezoelectrics is more promising for SH0 wave excitation, but this mode cannot appear in conventional piezoelectric ceramics. Recently, by modifying the symmetry of poled PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering, we realized the face-shear d 36 mode in both soft and hard PZT ceramics. In this work, we further improved the face-shear properties of PZT-4 and PZT-5H ceramics via lateral compression under elevated temperature. It was found that when bonded on a 1 mm-thick aluminum plate, the d 36 type PZT-4 exhibited better face-shear performance than PZT-5H. We then successfully excite SH0 wave in the aluminum plate using a face-shear PZT-4 square patch and receive the wave using a face-shear 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] (PMN-PT) patch. The frequency response and directionality of the excited SH0 wave were also investigated. The SH0 wave can be dominated over the Lamb waves (S0 and A0 waves) from 160 kHz to 280 kHz. The wave amplitude reaches its maxima along the two main directions (0° and 90°). The amplitude can keep over 80% of the maxima when the deviate angle is less than 30°, while it vanishes quickly at the 45° direction. The excited SH0 wave using piezoelectric ceramics could be very promising in the fields of NDT and SHM.

  15. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer.

    PubMed

    Su, Li; Zou, Lan; Fong, Chi-Chun; Wong, Wing-Leung; Wei, Fan; Wong, Kwok-Yin; Wu, Rudolf S S; Yang, Mengsu

    2013-08-15

    A novel piezoelectric biosensor using lead titanate zirconate (PZT) ceramic resonator as transducer was developed for label-free, cost-effective, and direct detection of cancer biomarkers. We designed a dual sensing scheme where two ceramic resonators were connected in parallel, in which one resonator was used as the sensing unit and the other as the control unit, in order to minimize environment influences including temperature fluctuation and to achieve the required frequency stability for biosensing applications. Detection of selected cancer biomarkers, such as prostate specific antigen (PSA) and α-fetoprotein (AFP) was carried out to evaluate the performance of the biosensor. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small amount of sample (1 μl), which is compatible to that required by clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and the miniaturized size of the ceramic resonators makes it suitable for fabricating sensor arrays for multiplex detection. PMID:23542085

  16. Phase transitional behavior and piezoelectric properties of (Na{sub 0.5}K{sub 0.5})NbO{sub 3}-LiNbO{sub 3} ceramics

    SciTech Connect

    Guo Yiping; Kakimoto, Ken-ichi; Ohsato, Hitoshi

    2004-11-01

    Lead-free piezoelectric ceramics (1-x)(Na{sub 0.5}K{sub 0.5})NbO{sub 3}-xLiNbO{sub 3} {l_brace}[Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1-x}]NbO{sub 3}{r_brace} (x=0.04-0.20) have been synthesized by an ordinary sintering technique. The materials with perovskite structure is orthorhombic phase at x{<=}0.05 and becomes tetragonal phase at x{>=}0.07, a phase K{sub 3}Li{sub 2}Nb{sub 5}O{sub 15} with tetragonal tungsten bronze structure begins to appear at x=0.08 and becomes dominant with increasing the content of LiNbO{sub 3}. A morphotropic phase boundary between orthorhombic and tetragonal phases is found in the composition range 0.05piezoelectric and electromechanical properties are enhanced for compositions near the morphotropic phase boundary. Piezoelectric constant d{sub 33} values reach 200-235 pC/N. Electromechanical coefficients of the planar mode and the thickness mode reach 38%-44% and 44%-48%, respectively. The Curie temperatures (T{sub C}) of [Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1-x}]NbO{sub 3} (x=0.04-0.20) are in the range of 452-510 deg. C, at least 100 deg. C higher than that of conventional Pb(Zr,Ti)O{sub 3}. Our results show that [Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1-x}]NbO{sub 3} is a good lead-free high-temperature piezoelectric ceramic.

  17. Dielectric and impedance spectroscopic studies of 0.8BaTiO3-0.2Bi0.5K0.5TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Ramesh, M. N. V.; Ramesh, K. V.

    2015-06-01

    0.8BaTiO3-0.2Bi0.5K0.5TiO3 (BT-BKT20) lead-free ceramics were prepared by conventional solid state reaction method followed by high energy ball milling. The formation of a single phase tetragonal structure in the material was confirmed by X-ray diffraction. Frequency and temperature-dependent dielectric studies show relaxor behavior in the BT-BKT20 which was found to obey modified Curie-Weiss law with degree of diffuseness 1.573. Complex impedance and electric modulus spectroscopy studies reveal temperature-dependent relaxation process in the material. The Cole-Cole plots were measured at high temperatures at which grain effect was observed. Impedance and electric modulus spectroscopy studies show non-Debye kind of conductivity relaxation process in the present material. Activation energies were calculated from impedance and electric modulus spectroscopy and the values of activation energy indicated that the conduction is ionic in nature. AC and DC conductivity have been measured and studied at different temperatures.

  18. Effect of cerium substitution on structural and impedance properties of 0.8Ba0.2(Bi0.5K0.5)TiO3 lead free ceramic system

    NASA Astrophysics Data System (ADS)

    Ramesh, M. N. V.; Ramesh, K. V.

    2016-01-01

    Cerium-doped 0.8BaTiO3-0.2Bi0.5K0.5TiO3 with composition 0.8Ba0.2(Bi0.5K0.5)Ti1-xCexO3 where x = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 lead free ceramics were prepared by conventional solid state reaction method followed by high energy ball milling. X-ray diffraction studies confirm the tetragonal structure at room temperature for all the Ce-doped samples. Lattice parameters and density were increasing with increase of Ce doping. Frequency and temperature dependent dielectric studies were carried out and indicate that the dielectric constant and Curie temperature are decreasing with increasing of Ce doping. All the Ce-doped samples exhibiting diffused and dispersive phase transitions with degree of diffuseness ranging from 1.4 to 2 calculated from the modified Curie-Weiss law. Impedance studies confirms the temperature dependent non-Debye kind of relaxation process in the material. From the Cole-Cole plots measured at high temperatures, reveals that the grain effect in the all Ce-doped samples. Impedance analysis studies also support the X-ray diffraction and dielectric studies that occupation of Ce both at A-site and B-site for small values of Ce doping.

  19. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    PubMed

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature. PMID:26387782

  20. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics.

    PubMed

    Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi

    2012-06-18

    A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials. PMID:22714448

  1. Lead-free primary explosives

    DOEpatents

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  2. Breakthrough: Lead-free Solder

    SciTech Connect

    Anderson, Iver

    2012-01-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  3. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2013-03-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  4. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal-flexural composite vibrational mode.

    PubMed

    Lin, Shuyu

    2006-01-01

    In this paper, the Langevin longitudinal-flexural composite mode piezoelectric ultrasonic transducer is studied. This type of transducers consists of slender metal rods and longitudinally polarized piezoelectric ceramic rings. The resonance frequency equations for the longitudinal and flexural vibrations in the transducer are derived. By correcting the length of the metal slender rods, the simultaneous resonance of the longitudinal and flexural vibrations in the transducer is acquired. The experimental results show that the measured resonance frequencies of the transducers are in good agreement with the computed ones, and the measured resonance frequencies of the longitudinal and the flexural vibrations in the composite transducers are also in good agreement with each other. PMID:16289195

  5. Hierarchical domain structure of lead-free piezoelectric (Na1/2 Bi1/2)TiO3-(K1/2 Bi1/2)TiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Luo, Chengtao; Wang, Yaojin; Ge, Wenwei; Li, Jiefang; Viehland, Dwight; Delaire, Olivier; Li, Xiaobin; Luo, Haosu

    2016-05-01

    We report a unique hierarchical domain structure in single crystals of (Na1/2Bi1/2)TiO3-xat. %(K1/2Bi1/2)TiO3 for x = 5 and 8 by transmission electron microscopy (TEM). A high density of polar nano-domains with a lamellar morphology was found, which were self-assembled into a quadrant-like configuration, which then assembled into conventional ferroelectric macro-domains. Studies by high resolution TEM revealed that the polar lamellar regions contained a coexistence of in-phase and anti-phase oxygen octahedral tilt regions of a few nanometers in size. Domain frustration over multiple length scales may play an important role in the stabilization of the hierarchy, and in reducing the piezoelectric response of this Pb-free piezoelectric solid solution.

  6. Hot-stage transmission electron microscopy study of (Na, K)NbO3 based lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Lu, Shengbo; Xu, Zhengkui; Kwok, K. W.; Chan, Helen L. W.

    2014-07-01

    Hierarchical nanodomains assembled into micron-sized stripe domains, which is believed to be associated with outstanding piezoelectric properties, were observed at room temperature in a typical lead free piezoceramics, (Na0.52K0.48-x)(Nb0.95-xTa0.05)-xLiSbO3, with finely tuned polymorphic phase boundaries (x = 0.0465) by transmission electron microscopy. The evolution of domain morphology and crystal structure under heating and cooling cycles in the ceramic was investigated by in-situ hot stage study. It is found that the nanodomains are irreversibly transformed into micron-sized rectangular domains during heating and cooling cycles, which lead to the thermal instability of piezoelectric properties of the materials.

  7. Hot-stage transmission electron microscopy study of (Na, K)NbO{sub 3} based lead-free piezoceramics

    SciTech Connect

    Lu, Shengbo; Xu, Zhengkui; Kwok, K. W.; Chan, Helen L. W.

    2014-07-28

    Hierarchical nanodomains assembled into micron-sized stripe domains, which is believed to be associated with outstanding piezoelectric properties, were observed at room temperature in a typical lead free piezoceramics, (Na{sub 0.52}K{sub 0.48−x})(Nb{sub 0.95−x}Ta{sub 0.05})-xLiSbO{sub 3}, with finely tuned polymorphic phase boundaries (x = 0.0465) by transmission electron microscopy. The evolution of domain morphology and crystal structure under heating and cooling cycles in the ceramic was investigated by in-situ hot stage study. It is found that the nanodomains are irreversibly transformed into micron-sized rectangular domains during heating and cooling cycles, which lead to the thermal instability of piezoelectric properties of the materials.

  8. Poling of lead zirconate titanate ceramics and flexible piezoelectric composites by the corona discharge technique

    SciTech Connect

    Waller, D.; Safari, A.; Igbal, T.

    1989-02-01

    Poling of composites having a polymer matrix with 0-3 connectivity is difficult because the electric field within the high-dielectric-constant grains is far smaller than in the low-dielectric-constant polymer matrix. Therefore, very large electric fields are required to pole these types of composites. However, large electric fields often cause dielectric breakdown of the samples. In this study for improved poling, the corona discharge technique was used to pole piezoelectric ceramics, fired PXT composites, and 0.5PbTiO/sub 3/ . 0.5BiFeO/sub 3/ 0-3 polymer composites. An experimental setup for corona poling is described.

  9. Double torsion testing and finite element analysis for determining the electric fracture properties of piezoelectric ceramics

    SciTech Connect

    Shindo, Yasuhide; Narita, Fumio; Mikami, Masaru

    2005-06-01

    This paper presents the results of an experimental and numerical investigation in electric fracture behavior of composite [Pb(Zr,Ti)O{sub 3}] double torsion (DT) specimens. DT tests were conducted on a commercial piezoelectric ceramic bonded between two metals. Fracture loads under different electric fields were obtained from the experiment. Nonlinear three-dimensional finite element analysis was also employed to calculate the energy release rate for DT specimens based on the exact (permeable) and approximate (impermeable) crack models. The effects of applied electric field and domain switching on the energy release rate are discussed, and the model predictions are compared with the results of the experiments.

  10. Re-poling process for piezoelectric-based multilayer ceramic capacitors force sensor

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Ren; Chang, Chih-Han; Chiang, Cheng-Hung; Lin, Che-Hsin

    2013-04-01

    This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor. In order to increase the sensitivity and reduce the variation of different MLCCs, a simple re-poling process is adopted by applying an external electric field at the Curie temperature of MLCCs. Results indicate that the re-poling treatment improved up to 100-fold for the force detection sensitivity and reduced the variation for the output force response by 10-fold in comparison with the MLCC sensors without re-poling.

  11. Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}-0.5Ba{sub 0.7}Ca{sub 0.3}TiO{sub 3} thin films

    SciTech Connect

    Luo, B. C.; Wang, D. Y.; Li, S.; Duan, M. M.

    2013-09-16

    Orientation-engineered 0.5BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}-0.5Ba{sub 0.7}Ca{sub 0.3}TiO{sub 3} (BZT-BCT) thin films were deposited on La{sub 0.7}Sr{sub 0.3}MnO{sub 3}-coated SrTiO{sub 3} single-crystalline (001), (110), and (111) substrates by off-axis radio-frequency magnetron sputtering. X-ray diffraction confirmed a highly epitaxial growth of all the as-deposited films. It is believed the strong orientation dependence of ferroelectric and piezoelectric properties on the films is attributed to the relative alignment of crystallites and spontaneous polarization vector. The optimal ferroelectric response lies in the [001] direction, whereas a comparatively large effective piezoelectric coefficient d{sub 33,eff} of 100.1 ± 5 pm/V was attained in [111] BZT-BCT thin film, suggesting its potential application for high-performance lead-free piezoelectric devices.

  12. A Piezoelectric PZT Ceramic Mulitlayer Stack for Energy Harvesting Under Dynamic Forces

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Siochi, Emilie J.; Kang, Jin Ho; Zuo, Lei; Zhou, Wanlu; Tang, Xiudong; Jiang, Xiaoning

    2011-01-01

    Piezoelectric energy harvesting transducers (PEHTs) are commonly used in motion/vibration energy scavenging devices. To date, most researchers have focused on energy harvesting at narrow bandwidths around the mechanical resonance frequency, and most piezoelectric harvesting devices reported in the literature have very low effective piezoelectric coefficient (d(sub eff)) (< 10(exp 4) pC/N). For instance, more than 80% of PEHT related papers are on transverse "31" mode cantilever beam type PEHTs (CBPEHTs) having piezoelectric coefficients of about 100 pC/N. The level of harvested electrical power for CBPEHTs is on the order of microW even at resonance mode. In order to harvest more electrical energy across broader bandwidth, high effective piezoelectric coefficient structures are needed. In this study, we investigate a "33" longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for high-performance PEHTs. The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm X 7.0 mm X 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficient of the PZT-stack is about 1 X 10(exp 5) pC/N at off-resonance frequencies and 1.39 X 10(exp 6) pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The effective piezoelectric coefficients (d(sub eff)) do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2479 Hz with a dynamic force of 11.6 N(sub rms), and 7.6 mW of electrical power was generated at a frequency of 2114 Hz with 1 N(sub rms) dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 N(sub rms) dynamic force. A theoretical model of energy harvesting

  13. Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Baraskar, Bharat G.; Kakade, S. G.; James, A. R.; Kambale, R. C.; Kolekar, Y. D.

    2016-05-01

    The ferroelectric, piezoelectric and electrostrictive properties of BaTiO3 (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ɛr = 5617 at Curie temperature, Tc = 125 °C. The saturation and remnant polarization, Psat. = 24.13 µC/cm2 and Pr =10.42 µC/cm2 achieved respectively for the first time with lower coercive field of Ec=2.047 kV/cm. The polarization current density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the "sprout" shape nature instead of typical "butterfly loop". This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*33 ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q33~ 0.03493m4/C2.

  14. Enhanced ferroelectric and piezoelectric response in Mn-doped Bi0.5Na0.5TiO3-BaTiO3 lead-free film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Jin, Chengchao; Wang, Feifei; Leung, Chung Ming; Yao, Qirong; Tang, Yanxue; Wang, Tao; Shi, Wangzhou

    2013-10-01

    Mn-doped Bi0.5Na0.5TiO3-BaTiO3 thin film with the composition around the morphotropic phase boundary was grown on Pt-electrodized Si substrate by pulsed laser deposition. Highly (1 0 0)-oriented film with pure perovskite structure was obtained through carefully controlling the growth conditions. Well-defined ferroelectric P-E loop was obtained with the average remnant polarization Pr and coercive field Ec of ∼11.3 μC/cm2 and ∼6.5 kV/mm, respectively. Polycrystalline structures and multidomain states were revealed by piezoresponse force microscopy and large local strain response was obtained with the normalized strain Smax/Emax up to 92 pm/V. The excellent global electrical properties make it quite promising in environmental-friendly ferroelectric and piezoelectric devices.

  15. Dielectric and piezoelectric properties in the lead-free system Na0.5K0.5NbO3-BiScO3-LiTaO3.

    PubMed

    Zhu, Fangyuan; Ward, Michael B; Comyn, Tim P; Bell, Andrew J; Milne, Steven J

    2011-09-01

    Phase relations, dielectric and piezoelectric properties are reported for the ternary system 98%[(1 - x) (Na(0.5)K(0.5)NbO(3))-x(LiTaO(3))]-2%[BiScO(3)] for compositions x ≤ 10 mol% LiTaO(3). The phase content at room-temperature changed from mixed phase, monoclinic + tetragonal, for unmodified 98%(Na(0.5)K(0.5)NbO(3))-2%(BiScO(3)), to tetragonal phase for compositions >2 mol% LiTaO(3). Curie peaks at 360 to 370°C were observed for all compositions, but peaks became diffuse at x ≥ 3 mol%, and two dielectric peaks, at 370 and 470°C, were observed for 5 mol% LiTaO(3). Phase segregation, and finite size affects associated with the core-shell structure, account for the occurrence of two dielectric peaks in 5 mol% LiTaO(3), and diffuse dielectric behavior. The value of d(33) piezoelectric charge coefficient increased from ~160 pC/N for 0 mol% LiTaO(3) to 205 to 214 pC/N for 1 to 2 mol% LiTaO3 solid solutions, before falling sharply at 3 mol% LiTaO(3). TEM-EDX analysis revealed core-shell grain structures with segregation of Bi, Sc, and Ta in the outer ~100-nm shell of the 5 mol% LT sample. PMID:21937312

  16. Phase diagram and structure-property relationships in the lead-free piezoelectric system: Na0.5K0.5NbO3-LiTaO3.

    PubMed

    Skidmore, Thomas A; Comyn, Timothy P; Bell, Andrew J; Zhu, Fangyuan; Milne, Steven J

    2011-09-01

    A phase-diagram for the Na(0.5)K(0.5)NbO(3)-LiTaO(3) solid solution series (NKN-LT) is presented for compositions ≤ 10 mol% LT, based on the combined results of temperaturevariable X-ray powder diffraction and dielectric measurements. In addition to the reported orthorhombic and tetragonal polymorphs of NKN-LT, a monoclinic phase is revealed. Changes to electrical properties as a function of LT substitution are correlated to phase content. Increasing the LT content from 5 to 7 mol% LT led to improved temperature stability of piezoelectric properties because of the avoidance of the monoclinic-tetragonal polymorphic phase transition during thermal cycling (at >25°C). For 7 mol% LT samples: d(33) = 200 pC/N; T(c) = 440°C; ε(r) = 550 and tan δ = 0.02 (at 20°C). Modification of this composition by solid solution with BiScO(3) led to a decrease in d(33) values. Transmission electron microscopy of a sample of 0.95[0.93 NKN-0.07LT]-0.05BiScO(3) indicated a core-shell grain structure which led to temperature-stable dielectric properties. PMID:21937313

  17. The Dielectric and Electric Characteristics of Piezoelectric Ceramics for Ultrasonic Oscillator Application

    NASA Astrophysics Data System (ADS)

    Lee, Su-Ho; Yoo, Ju-Hyun; Yoon, Kwang-Hee; Sug, Joung-Young; Rue, Gi-Hong; Sin, Kwang-Ho; Kim, Jin-Gyu; Hong, Jae-Il

    2002-11-01

    The application of the ultrasonic nozzle has been extended because it can atomize liquid material. In this study, the characteristics of the ultrasonic nozzle and ceramic oscillator were investigated. The oscillator for the ultrasonic nozzle is made of piezoelectric ceramic of Pb[(Sb1/2Nb1/2)0.035, (Mn1/3Nb2/3)0.065, (ZrxTi1-x)0.90O3 The electromechanical coupling factor (kp) and mechanical quality factor (Qm) were 0.555 and 1,214, respectively, when the Zr/Ti ratio was 49/51. Moreover, this oscillator will have temperature stability because its curie temperature is 322. The driving current of the ultrasonic nozzle was 80 mA, when the driving time was 10 min. Also, the surface temperature of the ceramic oscillator was 80 at a driving time of 10 min. We discovered that the ultrasonic nozzle will be subjected to stable driving after 10 min.

  18. Phase boundary at x =0.03 and its anomalous influence on the structure and properties in the lead-free piezoelectric (1 -x ) N a1 /2B i1 /2Ti O3-(x ) BaTi O3

    NASA Astrophysics Data System (ADS)

    Rao, Badari Narayana; Avdeev, Maxim; Kennedy, Brendan; Ranjan, Rajeev

    2015-12-01

    The complexity associated with local structures continues to pose challenges with regard to the understanding of the structure-property relationship in N a1 /2B i1 /2Ti O3 -based lead-free piezoceramics. (1 -x ) N a1 /2B i1 /2Ti O3-(x ) BaTi O3 is an extensively studied system because of its interesting piezoelectric properties. Recently, a room temperature phase boundary was reported at x =0.03 in this system [Ma et al., Adv. Funct. Mater. 23, 5261 (2013), 10.1002/adfm.201300640]. In the present work we have examined this subtle phase boundary using x-ray diffraction, neutron diffraction, dielectric measurements as a function of composition (x <0.06 ) , temperature, and electric field. Our results show that this boundary separates an R 3 c +C c -like structural state for x <0.03 from an R 3 c + cubiclike structural state for 0.03 ≤x ≤0.05 in the unpoled specimens. This phase boundary is characterized by an anomalous reduction in the depolarization temperature, and a suppression of the tetragonal distortion of the high temperature P 4 b m phase. Our results also provide the clue to understand the pathway leading to the cubiclike structure of the critical composition x =0.06 , known for its highest piezoelectric response.

  19. A novel approach to electrochromism in WO{sub 3} thin film using piezoelectric ceramics for power supply

    SciTech Connect

    Xu, C.N.; Akiyama, M.; Sun, P.; Watanabe, T.

    1997-03-01

    Electrochromism was newly realized in a WO{sub 3}{endash}Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) system which utilized the piezoelectric property of PZT ceramics for power supply. The electric power produced by Mn-doped PZT ceramics enabled the WO{sub 3} film to color blue. High piezoelectricity with a peak voltage of 35 V and peak current of 1.2 mA on a 30 k{Omega} circuit was observed at a pressure of 30 MPa for the present system. This study shows the possibility to actuate the electrochromic WO{sub 3} film with PZT ceramics. {copyright} {ital 1997 American Institute of Physics.}

  20. Development of lead-free single-element ultrahigh frequency (170-320MHz) ultrasonic transducers.

    PubMed

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320MHz. The center frequency of >300MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured -6dB bandwidth of the transducers ranged from 35% to 64%. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from -50 to -60dB. In addition to the pulse-echo measurement, a 6μm tungsten wire phantom was also imaged with a 205MHz transducer to demonstrate the imaging capability. The measured -6dB axial and lateral resolutions were found to be 12μm and 50μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher. PMID:23485349

  1. Development of lead-free single-element ultrahigh frequency (170 – 320 MHz) ultrasonic transducers

    PubMed Central

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320 MHz. The center frequency of > 300 MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured −6 dB bandwidth of the transducers ranged from 35 to 64 %. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from −50 to −60 dB. In addition to the pulse-echo measurement, a 6-μm tungsten wire phantom was also imaged with a 205 MHz transducer to demonstrate the imaging capability. The measured −6 dB axial and lateral resolutions were found to be 12 μm and 50 μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher. PMID:23485349

  2. Polar nanoregions and dielectric properties in high-strain lead-free 0.93(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-0.07BaTiO{sub 3} piezoelectric single crystals

    SciTech Connect

    Chen, Cheng-Sao; Chen, Pin-Yi; Tu, Chi-Shun

    2014-01-07

    A structural coexistence of rhombohedral (R) and tetragonal (T) phases has been revealed in the (001){sub c}-cut lead-free 0.93(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}–0.07BaTiO{sub 3} (BNB7T) piezoelectric crystals, which grown by the self-flux method, in the lower temperatures by high-resolution synchrotron X-ray diffraction, reciprocal space mapping, and transmission electron microscopy. The dielectric permittivity exhibits a thermal hysteresis in the region of 120–260 °C, implying a first-order-like phase transition from R+T to T. The real part (ε′) of dielectric permittivity begins to deviates from the Curie-Weiss equation, ε′ = C/(T − T{sub o}), from the Burns temperature T{sub B} = 460 °C, below which the polar nanoregions (or nanoclusters) develop and attenuate dielectric responses. The polar nanoregions of 5–10 nm were revealed by high-resolution transmission electron microscope. The normal piezoelectric coefficient d{sub 33} exhibits a rapid increase at E = 15–20 kV/cm and reaches a maximum of d{sub 33} ∼450 pC/N. The high piezoelectric response and E-field induced strain in BNB7T single crystals can be attributed to structural phase transitions under an E-field application.

  3. Lead-free electric matches.

    SciTech Connect

    Son, S. F.; Hiskey, M. A.; Naud, D.; Busse, J. R.; Asay, B. W.

    2002-01-01

    Electric matches are used in pyrotechnics to initiate devices electrically rather than by burning fuses. Fuses have the disadvantage of burning with a long delay before igniting a pyrotechnic device, while electric matches can instantaneously fire a device at a user's command. In addition, electric matches can be fired remotely at a safe distance. Unfortunately, most current commercial electric match compositions contain lead as thiocyanate, nitroresorcinate or tetroxide, which when burned, produces lead-containing smoke. This lead pollutant presents environmental exposure problems to cast, crew, and audience. The reason that these lead containing compounds are used as electric match compositions is that these mixtures have the required thermal stability, yet are simultaneously able to be initiated reliably by a very small thermal stimulus. A possible alternative to lead-containing compounds is nanoscale thermite materials (metastable intermolecular composites or MIC). These superthermite materials can be formulated to be extremely spark sensitive with tunable reaction rate and yield high temperature products. We have formulated and manufactured lead-free electric matches based on nanoscale Al/MoO{sub 3} mixtures. We have determined that these matches fire reliably and to consistently ignite a sample of black powder. Initial safety, ageing and performance results are presented in this paper.

  4. Three-degree-of-freedom ultrasonic motor using a 5-mm-diameter piezoelectric ceramic tube.

    PubMed

    Mingsen Guo; Junhui Hu; Hua Zhu; Chunsheng Zhao; Shuxiang Dong

    2013-07-01

    A small three-degree-of-freedom ultrasonic motor has been developed using a simple piezoelectric lead zirconate titanate (PZT)-tube stator (OD 5 mm, ID 3 mm, length 15 mm). The stator drives a ball-rotor into rotational motion around one of three orthogonal (x-, y-, and z-) axes by combing the first longitudinal and second bending vibration modes. A motor prototype was fabricated and characterized; its performance was superior to those of previous motors made with a PZT ceramic/metal composite stator of comparable size. The method for further improving the performance was discussed. The motor can be further miniaturized and it has potential to be applied to medical microrobots, endoscopes or micro laparoscopic devices, and cell manipulation devices. PMID:25004511

  5. Unleashing the Full Sustainable Potential of Thick Films of Lead-Free Potassium Sodium Niobate (K0.5Na0.5NbO3) by Aqueous Electrophoretic Deposition.

    PubMed

    Mahajan, Amit; Pinho, Rui; Dolhen, Morgane; Costa, M Elisabete; Vilarinho, Paula M

    2016-05-31

    A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 μm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics. PMID:27136116

  6. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields

    SciTech Connect

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-07-17

    The piezoelectric compositions (1 - x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  7. The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The dissipation factor (DF) is an important material property of piezoceramics that governs the amount of self-heating under resonant conditions; it essentially quantifies a particular material type for either an actuator or resonator application: high DF materials with typically higher output (d33) are better for actuators, whereas low DF materials with typically lower d33 are better for resonators. Transducer designers must often compromise between mechanical output and DF in the selection of piezoceramics for power ultrasonic applications, and abnormally high DF is one of the main causes of production stoppages. In theory DF is simply the current/voltage phase deviation from an ideal capacitor at 90° (a.k.a. tan(δ) or dielectric loss). Abnormally high DF is typically caused by moisture absorption due to poor ceramic porosity, which causes voltage leakage effects; e.g., seen in transducer production when setting piezo stack preload. Corresponding large increases in capacitance can also be associated with poor porosity, which is counterintuitive unless there is moisture absorption or electrode wicking. This research investigates the mechanisms for abnormally high DF in peizoceramics, and its corresponding effect on transducer performance. It investigates if DF is only affected by the bulk dielectric properties of the piezoceramics (e.g. porosity), or is also influenced by non-uniform electric field effects from electrode wicking. It explores if higher DF ceramics can affect transducer displacement/current gain stability via moisture expulsion at higher drive levels. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Transducers are built with both normal DF peizoceramics, and those with abnormally high DF ceramics which caused production stoppages. Several metrics are investigated such as impedance, displacement gain and capacitance. The experimental and theoretical research

  8. Dielectric, ferroelectric and piezoelectric properties of Nb{sup 5+} doped BCZT ceramics

    SciTech Connect

    Parjansri, Piewpan; Intatha, Uraiwan; Eitssayeam, Sukum

    2015-05-15

    Highlights: • Average grain size of BCZT ceramic decreased with the increasing Nb{sup 5+} doping. • Dielectric constant value is enhanced with Nb{sup 5+} doping. • Dielectric loss of BCZT − x Nb{sup 5+} ceramics was less than 0.03 at room temperature (1 kHz). • Piezoelectric coefficient decreased with the increasing Nb{sup 5+} doping. • The relaxation behavior is enhanced with the doping of Nb{sup 5+}. - Abstract: This work investigated the electrical properties of Nb{sup 5+} (0.0–1.0 mol%) doped with Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} while adding 1 mol% of Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} seeds. The mixed powder was ball milled for 24 h, calcined and sintered at 1200 °C for 2 h and 1450 °C for 4 h, respectively. The XRD patterns of the ceramic samples were investigated by X-ray diffraction. The electrical properties of ceramics were measured and the results indicated that all samples show a pure perovskite phase with no secondary phase. Density and average grain size values were in the range of 5.60–5.71 g/cm{sup 3} and 12.62–1.86 μm, respectively. The highest dielectric constant, ϵ{sub r} at room temperature (1 kHz) was 4636 found at 1.0 mol% Nb. The dielectric loss, tan δ was less than 0.03 for all samples at room temperature (1 kHz). Other electrical properties, P{sub r}, d{sub 33} and k{sub p} values were decreased with Nb doped relates to the decreasing grain size in BCZT ceramics. Moreover, the degrees of phase transition diffuseness and relaxation behavior were observed in the higher Nb doping.

  9. Structure and ferroelectric studies of (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.9}Zr{sub 0.1})O{sub 3} piezoelectric ceramics

    SciTech Connect

    Venkata Ramana, E.; Mahajan, A.; Graça, M.P.F.; Mendiratta, S.K.; Monteiro, J.M.; Valente, M.A.

    2013-10-15

    Graphical abstract: - Highlights: • (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.9}Zr{sub 0.1})O{sub 3} (BCTZO) ceramic was synthesized by the ceramic method. • In situ XRD and Raman spectra showed the phase transition of BCTZO around 360 K. • The ceramics showed a tunability of 82% at 40 kV cm{sup −1} electric field. • BCTZO exhibited good quality factor of 111 at microwave frequencies. • Piezoforce microscopy studies indicated the switchability of ferroelectric domains. - Abstract: We have synthesized and studied the structural and ferroelectric properties of lead-free 0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}–0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} ceramics in the temperature region of its ferroelectric transition. The synthesized material showed high dielectric constant, low loss and good pyroelectric figure of merit. From the temperature dependent X-ray diffraction measurements, we determined the tricritical point to be in the temperature range of 303–400 K. The dielectric measurements indicate a diffuse ferroelectric phase transition (DPT) around 360 K in agreement with the X-ray measurements. We studied the evolution of Raman spectra with temperature to understand the nature of phase transition in BaTiO{sub 3} (BTO) and the BCTZO. The results indicates that the transition of ferroelectric–paraelectric state is not sharp as in the case of BTO and the polar state persists through the paraelectric state. In general, our study indicates that there are ferroelectric domains of nanometer size beyond the commonly defined transition temperature. The observation of local piezoelectric hysteresis loop indicated the existence of intrinsic ferroelectric property of the ceramic at the nanoscale. The ceramics exhibited electric field tunable dielectric properties with a tunability of 82% at an applied DC field of 40 kV cm{sup −1}, low dielectric loss of 0.001 and room temperature pyroelectric coefficient of 6 × 10{sup −8} C cm{sup −2} K{sup −1} and the

  10. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} lead-free solid solution

    SciTech Connect

    Zhang, Le; Zhang, Ming; Wang, Liang; Zhou, Chao; Zhang, Zhen; Yao, Yonggang; Zhang, Lixue; Xue, Dezhen E-mail: xlou03@mail.xjtu.edu.cn Lou, Xiaojie E-mail: xlou03@mail.xjtu.edu.cn; Ren, Xiaobing E-mail: xlou03@mail.xjtu.edu.cn

    2014-10-20

    In this paper, two displacive phase transitions around the morphotropic phase boundary (MPB) in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) ceramics were detected by inspecting two anomalies of the Raman Ti{sup 4+}-O{sup 2−} longitudinal optical mode (∼725 cm{sup −1}). Further, permittivity and X-ray diffraction results demonstrated these two phase transitions originate from tetragonal (T) to rhombohedral (R) through an intermediate orthorhombic (O) phase. Importantly, we found that the maximum piezoelectric response (d{sub 33} = 545pC/N) was achieved at the boundary between the T and O phase, indicating that the giant piezoelectricity of BZT-xBCT may mainly stem from the T-O phase boundary due to easier polarization rotation and larger lattice softening.

  11. Ferroelectric, piezoelectric, and dielectric properties of BiScO3-PbTiO3-Pb(Cd1/3Nb2/3)O3 ternary high temperature piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Long; Chen, Jianguo; Wang, Chun-Ming; Yu, Yang; Dong, Shuxiang

    2013-07-01

    (0.95-x)BiScO3-xPbTiO3-0.05Pb(Cd1/3Nb2/3)O3 (BS-xPT-PCN) high temperature piezoelectric ceramics near the morphotropic phase boundary (MPB) have been synthesized by traditional solid-state reaction methods. The microstructural morphology, phase structure, and electrical properties of BS-xPT-PCN ceramics were investigated in detail. X-ray diffraction analysis indicated BS-xPT-PCN ceramics have a pure perovskite structure. The coexistence of rhombohedral and tetragonal phases at MPB composition enhanced the polarizability by the coupling between two dynamically equivalent energy states, resulting in the improved piezoelectric and ferroelectric properties at MPB vicinity. The BS-xPT-PCN (x = 0.60) ceramics possess the optimal piezoelectric and ferroelectric properties with d33 = 505pC/N, kp = 55.9%, kt = 36.5%, strain = 0.23% (under the electric field 37.5 kV/cm), and Pr = 39.7 μC/cm2. High temperature dielectric behaviors showed diffuse phase transition in BS-xPT-PCN ceramics. The Curie temperature Tc was found to increase from 371 °C to 414 °C with x increasing from 0.58 to 0.62. All these results together with the good thermal stabilities make the BS-xPT-PCN ceramics promising candidates for high temperature piezoelectric applications.

  12. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics.

    PubMed

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K W

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr(3+), owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  13. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    PubMed Central

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  14. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-06-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.

  15. Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Shi, Xin Xin; Liu, Xiao Qiang; Chen, Xiang Ming

    2016-02-01

    The evolution of structure, ferroelectric, and piezoelectric properties in Bi1-xSmxFe0.99Ti0.01O3 ceramics was extensively investigated within the entire morphotropic phase boundary region with 0 ≤ x ≤ 0.20. A sequential phase transition of R3c-Pna21-Pbnm with increasing Sm content was revealed by Rietveld refinement of the X-ray diffraction data together with the macroscopic ferroelectric measurements. Both ferroelectric and piezoelectric properties showed a great enhancement in the vicinity of the R3c/Pna21 (polar-to-polar) phase boundary, which should be caused by the field-induced phase transition between these two phases. Such field-induced phase transition might be essentially accompanied by a change of magnetic state, which indicated a way of controlling magnetism by means of electric field.

  16. NASA DOD Lead Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2008-01-01

    The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  17. Dielectric properties and glassy behavior study of 70(Na0.5Bi0.5) TiO3-30SrTiO3 lead-free ceramic

    NASA Astrophysics Data System (ADS)

    Praharaj, S.; Rout, D.; Kar, B. B.; Subramanian, V.

    2016-05-01

    This paper reports the dielectric and glassy behavior of 70(Na0.5Bi0.5) TiO3-30SrTiO3 (NBT-30ST) lead-free perovskite relaxor. The temperature dependent dielectric data indicates that the material undergoes a diffuse phase transition at Tm (temperature corresponding to maximum dielectric constant) with diffuseness coefficient γ˜2. The material also shows frequency dispersion around Tm with a high ΔTm (Tm,1MHz - Tm, 0.1kHz) value of ˜42. The above parameters manifest strong relaxor behavior of NBT-30ST. Moreover, the results are analyzed by employing empirical models such as V-F law, Power law to explore the glassy behavior associated with the system. The frequency dependent Tm analysis revealed greater interactions between the polar nano regions (PNRs). For further information on PNRs, the dielectric behavior at much higher and lower temperature than Tm has also been analyzed.

  18. Effects of BiAlO{sub 3}-doping on dielectric and ferroelectric properties of 0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3} lead-free ceramics

    SciTech Connect

    Wang, Jian; Chen, Xiao-ming Zhao, Xu-mei; Liang, Xiao-xia; Zhou, Jian-ping; Liu, Peng

    2015-07-15

    Highlights: • BiAlO{sub 3}-doped BNT-based ceramics were synthesized via a conventional solid state reaction method. • T% values are 56%, 32%, 37%, and 37% for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively. • The mean grain sizes of the ceramics with x = 0, 0.01, 0.02 and 0.06 are about 1.1, 0.9, 0.8 and 0.7 μm, respectively. • Dielectric anomalies in the ϵ{sub r}–T curves are close related to the BiAlO{sub 3} amounts. • The ceramic with x = 0.01 shows the P{sub m} of 32.5 μC/cm{sup 2}, P{sub r} of 24.1 μC/cm{sup 2}, E{sub c} of 20.0 kV/cm and d{sub 33} of 166 pC/N. - Abstract: (1 − x)(0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3})–xBiAlO{sub 3} (BNBT-xBA, x = 0, 0.01, 0.02, 0.06) lead-free ceramics were synthesized via a conventional solid state reaction method. Crystallite structure, microstructure, dielectric and ferroelectric properties of the BNBT–xBA ceramics were studied in detail. X-ray diffraction results show that all ceramics exhibit typical diffraction peaks of ABO{sub 3} perovskite structure. Scanning electron microscope images show that all samples have fine microstructures. Both Curie temperature and maximum dielectric constant vary with the change in the BiAlO{sub 3} amounts. The values of hysteresis loop squareness were calculated to be 1.26, 0.81, 0.51 and 0.36 for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively, indicating a decreased switching behavior of polarization. The changes in dielectric and ferroelectric properties of the ceramics are also discussed.

  19. Design and experiment on a multi-functioned and programmable piezoelectric ceramic power supply with high precision for speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Ye, Yan; Wang, Yong-hong; Yang, En-zhen

    2016-01-01

    Speckle interferometry is a method of measuring structure's tiny deformations which requires accurate phase information of interference fringes. The phase information is acquired by micro-displacement produced by piezoelectric ceramic (PZT). In order to drive the PZT micro-displacement actuator, a multi-functioned and programmable PZT power supply with high precision is designed. Calibration experiment has been done to the PZT micro-actuator in speckle interferometry. Some experiments were also done to test its relevant characteristics. The experiment results show that it has high linearity, repeatability, stability, low ripple and can meet the requirement of the reliability and displacement accuracy in speckle interferometry.

  20. Structural, ferroelectric and magnetic study of lead free (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}La{sub x}Ti{sub 0.988}Fe{sub 0.012}O{sub 3} (x=0,0.01,0.03,0.05) ceramic

    SciTech Connect

    Parmar, Kusum Sharma, Anshu; Sharma, Hakikat; Negi, N. S.

    2015-05-15

    Lead free (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}La{sub x}Ti{sub 0.988}Fe{sub 0.012}O{sub 3} ceramic having compositions (x=0, 0.01, 0.03, 0.05) has been prepared by sol gel method using citric acid. Structural analysis has been done by X-ray diffraction and FTIR measurements. XRD patterns have been confirmed perovskite structure for all samples. FTIR absorption band at around ∼630 cm{sup −1} is observed for all samples which confirm perovskite phase formation in samples. With increasing La concentration, shifting in XRD peaks and FTIR absorption bands is observed which suggests incorporation of La on A-site in prepared (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}La{sub x}Ti{sub 0.988}Fe{sub 0.012}O{sub 3} samples. Effect of La substitution on Ferroelectric (Polarization vs. Electric field) and Magnetic (Magnetization vs. Magnetic field) properties have been studied at room temperature. All samples exhibit weak ferromagnetic order and also possess ferroelectric behavior which provides new insight to lead free single phase multiferroic materials.

  1. Enhanced High Temperature Piezoelectrics Based on BiScO3-PbTiO3 Ceramics

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Dynys, Fred

    2009-01-01

    High-temperature piezoelectrics are a key technology for aeronautics and aerospace applications such as fuel modulation to increase the engine efficiency and decrease emissions. The principal challenge for the insertion of piezoelectric materials is the limitation on upper use temperature which is due to low Curie-Temperature (TC) and increasing electrical conductivity. BiScO3-PbTiO3 (BS-PT) system is a promising candidate for improving the operating temperature for piezoelectric actuators due to its high TC (greater than 400 C). Bi2O3 was shown to be a good sintering aid for liquid phase sintering resulting in reduced grain size and increased resistivity. Zr doped and liquid phase sintered BS-PT ceramics exhibited saturated and square hysteresis loops with enhanced remenant polarization (37 microC per square centimeter) and coercive field (14 kV/cm). BS-PT doped with Mn showed enhanced field induced strain (0.27% at 50kV/cm). All the numbers indicated in parenthesis were collected at 100 C.

  2. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  3. Ferroelectric, piezoelectric, and dielectric properties of BiScO{sub 3}-PbTiO{sub 3}-Pb(Cd{sub 1/3}Nb{sub 2/3})O{sub 3} ternary high temperature piezoelectric ceramics

    SciTech Connect

    Zhao Tianlong; Chen Jianguo; Dong Shuxiang; Wang Chunming; Yu Yang

    2013-07-14

    (0.95-x)BiScO{sub 3}-xPbTiO{sub 3}-0.05Pb(Cd{sub 1/3}Nb{sub 2/3})O{sub 3} (BS-xPT-PCN) high temperature piezoelectric ceramics near the morphotropic phase boundary (MPB) have been synthesized by traditional solid-state reaction methods. The microstructural morphology, phase structure, and electrical properties of BS-xPT-PCN ceramics were investigated in detail. X-ray diffraction analysis indicated BS-xPT-PCN ceramics have a pure perovskite structure. The coexistence of rhombohedral and tetragonal phases at MPB composition enhanced the polarizability by the coupling between two dynamically equivalent energy states, resulting in the improved piezoelectric and ferroelectric properties at MPB vicinity. The BS-xPT-PCN (x = 0.60) ceramics possess the optimal piezoelectric and ferroelectric properties with d{sub 33} = 505pC/N, k{sub p} = 55.9%, k{sub t} = 36.5%, strain = 0.23% (under the electric field 37.5 kV/cm), and P{sub r} = 39.7 {mu}C/cm{sup 2}. High temperature dielectric behaviors showed diffuse phase transition in BS-xPT-PCN ceramics. The Curie temperature T{sub c} was found to increase from 371 Degree-Sign C to 414 Degree-Sign C with x increasing from 0.58 to 0.62. All these results together with the good thermal stabilities make the BS-xPT-PCN ceramics promising candidates for high temperature piezoelectric applications.

  4. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    NASA Astrophysics Data System (ADS)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  5. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  6. Dielectric and piezoelectric properties of Bi2O3 added (Pb,Ca,Sr)(Ti,Mn,Sb)O3 ceramics sintered at low temperature

    NASA Astrophysics Data System (ADS)

    Kim, Dohyung; Yoo, Juhyun; Kim, Insung; Song, Jaesung

    2009-03-01

    In this study, in order to develop low temperature sintering ceramics for a thickness mode multilayer piezoelectric transformer, (Pb,Ca,Sr)(Ti,Mn,Sb)O3 ceramics were fabricated using Na2CO3, Li2CO3, MnO2, and Bi2O3 as sintering aids at 870, 900, and 930 °C. Their respective dielectric and piezoelectric properties were investigated according to the amount of Bi2O3 addition. At the sintering temperature of 900 °C, the optimum value was shown for the density of 6.94 g/cm3, thickness vibration mode electromechanical coupling factor (henceforth, kt) of 0.497, thickness vibration mode mechanical quality factor (henceforth, Qmt) of 3162, and dielectric constant (henceforth, ɛr) of 209 for thickness mode multilayer piezoelectric transformer application.

  7. An analysis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic for efficient refrigeration and thermal energy harvesting

    SciTech Connect

    Vats, Gaurav; Vaish, Rahul; Bowen, Chris R.

    2014-01-07

    This article demonstrates the colossal energy harvesting capability of a lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic using the Olsen cycle. The maximum harvestable energy density estimated for this system is found to be 1523 J/L (1523 kJ/m{sup 3}) where the results are presented for extreme ambient conditions of 20–160 °C and electric fields of 0.1–4 MV/m. This estimated energy density is 1.7 times higher than the maximum reported to date for the lanthanum-doped lead zirconate titanate (thin film) system. Moreover, this study introduces a generalized and effective solid state refrigeration cycle in contrast to the ferroelectric Ericson refrigeration cycle. The cycle is based on a temperature induced polarization change on application of an unipolar electric field to ferroelectric ceramics.

  8. Lead-free ternary perovskite compounds with large electromechanical strains

    NASA Astrophysics Data System (ADS)

    Jarupoom, Parkpoom; Patterson, Eric; Gibbons, Brady; Rujijanagul, Gobwute; Yimnirun, Rattikorn; Cann, David

    2011-10-01

    Lead-free compounds based on perovskite solid solutions in the ternary system (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-Bi(X1/2Ti1/2)O3, where X = Ni and Mg have been shown to exhibit large electromechanical strains. While the perovskite end members Bi(Mg1/2Ti1/2)O3 and Bi(Ni1/2Ti1/2)O3 display limited stability in their pure state, both compounds were found to have solid solubilities of at least 50 mol. % with (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3. Most importantly, under relatively large applied fields, these materials exhibited large hysteretic electromechanical strains characterized by a parabolic shape. With effective piezoelectric coefficients (d33*) greater than 500 pm/V, these systems have excellent potential as a Pb-free piezoelectric materials.

  9. Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi{sub 4}Ti{sub 3}O{sub 12} piezoelectric ceramics

    SciTech Connect

    Peng, Zhihang; Chen, Qiang; Chen, Yu; Xiao, Dingquan; Zhu, Jianguo

    2014-11-15

    Highlights: • W/Nb codoped BIT ceramics were prepared by the mixed oxides route. • High nd{sup 0} electronic configuration of W/Nb reduces the lattice distortion and T{sub C}. • Oxygen vacancy is responsible for dielectric relaxation and DC conduction process. • W/Nb additives significantly enhanced the piezoelectric coefficient d{sub 33} value. • BWNb-10 ceramics possessed large remnant polarization and a wide sintering window. - Abstract: Aurivillius-type Bi{sub 4}Ti{sub 3-x}W{sub x/2}Nb{sub x/2}O{sub 12} ceramics were prepared by a conventional solid-state sintering method. The XRD patterns demonstrated that all compositions were a single three layered crystalline structure, involving a reduction of lattice distortion with an increase in W/Nb doping level. The electrical properties including dielectric, electrical conduction and piezoelectric properties were tailored by W/Nb additives. The Curie-temperature decreased, whereas the electrical resistivity drastically increased with introduction of W/Nb donor dopants. As a result, a high electric field can be applied during the poling process. The Bi{sub 4}Ti{sub 2.9}W{sub 0.05}Nb{sub 0.05}O{sub 12} ceramics exhibited optimum piezoelectric coefficient (d{sub 33} ∼22.8 pC/N), large remnant polarization (2P{sub r} ∼26.8 μC/cm{sup 2} @ 200 °C) together with a high Curie temperature (T{sub C} ∼635 °C). Furthermore, this composition possessed a wide sintering window with outstanding piezoelectric properties. These parameters indicate that Bi{sub 4}Ti{sub 2.9}W{sub 0.05}Nb{sub 0.05}O{sub 12}-based ceramic is a promising candidate for high temperature piezoelectric applications.

  10. Piezoelectric Properties of Pb0.98Bi0.02Zr0.51Ti0.48Zn0.01O3 Ceramics

    NASA Astrophysics Data System (ADS)

    He, Wenze; Yu, Jian

    2011-02-01

    On the basis of eutectic behavior of PbTiO3-PbZrO3-Bi(Zn0.5Ti0.5)O3 ternary system, perovskite-structured Pb0.98Bi0.02Zr0.51Ti0.48Zn0.01O3 ceramics were able to be prepared using conventional electronic ceramic processing at low sintering temperature compatible with Ag as inner electrode materials, promising for co-firing technology to fabricate monolithic multilayer piezoelectric transducers. The dependence of its piezoelectric properties on sintering temperature and various dopants were investigated experimentally and a piezoelectric property with dielectric constant of ɛ33T/ɛ0=1190, dielectric loss of tan δ=0.6%, piezoelectric coefficient of d33=270 pC/N, planar coupling coefficient of kp=0.54, thickness coupling coefficient of kt=0.46 and Curie temperature of Tc=346 °C was obtained for the 0.5% Co-doped Pb0.98Bi0.02Zr0.51Ti0.48Zn0.01O3 ceramics sintered at 950 °C.

  11. Processing of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Janas, V. F.; Safari, A.

    1996-01-01

    The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.

  12. Feasibility study of thermal energy harvesting using lead free pyroelectrics

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, Md Rashedul H.; Shahriar, Shaimum; Arif Ishtiaque Shuvo, Mohammad; Delfin, Diego; Hodges, Deidra; (Bill Tseng, Tzu-Liang; Roberson, David; Love, Norman; Lin, Yirong

    2016-05-01

    Energy harvesting has significant potential for applications in energizing wireless sensors and charging energy storage devices. To date, one of the most widely investigated materials for mechanical and thermal energy harvesting is lead zirconate titanate (PZT). However, lead has detrimental effects on the environment and on health. Hence, alternative materials are required for this purpose. In this paper, a lead free material, lithium niobate (LNB) is investigated as a potential material for pyroelectric energy harvesting. Although its theoretical pyroelectric properties are lower compared to PZT, it has better properties than other lead free alternatives such as ZnO. In addition, LNB has a high Curie temperature of about 1142 °C, which makes it applicable for high temperature energy harvesting, where other pyroelectric ceramics are not suitable. Herein, an energy harvesting and storage system composed of a single crystal LNB and a porous carbon-based super-capacitor was investigated. It is found that with controlled heating and cooling, a single wafer of LNB (75 mm diameter and 0.5 mm thickness) could generate 437.72 nW cm–3 of power and it could be used to charge a super-capacitor with a charging rate of 2.63 mV (h cm3)–1.

  13. Ultrahigh temperature Bi3Ti0.96Sc0.02Ta0.02NbO9-based piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Sun, Wen-bin; Wang, Chun-Ming; Zhao, Ming-Lei; Sun, Shang-Qian; Ming, Bao-Quan; Qi, Peng; Zheng, Li-mei; Du, Juan; Zhang, Shujun; Shrout, Thomas R.

    2008-07-01

    The effect of (Sc,Ta,Ce) doping on the properties of Bi3TiNbO9 (BTNO)-based ceramics was investigated. The cerium modification greatly improves the piezoelectric activity of Bi3(Ti0.96Sc0.02Ta0.02)NbO9-based ceramics and significantly decreases the dielectric dissipation. The d33 of Bi3Ti0.96Sc0.02Ta0.02NbO9+x wt %CeO2 (x =0.35) was found to be 18 pC/N, the highest value among the BTNO-based ceramics and almost three times as much as the reported d33 values of the pure BTNO ceramics (˜6 pC/N). The modification increased the resistivity ρ of the samples extremely, resolving the low resistivity problem for high temperature applications. The dielectric spectroscopy shows that the TC for all the ceramics is higher than 900 °C. The mechanical quality factor Q and planar coupling factors kp and kt of Bi3Ti0.96Sc0.02Ta0.02NbO9+0.35 wt %CeO2 ceramic were found to be 2835, 9%, and 23%, respectively, and it has high TC and stable piezoelectric properties, demonstrating that the (Sc,Ta,Ce) modified BTNO-based material is a wonderful candidate for high temperature applications.

  14. Large electrostrictive effect and bright upconversion luminescence in Er-modified 0.92(Bi0.5Na0.5)TiO3-0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoli; Wu, Meihua; Diao, Wenxin; Zhang, Bing; Hao, Jigong; Xu, Zhijun; Chu, Ruiqing

    2015-10-01

    In this study, a new lead-free luminescent electrostrictive material has been obtained by introducing trivalent Er3+ as the activator into 0.92(Bi0.5Na0.5)TiO3-0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 (BNT-0.08BCST). A high, purely electrostrictive effect (the electrostrictive coefficient Q33 reaches up to 0.028 m4/C2) with exceptionally good fatigue resistance (up to 106 cycles) and thermostability (25-140 °C) is obtained in 0.2 mol%Er-modified BNT-0.08BCST ceramics. Besides the excellent electrostrictive properties, Er3+-modified BNT-0.08BCST samples exhibit a strong green-red upconversion emission, and the emission intensities are strongly dependent on the doping concentration, which reaches the optimal value as the doping concentration is 0.4 mol%. These results suggest that this kind of material may have potential application as a multifunctional device by integrating its excellent upconversion luminescence and electrostrictive properties.

  15. Effect of Lanthanum Doping on Ferroelectric and Strain Properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3-0.04SrTiO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free 0.96[Bi1/2(Na0.84K0.16)1/2](1- x)La x TiO3-0.04SrTiO3 (BNKTLa x-ST, with x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05) ceramics have been synthesized using a conventional solid-state reaction method and their phase transition, dielectric, ferroelectric, and strain properties investigated. X-ray diffraction patterns revealed formation of pure perovskite phase. A phase transition from coexistence of rhombohedral and tetragonal to a pseudocubic phase was observed at x = 0.02. Polarization and bipolar strain hysteresis loops indicated that the ferroelectric order (FE) of BNKT-ST is significantly disrupted by lanthanum doping. The destabilization of the FE order results in degradation of the remanent polarization, coercive field, depolarization temperature ( T d), electromechanical coupling factor ( k p), and static d 33, accompanied by large electric-field-induced strain of 0.34% at 60 kV/cm with normalized strain of d 33 * = S max/ E max = 600 pm/V at a critical composition of around x = 0.02.

  16. Fundamental limitation to the magnitude of piezoelectric response of (001)pc textured K0.5Na0.5NbO3 ceramic

    SciTech Connect

    Gupta, Shashaank; Belianinov, Alex; Okatan, Mahmut B; Jesse, Stephen; Kalinin, Sergei V; Priya, Shashaank

    2014-01-01

    (001)pc textured K0.5Na0.5NbO3 (KNN) ceramic was found to exhibit a 65% improvement in the longitudinal piezoelectric response as compared to its random counterpart. Piezoresponse force microscopy study revealed the existence of larger 180 and non-180 domains for textured ceramic as compared to that of the random ceramic. Improvement in piezoresponse by the development of (001)pc texture is discussed in terms of the crystallographic nature of KNN and domain morphology. A comparative analysis performed with a rhombohedral composition suggested that the improvement in longitudinal piezoresponse of polycrystalline ceramics by the development of (001)pc texture is limited by the crystal structure.

  17. Robust polarization and strain behavior of Sm-modified BiFeO3 piezoelectric ceramics.

    PubMed

    Walker, Julian; Budic, Bojan; Bryant, Peter; Kurusingal, Valsala; Sorrell, Charles C; Bencan, Andreja; Rojac, Tadej; Valanoor, Nagarajan

    2015-01-01

    The route to phase-pure BiFeO3 (BFO) ceramics with excellent ferroelectric and electromechanical properties is severely impeded by difficulties associated with the perovskite phase stability during synthesis. This has meant that dopants and solid solutions with BFO have been investigated as a means of not only improving the functional properties, but also of improving the perovskite phase formation of BFO-based ceramics. The present work focuses on Sm-modified BFO ceramics of composition Bi0.88Sm0.12FeO3. The polarization and strain behaviors were investigated as a function of the phase composition, microstructure, and chemical composition. Addition of Sm reduces the susceptibility of the BFO perovskite to phase degradation by Si impurities. Si was observed to react into Sm-rich grains dispersed within the microstructure, with no large increases in the amount of bismuth-parasitic phases, namely Bi25FeO39 and Bi2Fe4O9. These as-prepared ceramics exhibited robust polarization behavior showing maximum remnant polarizations of ~40 to 50 μC/cm(2). The electric-fieldinduced strain showed an appreciable stability in terms of the driving field frequency with maximum peak-to-peak strains of ~0.3% and a coercive field of ~130 kV/cm. PMID:25585392

  18. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  19. Structure evolution and phase development of NKN-BNT piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fan, Huiqing; Liu, Laijun

    2009-07-01

    Na0.5K0.5NbO3 (NKN) and Bi0.5Na0.5TiO3 (BNT) are the most potential candidates of lead-base piezoelectric materials. The microstructure and phase transition behavior as well as dielectric and piezoelectric properties of NKN-BNT solid solution fabricated by mechanical alloying method were investigated. Nanopowder (~35 nm) could be obtained after calcining at a relative low temperature. A coexistence region of tetragonal and orthorhombic was found in pure NKN, and the region shifted to low temperature ranges with the introduction of impurities or the second phase. The crystal structure and microstructure of NKN-BNT solid solution changed dramatically with the increaseing of BNT, and all phase transition temperatures deduced. The coexistence region shifted to room temperature while the amount of BNT is at 6 mol %. The morphotropic phase boundary (MPB) as well as the polymorphism behavior (PPB) of NKN-BNT solid solution is discussed in detail.

  20. Synthesis and characterization of lead-free 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ceramic

    SciTech Connect

    Coondoo, Indrani; Panwar, Neeraj; Kholkin, A. L.; Amorin, Harvey; Alguero, Miguel

    2013-06-07

    Polycrystalline sample of lead-free 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ceramic has been synthesized by solid state reaction method. Single-phase perovskite structure with rhombohedral symmetry was confirmed by x-ray diffraction. Temperature dependent dielectric permittivity studies demonstrated frequency independent behavior, indicating that the studied sample was not a typical relaxor ferroelectric. A polymorphic phase transition between rhombohedral and tetragonal phase was noticed near room temperature followed by a tetragonal to cubic transition with 97 Degree-Sign C as the temperature of maximum permittivity. The macroscopic values of d{sub 33} and d{sub 31} were {approx}350 pC/N and -141 pm/V, whereas the electromechanical coupling factors k{sub p} and k{sub t} were 44.5% and 41.6%, respectively. Bulk P-E hysteresis loop was obtained with saturation polarization 11 {mu}C/cm{sup 2} and coercive field {approx}4 kV/cm. Distinct polarization contrast with a complex mosaic-like domain structure was observed in the out-of-plane mode of piezoresponse force microscopy. The domain width and the correlation length were estimated to be nearly 2 {mu}m and 827 nm, respectively. Local hysteresis loop with apparent coercive voltage, V{sub c} = 15.8 V, was observed.

  1. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    SciTech Connect

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  2. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    This slide presentation reviews the current state of the lead-free electronics project. It characterizes the test articles, which were built with lead-free solder and lead-free component finishes. The tests performed and reported on are: thermal cycling, combine environments testing, mechanical shock testing, vibration testing and drop testing.

  3. Dielectric dispersion of ferroelectric ceramics and single crystals by sound generation in piezoelectric domains

    SciTech Connect

    Arlt, G.; Boettger, U.; Witte, S.

    1995-04-01

    Periodic domain configurations with alternating 180{degree} and 90{degree} domains are not completely mechanically clamped up to microwave frequencies. Above the acoustic resonance of the ferroelectric sample, therefore, the dielectric constant comprises contributions which can be attributed to the free dielectric constant. Up to microwave frequencies the domains are piezoelectrically active; they emit longitudinal and shear thickness waves into the surroundings which cause dielectric loss in the sample. The dielectric step from the free condition to the clamped condition at the relaxation frequency is on the order of {Delta}{var_epsilon} {approx} 10--100. This step is much smaller than the step caused by the emission of shear waves from 90{degree} domain walls.

  4. Influence of a silver epoxy dopant on the performance of broken piezoelectric ceramic transducer based on an analytical model

    NASA Astrophysics Data System (ADS)

    Abdulhamed Mohammed, Arshed; Haris, Sallehuddin Mohamed; Zaki Nuawi, Mohd

    2014-04-01

    Over the past decade, an unprecedented increase in the types of, the methods of using, and the demand for piezoelectric ceramic transducers (PCTs) has been observed in the market. These factors increase the probability of PCTs being subjected to breakage. Therefore, this study proposes a simple, low-cost procedure which uses available components to repair and reinstall five broken PCTs and then tests them as emitters and receivers in bulk and surface wave detection. An SM211 PCT with a 7.2 MHz frequency, a high damping and electromechanical coupling coefficient, and two silver electrodes were selected for the experiment. A Mason circuit was used for the procedure, the Laplace transform was used as a mathematical analysis method, and MATLAB was the technical computing language used to model the new transfer function for this type of PCT. This study proved that silver electrodes are a significant load on PCTs, particularly at high frequencies. Very good identity correlations between this mathematical and the experimental responses of the standard PCT were obtained. Later this mathematical model was used to prove the explanations provided by this research. The response of the standard PCT was compared with that of the samples of PCT that have been repaired (SPCTR). Through this comparison, many conclusions were obtained, and several recommendations were made, which can be taken advantage of by people who are interested in this field of research. Such recommendations include analyzing the response of SPCTR and explaining the types of ultrasonic tests in which SPCTR can be used.

  5. Electrical properties of lead-free Fe-doped niobium-rich potassium lithium tantalate niobate single crystals

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Jun; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2013-12-01

    Lead-free, 0.025 wt% Fe-doped niobium-rich potassium lithium tantalate niobate Fe: K0.95Li0.05Ta1-xNbxO3 single crystals have been grown by the top-seeded melt growth method. All the transition temperatures have been determined by the dielectric constant and loss-dependent temperature. The spontaneous polarizations computed by the integration of pyroelectric coefficients over all the temperatures are consistent with the results of the P-E hysteresis loops. The piezoelectric constants and electromechanical coupling factors are attractive among lead-free piezoelectric materials. With suitable Fe-doping, the electrical properties of KLTN single crystals have been improved overall and can be compared to those of the current important lead-based piezoelectric materials.

  6. Properties of Cerium Containing Lead Free Solder

    NASA Astrophysics Data System (ADS)

    Xie, Huxiao

    With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.

  7. Bulk dense fine-grain (1-x)BiScO{sub 3}-xPbTiO{sub 3} ceramics with high piezoelectric coefficient

    SciTech Connect

    Zou Tingting; Wang Xiaohui; Wang Han; Zhong Caifu; Li Longtu; Chen, I-W.

    2008-11-10

    High density fine grain (1-x)BiScO{sub 3}-xPbTiO{sub 3} ceramics were successfully prepared by two-step sintering and their ferroelectric properties were investigated. Experimental evidence indicates the existence of a morphotropic phase boundary at the composition x=0.635, which exhibits a piezoelectric coefficient d{sub 33} of 700 pC/N at room temperature, significantly higher than the reported values to date. Furthermore, a higher electromechanical coupling factor Kp=0.632 and a larger remnant polarization P{sub r}=47.3 {mu}C/cm{sup 2} were obtained. The paraelectric-to-ferroelectric phase transition occurs at 446 deg. C, slightly lower than in the coarse grain ceramics with a similar composition, suggesting a grain size effect. The local effective piezoelectric coefficient d{sub 33}* was estimated to be 795 pC/N at 2.29 V, measured by scanning probe microscopy. Further atomic force microscope observation revealed the existence of 90 deg. domains of about 60-70 nm in width, confirming the previous results that small domain structure enhances the piezoelectric properties.

  8. The Dielectric and Piezoelectric Properties of 0.125PMN-0.875PZT Ceramics Doped with 4PbO\\cdotB2O3

    NASA Astrophysics Data System (ADS)

    Wu, Long; Wang, Chunz-Heuy

    1993-06-01

    The dielectric and piezoelectric properties of the 0.125Pb(Mg1/3Nb2/3)O3-0.875Pb(ZrxTi1-x)O3 system with 0.4≤{x}≤0.6 were investigated. From the results of XRD and piezoelectric measurement, it was supposed that the composition with x{=}0.5--0.51 corresponds to MPB between tetragonal and rhombohedral phase. The 4PbO\\cdotB2O3 glass frit which has a low flow temperature and a high polarizability is doped to the system. This is helpful to the dielectric and piezoelectric properties of the system. If small amounts of 4PbO\\cdotB2O3 glass powder are added to the calcined 0.125PZT-0.875PMN ceramics, the liquid phase is formed during sintering. Hence, the sintering temperature can be reduced and the piezoelectric and dielectric properties are enhanced.

  9. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    NASA Astrophysics Data System (ADS)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  10. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Tanaka, Hidehiko; Gabbay, Maurice; Fantozzi, Gilbert; Cheng, Bo Lin

    2002-05-01

    Three undoped lead zirconate titanate (PZT) ceramics were prepared with compositions close to the morphotropic phase boundary: Pb(Zr0.50Ti0.50)O3, Pb(Zr0.52Ti0.48)O3, and Pb(Zr0.54Ti0.46)O3. Internal friction Q-1 and shear modulus G were measured versus temperature from 20 °C to 500 °C. Experiments were performed on an inverted torsional pendulum at low frequencies (0.1, 0.3, and 1 Hz). The ferroelectric-paraelectric phase transition results in a peak (P1) of Q-1 correlated with a sharp minimum M1 of G. Moreover the Q-1(T) curves show two relaxation peaks called R1 and R2 respectively, correlated with two shear modulus anomalies called A1 and A2 on the G(T) curves. The main features of the transition P1 peak are studied, they suggest that its behavior is similar to the internal friction peaks associated with martensitic transformation. The relaxation peak, R1 and R2 are both attributed to motion of domain walls (DWs), and can be analyzed by thermal activated process described by Arrhenius law. The R2 peak is demonstrated to be due to the interaction of domain walls and oxygen vacancies because it depends on oxygen vacancy concentration and electrical polarization. However, the R1 peak is more complex; its height is found to be increased as stress amplitude and heating rate increase. It seems that the R1 peak is influenced by three mechanisms: (i) relaxation due to DW-point defects interaction, (ii) variation of domain wall density, and (iii) domain wall depinning from point defect clusters.

  11. Enhanced piezoelectricity and high temperature poling effect in (1-x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} ceramics via an ethylene glycol route

    SciTech Connect

    Tailor, H. N.; Ye, Z.-G.

    2010-05-15

    A solution chemical method utilizing ethylene glycol as solvent has been developed to prepare the ceramics of (1-x)Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3}[(1-x)PMN-xPT] from a precursor powder that can be pressed and fired in one step to produce high quality ceramics with excellent piezoelectric properties. The ceramics reach a relative density of up to 97% of the theoretical value after direct calcinations. This high density is achieved without the need of additional sintering after calcination which is usually required in conventional solid state syntheses to produce ceramics. The ceramics exhibit a unipolar piezoelectric coefficient d{sub 33} of 848 pC/N, which is one of the highest values for any unmodified/untextured binary systems reported to date. Since the piezoelectric properties depend on composition and electric field, the effect of poling conditions was investigated. A critical temperature limit has been found, above which poling can dramatically impair the piezoelectric properties due to a field-induced increase in the monoclinic phase component around the morphotropic phase boundary.

  12. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2007-01-01

    The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  13. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} ceramics

    SciTech Connect

    Liu Jing; Shen Zhijian; Yan Haixue; Reece, Michael J.; Kan Yanmei; Wang Peiling

    2007-11-15

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d{sub 33} piezoelectric coefficient of BLT ceramics gradually reduces up to 350 deg. C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d{sub 33} above the permittivity peak, T{sub m}, show that the BLT ceramic has relaxor-like behavior.

  14. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  15. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  16. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  17. Lead-free BNT composite film for high-frequency broadband ultrasonic transducer applications.

    PubMed

    Yan, Xingwei; Ji, Hongfen; Lam, Kwok Ho; Chen, Ruimin; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    A lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric composite thick film with a thickness of ~11 μm has been fabricated using a modified sol-gel method. Dielectric constant, remnant polarization, and coercive field of the BNT composite film were found to be 1018, 22.6 μC/cm2, and 76.1 kV/cm, respectively. The film was used to fabricate a high-frequency needle transducer and the performance of the transducer was measured. The transducer without a matching layer exhibits a center frequency of 98 MHz and a -6-dB bandwidth of 86%. A wire phantom image acquired using the transducer shows an axial resolution of 15 ¿m and lateral resolution of 68 μm, respectively. Results from this study suggest that the BNT composite film is a promising lead-free piezoelectric material for high-frequency broadband ultrasonic transducer applications. PMID:25004521

  18. Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding.

    PubMed

    Mathieson, Andrew; DeAngelis, Dominick A

    2016-01-01

    Since the 1950s, lead zirconate-titanate (PZT) has been the dominant transduction material utilized in power ultrasonics, while lead-free piezoceramics have been largely neglected due to their relatively poor piezoelectric and electromechanical properties. However, the implementation of environmental directives that regulate and control the use of hazardous materials, such as lead, triggered a search for new high-performance lead-free piezoceramics. Recent advances have led to lead-free piezoceramics exhibiting properties similar to PZT, but despite this, reports utilizing these novel piezoceramics in practice are limited. This research employs a modified variant of bismuth sodium titanate (BNT) in a power ultrasonic transducer used for metal welding during the manufacture of semiconductors. The important factors for transducer reliability and performance are investigated, such as piezoceramic aging and stack preload level. It is reported that BNT-based transducers exhibit good stability, and can withstand a stack preload level of 90 MPa without depoling. Although the BNT-based transducers exhibited larger dissipative losses compared to identical PZT8-based transducers, the tool displacement gain was larger under constant current conditions. Semiconductor wire bonds which satisfied the commercial quality control requirements were also formed by this BNT-based transducer. PMID:26584490

  19. An integrated microfluidic chip with 40 MHz lead-free transducer for fluid analysis.

    PubMed

    Lee, S T F; Lam, K H; Lei, L; Zhang, X M; Chan, H L W

    2011-02-01

    The design, fabrication, and evaluation of a high-frequency transducer made from lead-free piezoceramic for the application of microfluidic analysis is described. Barium strontium zirconate titanate [(Ba(0.95)Sr(0.05))(Zr(0.05)Ti(0.95))O(3), abbreviated as BSZT] ceramic has been chosen to be the active element of the transducer. The center frequency and bandwidth of this high-frequency ultrasound transducer have been measured to be 43 MHz and 56.1%, respectively. The transducer was integrated into a microfluidic channel and used to measure the sound velocity and attenuation of the liquid flowing in the channel. Results suggest that lead-free high-frequency transducers could be used for in situ analysis of property of the fluid flowing through the microfluidic system. PMID:21361626

  20. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  1. Development of lead-free solders for hybrid microcircuits

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Frear, D.R.; Robinson, D.G.

    1996-01-01

    Extensive work has been conducted by industry to develop lead-free solders for electronics applications. The driving force behind this effort is pressure to ban or tax the use of lead-bearing solders. There has been further interest to reduce the use of hazardous chemical cleaners. Lead-free soldering and low-residue, ``no clean`` assembly processing are being considered as solutions to these environmental issues. Most of the work has been directed toward commercial and military printed wiring board (PWB) technology, although similar problems confront the hybrid microcircuit (HMC) industry, where the development of lead-free HMC solders is generally lagging. Sandia National Laboratories is responsible for designing a variety of critical, high reliability hybrid components for radars. Sandia has consequently initiated a project, as part of its Environmentally Conscious Manufacturing program, to develop low-residue, lead-free soldering for HMCs. This paper discusses the progress of that work.

  2. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    The primary technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with lead-free alloys, (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  3. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  4. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    Original Equipment Manufacturers (OEMs), depots, and support contract ors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the r eliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or cir cuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-f ree processes and parameters (including higher melting points of lead -free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reli ability As the transition to lead-free becomes a certain reality for military and aerospace applications, it will be critical to fully un derstand the implications of reworking lead-free assemblies.

  5. Piezoelectrically assisted ultrafiltration

    SciTech Connect

    Ahner, N.; Gottschlich, D.; Narang, S.; Roberts, D.; Sharma, S.; Ventura, S.

    1993-01-01

    The authors have demonstrated the feasibility of using piezoelectrically assisted ultrafiltration to reduce membrane fouling and enhance the flux through ultrafiltration membranes. A preliminary economic evaluation, accounting for the power consumption of the piezoelectric driver and the extent of permeate flow rate enhancement, has also shown that piezoelectrically assisted ultrafiltration is cost effective and economically competitive in comparison with traditional separation processes. Piezoelectric transducers, such as a piezoelectric lead zirconate titanate (PZT) disc or a piezoelectric horn, driven by moderate power, significantly enhance the permeate flux on fouled membranes, presumably because they promote local turbulence. Several experiments were conducted on polysulfone and regenerated cellulose UF membranes fouled during filtration of model feed solutions. Solutions of poly(ethylene glycol) and of high-molecular weight dextran were used as models. The authors found that they could significantly increase the permeate flux by periodically driving the piezoelectric transducer, horn or PZT disc, by application of moderate power over short periods of time, from 20 to 90 seconds. Enhancements as high as a factor of 8 were recorded within a few seconds, and enhanced permeate fluxes were maintained over a prolonged period (up to 3 hours). The prolonged flux enhancement makes it feasible to drive the piezoelectric transducer intermittently, thereby reducing the power consumption of the piezoelectric driver. As piezoelectric drivers of sonically assisted ultrafiltration, PZT disc transducers are preferred over the piezoelectric horn because of their small size and ease of adaptability to ultrafiltration test cells. The horn transmits sonic energy to the UF membrane through a titanium element driven by a separate piezoelectric transducer, but a piezoelectric ceramic disc transmits energy directly to the UF membrane.

  6. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  7. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2011-01-01

    Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.

  8. Temperature dependent properties and poling effect of K4CuNb8O23 modified (Na0.5K0.5)NbO3 lead free piezoceramics

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Chen, Yu; Peng, Zhihang; Wu, Jiagang; Liu, Hong; Xiao, Dingquan; Yu, Ping; Zhu, Jiliang; Zhu, Jianguo

    2015-03-01

    Lead free piezoelectric ceramics (Na0.5K0.5)NbO3 modified by 4% mol. K4CuNb8O23 (abbreviated NKN:4KCN hereinafter) contain moderate piezoelectric constant d33 ˜ 100 pC N-1 and large mechanical quality factor Qm > 1000, showing possible replacement of the lead-based ones (Chen et al., J Appl. Phys. 102, 104109 (2007)). In terms of practical use, however, the temperature stability of NKN:4KCN is not clear to date. We made a systematic investigation on the properties versus temperature of NKN:4KCN to evaluate whether it can be practically used. In the range from room temperature (RT ˜ 25 °C) to 100 °C, the ferroelectricity of poled NKN:4KCN material is nearly temperature independent, remanent polarization Pr is about 27.6 ±1 μC cm-2. When the as-studied NKN:4KCN ceramics were thermal depolarized in temperature range from RT to 450 °C, piezoelectric constant d33 changed little, retaining about 99 pC N-1, 77 ± 3 pC N-1, from RT to 150 °C, 200 °C to 350 °C, respectively. The poled NKN:4KCN material showed higher orthorhombic to tetragonal phase transition temperature (TO-T ˜ 200 °C) compared to unpoled sample (TO-T ˜ 194 °C). Moreover, this kind of lead free material displayed negative temperature coefficient of frequency (TCF) and positive TCF in orthorhombic and tetragonal phase state, respectively. The TCF was about -360 ppm K-1 in the range from RT to 125 °C, close to some lead-based commercial ones. The significance of this work lies in evaluating whether such a material can be practically used or not. We believe such a material might be the most promising candidate for replacing lead-based ones in some areas in the future.

  9. Grain size effect on phase transition behavior and electrical properties of (Bi1/2K1/2)TiO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Hagiwara, Manabu; Fujihara, Shinobu

    2015-10-01

    Dense and phase-pure (Bi1/2K1/2)TiO3 (BKT) ceramics with various grain sizes from 0.18 to 1.01 µm were prepared by conventional sintering of a hydrothermally synthesized fine powder. The decrease in grain size resulted in the reductions in tetragonality, remanent polarization, and the piezoelectric d33 coefficient, whereas the room-temperature dielectric permittivity slightly increased with decreasing grain size. The measurement of the temperature dependence of permittivity revealed that BKT exhibited the spontaneous relaxor-to-normal ferroelectric (R-nFE) phase transition. It was also found that the maximum permittivity was decreased and the R-nFE transition was inhibited by the reduction in grain size. In this paper, on the basis of the observed grain-size-dependent phase transition behaviors, microstructural models are proposed for both coarse- and fine-grained BKT ceramics, and the mechanism underlying the grain size effect on the electrical properties is discussed.

  10. Microstructural studies of nanocrystalline barium zirconium titanate (BZT) for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Jamil, Nor Huwaida Janil @; Izzuddin, Izura; Zainuddin, Zalita; Jumali, Mohammad Hafizuddin Haji

    2015-09-01

    Lead-free piezoelectric ceramics based on barium titanate (BaTiO3) with substitution of Zr4+ were prepared using sol-gel method. The Ba(ZrxTi1-x)O3, (BZT) powders with x = 0.0, 0.1, 0.2 and 0.3 were pressed into pellets and sintered at 1250 °C for 2 h. Focusing on the effect of Zr4+ substitutions into BaTiO3 perovskite system, the phase transition and microstructural properties of BZT ceramics were studied using XRD, SEM and EDX spectroscopy. All X-ray diffractograms were fitted using Pawley refinement model. The XRD diffractograms revealed the progressive phase transition from tetragonal to cubic phase as Zr content increased. The crystallite exhibited decreasing trend and was supported by shrinkage in grain size. The EDX analysis confirmed the successful substitution of Ti4+ with Zr4+ in BaTiO3 crystal.

  11. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  12. Preparation, crystal structure and enhanced bipolar response of 0.90BLNT-0.10BCT lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Pal, Vijayeta; Kumar, A.; Thakur, O. P.; Dwivedi, R. K.

    2016-05-01

    In the present work, a solid solution of lead free 0.90[(Bi0.96La0.04)0.5Na0.5TiO3]-0.10(Ba0.90Ca0.10TiO3] (abbreviated as 0.90BLNT-0.10BCT) piezoceramics has been synthesized by semi-wet technique. X-ray diffraction pattern confirms the phase formation. Rietveld refinement of XRD data demonstrates the coexistence of rhombhohedral (R3c) + tetragonal (P4mm) phase at room temperature. Raman spectrum is also support the above analysis. A large enhancement in bipolar strain of 0.12 % and calculated normalized strain, d*33 (defined as Smax/Emax) ~ 265 pm/V at 40kV/cm has been observed for this composition as compared to pure BLNT specimen, which make possible it as a potential lead-free candidates for piezoelectric applications.

  13. UHV piezoelectric translator

    SciTech Connect

    Oversluizen, T.; Watson, G.

    1985-01-01

    A UHV compatible piezoelectric translator has been developed to correct for angular misalignments in the crysals of a UHV x-ray monochromator. The unit is small, bakeable to 150/sup 0/C, and uses only ceramic materials for insulation. We report on the construction details, vacuum compatibility, mechanical properties, and uses of the device.

  14. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  15. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  16. Giant electric-field-induced strain in lead-free piezoelectric materials.

    PubMed

    Chen, Lan; Yang, Yurong; Meng, X K

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure - reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  17. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  18. Giant electric-field-induced strain in lead-free piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-05-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect.

  19. Lead-Free Experiment in a Space Environment

    NASA Technical Reports Server (NTRS)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  20. Silver nanosintering: a lead-free alternative to soldering

    NASA Astrophysics Data System (ADS)

    Maruyama, Minoru; Matsubayashi, Ryo; Iwakuro, Hiroaki; Isoda, Seiji; Komatsu, Teruo

    2008-07-01

    We propose a lead-free silver paste as a replacement for a high-temperature lead-rich solder used for electronics. The pastes tested here contain a small amount of solvent, but primarily consist of silver powder and alkoxide-passivated silver nanoparticles that undergo nanosintering when heated. The pastes were used to connect silicon diode chips to copper bases at 350°C in nitrogen ambient without external pressure. The resulting diode packages had electrical and thermal properties about equal to those with lead-solder joints. The mechanical strengths also were comparable to the lead joint. These properties make this nanosilver paste the first viable lead-free alternative to a lead solder.

  1. Ferroelectric and piezoelectric properties of high temperature (Bi,La)FeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 ceramics at rhombohedral/tetragonal coexistent phase

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Hou, Xianbo; Yu, Jian

    2015-08-01

    In this article, some high Curie temperature ferroelectric piezoceramics of perovskite-structured BiFeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 (BF-BZT-PT) solid solutions were prepared using fine-ball milling and solid state reaction method. X-ray diffraction measurements exhibited those BF-BZT-PT ceramics being crystallized in rhombohedral/tetragonal coexistent phase while scanning electron microscopy showed their microstructure grain size about 200 nm. It was found that the ferroelectric Curie temperature increases up to 630 °C with increasing BF content in those BF-BZT-PT ceramics and that their ferroelectric and piezoelectric properties were strongly dependent on compositions and sintering temperature. A good combination of ferroelectric and piezoelectric property of remanent polarization Pr = 18 µC/cm2, coercive field Ec = 64 kV/cm, piezoelectric constant d33 = 41 pC/N, dielectric constant \\varepsilon 33\\text{T}/\\varepsilon 0 = 258, loss tan δ = 0.023, and Curie temperature TC = 582 °C was obtained for 0.59BF-0.15BZT-0.26PT ceramics sintered at 780 °C for 10 h and poled under 8.4 kV/mm at 120 °C for 20 min. In comparison with tetragonal 0.50BF-0.15BZT-0.35PT ceramics reported previously by the author group, rhombohedral/tetragonal-coexistent-phased 0.59BF-0.15BZT-0.26PT ceramics exhibited a higher piezoresponse, and contemporarily, La-substitution was found playing the same role of enhancing piezoresponse and reducing Curie temperature. Of most interest, a good piezoelectric property of d33 = 24 pC/N, ɛr = 217, tan δ = 0.020, and TC = 630 °C was obtained for 0.66BF-0.15BZT-0.19PT ceramics prepared by two-step sintering with 850-750 °C for 10 h and poled under 9.0 kV/mm at 120 °C for 20 min, which is better than that of commercial K-15 bismuth titanate ceramics with d33 = 18 pC/N, \\varepsilon 33\\text{T}/\\varepsilon 0 = 140, tan δ = 0.03, and TC ˜ 620 °C. Like the case of Pb(Zr,Ti)O3, BF-BZT-PT perovskites are becoming important to design high temperature

  2. Piezoelectric enhancement under negative pressure

    NASA Astrophysics Data System (ADS)

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-07-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  3. Piezoelectric enhancement under negative pressure.

    PubMed

    Kvasov, Alexander; McGilly, Leo J; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S; Sluka, Tomas; Tagantsev, Alexander K; Setter, Nava

    2016-01-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones. PMID:27396411

  4. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Shi, Liping; Zhou, Haimin; Huang, Jie; Tan, Jiliang

    2015-04-01

    Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient) of piezoelectric actuators. These data from theoretical and experimental research show the following: (1) The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2) Under external field, En ( ex ) = E 1 , exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3) According to the piezoelectric strain Si ( 1 ) , piezoelectric displacement Dm ( 2 ) and piezoelectric strain Si ( 3 ) of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ɛ33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric effects on the

  5. Ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Lichun; Yang, Jian; Qiu, Tai

    2014-09-01

    The effects of CuO addition on phase composition, microstructure, sintering behavior, and microwave dielectric properties of 0.80Sm(Mg0.5Ti0.5)O3-0.20 Ca0.8Sr0.2TiO3(8SMT-2CST) ceramics prepared by a conventional solid-state ceramic route have been studied. CuO addition shows no obvious influence on the phase of the 8SMT-2CST ceramics and all the samples exhibit pure perovskite structure. Appropriate CuO addition can effectively promote sintering and grain growth, and consequently improve the dielectric properties of the ceramics. The sintering temperature of the ceramics decreases by 50°C by adding 1.00 wt.%CuO. Superior microwave dielectric properties with a ɛ r of 29.8, Q × f of 85,500 GHz, and τ f of 2.4 ppm/°C are obtained for 1.00 wt.%CuO doped 8SMT-2CST ceramics sintered at 1500°C, which shows dense and uniform microstructure as well as well-developed grain growth.

  6. Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+ and Mn2+ Co-doped CaBi4Ti4O15 High-Temperature Ceramics

    NASA Astrophysics Data System (ADS)

    Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-07-01

    Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4- x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tan δ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.

  7. Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+ and Mn2+ Co-doped CaBi4Ti4O15 High-Temperature Ceramics

    NASA Astrophysics Data System (ADS)

    Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-05-01

    Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4-x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tanδ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.

  8. Interface cracks in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  9. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices. PMID:26868967

  10. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Bowland, Christopher C.; Malakooti, Mohammad H.; Tang, Haixiong; Sodano, Henry A.

    2016-02-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 +/- 5 pm V-1. Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm-3. The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  11. Ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Song; Zhu, De-Gui; Cai, Xu-Sheng

    2014-08-01

    The dense monoclinic-SrAl2Si2O8 ceramics have been prepared by a two-step sintering process at a sintering temperature of 1173 K (900 °C). Firstly, the pre-sintered monoclinic-SrAl2Si2O8 powders containing small SiO2·Al2O3 crystal phases were obtained by continuously sintering a powder mixture of SrCO3 and kaolin at 1223 K (950 °C) for 6 hours and 1673 K (1400 °C) for 4 hours, respectively. Subsequently, by the combination of the pre-sintered ceramic powders with the composite flux agents, which are composed of a SrO·3B2O3 flux agent and α-Al2O3, the low-temperature densification sintering of the monoclinic-SrAl2Si2O8 ceramics was accomplished at 1173 K (900 °C). The low-temperature sintering behavior and microstructure evolvement of the monoclinic-SrAl2Si2O8 ceramics have been investigated in terms of Al2O3 in addition to the composite flux agents. It shows that due to the low-meting characteristics, the SrO·3B2O3 flux agent can urge the dense microstructure formation of the monoclinic-SrAl2Si2O8 ceramics and the re-crystallization of the grains via a liquid-phase sintering. The introduction of α-Al2O3 to the SrO·3B2O3 flux agent can apparently lead to more dense microstructures for the monoclinic-SrAl2Si2O8 ceramics but also cause the re-precipitation of SiO2·Al2O3 compounds because of an excessive Al2O3 content in the SrO·3B2O3 flux agent.

  12. Dependence of depolarization temperature on cation vacancies and lattice distortion for lead-free 74(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-20.8(Bi{sub 1/2}K{sub 1/2})TiO{sub 3}-5.2BaTiO{sub 3} ferroelectric ceramics

    SciTech Connect

    Zhu Mankang; Hu Hancheng; Lei Na; Hou Yudong; Yan Hui

    2009-05-04

    In this paper, the off-morphotropic-phase-boundary 74(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-20.8(Bi{sub 1/2}K{sub 1/2})TiO{sub 3}-5.2BaTiO{sub 3} ceramics were fabricated at different sintering temperatures. It was found out that as the sintering temperature increases, the volatilization of the A-site elements is aggravated, thus generating the oxygen vacancies; meanwhile, the tetragonality of the perovskite lattice reduces gradually. Besides, the temperature-dependent dielectric responses revealed that as the sintering temperature increases, the depolarization temperature T{sub d} decreases while the Curie-Weiss point T{sub C} increases. It is suggested that the lattice distortion, other than the oxygen vacancies, is the crucial factor in influencing the depolarization temperature.

  13. Lead-free BaTiO3 nanowires-based flexible nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Bae, Soo Bin; Yang, Seong Ho; Lee, Hyung Ik; Lee, Kisu; Lee, Seung Jun

    2014-07-01

    We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ~7.0 V and current signals of ~360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (~1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance.We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ~7.0 V and current signals of ~360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (~1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance. Electronic supplementary information (ESI) available: PDF materials involve the linear superposition test results (Fig. S1) and the durability test results (Fig. S2) of BaTiO3 NWs-based NCG device. A video file (Video S1) shows the power up of an LCD screen by the NCG device without any external energy source. See DOI: 10.1039/c4nr

  14. Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ piezoelectric ceramics

    SciTech Connect

    Sapper, Eva; Dittmer, Robert; Rödel, Jürgen; Damjanovic, Dragan; Erdem, Emre; Keeble, David J.; Jo, Wook; Granzow, Torsten

    2014-09-14

    Aging of piezoelectric properties was investigated in lead-free (1–x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ doped with 1at.% Fe. The relaxor character of the un-poled material prevents macroscopic aging effects, while in the field-induced ferroelectric phase aging phenomena are similar to those found in lead zirconate titanate or barium titanate. Most prominent aging effects are the development of an internal bias field and the decrease of switchable polarization. These effects are temperature activated, and can be explained in the framework of defect complex reorientation. This picture is further supported by electron paramagnetic resonance spectra indicating the existence of (Fe{sub Ti}´-V{sub O}{sup ••}){sup •} defect complexes in the Fe-doped material.

  15. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  16. Ceramics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Feng, Si; Ying-xiang, Li; He-tuo, Chen; Xiao, Zhang; Shu-ren, Zhang

    2014-11-01

    The effects of Ta2O5/Y2O3 codoping on the microstructure and microwave dielectric properties of Ba(Co0.56Zn0.40)1/3Nb2/3O3- xA- xB (A = 0.045 wt.% Ta2O5; B = 0.113 wt.% Y2O3) ceramics ( x = 0, 1, 2, 4, 8, 16, 32) prepared according to the conventional solid-state reaction technique were investigated. The x-ray diffraction (XRD) results showed that the main crystal phase in the sintered ceramics was BaZn0.33Nb0.67O3-Ba3CoNb2O9. The additional surface phase of Ba8CoNb6O24 and trace amounts of Ba5Nb4O15 second phase were present when Ta2O5/Y2O3 was added to the ceramics. The 1:2 B-site cation ordering was affected by the substitution of Ta5+ and Y3+ in the crystal lattice, especially for x = 4. Scanning electron microscopy (SEM) images of the optimally doped ceramics sintered at 1340°C for 20 h showed a compact microstructure with crystal grains in dense contact. Though the dielectric constant increased with the x value, appropriate addition would result in a tremendous modification of the Q × f and τ f values. Excellent microwave dielectric properties ( ɛ r = 35.4, Q × f = 62,993 GHz, and τ f = 2.6 ppm/°C) were obtained for the ceramic with x = 0.4 sintered in air at 1340°C for 20 h.

  17. Relationship between Poling Characteristics and Phase Boundaries of Potassium-Sodium Niobate Ceramics.

    PubMed

    Zheng, Ting; Wu, Jiagang

    2016-04-13

    The controversy about the optimum poling conditions of (K,Na)NbO3 (KNN)-based lead-free ceramics was still unresolved and the relationships between poling characteristics and phase boundary types were rarely mentioned. Here, we tried to unveil the relationships between poling characteristics and phase boundary types of these ceramics. The optimum poling temperatures should be chosen near their corresponding phase transition temperatures. In addition, a large piezoelectricity can be attained in the ceramics with a multiphase coexistence under a lower poling electric field (ceramics with different phase boundaries can be fully poled after the measurement of P-E loops, where the d33 values match those of the corresponding ones poled by the DC electric field. We believe that this modified poling process can benefit the improved piezoelectricity of KNN-based ceramics. PMID:27007478

  18. The importance of lead-free electronics processes

    SciTech Connect

    Meltzer, M

    1999-10-21

    The Environmental Protection Agency (EPA) is placing increased importance on reducing lead-bearing wastes. Toward this end, the EPA has proposed that reporting thresholds for the Toxic Release Inventory (TRI) be lowered to ten pounds of lead content per year. The US electronics industry is also placing a high priority on lead reduction or elimination. The Association of Connecting Electronics Industries, which is the major trade association for electronics packaging, including printed circuit (PC) board manufacturers, has launched a lead-free initiative that seeks to eliminate lead in solder, in PC board etch resists and finish coats, and as tinning for component leads. Europe and Japan are also considering various regulations that will phase out lead in the next few years. In response to EPA and electronics industry priorities, the DOE complex will soon need to address lead phase-out issues. LLNL is now developing approaches for eliminating lead from PC board etch-resist operations. LLNL is seeking funding to continue this work and to eliminate other major uses of lead in electronics operations, particularly in hot-air solder leveling as a PC board finish, and tin-lead solder for component assembly operations. LLNL seeks to take a proactive leadership role in the DOE complex with respect to the elimination of lead. The envisioned lead-elimination project will be approximately two years in length. During the first year, lead-free etch resists and finish coats will be analyzed, and the best ones identified for electronics assembly and PC board fabrication. During the second year, lead-free solders will be examined and tested for compatibility with alternative PC board finish coats. Cost avoidance opportunities resulting from lead elimination include avoided TRI reporting expenses and reduction in PC board fabrication-related wastes through implementation of more efficient fabrication processes. Integrated Safety Management considerations are also relevant. Handling

  19. Feature of morphotropic phase boundary of yBiGaO{sub 3}-(1-x-y)BiScO{sub 3}-xPbTiO{sub 3} high-temperature piezoelectric ceramics

    SciTech Connect

    Jiang Yihang; Qin Baoquan; Yue Xi; Zhao Yi; Jiang Yuzhi; Xiao Dingquan; Zhu Jianguo

    2008-04-01

    yBiGaO{sub 3}-(1-x-y)BiScO{sub 3}-xPbTiO{sub 3} (BGSPT) ternary piezoelectric ceramics were fabricated by using conventional mixed oxide ceramic processing. It was found that the introduction of BiGaO{sub 3} into BiScO{sub 3}-PbTiO{sub 3} system would cause a shift of morphotropic phase boundaries (MPBs), from x=0.64, y=0 to x=0.56, y=0.155; and an increase of Curie temperature (T{sub C}) near MPB, from 450 up to 494 deg. C, respectively. BGSPT ceramics possessed higher T{sub C} ({approx}494 deg. C) and high piezoelectric coefficient (d{sub 33}{approx}180 pC/N), and showed the different rule of the Curie temperature near MPB versus the end member tolerance factor (t). The mechanism of higher T{sub C} in BGSPT system was also proposed.

  20. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics

    SciTech Connect

    Yan, Yongke; Cho, Kyung-Hoon; Maurya, Deepam; Kumar, Amit; Kalinin, Sergei V; Khachaturyan, Armen; Priya, Shashank

    2013-01-01

    Pb(Zr,Ti)O3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than 5 increase in the ratio d(textured)/d(random). A giant magnitude of d g coefficient with value of 59 000 10 15 m2 N 1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained.

  1. Lead-free bearing alloys for engine applications

    NASA Astrophysics Data System (ADS)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  2. Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Zou, Mengying; Duan, Shuxin; Xu, Ning; Yuan, Ying; Zhou, Xiaohua

    2014-11-01

    The effects of excess Li content on the phase structure and microwave dielectric properties, especially on the temperature coefficient, of LiNb0.6 Ti0.5O3 (LNT) ceramics were studied. The results show that small amounts of Li effectively enhanced the sintering process due to the compensation of high volatility of Li, leading to a densification and homogenous microstructure, and therefore enhanced the dielectric properties. However, too much Li leads to a secondary phase and cause abnormal grain growth. The LNT + 5 wt.% Li ceramic sintered at 1075°C in the air shows the best properties of ɛ r = 69.73, Q × f = 5543 GHz, and τ f = -4.4 ppm/°C.

  3. Development of piezoelectric composites for transducers

    NASA Astrophysics Data System (ADS)

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  4. Variation of Piezoelectric properties and mechanisms across the relaxor-like/Ferroelectric continuum in BiFeO3- (K0.5Bi0.5)TiO3-PbTiO3 ceramics.

    PubMed

    Bennett, James; Shrout, Thomas R; Zhang, Shujun; Owston, Heather E; Stevenson, Tim J; Esat, Faye; Bell, Andrew J; Comyn, T P

    2015-01-01

    1- x - y)BiFeO3-x(K0.5Bi0.5)TiO3-yPbTiO3 (BFKBT- PT) piezoelectric ceramics were investigated across the compositional space and contrasted against the xBiFeO3- (1-x)(K0.5Bi0.5)TiO3 (BF-KBT) system, whereby a range of relaxor-like/ferroelectric behavior was observed. Structural and piezoelectric properties were closely related to the PbTiO3 concentration; below a critical concentration, relaxor-like behavior was identified. The mechanisms governing the piezoelectric behavior were investigated with structural, electrical, and imaging techniques. X-ray diffraction established that longrange non-centrosymmetric crystallographic order was evident above a critical PbTiO3 concentration, y > 0.1125. Commensurate with the structural analysis, electric-field-induced strain responses showed electrostrictive behavior in the PbTiO3-reduced compositions, with increased piezoelectric switching in PbTiO3-rich compositions. Positive-up-negative-down (PUND) analysis was used to confirm electric-field-induced polarization measurements, elucidating that the addition of PbTiO3 increased the switchable polarization and ferroelectric ordering. Piezoresponse force microscopy (PFM) of the BF-KBT-PT system exhibited typical domain patterns above a critical PbTiO3 threshold, with no ferroelectric domains observed in the BF-KBT system in the pseudocubic region. Doping of BiFeO3-PbTiO3 has been unsuccessful in the search for hightemperature materials that offer satisfactory piezoelectric properties; however, this system demonstrates that the partial substitution of alternative end-members can be an effective method. The partial substitution of PbTiO3 into BF-KBT enables long-range non-centrosymmetric crystallographic order, resulting in increased polar order and TC, compared with the pseudocubic region. The search for novel high-temperature piezoelectric ceramics can therefore exploit the accommodating nature of the perovskite family, which allows significant variance in chemical and physical

  5. Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fujii, Ichiro; Iizuka, Ryo; Nakahira, Yuki; Sunada, Yuya; Ueno, Shintaro; Nakashima, Kouichi; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Wada, Satoshi

    2016-04-01

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO3-0.1Bi(Mg1/2Ti1/2)O3-0.6BiFeO3 ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  6. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  7. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    ERIC Educational Resources Information Center

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  8. Piezoelectric valve

    SciTech Connect

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  9. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zuo, Ruzhong; Qi, He; Fu, Jian; Li, Jingfeng; Shi, Min; Xu, Yudong

    2016-06-01

    A giant electrostrictive effect was observed in (1 - x)NaNbO3-xBaTiO3 relaxor ferroelectric ceramics, which exhibit a high electrostrictive coefficient Q33 of ˜0.046 m4/C2 twice as large as those of Pb- and Bi-based perovskite relaxor ferroelectric ceramics. The theoretical analysis suggests that Q33 should be strongly correlated with chemical species of cations in a perovskite structure in which a strong ionic bond is of great benefit compared with a covalent bond. A hysteresis-free large electrostrictive strain of ˜0.148% up to at least 70 Hz was obtained in the x = 0.25 sample, demonstrating significant advantages over piezoelectric effects in high-precision ceramic actuators.

  10. Microstructure and piezoelectric properties of 0.95(Na{sub 0.5}K{sub 0.5})NbO{sub 3}-0.05BaTiO{sub 3} ceramics

    SciTech Connect

    Park, Hwi-Yeol; Ahn, Cheol-Woo; Song, Hyun-Cheol; Lee, Jong-Heun; Nahm, Sahn; Uchino, Kenji; Lee, Hyeung-Gyu; Lee, Hwack-Joo

    2006-08-07

    For 0.95(Na{sub 0.5}K{sub 0.5})NbO{sub 3}-0.05BaTiO{sub 3} (0.95NKN-0.05BT) ceramics sintered at 1040-1075 deg. C, abnormal grain growth occurred but the grain size decreased when the sintering temperature exceeded 1075 deg. C. The dielectric constant ({epsilon}{sub 3}{sup T}/{epsilon}{sub 3}), electromechanical coupling factor (k{sub p}), and piezoelectric constant (d{sub 33}) were considerably increased with increasing relative density and grain size. Evaporation of Na{sub 2}O deteriorated the piezoelectric properties by decreasing the resistivity. To minimize Na{sub 2}O evaporation, specimens were muffled with 0.95NKN-0.05BT powders during the sintering. Improved piezoelectric properties of d{sub 33}=225 pC/N, k{sub p}=36%, and {epsilon}{sub 3}{sup T}/{epsilon}{sub 3}=1058 were obtained for specimen sintered at 1060 deg. C for 2 h with muffling.

  11. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    NASA Technical Reports Server (NTRS)

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim

    2005-01-01

    While the electronics industry appears to be focusing on Sn-Ag-Cu as the alloy of choice for lead free electronics assembly, ,the exact composition varies by geographic region, supplier and user. Add to that dissolved copper and silver from the printed circuit board traces and surface finish, and there can be significant variation in the final solder joint composition. A systematic study of the mechanical and microstructural properties of Sn-Ag-Cu alloys with Ag varying from 2wt% to 4wt% and Cu varying from 0.5wt% to lSwt%, was undertaken in this research study. Different sample preparation techniques (water quenched, oil quenched and water quenched followed by reflow) were explored and the resulting microstructure compared to that of a typical reflowed lead free chip scale package (CSP) solder joint. Tensile properties (modulus, 0.2% yield strength and the ultimate tensile strength) and creep behavior of selected alloy compositions (Sn-4Ag-1 X u , Sn-4Ag-OSCu, Sn- 2Ag-1 X u , Sn-2Ag-OSCu, Sn-3.5Ag-O.SCu) were determined for three conditions: as- cast; aged for 100 hours at 125OC; and aged for 250 hours at 125OC. There was no significant difference in Young's Modulus as a function of alloy composition. After an initial decrease in modulus after 100 hours at 125"C, there was an insignificant change with further aging. The distribution of 0.2% strain yield stress and ultimate tensile strength as a function of alloy composition was more significant and decreased with aging time and temperature. The microstructures of these alloys were examined using light and scanning electron microscopy (LM and SEM) respectively and SEM based energy dispersive x-ray spectroscopy (EDS). Fracture surface and cross-section analysis were performed on the specimens after creep testing. The creep testing results and the effect of high temperature aging on mechanical properties is presented for the oil quenched samples. In general the microstructure of oil quenched specimen exhibited a

  12. Piezoelectric Properties of Li-Doped (K0.48Na0.52)NbO3 Ceramics Synthesized Using Hydrothermally-Derived KNbO3 and NaNbO3 Fine Powders

    NASA Astrophysics Data System (ADS)

    Maeda, Takafumi; Hemsel, Tobias; Morita, Takeshi

    2012-09-01

    [Lix(Na0.52K0.48)1-x]NbO3 (0 ≤x ≤0.091) ceramics were synthesized using hydrothermal powders and the lithium doping content was controlled to optimize their piezoelectric properties. The raw KNbO3 and NaNbO3 powders were obtained separately by a hydrothermal method and LiNbO3 powders were prepared by milling a commercial LiNbO3 single crystal. These powders were mixed with ethanol at a molar ratio LiNbO3: (Na0.52K0.48)NbO3= x : 1-x. The synthesized powders were sintered at 1060-1120 °C for 2 h. We succeeded in obtaining highly dense [Lix(Na0.52K0.48)1-x]NbO3 ceramics using hydrothermal powder. The X-ray diffraction patterns revealed that the crystal phase changed from orthorhombic to tetragonal at around x = 0.06. At this morphotropic phase boundary (MPB), the c/a ratio changed from 1.016 to 1.024 and the highest piezoelectric constant was obtained with the chemical component of [Li0.065(K0.48Na0.52)0.935]NbO3. The obtained piezoelectric properties were as follows: k33 = 0.51, ɛ33T/ɛ0 = 836, c33E = 46 GPa, d33 = 203 pC/N, and Tc = 482 °C.

  13. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO3-BaZrO3-CaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Benabdallah, F.; Veber, P.; Prakasam, M.; Viraphong, O.; Shimamura, K.; Maglione, M.

    2014-04-01

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba0.850Ca0.150)(Ti0.900Zr0.100)O3 ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO3-BaZrO3-CaTiO3 pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO2-ZrO2 solid solution led to single crystals with various compositions ranging from (Ba0.857Ca0.143)(Ti0.928Zr0.072)O3 to (Ba0.953Ca0.047)(Ti0.427Zr0.573)O3. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba0.838Ca0.162)(Ti0.854Zr0.146)O3 composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d31 and k31 of 93 pC.N-1 and 0.18, respectively, near the room temperature (T = 305 K).

  14. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} single crystals

    SciTech Connect

    Benabdallah, F.; Veber, P. Prakasam, M.; Viraphong, O.; Maglione, M.; Shimamura, K.

    2014-04-14

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba{sub 0.850}Ca{sub 0.150})(Ti{sub 0.900}Zr{sub 0.100})O{sub 3} ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO{sub 2}-ZrO{sub 2} solid solution led to single crystals with various compositions ranging from (Ba{sub 0.857}Ca{sub 0.143})(Ti{sub 0.928}Zr{sub 0.072})O{sub 3} to (Ba{sub 0.953}Ca{sub 0.047})(Ti{sub 0.427}Zr{sub 0.573})O{sub 3}. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba{sub 0.838}Ca{sub 0.162})(Ti{sub 0.854}Zr{sub 0.146})O{sub 3} composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d{sub 31} and k{sub 31} of 93 pC.N{sup −1} and 0.18, respectively, near the room temperature (T = 305 K)

  15. Microstructural studies of AgNbO{sub 3} ceramic by using complex impedance spectroscopy

    SciTech Connect

    Gangaprasad, K.; Rao, T. Durga; Niranjan, Manish K.; Asthana, Saket

    2015-06-24

    Lead-free piezoelectric silver niobate ceramic was synthesized by conventional solid state route. Room temperature X-ray diffraction pattern revealed that the sample crystallizes in single phase orthorhombic perovskite structure. Scanning electron micrographs of AgNbO{sub 3} ceramic showed that the average grain size is in the range 2–3 µm. The electrical properties were investigated by using impedance spectroscopy. Appearance of single semicircular arc in the Nyquist plot indicated the presence of grain contribution in the sample. Single RC parallel circuit model was employed to extract bulk capacitance (C{sub b}), resistance (R{sub b}) and electrical conductivity (σ{sub b}). The activation energy calculated from impedance and modulus data indicate that same types of charge carriers (oxygen vacancy movements) are responsible for conduction and relaxation.

  16. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode

    NASA Astrophysics Data System (ADS)

    Liu, Na; Dittmer, Robert; Stark, Robert W.; Dietz, Christian

    2015-07-01

    Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 - x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) - x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation frequencies at either side of the contact resonance peak of the torsional cantilever vibration, an enhanced contrast in the amplitude and phase images of the piezoresponse can be achieved. Additionally, this tracking technique reduces the topographical crosstalk while mapping the local electromechanical properties. The true drive amplitude, drive phase, contact resonant frequency and quality factor can be estimated from DART-PFM data obtained with vertically or torsionally vibrating cantilevers. This procedure yields a three-dimensional quantitative map of the local piezoelectric properties of the relaxor ferroelectric samples. With this approach, torsional DART allowed for the visualization of fine substructures within the monodomains, suggesting the existence of PNRs in relaxor ferroelectrics. The domain structures of the PNRs were visualized with high precision, and the local electromechanical characteristics of the lead-free relaxor ferroelectrics were quantitatively mapped.Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 - x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) - x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation

  17. Lead-Free Propellant for Propellant Actuated Devices

    NASA Technical Reports Server (NTRS)

    Goodwin, John L.

    2000-01-01

    Naval Surface Warfare Center, Indian Head Division's CAD/PAD Department has been working to remove toxic compounds from our products for about a decade. In 1992, we embarked on an effort to develop a lead-free double base propellant to replace that of a foreign sole source. At the time there were availability concerns. In 1995, the department developed a strategic proposal to include a wider range of products. Efforts included such efforts as removing lead sheathing from linear explosives and replacing lead azide and lead styphnate compounds. This paper will discuss efforts specifically related to developing non-leaded double base propellant for use in various Propellant Actuated Devices (PADs) for aircrew escape systems. The propellants can replace their leaded counterparts, mitigating lead handling, processing, or toxic exposure to the environment and personnel. This work eliminates the use of leaded compounds, replacing them with a more environmentally benign metal-organic salt. Historically double-base propellants have held an advantage over other families of energetic materials through their relative insensitivity of the burning rate to changes in temperature and pressure. This desirable ballistic effect has been obtained with the use of a lead-organic salt alone or in a physical mixture with a copper-organic salt, or more recently with a lead-copper complex. These ballistic modifiers are typically added to the double-base 'paste' prior to gelatinization on heated calendars or one type or another. The effect of constant burning rate over a pressure range is called a 'plateau' while an even more beneficial effect of decreasing burning rate with increasing pressure is termed a 'mesa.' The latter effect results in very low temperature sensitivity of the propellant burning rate. Propellants with such effects are ideal tactical rocket motor propellants. The use of lead compounds poses a concern for the environment and personnel safety due to the metal's toxic

  18. Dielectric response and pyroelectric properties of lead-free ferroelectric Ba3(VO4)2

    NASA Astrophysics Data System (ADS)

    Pati, Biswajit; Choudhary, R. N. P.; Das, Piyush R.; Sutar, B. C.

    2015-03-01

    The current paper presents results of dielectric response, pyroelectric behavior and conductivity study of lead-free ferroelectric barium orthovanadate (Ba3(VO4)2 or Ba3V2O8) ceramic, for a wide range of temperature and frequency. An X-ray diffraction study suggests the formation of a single-phase compound in trigonal crystal system. The SEM micrograph of gold-coated pellet sample shows well-defined and homogeneous morphology. Detailed studies of dielectric parameters (ɛr and tan δ) of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. The nature of Polarization versus electric field (P-E) hysteresis loop of Ba3V2O8 at room temperature suggests its ferroelectric nature. The temperature dependence of pyroelectric coefficient and figure of merits of the sample support its dielectric response. The nature of variation of dc conductivity with temperature confirms the Arrhenius and negative temperature coefficient of resistance (NTCR) behavior of the material.

  19. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    PubMed Central

    Dongyu, Xu; Xin, Cheng; Banerjee, Sourav; Shifeng, Huang

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer. PMID:25565725

  20. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    SciTech Connect

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-12-28

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.

  1. Enhanced high-temperature piezoelectric properties of traditional Pb(Zr,Ti)O3 ceramics by a small amount substitution of KNbO3

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Chen, Jun; Fan, Longlong; Rong, Yangchun; Zheng, Shaoying; Liu, Laijun; Fang, Liang; Xing, Xianran

    2014-12-01

    Crystal structure, piezoelectric, and dielectric properties were investigated on the (1-x)Pb(Zr0.54Ti0.46)O3-xKNbO3 system. The piezoelectric properties have been significantly improved by substituting a small amount of KNbO3. In the morphotropic phase boundary (x = 0.015), the compound not only shows enhanced piezoelectric coefficient d33 = 450 pC/N, which is two times larger than that of unmodified Pb(Zr,Ti)O3 (d33 = 223 pC/N), but also the Curie temperature (TC = ˜380 °C) is still well maintained at a high level. This phenomenon challenges our general knowledge that in piezoelectric materials the Curie temperature and piezoelectric properties are mutually contradictory. It should be noted that a giant total strain as high as 0.73% is also observed. The high thermal depoling temperature more than 300 °C combined with the excellent piezoelectric properties suggest it as a potential candidate for high temperature actuators and sensors applications.

  2. A role of BNLT compound addition on structure and properties of PZT ceramics

    NASA Astrophysics Data System (ADS)

    Jaita, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2010-09-01

    In this research, effects of lead-free bismuth sodium lanthanum titanate (BNLT) addition on structure and properties of lead zirconate titanate (PZT) ceramics were investigated. PZT ceramics with addition of 0.1-3.0 wt%BNLT were fabricated by a solid-state mixed oxide method and sintering at 1050-1200 °C for 2 h to obtain dense ceramics with at least 96% of theoretical density. X-ray diffraction indicated that complete solid solution occurred for all compositions. Phase identification showed both tetragonal and rhombohedral perovskite structure of PZT with no BNLT phase detected. Scanning electron micrographs of fractured PZT/BNLT ceramics showed equiaxed grain shape with both transgranular and intergranular fracture modes. Addition of BNLT was also found to reduce densification and effectively limited grain growth of PZT ceramic. Optimum Hv and KIC values were found to be 4.85 GPa and 1.56 MPa.m 1/2 for PZT/0.5 wt%BNLT sample. Among PZT/BNLT samples, room temperature dielectric constant seemed to be improved with increasing BNLT content. The maximum piezoelectric coefficient values were observed in pure PZT ceramic and were slightly decreased in BNLT-added samples. Small reduction of remanent polarization and coercive field in hysteresis loops was observed in BNLT-added samples, indicating a slightly suppressed ferroelectric interaction in this material system.

  3. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; Alford, Neil McN.

    2016-06-01

    The electrocaloric effect (ECE) of two compositions (x = 0.06 and 0.07) of (1 - x)(Na0.5Bi0.5)TiO3-xKNbO3 in the vicinity of the morphotropic phase boundary is studied by direct measurements. ΔTmax = 1.5 K is measured at 125 °C under 70 kV/cm for NBT-6KN while ΔTmax = 0.8 K is measured at 75 °C under 55 kV/cm for NBT-7KN. We show that the "shoulder," TS, in the dielectric permittivity, marks the upper limit of the ECE peak under high applied electric fields. These results imply that the range of temperature with high ECE can be quickly identified for a given composition, which will significantly speed up the process of materials selection for ECE cooling.

  4. Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Sabolsky, Edward M.; Trolier-McKinstry, Susan; Messing, Gary L.

    2003-04-01

    The 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 (PMN-32.5PT) ceramic composition (with 1 wt. % excess PbO) was fiber textured in the <001> direction by the templated grain growth process using 5 vol % oriented {001}-BaTiO3 platelet crystals as the templates. The templated ceramics annealed at 1150 °C for 5 h attained texture fractions as high as 0.9. The fiber-textured samples showed an increase in the piezoelectric, electromechanical coupling, and compliance coefficients when poled and measured in the <001>-textured direction. The low drive field (<5 kV/cm) d33 coefficients in the <001>, measured directly from unipolar strain-field measurements, were ˜1150 pC/N. This d33 coefficient is 1.2-1.5 times greater than randomly oriented samples. The poled ɛmax and ɛrt for a 0.9-textured PMN-32.5PT ceramic were 21 500 and 2450, respectively. Factors limiting further property improvements are discussed.

  5. Synthesis and Characterization of Piezoelectric (Bi1/2Na1/2)TiO3 Films by a Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Xu, Fangchao; Kusukawa, Kazuhiro

    Thin films of lead-free piezoelectric ceramics (Bi1/2Na1/2)TiO3 (abbreviated as BNT) were prepared on pure titanium substrates by a hydrothermal method. The properties of BNT films synthesized from the reaction solution with various contents of bismuth and titanium were investigated using SEM, EDX, XRD and other instruments. Moreover, the effects of the concentrations of starting materials on permittivity and piezoelectric effect of deposited BNT films were discussed. The results showed that an impurity of Bi2O3 crystal was produced on the surfaces of all deposited films. With assumption of deposited films as an system of (1-x) (Bi1/2Na1/2)TiO3-xBi2O3, the BNT content was calculated from the Bi/Ti ratio of the EDX results. The optimized synthesis condition was determined on the evaluation target of the calculated BNT content. In addition, the unimorph cantilever type actuators were fabricated by BNT deposited samples, and their piezoelectric responses were measured at their resonance frequencies under AC field. It was noted that the piezoelectric effect of the deposited BNT film was greatly dependent on its crystallization level.

  6. Numerical simulation of piezoelectric effect of bone under ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2015-07-01

    The piezoelectric effect of bone under ultrasound irradiation was numerically simulated using an elastic finite-difference time-domain method with piezoelectric constitutive equations (PE-FDTD method). First, to demonstrate the validity of the PE-FDTD method, the ultrasound propagation in piezoelectric ceramics was simulated and then compared with the experimental results. The simulated and experimental waveforms propagating through the ceramics were in good agreement. Next, the piezoelectric effect of human cortical bone on the ultrasound propagation was investigated by PE-FDTD simulation. The simulated result showed that the difference between the waveforms propagating through the bone without and with piezoelectricity was negligible. Finally, the spatial distributions of the electric fields in a human femur induced by ultrasound irradiation were simulated. The electric fields were changed by a bone fracture, which depended on piezoelectric anisotropy. In conclusion, the PE-FDTD method is considered to be useful for investigating the piezoelectric effect of bone.

  7. FOREWORD: Focus on innovation in ceramics research in East Asia Focus on innovation in ceramics research in East Asia

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Hishita, Shunichi; Osada, Minoru; Haneda, Hajime

    2010-10-01

    Ceramics, as broadly defined, include all materials other than organic substances and metals, either crystalline or amorphous. They have been used by humans since early history and have contributed considerably to improving the quality of our life. In most cases, however, high-temperature treatment is necessary to prepare ceramics. This burdens the environment and there is therefore a great need for new ceramics processing methods. Recent technologically advanced ceramics are often composed of nanocrystallites, which have great potential for innovation in terms of exploring practical applications of nanomaterials and, consequently, reducing the environmental load. The ceramics industry had long flourished in Asia, particularly in East Asia, and even today, this region is leading the development of related materials. In line with these traditions, Japanese and Korean ceramics societies have been co-sponsoring seminars on ceramics since the 1980s. Having become more international in scope and context, a series of these seminars is now known as the International Japan-Korea Seminar on Ceramics. This focus issue contains eight key articles presented at the 26th International Japan-Korea Seminar on Ceramics held on 24-26 November 2010 at the Tsukuba International Congress Center. In particular, Fabbri et al review electrode materials for protonic solid-oxide fuel cells, and Kamiya et al outline the present situation and future prospects for transparent transistors, particularly those based on amorphous In-Ga-Zn-O films. Eitel et al discuss the progress in engineering high-strain lead-free piezoelectric ceramics. Kim and Kumar review a simple processing method for producing porous ceramics using polysiloxane precursors, Kamiya and Iijima focus on surface modification and characterization of nanomaterials, and Wan et al briefly review the strategy of reducing lattice thermal conductivity of thermoelectric materials and propose new materials for thermoelectric devices

  8. Numerical simulation of piezoelectric effect under ultrasound irradiation with consideration of conductivity

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2016-07-01

    Using a piezoelectric finite-difference time-domain (PE-FDTD) method, numerical simulation of the piezoelectric effect under ultrasound irradiation was performed considering conductivity. From the simulated results, it was shown that the ultrasound amplitude in piezoelectric ceramics decreased owing to piezoelectricity with the increase in conductivity. The simulated ultrasound waveform at a low conductivity agreed with the experimental waveform. The electric field induced in the ceramics decreased with conductivity, and the electric field at a high conductivity decreased with time, which represented piezoelectric relaxation. Moreover, the effect of conductivity on piezoelectricity in human cortical bone was investigated.

  9. Lead-Free vs Tin-Lead Reliability of Advanced Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2005-01-01

    This presentation will provide the technical background and specific information published in literature related to reliability test, analyses, modeling, and associated issues for lead-free solder package assemblies in comparison to their tin-lead solder alloys. It also presents current understanding of lead-free thermal cycle test performance in support.

  10. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect

    Cótica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, José A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  11. Piezoelectric Film.

    ERIC Educational Resources Information Center

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  12. Synthesis And Characterization Of Lead Free K0.33Na0.67(NbO3) MPB System

    NASA Astrophysics Data System (ADS)

    Pattanaik, M.; Kumar, P.

    2010-12-01

    Lead-free K0.33Na0.67(NbO3), a morphotropic phase boundary (MPB) composition of Potasium Sodium Niobate (KNN) system has been synthesized in single perovskite phase by partial co-precipitation method. X-ray studies revealed monoclinic structure at room temperature. SEM characterization of the sintered ceramics revealed dense and homogeneous packing of grains. Room temperature (RT) dielectric constant (ɛr) and dielectric loss (tanδ) at 1 KHz were found to be ˜388 and 0.03 respectively , whereas a relatively high density σ˜4.45 g/cm3, remnant polarization (Pr)˜4.95 μc/cm2, coercive field (Ec)˜5.60 kV/cm, Curie temperature (Tc)˜370° C have been observed.

  13. High Dielectric, Piezoelectric, Upconversion Photoluminescence and Low-Temperature Sensing Properties in Ba0.7Sr0.3TiO3-BaZr0.2Ti0.8O3:Ho/Yb Ceramics

    NASA Astrophysics Data System (ADS)

    Zuo, Qianghui; Luo, Laihui; Yao, Yongjie

    2016-02-01

    In the present work, we have synthesized pure and Ho/Yb-co-doped 0.5Ba0.7Sr0.3TiO3-0.5BaZr0.2Ti0.8O3 ceramics using a solid-state reaction technique. The prepared pure 0.5Ba0.7Sr0.3TiO3-0.5BaZr0.2Ti0.8O3 ceramics were found in the morphotropic phase boundary region, and exhibit high piezoelectric and dielectric properties. Under a 980-nm excitation, strong green, red and near-infrared (NIR) upconversion (UC) photoluminescence is observed in Ho/Yb-co-doped samples. It is found that the color of UC emission could be tuned by changing the concentration of sensitizer Yb ions in the host matrix. Furthermore, optical temperature sensing properties based on the green and NIR UC emissions of BSZT:0.005Ho/0.01Yb were investigated. Fluorescence intensity ratio (FIR) between green (5F4,5S2) → 5I8 and NIR (5F4,5S2) → 5I7 UC emissions of Ho ions was studied as a function of temperature in the range of 78 K-373 K, and a maximum sensitivity 0.0206 K-1 at 97 K was obtained.

  14. Dielectric, piezoelectric and damping properties of novel 2-2 piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Dongyu, Xu; Xin, Cheng; Banerjee, Sourav; Lei, Wang; Shifeng, Huang

    2015-02-01

    Here, a strip-shaped 2-2 cement/polymer-based piezoelectric composite was designed and fabricated. The dielectric, piezoelectric and electromechanical coupling properties of the composite were investigated as well as the coupling effects between the thickness and lateral modes of the piezoelectric composites. The dielectric and piezoelectric properties of the composites can be greatly influenced by variations of the piezoelectric ceramic volume fraction and the structural dimensions of the composites. Excellent properties have been achieved for ultrasonic transducer applications in civil engineering monitoring fields, such as large piezoelectric voltage constants, high thickness electromechanical coupling coefficients and low acoustic impedance. The damping property of the composites was especially studied. The maximum damping loss factor of the composites is between 0.28-0.32, and the glass transition temperature is between 55°-66 °C.

  15. Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition

    NASA Astrophysics Data System (ADS)

    Tang, Zhehong; Chen, Jieyu; Bai, Yulong; Zhao, Shifeng

    2016-08-01

    Lead-free magnetoelectric composite films combining Bi4Ti3O12 and CoFe2O4 were synthesized by chemical solution deposition on Pt (100)/Ti/SiO2/Si substrate. Morphological and electrical domain structure, ferroelectric, leakage, dielectric, piezoelectric, magnetic and magnetoelectric properties were investigated for Bi4Ti3O12/CoFe2O4 composite films. Well-defined interfaces between Bi4Ti3O12 and CoFe2O4 film layers and electrical domain structure were observed. The composite films show the coexistence of ferroelectric and ferromagnetic orders at room temperature. Larger piezoelectric coefficient and magnetization are obtained for the composite films, which is contributed to the magnetoelectric effect since it originates from the interface coupling through mechanical strain transfer. This work presents a feasible way to modulate the magnetoelectric coupling in ferromagnetic/ferroelectric composite films for developing lead-free micro-electro-mechanical system and information storage devices.

  16. Field-enhanced piezoelectric deformation during the high temperature/low temperature rhombohedral (FERh/FERL) phase transformation for tin modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Pin; Moore, Roger H.; Burns, George R.

    2002-06-01

    An unusual field-enhanced piezoelectric deformation near the FERH/FERL structural phase transformation was observed in a tin modified lead zirconate titanate solid solution. In addition to the typical field-induced domain reorientation and the piezoelectric strain, this additional field-enhanced deformation only observed near the phase transformation increases linearly with external electric field strength. A 78% increase in field-enhanced strain was observed at a field strength of 32 kV/cm. Comparison of the dielectric susceptibility at low and high field conditions suggests that the observed unusual behavior is created by a field-induced lattice softening during the structural phase transformation. Experimental observations on the field-induced softening phenomena are reported.

  17. Processing, texture quality, and piezoelectric properties of <001>C textured (1-x)Pb(Mg1/3Nb2/3)TiO3 - xPbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Poterala, Stephen F.; Trolier-McKinstry, Susan; Meyer, Richard J.; Messing, Gary L.

    2011-07-01

    This paper describes the link between texture quality and electromechanical properties for <001>C textured, 0.03(Na1/2Bi1/2)TiO3 - 0.97[0.715Pb(Mg1/3Nb2/3)TiO3 - 0.285PbTiO3] (0.03NBT-0.97[PMN-28.5PT]) ceramics with and without Mn-doping. Here, the subscript C denotes pseudocubic indices. Textured ceramics were prepared by templated grain growth of PMN-25PT on platelet-shaped 0.4(Na1/2Bi1/2)TiO3-0.6PbTiO3 (NBT-0.6PT) templates. Texture fractions of f = 0.92 (for undoped (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 (PMN-PT)) and f = 0.49 (for Mn-doped PMN-PT) were determined by fitting 002C XRD pole figures to the March-Dollase model, which was modified to account for symmetry-related 200C and 020C reflections. Using resonance methods, the elastic constants cij, sij, piezoelectric constants dij, eij, gij, hij, dielectric constants ɛij, and coupling coefficients kij of textured PMN-PT ceramics were characterized. It was found that the properties of textured PMN-PT approach the single crystal values along the texture axis (<001>C, also the poling axis), but not in transverse directions. In particular, the elastic compliance sE11 (perpendicular to <001>C) approaches an average of the single crystal sE11 and sE11(45°) coefficients, resulting in anomalous -sE12/sE11 ratios of - 0.01 and 0.04 in pure and Mn-doped textured PMN-PT, respectively. The 33-mode properties as measured by resonance-antiresonance methods were d33 = 852 pC/N, k33 = 0.83, ɛ33 = 3500, and mechanical quality factor Qm = 94 for undoped textured ceramics and d33 = 515, k33 = 0.76, ɛ33 = 2200, and Qm = 714 for Mn-doped textured ceramics.

  18. Large piezoelectricity in Pb-free 0.96(K{sub 0.5}Na{sub 0.5}){sub 0.95}Li{sub 0.05}Nb{sub 0.93}Sb{sub 0.07}O{sub 3}−0.04BaZrO{sub 3} ceramic: A perspective from microstructure

    SciTech Connect

    Gao, Jinghui Li, Huiying; Zhong, Lisheng; Li, Shengtao; Hao, Yanshuang; Ren, Shuai Fang, Minxia; Ren, Xiaobing; Kimoto, Takayoshi; Wang, Yu

    2015-02-28

    We employ transmission electron microscopy to explore the reason for large piezoelectricity (d{sub 33}≈400pC/N) in a Pb-free 0.96(K{sub 0.5}Na{sub 0.5}){sub 0.95}Li{sub 0.05}Nb{sub 0.93}Sb{sub 0.07}O{sub 3} −0.04BaZrO{sub 3} ceramic from microstructure. The result shows that the high piezoelectricity corresponds to a miniaturized nanodomain configuration in a domain hierarchy. The nanodomains disappear on heating accompanied by a reduction in d{sub 33} value. Further convergent beam electron diffraction study reveals a coexistence of tetragonal and orthorhombic phase, which indicates that large piezoelectricity of KNLNS{sub 0.07}-BZ may stem from easy polarization rotation due to low polarization anisotropy on the tetragonal-orthorhombic phase boundary.

  19. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Yao, Fang-Zhou; Wang, Ke; Li, Jing-Feng

    2013-05-01

    A full set of elastic and electrical coefficients of (K,Na)NbO3-based lead-free piezoceramics with a nominal composition of Li0.03(K0.48Na0.52)0.97(Nb0.8Ta0.2)O3 (abbreviated as KNNLT) was evaluated by the standard resonance method, and compared to those of K4CuNb8O23 doped (K0.45Na0.55)NbO3 (KNN-KCN) as well as typical Pb(Zr,Ti)O3-based piezoceramics PZT5A. The measurement of intermediate elastic stiffness and compliance coefficients of KNNLT indicated that KNNLT is elastically "softer" than KNN-KCN but "harder" than PZT5A. An extremely high piezoelectric stiffness coefficient h33 = 68.8 × 108 V/m was obtained, due to an especially low clamped dielectric constant ɛ33S of 361. And a large longitudinal electromechanical coupling factor k33 = 57% was observed in the KNNLT system. Furthermore, the piezoelectric coefficient d33 of KNNLT was characterized via three distinctive methods: the resonance method, the Berlincourt method, and the converse piezoelectric strain measurement; while these three techniques yielded values of 174 pC/N, 195 pC/N, and 308 pm/V, respectively. The difference in d33 values determined by the three methods may be attributed to different measurement frequencies and extrinsic piezoelectric contributions related to domain wall vibration and domain switching. Besides, the piezoelectric performances of KNNLT piezoceramics were found insensitive to frequency but susceptible to temperature and electric field cycling.

  20. Piezoelectric Nanoindentation

    SciTech Connect

    Rar, Andrei; Pharr, George Mathews; Oliver, Warren C.; Karapetian, Edgar; Kalinin, Sergei V

    2006-01-01

    Piezoelectric nanoindentation (PNI) has been developed to quantitatively address electromechanical coupling and pressure-induced dynamic phenomena in ferroelectric materials on the nanoscale. In PNI, an oscillating voltage is applied between the back side of the sample and the indenter tip, and the first harmonic of bias-induced surface displacement at the area of indenter contact is detected. PNI is implemented using a standard nanoindentation system equipped with a continuous stiffness measurement system. The piezoresponse of polycrystalline lead zirconate titanate (PZT) and BaTiO{sub 3} piezoceramics was studied during a standard nanoindentation experiment. For PZT, the response was found to be load independent, in agreement with theoretical predictions. In polycrystalline barium titanate, a load dependence of the piezoresponse was observed. The potential of piezoelectric nanoindentation for studies of phase transitions and local structure-property relations in piezoelectric materials is discussed.

  1. High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Dai, Ye-Jing; Zhao, Yong-Jie; Zhao, Zhe; Zhao, Zhi-Hao; Zhou, Qi-Wu; Zhang, Xiao-Wen

    2016-07-01

    Acceptor doping is an efficient method to improve ferroelectric material performance through the formation of defect dipoles. Here, a high electrostrictive strain of 0.16–0.19%, and large d33\\ast of  >300 pm V‑1 are obtained in CuO-doped (K0.5Na0.5)NbO3 ceramics. We analyzed the orientation relationship and the interaction between defect dipole polarization (P d) along <0 0 1> orientation and spontaneous polarization (P s) parallel to <1 1 0> in orthorhombic (K0.5Na0.5)NbO3. Thus, a ‘coupling effect’ mechanism was suggested to explain how the P d and P s can work together to contribute to the electrostrictive strains in this lead-free piezoelectric ceramic.

  2. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  3. Lead-free hunting rifle ammunition: product availability, price, effectiveness, and role in global wildlife conservation.

    PubMed

    Thomas, Vernon George

    2013-10-01

    Proposals to end the use of lead hunting ammunition because of the established risks of lead exposure to wildlife and humans are impeded by concerns about the availability, price, and effectiveness of substitutes. The product availability and retail prices of different calibers of lead-free bullets and center-fire rifle ammunition were assessed for ammunition sold in the USA and Europe. Lead-free bullets are made in 35 calibers and 51 rifle cartridge designations. Thirty-seven companies distribute internationally ammunition made with lead-free bullets. There is no major difference in the retail price of equivalent lead-free and lead-core ammunition for most popular calibers. Lead-free ammunition has set bench-mark standards for accuracy, lethality, and safety. Given the demonstrated wide product availability, comparable prices, and the effectiveness of high-quality lead-free ammunition, it is possible to phase out the use of lead hunting ammunition world-wide, based on progressive policy and enforceable legislation. PMID:23288616

  4. Microstructural studies of nanocrystalline barium zirconium titanate (BZT) for piezoelectric applications

    SciTech Connect

    Jamil, Nor Huwaida Janil Izzuddin, Izura; Zainuddin, Zalita; Jumali, Mohammad Hafizuddin Haji

    2015-09-25

    Lead-free piezoelectric ceramics based on barium titanate (BaTiO{sub 3}) with substitution of Zr{sup 4+} were prepared using sol-gel method. The Ba(Zr{sub x}Ti{sub 1-x})O{sub 3}, (BZT) powders with x = 0.0, 0.1, 0.2 and 0.3 were pressed into pellets and sintered at 1250 °C for 2 h. Focusing on the effect of Zr{sup 4+} substitutions into BaTiO{sub 3} perovskite system, the phase transition and microstructural properties of BZT ceramics were studied using XRD, SEM and EDX spectroscopy. All X-ray diffractograms were fitted using Pawley refinement model. The XRD diffractograms revealed the progressive phase transition from tetragonal to cubic phase as Zr content increased. The crystallite exhibited decreasing trend and was supported by shrinkage in grain size. The EDX analysis confirmed the successful substitution of Ti{sup 4+} with Zr{sup 4+} in BaTiO3 crystal.

  5. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  6. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  7. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    SciTech Connect

    Zannen, M.; Lahmar, A. E-mail: zdravko.kutnjak@ijs.si; Asbani, B.; El Marssi, M.; Khemakhem, H.; Kutnjak, Z. E-mail: zdravko.kutnjak@ijs.si; Es Souni, M.

    2015-07-20

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  8. Piezoelectric constant for binary piezoelectric 0-3 connectivity composites and the effect of mixed connectivity

    NASA Astrophysics Data System (ADS)

    Jayasundere, N.; Smith, B. V.; Dunn, J. R.

    1994-09-01

    An analytic expression is presented for the piezoelectric d constant of a binary piezoelectric 0-3 connectivity composite. The expression is developed under the limiting assumption that the dielectric constant of the ceramic is much greater than the matrix. Predictions made using the theory compare very favorably with available experimental data. A 0-3/1-3 mixed connectivity model is also described for composites in which the average piezoceramic particle size is a significant fraction of the thickness of the composite.

  9. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  10. Innovations in piezoelectric materials for ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Shrout, Thomas R.; Park, Seung Eek E.; Lopath, Patrick D.; Meyer, Richard J., Jr.; Ritter, Timothy A.; Shung, K. Kirk

    1998-05-01

    Piezoelectric material lie at the heart of ultrasonic transducers. Recent advances in materials development include submicron piezoelectric ceramics (PZT) which lead to improvements in feature size, i.e. aspect ratio, element width, etc., for linear arrays and high frequency transducers. In contrast to fine grain ceramics, single crystal materials based on Relaxor-PT ferroelectrics offer electromechanical coupling coefficients > 90 percent with a range of dielectric permittivity allowing flexibility in transducer engineering in regard to electrical impedance matching. Using KLM modeling, very high bandwidth performance > 120 percent is projected. Specific examples of high frequency 1-3 composites and 1D linear array transducers fabricated from new piezoelectric materials, including sol-gel derived PZT fibers, are presented.

  11. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  12. Converse Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Springborg, Michael; Kirtman, Bernard

    2013-03-01

    Piezoelectricity results from a coupling between responses to mechanical and electric perturbations and leads to changes in the polarization due to strain or stress or, alternatively, the occurrence of strain as a function of an applied external, electrostatic field (i.e., converse piezoelectricity). Theoretical studies of those properties for extended systems require accordingly that their dipole moment or polarization can be calculated. However, whereas the definition of the operator for the dipole moment for any finite system is trivial, it is only within the last 2 decades that the expressions for the equivalent operator in the independent-particle approximation for the infinite and periodic system have been presented. Here, we demonstrate that the so called branch dependence of the polarization for the infinite, periodic system is related to physical observables in contrast to what often is assumed. This is related to the finding that converse piezoelectric properties depend both on the surfaces of the samples of interest even for samples with size well above the thermodynamic limit. However, we shall demonstrate that these properties can be calculated without explicitly taking the surfaces into account. Both the foundations and results for real system shall be presented.

  13. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    PubMed Central

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape

  14. Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology

    DOEpatents

    Dixon, George P.; Martin, Joe A.; Thompson, Don

    1998-01-01

    A lead-free percussion primer composition and a percussion cup containing e composition. The lead-free percussion primer composition is comprised of a mixture of about 45 wt % aluminum powder having an outer coating of aluminum oxide and molybdenum trioxide powder or a mixture of about 50 wt % aluminum powder having an outer coating of aluminum oxide and polytetrafluoroethylene powder. The aluminum powder, molybdenum trioxide powder and polytetrafluoroethylene powder has a particle size of 0.1 .mu.m or less, more preferably a particle size of from about 200-500 angstroms.

  15. Structure and dielectric dispersion in cubic-like 0.5K0.5Na0.5NbO3-0.5Na1/2Bi1/2TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Liu, Laijun; Knapp, Michael; Schmitt, Ljubomira Ana; Ehrenberg, Helmut; Fang, Liang; Fuess, Hartmut; Hoelzel, Markus; Hinterstein, Manuel

    2016-05-01

    The nature of the cubic-like state in the lead-free piezoelectric ceramics 0.5K0.5Na0.5NbO3-0.5Na1/2Bi1/2TiO3 (KNN-50BNT) has been examined in detail by synchrotron x-ray diffraction (SD), selected-area electron diffraction (SAED), neutron diffraction (ND), and temperature-dependent dielectric characterization. The SD pattern of KNN-50BNT presents a pure perovskite structure with pseudocubic symmetry. However, superlattice reflections were observed by SAED and completely indexed by tetragonal symmetry with P4bm space group in ND pattern. The relaxor behavior of KNN-50BNT is compared with Pb-based and Ba-based relaxors and discussed in the framework of the Vogel-Fulcher law and the new glass model. The KNN-50BNT ceramic exhibits the strongest dielectric dispersion among them.

  16. Electronic Properties of Lead-Free (Ba0.95Ca0.05)(Ti0.92Sn0.08)O3 Piezoceramic Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Sahoo, Benudhar; Panda, Prasanta Kumar

    2015-11-01

    Lead-free (Ba0.95Ca0.05)(Ti0.92Sn0.08)O3, (BCTS) piezoceramic nanofibers were prepared by electrospinning acetate precursor solutions in polyvinyl pyrrolidone, followed by calcining at 1150ºC for 2 h. X-ray diffraction of calcined nanofibers confirmed the formation of the BCTS phase and energy dispersive x-ray analysis confirmed the presence of Ca and Sn ions. The scanning electron microscope studies showed cylindrical fibers with a diameter in the range 80-275 nm. The dielectric constant and piezoelectric charge constant ( d 33) were 3485 at 100 Hz, RT and 398 pC/N, respectively.

  17. How to Identify Lead Free Certification Marks for Drinking Water System & Plumbing Products

    EPA Science Inventory

    The Reduction of Lead in Drinking Water Act went into effect on January 4, 2014. The Act has reduced the lead content allowed in water system and plumbing products by changing the definition of lead free in Section 1417 of the Safe Drinking Water Act (SDWA) from not more than 8% ...

  18. Lead-free solders: issues of toxicity, availability and impacts of extraction

    NASA Technical Reports Server (NTRS)

    Ku, A.; Shapiro, A. A.; Kua, A.; Ogunseitan, O.; Saphores, J. D.; Schoenung, J. M.

    2003-01-01

    This project set out to evaluate the critical issues of toxicity and public health effects, material availability, and the environmental impacts of raw material extraction and metal finishing, with the goal of using environmental impact as a factor in selecting feasible lead-free alloys.

  19. Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors - comparison with lead-based relaxors

    NASA Astrophysics Data System (ADS)

    Petzelt, Jan; Nuzhnyy, Dmitry; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Kamba, Stanislav; Hlinka, Jiri

    2015-03-01

    Appearance of the polar nanoregions (PNR) and their manifestation in the dielectric spectra is discussed for lead-free Ba(ZrxTi1-x)O3 (BZT-x) and (Na1/2Bi1/2)TiO3 (NBT) ceramics. Phonon softening is not as pronounced as in the lead-based relaxors, but the relaxation contribution is dominating in all cases, caused by the dynamics of the off-centred ions (Ti4+, Bi3+, Pb2+). In the lead-based relaxors, where there is no relation between the quenched chemical clusters at the B-sites and PNR, which concern the A-site Pb-ion correlations, the relaxation dynamics follows the Vogel-Fulcher behaviour with a clear freezing. However, in BZT and NBT, the PNR are smaller, since they are localised within the small quenched chemical clusters of BaTiO3 and BiTiO3, respectively. Their dynamics is Arrhenius-like, which indicates hopping of the off-centred Ti4+ and Bi3+ ions, respectively, without their complete freezing. BZT can be classified as a dipolar glass and NBT as a nanoscopic ferroelectric with peculiar Bi-ion dynamics.

  20. Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Pan, Zhao; Guo, Fei-Fei; Liu, Wen-Chao; Ning, Huanpo; Chen, Y. B.; Lu, Ming-Hui; Yang, Bin; Chen, Jun; Zhang, Shan-Tao; Xing, Xianran; Rödel, Jürgen; Cao, Wenwu; Chen, Yan-Feng

    2015-03-01

    Commercial lead-based piezoelectric materials raised worldwide environmental concerns in the past decade. Bi0.5Na0.5TiO3-based solid solution is among the most promising lead-free piezoelectric candidates; however, depolarization of these solid solutions is a longstanding obstacle for their practical applications. Here we use a strategy to defer the thermal depolarization, even render depolarization-free Bi0.5Na0.5TiO3-based 0-3-type composites. This is achieved by introducing semiconducting ZnO particles into the relaxor ferroelectric 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 matrix. The depolarization temperature increases with increasing ZnO concentration until depolarization disappears at 30 mol% ZnO. The semiconducting nature of ZnO provides charges to partially compensate the ferroelectric depolarization field. These results not only pave the way for applications of Bi0.5Na0.5TiO3-based piezoceramics, but also have great impact on the understanding of the mechanism of depolarization so as to provide a new design to optimize the performance of lead-free piezoelectrics.

  1. Joint Lead-Free Solder Test Program for High Reliability Military and Space Applications

    NASA Technical Reports Server (NTRS)

    Brown, Christina

    2004-01-01

    Current and future space and defense systems face potential risks from the continued use of tin-lead solder, including: compliance with current environmental regulations, concerns about potential environmental legislation banning lead-containing products, reduced mission readiness, and component obsolescence with lead surface finishes. For example, the United States Environmental Protection Agency (USEPA) has lowered the Toxic Chemical Release reporting threshold for lead to 100 pounds. Overseas, the Waste Electrical and Electronic Equipment (WEEE) and the Restriction on Hazardous Substances (RoHS) Dicctives in Europe and similar mandates in Japan have instilled concern that a legislative body will prohibit the use of lead in aerospace/military electronics soldering. Any potential banning of lead compounds could reduce the supplier base and adversely affect the readiness of missions led by the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense (DoD). Before considering lead-free electronics for system upgrades or future designs, however, it is important for the DoD and NASA to know whether lead-free solders can meet their systems' requirements. No single lead-free solder is likely to qualify for all defense and space applications. Therefore, it is important to validate alternative solders for discrete applications. As a result of the need for comprehensive test data on the reliability of lead-free solders, a partnership was formed between the DoD, NASA, and several original equipment manufactures (OEMs) to conduct solder-joint reliability (laboratory) testing of three lead-free solder alloys on newly manufactured and reworked circuit cards to generate performance data for high-reliability (IPC Class 3) applications.

  2. Diffuse phase transition in Li{sub 0.12}Na{sub 0.88}NbO{sub 3} piezoelectric ceramics

    SciTech Connect

    Mitra, Supratim; Kulkarni, Ajit R.; Prakash, Om

    2013-02-05

    The morphotropic phase boundary composition viz. lithium sodium niobate, Li{sub 0.12}Na{sub 0.88}NbO{sub 3}, (LNN-12) was prepared by conventional solid state reaction and sintering route. The temperature dependent permittivity response near transition temperature showed a diffused phase transition (DPT). The degree of diffuseness, {gamma}, using the modified Curie-Weiss law, was found to be 1.92, indicative of almost-complete diffuse phase transition. The planar coupling constant k{sub p}, and mechanical quality factor Q{sub m}, measured by resonance-antiresonance method, were 0.17 and 413 respectively. These parameter values make LNN-12 ceramic an attractive candidate for transducers applications.

  3. Prototyping lead-free solders on hand-soldered, through-hole circuit boards

    SciTech Connect

    Vianco, P.T.; Mizik, P.M.

    1993-12-31

    The lead-free solders 96.5Sn-3.5Ag (wt %), 95.5Sn-4.0Cu-0.5Ag, 91. 84Sn-3.33Ag-4.83Bi were used in the assembly of a through-hole circuit board to determine the feasibility of their suitability in hand soldering processes. Prototypes assembled with 63Sn-37Pb solder were manufactured to serve as control units. Implementation of the lead-free alloys were performed with a rosin-based, mildly activated (RMA) flux and a 700{degree}F soldering tip. A procedure was developed to remove the tin-lead finish from the leaded components and replace it with a 100Sn hot dipped coating. Assembly feasibility was demonstrated for all three lead-free solders. Defect counts were greater than observed with the tin-lead control alloy; however, the number of defects diminished with experience gained by the operator. Visual examination of the solder joints indicated satisfactory wetting of both the device leads and circuit board land with no apparent damage to the underlying laminate nor to the device packages. Cross sections of the lead-free solder joints showed that the were more susceptible to void formation within the holes than was the case with the tin-lead solder. Some cracking was observed at the interface between the Sn-Ag-Bi solder and the copper lands; the relatively high strength of this solder and fast cooling rate of the hand assembly process was believed responsible for this defect.

  4. NASA-DoD Lead-Free Electronics Project: Vibration Test

    NASA Technical Reports Server (NTRS)

    Woodrow, Thomas A.

    2010-01-01

    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  5. Conceptual design for 12 V "lead-free" accumulators for automobile and stationary applications

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Kingo; Ohzuku, Tsutomu

    Conceptual design for 12 V lead-free accumulators is presented using basic research results on lithium insertion materials. Among possible materials, Li[Li 1/3Ti 5/3]O 4 is selected for a negative-electrode material, and Li[Ni 1/2Mn 3/2]O 4, LiMn 2O 4, LiCo 1/3Ni 1/3Mn 1/3O 2, and LiFePO 4 are specifically considered as positive-electrode materials. Combination of these materials with Li[Li 1/3Ti 5/3]O 4 gives a 2, 2.5 or 3 V lithium-ion battery. Series connection of such a lithium-ion battery makes 12 V lead-free accumulators possible. Characteristic features of the lead-free accumulators are discussed in terms of energy density for deep charge and discharge cycles, power density for short period of time, material economy, environmental friendliness, and safety compared with those of lead-acid batteries currently hold a position in automobile, large uninterruptible power supply, and off-grid solar home systems.

  6. Ferroelectric and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 thin films

    NASA Astrophysics Data System (ADS)

    Kim, Ju Sung; Ahn, Chang Won; Ullah, Amir; Chae, Song A.; Kim, Ill Won

    2016-06-01

    The Li, Ta, and Sb-substituted lead-free (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 (KNLNTS) thin films were fabricated on Pt(111)/TiO2/SiO2/Si substrates using the radio frequency (RF) magnetron sputtering method. The KNLNTS thin films were annealed at 750 °C for 1 h in an oxygen ambient. The film with a thickness of 350 nm exhibited a typical ferroelectric P - E hysteresis loop without fatigue even after 1010 pulses. The KNLNTS thin film exhibited a relatively low leakage current density of ~10 -7 A/cm2 even up to an applied electric field of 142 kV/cm. A well-saturated piezoelectric hysteresis loop was obtained with a piezoelectric coefficient d 33 of 21 pm/V.

  7. Design and characterization of piezoelectric ultrasonic motors

    NASA Astrophysics Data System (ADS)

    Yener, Serra

    This thesis presents modeling and prototype fabrication and characterization of new types of piezoelectric ultrasonic micromotors. Our approach in designing these piezoelectric motors was: (i) to simplify the structure including the poling configuration of piezoelectric elements used in the stator and (ii) to reduce the number of components in order to decrease the cost and enhance the driving reliability. There are two different types of piezoelectric motors designed throughout this research. The first of these designs consists of a metal tube, on which two piezoelectric ceramic plates poled in thickness direction, were bonded. Two orthogonal bending modes of the hollow cylinder were superimposed resulting in a rotational vibration. Since the structure and poling configuration of the active piezoelectric elements used in the stator are simple, this motor structure is very suitable for miniaturization. Moreover, a single driving source can excite two bending modes at the same time, thus generate a wobble motion. Three types of prototypes are included in this design. The piezoelectric stator structure is the same for all. However, the dimensions of the motors are reduced by almost 50 percent. Starting with a 10 mm long stator, we reached to 4 mm in the last prototype. The initial diameter was 2.4 mm, which was reduced to 1.6 mm. In the final design, the rotor part of the motor was changed resulting in the reduction in the number of components. In terms of driving circuit, a single driving source was enough to run the motors and a conventional switching power supply type resonant L-C circuit was used. A simple motor structure with a simple driving circuit were combined successfully and fabricated inexpensively. The second design is a shear type piezoelectric linear motor. The behavior of a single rectangular piezoelectric shear plate was analyzed and after optimizing the dimensions and the mode characteristics, a prototype was fabricated. The prototype consists of

  8. First principles investigations of structural, elastic, dielectric and piezoelectric properties of { Ba,Sr,Pb } TiO3, { Ba,Sr,Pb } ZrO3 and { Ba,Sr,Pb } { Zr,Ti } O3 ceramics

    NASA Astrophysics Data System (ADS)

    Akgenc, Berna; Tasseven, Cetin; Cagin, Tahir

    2015-03-01

    We use first-principle density-functional study of structural, anisotropic mechanical, dielectric and piezoelectric properties of {Ba,Sr,Pb}TiO3, {Ba,Sr,Pb}ZrO3 and {Ba,Sr,Pb}{Zr,Ti}O3 alloys in cubic perovskite structures at zero temperature. Because there is significant interest in finding new piezoelectrics that do not contain toxic elements such as lead. In this study, we compare piezoelectric response of those alloys to synthesize outstanding piezoelectric materials. In perovskite structures, the spontaneous polarization is due to enormous values of Born effective charges computed by linear response within density functional perturbation theory, which are much larger than predicted nominal charge. We deeply investigated the effects of composition, order and site defects structure on piezoelectric constants.

  9. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    PubMed

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  10. Controlling the Color of Lead-Free Red Overglaze Enamels and a Process for Preparing High-Quality Red Paints.

    PubMed

    Hashimoto, Hideki; Inada, Hirofumi; Okazaki, Yuki; Takaishi, Taigo; Fujii, Tatsuo; Takada, Jun

    2016-05-01

    Akae porcelain, an artistic Japanese traditional overglaze ceramic typically known for Kakiemon-style ware, has fascinated porcelain lovers around the world for over 400 years because of the graceful red color displayed by akae that matches so well with white porcelain bodies. In this work, we clarified the factors that control the color of akae and those that are conventionally controlled by artisans based on empirical experience. Inspired by a recent particle-design method, we also developed a practical facile process to prepare red paints that yields high-quality akae. Various akae samples were prepared from a combination of lead-free alkali borosilicate glass frits with different particle sizes and hematite powders with differing dispersibilities. Polarized light microscopy, scanning electron microscopy, and transmission electron microscopy analyses indicate that considering only the dispersibility of hematite powders is not sufficient, but the frit-particle size must be controlled to obtain high-quality akae with a high reflectance value for ≥580 nm visible light. In addition, we developed a process for preparing high-quality red paints that uses a large-particle frit powder and a strongly aggregated-hematite powder, both of which are easily obtainable. The red paint composed of frit, hematite, and the solvent is mixed until the paint is drying. By adding more solvent and repeating this process three times, we obtained high-quality akae with a higher reflectance value than for the akae prepared from a frit with submicron-sized particles and weakly aggregated-hematite powder. On the basis of transmission electron microscopic observations, we consider the red paint to consist of a core/shell-like composite structure of frit and hematite, forming a three-dimensional network in the akae glass layer. The good dispersibility of these particles leads to high-quality akae. PMID:27093650

  11. Green piezoelectric for autonomous smart textile

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  12. Effects of PbO-B2O3 Glass Doping on the Sintering Temperature and Piezoelectric Properties of 0.35Pb (Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 Ceramics

    NASA Astrophysics Data System (ADS)

    Yi, Jinqiao; Shen, Meng; Liu, Sisi; Jiang, Shenglin

    2015-12-01

    0.35Pb(Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 (PNN-PZT) ceramics doped with 0.5PbO-0.5B2O3 glass have been synthesized by the conventional solid-state sintering technique. The effects of 0.5PbO-0.5B2O3 glass on the sintering temperature and piezoelectric properties of PNN-PZT ceramics were studied. The results indicated that the sintering temperature of PNN-PZT was significantly reduced due to the incorporation of 0.5PbO-0.5B2O3 glass dopant. When the content of 0.5PbO-0.5B2O3 glass was 0.5 wt.%, the sintering temperature of PNN-PZT was observed to reduce from above 1200°C to 920°C while the samples maintained high density (7.91 g/cm3), excellent piezoelectric constant ( d 33 = 479 pC/N), large electromechanical coupling coefficient ( K p = 0.55), and relatively low electromechanical quality factor ( Q m = 79). Moreover, large dielectric constant ( ɛ 33 T / ɛ 0 = 2904) and low dielectric loss (tan δ = 0.0166) were obtained in this work.

  13. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  14. Evaluation of Mechanical Losses in Piezoelectric Plates using Genetic algorithm

    NASA Astrophysics Data System (ADS)

    Arnold, F. J.; Gonçalves, M. S.; Massaro, F. R.; Martins, P. S.

    Numerical methods are used for the characterization of piezoelectric ceramics. A procedure based on genetic algorithm is applied to find the physical coefficients and mechanical losses. The coefficients are estimated from a minimum scoring of cost function. Electric impedances are calculated from Mason's model including mechanical losses constant and dependent on frequency as a linear function. The results show that the electric impedance percentage error in the investigated interval of frequencies decreases when mechanical losses depending on frequency are inserted in the model. A more accurate characterization of the piezoelectric ceramics mechanical losses should be considered as frequency dependent.

  15. Challenges and New Trends for Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp

    2008-01-01

    BiScO3-PbTiO3 ceramics with TC greater than 400 C has been successfully processed. Despite the increase in TC, excess Pb addition increases both the bulk conductivity and the grain boundary contribution to conductivity at elevated temperatures. Conductivity at elevated temperatures, that limits the operating temperature for actuators, has been greatly reduced by excess Bi additions. Excess Bi doping improves poling conditions resulting in enhanced piezoelectric coefficient (d(sub 33) = 408 pC/N).

  16. [Study on the performance of piezoelectric micro pump for insulin injection].

    PubMed

    Zhang, Zhijing; Wang, Wei; Chen, Xinyuan

    2015-01-01

    In terms of performance of piezoelectric micro pump, this paper explores the piezoelectric ceramic plate in different wave driven micro pump flow rate. The conclusion is that the square wave voltage gets the biggest micro pump velocity. The velocity and pressure of the micro pump is almost linear relationship, and having nothing to do with the different inner diameter pipes. The piezoelectric micro pump's stability is not good and exists attenuation. PMID:26027300

  17. Strong ultrasonic microwaves in ferroelectric ceramics.

    PubMed

    Arlt, G

    1998-01-01

    It is well known that ferroelectric materials have piezoelectric properties which allow the transformation of electrical signals into mechanical signals and vice versa. The transducer action normally is restricted to frequencies up to the mechanical resonance frequency of the sample. There are, however, two mechanisms which allow transducer action in ferroelectric ceramics at much higher frequencies: one is the normal piezoelectric effect in a ferroelectric ceramic in which the crystallites have periodic domain structures, the other is a domain wall effect in which ferroelastic domain walls in a periodic domain structure are powerful shear wave emitters. Both mechanisms give rise to extensive dielectric losses in ceramics at microwave frequencies. PMID:18244152

  18. Dielectric Dispersion, Diffuse Phase Transition, and Electrical Properties of BCT-BZT Ceramics Sintered at a Low-Temperature

    NASA Astrophysics Data System (ADS)

    Tian, Yongshang; Gong, Yansheng; Meng, Dawei; Li, Yuanjian; Kuang, Boya

    2015-08-01

    Lead-free ceramics 0.50Ba0.9Ca0.1TiO3-0.50BaTi1- x Zr x O3 (BCT-BZT) were prepared via sintering BCT and BZT nanoparticles, which were synthesized using a modified Pechini polymeric precursor method, at a low temperature of 1260°C. The relative densities of the ceramics prepared with different zirconium contents ( x) were all above 95.3%, reaching a maximum of 97% when x = 0.08. X-ray diffraction results confirmed the onset of phase transformation from orthorhombic to rhombohedral symmetry with increasing zirconium contents, and the polymorphic phase transition was observed at x = 0.10. The dielectric dispersion, diffuse phase transition (DPT), and relaxor-like ferroelectric characteristics as a function of zirconium content were thoroughly studied. Optimum physical properties, remnant polarization ( P r) = 16.4 μC/cm2, piezoelectric constant ( d 33) = ~240 pC/N, and electromechanical coupling factor ( k p) = 0.22, were obtained at x = 0.10. The findings of the current DPT behavior study of BCT-BZT ceramics are believed to be insightful to the development of ferroelectric materials.

  19. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  20. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  1. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  2. Piezoelectric thin films: an integrated review of transducers and energy harvesting

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Oh, Il-Kwon

    2016-05-01

    Piezoelectric thin films offer a number of advantages in various applications, such as high energy density harvesters, a wide dynamic range, and high sensitivity sensors, as well as large displacement and low power consumption actuators. This review covers the available material forms and applications of piezoelectric thin films: lead zirconate titanate (PZT)-based thin films, lead-free piezoelectric thin films, piezopolymer films, cellulose-based electroactive paper (EAPap), and many other thin films used for electromechanical transduction. The electromechanical properties and performances of piezoelectric films are compared and their suitability for particular applications are reported. The key ideas of piezoelectric thin films are reviewed and discussed for sensory and actuation systems, energy harvesting, and medical and acoustic transducers. In the last section, an insight into the future outlook and possibilities for thin film-based devices and their integration into real-world applications is presented.

  3. Lead-free solid-state organic-inorganic halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Stoumpos, Constantinos C.; Cao, Duyen Hanh; Chang, Robert P. H.; Kanatzidis, Mercouri G.

    2014-06-01

    Lead-free solution-processed solid-state photovoltaic devices based on methylammonium tin iodide (CH3NH3SnI3) perovskite semiconductor as the light harvester are reported. Featuring an optical bandgap of 1.3 eV, the CH3NH3SnI3 perovskite material can be incorporated into devices with the organic hole-transport layer spiro-OMeTAD and show an absorption onset at 950 nm, which is significantly redshifted compared with the benchmark CH3NH3PbI3 counterpart (1.55 eV). Bandgap engineering was implemented by chemical substitution in the form of CH3NH3SnI3-xBrx solid solutions, which can be controllably tuned to cover much of the visible spectrum, thus enabling the realization of lead-free solar cells with an initial power conversion efficiency of 5.73% under simulated full sunlight. Further efficiency enhancements are expected following optimization and a better fundamental understanding of the internal electron dynamics and corresponding interfacial engineering. The reported CH3NH3SnI3-xBrx perovskite solar cells represent a step towards the realization of low-cost, environmentally friendly solid-state solar cells.

  4. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  5. Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Lin, T. Y.; Liao, C. N.; Wu, Albert T.

    2012-01-01

    The intermetallic compound SnTe rapidly formed at interfaces between p-type bismuth telluride (Bi0.5Sb1.5Te3) thermoelectric materials and lead-free solders. The intermetallic compound influences the mechanical properties of the joints and the reliability of the thermoelectric modules. Various lead-free solder alloys, Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu, and Sn-2.5Ag-2Ni, were used to investigate the interfacial reactions. The results thus obtained show that Ag and Cu preferentially diffused into the Te-rich phase in Bi0.5Sb1.5Te3, so layers of Ag-Te and Cu-Te compounds could not form an effective diffusion barrier. Electroless nickel-phosphorus was plated at the interfaces to serve as a diffusion barrier, and the (Cu,Ni)6Sn5 compound formed instead of SnTe. Furthermore, the intermetallic compound NiTe formed between nickel- phosphorus and Bi0.5Sb1.5Te3 and also served as a diffusion barrier. A plot of thickness as a function of annealing time yielded the growth kinetics of the intermetallic compounds in the thermoelectric material systems. The activation energy for the growth of the NiTe intermetallic compound is 111 kJ/mol.

  6. Direct Piezoelectricity of Soft Composite Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal

    2013-03-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.

  7. KNN/BNT Composite Lead-Free Films for High-Frequency Ultrasonic Transducer Applications

    PubMed Central

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2011-01-01

    Lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a −6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  8. Analysis of primer residue from lead free ammunition by X-ray microfluorescence.

    PubMed

    Charpentier, B; Desrochers, C

    2000-03-01

    In forensic science, the analysis of gunshot residues was traditionally done by the detection of lead (Pb), antimony (Sb) and barium (Ba) usually found in a primer. However, the recent development of lead-free ammunition represents a new challenge for ballistic specialists. This analysis study gunshot residues from primers and ammunitions in the area surrounding bullet holes, a very important tool to determine the shooting distance. The ammunitions used were 9 mm Luger and .38 spl + p calibers, where lead in the primer was replaced with strontium (Sr) and where the lead bullet was plated with copper (Total Metal Jacket). Gunshot analysis results were obtained using an energy dispersive X-ray microfluorescence spectrometer. The method allows the detection and quantification of strontium residues on the target up to a distance of 45 cm. PMID:10782972

  9. Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

    NASA Astrophysics Data System (ADS)

    Anson, Scott J.

    Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007. Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study. Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder. This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product

  10. Solderability of melting lead-free solder to tiny joint of electronic products

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Du, Changhua; Du, Yunfei

    2005-12-01

    The behavior of melting solder has an important influence on the tiny joints of electronic products. In order to improve the properties of lead-free solder, a Sn-3.5Ag0.6Cu alloy was smelted using traditional and a modified technology, respectively. The solderability of the two alloys were investigated using a wetting balance method for the different conditions. The test results showed that the modified solder had good solderability, where the excellent flux used was rosin-ethanol or rosin-isopropanol solution. In experimental condition, when the added active agent is 0.4% of rosin mass or 0.1% of solution mass, the wetting velocity and wetting force can be improved 5 times and 1.5 times, respectively. The best soldering parameters are temperature levels less than or equal to 270°, and the soakage time in 2-3s.

  11. Salient features, response and operation of Lead-Free Gulmarg Neutron Monitor

    NASA Astrophysics Data System (ADS)

    Mufti, S.; Chatterjee, S.; Ishtiaq, P. M.; Darzi, M. A.; Mir, T. A.; Shah, G. N.

    2016-03-01

    Lead-Free Gulmarg Neutron Monitor (LFGNM) provides continuous ground level intensity measurements of atmospheric secondary neutrons produced in interactions of primary cosmic rays with the Earth's constituent atmosphere. We report the LFGNM detector salient features and simulation of its energy response for 10-11 MeV to 104 MeV energy incident neutrons using the FLUKA Monte Carlo package. An empirical calibration of the LFGNM detector carried out with a Pu-Be neutron source for maximising its few MeV neutron counting sensitivity is also presented. As an illustration of its functionality a single representative transient solar modulation event recorded by LFGNM depicting Forbush decrease in integrated neutron data for which the geospace consequences are well known is also presented. Performance of LFGNM under actual observation conditions for effectively responding to transient solar modulation is seen to compare well with other world-wide conventional neutron monitors.

  12. Bonding nature of rare-earth-containing lead-free solders

    NASA Astrophysics Data System (ADS)

    Ramirez, Ainissa G.; Mavoori, Hareesh; Jin, Sungho

    2002-01-01

    The ability of rare-earth-containing lead-free solders to wet and bond to silica was investigated. Small additions of Lu (0.5-2 wt. %) added to eutectic Sn-Ag or Au-Sn solder render it directly solderable to a silicon oxide surface. The bonding is attributed to the migration of the rare-earth element to the solder-silica interface for chemical reaction and the creation of an interfacial layer that contains a rare-earth oxide. It was found that additions of rare-earth materials did not significantly modify the solidification microstructure or the melting point. Such oxide-bondable solders can be useful for assembly of various optical communication devices.

  13. [Leaching behavior of heavy metal elements in lead-free solders].

    PubMed

    Zhao, Jie; Meng, Xian-ming; Chen, Chen; Zang, Hua-xun; Ma, Hai-Tao

    2008-08-01

    Leaching behavior of heavy metal elements from Sn-3.5 Ag-0.5 Cu, Sn-3.5 Ag, Sn-0.5 Cu lead-free solders and their joints were investigated in typical acid, alkaline and saline corrosion solutions. It is found that for solder alloys, significant leaching of Sn was observed in NaCl saline solution, about two orders of magnitude higher than that in acid and alkaline solution. However, in the case of solder joints, more leaching of Sn was observed in acid solution from Sn-3.5 Ag/Cu and Sn-0.5 Cu/Cu joints, and in NaOH alkaline solution for Sn-3.5 Ag - 0.5 Cu joint. PMID:18839597

  14. KNN/BNT composite lead-free films for high-frequency ultrasonic transducer applications.

    PubMed

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2011-01-01

    Lead-free K(0.5)Na(0.5)NbO(3)/Bi(0.5)Na(0.5)TiO(3) (KNN/ BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a -6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  15. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation

    PubMed Central

    Kazempour, M.; Saeedimoghadam, M.; Shekoohi Shooli, F.; Shokrpour, N.

    2015-01-01

    Background: In diagnostic radiology lead apron, are usually used to protect patients and radiology staff against ionizing radiation. Lead apron is a desirable shield due to high absorption and effective attenuation of x-ray photons in the diagnostic radiology range. Objective: Although lead aprons have good radiation protection properties, in recent years, researchers have been looking for alternative materials to be used instead of lead apron because of some problems derived from lead-content of aprons. Because of its lead-content, these radiation protection garments are so heavy and uncomfortable for the staff to wear, particularly in long-time uses. In addition, lead is a toxic element and its disposal is associated with environmental and human-health hazards. Method: In this study, several new combinations of lead free materials ((W-Si), (W-Sn-Ba-EPVC ), (W-Sn-Cd-EPVC)) have been investigated in the energy range of diagnostic radiology in two geometries: narrow and broad beam. Geometries of the radiation attenuation characteristics of these materials was assessed in 40, 60, 90 and 120 kVp and the results compared with those of some lead-containing materials ((Pb-Si), (Pb-EPVC)). Results: Lead shields still provide better protection in low energies (below 40 kVp). Combination of W-Sn-Cd-EPVC has shown the best radiation attenuation features in 60 and 90 kVp and the composition of (W-Sn-Ba-EPVC) represents the best attenuation in 120 kVp, even better than previously mentioned lead- containing composites. Conclusion: Lead free shields are completely effective for protection against X-ray energies in the range of 60 to 120 kVp. PMID:26157732

  16. A novel method for direct solder bump pull testing using lead-free solders

    NASA Astrophysics Data System (ADS)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  17. Piezoelectricity and local structural distortions in (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}Sr{sub x}TiO{sub 3}-Bi{sub 12}TiO{sub 20} flexoelectric-type polar ceramics

    SciTech Connect

    Wang, L. H.; Zhao, M. L.; Wang, C. L.; Wang, J.; Kuai, W. J.; Tao, X. T.

    2012-08-06

    We have previously described sintered Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}-Bi{sub 12}TiO{sub 20} composites as flexoelectric-type polar ceramics because they have a net macroscopic flexoelectric polarization. Here, we report on the universal existence of the macroscopic flexoelectric polarization in the (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}Sr{sub x}TiO{sub 3}-Bi{sub 12}TiO{sub 20} system, in which enhanced piezoelectricity is observed. By combining Raman spectroscopy and x-ray photoelectron spectroscopy techniques, we have identified the local flexoelectric polarization as distorted BiO{sub 5} polyhedra and TiO{sub 6} octahedra in the SrTiO{sub 3}-Bi{sub 12}TiO{sub 20} ceramic. The macroscopic polarization may be due to the partial alignment of these distorted units located within the grain boundary amorphous phases. Bi{sub 12}TiO{sub 20} could have an important role in these flexoelectric-type polar ceramics.

  18. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications

    PubMed Central

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Priya, Shashank

    2015-01-01

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~106 s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology. PMID:25683062

  19. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications.

    PubMed

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Priya, Shashank

    2015-01-01

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~10(6) s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology. PMID:25683062

  20. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation. PMID:17941391

  1. A piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  2. Conduction phenomenon of Al3+ modified lead free (Na0.5Bi0.5)0.92Ba0.08TiO3 electroceramics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Kumar, Ashok

    2016-05-01

    Choice of proper dopants at A or B-site of ABO3 perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na0.5Bi0.5)1-xBaxTiO3 (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al3+) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al3+) was its relatively smaller radii than that of Bi3+ cations to develop the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na0.46Bi0.46-xAlxBa0.08)TiO3 (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.

  3. Hybrid thermoelectric piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  4. Raman, dielectric and AC-conductivity behavior of Dy2O3 contained K0.5Na0.5NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, P.; Pamu, D.

    2016-05-01

    Lead-free piezoelectric (K0.5Na0.5)NbO3+ x wt% Dy2O3 (x = 0 - 1.5) (KNND) ceramics have been prepared by solid state reaction method. The effect of Dy2O3 on the dielectric and electrical conductivity responses of KNN ceramics were investigated in a broad temperature (from 133 K to 673 K) and frequency (106 Hz to 108 Hz) range. Temperature dependent dielectric analysis revealed that the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T) shifted from 199°C to room temperature with enhanced dielectric permittivity (ɛ' = 994) with the addition of Dy2O3. The effect of Dy2O3 on structural properties of KNND ceramics are analyzed interms of changes in the internal modes of NbO6 octahedra by using Raman spectroscopy. Temperature dependent (133 K - 306 K) AC-conductivity follows the variable range hopping mechanism in different temperature regimes.

  5. Discovering lead-free perovskite solar materials with a split-anion approach

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Yang; Shi, Jian; Lian, Jie; Gao, Weiwei; Agiorgousis, Michael L.; Zhang, Peihong; Zhang, Shengbai

    2016-03-01

    Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials.Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials. Electronic supplementary information (ESI) available: Detailed descriptions on

  6. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics

    PubMed Central

    Wang, D.; Bokov, A. A.; Ye, Z.-G.; Hlinka, J.; Bellaiche, L.

    2016-01-01

    Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ≃1 GHz to ≃1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel–Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour. PMID:27040174

  7. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wang, D.; Bokov, A. A.; Ye, Z.-G.; Hlinka, J.; Bellaiche, L.

    2016-04-01

    Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ~=1 GHz to ~=1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel-Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour.

  8. Mechanical Properties of Lead-Free Solder Joints Under High-Speed Shear Impact Loading

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2014-09-01

    In this study we expanded on recently reported research by using a modified miniature Charpy impact-testing system to investigate the shear deformation behavior of Sn-3.0Ag-0.5Cu lead-free solder joints at high strain rates ranging from 1.1 × 103 s-1 to 5.5 × 103 s-1. The experimental results revealed that the maximum shear strength of the solder joint decreased with increasing load speed in the ranges tested in this study. For solder joints tested at a shear speed exceeding 1 m/s, corresponding to an approximate strain rate that exceeds 1950 s-1, the brittle fracture mode is the main failure mode, whereas lower strain rates result in a ductile-to-brittle transition in the fracture surfaces of solder joints. In addition, the mode II stress intensity factor (K II) used to evaluate the fracture toughness (K C) of an interfacial intermetallic compound layer between Sn-3.0Ag-0.5Cu solder and the toughness of copper substrate was found to decrease from 1.63 MPa m0.5 to 0.97 MPa m0.5 in the speed range tested here.

  9. Mechanical Properties of Lead-Free Solder Joints Under High-Speed Shear Impact Loading

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2014-11-01

    In this study we expanded on recently reported research by using a modified miniature Charpy impact-testing system to investigate the shear deformation behavior of Sn-3.0Ag-0.5Cu lead-free solder joints at high strain rates ranging from 1.1 × 103 s-1 to 5.5 × 103 s-1. The experimental results revealed that the maximum shear strength of the solder joint decreased with increasing load speed in the ranges tested in this study. For solder joints tested at a shear speed exceeding 1 m/s, corresponding to an approximate strain rate that exceeds 1950 s-1, the brittle fracture mode is the main failure mode, whereas lower strain rates result in a ductile-to-brittle transition in the fracture surfaces of solder joints. In addition, the mode II stress intensity factor ( K II) used to evaluate the fracture toughness ( K C) of an interfacial intermetallic compound layer between Sn-3.0Ag-0.5Cu solder and the toughness of copper substrate was found to decrease from 1.63 MPa m0.5 to 0.97 MPa m0.5 in the speed range tested here.

  10. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-02-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  11. Thermomigration: An experimental damage mechanics study on nanoelectronic lead free solder alloys

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Mohd Foad

    This dissertation focuses on experimental study of thermomigration in lead-free solder alloys. Thermomigration in microelectronic solder joints was not a concern until significant miniaturization of electronics devices required to run high current densities with smaller solder joint sizes. High current density induces electromigration and Joule heating at the same time. The imbalance of Joule heating generated at top and bottom of solder joint causes a temperature gradient which is large enough to induce thermomigration damage. In the literature, most studies report electromigration induced damage without considering the influence of thermomigration, thus the effect of electromigration and thermomigration can not be individually identified. This dissertation studies the experimental damage mechanics of thermomigration without electromigration by studying formation and destruction of intermetallic compound, and vacancy migration due to diffusion driving forces. Microstructural degradation and hardness testing were used to quantify thermomigration induced damage. After studying material science and physics behind the thermomigration process, using test vehicles, the combined effects of electromigration and thermomigration were studied experimentally. The studies were repeated at a subzero temperatures to see the effect of low temperature on thermomigration and electromigration, and reliability of nanoelectronic solder joints. A new time to failure equation is proposed to show a threshold temperature below which diffusion slows down significantly. By ensuring the solder operating temperature is well kept below the threshold value by proper thermal management, the solder joint life can be extended.

  12. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    SciTech Connect

    Devender,; Ramanath, Ganpati; Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi; Borca-Tasciuc, Theodorian

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  13. Discovering lead-free perovskite solar materials with a split-anion approach.

    PubMed

    Sun, Yi-Yang; Shi, Jian; Lian, Jie; Gao, Weiwei; Agiorgousis, Michael L; Zhang, Peihong; Zhang, Shengbai

    2016-03-17

    Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials. PMID:26349623

  14. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. PMID:26866821

  15. First-Principles Investigations of Lead-Free Formamidinium Based Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Murat, Altynbek; Schwingenschlögl, Udo

    2015-03-01

    Hybrid organic-inorganic perovskite solar cells have recently emerged as the next-generation photovoltaic technology. Most of the research work has been focused on the prototype MAPbI3 perovskite (MA = Methylammonium = CH3NH3+) and its analogues that have lead to power conversion efficiencies in excess of 15%. Despite the huge success, these materials are still non-optimal in terms of optical absorption where the bandgaps are greater than 1.6 eV as well as the toxicology issue of lead. Thus, investigation and development of lead-free perovskites with bandgaps closer to optimal, allowing greater spectral absorption, is of great interest. In this work, we perform first principles calculations to study the structural, optical, and electronic properties of new derivatives of MAPbI3 in which the organic MA cation is replaced by other organic amines of similar size such as Formamidinium (FA) and/or the Pb cation replaced by similar elements such as Sn. In particular, we investigate the role and effect of FA and Pb cations on the electronic and optical properties and analyze to which extend the bandgaps can be tuned.

  16. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors

    NASA Astrophysics Data System (ADS)

    Ahn, Chang Won; Hong, Chang-Hyo; Choi, Byung-Yul; Kim, Hwang-Pill; Han, Hyoung-Su; Hwang, Younghun; Jo, Wook; Wang, Ke; Li, Jing-Feng; Lee, Jae-Shin; Kim, Ill Won

    2016-06-01

    Relaxor ferroelectricity is one of the most widely investigated but the least understood material classes in the condensed matter physics. This is largely due to the lack of experimental tools that decisively confirm the existing theoretical models. In spite of the diversity in the models, they share the core idea that the observed features in relaxors are closely related to localized chemical heterogeneity. Given this, this review attempts to overview the existing models of importance chronologically, from the diffuse phase transition model to the random-field model and to show how the core idea has been reflected in them to better shape our insight into the nature of relaxor-related phenomena. Then, the discussion will be directed to how the models of a common consensus, developed with the so-called canonical relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN) and (Pb, La)(Zr, Ti)O3 (PLZT), are compatible with phenomenological explanations for the recently identified relaxors such as (Bi1/2Na1/2)TiO3 (BNT)-based lead-free ferroelectrics. This review will be finalized with a discussion on the theoretical aspects of recently introduced 0-3 and 2-2 ferroelectric/relaxor composites as a practical tool for strain engineering.

  17. A novel high-speed shear test for lead-free flip chip packages

    NASA Astrophysics Data System (ADS)

    Huh, Seok-Hwan; Kim, Kang-Dong; Kim, Keun-Soo; Jang, Joong-Soon

    2012-02-01

    Despite the importance of lead-free solders in modern environmentally friendly packaging, few studies have been conducted on their mechanical reliability at the wafer level. In the present study, high-speed die shear tests were conducted to investigate the effects of strain rate on the shearing resistance and fracture mode of Sn-3wt%Ag-0.5wt%Cu solder joints on electroless Ni-P/immersion Au surface finish pads. The results indicated that the solder joints underwent ductile and mixed ductile-brittle fracture at low (<855 s-1) and high (>25,385 s-1) strain rates, respectively. Thus, the overall shear stress-strain curve can be divided into three areas according to Hollomon's law, starting from low strain rates: area I, 100% ductile fracture of the solder itself; area II, mixed ductile-brittle fracture resulting in a ductile-brittle transition region; and area III, 100% brittle fracture at the interface between the intermetallic compound and the Ni-P layer.

  18. Developing a NASA Lead-Free Policy for Electronics - Lessons Learned

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is not required by United States or international law to use lead-free (Pb-free) electronic systems but international pressure in the world market is making it increasingly important that NASA have a Pb-free policy. In fact, given the international nature of the electronics market, all organizations need a Pb-free policy. This paper describes the factors which must be taken into account in formulating the policy, the tools to aid in structuring the policy and the unanticipated and difficult challenges encountered. NASA is participating in a number of forums and teams trying to develop effective approaches to controlling Pb-free adoption in high reliability systems. The activities and status of the work being done by these teams will be described. NASA also continues to gather information on metal whiskers, particularly tin based, and some recent examples will be shared. The current lack of a policy is resulting in "surprises" and the need to disposition undesirable conditions on a case-by-case basis. This is inefficient, costly and can result in sub-optimum outcomes.

  19. Development of extremely ductile lead-free Sn-Al solders for futuristic electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Alam, Md Ershadul; Gupta, Manoj

    2014-03-01

    In the present study, new lead-free Sn-Al solders are developed incorporating varying amount of Al (0.4 and 0.6% by weight) into pure Sn using disintegrated melt deposition technique. Solder samples were then subsequently extruded at room temperature and characterized. Microstructural characterization studies revealed equiaxed grain morphology, minimal porosity, reasonably uniform distribution of Al particles and good Sn-Al interfacial integrity. Melting temperature of Sn-0.6Al (228°C) was found to be close to the eutectic Sn-0.7Cu (227°C) solders. Microhardness was increased with increasing amount of Al in pure Sn. Room temperature tensile test results revealed that newly developed Sn-0.6Al solders exhibited significant improvement in 0.2% yield strength (˜67%), ultimate tensile strength (˜18%) and ductility (˜123%) when compared to commercial Sn-0.7Cu solder. Ductility was improved about 222%, 263% and 81% when compared to commercially available Sn-3.5Ag-0.7Cu, Sn-3.5Ag and Sn-37Pb solders, respectively without compromising strength.

  20. In Situ Synchrotron Characterization of Melting, Dissolution, and Resolidification in Lead-Free

    SciTech Connect

    Zhou, Bite; Bieler, Thomas R.; Wu, Guilin; Zaefferer, Stefan; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2013-04-08

    Melting and solidification of SAC 305 lead-free solder joints in a wafer-level chip-scale package were examined in situ with synchrotron x-ray diffraction. The chips with balls attached (but not assembled to a circuit board) were reflowed one to three times using a temperature and time history similar to an industrial reflow process. Diffraction patterns from the same joint were collected every 0.5 s during the melting and solidification process. The solidification of the Sn phase in the solder joint occurred between 0.5 s and 1 s. During melting, most of the Sn melted in about 0.5 s, but in some cases took 2-5 s for the Sn peak to completely disappear. In one instance, the Sn peak persisted for 30 s. The Ag{sub 3}Sn peaks dissolved in about 1-2 s, but the Cu{sub 6}Sn{sub 5} peaks from the interface were persistent and did not change throughout the melting and solidification process. Completely different Sn crystal orientations were always developed upon resolidification.

  1. Nonlinear dielectric response in piezoelectric materials for underwater transducers

    NASA Astrophysics Data System (ADS)

    Sherlock, N. P.; Garten, L. M.; Zhang, S. J.; Shrout, T. R.; Meyer, R. J.

    2012-12-01

    SONAR transducers based on single crystal lead magnesium niobate-lead titanate (PMNT) have demonstrated improvements over conventional lead zirconate titanate ceramics. Compositional modifications to PMNT have combined the high piezoelectric coefficient (d33 > 2000 pC/N) and electromechanical coupling factor (k33 > 0.90) with the low mechanical losses (QM > 1000) of "hard" piezoelectric ceramics. The dielectric losses of single crystal PMNT have not been investigated as extensively as the mechanical losses but may significantly affect the performance of a device when water loaded. In this work, nonlinearities in the dielectric permittivity and losses have been investigated as a function of applied electric field, measurement frequency, and temperature. It is shown that electromechanically "hard" single crystals offer greater stability of the dielectric properties while maintaining a high permittivity with respect to conventional lead zirconate titanate ceramics.

  2. Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites

    NASA Astrophysics Data System (ADS)

    David, Charlotte; Capsal, Jean-Fabien; Laffont, Lydia; Dantras, Eric; Lacabanne, Colette

    2012-10-01

    Polyamide 11(PA 11)/sodium niobate nanowire (NW) 0-3 composites with different volume fractions of NWs were synthesized. The electric polarization (P) was measured as a function of the applied electric field (E). The P-E hysteresis loop was used to work out the remanent polarization Pr of these materials. The dielectric permittivity and the piezoelectric strain constant were determined. Good impedance matching between inorganic and organic phases leads to higher electroactivity than conventional lead-free 0-3 composites. The piezoelectric voltage of the PA 11/NaNbO3 NW composites is of the same order as those obtained for fluorinated piezoelectric polymers. These composites could have some applications in flexible, low-cost, environmentally friendly piezoelectric sensors and actuators.

  3. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Cheng; Liu, Jia-Yi; Gao, Ren-Long; Chang, Jie; Li, Long-Tu

    2013-12-01

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human-machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability.

  4. Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites.

    PubMed

    Cortecchia, Daniele; Dewi, Herlina Arianita; Yin, Jun; Bruno, Annalisa; Chen, Shi; Baikie, Tom; Boix, Pablo P; Grätzel, Michael; Mhaisalkar, Subodh; Soci, Cesare; Mathews, Nripan

    2016-02-01

    Despite their extremely good performance in solar cells with efficiencies approaching 20% and the emerging application for light-emitting devices, organic-inorganic lead halide perovskites suffer from high content of toxic, polluting, and bioaccumulative Pb, which may eventually hamper their commercialization. Here, we present the synthesis of two-dimensional (2D) Cu-based hybrid perovskites and study their optoelectronic properties to investigate their potential application in solar cells and light-emitting devices, providing a new environmental-friendly alternative to Pb. The series (CH3NH3)2CuCl(x)Br(4-x) was studied in detail, with the role of Cl found to be essential for stabilization. By exploiting the additional Cu d-d transitions and appropriately tuning the Br/Cl ratio, which affects ligand-to-metal charge transfer transitions, the optical absorption in this series of compounds can be extended to the near-infrared for optimal spectral overlap with the solar irradiance. In situ formation of Cu(+) ions was found to be responsible for the green photoluminescence of this material set. Processing conditions for integrating Cu-based perovskites into photovoltaic device architectures, as well as the factors currently limiting photovoltaic performance, are discussed: among them, we identified the combination of low absorption coefficient and heavy mass of the holes as main limitations for the solar cell efficiency. To the best of our knowledge, this is the first demonstration of the potential of 2D copper perovskite as light harvesters and lays the foundation for further development of perovskite based on transition metals as alternative lead-free materials. Appropriate molecular design will be necessary to improve the material's properties and solar cell performance filling the gap with the state-of-the-art Pb-based perovskite devices. PMID:26756860

  5. Development of lead-free copper alloy-graphite casting. Annual report, January--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1996-02-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which T1 was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the suction of graphite particles into the copper melt. In the second stage, the specially designed stirrer was used to avoid the formation of vortex in melt. The two stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single stage stirring. In addition, graphite recoveries increased with increasing Ti content. Flotation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to date remained adequate to make a variety of castings. The observations of microstructure of directional solidification and flotation showed that in certain castings the graphite particles were agglomerated and they float to the upper part of the castings where they reduced the size of grains. However, in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The result of the first years work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity. Future work will continue to further improve the distribution of graphite particles in casting while retaining adequate fluidity and improved machinability. Techniques like centrifugal casting will be developed to concentrate graphite in regions where it is required for machinability in bearings.

  6. Development of lead-free copper alloy-graphite castings. Technical report, January 1994--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1995-07-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of graphite particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which Ti was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the addition of graphite particles into the copper melt. In the second stage, a specially designed stirrer was used for uniform particle distribution while avoiding the formation of vortex in the melt. The two-stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single-stage stirring and resulting in a more uniform particle distribution. In addition, graphite recoveries increased with increasing Ti content in the range investigated. Floatation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Fluidity tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to-date remained adequate to make a variety of castings. The observations of casting microstructure under directional solidification and floatation showed that in certain castings the graphite particles remained agglomerated, and they readily floated to the upper part of the castings where they reduced the size of gains. However, even in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The results of the first year work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity.

  7. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric.

    PubMed

    Walker, Julian; Simons, Hugh; Alikin, Denis O; Turygin, Anton P; Shur, Vladimir Y; Kholkin, Andrei L; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs. PMID:26791098

  8. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    NASA Astrophysics Data System (ADS)

    Walker, Julian; Simons, Hugh; Alikin, Denis O.; Turygin, Anton P.; Shur, Vladimir Y.; Kholkin, Andrei L.; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from ‘dual’ strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs.

  9. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    PubMed Central

    Walker, Julian; Simons, Hugh; Alikin, Denis O.; Turygin, Anton P.; Shur, Vladimir Y.; Kholkin, Andrei L.; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from ‘dual’ strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs. PMID:26791098

  10. The properties of bird feathers as converse piezoelectric transducers and as receptors of microwave radiation. I. Bird feathers as converse piezoelectric transducers.

    PubMed

    Bigu-del-Blanco, J; Romero-Sierra, C

    1975-01-01

    An investigation was made of the properties of bird feathers as piezoelectric transducers in the audiofrequency range and as dielectric receptors of electromagnetic radiation in the microwave region. In the first case, cartridges of the ceramic and magnetic type and an electromagnetic transducer probe were used as detecting devices. Results show piezoelectric resonances in the 1 to 20-kHz region for the calami of feathers. PMID:1235241

  11. Development of environmentally friendly piezoelectric polymer film actuator having multilayer structure

    NASA Astrophysics Data System (ADS)

    Tajitsu, Yoshiro

    2016-04-01

    We designed a new soft piezoelectric polymer actuator with a multilayer structure using the environmentally friendly polymer poly(lactic acid) (PLA). PLA is a chiral polymer having two isomers. One is poly(l-lactide) (PLLA) and the other is poly(d-lactide) (PDLA). PLLA and PDLA exhibit piezoelectric constants with opposite signs owing to their chirality. On the basis of their piezoelectric characteristics, we were able to realize a PDLA and PLLA multilayer film (PDLA/PLLA multilayer) with a simple structure. The PDLA/PLLA multilayer film of centimeter-order size exhibited a large piezoelectric resonance and its piezoelectric performance was equivalent to that of a practical piezoelectric ceramic. In this paper, as a first step toward realizing a new film actuator using the PDLA/PLLA multilayer film, we introduce the piezoelectric characteristics of a PLLA film and the concept of an actuation system using a PLLA film. Next, the fabrication process of the PDLA/PLLA multilayer film and its piezoelectric characteristics are summarized. Finally, typical examples of developed piezoelectric polymer actuation systems using a PDLA/PLLA multilayer film are described to demonstrate the potential application of piezoelectric polymer actuation systems.

  12. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  13. Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Jinghui; Xue, Dezhen; Wang, Yu; Wang, Dong; Zhang, Lixue; Wu, Haijun; Guo, Shengwu; Bao, Huixin; Zhou, Chao; Liu, Wenfeng; Hou, Sen; Xiao, Ge; Ren, Xiaobing

    2011-08-01

    In this letter, we use transmission electron microscopy to study the microstructure feature of recently reported Pb-free piezoceramic Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 across its piezoelectricity-optimal morphotropic phase boundary (MPB) by varying composition and temperature, respectively. The domain structure evolutions during such processes show that in MPB regime, the domains become miniaturized down to nanometer size with a domain hierarchy, which coincides with the d33-maximum region. Further convergent beam electron diffraction measurement shows that rhombohedral and tetragonal crystal symmetries coexist among the miniaturized domains. Strong piezoelectricity reported in such a system is due to easy polarization rotation between the coexisting nano-scale tetragonal and rhombohedral domains.

  14. Dynamic response of a piezoelectric flapping wing

    NASA Astrophysics Data System (ADS)

    Kumar, Alok; Khandwekar, Gaurang; Venkatesh, S.; Mahapatra, D. R.; Dutta, S.

    2015-03-01

    Piezo-composite membranes have advantages over motorized flapping where frequencies are high and certain coupling between bending and twisting is useful to generate lift and forward flight. We draw examples of fruit fly and bumble bee. Wings with Piezo ceramic PZT coating are realized. The passive mechanical response of the wing is characterized experimentally and validated using finite element simulation. Piezoelectric actuation with uniform electrode coating is characterized and optimal frequencies for flapping are identified. The experimental data are used in an empirical model and advanced ratio for a flapping insect like condition for various angular orientations is estimated.

  15. Pulsed laser deposition of lead-free (Na0.5Bi0.5)1-xBaxTiO3 ferroelectric thin films with enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    Andrei, A.; Scarisoreanu, N. D.; Birjega, R.; Dinescu, M.; Stanciu, G.; Craciun, F.; Galassi, C.

    2013-08-01

    Ferroelectric lead-free (Na0.5Bi0.5)1-xBaxTiO3 thin films obtained by pulsed laser deposition have been structurally and electrically investigated for compositions, x = 0 and x = 0.06, in and out of the morphotropic phase boundary (MPB). Sodium bismuth titanate Na0.5Bi0.5TiO3 (NBT), pure or in solid solution with other materials (like BaTiO3), is considered to be the best candidate material for lead-free ferroelectric and piezoelectric applications such as actuators and nonvolatile memory devices. Bulk solid solutions with BaTiO3 (BT), (1-x)NBT-xBT (NBT-x%BT) have been investigated widely, also due to a morphotropic phase boundary (MPB) with enhanced dielectric and ferroelectric properties between a rhombohedral and a tetragonal ferroelectric phase, at x = 0.06. Nonetheless, to transpose bulk properties to NBT-BT thin films is a major achievement. XRD technique has been used for structural characterizations of NBT-BT films. Dielectric spectroscopy measurements were performed at room temperature in the frequency range 100 Hz-1 MHz. The best films show pure perovskite phase and good crystalline structure, as a function of specific deposition conditions. Unusual characteristics, especially dielectric constant values higher than those for bulk, have been found for films with specific crystallographic orientations.

  16. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  17. SU-E-P-09: Radiation Transmission Measurements and Evaluation of Diagnostic Lead-Based and Lead-Free Aprons

    SciTech Connect

    Syh, J

    2014-06-01

    Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVp and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.

  18. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  19. Energy collection via Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, Ch

    2015-12-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  20. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  1. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  2. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  3. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  4. Roles of service parameters on the mechanical behavior of lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Rhee, Hongjoo

    2005-07-01

    Lead-based solders have been extensively used as interconnects in various electronic applications due to their low cost and suitable material properties. However, in view of environmental and health concerns, the electronics industry is forced to develop lead-free alternative solders. Eutectic Sn-3.5Ag based solders are being considered as suitable substitutes due to their non-toxicity, tolerable melting temperatures, and comparable mechanical as well as electrical properties. Smaller electronic packaging and emerging new technologies impose several constraints on the solder interconnect that require better inherent properties in the solder to resist failure during operation. Hence, it is important to develop a clear understanding of the deformation behavior of eutectic Sn-Ag solder joints. Mechanical characterization was performed to investigate the behavior of eutectic Sn-Ag solder joints. Peak shear stress and flow stress decreased with increasing testing temperature and with decreasing simple shear-strain rate. The effect of simple shear-strain rate on the peak shear stress was found to be more significant at temperature regimes less than 125°C. The deformation structure of specimens deformed at higher temperatures was dominated by grain boundary deformation, while at lower temperatures it was dominated by shear banding. Stress relaxation studies on eutectic Sn-Ag solder joints were carried out to provide a better understanding of various parameters contributing to thermomechanical damage accumulation. Monotonic stress relaxation tests at various pre-strain conditions and testing temperatures can provide information relevant to the effects of ramp rates during heating and cooling excursions experienced during thermomechanical fatigue. Peak shear stress and residual shear stress, resulting from stress relaxation period, decreased with increasing testing temperature for a given pre-strain condition. A faster ramp rate was found to cause higher resultant residual

  5. NASA-DoD Lead-Free Electronics Project. DRAFT Joint Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2011-01-01

    The use of conventional tin-lead (SnPb) in circuit board manufacturing is under ever-increasing political scrutiny due to increasing regulations concerning lead. The "Restriction of Hazardous Substances" (RoHS) directive enacted by the European Union (EU) and a pact between the United States National Electronics Manufacturing Initiative (NEMI), Europe's Soldertec at Tin Technology Ltd. and the Japan Electronics and Information Technology Industries Association (JEITA) are just two examples where worldwide legislative actions and partnerships/agreements are affecting the electronics industry. As a result, many global commercial-grade electronic component suppliers are initiating efforts to transition to lead-free (Pb-free) in order to retain their worldwide market. Pb-free components are likely to find their way into the inventory of aerospace or military assembly processes under current government acquisition reform initiatives. Inventories "contaminated" by Pb-free will result in increased risks associated with the manufacturing, product reliability, and subsequent repair of aerospace and military electronic systems. Although electronics for military and aerospace applications are not included in the RoHS legislation, engineers are beginning to find that the commercial industry's move towards RoHS compliance has affected their supply chain and changed their parts. Most parts suppliers plan to phase out their non-compliant, leaded production and many have already done so. As a result, the ability to find leaded components is getting harder and harder. Some buyers are now attempting to acquire the remaining SnPb inventory, if it's not already obsolete. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides more and more parts with Pb-free finishes-some labeled no differently than their Pb counterparts-while at the same time providing the traditional Pb parts

  6. Microstructural Evolution of Lead-Free Solder Joints in Ultrasonic-Assisted Soldering

    NASA Astrophysics Data System (ADS)

    Ji, Hongjun; Wang, Qiang; Li, Mingyu

    2016-01-01

    Solder joint reliability greatly depends on the microstructure of the solder matrix and the morphology of intermetallic compounds (IMCs) in the joints. Addition of strengthening phases such as carbon nanotubes and ceramic particles to solder joints to improve their properties has been widely studied. In this work, ultrasonic vibration (USV) of casting ingots was applied to considerably improve their microstructure and properties, and the resulting influence on fluxless soldering of Cu/Sn-3.0Ag-0.5Cu/Cu joints and their microstructural evolution was investigated. It was demonstrated that USV application during reflow of Sn-based solder had favorable effects on β-Sn grain size refinement as well as the growth and distribution of various IMC phases within the joints. The β-Sn grain size was significantly refined as the ultrasound power was increased, with a reduction of almost 90% from more than 100 μm to below 10 μm. Long and large Cu6Sn5 tubes in the solder matrix of the joints were broken into tiny ones. Needle-shaped Ag3Sn was transformed into flake-shaped. These IMCs were mainly precipitated along β-Sn phase boundaries. High-temperature storage tests indicated that the growth rate of interfacial IMCs in joints formed with USV was slower than in conventional reflow joints. The mechanisms of grain refinement and IMC fragmentation are discussed and related to the ultrasonic effects.

  7. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  8. Model based analysis of piezoelectric transformers.

    PubMed

    Hemsel, T; Priya, S

    2006-12-22

    Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components. PMID:16808951

  9. Effect of Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} modification on dielectric and piezoelectric properties of Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} ceramics

    SciTech Connect

    Luo, Nengneng; Li, Qiang; Xia, Zhiguo

    2011-09-15

    Highlights: {yields} 10 mol% PFN modified PMN-PZT relaxor ferroelectric ceramics were prepared by the conventional solid-state mixed-oxide technique, and their structure, dielectric and piezoelectric properties were studied. {yields} At the frequency of 1 kHz, the maximum dielectric constant at room temperature ({epsilon}{sub r}) was 3519 and maximum dielectric constant ({epsilon}{sub m}) was 20,475, corresponding to the (0.9 - x)PMN-0.1PFN-xPZT ceramic composition of x = 0.8. While the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of {gamma} = 1.94. The Curie temperature T{sub c} could be higher than 300 {sup o}C around morphotropic phase boundary (MPB) area which is much higher than some other system. {yields} The largest d{sub 33} could be as high as 318 pC/N when x = 0.9. And the maximum remnant polarization P{sub r} was 28.3 {mu}C/cm{sup 2} at x = 0.4. -- Abstract: 10 mol% Pb(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} (PFN) modified Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 - x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (T{sub c}) increased sharply with increasing PZT content and could be higher than 300 {sup o}C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant {epsilon}{sub r} = 3519 and maximum dielectric constant {epsilon}{sub m} = 20,475 at T{sub m}, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of {gamma} = 1.94. The largest d{sub 33

  10. Electrical Properties and Power Considerations of a Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jordan, T.; Ounaies, Z.; Tripp, J.; Tcheng, P.

    1999-01-01

    This paper assesses the electrical characteristics of piezoelectric wafers for use in aeronautical applications such as active noise control in aircraft. Determination of capacitive behavior and power consumption is necessary to optimize the system configuration and to design efficient driving electronics. Empirical relations are developed from experimental data to predict the capacitance and loss tangent of a PZT5A ceramic as nonlinear functions of both applied peak voltage and driving frequency. Power consumed by the PZT is the rate of energy required to excite the piezoelectric system along with power dissipated due to dielectric loss and mechanical and structural damping. Overall power consumption is thus quantified as a function of peak applied voltage and driving frequency. It was demonstrated that by incorporating the variation of capacitance and power loss with voltage and frequency, satisfactory estimates of power requirements can be obtained. These relations allow general guidelines in selection and application of piezoelectric actuators and driving electronics for active control applications.

  11. Model of piezoelectric self powered supply for wearable devices

    NASA Astrophysics Data System (ADS)

    Meddad, M.; Eddiai, A.; Chérif, A.; Hajjaji, A.; Boughaleb, Y.

    2014-07-01

    With the development in a few latter years, of micros electromechanical technology (MEMS), the demand in wearable electronics and in cordless detectors is more and more important. These wearable devices have needed more of autonomy and independence in energy. Materials piezoelectric (often called intelligent materials) can be employed like mechanisms to convert the mechanical energy, due to vibration usually ambient, in energy electric. This one can be stored and used in place of conventional battery which presents certain disadvantages such as lasted limited life as well as congestion. In this article, one presents a power analytical model generated by a smart structure of type PZT that can be used as supply energy for electronic device. This model allows the determination of suitable sizes and vibration levels of piezoelectric material for to generate an optimal energy supply for a mobile phone. Two types of vibration mode have been compared as a function of characteristics and piezoelectric ceramic sizes.

  12. Thermal diffusivity of lead-free solders measured by photothermal beam deflection. Effect of the surrounding media

    NASA Astrophysics Data System (ADS)

    Prior, P.; Gören, A.; Macedo, F.; Ferreira, J. A.; Soares, D.

    2005-06-01

    The search for lead-free alloys has increased markedly in recent years, as new environmental regulations have been approved. In particular, traditional solders used in the microelectronics industry are now being gradually replaced by new lead-free materials.

    In this work, we report measurements of the thermal properties of new Sn-based alloys with varying contents of Bi, Al, Ag and Cu, which have been developed as alternatives to the traditional lead-based solders used in microelectronic assemblies.

    Measurements of thermal diffusivity were performed using the photothermal beam deflection [1] (PBD) technique. We tested the influence of the surrounding media in the quality of the measurements. We found out that the sensitivity can be greatly improved using as surrounding medium fluids with very low thermal diffusivities and high refractive index change with temperature (partialn /partialT ).

    Although a more general physical characterisation of the lead-free alloys, concerning measurements of electrical resistivity, mechanical properties and structural characterisation, is still under way, these thermal measurements combined with information about the electrical resistivity show that these alloys can be good alternatives for soldering applications.

  13. Optimum shape control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.

  14. Problems with cryogenic operation of piezoelectric bending elements

    NASA Astrophysics Data System (ADS)

    Duffield, C. L.; Moreland, John; Fickett, F. R.

    1986-05-01

    Piezoelectric bimorphs constructed from lead titanate-zirconate (PZT) ceramic bonded to a brass sheet have been tested at cryogenic temperatures to determine their suitability for use in a low-temperature micropositioner. Experimental data are presented on bimorph sensitivity (displacement per volt) as a function of the number of temperature cycles. Results indicate that bimorphs of this type cannot be calibrated because of irreversible changes in the bending characteristics that occur while cycling from room temperature to 4 K.

  15. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  16. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  17. Calculating the performance of 1{endash}3 piezoelectric composites for hydrophone applications: An effective medium approach

    SciTech Connect

    Avellaneda, M.; Swart, P.J.

    1998-03-01

    A new method is presented for evaluating the performance of 1{endash}3 polymer/piezoelectric ceramic composites for hydrophone applications. The Poisson`s ratio effect, i.e., the enhancement of the hydrostatic performance which can be achieved by mixing piezoelectric ceramics with polymers, is studied in detail. Using an `effective medium` approach, algebraic expressions are derived for the composite hydrostatic charge coefficient d{sub h}, the hydrostatic figure of merit d{sub h}g{sub h}, and the hydrostatic electromechanical coupling coefficient k{sub h} in terms of the properties of the constituent materials, the ceramic volume fraction, and a microstructural parameter p. The high contrast in stiffness and dielectric constants existing between the two phases can be exploited to derive simple, geometry-independent approximations which explain quantitatively the Poisson`s ratio effect. It is demonstrated that the stiffness and the Poisson`s ratio of the polymer matrix play a crucial role in enhancing hydrophone performance. Using a differential scheme to model the parameter p, we evaluate d{sub h}, d{sub h}g{sub h}, and k{sub h} for polymer/piezoelectric ceramic systems at varying compositions. Several examples involving Pb(Zr,Ti)O{sub 3} and (Pb,Ca)TiO{sub 3} piezoelectric ceramics are given to illustrate the theory. {copyright} {ital 1998 Acoustical Society of America.}

  18. Chemical and structural effects on the high-temperature mechanical behavior of (1−x)(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-xBaTiO{sub 3} ceramics

    SciTech Connect

    Deluca, Marco; Picht, Gunnar; Hoffmann, Michael J.; Rechtenbach, Annett; Töpfer, Jörg; Schader, Florian H.; Webber, Kyle G.

    2015-04-07

    Bismuth sodium titanate–barium titanate [(1−x)(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-xBaTiO{sub 3}, NBT-100xBT] is one of the most well studied lead-free piezoelectric materials due in large part to the high field-induced strain attainable in compositions near the morphotropic phase boundary (x = 0.06). The BaTiO{sub 3}-rich side of the phase diagram, however, has not yet been as comprehensively studied, although it might be important for piezoelectric and positive temperature coefficient ceramic applications. In this work, we present a thorough study of BaTiO{sub 3}-rich NBT-100xBT by ferroelastic measurements, dielectric permittivity, X-ray diffraction, and Raman spectroscopy. We show that the high-temperature mechanical behavior, i.e., above the Curie temperature, T{sub C}, is influenced by local disorder, which appears also in pure BT. On the other hand, in NBT-100xBT (x < 1.0), lattice distortion, i.e., tetragonality, increases, and this impacts both the mechanical and dielectric properties. This increase in lattice distortion upon chemical substitution is counterintuitive by merely reasoning on the ionic size, and is due to the change in the A-O bond character induced by the Bi{sup 3+} electron lone pair, as indicated by Raman spectroscopy.

  19. Chemical and structural effects on the high-temperature mechanical behavior of (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Deluca, Marco; Picht, Gunnar; Hoffmann, Michael J.; Rechtenbach, Annett; Töpfer, Jörg; Schader, Florian H.; Webber, Kyle G.

    2015-04-01

    Bismuth sodium titanate-barium titanate [(1-x)(Na1/2Bi1/2)TiO3-xBaTiO3, NBT-100xBT] is one of the most well studied lead-free piezoelectric materials due in large part to the high field-induced strain attainable in compositions near the morphotropic phase boundary (x = 0.06). The BaTiO3-rich side of the phase diagram, however, has not yet been as comprehensively studied, although it might be important for piezoelectric and positive temperature coefficient ceramic applications. In this work, we present a thorough study of BaTiO3-rich NBT-100xBT by ferroelastic measurements, dielectric permittivity, X-ray diffraction, and Raman spectroscopy. We show that the high-temperature mechanical behavior, i.e., above the Curie temperature, TC, is influenced by local disorder, which appears also in pure BT. On the other hand, in NBT-100xBT (x < 1.0), lattice distortion, i.e., tetragonality, increases, and this impacts both the mechanical and dielectric properties. This increase in lattice distortion upon chemical substitution is counterintuitive by merely reasoning on the ionic size, and is due to the change in the A-O bond character induced by the Bi3+ electron lone pair, as indicated by Raman spectroscopy.

  20. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    SciTech Connect

    Bhardwaj, Sumit Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-04-24

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications.

  1. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  2. Piezoelectric allostery of protein.

    PubMed

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins. PMID:27575163

  3. Piezoelectric and pyroelectric polymers

    SciTech Connect

    Davis, G.T.

    1995-12-01

    Many polar polymers can be made to exhibit piezoelectric and pyroelectric properties by permanently aligning their dipoles in an electric field. The largest response is found in semi-crystalline polymers which exhibit a polar crystal phase which is amenable to reorientation in an applied electric field. The properties of poly(vinylidenefluoride), copolymers of vinyl idenefluoride and trifluoroethylene, nylon 7 and nylon 11 are compared. Polarization distribution across the thickness of such polymer films are discussed and novel techniques for the construction of piezoelectric bimorphs from the above copolymers are presented.

  4. Diaphragm Pump With Resonant Piezoelectric Drive

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to

  5. Direct piezoelectric responses of soft composite fiber mats

    NASA Astrophysics Data System (ADS)

    Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J. L.; Jákli, A.

    2013-04-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and polylactic acid (PLA) were found to have large (d33 ˜ 1 nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here, we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at several BT concentrations. A homemade testing apparatus provided AC stresses in the 50 Hz-1.5 kHz-frequency range. The piezoelectric constant d33 ˜ 0.5 nC/N and the compression modulus Y ˜ 104-105 Pa found are in agreement with the prior converse piezoelectric and compressibility measurements. Importantly, the direct piezoelectric signal is large enough to power a small LCD by simple finger tapping of a 0.15 mm thick 2-cm2 area mat. We propose using these mats in active Braille cells and in liquid crystal writing tablets.

  6. Induced piezoelectricity in isotropic biomaterial.

    PubMed

    Zimmerman, R L

    1976-12-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers. Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  7. Study of dielectric and piezoelectric properties of CNT reinforced PZT-PVA 0-3 composite

    NASA Astrophysics Data System (ADS)

    Vyas, Prince; Prajapat, Rampratap; Manmeeta, Saxena, Dhiraj

    2016-05-01

    Ferroelectric ceramic/polymer composites have the compliance of polymers which overcome the problems of brittleness in ceramics. By imbedding piezoelectric ceramic powder into a polymer matrix, 0-3 composites with good mechanical properties and high dielectric breakdown strength can be developed. The obtained composites of 0-3 connectivity exhibit the piezoelectric properties of ceramics and flexibility, strength and lightness of polymer. These composites can be used in vibration sensing and transducer applications specially as piezoelectric sensors. A potential way to improve piezoelectric& dielectric properties of theses composites is by inclusion of another conductive phase in these composites as reported in the literature. In present work, we prepared PZT-PVA 0-3 composites with 60% ceramic volume fraction reinforced with CNTs with volume ranging from 0 to 1.5 vol%. These CNT reinforced composites were obtained using hot press method with thickness of 200 µm having 0-3 conductivity. These composites were poled applying DC voltage. Dielectric properties of these samples were obtained in a wide frequency range (100 Hz to 1 Mhz) at room temperature. The piezoelectric properties of these composites were analyzed by measuring piezoelectric charge constants (d33). The dielectric and piezoelectric properties of these composites were studied as a function of CNT volume content. In these reinforced composites, CNTs act as a conductive filler dispersed in the matrix which in turn facilitates poling and results in an increase of the piezoelectric properties of the composite due to formation of percolation path through the composites. With a CNT content of 0.3 vol.% in PZT/PVA/CNTs, an increase of 61.3 % was observed in piezoelectric strain factors (d33). In these CNT reinforced composites, a substantial increase (approx. 67%) was also observed in dielectric constant and approximately 89% increase was observed in dielectric loss factor. Results so obtained are in the good

  8. Relaxor Behavior and Dielectric Relaxation in Lead-Free Solid Solutions of (1 - x)(Bi0.5Na0.5TiO3)- x(SrNb2O6)

    NASA Astrophysics Data System (ADS)

    Bajpai, P. K.; Singh, K. N.; Tamrakar, Preeti

    2016-02-01

    Lead-free compositions (1 - x) (Bi0.5Na0.5TiO3)- x(SrNb2O6) (BNT-SN) are synthesized by a simple solid state reaction route. SN diffuse in distorted perovskite BNT for low concentrations of SN ( x ≤ 0.03) and are stabilized in rhombohedral perovskite phase with experimentally observed relative density of the ceramics >92%. A temperature-dependent dielectric response exhibits a broad dielectric peak that shows frequency-dependent shifts towards higher temperatures reflecting typical relaxor behavior. Modified Curie-Weiss law and Lorentz-type empirical relationships are used to fit the dielectric data that exhibit almost complete diffuse phase transition characteristics. In addition, significant dielectric dispersion is observed in a low-frequency regime in both components of the dielectric response and a small dielectric relaxation peak is observed. Cole-Cole plots indicate the poly-dispersive nature of the dielectric relaxation.

  9. Citrate complexing sol-gel process of lead-free (K,Na)NbO3 ferroelectric films

    NASA Astrophysics Data System (ADS)

    Yao, Linlin; Zhu, Kongjun

    2016-05-01

    The citrate complexing sol-gel process to fabricate lead-free (K,Na)NbO3 ferroelectric thin films was studied. Soluble niobium source of niobium-citric acid (Nb-CA) solution was utilized as a raw material to synthesize (K,Na)NbO3 thin films, by pyrolyzing at 450-550∘C and annealing at 650∘C. The film pyrolyzed at 450∘C shows poor crystallization with porous morphology, whereas the film pyrolyzed at 550∘C appear to be well-crystallized and denser, and the ferroelectricity was also proved by the P-E hysteresis loop measurement.

  10. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    SciTech Connect

    Srivastava, Geetika; Umarji, A. M.; Maglione, Mario

    2012-12-15

    Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  11. Effective properties analysis of a piezoelectric composite including conducting phase using a numerical homogenization approach

    NASA Astrophysics Data System (ADS)

    Zhang, Hongming; He, Xiaodong; Wang, Rongguo; Hao, Lifeng

    2011-11-01

    Piezoelectric composites find increasing applications in the field of smart materials, mainly as sensors and transducer. However, accurately predicting its performance is still a challenging task. In this paper, we analyzed the electromechanical properties of a three-phase piezoelectric composite with titanate piezoelectric ceramics powders (PZT-5H) and carbon black embedded in an epoxy matrix by a finite element numerical method. A homogenizing micromechanical model is applied, which is capable to provide various property parameters of the piezoelectric composite, such as dielectric constant, piezoelectric constant. The calculation verifies that the electric network formed by the conducting-phase carbon black(CB) can effectively improve the electromechanical performance of the piezoelectric composites. The effect of different content of the carbon black is also taken in consideration in the simulation. A good fit between the calculation and the experimental results clearly shows that the homogenizing modeling is able to accurately predict the electromechanical properties of the three-phase piezoelectric composite. This work will contribute to optimize the material function design and analyze the effect of conduct phase on the piezoelectric composites.

  12. Effective properties analysis of a piezoelectric composite including conducting phase using a numerical homogenization approach

    NASA Astrophysics Data System (ADS)

    Zhang, Hongming; He, Xiaodong; Wang, Rongguo; Hao, Lifeng

    2012-04-01

    Piezoelectric composites find increasing applications in the field of smart materials, mainly as sensors and transducer. However, accurately predicting its performance is still a challenging task. In this paper, we analyzed the electromechanical properties of a three-phase piezoelectric composite with titanate piezoelectric ceramics powders (PZT-5H) and carbon black embedded in an epoxy matrix by a finite element numerical method. A homogenizing micromechanical model is applied, which is capable to provide various property parameters of the piezoelectric composite, such as dielectric constant, piezoelectric constant. The calculation verifies that the electric network formed by the conducting-phase carbon black(CB) can effectively improve the electromechanical performance of the piezoelectric composites. The effect of different content of the carbon black is also taken in consideration in the simulation. A good fit between the calculation and the experimental results clearly shows that the homogenizing modeling is able to accurately predict the electromechanical properties of the three-phase piezoelectric composite. This work will contribute to optimize the material function design and analyze the effect of conduct phase on the piezoelectric composites.

  13. Finite element modeling of composite piezoelectric structures with MSC/NASTRAN

    NASA Astrophysics Data System (ADS)

    Freed, Brian D.; Babuska, Vit

    1997-06-01

    Techniques for modeling structures containing piezoelectric ceramics with MSC/NASTRAN are presented. Unlike other finite element programs such as ANSYS and ABAQUS, MSC/NASTRAN offers no piezoelectric coupled-field elements with which to model smart structures directly. Rather, the analogy between piezoelectric strain and thermally induced strain, which allows temperature change to model piezoelectric voltage actuation, must be used. The application and limitations of this method are discussed. To overcome some of the limitations in modeling piezoelectric effects with the thermal analogy, one and two dimensional finite elements which include piezoelectric coupling were developed and integrated into MSC/NASTRAN as dummy elements. The dummy elements offer an alternative method for modeling piezoelectric structural members. As actuators, the elements support charge and voltage actuation in both static and dynamic analyses. When used as sensors, both strain and strain rate outputs are supported. The elements can be used for modal, transient, and frequency response solutions and facilitate combined thermal and piezoelectric loading.

  14. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  15. Enhanced active piezoelectric 0-3 nanocomposites fabricated through electrospun nanowires

    SciTech Connect

    Feenstra, Joel; Sodano, Henry A.

    2008-06-15

    The use of monolithic piezoceramic materials in sensing and actuation applications has become quite common over the past decade. However, these materials have several properties that limit their application in practical systems. These materials are very brittle due to the ceramic nature of the monolithic material, making them vulnerable to accidental breakage during handling and bonding procedures. In addition, they have very poor ability to conform to curved surfaces and result in large add-on mass associated with using a typically lead-based ceramic. These limitations have motivated the development of alternative methods of applying the piezoceramic material, including piezoceramic fiber composites and piezoelectric 0-3 composites (also known as piezoelectric paint). Piezoelectric paint is desirable because it can be spayed or painted on and can be used with abnormal surfaces. However, the piezoelectric paint developed in prior studies has resulted in low coupling, limiting its application. In order to increase the coupling of the piezoelectric paint, this effort has investigated the use of piezoelectric nanowires rather than spherical piezoelectric particle, which are difficult to strain when embedded in a polymer matrix. The piezoceramic wires were electrospun from a barium titanate (BaTiO{sub 3}) sol gel to produce fibers with 500-1000 nm diameters and subsequently calcinated to acquire perovskite BaTiO{sub 3}. An active nanocomposite paint was formed using the resulting piezoelectric wires and was compared to the same paint with piezoelectric nanoparticles. The results show that the piezoceramic wires produce 0-3 nanocomposites with as high as 300% increase in electromechanical coupling.

  16. Field-induced phase transition and relaxor character in submicrometer-structured lead-free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoceramics at the morphotropic phase boundary.

    PubMed

    Pardo, Lorena; Mercadelli, Elisa; García, Alvaro; Brebøl, Klaus; Galassi, Carmen

    2011-09-01

    Submicrometer-structured (Bi(0.5)Na(0.5))(0.94)Ba(0.06)TiO(3) ceramics ((G) < 720 nm) from nanopowders were studied. The real part of the optimum room temperature set of piezoelectric coefficients obtained from resonances of the BNBT6 dense ceramic disks and shear plates [d(31) = (-37 + 1.33i) pC·N(-1), d(15) = (158.3 - 8.31i) pC·N(-1), k(t) = 40.4%, k(p) = 26.8%, and k(15) = 40.2%] and d(33) (148 pC·N(-1)) can be compared with the reported properties for coarse-grained ceramics. Shear resonance of thickness-poled plates is observed at T = 140°C. Permittivity versus temperature curves of poled samples show relaxor character up to T(i) = 230°C on heating and T(i) = 210°C on cooling of the depoled samples. The phase transition from the room-temperature ferroelectric (FE) to a low-temperature non-polar at zero field (LTNPZF) phase can be observed as a sharp jump in ε(δ)(33)'(T) curves or, as the degree of poling decreases, as a soft change of slope of the curves at T(FE-LTNPZF) = T(d) = 100°C. This dielectric anomaly is not observed on cooling of depoled samples, because the FE phase is field-induced. The observed macroscopic piezoelectric activity above T(d) is a consequence of the coexistence of nanoregions of the FE phase in the interval between T(FE-LTNPZF) and T(i). PMID:21937323

  17. Dielectric spectroscopy of Dy{sub 2}O{sub 3} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} piezoelectric ceramics

    SciTech Connect

    Mahesh, P. Subhash, T. Pamu, D.

    2014-04-24

    We report the dielectric properties of (K{sub 0.5}Na{sub 0.5})NbO{sub 3} ceramics doped with x wt% of Dy{sub 2}O{sub 3} (x= 0.0-1.5 wt%) using the broadband dielectric spectroscopy. The X-ray diffraction studies showed the formation of perovskite structure signifying that Dy{sub 2}O{sub 3} diffuse into the KNN lattice. Samples doped with x > 0.5 wt% exhibit smaller grain size and lower relative densities. The dielectric properties of KNN ceramics doped with Dy{sub 2}O{sub 3} are enhanced by increasing the Dy{sup 3+} content; among the compositions studied, x = 0.5 wt% exhibited the highest dielectric constant and lowest loss at 1MHz over the temperature range of 30°C to 400°C. All the samples exhibit maximum dielectric constant at the Curie temperature (∼ 326°C) and a small peak in the dielectric constant at around 165°C is due to a structural phase transition.

  18. Synthesis and characterization of lead-free tin silver nanosolders and their application to halogen free nanosolder pastes

    NASA Astrophysics Data System (ADS)

    Wernicki, Evan

    Solder paste is a key material used in attaching electronic components to printed circuit boards (PCBs). Commonly used lead-based solders, such as eutectic Sn/37Pb, are currently being replaced by lead-free alloy materials due to health and environmental concerns associated with lead. Many solder pastes, both lead-containing and lead-free, contain halogens which act as activators to remove surface oxide and enhance surface wetting, posing further environmental concern from the halogen species. Difficulties in obtaining reliable joints can occur since lead-free solder material candidates have higher melting temperatures (30-50 °C) than that of lead-based solders. Differences in material properties between the numerous materials used in assembly and packaging processes can lead to component damage during manufacturing. Furthermore, designs that include more electrical interconnects in smaller areas give rise for the need for new materials to allow this trend to continue. A surfactant-assisted chemical reduction method was used to synthesize Sn/Ag alloy nanoparticles with a target composition range of 3.5-5 wt% Ag that served as the lead-free solder material within a nanosolder paste. Structure and size characterization via SEM and TEM showed Sn-Ag nanosolders size average approximately 19 nm. Differential scanning calorimetry (DSC) measurements of the nanosolder samples containing 4.5 wt% Ag showed an endothermic peak at 222.5 °C and an onset of 219.2 °C, indicating up to 17.5 °C melting temperature depression when compared to the bulk liquidus value of 240 °C. Composition of the nanosolder material was confirmed using energy dispersive x-ray spectroscopy (EDS) and structures formed were analyzed via x-ray diffraction (XRD). Both halogen-free and halogen-containing flux materials were combined with the nanosolder material, respectively, with varying preparation parameters to form a design of experiments (DoE) for nanosolder paste preparation. Solder pastes

  19. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  20. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  1. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  2. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  3. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  4. Black branes as piezoelectrics.

    PubMed

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six. PMID:23368298

  5. Piezoelectrically enhanced photocathode

    NASA Technical Reports Server (NTRS)

    Beach, Robert A. (Inventor); Nikzad, Shouleh (Inventor); Strittmatter, Robert P. (Inventor); Bell, Lloyd Douglas (Inventor)

    2009-01-01

    A photocathode, for generating electrons in response to incident photons in a photodetector, includes a base layer having a first lattice structure and an active layer having a second lattice structure and epitaxially formed on the base layer, the first and second lattice structures being sufficiently different to create a strain in the active layer with a corresponding piezoelectrically induced polarization field in the active layer, the active layer having a band gap energy corresponding to a desired photon energy.

  6. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  7. Piezoelectric dosimeter charger

    SciTech Connect

    Kronenberg, S.

    1981-01-27

    Disclosed is a small portable extremely rugged charger for existing pocket-sized type radiation dosimeters. The charger is comprised of a rectangularly shaped housing which contains a piezoelectric charging circuit which is manually operated by a handle to produce a relatively high charging voltage. The charging voltage is coupled to a charging post mounted on a removable cover which is adapted to be selectively rotated so that the underside of the charging post is exposed to light from one of two light windows in the housing whereupon the dosimeter scale may be viewed by either direct or reflected light from any source available. The piezoelectric charging circuit is comprised of a pair of axially aligned cylinders of piezoelectric material mounted in a fulcrum type frame having a beam lever element in contact with one of the cylinders. A spring bias element is connected to the beam lever element and is actuated by a cam attached to the handle which when rotated acts upon the spring to cause an axial compressional force to be applied to the cylinders which thereby produce the required charging voltage.

  8. Piezoelectric wind turbine

    NASA Astrophysics Data System (ADS)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  9. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Ahn, Yoonho; Jang, Joonkyung; Son, Jong Yeog

    2016-03-01

    CaBi2Nb2O9 (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm2 (2Pr ˜9.6 μC/cm2), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  10. Reduced risk of acute poisoning in Australian cattle from used motor oils after introduction of lead-free petrol.

    PubMed

    Burren, B G; Reichmann, K G; McKenzie, R A

    2010-06-01

    Lead (Pb) poisoning of cattle has been relatively common in Australia and sump oil has been identified as an important cause of Pb toxicity for cattle because they seem to have a tendency to drink it. Lead-free petrol has been available in Australia since 1975, so the aim of this study was to assess the current risk to cattle from drinking used automotive oils. Sump or gear box oil was collected from 56 vehicles being serviced. The low levels of Pb found suggest that the removal of leaded petrol from the Australian market as a public health measure has benefited cattle by eliminating the risk of acute poisoning from used engine oil. PMID:20553575

  11. Lead-free solder

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2001-05-15

    A Sn--Ag--Cu eutectic alloy is modified with one or more low level and low cost alloy additions to enhance high temperature microstructural stability and thermal-mechanical fatigue strength without decreasing solderability. Purposeful fourth or fifth element additions in the collective amount not exceeding about 1 weight % (wt. %) are added to Sn--Ag--Cu eutectic solder alloy based on the ternary eutectic Sn--4.7%Ag--1.7%Cu (wt. %) and are selected from the group consisting essentially of Ni, Fe, and like-acting elements as modifiers of the intermetallic interface between the solder and substrate to improve high temperature solder joint microstructural stability and solder joint thermal-mechanical fatigue strength.

  12. Mechanical and Physical Properties of In-Zn-Ga Lead-Free Solder Alloy for Low Energy Consumption

    NASA Astrophysics Data System (ADS)

    Ervina Efzan, M. N.; Nur Faziera, M. N.; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Due to the demand in the use of electronics devices in industry, the usage of solder connections has increased. Concerning with the toxicity of lead in Sn-37Pb solder alloy, developing lead free solder alloy with low melting temperature is one of the most important issues in electronic industry. Previously, researchers found out that the most promising candidate of lead free solder alloy is Sn-3.0Ag-0.5Cu (SAC). However, the melting temperature of this solder alloy is 217°C, 34°C higher than Sn-37Pb. This can lead to high energy consumption in electronic industry. In this paper, In-Zn-Ga solder alloy was investigated as a potential candidate replacing SAC. This study covers on the physical and mechanical properties of the solder alloy. Differential Scanning Calorimetry (DSC) testing shows that this solder alloy gave low melting temperature as low as 141.31°C. The addition of Ga in In-Zn solder alloy lowered the melting temperature compared to SAC and Sn-37Pb. From coefficient of thermal expansion (CTE) analysis, the In-Zn-Ga solder alloy gives good expansion properties and able to avoid the mismatch between the solder and copper substrates. The density of In-Zn-Ga solder alloy is 6.801g/cm3, lower than SAC and Sn-37Pb. For the strength, single lap shear testing was conducted on the In-Zn-Ga solder alloy and the results is near to the strength of SAC.

  13. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  14. Wavefront conjugation using electron-gun-controlled piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Nelson, George C.; Main, John A.; Martin, Jeffrey W.

    2000-07-01

    Current adaptive optics designs often rely upon multiple actuators to mechanically deform mirrored surfaces. The spatial resolution of control is dependent upon the physical size of these actuators and the number of actuators present. Piezoelectric materials may be used for actuation however the classical control methods of these materials also rely on discrete areas of actuation and require lead wiring for each electrode, patch, or stack utilized. Electron gun control of piezoelectric materials eliminates the need for discrete, segmented electrodes and their associated lead wiring. This method also holds the potential for much finer control resolution since the restraining parameter is beam size. Lightweight piezoelectric ceramics may possibly be used as wavefront conjugating mirrors. Piezo-ceramic plates can be actuated with an electron gun and a single distributed electrode of optical quality. The electron gun functions as a pointing device while varying the potential, referred to as backpressure, of the single electrode controls the magnitude of actuation. By using this method, future corrective optics may significantly surpass current design performance without significantly increasing system complexity.

  15. Ceramic synthesis of 0.08BiGaO3–0.90BaTiO3–0.02LiNbO3 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Hui, Jin; Yong, Li; Mou-Sheng, Song; Lin, Chen; Xiao-Peng, Jia; Hong-An, Ma

    2016-07-01

    In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100–1200 °C. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).

  16. A very promising piezoelectric property of Ta{sub 2}O{sub 5} thin films. II: Birefringence and piezoelectricity

    SciTech Connect

    Audier, M.; Chenevier, B.; Roussel, H.; Vincent, L.; Pena, A.

    2011-08-15

    Birefringent and piezoelectric properties of Ta{sub 2}O{sub 5} ceramic thin films of monoclinic and trigonal structures were analyzed. The birefringence, observed by reflected polarized light microscopy, yields information on thin film microstructures, crystal shapes and sizes and on crystallographic orientations of grains of trigonal structure. Such an information was considered for investigating piezoelectric properties by laser Doppler vibrometry and by piezoresponse force microscopy. The vibration velocity was measured by applying an oscillating electric field between electrodes on both sides of a Ta{sub 2}O{sub 5} film deposited on a Si substrate which was pasted on an isolating mica sheet. In this case, it is shown that the vibration velocity results were not only from a converse piezoelectric effect, proportional to the voltage, but also from the Coulomb force, proportional to the square of the voltage. A huge piezoelectric strain effect, up to 7.6%, is found in the case of Ta{sub 2}O{sub 5} of trigonal structure. From an estimation of the electrical field through the Ta{sub 2}O{sub 5} thin film, this strain likely corresponds to a very high longitudinal coefficient d{sub 33} of several thousand picometers. Results obtained by piezoresponse force microscopy show that trigonal grains exhibit a polarization at zero field, which is probably due to stress caused expansion in the transition monoclinic-trigonal, presented in a previous article (part I). - Graphical abstract: Image of cross-polarized optical microscopy showing grains of trigonal structure embedded in the monoclinic phase (on the left); (a) mounting of the sample for Laser Doppler Vibrometry, sample constituted of several layers and its equivalent electrical circuit; (b) longitudinal displacements due to converse piezoelectric and Coulomb effects and corresponding piezoelectric strain-U{sub app.}. hystereses. Highlights: > A new Ta{sub 2}O{sub 5} trigonal phase is shown to be birefringent and

  17. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  18. Integration of bulk piezoelectric materials into microsystems

    NASA Astrophysics Data System (ADS)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with <7mW power consumption. The close match between test data and simulation results suggests that the piezoelectric properties of bulk-PZT5A are mostly preserved without any necessity of repolarization. Three generations of resonant vibration energy harvesters are designed, simulated and fabricated to demonstrate the competitive performance of the new fabrication process over traditional piezoelectric deposition systems. An unpackaged PZT/Si unimorph harvester with 27mm3 active device volume produces up to 205microW at 1.5g/154Hz. The prototypes have achieved the highest figure-of-merits (normalized

  19. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  20. Piezoelectric softening in ferroelectrics: Ferroelectric versus antiferroelectric PbZr1 -xTixO3

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Craciun, F.; Trequattrini, F.; Galassi, C.

    2016-05-01

    The traditional derivation of the elastic anomalies associated with ferroelectric (FE) phase transitions in the framework of the Landau theory is combined with the piezoelectric constitutive relations instead of being explicitly carried out with a definite expression of the FE part of the free energy. In this manner it is shown that the softening within the FE phase is of electrostrictive and hence piezoelectric origin. Such a piezoelectric softening may be canceled by the better known piezoelectric stiffening, when the piezoelectric charges formed during the vibration are accompanied by the depolarization field, as for example in Brillouin scattering experiments. It is therefore possible to evaluate the average piezoelectric coupling from the usual elastic measurements of unpoled ceramics, where the piezoelectric stiffening does not occur. As experimental validation, we present new measurements on Zr-rich lead zirconate titanate (PZT), where the FE phase transforms into antiferroelectric on cooling or doping with La, and a comparison of existing measurements made on FE PZT with low frequency and Brillouin scattering experiments.