Science.gov

Sample records for lead-scintillating fiber calorimeters

  1. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sciascia, B.; Sirghi, F.

    2009-12-01

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  2. The AMS-02 lead-scintillating fibres Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Basara, L.; Bigongiari, G.; Bosi, F.; Brun, P.; Cadoux, F.; Cervelli, F.; Chambert, V.; Chen, G.; Chen, G. M.; Chen, H. S.; Coignet, G.; Cougoulat, G.; Di Falco, S.; Dubois, J. M.; Elles, S.; Falchini, E.; Fiasson, A.; Fougeron, D.; Fouque, N.; Galeotti, S.; Gallucci, G.; Gherarducci, F.; Girard, L.; Giuseppe, F.; Goy, C.; Hermel, R.; Incagli, M.; Jacquemier, J.; Journet, L.; Kossakowski, R.; Lepareur, V.; Li, Z. H.; Lieunard, B.; Lomtadze, T.; Lu, Y. S.; Maestro, P.; Magazzù, C.; Maire, M.; Orsini, A.; Paniccia, M.; Pedreschi, E.; Peltier, F.; Piendibene, M.; Pilo, F.; Pochon, J.; Rambure, T.; Rosier-Lees, S.; Spinella, F.; Tang, X. W.; Tassan-Viol, J.; Tazzioli, A.; Vannini, C.; Vialle, J. P.; Zhuang, H. L.

    2013-06-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a fine grained lead-scintillating fibres sampling calorimeter that allows for a precise three-dimensional imaging of the longitudinal and lateral shower development. It provides a high (≥106) electron/hadron discrimination with the other AMS-02 detectors [1] and good energy resolution. The calorimeter also provides a standalone photon trigger capability to AMS-02. The mechanical assembly was realized to ensure minimum weight, still supporting the intrinsically heavy calorimeter during launch. ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from GeV up to TeV. A full-scale flight-like model was tested using electrons and proton beams with energies ranging from 6 to 250 GeV.

  3. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  4. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given. {copyright} {ital 1998 American Institute of Physics.}

  5. Integrating amplifiers for PHENIX lead-glass and lead-scintillator calorimeters

    SciTech Connect

    Wintenberg, A.L.; Simpson, M.L.; Britton, C.L. Jr.; Palmer, R.L.; Jackson, R.G.

    1995-12-31

    Two types of integrating amplifier systems have been developed for use with lead-glass and lead-scintillator calorimeters with photomultiplier tube readout. Requirements for the amplifier system include termination of the line from the photomultiplier, compact size and low power dissipation to allow multiple channels per chip, dual range outputs producing 10-bit accuracy over a 14-bit dynamic range, rms noise levels of one LSB or less, and compatibility with timing filter amplifiers, tower sum circuits for triggering and calibration circuits to be built on the same integrated circuit (IC). Advantages and disadvantages of an active integrator system are compared and contrasted to those of a passive integrator-based system. In addition, details of the designs and results from prototype devices including an 8-channel active integrator IC fabricated in 1.2 {micro}m Orbit CMOS are presented.

  6. Integrated constant-fraction discriminator shaping techniques for the PHENIX lead-scintillator calorimeter

    SciTech Connect

    Jackson, R.G.; Blalock, T.V.; Simpson, M.L.; Wintenberg, A.L.; Young, G.R.

    1996-12-31

    The suitability of several on-chip constant-fraction discriminator (CFD) shaping methods for use in the multichannel PHENIX Lead- Scintillator detector has been investigated. Three CFD circuits utilizing a distributed R-C delay-line, a lumped-element R-C delay- line and the Nowlin shaping method have been realized in a standard 1. 2-{mu} n- well CMOS process. A CFD using ideal delay-line shaping was also studied for comparison. Time walk for 5 ns risetime input signals over a dynamic range of - 2 V to - 20 mV was less than {+-} 175 ps, {+-} 150 ps, {+-} 150, and {+-} 185 ps while worst case rms timing jitter measured 85 ps, 90 ps, 100 ps, and 65 ps, respectively, for the four methods mentioned above. Area requirements for the three candidate methods tested including the fraction circuit were 172 {mu} X 70 {mu}, 160 {mu} X 65 {mu}, 179 {mu} X 53 g, respectively. The fraction circuit area for the external delay-line circuit was 67 {mu} X 65 {mu}. Each shaping method studied consumed no power from the dc supply.

  7. Cerenkov fiber sampling calorimeters

    SciTech Connect

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R. ); Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W. ); Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E. )

    1994-08-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1[degree]--7[degree]). The 7 [lambda] deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented.

  8. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  9. Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Corradi, G.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Lucà, A.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sarra, I.; Sciascia, B.; Sirghi, F.; Tagnani, D.

    2010-05-01

    We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters.

  10. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  11. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  12. The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Benson, C. M.; Berry, F. A.; Fountain, W. F.; Gregory, J. C.; Johnson, J. S.; Munroe, R. B.; Parnell, T. A.; Takahashi, Y.; Watts, J. W.

    1999-01-01

    SOFCAL is a balloon-borne instrument designed to measure the P-He cosmic ray spectra from about 200 GeV/amu - 20 TeV/amu. SOFCAL uses a thin lead and scintillating-fiber ionization calorimeter to measure the cascades produced by cosmic rays interacting in the hybrid detector system. Above the fiber calorimeter is an emulsion chamber that provides the interaction target, primary particle identification and in-flight energy calibration for the scintillating fiber data. The energy measurement technique and its calibration are described, and the present results from the analysis of a 1 day balloon flight will be presented.

  13. Development of a scintillating optical fiber ionization calorimeter

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.

    1990-01-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.

  14. Summary talk on fiber tower calorimeter for the scintillation calorimeter subgroups

    SciTech Connect

    White, A.P.; Walker, J.K.; Johnson, C.; Wahl, H.; Gabriel, T.

    1989-01-01

    We present here a new calorimeter design based on small scintillator tiles, lead absorber and wavelength shifting fiber readout. We have addressed all the major issues in SSC calorimetry and have developed a design with many advantageous features. It has been well demonstrated that the best resolution is obtained for a 'compensated' calorimeter. It is also well known how such compensation may be achieved by a suitable choice of active and passive materials and their relative thickness. One such choice is that of lead and scintillator for which the best thickness ratio is 4:1. This selection has been used in the development of the so-called spaghetti calorimeter (SPACAL) discussed at this workshop. The relative merits of this and many other designs have been the subject of much discussion at SSC workshops from which a number of critical issues have emerged for each design. In the present paper, we have addressed the issues raised in the SPACAL design and proposed an alternative, improved design. The SPACAL represents a significant step forward in calorimeter design, but there are always areas which can be improved in any design when it is subjected to detailed study. Specifically we have considered the areas of energy resolution, channeling, projective towers/calibration, longitudinal segmentation, and radiation sensitivity. We will now discuss each of these areas in turn. 5 refs., 9 figs.

  15. Tungsten Scintillating Fibers Electromagnetic Calorimeters for sPHENIX upgrade

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Loggins, Vera; Phipps, Michael; Sickles, Anne

    2015-10-01

    sPHENIX, a planned new detector at RHIC, features electromagnetic and hadronic calorimetry that covers | η| < 1.1 and φ = 2 π. The large acceptance calorimeter design is optimized for the study of jets in heavy ion collisions. The design includes a tungsten fiber EmCal that is made out of a tower array of plastic scintillating fiber embedded inside a mixture of tungsten powder and epoxy. For this calorimeter, silicon photomultipliers will be attached at the end of the module to convert scintillated optical photons into electrical signals. The sPHENIX group at Illinois is currently making samples of these modules to study the production process and achievable density. In addition, we have set up a silicon photomultiplier read out test system which will be used to evaluate the module performance. sPHENIX collaboration and Brookhaven National Laboratory.

  16. Forward hadron calorimeter for measurements of projectile spectators in heavy-ion experiment

    SciTech Connect

    Golubeva, M. B. Guber, F. F. Ivashkin, A. P. Kurepin, A. B. Marin, V. N. Sadovsky, A. S. Petukhov, O. A.

    2012-06-15

    The construction and performance of a modular hadron calorimeter for NA61 experiment at CERN are described. The calorimeter consists of individual lead/scintillator sandwich modules with the sampling satisfying the compensating condition. The light from the individual scintillator tiles is captured and transported with the WLS-fibers embedded in the scintillator grooves. The light readout is done by avalanche micro-pixel photodiodes. The construction ensures a fine transverse granulation of the calorimeter and a longitudinal segmentation of each module in 10 independent sections. The results of beam tests of the calorimeter prototype are presented.

  17. Radiation hardness of 3HF-tile/O2-WLS-fiber calorimeter

    SciTech Connect

    Han, S.W.; Hu, L.D.; Liu, N.Z.

    1993-11-01

    The radiation hardness of a 3HF-tile/O2-WLS-fiber calorimeter with two different tile/fiber patterns has been studied. Two calorimeter modules were irradiated up to 10 Mrad with the BEPC 1.3 GeV electron beam. The radiation damage of these modules is compared with our previous measurements from SCSN81-tile/BCF91A-WLS-fiber modules. The longitudinal damage profiles are fitted as a function of depth.

  18. A scintillating tile/fiber system for the CDF plug upgrade EM calorimeter

    NASA Astrophysics Data System (ADS)

    Aota, S.; Asakawa, T.; Hara, K.; Hayashi, E.; Kim, S.; Kondo, K.; Kuwabara, T.; Miyashita, S.; Nakada, H.; Nakano, I.; Seiya, Y.; Takikawa, K.; Toyoda, H.; Uchida, T.; Yasuoka, K.; Mishina, M.; Iwai, J.; Albrow, M.; Freeman, J.; Limon, P. J.

    1995-01-01

    The plug calorimeter of the Collider Detector at Fermilab (CDF) [1] will be upgraded, replacing the existing gas calorimeter by a scintillating tile/fiber calorimeter. We have completed R&D for the CDF plug upgrade EM calorimeter. We describe the results of the R&D leading to the final design of the tile/fiber system for the calorimeter. Kuraray SCSN38, Kuraray Y11 and PET film (E65) were chosen as materials for scintillating tiles, wavelength shifting (WLS) fibers and a surface reflector on tiles, respectively, in view of obtaining large light yield and uniform response from a tile/fiber system. We decided fiber groove path in a tile, groove cross-sectional shape and groove depth for each tile to get uniform response from a tile/fiber. For the tile/fiber system of the final design, the average light yield was larger than 3.0 photoelectrons per minimum ionizing particle (MIP), the response uniformity in a tile was less than 2.5% and a total cross talk from a tile to the adjacent tiles was less than 2.0%. These results satisfied our requirements.

  19. The electromagnetic performance of the RD52 fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Cascella, M.; Cei, F.; De Pedis, D.; Ferrari, R.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Moggi, A.; Pinci, D.; Policicchio, A.; Saraiva, J. G.; Scuri, F.; Sill, A.; Venturelli, T.; Wigmans, R.

    2014-01-01

    The RD52 calorimeter is an instrument intended to detect both electromagnetic and hadronic showers, as well as muons, using the dual-readout principle. Scintillation and Cherenkov light provide the two signals which, in combination, allow for superior hadronic performance. In this paper, we report on the electromagnetic performance of this instrument, and compare this performance with that of other calorimeters that were constructed with similar goals in mind.

  20. Barrel Calorimeter for the Hall D Spectrometer

    SciTech Connect

    David Urner

    1998-06-01

    The barrel calorimeter for the hall D spectrometer is discussed for standard pointing geometry and a parallel geometry using Lead Scintillating fibres as active material. A comparison with a CSI spectrometer is shown.

  1. The use of WLS fibers in a hadronic calorimeter for the HyperCP experiment

    SciTech Connect

    Durandet, C.; Dukes, E.C.; Holmstrom, T.; Huang, M.; Nelson, K.S.; Rajaram, D.; Saleh, N.; Tzamouranis, Y.; Crisler, M.

    1998-11-01

    Preliminary results are presented on the operational aspects of an iron-scintillator sampling hadronic calorimeter used in the HyperCP experiment at Fermilab during the 1996-1997 fixed target run. The calorimeter used wavelength shifter fibers for light collection from scintillator sheets. Details of how the 2 m{times}2 mm fibers were polished, sputtered, and used for the readout are discussed. The average reflectivity of the sputtered fibers was 0.85{plus_minus}0.05, and the average attenuation lengths were 3.48{plus_minus}0.34 m. The calorimeter was designed to trigger on the proton (anti-proton) from {Lambda}({bar {Lambda}}) decays, suppressing triggers from secondary interactions and background muons. {copyright} {ital 1998 American Institute of Physics.}

  2. Performance of the DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1996-06-01

    The DELPHI STIC detector is a lead-scintillator sampling calorimeter with wave length shifting optical fibers used for light collection. The main goal of the calorimeter at LEP100 is to measure the luminosity with an accuracy better than 0.1%. The detector has been in operation since the 1994 LEP run. Presented here is the performance measured during the 1994--1995 LEP runs, with the emphasis on the achieved energy and space resolution, the long-term stability and the efficiency of the detector. The new bunchtrains mode of LEP requires a rather sophisticated trigger and timing scheme which is also presented. To control the trigger efficiency and stability of the calorimeter channels, a LED-based monitoring system has been developed.

  3. Measurement of the neutron detection efficiency of a 80% absorber-20% scintillating fibers calorimeter

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Corradi, G.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Lucà, A.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A. V.; Sarra, I.; Sciascia, B.; Sirghi, F.; Tagnani, D.

    2011-01-01

    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.

  4. A Scintillator tile-fiber preshower detector for the CDF Central Calorimeter

    SciTech Connect

    S. Lami

    2004-08-12

    The front face of the CDF central calorimeter is being equipped with a new Preshower detector, based on scintillator tiles read out by WLS fibers. A light yield of about 40 pe/MIP at the tile exit was obtained, exceeding the design requirements.

  5. Measurement of the detection efficiency of the KLOE calorimeter for neutrons between 22 and 174 MeV

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Battistoni, G.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; de Zorzi, G.; di Domenico, A.; di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sala, P.; Sciascia, B.; Sirghi, F.; Klone Collaboration

    2009-01-01

    A prototype of the high-sampling lead-scintillating fiber KLOE calorimeter has been exposed to neutron beams of 21, 46 and 174 MeV, provided by the The Svedberg Laboratory, Uppsala, to test its neutron detection efficiency. The measurement of the neutron detection efficiency of an NE110 scintillator provided a reference calibration. The measured efficiency is larger than what expected considering the scintillator thickness of the KLOE prototype only. This result proves the existence of a contribution from the passive material to neutron detection efficiency, in a high-sampling calorimeter configuration.

  6. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    SciTech Connect

    Beattie, T D; Fischer, A P; Krueger, S T; Lolos, G J; Papandreou, Z; Plummer, E L; Semenov, A Yu; Semenova, I A; Sichello, L M; Teigro, L A; Smith, E S

    2014-09-01

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4,750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number of photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.

  7. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    NASA Astrophysics Data System (ADS)

    Beattie, T. D.; Fischer, A. P.; Krueger, S. T.; Lolos, G. J.; Papandreou, Z.; Plummer, E. L.; Semenov, A. Yu.; Semenova, I. A.; Sichello, L. M.; Teigrob, L. A.; Smith, E. S.

    2014-12-01

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number of photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.

  8. Measurement and simulation of the neutron detection efficiency with a Pb-scintillating fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Battistoni, G.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; DeZorzi, G.; Domenico, Adi; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Ngugen, F.; Paseri, A.; Prokfiev, A.; Sala, P.; Sciascia, B.; Sirghi, F.

    2009-04-01

    We have measured the overall detection efficiency of a small prototype of the KLOE PB-scintilation fiber calorimeter to neutrons with kinetic energy range [5,175] MeV. The measurement has been done in a dedicated test beam in the neutron beam facility of the Svedberg Laboratory, TSL Uppsala. The measurements of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 28% to 33%. This value largely exceeds the estimated ~8% expected if the response were proporetional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. The simulated response of the detector to neutrons is presented together with the first data to Monte Carlo comparison. The results show an overall neutron efficiency of about 35%. The reasons for such an efficiency enhancement, in comparison with the typical scintillator-based neutron counters, are explained, opening the road to a novel neutron detector.

  9. The GLAST Mission: Using Scintillating Fibers as Both the Tracker and the Calorimeter

    NASA Technical Reports Server (NTRS)

    Fisman, Gerald J.

    1997-01-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has been identified as the next major NASA mission in gamma-ray astronomy. It will operate at energies above 20 MeV to study some of the most energetic objects in the Universe. While the baseline tracker detector for GLAST during the study phase is based on silicon strips, we believe that scintillating fibers have considerable advantages for this purpose. Among the performance advantages are: larger effective area, better angular resolution at low energies and larger field of view. Practical advantages include: lower cost, the use of a common technology for both the tracker and the calorimeter, lower power consumption, and a simplified thermal design. Several alternative readout schemes for the fibers are under study.

  10. A New scintillator tile / fiber preshower detector for the CDF central calorimeter

    SciTech Connect

    Gallinaro, Michele; Artikov, A.; Bromberg, C.; Budagov, J.; Byrum, K.; Chang, S.; Chlachidze, G.; Goulianos, K.; Huston, J.; Iori, M.; Kim, M.; Kuhlmann, S.; Lami, S.; Lindgren, M.; Lytken, E.; Miller, R.; Nodulman, L.; Pauletta, G.; Penzo, A.; Proudfoot, J.; Roser, R.; /Argonne /Dubna, JINR /Fermilab /Kyungpook Natl. U. /Michigan State U. /INFN, Siena /Rockefeller U. /INFN, Rome /INFN, Trieste /INFN, Udine /Tsukuba U.

    2004-11-01

    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multianode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and is expected to start collecting colliding beam data by the end of 2004. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.

  11. Beam test results for a tungsten-cerium fluoride sampling calorimeter with wavelength-shifting fiber readout

    NASA Astrophysics Data System (ADS)

    Becker, R.; Candelise, V.; Cavallari, F.; Dafinei, I.; Della Ricca, G.; Diemoz, M.; del Re, D.; D'Imperio, G.; Dissertori, G.; Donegà, M.; Dröge, M.; Gelli, S.; Haller, C.; Jorda Lope, C.; Lustermann, W.; Martelli, A.; Meridiani, P.; Micheli, F.; Nessi-Tedaldi, F.; Nuccetelli, M.; Organtini, G.; Quittnat, M.; Pandolfi, F.; Paramatti, R.; Pastrone, N.; Pellegrino, F.; Peruzzi, M.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Schönenberger, M.; Soffi, L.; Tabarelli de Fatis, T.; Vazzoler, F.

    2015-07-01

    A sampling calorimeter using cerium fluoride scintillating crystals as active material, interleaved with heavy absorber plates, and read out by wavelength-shifting (WLS) fibers is being studied as a calorimeter option for detectors at the upgraded High-Luminosity LHC (HL-LHC) collider at CERN. A prototype has been exposed to electron beams of different energies at the INFN Frascati (Italy) Beam Test Facility. This paper presents results from the studies performed on the prototype, such as signal amplitudes, light yield and energy resolution.

  12. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    SciTech Connect

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs.

  13. Measurement and simulation of the neutron response and detection efficiency of a Pb-scintillating fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Anelli, M.; Battistoni, G.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sala, P.; Sciascia, B.; Sirghi, F.

    2007-10-01

    The overall detection efficiency to neutrons of a small prototype of the KLOE Pb-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range 5-175 MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 40% to 50%. This value largely exceeds the estimated 8-16% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beamline has been performed with the FLUKA Monte Carlo code. The simulated response of the detector to neutrons is presented, as well as a first data-Monte Carlo comparison. The results show an overall neutron efficiency of about 50%, when no trigger threshold is applied. The reasons of such an efficiency enhancement, in comparison with the typical scintillator-based neutron counters, are explained, opening the road to a novel neutron detector.

  14. Calibration of the CDF tile-fiber endplug calorimeters using moving radioactive sources

    SciTech Connect

    Barnes, V.; Laasanen, A.; Pompos, A.; Wilson, M.

    1998-11-01

    The use of moving radioactive gamma sources to assess, calibrate and monitor scintillating tile calorimeters is discussed, and the techniques and equipment are described. The capabilities of the technique are illustrated using Cs{sup 137} sources with the CDF Endplug Upgrade EM and Hadron calorimeters at testbeams and at a cosmic ray test stand. Source measurements of all the tiles in testbeam modules which are exact replicas of the calorimeters, predict the relative responses of EM towers to 50 GeV positrons and muons, and of Hadron towers to 50 GeV pions, with RMS accuracies of 1.3{percent}, 1.8{percent} and 2.0{percent}, respectively. Source measurements will be used in lieu of testbeam measurements for the initial calibration of all towers in the final calorimeters. Source measurements of single tiles are reproducible to 0.4{percent} and will be used to monitor gain changes of the photomultiplier tubes. {copyright} {ital 1998 American Institute of Physics.}

  15. The PHENIX electromagnetic calorimeter

    SciTech Connect

    Kistenev, E.; White, S.; Belikov, S.; Kochetkov, V.

    1993-12-31

    The main features of the Phenix EM calorimeter are presented. This a Pb/scintillator calorimeter with ``shish-kebab`` fiber readout, designed for low energy electron and photon measurements. Prototype calorimeters have been built with longitudinal segmentation, {approximately} 100 psec time of flight resolution and 8% energy resolution at 1GeV/c. The laser based monitoring system which has been incorporated into large scale prototypes is described. The dependence of light yield on fiber choice and scintillator surface preparation has been studied.

  16. A tungsten/scintillating fiber electromagnetic calorimeter prototype for a high-rate muon (g-2) experiment

    NASA Astrophysics Data System (ADS)

    McNabb, R.; Blackburn, J.; Crnkovic, J. D.; Hertzog, D. W.; Kiburg, B.; Kunkle, J.; Thorsland, E.; Webber, D. M.; Lynch, K. R.

    2009-04-01

    A compact and fast electromagnetic calorimeter prototype was designed, built, and tested in preparation for a next-generation, high-rate muon (g-2) experiment. It uses a simple assembly procedure: alternating layers of 0.5-mm-thick tungsten plates and 0.5-mm-diameter plastic scintillating fiber ribbons. This geometry leads to a detector having a calculated radiation length of 0.69 cm, a Molière radius of 1.73 cm, and a measured intrinsic sampling resolution term of (11.8±1.1)%/√{E(GeV)}, in the range 1.5-3.5 GeV. The construction procedure, test beam results, and GEANT-4 comparative simulations are described.

  17. The CLAS Forward Electromagnetic Calorimeter

    SciTech Connect

    M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

    2001-05-01

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

  18. STAR electromagnetic calorimeter R&D progress report, 1 October 1992--31 August 1993

    SciTech Connect

    Not Available

    1993-10-01

    A lead-scintillator sampling electromagnetic calorimeter (EMC) is planned as an upgrade to the STAR detector for the RHIC Accelerator at Brookhaven National Laboratory (BNL). Considerable work on the conceptual design of the calorimeter, and related interfacing issues with the solenoids magnet and the time projection chamber (TPC) subsystems of STAR occurred in the period 1 October 1992 to 31 August 1993 (FY 1993). This report documents and summarizes the conclusions and progress from this work.

  19. Muon g-2 Calorimeter Prototypes

    SciTech Connect

    Polly, Chris; /Fermilab

    2010-05-03

    The proposed design is a tungsten-scintillating fiber calorimeter with 35 segments, each read out by a separate PMT. Tungsten, which is significantly denser than lead, produces compact showers. This is necessary, in order to improve shower separation in analysis and to fully contain the showers within a calorimeter that satisfies the strict space constraints of the experiment. A single calorimeter segment (4 x 6 x 15 cm{sup 3}) has been constructed in order establish the feasibility of the new design and study its properties. Initial tests of the detector segment at the Paul Scherrer Institute were conducted with a low energy < 400 MeV/c electron beam. A higher-energy test with electrons up to a few GeV/c was performed at the Test Beam Facility under the experimental number T-967. All data from that test have been analyzed and published, and the tungsten-scintillating fiber calorimeter still appears to be a viable candidate. For this test beam run, a larger calorimeter (15 x 15 x 11 cm{sup 3}) has been constructed and an emphasis will be placed on understanding shower leakage and the ability to separate pileup events with a more granular readout. The experimenters will measure the energy resolution, linearity, and shower size of the calorimeter segment. This will provide important information for finalizing decisions on the angle of the fibers relative to the incoming electrons and the optimal granularity of the readout.

  20. Electromagnetic Calorimeter for Hades Experiment

    NASA Astrophysics Data System (ADS)

    Kugler, A.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Tlusty, P.; Traxler, M.

    2014-06-01

    Electromagnetic calorimeter (ECAL) is being developed to complement the dilepton spectrometer HADES currently operating at GSI Darmstadt, Germany. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeV on the beam of future accelerator SIS100@FAIR. The calorimeter will also improve the electron-hadron separation and will as well be used for the detection of photons from strange resonances in elementary and heavy ion reactions. Calorimeter modules constructed of lead glass Cherenkov counter, photomultiplier, HV divider and optical fiber are described in the detail. Two prototypes of novel front-end electronics based on TRB3 are presented. A dedicated LED based system being developed to monitor the stability of the calorimeter during beamtime is introduced as well.

  1. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  2. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  3. Isothermal Calorimeter

    NASA Technical Reports Server (NTRS)

    Rowlette, John J.

    1990-01-01

    Pressure-feedback signal indicates rate of heating. Improved isothermal calorimeter measures rate of heating in object under test. Called "isothermal" because chamber holding object and its environment maintained at or near constant temperature to minimize spurious tranfers of heat introducing errors into measurements. When item under test generates heat, rate of boiling and pressure in inner chamber increase. Servo-valve opens wider to maintain preset differential pressure. Valve-control voltage used as measure of rate of heating.

  4. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  5. Test beam performance of the CDF plug upgrade hadron calorimeter

    SciTech Connect

    de Barbaro, P.; CDF Plug Upgrade Group

    1998-01-13

    We report on the performance of the CDF End Plug Hadron Calorimeter in a test beam. The sampling calorimeter is constructed using 2 inch iron absorber plates and scintillator planes with wavelength shifting fibers for readout. The linearity and energy resolution of the calorimeter response to pions, and the transverse uniformity of the response to muons and pions are presented. The parameter e/h, representing the ratio of the electromagnetic to hadronic response, is extracted from the data.

  6. The CDF miniplug calorimeters

    SciTech Connect

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  7. CDF End Plug calorimeter Upgrade Project

    SciTech Connect

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R&D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R&D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, {gamma} and {pi}{sup 0} has been designed. Its performance requirements, R&D results and mechanical design are discussed.

  8. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  9. Test beam performance of CDF plug upgrade EM calorimeter

    SciTech Connect

    Fukui, Y.; CDF Upgrade Group

    1998-01-01

    CDF Plug Upgrade(tile-fiber) EM Calorimeter performed resolution of 15%/{radical}E{circle_plus}0.7% with non-linearity less than 1% in a energy range of 5-180 GeV at Fermilab Test Beam. Transverse uniformity of inside-tower-response of the EM Calorimeter was 2.2% with 56 GeV positron, which was reduced to 1.0% with response map correction. We observed 300 photo electron/GeV in the EM Calorimeter. Ratios of EM Calorimeter response to positron beam to that to {sup 137}Cs Source was stable within 1% in the period of 8 months.

  10. An imaging calorimeter for ACCESS concept study

    NASA Astrophysics Data System (ADS)

    Parnell, T. A.; Adams, J. H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Lee, J.; Pendleton, G. N.; Takahashi, Y.; Watts, J. W.

    2001-08-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure the spectrum of protons, helium, and heavier nuclei up to ~1015 eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  11. Spaghetti calorimeter results and prospects

    SciTech Connect

    Desalvo, R.

    1992-12-31

    In the guidelines of the SPACAL-LAA project the authors have built and beam-tested a prototype of spaghetti calorimeter with full hadronic shower containment. The results proved that the spaghetti technology (lead and scintillating fibers) can perform very accurate calorimetric measurements at the 15 ns LHC or SSC crossing rate and can compete with advantage over the other calorimetric technologies. In this paper they present the experimental results obtained so far and some future development foreseen in view of a hermetic supercollider detector.

  12. The ATLAS Forward Calorimeter

    NASA Astrophysics Data System (ADS)

    Artamonov, A.; Bailey, D.; Belanger, G.; Cadabeschi, M.; Chen, T.-Y.; Epshteyn, V.; Gorbounov, P.; Joo, K. K.; Khakzad, M.; Khovanskiy, V.; Krieger, P.; Loch, P.; Mayer, J.; Neuheimer, E.; Oakham, F. G.; O'Neill, M.; Orr, R. S.; Qi, M.; Rutherfoord, J.; Savine, A.; Schram, M.; Shatalov, P.; Shaver, L.; Shupe, M.; Stairs, G.; Strickland, V.; Tompkins, D.; Tsukerman, I.; Vincent, K.

    2008-02-01

    Forward calorimeters, located near the incident beams, complete the nearly 4π coverage for high pT particles resulting from proton-proton collisions in the ATLAS detector at the Large Hadron Collider at CERN. Both the technology and the deployment of the forward calorimeters in ATLAS are novel. The liquid argon rod/tube electrode structure for the forward calorimeters was invented specifically for applications in high rate environments. The placement of the forward calorimeters adjacent to the other calorimeters relatively close to the interaction point provides several advantages including nearly seamless calorimetry and natural shielding for the muon system. The forward calorimeter performance requirements are driven by events with missing ET and tagging jets.

  13. The Imaging Calorimeter for ACCESS (ICA)

    NASA Astrophysics Data System (ADS)

    Parnell, Thomas

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" is being sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains an ionization calorimeter to measure the spectrum of protons, helium, and heavier nuclei up to ~1015 eV to search for the limit of S/N shock wave acceleration. Several calorimeters are under study, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The ICA comprises a carbon target and a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features of the ICA instrument concept are described in this paper.

  14. A heat flow calorimeter

    NASA Technical Reports Server (NTRS)

    Johnston, W. V.

    1973-01-01

    Reaction mechanism for nickel-cadmium cell is not known well enough to allow calculation of heat effects. Calorimeter can measure heat absorbed or evolved in cell, by determining amount of external heat that must be supplied to calorimeter to maintain constant flow isothermal heat sink.

  15. Development of a forward calorimeter system for the STAR experiment

    NASA Astrophysics Data System (ADS)

    Tsai, O. D.; Aschenauer, E.; Christie, W.; Dunkelberger, L. E.; Fazio, S.; Gagliardi, C. A.; Heppelmann, S.; Huang, H. Z.; Jacobs, W. W.; Igo, G.; Kisilev, A.; Landry, K.; Liu, X.; Mondal, M. M.; Pan, Y. X.; Sergeeva, M.; Shah, N.; Sichtermann, E.; Trentalange, S.; Visser, G.; Wissink, S.

    2015-02-01

    We present results of an R&D program to develop a forward calorimeter system (FCS) for the STAR experiment at the Relativistic Heavy Ion Collider at BNL. The FCS is a very compact, compensated, finely granulated, high resolution calorimeter system being developed for p+p and p+A program at RHIC. The FCS prototype consists of both electromagnetic and hadron calorimeters. The electromagnetic portion of the detector is constructed with W powder and scintillation fibers. The hadronic calorimeter is a traditional Pb/Sc-plate sandwich design. Both calorimeters were readout with Hamamatsu MPPCs. A full- scale prototype of the FCS was tested with a beam at FNAL in March 2014. We present details of the design, construction technique and performance of the FCS prototype during the test run at FNAL.

  16. Current status and performance of the BESIII electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Wang, Zhigang

    2012-12-01

    The design and construction of the BESIII electromagnetic calorimeter is introduced briefly. Radiation dose of CsI(Tl) crystals is monitored and history graph of integral dose of crystals is showed. LED-fiber system is used for monitoring the EMC light output, and large decrease of light output of several crystals is discussed. BESIII electromagnetic calorimeter works very well and its performance reach the design value.

  17. Calorimeter Control Program

    Energy Science and Technology Software Center (ESTSC)

    1998-11-03

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unitmore » via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.« less

  18. Calorimeter Control Program

    SciTech Connect

    Plummer, Jean R.; Levi, Gerald

    1998-11-03

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unit via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.

  19. CCP. Calorimeter Control Program

    SciTech Connect

    Plummer, J.; Levi, G.

    1998-10-01

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unit via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.

  20. ALICE electromagnetic calorimeter prototype test

    SciTech Connect

    Awes, Terry; /Oak Ridge

    2005-09-01

    This Memorandum of Understanding between the Test Beam collaborators and Fermilab is for the use of beam time at Fermilab during the Fall, 2005 Meson Test Beam Run. The experimenters plan to measure the energy, position, and time resolution of prototype modules of a large electromagnetic calorimeter proposed to be installed in the ALICE experiment at the LHC. The ALICE experiment is one of the three large approved LHC experiments, with ALICE placing special emphasis on the LHC heavy-ion program. The large electromagnetic calorimeter (EMCal) is a US initiative that is endorsed by the ALICE collaboration and is currently in the early stages of review by the Nuclear Physics Division of the DOE. The installation in the test beam at FNAL and test beam measurements will be carried out by the US members of the ALICE collaboration (ALICE-USA). The overall design of the ALICE EMCal is heavily influenced by its location within the ALICE L3 magnet. The EMCal is to be located inside the large room temperature magnet within a cylindrical integration volume approximately l12cm deep, by 5.6m in length, sandwiched between the ALICE TPC space frame and the L3 magnet coils. The chosen technology is a layered Pb-scintillator sampling calorimeter with a longitudinal pitch of 1.6mm Pb and 1.6mm scintillator. The full detector spans {eta} = -0.7 to {eta} = 0.7 with an azimuthal acceptance of {Delta}{phi} = 120{sup o}. The EMCal readout is of a ''Shish-Kabob'' type similar to the PHENIX Pb-scintillator sampling calorimeter in which the scintillation light is collected via wavelength shifting fibers running through the Pb-scintillator tiles perpendicular to the front surface. The detector is segmented into {approx}14000 towers. The basic structural units of the calorimeter are supermodules, each subtending approximately {approx}20{sup o} in {Delta}{phi} and 0.7 units in {Delta}{eta}. Supermodules are assembled from individual modules. The modules are further segmented into 2 x 2

  1. CMS electromagnetic calorimeter readout

    SciTech Connect

    Denes, P.; Wixted, R.

    1997-12-31

    The CMS Electromagnetic Calorimeter will consist of 109,008 crystals of Lead Tungstate (PbWO{sub 4}) arranged in a barrel (92880 crystals) and 2 endcaps (8064 crystals each). The crystals will be 25 radiation lengths long and cut in tapered shapes to make a hermetic calorimeter. The scintillation light from the crystals is captured by a photodetector, amplified and digitized. The properties of PbWO4, which is a new crystal still very much under development.

  2. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  3. Radiation damage studies for the SDC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fazely, A. R.; Gunasingha, R.; Imlay, R. L.; Khosravi, E. S.; Lim, Jit-Ning; Lyndon, C.; McMills, G.; McNeil, R. R.; Metcalf, W. J.; Courtney, J. C.; Tashakkori, R.; Vegara, B. J.

    1993-01-01

    We report the results from a year long study aimed at radiation resistance and optical performance of scintillator tile with green wave shifter fiber readout. A careful investigation of several rad-hard plastic scintillators from Bicron and Kuraray, studies indicate that for a specific rad-hard Bicron scintillator, it is possible to build a tile/fiber EM calorimeter that can operate in the design luminosity of SSC. This calorimeter with excellent optical response would only have a light loss of about 5% after being exposed to 1 Mrad.

  4. Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  5. Test beam performance of CDF plug upgrade EM calorimeter

    SciTech Connect

    Fukui, Y.

    1998-11-01

    CDF Plug Upgrade(tile-fiber) EM Calorimeter performed resolution of 15{percent}/{radical} (E) {circle_plus}0.7{percent} with non-linearity less than 1{percent} in a energy range of 5{endash}180 GeV at Fermilab Test Beam. Transverse uniformity of inside-tower-response of the EM Calorimeter was 2.2{percent} with 56 GeV positron, which was reduced to 1.0{percent} with response map correction. We observed 300 photo electron/GeV in the EM Calorimeter. Ratios of EM Calorimeter response to positron beam to that to {sup 137}C{sub s} Source was stable within 1{percent} in the period of 8 months. {copyright} {ital 1998 American Institute of Physics.}

  6. The Neutron Zero Degree Calorimeter for the ALICE Experiment

    NASA Astrophysics Data System (ADS)

    Dellacasa, G.; Cortese, P.; Cicaló, C.; de Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Siddi, E.; Usai, G.; Arnaldi, R.; Chiavassa, E.; de Marco, N.; Ferretti, A.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Scomparin, E.; Travaglia, G.; Vercellin, E.

    2005-02-01

    The neutron Zero Degree Calorimeter (ZN) for the ALICE experiment will measure the energy of the spectator neutrons in heavy ion collisions. The ZN is a spaghetti calorimeter, that exploits the Cherenkov light produced by the shower particles in silica optical fibers embedded in a W-alloy absorber. The calorimeter was tested at the CERN SPS using pion and positron beams of different momenta ranging from 50 to 150 GeV/c. The main features of the detector are presented: the linearity and energy resolution as a function of energy, the shower's transverse profile, the position resolution. Moreover the response of the calorimeter to a 158A GeV/c Indium beam has been investigated; in particular the energy resolution and the linearity as a function of the number of incident nucleons were measured.

  7. The zero degree calorimeters for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Puddu, G.; Arnaldi, R.; Chiavassa, E.; Cicaló, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Gemme, R.; Locci, G.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Serci, S.; Siddi, E.; Stocco, D.; Usai, G.; Vercellin, E.; Yermia, F.

    2007-10-01

    The Zero Degree Calorimeters (ZDC) for the ALICE experiment will measure the energy of the spectator nucleons in heavy ion collisions at the CERN LHC, providing a direct measure of the centrality of the collisions. ZDC are spaghetti calorimeters, which detect the Cherenkov light produced by the shower particles in silica optical fibers embedded in a dense absorber. The main characteristics of the ZP and ZN detectors are described in this article. The calorimeters were tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. Test beam results such as the calorimeter response, the energy resolution, the signal uniformity and the localizing capability are presented.

  8. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Gadrat, S.

    2010-06-01

    ALICE (A Large Ion Collider Experiment) is the only LHC experiment at CERN fully dedicated to the study of the quark and gluon plasma. Driven by the RHIC results on jet quenching, the ALICE collaboration has proposed to extend the capabilities of the ALICE detector for the study of high momentum photons and jets by adding a large acceptance calorimeter. This EMCal (ElectroMagnetic Calorimeter) is designed to provide an unbiased fast high-p{sub T} trigger and to measure the neutral energy of jets and photons up to 200 GeV. Four over ten supermodules of the calorimeter have been installed and commissioned at CERN in 2009 which represents 40% of the full acceptance.

  9. Precision timing calorimeter for high energy physics

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  10. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Awes, Terry C; ALICE, Collaboration

    2010-05-01

    ALICE is the general purpose experiment at the LHC dedicated to the study of heavy-ion collisions. The electromagnetic calorimeter (EMCal) is a late addition to the ALICE suite of detectors with first modules installed in ALICE this year. The EMCal is designed to trigger on high energy gamma-rays and jets, and to enhance the capabilities of ALICE for these measurements. The EMCal is a Pb/scintillator sampling shish-kebab type calorimeter. The EMCal construction, readout, and performance in beam tests at the CERN SPS and PS are described.

  11. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Awes, Terry C; ALICE, Collaboration

    2010-01-01

    ALICE is the general purpose experiment at the LHC dedicated to the study of heavy-ion collisions. The electromagnetic calorimeter (EMCal) is a late addition to the ALICE suite of detectors with first modules installed in ALICE this year. The EMCal is designed to trigger on high energy gamma-rays and jets, and to enhance the capabilities of ALICE for these measurements. The EMCal is a Pb/scintillator sampling shish-kebab type calorimeter. The EMCal construction, readout, and performance in beam tests at the CERN SPS and PS are described.

  12. A compact light readout system for longitudinally segmented shashlik calorimeters

    NASA Astrophysics Data System (ADS)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  13. The Neutron Zero Degree Calorimeter for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Chiavassa, E.; Cicalò, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Gallio, M.; Gemme, R.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Puddu, G.; Scomparin, E.; Serci, S.; Siddi, E.; Travaglia, G.; Usai, G.; Vercellin, E.

    2006-08-01

    In this paper, we present the performance of the Neutron Zero Degree Calorimeter (ZN) for the ALICE experiment. The ZN is a quartz-fiber spaghetti calorimeter, which will measure the energy of the spectator neutrons in heavy ion collisions at the CERN LHC. Its principle of operation is based on the detection of the Cherenkov light produced by the charged particles of the shower in silica optical fibers, embedded in a W-alloy absorber. The detector was tested at CERN SPS using positive hadron and positron beams with momenta ranging from 50 to 150 GeV/c. The response of the calorimeter, the energy resolution, the localizing capability, the signal uniformity and the transverse profile of the detectable hadronic shower are presented.

  14. The Calorimeter Systems for the sPHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2012-12-01

    A major upgrade is being planned for the PHENIX experiment that will have greatly enhanced physics capabilities to measure jets in relativistic heavy ion collisions at RHIC, as well as in polarized proton interactions, and eventually electron ion collisions at an Electron Ion Collider. This upgrade, sPHENIX, will include two new calorimeter systems. One will be a hadronic calorimeter, which will be the first hadronic calorimeter ever used in an experiment at RHIC, and another will be a new compact electromagnetic calorimeter. Both calorimeters will cover a region of +/-1.1 in pseudorapidity and 2π in phi. The hadron calorimeter will be based on scintillator plates interspersed between steel absorber plates and read out with wavelength shifting fibers. The electromagnetic calorimeter will be an accordion design that will utilize scintillating fibers embedded in a matrix consisting of tungsten plates, tungsten powder and epoxy. The readout for both calorimeters will use silicon photomultipliers. The overall design of these two calorimeter systems is described along with the R&D efforts currently being pursued to develop them along with their readout.

  15. The CMS Electromagnetic Calorimeter

    SciTech Connect

    Paramatti, Riccardo

    2005-10-12

    The electromagnetic calorimeter of the CMS experiment at LHC will consist of about 76000 Lead Tungstate crystals. Its main purpose is the very precise energy measurement of electrons and photons produced at 14 TeV centre-of-mass energy. A review of its performances and its construction status is given. Then the calibration strategy is described in details.

  16. An Inexpensive Solution Calorimeter

    ERIC Educational Resources Information Center

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  17. Study of response nonuniformity for the LHCb calorimeter module and the prototype of the CBM calorimeter module

    SciTech Connect

    Korolko, I. E.; Prokudin, M. S.

    2009-02-15

    A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The results of the simulation are in good agreement with data.

  18. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    SciTech Connect

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R.; Palmer, R.L.; Moscone, C.G.; Jackson, R.G.

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  19. Performance of the prototype module of the GlueX electromagnetic barrel calorimeter

    SciTech Connect

    Leverington, Blake; Lolos, George; Papandreou, Zisis; Hakobyan, Rafael; Huber, Garth; Janzen, Kathryn; Semenov, Andrei; Scott, Eric; Shepherd, Matthew; Carman, Daniel; Lawrence, David; Smith, Elton; Taylor, Simon; Wolin, Elliott; Klein, Franz; Santoro, Joseph; Sober, Daniel; Kourkoumeli, Christina

    2008-11-01

    A photon beam test of the 4 m long prototype lead/scintillating-fibre module for the GlueX electromagnetic barrel calorimeter was carried out in Hall B at the Thomas Jefferson National Accelerator Facility with the objective of measuring the energy and timing resolutions of the module as well as the number of photoelectrons generated. Data were collected over an energy range of 150 - â 650 MeV at multiple positions and angles along the module. Details of the analysis at the centre of and perpendicular to the module are shown herein; the results are View the MathML source, View the MathML source ps, and 660 photoelectrons for 1 GeV at each end of the module.

  20. The STAR EM calorimeter design and small prototype test results

    SciTech Connect

    Underwood, D.G.

    1995-01-01

    The basis for several design features of The STAR Electromagnetic Calorimeter and Shower Maximum Detector is presented. This includes some of the tile-fiber optical design. The authors describe both the barrel and the end cap. Some preliminary analysis of electron acceptance vs pion rejection in test beam data is also discussed.

  1. An Imaging Calorimeter for Access-Concept Study

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Adams, James H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure tile spectrum of protons, helium, and heavier nuclei up to approximately 10(exp 15) eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  2. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  3. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  4. Modeling Complex Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    We have developed a software suite that models complex calorimeters in the time and frequency domain. These models can reproduce all measurements that we currently do in a lab setting, like IV curves, impedance measurements, noise measurements, and pulse generation. Since all these measurements are modeled from one set of parameters, we can fully describe a detector and characterize its behavior. This leads to a model than can be used effectively for engineering and design of detectors for particular applications.

  5. Effects of stress and strain on scintillating and clear fibers

    SciTech Connect

    Chung, M.; Margulies, S.

    1995-08-01

    Among the improvements planned for the 1997--98 upgrade of the D0 detector at Fermilab are installation of a scintillating-fiber central tracker and a lead-scintillator central preshower counter read out with wave-shifting fibers. Because of space limitations, fibers in both systems may need to undergo bends with fairly small radii, and the resulting stresses and strains may cause light losses. This paper presents results of a study of the effects of deformation on fiber light transmission. Particular emphasis is placed on the new multiclad fibers developed by Kuraray.

  6. DSWA calorimeter bomb experiments

    SciTech Connect

    Cunningham, B

    1998-10-01

    Two experiments were performed in which 25 grams of TNT were detonated inside an expended detonation calorimeter bomb. The bomb had a contained volume of approximately 5.28 liters. In the first experiment, the bomb was charged with 3 atmospheres of nitrogen. In the second, it was charged with 2.58 atmospheres (23.1 psi gage) of oxygen. In each experiment pressure was monitored over a period of approximately 1200 microseconds after the pulse to the CDU. Monitoring was performed via two 10,000 psi 102AO3 PCB high frequency pressure transducers mounted symmetrically in the lid of the calorimeter bomb. Conditioners used were PCB 482As. The signals from the transducers were recorded in digital format on a multi channel Tektronix scope. The sampling frequency was 10 Mhz (10 samples per microsecond). After a period of cooling following detonation, gas samples were taken and were subsequently submitted for analysis using gas mass spectrometry. Due to a late request for post shot measurement, it was only possible to make a rough estimate of the weight of debris (carbon) remaining in the calorimeter bomb following the second experiment.

  7. ATLAS Tile Calorimeter: simulation and validation of the response

    NASA Astrophysics Data System (ADS)

    Faltova, Jana; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  8. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  9. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    SciTech Connect

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; Soha, Aria; Heppelmann, Steven; Gagliardi, Carl; /Texas A-M

    2011-11-16

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments

  10. A Fast, Compact, Segmented Tungsten/SciFi Calorimeter

    NASA Astrophysics Data System (ADS)

    Crnkovic, Jason; McNabb, Ronald; Lynch, Kevin; Hertzog, David

    2007-04-01

    The new E969 muon g-2 experiment at BNL will need to run at significantly higher stored muon rate to collect the necessary statistics in a reasonable time. The higher instantaneous decay electron rate will require a new segmented calorimeter to keep the systematic error from pileup small. A fast, tungsten-scintillating fiber calorimeter with PMT readout has been designed for this purpose. The high density of tungsten results in compact showers, which are necessary both to distinguish multiple simultaneous showers and to satisfy strict space constraints. Beam tests and Monte Carlo simulations of a single calorimeter segment have been performed. Analysis of these studies indicates that the new design should satisfy the requirements of the g-2 experiment.

  11. Simulation and validation of the ATLAS Tile Calorimeter response

    NASA Astrophysics Data System (ADS)

    Karpov, S. N.

    2014-09-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are amplified, shaped and digitized before being transferred to off-detector data acquisition systems. This paper describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Recently improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  12. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  13. Fiber

    MedlinePlus

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  14. The ATLAS tile calorimeter performance at the LHC

    SciTech Connect

    Calkins, R.

    2011-07-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection and a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)

  15. Design, performance, and calibration of CMS forward calorimeter wedges

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adams, M.; Akchurin, N.; Akgun, U.; Anderson, E. W.; Antchev, G.; Arcidy, M.; Ayan, S.; Aydin, S.; Baarmand, M.; Babich, K.; Baden, D.; Bakirci, M. N.; Banerjee, Sud.; Banerjee, Sun.; Bard, R.; Barnes, V.; Bawa, H.; Baiatian, G.; Bencze, G.; Beri, S.; Bhatnagar, V.; Bodek, A.; Budd, H.; Burchesky, K.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Cerci, S.; Chendvankar, S.; Chung, Y.; Cremaldi, L.; Cushman, P.; Damgov, J.; de Barbaro, P.; Deliomeroglu, M.; Demianov, A.; de Visser, T.; Dimitrov, L.; Dindar, K.; Dugad, S.; Dumanoglu, I.; Duru, F.; Elias, J.; Elvira, D.; Emeliantchik, I.; Eno, S.; Eskut, E.; Fenyvesi, A.; Fisher, W.; Freeman, J.; Gamsizkan, H.; Gavrilov, V.; Genchev, V.; Gershtein, Y.; Golutvin, I.; Goncharov, P.; Grassi, T.; Green, D.; Gribushin, A.; Grinev, B.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heering, A.; Ilyina, N.; Isiksal, E.; Jarvis, C.; Johnson, K.; Kaftanov, V.; Kalagin, V.; Kalinin, A.; Karmgard, D.; Kalmani, S.; Katta, S.; Kaur, M.; Kaya, M.; Kayis-Topaksu, A.; Kellogg, R.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kodolova, O.; Kohli, J.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Koylu, S.; Kramer, L.; Krinitsyn, A.; Krokhotin, A.; Kryshkin, V.; Kuleshov, S.; Kumar, A.; Kunori, S.; Kurt, P.; Kuzucu-Polatoz, A.; Laasanen, A.; Ladygin, V.; Laszlo, A.; Lawlor, C.; Lazic, D.; Levchuk, L.; Linn, S.; Litvintsev, D.; Litov, L.; Los, S.; Lubinsky, V.; Lukanin, V.; Ma, Y.; Machado, E.; Mans, J.; Markowitz, P.; Massolov, V.; Martinez, G.; Mazumdar, K.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Miller, M.; Mohammadi-Najafabadi, M.; Moissenz, P.; Mondal, N.; Nagaraj, P.; Norbeck, E.; Olson, J.; Onel, Y.; Onengut, G.; Ozdes-Koca, N.; Ozkan, C.; Ozkurt, H.; Ozkorucuklu, S.; Paktinat, S.; Pal, A.; Patil, M.; Penzo, A.; Petrushanko, S.; Petrosyan, A.; Pikalov, V.; Piperov, S.; Podrasky, V.; Pompos, A.; Posch, C.; Qiang, W.; Reddy, L.; Reidy, J.; Ruchti, R.; Rogalev, E.; Rohlf, J.; Ronzhin, A.; Ryazanov, A.; Safronov, G.; Sanders, D. A.; Sanzeni, C.; Sarycheva, L.; Satyanarayana, B.; Schmidt, I.; Sekmen, S.; Semenov, S.; Senchishin, V.; Sergeyev, S.; Serin-Zeyrek, M.; Sever, R.; Singh, J.; Sirunyan, A.; Skuja, A.; Sharma, S.; Sherwood, B.; Shumeiko, N.; Smirnov, V.; Sogut, K.; Sorokin, P.; Spezziga, M.; Stefanovich, R.; Stolin, V.; Sulak, L.; Suzuki, I.; Talov, V.; Teplov, K.; Thomas, R.; Topakli, H.; Tully, C.; Turchanovich, L.; Ulyanov, A.; Vankov, I.; Vardanyan, I.; Varela, F.; Vergili, M.; Verma, P.; Vesztergombi, G.; Vidal, R.; Vishnevskiy, A.; Vlassov, E.; Vodopiyanov, I.; Volkov, A.; Volodko, A.; Wang, L.; Wetstein, M.; Winn, D.; Wigmans, R.; Whitmore, J.; Wu, S. X.; Yazgan, E.; Yershov, A.; Yetkin, T.; Zalan, P.; Zarubin, A.; Zeyrek, M.

    2008-01-01

    We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3≤|η|≤5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h≈5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/sqrt{E}oplus{b}. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%.

  16. Installation and operation of recording calorimeters

    SciTech Connect

    Kersey, A.F.

    1984-04-01

    The Cutler-Hammer recording calorimeter is illustrated in this paper. This calorimeter measures the total calorific value of combustible gas, and continuously samples, indicates, and records BTU per cubic foot. The paper emphasizes the importance of calorimeter accuracy. It is suggested that the calorimeter manufacturer be consulted for advice and assistance in developing a sound service program for trouble shooting and for service.

  17. Status of the construction and performances of the neutron Zero Degree Calorimeters of the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Siddi, E.; Arnaldi, R.; Chiavassa, E.; Cicaló, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Gallio, M.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Puddu, G.; Scomparin, E.; Serci, S.; Travaglia, G.; Usai, G.; Vercellin, E.

    2004-12-01

    The details of the construction of the neutron Zero Degree Calorimeters (ZN) of the ALICE Experiment, as well as their performances, will be presented. These spaghetti calorimeters will measure the energy lost by spectator nucleons in heavy-ion collisions. They are made of an absorber (tungsten alloy) filled with silica fibers, in which the charged particles of the shower produce Cherenkov light. The final neutron calorimeters have been built and their performances studied at the CERN SPS using pion and positron beams with momentum ranging from 50 to 150 GeV/ c. The main features like linearity of the response and resolution as a function of energy will be presented.

  18. Results of R&D on a new construction technique for W/ScFi Calorimeters

    NASA Astrophysics Data System (ADS)

    Tsai, O. D.; Dunkelberger, L. E.; Gagliardi, C. A.; Heppelmann, S.; Huang, H. Z.; Igo, G.; Landry, K.; Pan, Y. X.; Trentalange, S.; Xu, W.; Zhang, Q.

    2012-12-01

    We report on results of an R&D program to develop new, simple and cost effective techniques to build compact sampling calorimeters utilizing tungsten powder and scintillating fibers. Such calorimeter detectors are under consideration for experiments at the planned Electron Ion Collider and the future upgrade of the STAR experiment at RHIC (BNL). In the first year of this R&D project we built two prototypes of very compact electromagnetic calorimeters and tested them at FNAL test beam T1018 in January 2012. Details of the construction technique, results of the test run and future plan will be presented.

  19. Modeling and scanning of lightguides for Pb/SCIFI calorimeters

    NASA Astrophysics Data System (ADS)

    Simon, D. A.; Hertzog, D. W.; Jones, T. D.; Rhodes, M. W.; Yairi, M. B.

    1993-10-01

    Calorimeters containing embedded arrays of scintillating fibers often require uniform-acceptance lightguides to gather, mix and transport light from the end face of the module to a photo-sensitive detector. To optimize such devices, we have built a flexible lightguide scanning station which imitates the distribution of light coming from an array of scintillating fibers. This system has been used to map the photocathode response of photomultiplier tubes, the transmission uniformity of lightguides and the performance of detector-lightguide combinations. Additionally, we have developed a ray-trace modeling program which accurately reproduces the experimental results. These tools are described in the context of our own application-specific examples, while their general nature makes them attractive in other situations where lightguides are involved. Finally, the effect of lightguide non-uniformity is evaluated in order to estimate the systematic contribution to the calorimeter energy resolution description.

  20. Fiber optic calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian ({mu}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  1. Fiber Optic Calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-12-12

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian ({micro}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  2. The CMS central hadron calorimeter

    SciTech Connect

    Freeman, J.

    1998-11-01

    The CMS central hadron calorimeter is a brass absorber/scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule. {copyright} {ital 1998 American Institute of Physics.}

  3. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  4. Thermal dynamics of bomb calorimeters

    NASA Astrophysics Data System (ADS)

    Lyon, Richard E.

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.

  5. Thermal dynamics of bomb calorimeters.

    PubMed

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter. PMID:26724069

  6. Precision Timing Calorimeter for High Energy Physics

    DOE PAGESBeta

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  7. Triggering with the LHCb calorimeters

    NASA Astrophysics Data System (ADS)

    Lefevre, Regis; LHCb Collaboration

    2009-04-01

    The LHCb experiment at the LHC has been conceived to pursue high precision studies of CP violation and rare phenomena in b hadron decays. The online selection is crucial in LHCb and relies on the calorimeters to trigger on high transverse energy electrons, photons, π0 and hadrons. In this purpose a dedicated electronic has been realized. The calorimeter trigger system has been commissioned and is used to trigger on cosmic muons before beams start circulating in the LHC. When the LHC will start, it will also provide a very useful interaction trigger.

  8. D-Zero Calorimeter Multiplan

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1987-06-15

    This short report explains the parameters, and their basis, of the D-Zero calorimeter multiplan spread sheet Macintosh Multiplan worksheets have been found to be a valuable asset to the D-Zero design effort. The spread sheet contains parameters (constants) and results that come from the parameters. The full effect of changes in D-Zero calorimeter parameters can be calculated quite easily with Multiplan. When a change in a parameter is made, any results that pertain to that parameter automatically change also. This report will explain how some of the unobvious results were obtained.

  9. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  10. Calibration and data quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    NASA Astrophysics Data System (ADS)

    Ženiš, T.

    2016-07-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability is given. The data quality procedures and efficiency of the Tile Calorimeter during the LHC Run-1 data-taking period are presented as well.

  11. The Liquid Argon Calorimeter system for the SLC Large Detector

    SciTech Connect

    Haller, G.M.; Fox, J.D.; Smith, S.R.

    1988-09-01

    In this paper the physical packaging and the logical organization of the Liquid Argon Calorimeter (LAC) electronics system for the Stanford Linear Collider Large Detector (SLD) at SLAC are described. This system processes signals from approximately 44,000 calorimeter towers and is unusual in that most electronic functions are packaged within the detector itself as opposed to an external electronics support rack. The signal path from the towers in the liquid argon through the vacuum to the outside of the detector is explained. The organization of the control logic, analog electronics, power regulation, analog-to-digital conversion circuits, and fiber optic drivers mounted directly on the detector are described. Redundancy considerations for the electronics and cooling issues are discussed. 12 refs., 5 figs.

  12. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Ilias

    2001-04-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs.

  13. The calorimeter of the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Grove, J. Eric; Johnson, W. Neil

    2010-07-01

    The Large Area Telescope (LAT), the primary instrument on the Fermi Gamma-ray Space Telescope, has been making revolutionary observations of the high-energy (20 MeV - 300 GeV) gamma-ray sky since its launch in June 2008. The LAT calorimeter is a modular array of 1536 CsI(Tl) crystals supported within 16 carbon fiber structures and read out at each crystal end with silicon PIN photodiodes to provide both energy and position information. The hodoscopic crystal stack allows imaging of electromagnetic showers and cosmic rays for improved energy measurement and background rejection. Signals from the array of photodiodes are processed by custom ASICs and commercial ADCs. We describe the calorimeter design and the primary factors that led those design choices.

  14. sPHENIX Hadronic Calorimeter Scintillator Studies

    NASA Astrophysics Data System (ADS)

    Byrd, Reuben; Sphenix Collaboration

    2015-10-01

    A new form of matter called the Quark-Gluon Plasma (QGP) was discovered with the Relativistic Heavy Ion Collider (RHIC). PHENIX is an experiment at RHIC that helped with this discovery, but plans are being made to replace it with a new spectrometer with different capabilities. The sPHENIX detector will consist of a superconducting solenoid magnet, hadronic and electromagnetic calorimetry and charged particle tracking. sPHENIX will enable a rich jet physics program that will address fundamental questions about of the nature of the QGP. The new detector will provide full azimuthal coverage and +/- 1.1 in pseudorapidity. The Hadronic Calorimeter is a major subsystem in this detector. It is made of alternating layers of scintillating tiles and steel plates. In the current prototype the tiles are covered with a reflective coating and contain wavelength shifting fibers. As the second round of prototypes are developed for an upcoming beam test, special care is being taken to provide uniform light collection efficiency across the detector. Studies are being conducted to ensure this by careful alignment of the silicon photomultipliers to the fibers and varying coatings on the tiles. The effects of the coating will be presented along with the current status and ongoing plans.

  15. Evaluation of candidate photomultiplier tubes for the upgrade of the CDF end plug calorimeter

    SciTech Connect

    Koska, W.; Delchamps, S.W.; Freeman, J.; Kinney, W.; Lewis, D.; Limon, P.; Strait, J.; Fiori, I.; Gallinaro, M.; Shen, Q.

    1994-01-01

    The Collider Detector at Fermilab is upgrading its end plug calorimeter from a gas detector system to one using scintillating tiles and wavelength shifting fibers. This tile-fiber calorimeter will be read out through 1,824 photomultiplier tubes. The performance requirements of the calorimeter require that the PMTs have good response to light in the 500 nm region, provide adequate amplification for signals from minimum ionizing particles yet provide linear response for peak anode currents up to 25 mA at a gain of 50,000, and fit into the restricted space at the rear of the plugs. This paper will describe the evaluation process used to determine the adequacy of the commercially available PMTs which appeared to meet these performance requirements.

  16. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  17. COE1 Calorimeter Operations Manual

    SciTech Connect

    Santi, Peter Angelo

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  18. Calorimeter Optimization for Jet Identification

    SciTech Connect

    Bower, G.

    2004-10-11

    During LCWS 1999 at Sitges, Spain, we presented a set of discriminators for reconstructing jets in high energy lepton colliders. We have extended that study by adding new event types, by adding new discriminators, and by using a neural net rather than cuts to identify jets. We apply these techniques to detector simulations to begin a study of calorimeter optimization.

  19. The CMS central hadron calorimeter

    SciTech Connect

    Freeman, J.; E892 Collaboration

    1996-12-31

    The CMS central hadron calorimeter is a copper absorber/ scintillator sampling structure. We describe design choices that led us to this concept, details of the mechanical and optical structure, and test beam results. We discuss calibration techniques, and finally the anticipated construction schedule.

  20. Barrel calorimeter of the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Shebalin, V. E.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-12-01

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ˜6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  1. Barrel calorimeter of the CMD-3 detector

    SciTech Connect

    Shebalin, V. E. Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  2. Comissioning and calibration of the Zero Degree Calorimeters for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    DeMarco, N.; Arnaldi, R.; Chiavassa, E.; Cicald, C.; Cortese, P.; DeFalco, A.; Dellacasa, G.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Gemme, R.; Luparello, G.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Puddu, G.; Scomparin, E.; Serci, S.; Siddi, E.; Stocco, D.; Usai, G.; Vercellin, E.; ALICE Collaboration

    2009-04-01

    The Zero Degree Calorimeters (ZDCs) for the ALICE experiment will measure the energy of the spectator nucleons in heavy ion collisions at the CERN LHC. Since all the spectator nucleons have the same energy, the calorimeter reponse is proportional to their umber providing a direct information on the centrality of the collision. Two sets of ZDCs are located at opposite sides with respect to the interaction point (I), 116 m away from it Each set consists of a neutron (ZN) calorimeter, placed between the two beam pipes, an a proton (ZP) calorimeter, posioned externally to the outgoing beam pipe. The ZDCs spaghetti calorimeters, which detect the Cherenkov light produced by the shower particle in silica optical fibers embedded in a dense absorber. In summer 2007 the ZN and ZP calorimeters have been placed on a movable platform and then installed in the LHC tunnel. The results of the commissioning studies and in particular the solutions adopted to control the stability of the PMTs response will be shown: light injection with a larser diode and cosmic rays. The foreseen calibration with e.m. dissociation event in Pb-Pb collisions will also be disussed. Finally the it meaurements carried out during the commissining in the LHC tunnel will be presentend.

  3. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Chiavassa, E.; Cicalò, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Gemme, R.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Puddu, G.; Scomparin, E.; Serci, S.; Siddi, E.; Stocco, D.; Usai, G.; Vercellin, E.; Yermia, F.

    2006-10-01

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  4. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    SciTech Connect

    Arnaldi, R.; Chiavassa, E.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Stocco, D.; Vercellin, E.; Yermia, F.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-10-27

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  5. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    NASA Astrophysics Data System (ADS)

    Boumediene, Djamel; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. The TileCal provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses iron plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by means of wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read by two PMTs. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibrate each part of the data acquisition chain (optical part, photomultiplier, readout electronics) and to monitor its stability to better than 1%. The procedure for setting and preserving the electromagnetic energy scale during Run 1 data taking is discussed. The issues of linearity and stability of the response, as well as the timing adjustment are also shown.

  6. Electromagnetic Calorimeter for HADES Experiment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, P.; Chlad, L.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Korcyl, G.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Neiser, A.; Ott, O.; Otte, O.; Pethukov, O.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Thomas, A.; Tlusty, P.; Traxler, M.

    2014-11-01

    Electromagnetic calorimeter (ECAL) is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  7. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  8. Upgrade fo the CMS Hadron Outer Calorimeter with SIPMs

    SciTech Connect

    Anderson, Jacob; Freeman, James; Los, Sergey; Whitmore, Juliana; /Fermilab

    2011-09-14

    The CMS Hadron Outer Calorimeter (HO) is undergoing an upgrade to replace the existing photodetectors (HPDs) with SIPMs. The chosen device is the Hamamatsu 3 x 3mm 50 {mu}m pitch MPPC. The system has been developed to be a 'drop-in' replacement of the HPDs. A complete control system of bias voltage generation, leakage current monitoring, temperature monitoring, and temperature control using solid state Peltier coolers has been developed and tested. 108 channels of the system have been installed into CMS and operated for more than 2 years. The complete system of about 2200 channels is in production and will be installed in the next LHC long shutdown scheduled for 2013. The CMS central calorimeter consists of a detector inside the solenoidal magnet, HB, and a component outside the magnet, the Outer Hadron Calorimeter, HO [1]. The HO is installed inside the magnet flux return yoke and provides for typically 3{lambda} of additional absorber to the calorimetric measurement. The outer calorimeter is composed of one or more layers of scintillator with wavelength shifting fiber readout into photodetectors. Figure 1 (a) shows the schematic layout of the calorimeters in CMS and shows the location of the HO scintillator layers. The front end electronics are placed inside the CMS detector, close to the scintillators. Figure 1(b) shows a photograph of the scintillators. Note the four wavelength shifting fibers per tile. The tile size creates a projective tower with the HB. Currently the photodetector used is the HPD but for performance and operational reasons it is desired to upgrade these with SIPMs. The CMS HCAL group has developed a drop-in replacement for the HPD using SIPMs. SIPMs are very suitable for this application because of several factors: The radiation levels are modest with a lifetime expected fluence of less than 5*10{sup 11} neutrons (E > 100 KeV) per cm{sup 2}. The energy flux into HO is small, the rate of larger energy depositions is low, and the required

  9. Rugged calorimeter with a fast rise time

    SciTech Connect

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%.

  10. Results of the R&D program on a magnetized SCIFI calorimeter

    NASA Astrophysics Data System (ADS)

    De Mitri, Ivan

    2002-02-01

    A comprehensive R&D program has been developed on a magnetized scintillating fiber imaging calorimeter to be used for hadronic and electromagnetic energy measurements on neutrino events in a LBL ν beam. In this paper we report on the optimization of the optical readout, in particular on gain, linearity, time resolution and cathode uniformity measurements on several PMT types with standard, fine mesh or channel multiplier structure. The PMT response in the presence of the magnetized calorimeter fringe fields has also been studied.

  11. Secondary Emission Calorimeter Sensor Development

    NASA Astrophysics Data System (ADS)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  12. Evolution of the dual-readout calorimeter

    NASA Astrophysics Data System (ADS)

    Penzo, Aldo

    2007-12-01

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy).

  13. A Pb-SciFi imaging calorimeter for high energy cosmic electrons

    NASA Astrophysics Data System (ADS)

    Torii, S.; Tateyama, N.; Tamura, T.; Yoshida, K.; Yamagami, T.; Murakami, H.; Kobayashi, T.; Yuda, T.; Nishimura, J.

    1998-11-01

    The BETS (balloon-borne electron telescope with scintillating fiber) detector has been developed for high-altitude balloon flights to observe high-energy cosmic-electrons. The detector consists of an imaging calorimeter and a trigger system for particle identification and energy measurement. The calorimeter is composed of scintillating fibers and leads of a total thickness of ˜8 r.l. Two sets of an image-intensifier and CCD camera system are adopted for read-out of 10,080 scintillating fibers. The accelerator tests were carried out to study performance of the detector by the CERN-SPS electron and proton beams. It is demonstrated in the flight data that a reliable identification of the electron component has been successfully achieved up to 100 GeV, and the energy spectrum has been measured.

  14. A Pb-SciFi imaging calorimeter for high energy cosmic electrons

    SciTech Connect

    Torii, S.; Tateyama, N.; Tamura, T.; Yoshida, K.; Yamagami, T.; Murakami, H.; Kobayashi, T.; Yuda, T.; Nishimura, J.

    1998-11-09

    The BETS (balloon-borne electron telescope with scintillating fiber) detector has been developed for high-altitude balloon flights to observe high-energy cosmic-electrons. The detector consists of an imaging calorimeter and a trigger system for particle identification and energy measurement. The calorimeter is composed of scintillating fibers and leads of a total thickness of {approx}8 r.l. Two sets of an image-intensifier and CCD camera system are adopted for read-out of 10,080 scintillating fibers. The accelerator tests were carried out to study performance of the detector by the CERN-SPS electron and proton beams. It is demonstrated in the flight data that a reliable identification of the electron component has been successfully achieved up to 100 GeV, and the energy spectrum has been measured.

  15. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  16. Calorimeter in the ARIES recovery system

    SciTech Connect

    Wetzel, J.R.; Sampson, T.E.; Cremers, T.L.

    1997-11-01

    The Advanced Recovery and Integrated Extraction System is an automated weapons component recovery system that includes four state-of-the-art nondestructive assay (NDA) instruments to analyze all outputs and the final product. The instruments are integrated with robotics sample handling to provide the analytical data and are controlled by a central computer. The NDA instruments are a plutonium isotopic composition system, neutron coincidence counter, segmented gamma scanner, and a calorimeter. This paper will describe the calorimeter system which uses the new Windows environment software package to communicate between the calorimeter and the control computer. Storage, retrieval, database, and operations with other software packages, such as Excel, are provided to allow the operator to analyze the calorimeter system. The host computer assumes control of all functions of the calorimeter system in the remote operations and retrieves the data upon completion of the calorimeter sample run allowing the robotics system to change samples at the earliest possible time for maximum sample throughput. The calorimeter Windows operating system allows viewing of the calorimeter, room, and bath data during the sample run. 1 ref., 2 figs., 1 tab.

  17. Status of the CDF II Calorimeters

    SciTech Connect

    Mattson, Mark

    2006-10-27

    The status of the CDF calorimeters was reported at the CALOR2002 conference, about a year after Run II started at the Tevatron Collider. I will review upgrades to the system since that conference, as well as the operation and performance of the calorimeters.

  18. Commissioning and calibration of the Zero Degree Calorimeters for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Gemme, R.; Arnaldi, R.; Chiavassa, E.; Cicalò, C.; Cortese, P.; De Falco, A.; Dellacasa, G.; De Marco, N.; Ferretti, A.; Floris, M.; Gagliardi, M.; Gallio, M.; Luparello, G.; Masoni, A.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Puddu, G.; Scomparin, E.; Serci, S.; Siddi, E.; Stocco, D.; Usai, G.; Vercellin, E.

    2009-12-01

    The ALICE experiment at the CERN LHC will study the properties of matter at the extreme temperature and energy density conditions produced in heavy ion collisions. The impact parameter of the collision will be estimated by means of the Zero Degree Calorimeters (ZDC), that measure the energy carried away by the non-interacting (spectator) nucleons. All the spectator nucleons have the same energy, therefore the calorimeter response is proportional to their number, providing a direct information on the centrality of the collision. Two identical sets of hadronic calorimeters are located at opposite sides with respect to the interaction point, 116 m away from it, where the two LHC beams circulate in two different pipes. Each set of detectors consists of a neutron (ZN) calorimeter, placed between the two beam pipes and a proton (ZP) calorimeter, positioned externally to the outgoing beam pipe. The ZDC are spaghetti calorimeters, which detect the Cherenkov light produced by the charged particles of the shower in the quartz fibers, acting as the active material embedded in a dense absorber matrix. In summer 2007 the ZN and ZP calorimeters have been placed on a movable platform and then installed in the LHC tunnel. The results of the commissioning studies are shown. The monitoring systems adopted to control the stability of the PMT responses, i.e. light injection with a laser diode and cosmic rays, are described in detail. The foreseen calibration with e.m. dissociation events in Pb-Pb collisions will also be discussed. Finally the first measurements carried out during the commissioning in the LHC tunnel will be presented.

  19. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  20. Status Report on the Tungsten Powder/Fiber Calorimetry Program for EIC

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Jay

    2011-10-01

    We report the current status of an EIC detector R&D project for a new sampling calorimeter technology using tungsten powder and scintillating fibers. Detector construction techniques and bench test results will be presented. We will show results of Geant4 simulations for a proposed tungsten-fiber calorimeter envisioned for both a STAR forward calorimeter upgrade and an electromagnetic calorimeter for EIC with emphasis on the performance characteristics of the detector (energy and position resolution, pi0-gamma separation and e/h rejection, pi0 reconstruction etc.). Finally, future plans for our R&D effort will be discussed.

  1. Design and Performance Tests of Ultra-Compact Calorimeters for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Salgado, Carlos W.

    2003-01-01

    This R&D project had two goals: a) the study of general-application ultra-compact calorimetry technologies for use in High Energy Astrophysics and, b) contribute to the design of an efficient calorimeter for the ACCESS mission. The direct measurement of galactic cosmic ray fluxes is performed from space or from balloon-borne detectors. Detectors used in those studies are limited in size and, specially, in weight. Since galactic cosmic ray fluxes are very small, detectors with high geometrical acceptances and long exposures are usually required for collecting enough statistics. We have studied calorimeter techniques that could produce large geometrical acceptance per unit of mass (G/w) and that may be used to study galactic cosmic rays at intermediate energies (knee energies).-The most important asset for detection of primary cosmic rays at and about the knee is large acceptance. To construct a large acceptance calorimeter (this term is used here in its most general accepted meaning of calorimeter as a device to measure particle energies ) the detector needs to be verv liaht or verv shallow . We studied two possible technologies to built compact calorimeters: the use of lead-tungstate crystals (PWO) and the use of sampling calorimetry using scintillating fibers embedded in a matrix of powder tungsten. For a very light detector, we considered the possibility of using Optical Transition Radiation (OTR) to measure the energy (and perhaps also direction and identity) of VHE cosmic rays.

  2. Fiber R and D for the CMS HCAL

    NASA Astrophysics Data System (ADS)

    Budd, H. S.; Bodek, A.; de Barbaro, P.; Ruggiero, D.; Skup, E.

    1998-11-01

    This paper documents the fiber R and D for the CMS hadron barrel calorimeter (HCAL). The R and D includes measurements of fiber flexibility, splicing, mirror reflectivity, relative light yield, attenuation length, radiation effects, absolute light yield, and transverse tile uniformity. Schematics of the hardware for each measurement are shown. These studies are done for different diameters and kinds of multiclad fiber.

  3. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  4. The effect of passive material on the detection of hadrons in calorimeter configurations for the SDC detector

    SciTech Connect

    Kirk, T.B.W.; Trost, H.J.

    1991-08-14

    We have used a flexible geometry model of a calorimeter design for SDC to study the effect of passive material in front of the calorimeter and between the barrel and endcap modules on the apparent response to hadrons. The thicknesses of the passive materials have been chosen to closely resemble the currently projected wall thicknesses of the scintillating tile-fiber and liquid-argon calorimeter designs. The liquid-argon model contains about three times the amount of material in its shells compared to the tile-fiber model. The solenoid coil reduces the relative difference somewhat in the barrel region but constitutes only a minor correction in the transition region from barrel to endcap. Correspondingly, we find a significantly worse response for the liquid-argon case which we demonstrate using beams of single {pi}{sup minus} particles of 10 GeV/c momentum. 13 refs., 6 figs.

  5. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Cole, Stephe

    2013-04-01

    The Tile Calorimeter is the central section (0 < |η| < 1.7) of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons decaying hadronically, and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired during 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing well within the design requirements and is giving essential input to the physics results.

  6. Uranium scintillator calorimeter at the CERN ISR

    SciTech Connect

    Gordon, H; Killian, T; Ludlam, T

    1980-01-01

    The design, Monte Carlo studies and test beam results of a uranium/scintillator calorimeter to be installed in the Intersecting Storage Ring (ISR) at CERN are described. In its final stage the calorimeter will cover the full azimuth over a polar region of 45/sup 0/ < theta < 135/sup 0/. The full calorimeter is built in a modular way from 128 stacks, with each stack internally subdivided into six cells of 20 x 20 cm/sup 2/ cross section. The readout is by wavelength shifting (WLS) plates with a separate readout of the front part of the calorimeter (first ten plates) to allow electromagnetic/hadronic separation. Since the readout plates are on both sides of the cells, position information is obtained from the left/right ratio.

  7. The BaBar electromagnetic calorimeter

    SciTech Connect

    Stahl, A.

    1997-07-01

    The progress on the design and construction of the BaBar electromagnetic calorimeter including its mechanical structure, the readout system, the mechanical and optical properties of the crystals, and the schedule for the final assembly and testing is summarized.

  8. The CMS central hadron calorimeter: Update

    SciTech Connect

    Freeman, J.

    1998-06-01

    The CMS central hadron calorimeter is a brass absorber/ scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule.

  9. The DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-08-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region for the DELPHI experiment at the CERN LEP collider. A veto system composed of two scintillator layers allows to trigger on single photon events and provides e{minus}{gamma} separation. The authors present here some results of extensive measurements performed on part of the calorimeter and the veto system in the CERN test beams prior to installation and report on the performance achieved during the 1994 LEP run.

  10. Liquid scintillating fiber calorimetry prototype

    SciTech Connect

    Gui, M.; Brookes, D.; David, A.

    1995-08-01

    A full size liquid scintillating fiber spaghetti-hadronic calorimeter has been constructed and tested using cosmic rays at Texas A and M University. The purpose of this research is to find practical solutions for detectors to be used in extremely high radiation environments. The details of design and construction of this module are presented. The advantages of using liquid scintillating materials were investigated. Relevant subjects are addressed. Cosmic ray test results are compared with that of GEANT Monte Carlo simulations. Over all, they agree well with each other. The conclusion is that calorimeters utilizing this technique can be used in high radiation environments such as SSC colliding area.

  11. Performance of the GlueX Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Smith, Elton; Dalton, Mark; McGinley, William; Papandreou, Zisis; GlueX Collaboration

    2015-10-01

    The GlueX experiment at Jefferson Lab will search for exotic hybrid mesons, a new form of hadronic matter that exhibits gluonic degrees of freedom. We have taken data to commission the experiment and report here on the construction and performance of the electromagnetic barrel calorimeter (BCAL). The BCAL is a ``spaghetti calorimeter,'' consisting of layers of corrugated lead sheets, interleaved with planes of 1-mm-diameter, double-clad, scintillating fibers, bonded in the lead grooves using optical epoxy. This detector consists of 48 modules that are readout using 3,840 large-area Multi-Photon Pixel counter (MPPC) arrays. The measured width of the π0 mass peak is approximately 10 MeV, only slightly higher than projections based on prototypes. Systematic studies are underway to understand the contributions to the resolution and improve its performance. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  12. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Heelan, Louise; ATLAS Collaboration

    2015-06-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design requirements and it has given essential contribution to reconstructed objects and physics results. In addition, the data quality procedures used during the LHC data-taking are described and the outcome of the detector consolidation in the maintenance period is also presented.

  13. Calorimeter Data Acquisition and Reporting Software

    Energy Science and Technology Software Center (ESTSC)

    1998-08-27

    The calorimeter Data Acquisition and Reporting Program performs the calculations necessary to calculate the calorimetric sample results in grams and provide a printable report for up to twelve Mound Calorimeters. To determine a standard''s wattage or sample gram fill, the reporting program retrieves the output voltage from the power supply at the calorimeter and a temperature resistant resistor via a voltmeter and digital input card in a Hewlett Packard Data Acquisition Unit (DAQ). From themore » retrieved voltage data, the reporting program can calculate a standard''s wattage output and sample gram fill. The reporting program also determines equilibrium (stability) by performing a stability algorithm bassed on user defined slope an/or sigma values for the previous forty values. Once the stability is determined, the reporting program will notify the user that the calorimeter has reached equilibrium. The Calorimeter Data Acquisition and Reporting Program operates continuously as described to monitor for calorimeter equilibrium and to generate a printable report with sample results.« less

  14. Can a PB / SCIFI Calorimeter Survive the SSC?

    SciTech Connect

    D. W. Hertzog; S. A. Hughes; P. E. Reimer; R. L. Tayloe; K. F. Johnson; S. Majewski; C. Zorn; M. Zorn

    1990-03-01

    A scintillating fiber based electromagnetic calorimeter module built from radiation-hard materials has been tested in a beam capable of delivering both low and high currents of monoenergetic electrons. Energy resolution and light output measurements were made following high-dose exposures. The procedure was repeated until the resolution of the detector decreased from an initial value of 6.9%/sqrt E to 14.0%/sqrt E and the pulse height dropped by a factor of 11. After four weeks, the detector was retested. Partial recovery was observed in the light output which returned to approximately 52% of its original value. The resolution recovered to a value of 8.8%/sqrt E. The tests are described.

  15. Can a Pb/SCIFI calorimeter survive the SSC

    SciTech Connect

    Hertzog, D.W.; Hughes, S.A.; Reimer, P.E.; Tayloe, R.L. ); Johnson, K.F. ); Majewski, S.; Zorn, C.; Zorn, M. )

    1990-01-01

    A scintillating fiber based electromagnetic calorimeter module built from radiation-hard materials has been tested in a beam capable of delivering both low and high currents of monoenergetic electrons. Energy resolution and light output measurements were made following high-dose exposures. The procedure was repeated until the resolution of the detector decreased from an initial value of 6.9%{radical}E to 14.0%{radical}E and the pulse height dropped by a factor of 11. After four weeks, the detector was retested. Partial recovery was observed in the light output which returned to approximately 52% of its original value. The resolution recovered to a value of 8.8%{radical}E. The tests are described. 9 refs., 4 figs.

  16. The Electron Calorimeter (ECAL) Long Duration Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Adams, J. H.; Bashindzhagyan, G.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M.; Dowkontt, P.; Ellison, B.; Isbert, J. B.; Israel, M. H.; Korotkova, N.; Panasyuk, M.; Panov, A.; Sokolskaya, N.; Stewart, M.; Watts, J.; Wefel, P.; Zatsepin, V.

    2007-01-01

    Accurate measurements of the cosmic ray electron energy spectrum in the energy region 50 GeV to greater than 1 TeV may reveal structure caused by the annihilation of exotic dark matter particles and/or individual cosmic ray sources. Here we describe a new long duration balloon (LDB) experiment, ECAL, optimized to directly measure cosmic ray electrons up to several TeV. ECAL includes a double layer silicon matrix, a scintillating optical fiber track imager, a neutron detector and a fully active calorimeter to identify more than 90% of the incident electrons with an energy resolution of about 1.7% while misidentifying only 1 in 200,000 protons and 0.8% of secondary gamma rays as electrons. Two ECAL flights in Antarctica are planned for a total exposure of 50 days with the first flight anticipate for December 2009.

  17. The CREAM Calorimeter: Performance In Tests And Flights

    SciTech Connect

    Lee, M. H.; Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lutz, L.; Malinine, A.; Sina, R.; Walpole, P.; Wu, J.; Zinn, S. Y.; Allison, P.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.; Barbier, L.

    2006-10-27

    The Cosmic Ray Energetics And Mass (CREAM) balloon-borne experiment, designed to directly measure cosmic-ray particle energies from {approx}1011 to {approx}1015 eV, had two successful flights since December 2004, with a total duration of 70 days. The CREAM calorimeter is comprised of 20 layers of 1 radiation length (X0) tungsten interleaved with 20 active layers each made up of fifty 1 cm wide scintillating fiber ribbons. The scintillation signals are read out with multi pixel Hybrid Photo Diodes (HPDs), VA32-HDR2/TA32C ASICs and LTC1400 ADCs. During detector construction, various tests were carried out using radioactive sources, UV-LEDs, and particle beams. We will present results from these tests and show preliminary results from the two flights.

  18. Tritium calorimeter setup and operation

    SciTech Connect

    Rodgers, David E.

    2002-12-17

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to {+-}0.001 C.

  19. Calorimeter Timing System at CDF

    SciTech Connect

    Goncharov, Max

    2006-10-27

    We report on the design and performance of the electromagnetic calorimeter timing readout system (EMTiming) for the Collider Detector at Fermilab (CDF). The system is used in searches for rare events with high-energy photons to verify that the photon is in time with the event collision, and to reject cosmic-ray and beam-halo backgrounds. The installation and commissioning of all 862 channels was completed in Fall 2004 as part of an upgrade to the Run II version of the detector. Using in-situ data, we measure the energy threshold for a time to be recorded to be 3.8{+-}0.3 GeV and 1.9{+-}0.1 GeV in the central (CEM) and plug (PEM) portions of the detector. Similarly, for the central and plug portions we measure a timing resolution of 600{+-}10 ps and 610{+-}10 ps for electrons above 10 GeV (6 GeV). Pathologies such as noise and non-Gaussian tails are virtually non-existent.

  20. Fiber-tile optical studies at Argonne

    SciTech Connect

    Underwood, D.G.; Morgan, D.J.; Proudfoot, J.

    1991-07-23

    In support of a fiber-tile calorimeter for SDC, we have done studies on a number of topics. The most basic problems were light output and uniformity of response. Using a small electron beam, we have studied fiber placement, tile preparation, wrapping and masking, fiber splicing, fiber routing, phototube response, and some degradation factors. We found two configurations which produced more light output than the others and reasonably uniform response. We have chosen one of these to go into production for the EM test module on the basis of fiber routing for ease of assembly of the calorimeter. We have also applied some of the tools we developed to CDF end plug tile uniformity, shower max testing and development for a couple of detectors, and development of better techniques for radiation damage studies. 18 figs.

  1. Description of an ionization calorimeter complemented with proportional counters

    NASA Technical Reports Server (NTRS)

    Babayan, K. P.; Boyadzhyan, N. G.; Vasiltsov, V. V.; Grigorov, N. L.; Sobinyakov, V. A.; Shestoperov, V. Y.

    1975-01-01

    An ionization calorimeter is described with a system of proportional counters which are used to determine the charge of the particles incident to the calorimeter and to estimate the number of the secondary charged particles.

  2. Vacuum-jacketed hydrofluoric acid solution calorimeter

    USGS Publications Warehouse

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  3. Temperature Effects in the ATIC BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Adams, J. H.; Ahn, H.; Bashindzhagyan, G.; Batkov, K.; Chang, J.; Christl, M. J.; Fazely, A.; Ganel, O.; Gunasigha, R.

    2006-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.

  4. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  5. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  6. Performance of the GEM electromagnetic calorimeter

    SciTech Connect

    Hong Ma

    1993-06-25

    The GEM EM calorimeter is optimized for the best energy, position, angular resolution and jet rejection. The detailed simulation results are presented. In the barrel with LKr, an energy resolution of about 6%/{radical}{direct_sum}0.4%, pointing resolution of 40mrad/{radical}E + 0.5mrad, and jet rejection of a factor of 5 are expected.

  7. Grout Analysis for EC and CC Calorimeters

    SciTech Connect

    Engstrom, L.L.; /Fermilab

    1987-01-06

    The EC and CC calorimeters roll on Two parallel hardened steel ways which reside on the top of the D0 platform's center beam. The ways will be grouted to the center beam once their correct elevation has been established. The purpose of this report is to evaluate and compare three different epoxy grouts and their properties for this application.

  8. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  9. CALET: a calorimeter for cosmic-ray measurements in space

    NASA Astrophysics Data System (ADS)

    Mori, Nicola

    2013-06-01

    The CALorimetric Electron Telescope (CALET) instrument is scheduled for a launch in 2014 and attached to the Exposed Facility of the Japanese Experimental Module (JEM-EF) on the International Space Station. Its main objective is to perform precise measurements of the electron+positron spectrum in cosmic rays at energies up to some TeV, searching for signals from dark matter and/or contributions from nearby astrophysical sources like pulsars. Other scientific goals include the investigation of heavy ions spectra up to Fe, elemental abundance of trans-iron nuclei and a measurement of the diffuse γ ray emission with high energy resolution. The instrument is now under construction, and consists of a charge detection device (CHD) composed of two layers of plastic scintillators, a finely-segmented sampling calorimeter (IMC) and a deep, homogeneous calorimeter (TASC) made of PbWO scintillating bars. The good containment of electromagnetic showers (total depth ˜3X0(IMC)+27X0(TASC)=30X0) together with the homogeneity of TASC give an energy resolution for electrons and γ rays about 2%. CHD can discriminate the charge of primary particles with a resolution between 15% and 30% up to Fe. The finely-segmented IMC, made by tungsten layers and 1mm-wide scintillating fibers, can provide detailed information about the start and early development of particle showers. Lateral and longitudinal shower-development information from TASC, together with informations from IMC, can be used to achieve an electron/proton rejection power about 105. High-statistics for collected data will be achieved by means of the planned 5-years exposure time together with a geometrical factor of 0.12 m sr. Furthermore, a Gamma-Ray Burst monitor will complement the main detector. In this paper the status of the mission, the design and expected performance of the instrument will be detailed.

  10. Production summary for extended barrel module fabrication at Argonne for the ATLAS tile calorimeter.

    SciTech Connect

    Guarino, V.; Hill, N.; Petereit, E.; Skrzecz, F.; Wood, K.; Proudfoot, J.; Anderson, S.; Caird, A.; Keyser, C.; Kocenko, L.; Matijas, Z.; Nephew, T.; Stanek, R.; Franchini, F.; High Energy Physics

    2007-11-14

    The Tile Calorimeter is one of the main hadronic calorimeters to be used in the ATLAS experiment at CERN [1,2]. It is a steel/scintillator sampling calorimeter which is built by stacking 64 segments in azimuth and 3 separate cylinders to provide a total structure whose length is approximately 12m and whose diameter is a little over 8.4m. It has a total weight of about 2630 metric tons. Important features of this calorimeter are: A minimum gap (1.5mm) between modules in azimuth; Pockets in the structure to hold the scintillator tiles; Recessed channels at the edges of the module into which the readout fibers will sit; and Holes in the structure through which a radioactive source will pass. The mechanical structure for one of the 3 calorimeter sections, the Extended Barrel (EBA) was constructed at Argonne. A schematic of the calorimeter sampling structure and the layout of one of the 64 segments, termed a module, are shown in figure 1. Each module comprises mechanically of a precision machined, structural girder to which 10 submodules are bolted. One of these submodules, the ITC, has a customized shape to accommodate services for other detector elements. Each submodule weighs 850Kg and the assembled mechanical structure of the module weighs approximately 9000Kg (a fully instrumented Extended Barrel modules weighs {approx}9600Kg). A crucial issue for the tile calorimeter assembly is the minimization of the un-instrumented gap between modules when they are stacked on top of each other during final assembly. The design goal was originally 1mm gap which was eventually relaxed to 1.5mm following a careful evaluation of all tolerances in the construction and assembly process as shown in figure 2 [3]. Submodules for this assembly were produced at 4 locations [4] using tooling and procedures which were largely identical [5]. An important issue was the height of each submodule on the stacking fixture on which they were fabricated as this defines the length along the girder

  11. The CMS forward calorimeter prototype design studies and Omega(c)0 search at E781 experiment at Fermilab

    SciTech Connect

    Ayan, Ahmet Sedat

    2004-05-01

    In the fit part, the Compact Muon Solenoid (CMS) forward calorimeter design studies are presented. The forward calorimeter consists of quartz fibers embedded in a steel absorber. Radiation damage studies of the quartz fiber and the absorber as well as the results of the first pre-production prototype PPP-I are presented. In the second part, the {Omega}{sub c}{sup 0}search studies at the SELEX (E781) experiment at FermiLab are presented. 107 {+-} 22 {Omega}{sub c}{sup 0} events are observed in three decay modes. The relative branching ratio ({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup -}{pi}{sup +}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) is measured as 2.00 {+-} 0.45(stat) {+-} 0.32(sys).

  12. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  13. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    SciTech Connect

    Fox, M.J.; Fox, J.D.

    1988-10-01

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab.

  14. Mechanical and thermal design of the CEBAF Hall a beam calorimeter

    SciTech Connect

    M. Bevins; A. Day; P. Degtiarenko; L.A. Dillon-Townes; A. Freyberger; R. Gilman; A. Saha; S. Slachtouski

    2005-05-16

    A calorimeter is being fabricated to provide 0.5% - 1.0% absolute measurement of the beam current in the Hall A end station of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB). Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that minimize electromagnetic and hadronic energy loss while maintaining a rapid thermal response time. Heat leaks are minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

  15. Shashlik calorimeter Beam-test results

    NASA Astrophysics Data System (ADS)

    Badier, J.; Busson, Ph.; Charlot, C.; Dobrzynski, L.; Tanaka, R.; Bordalo, P.; Ramos, S.; Bityukov, S.; Obraztsov, V.; Ostankov, A.; Zaitchenko, A.; Gninenko, S.; Guschin, E.; Issakov, V.; Mussienko, Y.; Semenjuk, I.

    1994-08-01

    Results from an extensive study of nonprojective Shashlik calorimeter prototypes are reported. Nine (47 × 47 mm 2) towers were exposed to a high energy electron beam at CERN SPS and read out by silicon photodiodes followed by low noise preamplifiers. The main results are the measurements of the energy and shower position resolution and the angular resolution of the electron shower direction. The shower direction measurement is encouraging being in agreement at the tower center with a resolution of σθ(mrad) = 70/√ E (10 mrad for 50 GeV electrons). The uniformity of the calorimeter response is found to be better than ± 1%. The mean light yield measured in Shashlik towers equipped with Kuraray Y7 WLS fibres and aluminized at the front end of the tower is of the order of 13 photons/MeV.

  16. Effect of dead material in a calorimeter

    SciTech Connect

    Green, D.

    1995-10-01

    The existence of dead material in any practical calorimeter system is simply a fact of life. The task for the designer, then, is to understand the impact on the Physics in question, and strive to minimize it. The aim of this note is to use the ``Hanging File`` test data, which has fined grained individual readout of about 100 depth segments, to explore impact of dead material on the mean and r.m.s. of the hadronic distribution. The amount and location of the dead material is varied. It important to remember that the Hanging File data was calibrated, EM to HCAL compartment, so as to minimize the electron to pion energy dependence. In practical terms e/pie was made = 1.0 at an incident energy of about 100 GeV. Note that the PB(EM) + FE(HCAL) calorimeter was not a compensating device.

  17. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  18. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  19. Nose-cone calorimeter: PHENIX forward upgrade

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2009-07-01

    PHENIX is a high rate experiment efficient at measuring rare processes, but has limited acceptance in azimuth and pseudorapidity ( η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9< η<3, is one of the upgrades which will significantly increase coverage in both azimuth and pseudorapidity. The NCC will expand PHENIX’s precision measurements of electromagnetic probes in η, reconstruct jets, perform a wide scope of correlation measurements, and enhance triggering capabilities. The detector will significantly contribute to measurements of γ-jet correlations, quarkonia production, and low- x nuclear structure functions. This report discusses details of the detector design and its performance concerning a sample of the physics topics which will benefit from the NCC. In view of recent funding difficulties, outlook of the activities is discussed.

  20. Performance of the HPC calorimeter in DELPHI

    SciTech Connect

    Chan, A.; Crawley, H.B.; Edsall, D.M. |

    1995-08-01

    The performance of the High-density Projection Chamber (HPC), the barrel electromagnetic calorimeter of the DELPHI experiment, is described. The detector adopts the time projection technique in order to obtain exceptionally fine spatial granularity in the three coordinates ({approximately}2{times}20 mrad{sup 2} in {theta}{times}{phi} with nine samplings along the shower axes), using a limited number of readout channels (18,432). Among the various topics concerning the HPC construction and operation, major emphasis is given to the aspects related to the calibration in energy of the calorimeter, based mainly on the analysis of the detector response to {sup 83m}Kr decays, and to the treatment of aging in the readout proportional counters.

  1. LYSO crystal calorimeter readout with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bonvicini, V.; Cecchi, C.; Germani, S.; Guffanti, D.; Lietti, D.; Lubrano, P.; Manoni, E.; Prest, M.; Rossi, A.; Vallazza, E.

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger-Muller avalanche mode, and thus working as independent photon counters with a very high gain (~106). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9 ~ 18X0 LYSO crystals. The crystals were readout by 36 4×4 mm2 SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100-500 MeV energy range.

  2. A FOrward CALorimeter Upgrade For PHENIX

    SciTech Connect

    Hollis, Richard S.

    2011-06-01

    Over the past few years, the PHENIX detector has undergone several upgrades in the forward region (1<|{eta}|<4), initially covered only by the muon arms. The focus of these upgrades is toward a better understanding of the Color-Glass Condensate and the interplay between the different components of the proton's spin valence/sea quark and gluon contributions. This paper highlights the newly proposed forward calorimeter detector, FOCAL. FOCAL is a tungsten-silicon sampling calorimeter with high position and energy resolution, covering a pseudorapidity of 1.6<{eta}<2.5. This future detector aims to constrain the current view of gluon saturation at small x in the Color-Glass Condensate framework, through isolation of direct photons at high-p{sub T} over a broad range of pseudorapidity.

  3. The dry heat exchanger calorimeter system

    SciTech Connect

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab.

  4. Performance of the ATLAS Tile Calorimeter in pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Fiascaris, Maria; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumented for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off- detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. The data quality procedures used during the LHC data-taking and the evolution of the detector status during the LHC Run 1 are presented. The energy and the time reconstruction performance of the digitized signals is summarized and the calorimeter response to hadrons is investigated with collision data.

  5. The ATLAS Liquid Argon Electromagnetic Calorimeter

    SciTech Connect

    Carminati, L.

    2005-10-12

    The construction of the ATLAS Liquid Argon Electromagnetic calorimeter has been completed and commissioning is in progress. After a brief description of the detector layout, readout electronics and calibration, a review of the present status of the integration and the detector qualification is reported. Finally a selection of performance results obtained during several test beams will be presented with particular attention to linearity, uniformity, position reconstruction and {gamma}/{pi}0 separation.

  6. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  7. A no-load RF calorimeter

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  8. An improved single crystal adsorption calorimeter

    NASA Astrophysics Data System (ADS)

    Stuck, A.; Wartnaby, C. E.; Yeo, Y. Y.; Stuckless, J. T.; Al-Sarraf, N.; King, D. A.

    1996-04-01

    Significant improvements to the single crystal adsorption calorimeter (SCAC) of Borroni-Bird and King are described. The calorimeter comprises a pulsed molecular beam source, an ultrathin single crystal and an infrared detector. It is calibrated using a chopped laser beam, and the amount of gas adsorbed or reacted per pulse is measured using the King and Wells reflection detector technique. Refinements in the molecular beam system, the optical calibration system, flux calibration system and sticking probability measurement technique have been made. The calorimeter response is accurately linear over a useful energy range; the detection limit is estimated as 10 kJ mol -1; and the accuracy in heats of adsorption for heats above ˜ 80 kJ mol -1 is estimated as ˜ 6%. Comparisons of calorimetric heats with isosteric heats and with desorption energies obtained for reversible systems, such as CO on Ni and Pt single crystal surfaces, generally yield good agreement and give support to the estimate for the absolute accuracy of the instrument.

  9. Fast Shower Simulation in the ATLAS Calorimeter

    SciTech Connect

    Barberio, E.; Boudreau, J.; Butler, B.; Cheung, S.L.; Dell'Acqua, A.; Di Simone, A.; Ehrenfeld, W.; Gallas, M.V.; Glazov, A.; Marshall, Z.; Mueller, J.; Placakyte, R.; Rimoldi, A.; Savard, P.; Tsulaia, V.; Waugh, A.; Young, C.C.; /SLAC

    2011-11-08

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterization is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to {approx} 1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper.

  10. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  11. The Zeus calorimeter first level trigger

    SciTech Connect

    Smith, W.J.

    1989-04-01

    The design of the Zeus Detector Calorimeter Level Trigger is presented. The Zeus detector is being built for operation at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons in 1990. The calorimeter is made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,864 photomultiplier tubes. These signals are combined into 974 trigger towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger is pipelined with a decision provided 5 {mu}sec after each beam crossing, occurring every 96 nsec. The trigger determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the number and energy of clusters. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of approximately 500 kHz. The summed trigger tower pulseheights are digitized by flash ADC`s. The digital values are linearized, stored and used for sums and pattern tests.

  12. Performance of CDF calorimeter simulation for Tevatron Run II

    SciTech Connect

    C. Currat

    2002-09-19

    The upgraded CDF II detector has collected first data during the initial operation of the Tevatron accelerator in Run II. The simulation of the CDF electromagnetic and hadronic central and upgraded plug (forward) calorimeter is based on the Gflash calorimeter parameterization package used within the GEANT based detector simulation of the Run II CDF detector. We present the results of tuning the central and plug calorimeter response to test beam data.

  13. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  14. Performance of the SLD Warm Iron Calorimeter prototype

    SciTech Connect

    Callegari, G.; Piemontese, L.; De Sangro, R.; Peruzzi, I., Piccolo, M.; Busza, W.; Friedman, J.; Johnson, A.; Kendall, H.; Kistiakowsky, V.

    1986-03-01

    A prototype hadron calorimeter, of similar design to the Warm Iron Calorimeter (WIC) planned for the SLD experiment, has been built and its performance has been studied in a test beam. The WIC is an iron sampling calorimeter whose active elements are plastic streamer tubes similar to those used for the Mont-Blanc proton decay experiment. The construction and operation of the tubes will be briefly described together with their use in an iron calorimeter - muon tracker. Efficiency, resolution and linearity have been measured in a hadron/muon beam up to 11 GeV. The measured values correspond to the SLD design goals.

  15. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  16. Shashlik calorimeter response to high energy electrons

    NASA Astrophysics Data System (ADS)

    Dobrzynski, L.

    1994-04-01

    We report the results coming from an extensive study of a Shashlik calorimeter prototype for CMS. Nine (47 × 47 mm 2) towers were exposed to a high energy electron beam at CERN SPS and read out by silicon photodiodes followed by low noise preamplifiers. The main results are the measurements of: -|the energy resolution: {σ}/{E}(%)= {(8.4±0.1)}/{E}⊕ {(0.37±0.03)}/{E}⊕(0.8±0.2) ; -|the shower resolution: σ x,y(mm)= {9.1±0.3 stat±0.7 syst}/{E}⊕ {27±1.4 stat±2.1 syst}/{E}. -|We also give the angular resolution of the direction of an electron shower. It is estimated by using one point from a preshower detector located at 3 X0 and the second point on a barycenter in the calorimeter mosaic. The result is encouraging being in agreement with a resolution of σ θ( mrad) = {70}/{√E}, which gives for an electron of 50 GeV an angular resolution of 10 mrad. -|The uniformity of the calorimeter response is found to be better than ± 1%. -|The mean light yield measured in Shashlik towers equipped with Y7 WLS fibres from Kuraray and aluminized at the front side of the tower is of the order of 12300 γ/ GeV assuming a quantum efficiency of 62.5% for the Si photodiode.

  17. Calorimeter measurements of low wattage items

    SciTech Connect

    Cremers, T.L.; Camp, K.L.; Hildner, S.S.; Sedlacek, W.A.

    1993-08-01

    The transition of DOE facilities from production to decontamination and decommissioning has led to more measurements of waste, scrap, and other less attractive materials. The difficulty that these materials pose for segmented gamma scanning and neutron counting has increased the use of calorimetric assay for very low wattage items (< 250 millwatts). We have measured well characterized {sup 238}Pu oxide ranging in wattage from 25 to 500 milliwatts in the calorimeters at the Los Alamos Plutonium Facility and report the error and the precision of the measurements.

  18. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  19. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    SciTech Connect

    Aleksa, Martin

    2006-10-27

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  20. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    T. S. Nigmanov; H. R. Gustafson; M. J. Longo; D. Rajaram

    2006-10-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample.

  1. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    Nigmanov, T. S.; Gustafson, H. R.; Longo, M. J.; Rajaram, D.

    2006-10-27

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in {pi}, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample.

  2. Electromagnetic and hadron calorimeters in the MIPP experiment

    SciTech Connect

    Nigmanov, T.S.; Gustafson, H.R.; Longo, M.J.; Park, H.K.; Rajaram, D.; Dukes, C.; Lu, L.C.; Materniak, C.; Nelson, K.; Norman, A.; Meyer, H.; /Fermilab /Harvard U. /Indiana U. /Iowa U. /Purdue U.

    2008-10-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons in {pi}, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/{radical}E, and for hadrons the resolution was 0.554/{radical}E with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample.

  3. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    T. S. Nigmanov; H. R. Gustafson; M. J. Longo; H. K. Park; D. Rajaram; and 13 others

    2008-10-15

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample.

  4. Charge Detector for the Imaging Calorimeter for ACCESS (ICA)

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Adams, J. H., Jr.

    2000-01-01

    NASA's Advanced Cosmic Ray Experiment for the Space Station (ACCESS) Mission is planned to consist of a transition radiation detector (TRD) and a thin ionization calorimeter. In order to measure the charge of the primary cosmic ray, it is necessary for the calorimeter to have its own charge detector. Silicon detectors are chosen for the charge detector because of their excellent resolution, small size and nearly square shape. Monte Carlo simulations are performed to find the probability of misidentifying protons as alpha particles due to backscattered radiation from the calorimeter. Simulations were also used to investigate identifying primary cosmic rays that fragmented in the TRD before reaching the calorimeter. For this study algorithms have been developed for determining a direction of the core shower in the calorimeter. These algorithms are used to find the approximate location of the primary particle in the silicon detectors. Results show the probability to misidentify the charge depends upon the energy and direction of the primary particles.

  5. Closed Gap Slug Calorimeter for Plasma Stream Characterization

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Gorbunov, Sergey; Terrazas-Salinas, Imelda; Jones, Steven M.

    2012-01-01

    Slug calorimeters are used in sheer and stagnation mode to characterize heat flux levels for high enthalpy streams. The traditional design features a gap between slug and holder, which can be of concern in these convective heat flux environments. The challenge is to develop a calorimeter that closes the gap to gas flow, but largely maintains thermal insulation of the slug. The work presented herein introduces two new slug calorimeter designs featuring a closed gap. This is done using either aerogel as a filler or press fitting the slug with a disk. The designs were verified and compared to the baseline calorimeter design under radiative heat flux. Building on this, the calorimeters were exposed to convective heat flux in the arc-jet facilities. Results from the new designs and conclusions on the impact of the gap in convective heat flux will be shown.

  6. The GlueX Barrel Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Papandreou, Zisis; Lolos, George; Semenov, Andrei; GlueX Collaboration

    2011-04-01

    The goal of the GLUEX experiment at Jefferson Lab is to search for exotic hybrid mesons as evidence of gluonic excitations, in an effort to understand confinement in QCD. A key subsystem of the GLUEX detector is the electromagnetic barrel calorimeter (BCAL) located inside a 2-Tesla superconducting solenoid. BCAL is a ``spaghetti calorimeter,'' consisting of layers of corrugated lead sheets, interleaved with planes of 1-mm-diameter, double-clad, Kuraray SCSF-78MJ scintillating fibres, bonded in the lead grooves using optical epoxy. The detector will consist of 48 modules and will be readout using nearly 4,000 large-area (1.26 cm2 each) silicon photomultiplier arrays. BCAL construction is well under way at the University of Regina and test results will be shown. Supported by NSERC grant SAPJ-326516, DOE grant DE-FG02-0SER41374 and Jefferson Science Associates, LLC. under U.S. DOE Contract No. DE-AC05-06OR23177.

  7. High-sensitivity microfluidic calorimeters for biological and chemical applications

    PubMed Central

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W.; Roukes, Michael L.

    2009-01-01

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described. PMID:19706406

  8. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  9. Improve the flame retardancy of cellulose fibers by grafting zinc ion.

    PubMed

    Zhang, KeKe; Zong, Lu; Tan, Yeqiang; Ji, Quan; Yun, Weicai; Shi, Ran; Xia, Yanzhi

    2016-01-20

    Zinc ion as the only flame retardant of cellulose fibers was successfully grafted onto cellulose fibers. Grafting maleic anhydride onto cellulose fibers via homogeneous acylation reaction between N,N-dimethyl formamide (DMF) as the first step. Then, graft zinc ion onto the formed cellulose fibers was conducted with zinc carbonate. The resulting copolymers were characterized by FTIR. Flame retardancy and thermal degradation of zinc-ion-modified cellulose fibers (cellulose-Zn fibers) was investigated by limiting oxygen index (LOI), cone calorimeter (CONE), XRD, TG and SEM. Zinc ion could effectively improve flame retardancy and thermal degradation when its content increases up to 4.96 wt%. PMID:26572337

  10. Radioactively induced noise in gas-sampling uranium calorimeters

    SciTech Connect

    Gordon, H.A.; Rehak, P.

    1982-01-01

    The signal induced by radioactivity of a U/sup 238/ absorber in a cell of a gas-sampling uranium calorimeter was studied. By means of Campbell's theorem, the levels of the radioactively induced noise in uranium gas-sampling calorimeters was calculated. It was shown that in order to obtain similar radioactive noise performance as U-liquid argon or U-scintillator combinations, the ..cap alpha..-particles from the uranium must be stopped before entering the sensing volume of gas-uranium calorimeters.

  11. Forward hadron calorimeter of European hybrid spectrometer monitoring system

    SciTech Connect

    Boratave, M.; Datsko, N.A.; David, J.; Ivanyushenkov, Y.M.; Kistenoev, E.P.; Vlasov, E.V.

    1985-11-01

    The light-monitoring system of the forward neutral-hadron calorimeter of the European hybrid spectrometer is described. A general block diagram of the system, the functional relationships of the modules, and the ideology of the mathematical support are presented. The calorimeter records neutral particles in momentum range of 10-400 MeV/c. The calorimeter consists of 200 identical counters in modules of four each in a 10 X 20 matrix. The counters are made from plastic scintillators interlayed by steel plates. Light is collected by means of a rod reemitter admitted along the counter axis.

  12. Cesium monitoring system for ATLAS Tile Hadron Calorimeter

    NASA Astrophysics Data System (ADS)

    Starchenko, E.; Blanchot, G.; Bosman, M.; Cavalli-Sforza, M.; Karyukhin, A.; Kopikov, S.; Miagkov, A.; Nessi, M.; Shalimov, A.; Shalanda, N.; Soldatov, M.; Solodkov, A.; Soloviev, A.; Tsoupko-Sitnikov, V.; Zaitsev, A.

    2002-11-01

    A system to calibrate and monitor ATLAS Barrel Hadronic Calorimeter (TileCal) is under construction at CERN Laboratory. A movable radioactive source driven by a liquid flow travels through the calorimeter body deposing a known energy to the calorimeter cells. Extensive R&D studies have been carried out and the main system parameters are evaluated. The prototypes are currently used for quality check and inter-calibration of the TileCal modules. A distributed control system, hardware as well as corresponding on-line and off-line software is developed.

  13. D0 Silicon Upgrade: End Calorimeter Transfer Bridge Modification

    SciTech Connect

    Stredde, H.J.; /Fermilab

    1996-07-10

    During the assembly of major components into the D0 Detector, a transfer bridge was required to move the North-End Calorimeter from the clean room,over the cable bridge and onto the north sidewalk of the assembly hall. This experiment is now at the beginning stages of the next phase, namely the upgrade of this Detector for future physics research. A major piece of this upgrade is the installation of a solenoid magnet into the Central Calorimeter. In order to accomplish this, the South End Calorimeter has to be removed from the detector and the North End Calorimeter must be moved an additional 20-inch from its nominal open position (total 60-inch movement). The South End Calorimeter will be removed from the detector using the equipment designed for its installation. The calorimeter will be staged on the south sidewalk during the installation of the solenoid magnet and the central tracking systems. The North End Calorimeter is moved 60-inch to give more space between calorimeters during magnet, tracker and cable installation work. This movement will allow the calorimeter to remain coupled to the cryo system. However, this movement requires an extension be added to the center beam. This extension will support the rear wheels of the calorimeter and in the case of the end calorimeters, carry the majority of the weight. The extension is to be a modification of the transfer bridge. This modification, basically has T1 steel blocks added to one end and legs to the sidewalk supports at the other. The T1 steel blocks are notched to fit into the center beam porches and are welded to bridge rails. This design is the same as that for the installation bridge (3740.312-ME-273456), including the welds and weld procedures which are identical in both cases. Since load testing is impractical, the critical welds will be non-destructive tested by ultrasonic means. The laboratory, through the FESS Department, has a contract with M.Q.S. Inspection Inc. The results of this testing will be

  14. New tools for the simulation and design of calorimeters

    SciTech Connect

    Womersley, W.J.

    1989-07-10

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab.

  15. The new UA1 calorimeter trigger processor

    SciTech Connect

    Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagadera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.

    1989-02-01

    The UA1 First Level Trigger Processor (TP) is a fast digital machine with a highly parallel pipelined architecture of fast TTL combinational and programmable logic controlled by programmable microsequencers. The TP uses 100,000 IC's housed in 18 crates each containing 21 fastbus sized modules. It is hardwired with a very high level of interconnection. The energy deposited in the upgraded calorimeter is digitised into 1700 bytes of input data every beam crossing. The Processor selects in 1.5 microseconds events for further processing. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electro-magnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented.

  16. Beta spectrometry with metallic magnetic calorimeters.

    PubMed

    Loidl, M; Rodrigues, M; Le-Bret, C; Mougeot, X

    2014-05-01

    Metallic magnetic calorimeters are a specific type of cryogenic detectors that have been shown to enable precise measurement of the shape of low energy beta spectra. The aim of their use at LNHB is the determination of the shape factors of beta spectra. The beta source is enclosed in the detector absorber, allowing for very high detection efficiency. It has turned out that the type of source is of crucial importance for the correctness of the measured spectrum. Spectra of (63)Ni measured with several sources prepared by drying a NiCl2 solution differ from one another and from theory, whereas spectra measured with electroplated sources are reproducible and agree with theory. With these latter measurements we could confirm the atomic exchange effect down to very low energy (200 eV). PMID:24368065

  17. Trigger circuits for the PHENIX electromagnetic calorimeter

    SciTech Connect

    Frank, S.S.; Britton, C.L. Jr.; Winterberg, A.L.; Young, G.R.

    1997-11-01

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 {micro}m Orbit CMOS, and integration of the circuits into the EMCal electronics system.

  18. Calorimeter Simulation with Hadrons in CMS

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  19. A particle counting EM calorimeter using MAPS

    NASA Astrophysics Data System (ADS)

    Nooren, G.; Rocco, E.

    2015-02-01

    The availability of full size MAPS sensors makes it possible to construct a calorimeter with pixelsize of a few tens of micrometers. This would be small enough to count individual shower particles and would allow a shower shape analysis on an unprecedented, small scale. Interesting features would be tracking capability for particle flow algorithms and a superior discrimination of single photons from neutral and charged pions at high momenta. A small Molière radius together with high transverse resolution would allow to separate close showers, induced by photons from neutral pion decay. A full scale (4 RM, 28 X0) prototype was constructed to demonstrate this. It features 30 micron pixelsize and a longitudinal sampling at 1 radiation length. We will show results from beam tests of this prototype at electron energies of 2 to 200 GeV.

  20. SCA controller for the ATLAS calorimeter

    SciTech Connect

    Gingrich, D.M.; Hewlett, J.C.; Holm, L.

    1997-12-31

    The front-end readout of the ATLAS liquid argon calorimeter will store data locally in analog pipeline memories at the LHC beam crossing frequency of 40 MHz. Switched capacitor array chips meeting the ATLAS readout requirements will be used. These new chips axe capable of simultaneous read and write operations, and allow random access to storage locations. To utilize these essential design features requires a substantial amount of fast control and address bookkeeping logic. We have designed a controller capable of operating the pipelines as analog random access memories and that satisfies the ATLAS readout requirements. The pipeline controller manages the data of 144 time samples and can operate at a mean trigger rate of about 75 kHz, when reading out five time samples per event. We are currently prototyping an integrated version of the controller implemented in a FPGA from Xilinx.

  1. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  2. The BaBar cesium iodide electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.

    1994-12-01

    The BABAR Cesium Iodide Electromagnetic Calorimeter is currently in the technical design stage. The calorimeter consists of approximately 10,000 individual thallium-doped cesium iodide crystals arranged in a near-hermetic barrel and endcap structure. Taking previous cesium iodide calorimeters as a benchmark, we hope to build a system with roughly two times better energy resolution. This will be achieved by a combination of high quality crystal growing, precision mechanical processing of crystals and support structure, highly efficient light collection and low noise readout electronics. The calorimeter described here represents the current state of the design and we are undertaking an active period of optimization before this design is finalized. We discuss here the physics motivation, the current design and options for optimization.

  3. The Forward Calorimeter of the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel; GlueX Collaboration

    2013-10-01

    The Forward Calorimeter (FCAL) of the GlueX experiment is a lead glass electromagnetic calorimeter currently being built in Hall D of Jefferson Lab. The GlueX experiment is a photoproduction experiment that will utilize coherent bremsstrahlung radiation to map out the light meson spectrum, including a search for hybrid mesons with exotic quantum numbers (JPC). The FCAL will detect photons between 1° and 10 .8° downstream from the target. The calorimeter is built out of 2800 elements, each of which consists of a lead glass block, an FEU 84-3 PMT, and a custom Cockcroft-Walton electronic base. In the Fall of 2011, a 25 element prototype detector was installed in Hall B of Jefferson Lab to measure the energy and timing resolution of the calorimeter using electrons between 100 and 250 MeV. The design and construction of FCAL and the results from the prototype test will be discussed.

  4. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    SciTech Connect

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  5. ATLAS Tile Calorimeter performance with Run 1 data

    NASA Astrophysics Data System (ADS)

    Cerdá Alberich, L.

    2016-07-01

    The performance of the central hadronic calorimeter, TileCal, in the ATLAS Experiment at the Large Hadron Collider is studied using cosmic-ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results are presented for the precision of the absolute energy scale and timing, noise characterization, and time-stability of the detector. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  6. Hadron calorimeter performance with a PbWO4 EM compartment

    SciTech Connect

    Green, D.

    1996-01-01

    The CMS detector[1] at the LHC has chosen PbWO4 in order to achieve the superior photon energy resolution which is crucial in searching for the 2 photon decay of low mass Higgs bosons. The hadronic compartment is thought to be Cu absorber, since one is immersed in a 4 T magnetic field, read out by scintillator tiles coupled to wavelength shifter (WLS) fibers. The combined performance of this calorimeter is of interest in the study of jets and missing transverse energy (neutrino, SUSY signatures). For this reason, a test was made of the electromagnetic (EM) compartment combined with a reasonable approximation to the baseline HCAL ``barrel`` calorimeter. Data was taken in the H4 CERN beamline. The EM compartment was a 7 {times} 7 square array of PbWO4 crystals, which for the purposes of this study are considered as a single readout in depth (or ``compartment``) [2]. The HCAL module consisted of large scintillator plates with 24 individual longitudinal readout channels. The EM compartment was followed by 10 Cu plates each 3 cm thick, followed by 9 Cu plates each 6 cm thick. This set of absorber plates represented the HCAL compartments inside the coil. The coil itself [1] was approximated as Al and Fe plates, of a total thickness of about 1.4 absorption lengths. The coil mockup was sampled and then followed by 4 plates of 8 cm thick Cu, each with an individual readout which represented a test of the ``Tailcatcher`` concept.

  7. Status of the CALICE analog calorimeter technological prototypes

    NASA Astrophysics Data System (ADS)

    Terwort, Mark; CALICE Collaboration

    2012-12-01

    The CALICE collaboration is currently developing engineering prototypes of electromagnetic and hadronic calorimeters for a future linear collider detector. This detector is designed to be used in particle-flow based event reconstruction. In particular, the calorimeters are optimized for the individual reconstruction and separation of electromagnetic and hadronic showers. They are conceived as sampling calorimeters with tungsten and steel absorbers, respectively. Two electromagnetic calorimeters are being developed, one with silicon-based active layers and one based on scintillator strips that are read out by MPPCs, allowing highly granular readout. The analog hadron calorimeter is based on scintillating tiles that are also read out individually by silicon photomultipliers. The multi-channel, auto-triggered front-end chips are integrated into the active layers of the calorimeters and are designed for minimal power consumption (power pulsing). The goal of the construction of these prototypes is to demonstrate the feasibility of building and operating detectors with fully integrated front-end electronics. The concept and engineering status of these prototypes are reported here.

  8. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  9. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    NASA Astrophysics Data System (ADS)

    Peruzzo, S.; Cervaro, V.; Dalla Palma, M.; Delogu, R.; De Muri, M.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Pimazzoni, A.; Rizzolo, A.; Tollin, M.; Zampieri, L.; Serianni, G.

    2016-02-01

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  10. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER.

    PubMed

    Peruzzo, S; Cervaro, V; Dalla Palma, M; Delogu, R; De Muri, M; Fasolo, D; Franchin, L; Pasqualotto, R; Pimazzoni, A; Rizzolo, A; Tollin, M; Zampieri, L; Serianni, G

    2016-02-01

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale. PMID:26932097

  11. Effects of stress and strain on scintillating and clear fibers

    NASA Astrophysics Data System (ADS)

    Chung, Manho; Margulies, Seymour

    1994-09-01

    Among the improvements planned for the 1997 upgrade of the D0 detector at Fermilab are installation of a new scintillating-fiber central tracker and a new lead-scintillator preshower counter read out with wave-shifting fibers. Because of space limitations, fibers in both systems may need to undergo bends of fairly small radius, and the resulting stresses and strains may cause light losses. This paper presents interim results from a study of the effects of deformation on fiber light transmission. A variety of scintillating, wave-shifting, and clear fibers with diameters near 1 mm have been examined. Particular emphasis was placed on the new, multiclad fibers developed by Kuraray. Light loss was measured by injecting light into one end of a fiber sample and measuring the exiting light before, during, and after controlled deformation of the fiber. The deformations studied include bending, tensile elongation, compression, and torsion. Generally, except for severe bending or considerable compression, light loss was found to be less than a few percent. The effect of bending were investigated using single-turn and multiple-turn loops of various radii. Light loss was found to increase with decreasing radius, but little dependence on either core dopants or diameter was observed. Generally, the light loss, L, in an N-turn loop of radius r could be parameterized by the form L equals A(root)N/rn, where A is a constant and n is near 1.5. Kuraray multiclad fiber was found to be superior to single-clad fiber in that the former can be bent into single- turn loops with radii as small as 1 cm before introducing a light loss of 3%, while the latter produces this loss at a 2 cm radius. Tensile stress for forces up to 1.3 kg for 2-m-long fibers produced less than 1% light loss. On the other hand, compressive stress exerted over a 10-cm- long fiber section could cause a loss of 10%. Finally, a single observation of the effects of torsion indicated no change in light transmission for a

  12. GEANT SIMULATIONS OF PRESHOWER CALORIMETER FOR CLAS12 UPGRADE OF THE FORWARD ELECTROMAGNETIC CALORIMETER

    SciTech Connect

    Whitlow, K.; Stepanyan, S.

    2007-01-01

    Hall B at the Thomas Jefferson National Accelerator Facility uses the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS) to study the structure of the nucleon. An upgrade from a 6 GeV beam to a 12GeV beam is currently planned. With the beam energy upgrade, more high-energy pions will be created from the interaction of the beam and the target. Above 6GeV, the angle between the two-decay photons of high-energy pions becomes too small for the current electromagnetic calorimeter (EC) of CLAS to differentiate between two photon clusters and single photon events. Thus, a preshower calorimeter will be added in front of the EC to enable fi ner granularity and ensure better cluster separation for all CLAS experiments at higher energies. In order to optimize cost without compromising the calorimeter’s performance, three versions of the preshower, varying in number of scintillator and lead layers, were compared by their resolution and effi ciency. Using GSIM, a GEANT detector simulation program for CLAS, the passage of neutral pions and single photons through CLAS and the new preshower calorimeter (CLAS12 EC) was studied. The resolution of the CLAS12 EC was calculated from the Gaussian fi t of the sampling fraction, the energy CLAS12 EC detected over the Monte Carlo simulated energy. The single photon detection effi ciency was determined from the energy and position of the photon hits. The fractional energy resolution measured was ΔE/E = 0.0972 in the fi ve-module version, 0.111 in the four-module version, and 0.149 in the three-module version. Both the fi ve- and four-module versions had 99% single photon detection effi ciency above 0.5GeV while the 3 module version had 99% effi ciency above 1.5GeV. Based on these results, the suggested preshower confi guration is the four-module version containing twelve layers of scintillator and fi fteen layers of lead. This version provides a reasonable balance of resolution, effi ciency, and

  13. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts ...

  14. Hierarchical trigger of the ALICE calorimeters

    NASA Astrophysics Data System (ADS)

    Muller, Hans; Awes, Terry C.; Novitzky, Norbert; Kral, Jiri; Rak, Jan; Schambach, Jo; Wang, Yaping; Wang, Dong; Zhou, Daicui

    2010-05-01

    The trigger of the ALICE electromagnetic calorimeters is implemented in 2 hierarchically connected layers of electronics. In the lower layer, level-0 algorithms search shower energy above threshold in locally confined Trigger Region Units (TRU). The top layer is implemented as a single, global trigger unit that receives the trigger data from all TRUs as input to the level-1 algorithm. This architecture was first developed for the PHOS high pT photon trigger before it was adopted by EMCal also for the jet trigger. TRU units digitize up to 112 analogue input signals from the Front End Electronics (FEE) and concentrate their digital stream in a single FPGA. A charge and time summing algorithm is combined with a peakfinder that suppresses spurious noise and is precise to single LHC bunches. With a peak-to-peak noise level of 150 MeV the linear dynamic range above threshold spans from MIP energies at 215 up to 50 GeV. Local level-0 decisions take less than 600 ns after LHC collisions, upon which all TRUs transfer their level-0 trigger data to the upstream global trigger module which searches within the remaining level-1 latency for high pT gamma showers (PHOS) and/or for Jet cone areas (EMCaL).

  15. Central Calorimeter Support Cradle Jack Failure Analysis

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-04-10

    The Central Calorimeter and its support cradle are to be supported by either hydraulic or mechanical jacks. If hydraulics are used, each support will use two hydraulically coupled jacks with two out of the four supports hydraulically coupled giving the effect of a three point support system. If mechanical jacks are used, all four points are used for support. Figure 2 shows two examples of jack placement on a 3.5 inch support plate. These two support scenarios lead to five jack failure cases to be studied. This report deals with the way in which a 0.25 inch drop (failed jack) at one support affects the stresses in the cradle. The stresses from each failure case were analyzed in two ways. First, stress factors, defined as quotients of stress intensities of the failed case with respect to the static case, were generated and then, hand calculations similar to those in Engineering Note 3740.215-EN-14 were done using the reaction forces from the failed case.

  16. Design and status of the Mu2e electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2016-07-01

    The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5 ×10-17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  17. Research on calorimeter for high-power microwave measurements.

    PubMed

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement. PMID:26724055

  18. Research on calorimeter for high-power microwave measurements

    NASA Astrophysics Data System (ADS)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  19. Design and status of the Mu2e electromagnetic calorimeter

    SciTech Connect

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dane, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, Stefano; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10–17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  20. Design and status of the Mu2e electromagnetic calorimeter

    DOE PAGESBeta

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dane, E.; Davydov, Yu. I.; et al

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10–17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to matchmore » these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.« less

  1. Research on calorimeter for high-power microwave measurements

    SciTech Connect

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  2. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  3. Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n

  4. EURECA: a European-Japanese micro-calorimeter array

    NASA Astrophysics Data System (ADS)

    de Korte, Piet A. J.; Anquita, Jose V.; Barcons, Xavier; Bastia, Paolo; Beyer, Joern; Briones, Fernando; Brockley Blatt, Chris; Bruijn, Marcel; Bussons, Javier; Camon, Augustin; Ceballos, M. Teresa; Drung, Dietmar; Enns, Christian; Fabrega, Lourdes; Fraser, George; Gatti, Flavio; Gottardi, Luciano; Hajdas, Wojtek; Helistö, Panu; Hepburn, Ian; den Herder, Jan-Willem; Hoevers, Henk; Ishisaki, Yoshitaka; Kiviranta, Mikko; van der Kuur, Jan; Mchedlishvili, Aliko; Mitsuda, Kazu; Piro, Luigi; Sese, Javier; Yamasaki, Noriko; Whitford, Chris

    2006-06-01

    EURECA (EURopean-JapanEse Calorimeter Array) comprises a 5 x 5 pixel imaging TES-based micro-calorimeter array read-out by SQUID-based frequency-domain-multiplexed electronics and cooled down by an adiabatic demagnetization refrigerator. A European-Japanese consortium designs, fabricates, and tests this prototype instrument with the aim to show within about 2 years technology readiness of a TES-based X-ray imaging micro-calorimeter array in anticipation of future X-ray astronomy missions, like XEUS (ESA), Constellation-X (NASA), NEXT (JAXA), DIOS (JAXA), ESTREMO (ASI), and NEW (Dutch-multinational). This paper describes the instrument concept, and shows the design of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, flux-locked-loop electronics, AC-bias sources, etc.

  5. Identification of Low PT Muon with the Atlas Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Usai, G.

    2005-02-01

    A method for the identification of muons with the ATLAS Tile Calorimeter is presented and its efficiency and mis-tagging fraction are discussed. It is demonstrated that the Tile Calorimeter can identify muons with good efficiency down to 2 GeV/c transverse momentum, where the stand-alone Muon Spectrometer has zero efficiency. This kinematic region is important for study of B meson physics and in the particular for the CP violating decay channels. The effectiveness of this method is tested, in particular, in the case of bbar {b} events at low LHC luminosity (1033cm-1s-2) with full simulation of experimental conditions. The muon identification with the Tile Calorimeter is fast and can be used for muon selection at the trigger level. A method of exploiting the information available in other ATLAS sub-detectors in order to reduce spurious muon-tag and measure the candidate muon momentum is discussed.

  6. The development of a virtual heat bath for calorimeters

    SciTech Connect

    Pickrell, M.M.; Bracken, D.S.; Rudy, C.R.

    1998-12-31

    All existing calorimeter systems for sensitive nuclear assay employ a heat bath surrounding the sample chamber. The purpose of the heat bath is to maintain a constant temperature so that a fixed temperature difference is maintained across the thermal resistance of the calorimeter. Present calorimeter systems all employ an active, feedback-controlled system to maintain a fixed temperature. An alternative would be to allow the heat-bath temperature to change, to measure it, and to compensate the assay for this change. Two significant observations make this approach possible: (1) the effect on the measurement of a temperature change in the heat bath is differential in form and (2) temperature measurement systems are very accurate when measuring differences in temperature (either in time or between two locations). From these observations, the authors have developed a virtual heat-bath compensation system. The control theory and results will be presented.

  7. Design, performance, and upgrade of the D0 calorimeter

    SciTech Connect

    Kotcher, J.

    1995-01-01

    The D0 detector, located at the Fermi National Accelerator Laboratory in Batavia, Illinois, USA, is a large hermetic detector designed for the study of proton-antiproton collisions at a center-of-mass energy of 2 TeV. The calorimeter is a sampling device that employs uranium absorber and liquid argon as the active material. It has been designed for the high-precision energy measurement of electrons and jets over the full solid angle, and excellent missing transverse energy resolution for enhanced neutrino {open_quotes}detection{close_quotes}. The authors report on some fundamental aspects of the D0 calorimeter`s design and performance (the latter having been measured in both test beams and during recent data taking at the Fermilab collider), and their plan for the upgrade, which has been designed to accomodate the higher luminosities anticipated after completion of the Fermilab Main Injector.

  8. Simulation studies for design optimisation of a scintillator plate calorimeter

    SciTech Connect

    Proudfoot, J.; Job, P.K.; Trost, H.J. ); Handler, T. ); Gabriel, T. )

    1990-01-01

    Results on simulations studies relating to the optimisation of a sampling scintillator plate calorimeter for an SSC detector system are presented. These studies show that whereas a compensating sampling geometry can be obtained using a variety of configurations using either lead or depleted uranium as the principal absorber, no configuration based on a pure iron absorber is compensating. Unlike in a lead system, delayed energy release from long lived shower products produced in a uranium system pose a serious pile up problem. Therefore we advocate the use of lead as the principal absorber in this calorimeter. Work on optimisation of the mechanical structure is in progress and results are presented on issues such as structural support, tolerances and on the degradation in response due to other detector material within the volume of the calorimeter. 8 refs., 16 figs.

  9. Optimization of pyrolysis properties using TGA and cone calorimeter test

    NASA Astrophysics Data System (ADS)

    Park, Won-Hee; Yoon, Kyung-Beom

    2013-04-01

    The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test.

  10. The lead-glass electromagnetic calorimeter for the SELEX experiment

    SciTech Connect

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  11. Highly granular hadron calorimeter: software compensation and shower decomposition

    NASA Astrophysics Data System (ADS)

    Chadeeva, M.; CALICE Collaboration

    2016-02-01

    The highly granular analogue hadron calorimeter was developed and constructed by the CALICE collaboration. The active layers of the calorimeter are assembled from scintillator tiles with individual readout by silicon photomultipliers and are interleaved with absorber plates. The response and resolution of the calorimeter equipped with steel absorber was intensively tested in single particle beams. The application of software compensation techniques developed for the scintillator-steel prototype allows for reduction of the stochastic term of the single particle resolution from 58%/ √E/GeV to 45%/ √E/GeV. The detailed study and decomposition of the longitudinal and radial profiles of hadron-induced showers in the energy range from 10 to 80 GeV are presented and compared to GEANT4 simulations.

  12. Performance of the PrimEx Electromagnetic Calorimeter

    SciTech Connect

    M. Kubantsev; I. Larin; A. Gasparian

    2006-06-05

    We report the design and performance of the hybrid electromagnetic calorimeter consisting of 1152 PbWO{sub 4} crystals and 576 lead glass blocks for the PrimEx experiment at the Jefferson Laboratory. The detector was built for high precision measurement of the neutral pion lifetime via the Primakoff effect. Calorimeter installation and commissioning was completed with the first physics run in fall of 2004. We present the energy and position resolution of the calorimeter. Obtained {pi}{sup 0} mass resolution of 1.3 MeV/c{sup 2} and its production angle resolution of 0.34 mrad demonstrate the ability of the experiment to extract the {pi}{sup 0} lifetime on one percent level.

  13. The NA62 liquid Krypton calorimeter's new readout system

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Lamanna, G.; Rouet, J.; Ryjov, V.; Venditti, S.

    2014-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the experiment photon-veto system; to cope with the new requirements, the back-end electronics of the LKr had to be completely renewed. Due to the huge number of the calorimeter readout channels ( ~ 14 K) and the maintenance requirement over 10 years of the experiment lifetime, the decision to sub-contract the development and production to industry was taken in 2011. This paper presents the primary test results of the Calorimeter REAdout Module (CREAM) [3] prototype delivered by the manufacturer in March 2013. All essential features, analog performance, data processing and readout, are covered.

  14. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  15. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Bates, Cameron Russell

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  16. Improvements in a calorimeter for high-power CW lasers

    NASA Technical Reports Server (NTRS)

    Chamberlain, G. E.; Simpson, P. A.; Smith, R. L.

    1978-01-01

    A technique for improving the measurement certainty with the BB series (Smith et al., 1972) of electrically calibrated calorimeters used in high-energy lasers is described. The technique is based on monitoring the energy which is backscattered from the meter and monitoring the overspill radiation impinging on the calorimeter at the entrance aperture. The design and performance of a second generation BB meter is discussed and compared to that of the original device in terms of number of electrical calibrations, the residual standard deviation of electrical calibration, the calibration constant for laser energy, the correcting factor for systematics, inaccuracy, imprecision, and uncertainty.

  17. The Electromagnetic Calorimeter of the future PANDA Detector

    SciTech Connect

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  18. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  19. A purity monitor for the KEDR liquid krypton calorimeter

    NASA Astrophysics Data System (ADS)

    Evtushenko, P. N.; Kotov, K. Yu.; Maslennikov, A. L.; Peleganchuk, S. V.; Snopkov, R. G.; Rogozin, A. I.; Tikhonov, Yu. A.

    2016-06-01

    We present a purity monitor for the KEDR liquid krypton calorimeter. A new method is suggested based on the usage of a short pulse of a gas discharge as a source of ultraviolet radiation for the photoproduction of electrons in a drift cell of the monitor. This paper describes the design of the monitor, the results of experiments with gaseous and liquid krypton, as well as the experience of using the developed device in the process of krypton purification for the KEDR liquid krypton calorimeter.

  20. Nose-Cone Calorimeter: upgrade of PHENIX detector

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2008-10-01

    PHENIX experiment at RHIC is efficient at measuring processes involving rare probes, but has limited acceptance in azimuth and pseudorapidity (η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9,<η<,, is one of the upgrades which will dramatically increase coverage in azimuth and pseudorapidity. The NCC will expand PHENIX's precision measurements of electromagnetic probes in η, reconstruct jets, and enhance triggering capabilities. It will significantly contribute to measurements of γ-jets, quarkonia, and low-x nuclear structure functions. Details of the detector design, performance, and a sample of the physics topics which will benefit from the NCC, will be discussed.

  1. Calorimeter probes for measuring high thermal flux. [in arc jets

    NASA Technical Reports Server (NTRS)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  2. Imaging Calorimeter for ACCESS Simulations with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Watts, John; Lee, Jeongin

    2000-01-01

    Imaging Calorimeter for ACCESS (ICA) is a candidate of the calorimeter for the NASA's ACCESS program to be flown on the International Space Station. The ICA studies the origin and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays in the energy up to 10(exp 16) eV. For the past year, Monte Carlo simulation study for the ICA has been conducted using GEANT/FLUKA to predict the detector performance and to design the system for match the scientific objectives. Simulation results will be shown for the detector response and the energy resolution for various configurations.

  3. HARP: high-pressure argon readout for calorimeters

    SciTech Connect

    Barranco-Luque, M.; Fabjan, C.W.; Frandsen, P.K.

    1982-01-01

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described.

  4. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  5. A new-concept calorimeter for future neutrino beams based on Kaon tagging

    NASA Astrophysics Data System (ADS)

    Longhin, A.; Ludovici, L.; Terranova, F.

    2016-07-01

    Neutrino cross-section measurements are an essential requirement for the next generation of neutrino oscillation experiments and they are presently limited by uncertainties on neutrino fluxes. In [1] we propose to instrument a neutrino decay tunnel to detect large angle positrons and tag the three-body semileptonic K+ →e+π0νe decays. In such a facility the absolute electron neutrino flux could be determined with unprecedented precision (O(1%)). An e+/π+ separation capability of about 2% as well as a high e+ efficiency is required for a diffuse particle source over a length of several tens of meters. Additional constraints, due to the harsh beam environment, involve radiation hardness and fast response. For this purpose we propose a specialized shashlik calorimeter (copper-scintillator) with a compact readout based on small-area Silicon PhotoMultipliers coupled to WLS fibers. The setup would allow an effective longitudinal segmentation for electron/hadron separation, reducing the dead zones introduced by fiber bundling. Detailed Monte Carlo simulations are in progress. The construction of a small prototype and exposures to pion and electron beams are foreseen.

  6. CMS hadron calorimeter front-end upgrade for SLHC phase I

    SciTech Connect

    Whitmore, Juliana; /Fermilab

    2009-09-01

    We present an upgrade plan for the CMS HCAL detector. The HCAL upgrade is required for the increased luminosity (3 * 10E34) of SLHC Phase I which is targeted for 2014. A key aspect of the HCAL upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at the L1 trigger. The increased segmentation is achieved by replacing the hybrid photodiodes (HPDs) with silicon PMTs (SIPMs). We plan to instrument each fiber of the calorimeter with an SIPM (103,000 total). We will then electrically sum outputs from selected SIPMs to form the longitudinal readout segments. In addition to having more longitudinal information, the upgrade plans include a new custom ADC with matched sensitivity and timing information. The increased data volume requires higher speed transmitters and the additional power dissipation for the readout electronics requires better thermal design, since much of the on-detector infrastructure (front-end electronics crates, cooling pipes, optical fiber plant, etc.) will remain the same. We will report on the preliminary designs for these upgraded systems, along with performance requirements and initial design studies.

  7. Design and expected performance of a fast scintillator hadron calorimeter

    SciTech Connect

    Palmer, R.B.; Ghosh, A.K.

    1983-01-01

    A typical pulse from the 807 calorimeter is shown. This was generated by 4 GeV electrons but the pulses from hadrons and at different energies are not significantly different. The width and shape of this pulse comes from the convolution of a number of sources: (a) The time spread of energy deposition by a shower including time of flight of slow protons and neutrons, (b) scintillator phosphor rise and decay times, (c) shifter rise and decay times, (d) phototube response, (e) time delays in the light collection from different parts of the calorimeter and time dispersion in transmission. The objective of the first phase of this study was to isolate these spearate contributions, estimate how they could be speeded up and find what costs are involved. In the second phase we constructed an extremely crude calorimeter whose pulses should have the same characteristic as in a real device. With this we have observed signals whose mean width was 7 nsec and whose width at 10% of maximum height was 15 nsec. Clipping could reduce these widths to 6 and 12 nsec respectively. We conclude that gate times of less than 20 nsec would be appropriate for such a calorimeter.

  8. Progress status for the Mu2e calorimeter system

    SciTech Connect

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu.; Echenard, B.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.; Luca, A.; Martini, M.; Miscetti, S.; Murat, P.; Ongmonkolkul, P.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Stomaci, V.; Tassielli, G.

    2015-01-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful $\\mu/e$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $BaF_2$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this study, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  9. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively. PMID:21976250

  10. Noise in a Calorimeter Readout System Using Periodic Sampling

    SciTech Connect

    Innes, Walter R.; /SLAC

    2009-02-26

    Fourier transform analysis of the calorimeter noise problem gives quantitative results on (a) the time-height correlation, (b) the effect of background on optimal shaping and on the ENC, (c) sampling frequency requirements, and (d) the relation between sampling frequency and the required quantization error.

  11. Processing of the Liquid Xenon calorimeter's signals for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Yudin, Yu V.

    2014-09-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.

  12. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  13. ATIC as a testbed for the ACCESS baseline calorimeter

    SciTech Connect

    Isbert, J.; Authement, J.; Coleman, J.; Guzik, T. G.; Granger, D.; Lockwood, R.; McMorris, A.; Mock, L.; Oubre, C.; Panasyuk, M.; Peck, J.; Wefel, J. P.; Adams, J. H. Jr.; Boberg, P. R.; Dion-Schwarz, C.; Kroeger, R.; Bashindzhagyan, G. B.; Khein, L.; Samsonov, G. A.; Zatsepin, V. I.

    1999-01-22

    The Advanced Thin Ionization Calorimeter (ATIC) balloon experiment is designed to measure the spectrum of individual elements from H through Fe up to a total energy >10{sup 14} eV. To accomplish this goal, ATIC incorporates a Silicon matrix detector composed of more than 4,000 pixels to measure the incident particle charge in the presence of backscatter background, three plastic scintillator hodoscopes to provide an event trigger as well as a backup measurement of the particle charge and trajectory, a 3/4 interaction length carbon target and a fully active ionization calorimeter composed of 22 radiation lengths of Bismuth Germanate (BGO) crystals. This detector complement is very similar to the baseline calorimeter for the Advanced Cosmic Ray Composition Experiment for the Space Station, ACCESS. The ATIC flights can be used to evaluate such a calorimeter in the cosmic ray 'beam.' ATIC integration is currently underway with a first flight expected during 1999. This talk will discuss ATIC as it applies to ACCESS.

  14. The pad readout electronics of the SLD Warm Iron Calorimeter

    SciTech Connect

    Burrows, P.N.; Busza, W.; Cartwright, S.L.; Friedman, J.I.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Kendall, H.W.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Wadsworth, B.; Williams, D.C.; Yamartino, J.M. ); Byers, B.L.; Escalera, J.; Gioumousis, A.; Gray, R.; Horelick, D.; Kharakh, D.; Messner, R.L.; Moss, J.; Zdark

    1990-08-01

    The design of the pad readout electronics of the Warm Iron Calorimeter for the SLD detector at SLAC, consisting of about 9000 analog channels, is described. Results of various tests performed during the construction, installation and commissioning of the electronics mounted on the detector are presented. 10 refs., 12 figs.

  15. Jet Reconstruction and Calibration in the ATLAS Calorimeters

    SciTech Connect

    Jorgensen Roca, Sigrid

    2006-10-27

    Many physics studies in ATLAS require precise reconstruction and calibration of particle jet kinematics. Among these are the reconstruction of the top quark mass, the search for the Higgs boson, and possible supersymmetric particles. The ATLAS calorimeter system has been designed to meet these requirements across a wide acceptance in pseudorapidity (|{eta}|<5). Different calorimeter technologies are applied in different rapidity regions to optimize the performance with respect to coverage, containment, highest possible spatial granularity, and the best possible energy resolution, in the difficult and changing experimental conditions characteristic for each of these regions.In this talk we briefly illustrate the ATLAS calorimeter features most relevant for the jet measurement. The general approach to calorimeter jet calibration is two-fold. First, the jet signal shape is used to correct for detector effects such as non-compensation and energy losses in inactive materials. This followed by corrections for biases introduced by the jet clustering algorithms and effects from the collision physics environment. We intend to discuss this calibration procedure and the different strategies available to implement it, in the context of the evaluation of the jet reconstruction performance for various available jet clustering algorithms, including a fixed cone and the Kt algorithm. A focus in this discussion is on the expected initial run condition at ATLAS start-up.

  16. Temperature and humidity control in indirect calorimeter chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-chamber, indirect calorimeter has been a part of the Environmental Laboratory at the U.S. Meat Animal Research Center (MARC) for over 25 yr. Corrosion of the animal chambers and unreliable temperature control forced either major repairs or complete replacement. There is a strong demand for...

  17. Resolution Performance of HERA-B Lead-Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Losada, Anthony; Brash, Edward; Thomas, Jordan; Ayerbe-Gayoso, Carlos; Burton, Matthew; Perdisat, Charles; Jones, Mark; Punjabi, Vina; Hast, Carsten; Szalata, Zenon

    2013-10-01

    In preparation of upcoming 12 GeV experiments at Thomas Jefferson National Accelerator Facility it is necessary to upgrade existing systems or install new detectors. As part of this effort, an array of lead-glass sampling calorimeters is need for use in the GEP-5 experiment. A sampling calorimeter can be used to determine the energy and spatial position of a high energy particle that enters it while simultaneously stopping the particle. To determine the appropriate construction to meet the needs of upcoming experiments, it was necessary to take an existing model and confirm its energy and position resolution. This model could then be confirmed as an option for the final construction, or used as a starting point to design a better detector. For our test we obtained ten lead-glass calorimeters used in HERA-B and tested them in End Station A at SLAC. I will report on our findings for the HERA-B lead-glass sampling calorimeters. I will cover the results of both the energy and position resolutions as well as the methods used to determine these quantities.

  18. Progress status for the Mu2e calorimeter system

    NASA Astrophysics Data System (ADS)

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu; Echenard, B.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.; Luca, A.; Martini, M.; Miscetti, S.; Murat, P.; Ongmonkolkul, P.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Stomaci, V.; Tassielli, G.

    2015-02-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful μ/e particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~ < 1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal BaF2 crystals of 20 cm length. Each crystal is readout by two large area APD's. In this paper, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  19. Progress status for the Mu2e calorimeter system

    DOE PAGESBeta

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu.; Echenard, B.; Giovannella, S.; et al

    2015-01-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerfulmore » $$\\mu/e$$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $BaF_2$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this study, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.« less

  20. Towards a compensatable Muon Collider calorimeter with manageable backgrounds

    SciTech Connect

    Raja, R.; /Fermilab

    2012-04-01

    Muon Collider detectors pose very challenging problems in detector technology due to extremely large backgrounds present in the detector volume as a result of muon decays. Current designs of a 750 GeV/c per beam Muon Collider envisage 4.28 x 10{sup 5} muon decays per meter in the beam pipe close to the interaction region. The decay electrons after intense shielding still manage to produce large backgrounds in the detector volume of low energy photons, neutrons and higher energy Bethe Heitler muons. There are 170/184/6.8/177 TeVs energy entering the detector volume per crossing due to EM particles/Muons/Mesons/Baryons respectively. We investigate the capabilities of an iron calorimeter with pixelated readout where each pixel gives a yes/no answer as to whether a charged particle passed through it or not, to solve this problem. Each pixel is individually triggered by a 'travelling gate trigger' with a gate of 2 ns where the beginning of the gate is the time of arrival of a light signal from the interaction region to the pixel. We show that such a calorimeter is compensatable and propose two schemes to compensate the digital output in software to improve the resolution of the calorimeter. We show that such a calorimeter is capable of digitizing physics signals from the interaction region and as a result, the backgrounds from the muon decays are much reduced and under control.

  1. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  2. Final results from the SDC dopant search for new green wavelength shifting (WLS) fibers: Volume 1

    SciTech Connect

    Pla-Dalmau, A.; Foster, G.W.; Zhang, G.

    1993-12-01

    A scintillating tile/fiber design had been selected for the SDC calorimeter. It consisted of scintillator plates embedded with a wavelength shifting (WLS) fiber which was spliced to a clear fiber. Based on the results from previous radiation damage studies on different scintillating materials, SCSN38 had been chosen for the scintillating tile and BCF91 or Y7 for the WLS fiber. SCSN38 is a blue-emitting scintillator and both WLS fibers use K-27, a green-emitting compound, as dopant. K-27 has a decay time of approximately 12 ns which is long in comparison to that of most blue-emitting materials. Of all the factors that affect the speed of the scintillator tile/fiber calorimeter, the lifetime of the green-emitting dopant is the dominant component. To increase the speed of the calorimeter, it would be desirable that the green WLS fibers utilized had lifetimes between 3 and 5 ns. However, currently available green WLS fibers exhibit decay times between 7 and 12 ns. Development of new green-emitting WLS fibers with short decay times must be investigated. The goal of this project was to search for commercially available fluorescent compounds with {lambda}{sub abs} = 400--450 nm, {lambda}{sub em} = 450--550 nm, {tau} = 3--7 ns, and quantum efficiency of minimum 0.7 (current K-27 baseline). Large Stokes shift and low self-absorption were not important requirements since the optical pathlength for the shifted light was small. Characterization of the spectroscopic properties of these compounds after styrene polymerization is important since this is an essential part of the manufacturing of WLS fibers. This summary presents the transmittance and fluorescence data for each dopant tested. However, many fluorescence measurements using different excitation wavelengths and orientations were recorded. Volume 1 presents a plot for each dopant combining transmittance and the most representative fluorescence measurement.

  3. ANL four-meter calorimeter design and operation manual

    SciTech Connect

    Perry, R.B.; Lewis, R.N.; Youngdahl, G.A.; Jung, E.A.; Roche, C.T.

    1980-02-01

    The four-meter fuel rod calorimetric system measures the thermal power produced by radioactive decay of fuel rods containing Pu. The Pu mass is related to the measured power through the weighted average of the product of the isotopic decay energies and the decay constants of the Pu isotopes present. U content has no effect since the thermal power produced by the U nuclides is insignificant when compared to Pu. Radiations from Pu are alpha particles and low-energy photons. This calorimeter will measure samples producing power up to 1.5 watts at a rate of one sample every 120 min. The instrument consists of a data-acquisition module made up of a microprocessor, with an 8K-byte nonvolatile memory, a control cabinet and the calorimeter chamber. (FS)

  4. A Study on Thermal Design of the BGO Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Chen, Dengyi; Hu, Yiming; Wu, Jian; Feng, Changqing; Zhang, Yunlong; Chang, Jin

    The BGO Electromagnetic Calorimeter (BGO ECAL) is one of the most important payload of the Chinese DArk Matter Particle Explorer (DAMPE), which can precisely measure the incident energy of cosmic ray. However, thermal control of the BGO ECAL plays a key role on its running in the space. In this paper, the thermal design of the BGO ECAL and the thermal FEM modal created by hyper-mesh & NASTRAN FEM software will be introduced. Then the temperature distribution of the BGO calorimeter with the given on orbit conditions is performed. In the end, we depicts the thermal test which has been carried out in February. By the comparisons between the experiment results and the analyses results, the methodology in this paper was proved to be effective.

  5. Active radiometric calorimeter for absolute calibration of radioactive sources

    NASA Astrophysics Data System (ADS)

    Stump, K. E.; DeWerd, L. A.; Rudman, D. A.; Schima, S. A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  6. CMS HF calorimeter PMTs and Xi(c)+ lifetime measurement

    SciTech Connect

    Akgun, Ugur; /Iowa U.

    2003-12-01

    This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the {Xi}{sub c}{sup +} lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 {+-} 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of {Xi}{sub c}{sup +} as 427 {+-} 31 {+-} 13 fs.

  7. The cathode read-out of the DELPHI hadron calorimeter

    SciTech Connect

    Ajinenko, I.; Chudoba, J.; Czellar, S.

    1995-08-01

    To improve the identification and separation of leptons in the Hadron Calorimeter of DELPHI, one of the four LEP experiments at CERN, the possibility of a direct read-out of the cathodes of the 20,000 limited streamer tubes was studied and successfully tested on a small scale. A larger scale test started in June 1994. This new system which is independent of the present pad read-out provides a ``yes/no`` information. The combination of both read-out systems makes it possible to use the Hadron Calorimeter as a track detector. The result of these test show that the cathode read-out provides a better {pi}/{micro} separation, and improved detection of neutral long lived particles, enhanced discrimination of two showers and a more precise hadron energy measurement. It was decided to equip the whole detector with the new read-out, starting during the 94/95 shutdown.

  8. Advanced Thin Ionization Calorimeter (ATIC) balloon experiment: expected performance

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk; Adams, James H.; Bashindzhagyan, G. L.; Dudnik, Alexey V.; Fazely, Ali R.; Garcia, L.; Grigorov, Naum L.; Guzik, T. Gregory; Inderhees, Susan E.; Isbert, Joachim; Jung, H. C.; Khein, L.; Kim, Sun-Kee; Kroeger, Richard A.; McDonald, Frank B.; Panasyuk, Mikhail I.; Park, Choong-Soo; Schmidt, Wolfgang K.; Dion-Schwartz, C.; Senchishin, V. G.; Wang, J. Z.; Wefel, John P.; Zatsepin, Viktor I.; Zinn, S. Y.

    1996-10-01

    An advanced thin ionization calorimeter (ATIC) will be used to investigate the charge composition and energy spectra of ultrahigh energy primary cosmic rays in a series of long- duration balloon flights. While obtaining new high priority scientific results, this balloon payload can also serve as a proof of concept for a BGO calorimeter-based instrument on the International Space Station. The ATIC technical details are presented in a companion paper at this conference. Here we discuss the expected performance of the instrument based on a GEANT code developed for simulating nuclear- electromagnetic cascades initiated by protons. For simulations of helium and heavy nuclei, a nucleus-nucleus interaction event generator LUCIAE was linked to the GEANT based program. Using these models, the design of the ATIC detector system has been optimized by simulating the instrument response to particles of different charges over the energy range to be covered. Results of these simulations are presented and discussed.

  9. Charge Detector Study for a Thin Sampling Calorimeter for ACCESS

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Adams, James H., Jr.

    2000-01-01

    Advanced Cosmic ray Composition Experiment for Space Station (ACCESS) is a NASA's new mission concept that is now being studied. The scientific objective is to measure cosmic ray elemental energy spectra in the energy range from I TeV up to 1000 TeV. ACCESS will carry two instruments and measure the energy and charge of incoming particles. One of these will be a calorimeter with a charge detector. The charge detector will see not only signals from the incident cosmic rays but also signals from radiation backscattered from the calorimeter. In that case, bias information on particle identification is unavoidable. This study shows how much the charge detector will be affected by backscatter and how it can be designed with a minimized effect.

  10. Imaging Calorimeter for ACCESS Simulations with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Imaging Calorimeter for ACCESS (ICA) is a candidate of the calorimeter for the NASA's ACCESS program. The ICA studies the origin and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays in the energy up to 10(exp 16) eV. For the past year, Monte Carlo simulation study for the ICA has been conducted to predict the detector performance and to design the system for match the scientific objectives. Simulation results show that the detector response resembles a Gaussian distribution and the energy resolution with ICA can be achieved about 40%. In addition, simulations of the detector's response to an assumed bent power law spectra in the region where the knee occurs have been conducted and clearly show that this detector can provide sufficiently accurate estimates of the spectral parameters that are a science goal of ACCESS.

  11. Thermal detection of X-rays. [cryogenic calorimeters for astronomy

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Edwards, B.; Juda, M.; Plucinsky, P.; Zhang, J.; Kelley, R.; Holt, S.; Madejski, G.; Moseley, S.; Szymkowiak, A.

    1990-01-01

    The development of calorimeters is described in terms of their proposed application to sounding-rocket investigations of cosmic X-ray sources. The fundamental theory of the energy resolution of the devices is given, and general discussions are presented regarding the limitations associated with the materials used and available thermometer types. Also given are data describing electrical nonlinearity as a function of temperature, thermistor sensitivity, and heat capacity, as well as data regarding the excess noise that aids in the conduction process. Cryogenic calorimeters based on doped semiconductor thermistors are found to be limited, although thermal detectors have important applications to high-resolution laboratory spectroscopy. Electrical nonlinearity and the excess noise are found to be important for obtaining optimum heat capacity in the thermistor.

  12. Verification of Electromagnetic Calorimeter Concept for the HADES spectrometer

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Ott, P.; Otte, P.; Petukhov; Pietraszko, J.; Reshetin, A.; Rodríguez-Ramos, P.; Rost, A.; Salabura, P.; Skott, P.; Sobolev, Y. G.; Steffen, O.; Thomas, A.; Tlustý, P.; Traxler, M.

    2015-04-01

    The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail.

  13. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  14. Cryogenic Technology Development For The MEG Liquid Xenon Calorimeter

    SciTech Connect

    Haruyama, Tomiyoshi

    2008-02-21

    Cryogenic key technologies have been developed for the muon rare decay experiment (MEG) at the Paul Scherrer Institute, Switzerland. These technologies are the high power pulse tube cryocooler for precise temperature and pressure control of liquid xenon in the calorimeter, a purification system with a cryogenic liquid pump and a cryogenic dewar with 1000 L storage capacity. The paper describes the general concepts and the first test results of each technology. All the results imply a promising performance for the coming MEG experiment.

  15. On timing properties of LYSO-based calorimeters

    SciTech Connect

    Anderson, D.; Apresyan, A.; Bornheim, A.; Duarte, J.; Pena, C.; Ronzhin, A.; Spiropulu, M.; Trevor, J.; Xie, S.

    2015-04-23

    We present test beam studies and results on the timing performance and characterization of the time resolution of Lutetium–Yttrium Orthosilicate (LYSO)-based calorimeters. We also demonstrate that a time resolution of 30 ps is achievable for a particular design. Additionally, we discuss precision timing calorimetry as a tool for the mitigation of physics object performance degradation effects due to the large number of simultaneous interactions in the high luminosity environment foreseen at the Large Hadron Collider.

  16. After-burning of nitropenta products in a calorimeter

    SciTech Connect

    Kuhl, A L; Neuwald, P; Reichenbach, H

    1999-06-18

    Explored here are the ''after-burning'' effects for explosions of Nitropenta (NP) charges in air. Detonation of the charge transforms the solid explosive ( C HNO 5 8412 , also known as PETN) into gaseous products that are rich in carbon and CO, which subsequently act as a fuel. When these hot ({approximately}3500 K) gases mix with air, rapid combustion (after-burning) takes place. The dynamics of this exothermic process was studied in ''pressure calorimeter'' experiments performed at EMI.

  17. Some studies of data using the STAR endcap electromagnetic calorimeter.

    SciTech Connect

    Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics

    2009-02-24

    A series of studies was performed using data from the STAR detector at the Brookhaven National Laboratory's RHIC accelerator from collisions of protons at {radical}s = 200 GeV. Many of these involved the shower maximum detector (SMD) of the STAR endcap electromagnetic calorimeter (EEMC). Detailed studies of photon candidates from {eta} {yields} {gamma}{gamma} decay, and of {gamma} + Jet inclusive data and simulated events were performed.

  18. Micro-Fabricated DC Comparison Calorimeter for RF Power Measurement

    PubMed Central

    Neji, Bilel; Xu, Jing; Titus, Albert H.; Meltzer, Joel

    2014-01-01

    Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10−3 V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0–1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0–2 GHz and less than −16 dB at 2–4 GHz. PMID:25350509

  19. Design of a microwave calorimeter for the microwave tokamak experiment

    SciTech Connect

    Marinak, M. )

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  20. Calibration and Characterization of the Small Sample Calorimeter

    SciTech Connect

    Santi, Peter A.; Perry, Katherine A.

    2012-08-13

    An early component of the Joint Fuel Cycle Study (JFCS) between the United States and the Republic of Korea is a test of gram scale electrochemical recycling of spent fuel which is to be performed at Idaho National Laboratory (INL). Included in this test is the development of Nondestructive Assay (NDA) technologies that would be applicable for International Atomic Energy Agency (IAEA) safeguards of the electrochemical recycling process. Of upmost importance to safeguarding the fuel cycle associated with the electrochemical recycling process is the ability to safeguard the U/TRU ingots that will be produced in the process. For the gram scale test, the ingots that will be produced will have an expected thermal power of approximately 130 mW. To ascertain how well the calorimetric assay NDA technique can perform in assaying these ingots, Los Alamos National Laboratory (LANL) has characterized and calibrated a small solid-state calorimeter called the Small Sample Calorimeter (SSC3) to perform these measurements at LANL. To calibrate and characterize the SSC3, a series of measurements were performed using certified {sup 238}Pu heat standards whose power output is traceable back to the National Institute of Standards and Technology (NIST) electrical standards. The results of these measurements helped establish both the calibration of the calorimeter as well as the expected performance of the calorimeter in terms of its accuracy and precision as a function of thermal power of the item that is being measured. In this report, we will describe the measurements that were performed and provide a discussion of the results of these measurements.

  1. The backward end-cap for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Capozza, L.; Maas, F. E.; Noll, O.; Rodriguez Pineiro, D.; Valente, R.

    2015-02-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes (APDs). The current pulses from the APDs will be integrated, amplified and shaped by ASIC chips which were developed for this purpose. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). In this contribution, a status report on the development of the BWEC is presented.

  2. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  3. Dynamic range compression in a liquid argon calorimeter

    SciTech Connect

    Cleland, W.E.; Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H.; Wingerter-Seez, I.

    1996-12-31

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV.

  4. The ATLAS tile calorimeter ROD injector and multiplexer board

    NASA Astrophysics Data System (ADS)

    Valero, A.; Castillo, V.; Ferrer, A.; González, V.; Hernández, Y.; Higón, E.; Sanchís, E.; Solans, C.; Torres, J.; Valls, J. A.

    2011-02-01

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  5. Advanced Thin Ionization Calorimeter (ATIC) balloon experiment: instrumentation

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Adams, James H.; Bashindzhagyan, G. L.; Dudnik, Alexey V.; Ellison, Steven B.; Fazely, Ali R.; Garcia, L.; Grigorov, Naum L.; Inderhees, Susan E.; Isbert, Joachim; Jung, H. C.; Khein, L.; Kim, Sun-Kee; Kroeger, Richard A.; Lockwood, R.; McDonald, Frank B.; Panasyuk, Mikhail I.; Park, Choong-Soo; Price, B.; Schmidt, Wolfgang K.; Dion-Schwartz, C.; Senchishin, V. G.; Seo, Eun-Suk; Wefel, John P.; Wang, J. Z.; Zatsepin, Viktor I.; Zinn, S. Y.

    1996-10-01

    A new balloon instrument, the advanced thin ionization calorimeter (ATIC), is currently under development by an international collaboration involving researchers in the U.S., Germany, Korea, Russia and the Ukraine. The instrument will be used, in a series of long duration balloon flights, to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1010 to 1014 eV. The ATIC instrument is designed around a new technology, fully active Bismuth Germanate (BGO) ionization calorimeter that is used to measure the energy deposited by the cascades formed by particles interacting in an approximately 1 proton interaction length thick carbon target. The charge module comprises a highly segmented, triply redundant set of detectors (scintillator, silicon matrix and Cherenkov) that together give good incident charge resolution plus rejection of the 'backscattered' particles from the interaction. Trajectory information is obtained both from scintillator layers and from the cascade profile throughout the BGO calorimeter. This instrument is specifically designed to take advantage of the existing NASA long duration balloon flight capability in Antarctica and/or the Northern Hemisphere. The ATIC instrumentation is presented here, while a companion paper at this conference discusses the expected performance.

  6. Fiber sensing with photorefractive fiber

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Guo, Ruyan; Wang, Bo; Liu, Yuexin

    2002-11-01

    Optical fibers have been widely used for transmitting temporal signal. However, the transmission of spatial signal has not been fully exploited. Although multimode fiber has a large space-bandwidth product, transmitting spatial signals by using a fiber is rather difficult. When a laser beam is lached into a multimode fiber, the exit light field produces a complicated speckle pattern caused by the modal phasing of the fiber. It is difficult to recover the transmitted informati from the speckle field. However, the fiber speckle field can be used to fiber sensing with a hologrpahic method. In other words, if a hologram is made with the speckle fiber field, the information of the fiber status can be recovered. Thus by reading the hologram by the same speckle field, the reference beam can be reconstructed, which represents the detection of the speckle field. In other words, instead of exploiting the temporal content, the spatial content from a multimode fiber can be exploited for sensing. Our analyses and experimentations have shown that the fiber specklegram sensor (FSS) is highly senstiive to perturbation, and it is less vulnerable to the environment factors. Applications of the FSS to temperature, transversal displacement, and dynamic sensing are also included.

  7. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  8. Determination of shower central position in laterally segmented lead-fluoride electromagnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Mazouz, M.; Ghedira, L.; Voutier, E.

    2016-07-01

    The spatial resolution of laterally segmented electromagnetic calorimeters, built of lead fluoride material, is studied on the basis of Monte-Carlo simulations. Parametrization of the relative resolution on the shower position is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies (> 5 GeV), and provides guidance for the design optimization of electromagnetic calorimeters.

  9. Precision closed bomb calorimeter for testing flame and gas producing initiators

    NASA Technical Reports Server (NTRS)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  10. Master plate production for the tile calorimeter extended barrel modules.

    SciTech Connect

    Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J.; Wood, K.

    1999-03-10

    Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and

  11. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    SciTech Connect

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim

  12. PARROT A fiber optic link for particle detectors

    NASA Astrophysics Data System (ADS)

    Leone, Maurizio; Trasatti, Luciano; Stefani, Giovanni; Avaldi, Lorenzo

    1993-09-01

    The fiber optic technology has been used to build a transmitter-receiver system capable of delivering channeltron or PM tube signals through a few hundred meter span. The intrinsic immunity of optical fibers to e.m. noise has been used to reduce noise problems in an experimental apparatus equipped with two electrostatic analyzers for coincidence (e, 2e) spectroscopy. A coincidence energy separation spectrum of He, used for calibration of the apparatus energy scale, has been measured using fiber optic links instead of coaxial cables. The system was completely built using cheap and easily available commercial components. The results show that fiber optic links could become a viable technique for noise reduction, high voltage decoupling and low temperature calorimeters signal transfer.

  13. Magnetic calorimeter with a SQUID for detecting weak radiations and recording the ultralow energy release

    SciTech Connect

    Golovashkin, Aleksander I; Zherikhina, L N; Kuleshova, G V; Tskhovrebov, A M; Izmailov, G N

    2006-12-31

    The scheme of a magnetic calorimeter for recording extremely low energy releases is developed. The calorimeter is activated by the method of adiabatic demagnetisation and its response to the energy release is measured with a superconducting quantum interference device (SQUID). The estimate of the ultimate sensitivity of the calorimeter with the SQUID demonstrates the possibilities of its application for detecting ultralow radiation intensity, recording single X-ray quanta in the proportional regime and other events with ultralow energy releases. The scheme of the calorimeter with the SQUID on matter waves in superfluid {sup 4}He is proposed. (radiation detectors)

  14. Photon-veto counters at the outer edge of the endcap calorimeter for the KOTO experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Shinkawa, T.; Yokota, H.; Iwai, E.; Komatsubara, T. K.; Lee, J. W.; Lim, G. Y.; Ma, J.; Masuda, T.; Nanjo, H.; Nomura, T.; Odani, Y.; Ri, Y. D.; Shiomi, K.; Sugiyama, Y.; Suzuki, S.; Togawa, M.; Wah, Y.; Watanabe, H.; Yamanaka, T.

    2015-09-01

    The Outer-Edge Veto (OEV) counter subsystem for extra-photon detection from the backgrounds for the KL0 →π0 ν ν bar decay is located at the outer edge of the endcap CsI calorimeter of the KOTO experiment at J-PARC. The subsystem is composed of 44 counters with different cross-sectional shapes. All counters are made of lead and scintillator plates and read out through wavelength-shifting fibers. In this paper, we discuss the design and performances of the OEV counters under heavy load (~ 8 tons /m2) in vacuum. For 1-MeV energy deposit, the average light yield and time resolution are 20.9 photo-electrons and 1.5 ns, respectively. Although no pronounced peak by minimum-ionizing particles is observed in the energy distributions, an energy calibration method with cosmic rays works well in monitoring the gain stability with an accuracy of a few percent.

  15. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of {approx}1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 {plus_minus} 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  16. Measurement of Specific Heat Capacity Using Differential Scanning Calorimeter

    SciTech Connect

    J. E. Daw

    2008-11-01

    This document describes the process used at the Idaho National Laboratory’s (INL) High Temperature Test Laboratory (HTTL) for measuring specific heat capacity using a differential scanning calorimeter (DSC). The document is divided into four sections: Approach, in which the technique is described; Setup, in which the physical system is described; Procedure, in which the testing steps are listed and detailed; and Example Test, in which a typical test is outlined following the steps listed in the Procedure section. Example data, results, photos, and curves are provided throughout the document to assist other users of this system.

  17. Comparative study of WLS fibres for the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Gomes, A.; David, M.; Henriques, A.; Maio, A.

    1998-02-01

    The Wave Length Shifting (WLS) fibres are one of the most important components of the ATLAS barrel hadronic tile calorimeter (Tilecal). The fibres collect the hght produced in the injection molded scintillating tiles and transport it to the photomultipliers. Parameters like attenuation length and light yield are important, as well as flexibility and radiation hardness. Comparative results of WLS fibres produced by Bicron, Kuraray and Pol.Hi.Tech are presented. The performance of the fibres BCF91A from Bicron and S048 from Pol.Hi.Tech was significatively improved, but the most performant are still the double clad Y11 fibres from Kuraray.

  18. Comparative study of WLS fibres for the ATLAS tile calorimeter

    NASA Astrophysics Data System (ADS)

    Gomes, A.; David, M.; Henriques, A.; Maio, A.

    1997-02-01

    The Wave Length Shifting (WLS) fibres are one of the most important components of the ATLAS barrel hadronic tile calorimeter (Tilecal). The fibres collect the light produced in the injection molded scintillating tiles and transport it to the photomultipliers. Parameters like attenuation length and light yield are important, as well as flexibility and radiation hardness. Comparative results of WLS fibres produced by Bicron, Kuraray and Pol.Hi.Tech are presented. The performance of the fibres BCF91A from Bicron and S048 from Pol.Hi.Tech was significatively improved, but the most performant are still the double clad Y11 fibres from Kuraray.

  19. The KTeV Pure CsI Calorimeter

    SciTech Connect

    Ray, R.E.

    1994-12-01

    KTeV is currently building a state-of-the-art pure CsI electromagnetic calorimeter with a sophisticated digital readout. The CsI array is expected to have better than 1% resolution over a dynamic range of 2--64 GeV. The design of the CsI array is driven by the difficult physics goal of attempting to measure the CP violation parameter Re({epsilon}{prime}/{epsilon}) to 1 part in 10000 in a high-rate neutral beam environment. The physics requirements and their impact on the final design will be discussed.

  20. The CMS hadron calorimeter detector control system upgrade

    NASA Astrophysics Data System (ADS)

    Sahin, M. O.; Behrens, U.; Campbell, A.; Martens, I.; Melzer-Pellmann, I. A.; Saxena, P.

    2015-04-01

    The detector control system of the CMS hadron calorimeter provides the 40.0788 MHz LHC clock to the front end electronics and supplies synchronization signals and I2C communication. Pedestals and diagnostic bits are controlled, and temperatures and voltages are read out. SIPM temperatures are actively stabilized by temperature readback and generation of correction voltages to drive the Peltier regulation system. Overall control and interfacing to databases and experimental DAQ software is provided by the software CCM Server. We report on design and development status, and implementation schedule of this system.

  1. D-Zero End Cap Calorimeter Inner Vessel Heater Documentation

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-06-15

    There will be 48 finned strip heaters installed in each end cap calorimeter vessel. The strip heaters were specified and the lowest bid vendor submitted a sample heater which was tested. This engineering note will document specifications of the heater, test procedure used, and results of the test. The finned strip heaters were of stainless steel construction. The lowest bid was $45.00 per heater from TEMPCO Electric Heater Corporation. A sample heater from TEMPCO was inspected, cold shocked tested to -320 F, and found to be acceptable.

  2. D-Zero Central Calorimeter Inner Vessel Pumpdown Information

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-12-10

    The information presented in this engineering note can be of value to others who wish to predict pumping times and water content of vessels containing G-IO material. Four predictions of the water content of the G-IO in the D-Zero Central Calorimeter (CC) are given. Experience from pumping on the NW A cryostat was used to help predict the pumpdown time required for the CC. The actual pumpdown time and water removal from the CC agrees quite well with those predicted which gives confidence for future predictions done using the information presented in this engineering note. A listing of the predictions and actual CC pumpdown particulars is given.

  3. Performance of the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Adams, J. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The ATIC instrument is a balloon-borne experiment capable of measuring cosmic ray elemental spectra from 50 GeV to 100 TeV for nuclei from H to Fe with a fully active Bismuth Germanate calorimeter. Several Long Duration Balloon flights from McMurdo station, Antarctica are scheduled. The detector was tested with high energy electron, proton, and pion beams at CERN. We present results for 150 and 375 GeV protons, and 150 GeV pions and comparison with a GEANT Monte Carlo.

  4. Light nuclear charge measurement with Alpha Magnetic Spectrometer Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Basara, Laurent; Choutko, Vitaly; Li, Qiang

    2016-06-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy particle detector installed and operating on board of the International Space Station (ISS) since May 2011. So far more than 70 billion cosmic ray events have been recorded by AMS. In the present paper the Electromagnetic Calorimeter (ECAL) detector of AMS is used to measure cosmic ray nuclear charge magnitudes up to Z=10. The obtained charge magnitude resolution is about 0.1 and 0.3 charge unit for Helium and Carbon, respectively. These measurements are important for an accurate determination of the interaction probabilities of various nuclei with the AMS materials. The ECAL charge calibration and measurement procedures are presented.

  5. Analysis of diagnostic calorimeter data by the transfer function technique

    NASA Astrophysics Data System (ADS)

    Delogu, R. S.; Poggi, C.; Pimazzoni, A.; Rossi, G.; Serianni, G.

    2016-02-01

    This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.

  6. Evaluating Small Scintillating Cells for Digital Hadron Calorimeters

    SciTech Connect

    Francis, Kurt

    2004-01-01

    This thesis discusses the use of scintillator cells with digital electronics as a basis for a digital hadron calorimeter. The detection of a minimum ionizing particle (MIP), analysis of crosstalk, and determination of light yield for the array of scintillating cells are described. The cells were found to have a light yield (in terms of single photoelectrons per MIP) of 7 to 13. Crosstalk due to transfer of light between adjacent cells or photomultiplier tube channels can reach 45%. Rejection versus efficiency studies show that single-channel thresholds can be set that reject noise while accepting MIP signals.

  7. Run 2 upgrades to the CMS Level-1 calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Kreis, B.; Berryhill, J.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.; Apanasevich, L.; Zhang, J.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Foudas, C.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Zabi, A.; Barbieri, R.; Cali, I. A.; Innocenti, G. M.; Lee, Y.-J.; Roland, C.; Wyslouch, B.; Guilbaud, M.; Li, W.; Northup, M.; Tran, B.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2016-01-01

    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.

  8. Simulation of Energy Response of the ATIC Calorimeter

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Granger, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. For reconstruction of primary spectra from spectra of energy deposits measured in the experiment, correlations between kinetic energy of a primary particle E(sub kin) and energy deposit in the calorimeter E(sub d) should be known. For this purpose, simulations of energy response of the calorimeter on energy spectra of different nuclei were done. The simulations were performed by GEANT-3.21 code with QGSM generator for nucleus - nucleus interactions. The incident flux was taken as isotropic in the ATIC aperture. Primary spectra power-law by momentum were used as inputs according to standard models of cosmic ray acceleration. These spectra become power-law by kinetic energy at E(sub kin) higher than approx.20Mc(sup 2), where M is primary nucleus mass. It should be noted that energy deposit spectra measured by ATIC illustrate similar behavior. Distributions of ratio E(sub kin)/E(sub d) are presented for different energy deposits and for a set of primaries. For power-law regions of energy spectra at E(sub d)> or equal to 20Mc(sup 2) the obtained mean value of E(sub kin)/E(sub d) increases from approx.2.4 for protons to approx.3.1 for iron, while rms/ decreases from 50% for protons to about 15% for iron. These values were obtained for the spectral index gamma=1.6

  9. Silicon photomultiplier characterization for the GlueX barrel calorimeter

    SciTech Connect

    F. Barbosa, J.E. McKisson, J. McKisson, Y. Qiang, E. Smith, C. Zorn

    2012-12-01

    GlueX is a new detector being constructed at Jefferson Laboratory to study gluonic excitations and confinement via the detection of exotic meson states. The hermetic detector includes a barrel calorimeter where the photodetectors must operate in a high magnetic field exceeding 0.5 T. After extensive tests with a variety of sensors, the chosen photodetector will be a custom silicon photomultiplier (SiPM) array manufactured by Hamamatsu Corporation. This paper will focus on the characterization of the first 80 production samples of these SiPMs, including dark rate, photodetection efficiency (PDE), crosstalk, response uniformity and radiation tolerance.

  10. Analysis of diagnostic calorimeter data by the transfer function technique.

    PubMed

    Delogu, R S; Poggi, C; Pimazzoni, A; Rossi, G; Serianni, G

    2016-02-01

    This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing. PMID:26932104

  11. Determination of the total absorption peak in an electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Hua; Wang, Zhe; Lebanowski, Logan; Lin, Guey-Lin; Chen, Shaomin

    2016-08-01

    A physically motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  12. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    NASA Technical Reports Server (NTRS)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  13. Description of a Sensitive Seebeck Calorimeter Used for Cold Fusion Studies

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    A sensitive and stable Seebeck calorimeter is described and used to determine the heat of formation of PdD. This determination can be used to show that such calorimeters are sufficiently accurate to measure the LENR effect and give support to the claims.

  14. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  15. Test and evaluation of an Argonne National Laboratory bulk assay calorimeter

    SciTech Connect

    Rodenburg, W.W.; Fellers, C.L.; Lemming, J.F.

    1981-06-30

    The Argonne National Laboratory bulk assay calorimeter (BAC) was subjected to a series of tests, using plutonium-238 heat standards, to evaluate the performance of the calorimeter over its operating range. The results of these tests provide baseline information of the instrument performance under laboratory conditions.

  16. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    PubMed

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster. PMID:26353514

  17. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  18. The modular nuclear absorber of the ATLAS hadron calorimeter (The experience controlled assembly of the surface and in the pit).

    SciTech Connect

    Proudfoot, J.; Batusov, V.; Budagov, J.; Leitener, R.; Lyablin, M.; Miralles, L.; Nessi, M.; Russakovich, N.; Sissakian, A.; Topilin, N.; Khubua, J.; Henriques, A.

    2009-01-01

    The Hadron Calorimeter of the ATLAS spectrometric complex is a principal part of the whole setup. This paper describes the developed concept and methods for the controlled construction of a steel nuclear calorimeter absorber which provides calorimeter assembly on the surface and in the underground experimental hall meeting the required design tolerances.

  19. Construction of a hadron calorimeter for Jefferson Lab Hall-A Super Bigbite Spectrometer

    NASA Astrophysics Data System (ADS)

    Mamyan, Vahe

    2015-04-01

    A ``shashlik'' hadron calorimeter is being constructed for the new Super Bigbite Spectrometer in Jefferson Lab Hall-A. The calorimeter will be used in nucleon-coincidence form-factor experiments taking advantage of Jefferson Labs' 12 GeV upgrade. An adiabatic light guide has been developed for the calorimeter based on laser cut acrylic sheets. A prototype module has been built to measure time resolution of the calorimeter for cosmic ray muons as well as to validate the Geant4 simulation. Several innovations in the calorimeter design will be discussed, in particular the choice of the scintillator, wave length shifter and the construction process of the light. The results of prototype tests is compared with Geant4 simulation for cosmic ray muons and prediction of HCal time and special resolution for hadrons in the 2-10 GeV/c momentum range will be presented. SBS COLLABORATION.

  20. Calibration of a calorimeter for measuring the performance of thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Houseman, John; Siebes, Georg

    1993-01-01

    The calibration to evaluate the heat leak in terms of the deviation from a perfect calorimeter is described. A thermal vacuum test was carried out to characterize the performance of the calorimeter. The calorimeter was equipped with a heater to control the sample disc temperature and with specific instrumentation to measure the heat leak. The radiation sink temperature of the black cavity target was varied from -192 to +31C, while the heater power was varied from 0 to 311 milliwatts. A steady state thermal model was developed to correlate the results. The calorimeter performance was characterized in terms of the heat leak as a percentage of the ideal heat flow of the calorimeter disc. Large deviations from ideal performance occur at low sink temperatures. The effect of the use of the heater is discussed. The effects of transient conditions during low Earth orbit are discussed. It is concluded that heat leak calibrations are necessary for a wide range of conditions.

  1. Addendum 3 to CSAR 80-027, Use of calorimeter 109B for fissile material measurement

    SciTech Connect

    Chiao, T.

    1994-12-05

    This modification to the Plutonium Finishing Plant (PFP) calorimeter system involves removing current calorimeter No. 3 from the water bath and replacing it with a calorimeter that can accommodate larger diameter items (an oversize can). The inside diameters of both the sample and the reference cells will be increased to 5.835 inches at the top opening and to 5.22 inches at the bottom, the 8 inch high measurement zone. This Addendum 3 to Criticality Safety Analysis Report 80-027 examines criticality safety during the use of the modified calorimeter (Calorimeter 109B) with enlarged cell tube diameters to assure that an adequate margin of subcriticality is maintained for all normal and contingency conditions.

  2. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  3. Construction and operation of a drift-collection calorimeter

    SciTech Connect

    Ambats, I.; Ayres, D.S.; Dawson, J.W.; Hoftiezer, J.H.; Mann, W.A.; May, E.N.; Pearson, N.M.; Price, L.E.; Sivaprasad, K.; Solomey, N.

    1984-01-01

    Large areas planar drift chambers with long drift distance (up to 50 cm) have been developed for possible use in the new Soudan 2 nucleon decay detector. Design goals included fine sampling to determine the topology of complex events with several low-energy tracks. The large scale of the experiment (> 1000 metric tons) required large area inexpensive chambers, which also had good position resolution and multi-track separation. The chambers were to be installed between thin sheets of steel to form a finegrained detector. A second goal was the sampling of dE/dx with each position measurement, in order to determine the direction and particle identity of each track. In this paper we report on the construction and operation of a prototype dectector consisting of 50 chambers, separated by 3 mm-thick steel plates. Readout of drift time and pulse height from anode wires and an orthogonal grid of bussed cathode pads utilized 6-bit flash ADC's. This application of the drift-collection calorimeter technique to a nucleon decay detector follows the investigation by a number of groups of calorimeters for high energy detectors based on long drifting.

  4. Development of a semi-adiabatic isoperibol solution calorimeter

    NASA Astrophysics Data System (ADS)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-12-01

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  5. Simulation of the CLAS12 Forward Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Musalo, C. J.; Gilfoyle, G. P.; Carbonneau, J.

    2010-11-01

    The primary mission of Jefferson Lab (JLab) is to reveal the quark and gluon structure of nucleons and nuclei and to deepen our understanding of matter and quark confinement. At JLab there is a need for high-performance computing for data analysis and simulations. The precision of many future experiments will be limited by systematic uncertainties and not statistical ones; making accurate simulations vital. A physics-based simulation of a new detector (CLAS12) is currently being developed called gemc. This new program uses the package Geant4 to calculate the interactions of particles with matter in the components of CLAS12. We have added the electromagnetic calorimeter (EC) detector to the gemc simulation. The EC is a sampling electromagnetic calorimeter made up of alternating layers of lead and plastic scintillator used to detect electrons, photons, and neutrons. The mathematical model of the EC geometry was streamlined to make the code more robust. This geometry is stored in a mysql database on a server at JLab and it was modified using Perl scripts. The new geometry was tested by sending straight tracks (no magnetic field) through the edges of specific layers using the geantino, a Geant4 virtual particle that does not interact with materials. Work supported by US Department of Energy contract DE-FG02-96ER40980.

  6. π0 Reconstruction using the Muon Piston Calorimeter Extension

    NASA Astrophysics Data System (ADS)

    Dixit, Dhruv; Phenix Collaboration

    2015-10-01

    The Muon-Piston Calorimeter Extension (MPC-EX) is a new detector in the PHENIX experiment at the Relativistic Heavy Ion Collider that was installed for the recent Run 15 of the experiment. In polarized p+p and polarized p+A collisions, an important measurement is the yield and momentum distribution of direct photons. Unaffected by the strong force, direct photons traverse the dense medium in the collision zone mostly unchanged, thereby providing information about the initial stages of the collision. However, there is a huge background of photons from other sources, primarily π0 which decay into two photons. The opening angle between the decay photons becomes smaller with higher energies of the original π0. For energies greater than ~20 GeV, the Muon Piston Calorimeter (MPC) cannot distinguish the two decay photons from a single photon, as their showers merge. The MPC-EX, an 8-layer tungsten and silicon sensor sandwich in front of the MPC, can measure and image the shower development, and help distinguish between direct photons and π0 decay photons up to higher energies than the MPC alone. We will describe the MPC-EX detector and its readout, and present the calibration procedures applied to the data in order to obtain the π0 spectrum. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  7. Development of a semi-adiabatic isoperibol solution calorimeter

    SciTech Connect

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-12-15

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  8. CMOS solid-state photomultipliers for high energy resolution calorimeters

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, Xiao Jie; Whitney, Chad; Chapman, Eric C.; Alberghini, Guy; Rines, Rich; Augustine, Frank; Miskimen, Rory; Lydon, Don; Christian, James

    2011-09-01

    High-energy, gamma-ray calorimetry typically employs large scintillation crystals coupled to photomultiplier tubes. These calorimeters are segmented to the limits associated with the costs of the crystals, photomultiplier tubes, and support electronics. A cost-effective means for construction of a calorimeter system is to use solid-state photomultipliers (SSPM) with front-end electronics, which is at least half the cost, but the SSPM must provide the necessary energy resolution defined by the physics goals. One experiment with plans to exploit this advantage is an upgrade to the PRIMEX experiment at Jefferson Laboratories. We have developed a large-area SSPM (1 cm × 1 cm) for readout of large scintillation crystals. As PbWO4 has excellent properties (small Molière radius and radiation hard) for high-energy gamma-rays (>1 GeV) but low light yields (~150 photons/MeV at 0 °C), evaluation of the SSPM and support readout electronics with LaBr3 provides a measure of the device performance. Using the known detection efficiency and dark current of the SSPM, an excess noise factor associated with after pulsing and cross talk is determined. The contribution to the energy resolution from the detector module is calculated as <1% for gamma rays greater than ~2.5 GeV (0.7% at 4.5 GeV).

  9. New calorimeters for space experiments: physics requirements and technological challenges

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  10. Cosmic Ray Study with the Nose Cone Calorimeter

    NASA Astrophysics Data System (ADS)

    Langin, Thomas

    2008-10-01

    The Nose Cone Calorimeter (NCC) is a proposed upgrade detector for the PHENIX experiment at Brookhaven National Lab. The NCC will be useful for a variety of measurements in polarized p+p, d+A, and A+A collisions at the Relativistic Heavy Ion Collider (RHIC). The NCC is a tungsten-silicon sampling calorimeter, made up of 3 mm tungsten plates sandwiched by 1.5x1.5 cm^2 silicon pads. The NCC would add a new capability to measure the χC meson and electrons from W-boson decays in PHENIX, as well as adding acceptance for the 0̂ and γ-jet and many other measurements. Since it uses tungsten plates which have a very small Moliere radius of 0.9 cm, the NCC is capable of distinguishing photons down to very small separations, which is essential for the high densities in the heavy ion collisions and for decay photons from very high energy 0̂'s. The performance of the most recent NCC prototype was tested using cosmic rays, which deposit close to the lowest energies the NCC needs to measure. We find that the dynamic range of the NCC is within design specifications. Additionally, different methods to reconstruct the energy from the measured signal pulses were studied which will help in optimizing the pulse shaping for the next prototype.

  11. Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters

    SciTech Connect

    Brandt, D.; Asai, M.; Brink, P.L.; Cabrera, B.; Silva, E.do Couto e; Kelsey, M.; Leman, S.W.; McArthy, K.; Resch, R.; Wright, D.; Figueroa-Feliciano, E.; /MIT

    2012-06-12

    There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature, focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.

  12. Performance And Operation of the BaBar Calorimeter

    SciTech Connect

    Ruland, A.M.; /Texas U.

    2011-11-23

    The performance and operation of the CsI(Tl) crystal calorimeter of the BABAR detector during the last years of operation is discussed. The BABAR detector is located at the PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC). PEP-II is an asymmetric e{sup +}e{sup -}-collider operating mainly at a center-of-mass energy of 10.58 GeV. This corresponds to the mass of the {Upsilon}(4S) resonance, which decays exclusively into B{sup 0}{bar B}{sup 0} and B{sup +}B{sup -} pairs. One main physics goal of the BABAR experiment was the measurement of CP-violating asymmetries in the decay of neutral B-mesons. Other goals of the experiment include precision measurements of the decays of bottom mesons to charm and {tau} leptons, as well as searches for rare decays utilizing the high luminosity delivered by the PEP-II accelerator. The BABAR detector (Fig 1) consists of 6 subdetectors. Starting from the interaction point and moving radially outwards there is a Silicon Vertex Detector, Drift Chamber, DRC (Cherenkov detector), an Electromagnetic Calorimeter, and an Instrumented Flux Return.

  13. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  14. LuAG:Ce fibers for high energy calorimetry

    SciTech Connect

    Dujardin, C.; Mancini, C.; Amans, D.; Ledoux, G.; Abler, D.; Auffray, E.; Lecoq, P.; Perrodin, D.; Petrosyan, A.; Ovanesyan, K. L.

    2010-07-15

    The main objective of this contribution is to point out the potentialities of cerium doped LuAG single crystal as pixels and fibers. We first show that after optimization of growth conditions using Bridgman technology, this composition exhibits very good performances for scintillating applications (up to 26 000 photons/MeV). When grown with the micropulling down technology, fiber shapes can be obtained while the intrinsic performances are preserved. For the future high energy experiments requiring new detector concepts capable of delivering much richer informations about x- or gamma-ray energy deposition, unusual fiber shaped dense materials need to be developed. We demonstrate in this frame that cerium doped LuAG is a serious candidate for the next generation of ionizing radiation calorimeters.

  15. Room-temperature calorimeter for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (˜4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  16. Room-temperature calorimeter for x-ray free-electron lasers

    SciTech Connect

    Tanaka, T. Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-15

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%)

  17. Design and Development of a Dense, Fine Grained Silicon Tungsten Calorimeter with Integrated Electronics

    NASA Astrophysics Data System (ADS)

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.

    2005-02-01

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector that is optimized for particle-flow reconstruction. Our design is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Molière radius. The size of the Molière radius is an important figure of merit for energy-flow detectors.

  18. Fabrication and Characterization of a Multichannel 3D Thermopile for Chip Calorimeter Applications

    PubMed Central

    Huynh, Tho Phuoc; Zhang, Yilei; Yehuda, Cohen

    2015-01-01

    Thermal sensors based on thermopiles are some of the most robust and popular temperature sensing technologies across industries and research disciplines. A chip calorimeter with a 3D thermopile layout with a large sensing area and multichannel capacity has been developed, which is highly desired for many applications requiring large reaction chambers or high throughputs, such as biofilm research, drug screening, etc. The performance of the device, including temperature sensitivity and heat power sensitivity, was evaluated. The capability to split the chip calorimeter to multiple channels was also demonstrated, which makes the chip calorimeter very flexible and powerful in many applications. PMID:25654716

  19. Central Calorimeter configuration: A study report to the SDC Technical Board

    SciTech Connect

    Kirk, T.B.W.; Wicklund, A.B.

    1991-04-11

    The single most important determinant of the overall Central Calorimeter (CC) shape is the criterion for depth of hadron shower containment. This criterion and its rapidity dependence is discussed in a companion document to this report titled ``Depth Requirements in SSC Calorimeters`` by a D. Green et al., SDC-91-00016. The conclusion reached there is that the calorimeter should be 10 {lambda} thick at {eta} = 0 and increase smoothly to 12 {lambda} at {eta} = 3. We adopt this criterion in this report and discuss the mechanical properties and design details of a CC that meets this condition.

  20. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    SciTech Connect

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  1. The ATIC Experiment : Performance of the Scintillator Hodoscope and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from McMurdo, Antarctica, 28/12/00 to 13/01/01, recording over 360 hours of data. The design goal for ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, operation, and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  2. Design of experiments for measuring heat-transfer coefficients with a lumped-parameter calorimeter

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.

    1975-01-01

    A theoretical investigation was conducted to determine optimum experimental conditions for using a lumped-parameter calorimeter to measure heat-transfer coefficients and heating rates. A mathematical model of the transient temperature response of the calorimeter was used with the measured temperature response to predict the heat-transfer coefficient and the rate of heating. A sensitivity analysis was used to determine the optimum transient experiment for simultaneously measuring the heat addition during heating and the convective heat-transfer coefficient during heating and cooling of a lumped-parameter calorimeter. Optimum experiments were also designed for measuring the convective heat-transfer coefficient during both heating and cooling and cooling only.

  3. The ATIC Experiment: Performance of the Scintillator Hodoscopes and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, Joachim; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from Mcmurdo, Antarctica 28/12/2000 to 13/01/2001, local time, recording over 360 hours of data. The design goal of ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, the operations and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  4. Evaluation of a bulk calorimeter and heat balance for determination of supersonic combustor efficiency

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Anderson, G. Y.

    1980-01-01

    Results are presented from the shakedown and evaluation test of a bulk calorimeter. The calorimeter is designed to quench the combustion at the exit of a direct-connect, hydrogen fueled, scramjet combustor model, and to provide the measurements necessary to perform an analysis of combustion efficiency. Results indicate that the calorimeter quenches reaction, that reasonable response times are obtained, and that the calculated combustion efficiency is repeatable within + or -3 percent and varies in a regular way with combustor model parameters such as injected fuel equivalence ratio.

  5. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sq ft-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.

  6. Relative Gain Monitoring of the GlueX Calorimeters

    SciTech Connect

    Anassontzis, Efstratios G.; Kourkoumelis, C.; Vasileiadis, G.; Voulgaris, G.; Kappos, E.; Beattie, T.; Krueger, S.; Lolos, G. J.; Papandreou, Z.; Semenov, A. Yu.; Frye, John M.; Leckey, John P.; Shepherd, Matt; Bogart, T.; Smith, Elton S.

    2014-02-01

    The relative gain of the photodetectors for the GlueX Barrel and Forward calorimeters will be monitored using modular LED driver systems. The BCAL system consists of a global controller that feeds power, bias voltage and trigger signals to 96 local controllers situated at the ends of the 48 BCAL modules, which drive 40 LEDs associated with the 40 light guides at the end of each module. The FCAL system consists also of a global controller, a local controller for each acrylic quadrant covering the face of the FCAL, and ten 4-LED pulser boards per local controller connected in a star configuration along the edges of the acrylic panes. The respective systems are currently being installed on the detectors and their tested performance is presented herein.

  7. The CMS Hadron Forward Calorimeter Upgrade During Phase I

    NASA Astrophysics Data System (ADS)

    Gülmez, E.

    2014-06-01

    The CMS Hadron Forward Calorimeter is being upgraded during phase 1. The upgrade includes the replacement of the current PMTs with the 4-anode ones and the readout electronics. Stray muons hitting the PMT windows produce Cherenkov light causing erroneous signals. These signals are detrimental to the triggering and physic results, since such signals mimic very high energy events. The new 4-anode PMTs are selected because of their thin windows to reduce the Cherenkov light production. Additional anodes also provide information to eliminate such signals. These new PMTs have been tested extensively to understand their characteristics and to develop the algorithms to eliminate the unwanted signals. Eventually, the current read out will be replaced with two-channel readout electronics for each PMT. The overall expected improvement on the physics results will also be discussed.

  8. The NA62 Liquid Krypton calorimeter readout architecture

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Ryjov, V.; De Simone, N.; Venditti, S.

    2016-01-01

    The NA62 experiment [1] at the CERN SPS (Super Proton Synchrotron) accelerator studies the ultra-rare decays of charged kaons. The high-resolution Liquid Krypton (LKr) electromagnetic calorimeter of the former NA48 experiment [2] is a key component of the experiment photon-veto system. The new LKr readout system comprises 14,000 14-bit ADC acquisition channels, 432× 1 Gbit Ethernet data request and readout links routed by 28× 10 Gbit network switches to the experiment computer farm, and timing, trigger and control (TTC) distribution system. This paper presents the architecture of the LKr readout and TTC systems, the overall performance and the first successfully collected experiment physics data.

  9. A high precision calorimeter for the SOX experiment

    NASA Astrophysics Data System (ADS)

    Papp, L.; Agostini, M.; Altenmüller, K.; Appel, S.; Caminata, A.; Cereseto, R.; Di Noto, L.; Farinon, S.; Musenich, R.; Neumair, B.; Oberauer, L.; Pallavicini, M.; Schönert, S.; Testera, G.; Zavatarelli, S.

    2016-07-01

    The SOX (Short distance neutrino Oscillations with BoreXino) experiment is being built to discover or reject eV-scale sterile neutrinos by observing short baseline oscillations of active-to-sterile neutrinos [1]. For this purpose, a 100 kCi 144Ce-144Pr antineutrino generator (CeSOX) will be placed under the BOREXINO detector at the Laboratori Nazionali del Gran Sasso. Thanks to its large size and very low background, BOREXINO is an ideal detector to discover or reject eV-scale sterile neutrinos. To reach the maximal sensitivity, we aim at determining the neutrino flux emitted by the antineutrino generator with a < 1 % accuracy. With this goal, TU München and INFN Genova are developing a vacuum calorimeter, which is designed to measure the source-generated heat with high accuracy.

  10. The magnetized steel and scintillator calorimeters of the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Minos Collaboration; Michael, D. G.; Adamson, P.; Alexopoulos, T.; Allison, W. W. M.; Alner, G. J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Arroyo, C.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barker, M. A.; Barnes, P. D.; Barr, G.; Barrett, W. L.; Beall, E.; Bechtol, K.; Becker, B. R.; Belias, A.; Bergfeld, T.; Bernstein, R. H.; Bhattacharya, D.; Bishai, M.; Blake, A.; Bocean, V.; Bock, B.; Bock, G. J.; Boehm, J.; Boehnlein, D. J.; Bogert, D.; Border, P. M.; Bower, C.; Boyd, S.; Buckley-Geer, E.; Byon-Wagner, A.; Cabrera, A.; Chapman, J. D.; Chase, T. R.; Chernichenko, S. K.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Coleman, S. J.; Cossairt, J. D.; Courant, H.; Crane, D. A.; Culling, A. J.; Damiani, D.; Dawson, J. W.; de Jong, J. K.; Demuth, D. M.; de Santo, A.; Dierckxsens, M.; Diwan, M. V.; Dorman, M.; Drake, G.; Ducar, R.; Durkin, T.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Fackler, O. D.; Falk Harris, E.; Feldman, G. J.; Felt, N.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Gebhard, M.; Godley, A.; Gogos, J.; Goodman, M. C.; Gornushkin, Yu.; Gouffon, P.; Grashorn, E. W.; Grossman, N.; Grudzinski, J. J.; Grzelak, K.; Guarino, V.; Habig, A.; Halsall, R.; Hanson, J.; Harris, D.; Harris, P. G.; Hartnell, J.; Hartouni, E. P.; Hatcher, R.; Heller, K.; Hill, N.; Ho, Y.; Howcroft, C.; Hylen, J.; Ignatenko, M.; Indurthy, D.; Irwin, G. M.; James, C.; Jenner, L.; Jensen, D.; Joffe-Minor, T.; Kafka, T.; Kang, H. J.; Kasahara, S. M. S.; Kilmer, J.; Kim, H.; Kim, M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Koskinen, D. J.; Kostin, M.; Kotelnikov, S. K.; Krakauer, D. A.; Kumaratunga, S.; Ladran, A. S.; Lang, K.; Laughton, C.; Lebedev, A.; Lee, R.; Lee, W. Y.; Libkind, M. A.; Liu, J.; Litchfield, P. J.; Litchfield, R. P.; Longley, N. P.; Lucas, P.; Luebke, W.; Madani, S.; Maher, E.; Makeev, V.; Mann, W. A.; Marchionni, A.; Marino, A. D.; Marshak, M. L.; Marshall, J. S.; McDonald, J.; McGowan, A. M.; Meier, J. R.; Merzon, G. I.; Messier, M. D.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Miyagawa, P. S.; Moore, C. D.; Morfín, J.; Morse, R.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M. J.; Musser, J.; Naples, D.; Nelson, C.; Nelson, J. K.; Newman, H. B.; Nezrick, F.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, J.; Oliver, W. P.; Onuchin, V. A.; Osiecki, T.; Ospanov, R.; Paley, J.; Paolone, V.; Para, A.; Patzak, T.; Pavlović, Ž.; Pearce, G. F.; Pearson, N.; Peck, C. W.; Perry, C.; Peterson, E. A.; Petyt, D. A.; Ping, H.; Piteira, R.; Pla-Dalmau, A.; Plunkett, R. K.; Price, L. E.; Proga, M.; Pushka, D. R.; Rahman, D.; Rameika, R. A.; Raufer, T. M.; Read, A. L.; Rebel, B.; Reyna, D. E.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Ryabov, V. A.; Saakyan, R.; Sanchez, M. C.; Saoulidou, N.; Schneps, J.; Schoessow, P. V.; Schreiner, P.; Schwienhorst, R.; Semenov, V. K.; Seun, S.-M.; Shanahan, P.; Shield, P. D.; Shivane, R.; Smart, W.; Smirnitsky, V.; Smith, C.; Smith, P. N.; Sousa, A.; Speakman, B.; Stamoulis, P.; Stefanik, A.; Sullivan, P.; Swan, J. M.; Symes, P. A.; Tagg, N.; Talaga, R. L.; Terekhov, A.; Tetteh-Lartey, E.; Thomas, J.; Thompson, J.; Thomson, M. A.; Thron, J. L.; Trendler, R.; Trevor, J.; Trostin, I.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vakili, M.; Vaziri, K.; Velissaris, C.; Verebryusov, V.; Viren, B.; Wai, L.; Ward, C. P.; Ward, D. R.; Watabe, M.; Weber, A.; Webb, R. C.; Wehmann, A.; West, N.; White, C.; White, R. F.; Wojcicki, S. G.; Wright, D. M.; Wu, Q. K.; Yan, W. G.; Yang, T.; Yumiceva, F. X.; Yun, J. C.; Zheng, H.; Zois, M.; Zwaska, R.; MINOS Collaboration

    2008-11-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  11. Geant4 validation with CMS calorimeters test-beam data

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-08-01

    CMS experiment is using Geant4 for Monte-Carlo simulation of the detector setup. Validation of physics processes describing hadronic showers is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c.

  12. The magnetized steel and scintillator calorimeters of the MINOS experiment

    SciTech Connect

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  13. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  14. Calibration of BGO Calorimeter of the DAMPE in Space

    NASA Astrophysics Data System (ADS)

    Wang, Chi

    2016-07-01

    The Dark Matter Particle Explore (DAMPE) is a satellite based experiment which launched on December 2015 and aims at indirect searching for dark matter by measuring the spectra of high energy e±, γ from 5GeV up to 10TeV originating from deep space. The 3D imaging BGO calorimeter of DAMPE was designed to precisely measurement the primary energy of the electromagnetic particle and provides a highly efficient rejection of the hadronic background by reconstruct the longitudinal and lateral profiles of showers. To achieve the expected accuracy on the energy measurement, each signal channel has to be calibrated. The energy equalization is performed using the signal that Minimum Ionizing Particles (MIP) leave in each BGO bar, the MIPs measurement method with orbit data and, data quality, time stability using MIPs data will be presented, too.

  15. Finite element analysis of the SDC barrel and endcap calorimeters

    SciTech Connect

    Guarino, V.; Hill, N.; Nasiakta, J.

    1992-03-11

    In designing the SCD barrel and endcap calorimeters, the inter-module connecting forces must be known in order to determine the required size and number of connecting links between modules, and in order to understand how individual modules will be affected by these forces when assembled to form a full barrel and endcap. The connecting forces were found by analyzing three-dimensional Finite Element Models of both the barrel and endcap. This paper is divided into two parts, the first part will describe in detail the results of the barrel analysis and the second part will describe the results obtained from the endcap analysis. A similar approach was used in constructing the models for both analysis.

  16. Scifi97: Conference on Scintillating Fiber Detectors. Proceedings

    SciTech Connect

    Bross, A.D.; Ruchti, R.C.; Wayne, M.R.

    1998-11-01

    These proceedings represent papers presented at the Conference on Scintillating and Fiber Detectors SCIFI97 held at Notre Dame, Indiana in November 1997. The topics discussed included the developments in photosensor technology, calorimetry, including upgrading of hadron calorimeters and EM calorimeters. Medical imaging instrumentation and techniques were also discussed, particularly the PET scanners. Astrophysical applications in detection and composition determination of galactic cosmic rays and solar neutrons were discussed. General developments in scintillation fiber trackers including new materials were a popular topic at the Conference. The Conference reviewed the state{minus}of{minus}the{minus}art of the field of scintillation fiber detectors and their applications in nuclear medicine, astrophysics, and particle physics. The Conference was sponsored by the U.S. Department of Energy, the Fermi National Accelerator Laboratory, and Argonne National Laboratory, as well as other sponsors. There were 66 papers presented at the Conference,out of which 23 have been abstracted for the Energy,Science and Technology database.(AIP)

  17. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  18. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  19. Liquid Nitrogen Subcooler ofr Calorimeters LN2 Supply

    SciTech Connect

    Sarychev, Michael; /Fermilab

    2002-09-16

    This note provides calculations of heat load and coil sizing for a LN2 subcooler which will be installed in the liquid nitrogen line going from Dewar 42 to the. Liquid argon calorimeters. This subcooler must improve LN2 quality and facilitate LAr pressure regulation. The system is described in Engineering note 3740.510-EN-382. This note contains the calculations of heat loads/pressure drops of the liquid Nitrogen supply line going from the Dewar 42 to the liquid Argon calorimeters, and also the sizing of existing LN2 subcooler located in the V-tube. The note is used as a reference. The state of Nitrogen {at} point 6 - ECS entrance (according to 3740.510-EN-382) is used in the calculations. The quality of liquid x = 0.0066 with the use of existing 75 W LN2 subcooler. It has been determined that we need 29.3 W of additional subcooling in order to obtain. 100% liquid at this point with the mass flow of 25 g/s. Keeping in mind the possible error in heat transfer calculations, a 300W subcooler will be installed to replace the old 75 W subcooler. In order to achieve an acceptable conclusion, an assumption of a fully developed boundary layer was made. The hot fluid or the fluid condensing on the inside surface will determine the rate of heat transfer because A{sub o} = A{sub i} and h{sub o}A{sub o} >> h{sub i}A{sub i}. The conclusion drawn is to use a 1/2-inch copper tube wound approximately 8 times about a 9-inch diameter circle. The pressure drop in this coil will be 0.05 psi (0.0034 atm) and can be neglected.

  20. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  1. JTAG-based remote configuration of FPGAs over optical fibers

    DOE PAGESBeta

    Deng, B.; Xu, H.; Liu, C.; Chen, J.; Chen, K.; Gong, D.; Guo, D.; Hou, S.; D. Huang; Liu, T.; et al

    2015-01-28

    In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.

  2. On the massless gap'' adjustment of detected energy for passive material in front of a calorimeter

    SciTech Connect

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the massless gap'' idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  3. On the ``massless gap`` adjustment of detected energy for passive material in front of a calorimeter

    SciTech Connect

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the ``massless gap`` idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  4. Prototype tests for a highly granular scintillator-based hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Krüger, K.; CALICE Collaboration

    2015-02-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in"technological prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material. In the AHCAL technological prototype, the front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption. The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. The current status of the AHCAL engineering prototype is shown and recent beam test measurements as well as plans for future hadron beam tests with a larger prototype will be discussed.

  5. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    SciTech Connect

    Beddo, M.E.; Bielick, E.; Dawson, J.W.; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  6. Construction of a calorimeter prototype with a high sensitivity pulsed signal detection circuit.

    PubMed

    Kubo, H; Kageyama, Y; Lo, K K

    1989-08-01

    A calorimeter based on a Wheatstone bridge detector is considered to be an ideal absolute absorbed dose measuring device. One drawback of the calorimeter is that its output signals are extremely small. The signal size can be increased by increasing the bridge excitation voltage, which, however, may lead to excess self-heating of a temperature-sensing thermistor in the calorimeter detector and may require corrections. The use of pulsed excitation was investigated in this study in place of a conventional DC excitation to induce higher bridge output voltage while keeping the average self-heating of a thermistor to a reasonably low value. Performance evaluations of our prototype pulsed calorimeter are presented. PMID:2772032

  7. ATLAS LAr calorimeters readout electronics upgrade R&D for sLHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    2011-04-01

    The ATLAS Liquid Argon (LAr) calorimeters consist of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters. A total of 182,468 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the Level-1 trigger. A luminosity upgrade of the LHC will occur in the years ~2020. The current readout electronics will need to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr Calorimeter Group is developing.

  8. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    SciTech Connect

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-15

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., on the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.

  9. Design, performance, and calibration of the CMS hadron-outer calorimeter

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Akchurin, N.; Akgun, U.; Albayrak, E.; Anderson, E. W.; Antchev, G.; Arcidy, M.; Ayan, S.; Aydin, S.; Aziz, T.; Baarmand, M.; Babich, K.; Baden, D.; Bakirci, M. N.; Banerjee, Sudeshna; Banerjee, Sunanda; Bard, R.; Barnes, V.; Bawa, H.; Baiatian, G.; Bencze, G.; Beri, S.; Berntzon, L.; Bhandari, V.; Bhatnagar, V.; Bhatti, A.; Bodek, A.; Bose, S.; Bose, T.; Budd, H.; Burchesky, K.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Cerci, S.; Chendvankar, S.; Chung, Y.; Clarida, W.; Cremaldi, L.; Cushman, P.; Damgov, J.; de Barbaro, P.; Debbins, P.; Deliomeroglu, M.; Demianov, A.; de Visser, T.; Deshpande, P. V.; Diaz, J.; Dimitrov, L.; Dugad, S.; Dumanoglu, I.; Duru, F.; Efthymiopoulos, I.; Elias, J.; Elvira, D.; Emeliantchik, I.; Eno, S.; Ershov, A.; Erturk, S.; Esen, S.; Eskut, E.; Fenyvesi, A.; Fisher, W.; Freeman, J.; Ganguli, S. N.; Gaultney, V.; Gamsizkan, H.; Gavrilov, V.; Genchev, V.; Gleyzer, S.; Golutvin, I.; Goncharov, P.; Grassi, T.; Green, D.; Gribushin, A.; Grinev, B.; Guchait, M.; Gurtu, A.; Murat Güler, A.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Halyo, V.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heering, A.; Heister, A.; Hunt, A.; Ilyina, N.; Ingram, D.; Isiksal, E.; Jarvis, C.; Jeong, C.; Johnson, K.; Jones, J.; Kaftanov, V.; Kalagin, V.; Kalinin, A.; Kalmani, S.; Karmgard, D.; Kaur, M.; Kaya, M.; Kaya, O.; Kayis-Topaksu, A.; Kellogg, R.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kodolova, O.; Kohli, J.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Kramer, L.; Krinitsyn, A.; Krishnaswamy, M. R.; Krokhotin, A.; Kryshkin, V.; Kuleshov, S.; Kumar, A.; Kunori, S.; Laasanen, A.; Ladygin, V.; Laird, E.; Landsberg, G.; Laszlo, A.; Lawlor, C.; Lazic, D.; Lee, S. W.; Levchuk, L.; Linn, S.; Litvintsev, D.; Lobolo, L.; Los, S.; Lubinsky, V.; Lukanin, V.; Ma, Y.; Machado, E.; Maity, M.; Majumder, G.; Mans, J.; Marlow, D.; Markowitz, P.; Martinez, G.; Mazumdar, K.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Mohammadi-Najafabadi, M.; Moissenz, P.; Mondal, N.; Mossolov, V.; Nagaraj, P.; Narasimham, V. S.; Norbeck, E.; Olson, J.; Onel, Y.; Onengut, G.; Ozkan, C.; Ozkurt, H.; Ozkorucuklu, S.; Ozok, F.; Paktinat, S.; Pal, A.; Patil, M.; Penzo, A.; Petrushanko, S.; Petrosyan, A.; Pikalov, V.; Piperov, S.; Podrasky, V.; Polatoz, A.; Pompos, A.; Popescu, S.; Posch, C.; Pozdnyakov, A.; Qian, W.; Ralich, R. M.; Reddy, L.; Reidy, J.; Rogalev, E.; Roh, Y.; Rohlf, J.; Ronzhin, A.; Ruchti, R.; Ryazanov, A.; Safronov, G.; Sanders, D. A.; Sanzeni, C.; Sarycheva, L.; Satyanarayana, B.; Schmidt, I.; Sekmen, S.; Semenov, S.; Senchishin, V.; Sergeyev, S.; Serin, M.; Sever, R.; Singh, B.; Singh, J. B.; Sirunyan, A.; Skuja, A.; Sharma, S.; Sherwood, B.; Shumeiko, N.; Smirnov, V.; Sogut, K.; Sonmez, N.; Sorokin, P.; Spezziga, M.; Stefanovich, R.; Stolin, V.; Sudhakar, K.; Sulak, L.; Suzuki, I.; Talov, V.; Teplov, K.; Thomas, R.; Tonwar, S.; Topakli, H.; Tully, C.; Turchanovich, L.; Ulyanov, A.; Vanini, A.; Vankov, I.; Vardanyan, I.; Varela, F.; Vergili, M.; Verma, P.; Vesztergombi, G.; Vidal, R.; Vishnevskiy, A.; Vlassov, E.; Vodopiyanov, I.; Volobouev, I.; Volkov, A.; Volodko, A.; Wang, L.; Werner, J.; Wetstein, M.; Winn, D.; Wigmans, R.; Whitmore, J.; Wu, S. X.; Yazgan, E.; Yetkin, T.; Zalan, P.; Zarubin, A.; Zeyrek, M.

    2008-10-01

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E T measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS.

  10. Fiber crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much research continues to develop renewable, recyclable, sustainable, and bio-based products from agricultural feed stocks such as cotton and flax fiber. Primary requirements are sustainable production, low cost, and consistent and known quality. To better understand these products, research contin...

  11. Measurement of the Detection Efficiency of the Kloe Calorimeter for Neutrons Between 20 and 174 Mev

    NASA Astrophysics Data System (ADS)

    Gauzzi, P.; Anelli, M.; Battistoni, G.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; de Zorzi, G.; di Domenico, A.; di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sala, P.; Sciascia, B.; Sirghi, F.

    2008-06-01

    The detection efficiency of a KLOE calorimeter prototype to neutrons of kinetic energy of 21, 46 and 174 MeV has been measured by exposing it to the neutron beam of the The Svedberg Laboratory, Uppsala. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the ratio between the calorimeter and scintillator efficiency ranges from 2.5 to 3.2.

  12. A measurement of E/{pi} for a fast lead liquid argon calorimeter

    SciTech Connect

    Makowiecki, D.; Gordon, H.A.; Ma, H.; Murtagh, M.; Radeka, V.; Rahm, D.; Rescia, S.; Abrams, G.S.; Groom, D.E.; Kirsten, F.; Levi, M.; Siegrist, J.; Amako, K.; Inaba, O.; Kondo, T.; Baden, A.R.; Fong, D.; Hadley, N.; Kunori, S.; Skuja, A.; Bowen, T.; Forden, G.; Jenkins, E.; Johns, K.; Rutherfoord, J.; Shupe, M.; Burnett, T.; Cook, V.; Davisson, R.; Mockett, P.; Rothberg, J.; Williams, R.W.; Cremaldi, L.; Reidy, J.; Summers, D.; DiGiacomo, N.; Draper, P.; Ferbel, T.; Lobkowicz, F.; Faust, J.; Hauptman, J.; Pang, M.; Gabriel, T.A.; Hagopian, V.; Womersley, J.; Handler, T.; Hitlin, D.; Mulholland, G.T.; Watanabe, Y.; Weerts, H.

    1990-12-31

    The NA34 (HELIOS) calorimeter has measured e/{pi} {congruent} 1.1 in a uranium/liquid argon calorimeter with a shaping time of 135 nsec. Lead may be a viable alternative, but e/{pi} must first be measured at fast shaping times in lead. We re preparing to measure e/{pi} at momenta ranging from 0.5 to 20 GeV/c and with shaping times of 50, 100 and 150 nsec.

  13. WE-G-17A-06: A Water Calorimeter for Use in MRI Linacs

    SciTech Connect

    De Prez, L; De Pooter, J; Jansen, B

    2014-06-15

    Purpose: At VSL, Dutch Metrology Institute, a new water calorimeter was developed with the purpose to replace the existing primary standard for absorbed dose to water in the Netherlands. The new water calorimeter is designed to be operable in medium- to high energy photon beams, electrons, protons as well as MRI integrated linear accelerators. VSL has operated a water calorimeter since 2001. This calorimeter formed the basis for the NCS-18 dosimetry protocol, which is commonly applied by medical physicists in the Netherlands and Belgium. Methods: The unit Gray is the unit of interest for measurement of the absorbed dose to water. Water calorimetry involves the measurement of a small temperature rise (0.24 mK/Gy) with an uncertainty of less than 1 μK/Gy at a temperature of 4 °C. Using extensive multi-physics simulations the new calorimeter's thermal performance was simulated before it was constructed at the end of 2013. With the advent of radiotherapy treatment units incorporating MR imaging the performance of the thermistor temperature sensors were characterized in a 1.5 T magnetic field. Results: A change of thermistor resistance was observed of less than 0.004% as a Result of the magneto-resistance effect in a 1.5 T magnetic field. Although a magneto-resistance effect was detectable, the effect on the temperature response in the water calorimeter was found to be negligible. Conclusion: With the realization of the new calorimeter operable in MRI linacs and designed for use in a variety of beam modalities, VSL is ready for accurate dosimetry in new advanced radiotherapy modalities. Due to the small form factor the calorimeter can be used on location in the actual therapy beam inside a 68 cm linac bore. This work was supported by EMRP grant HLT06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  14. Hadronic Shower Validation Experience for the ATLAS End-Cap Calorimeter

    SciTech Connect

    Kiryunin, A. E.; Salihagic, D.

    2007-03-19

    Validation of GEANT4 hadronic physics models is carried out by comparing experimental data from beam tests of modules of the ATLAS end-cap calorimeters with GEANT4 based simulations. Two physics lists (LHEP and QGSP) for the simulation of hadronic showers are evaluated. Calorimeter performance parameters like the energy resolution and response for charged pions and shapes of showers are studied. Comparison with GEANT3 predictions is done as well.

  15. Space resolution obtained with a highly segmented SCIFI e.m. calorimeter

    NASA Astrophysics Data System (ADS)

    Bertino, M.; Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1992-05-01

    During the setting up of the LEP-5 experiment, we tested a longitudinal SCIFI e.m. calorimeter, having a module cross area 25 × 25 mm 2 and 12.5 × 12.5 mm 2 for large and small modules respectively. The results were obtained with 10 and 50 GeV electrons, and concern the impact point resolution and the transverse distribution of the e.m. shower energy inside the calorimeter.

  16. A measurement of E/. pi. for a fast lead liquid argon calorimeter

    SciTech Connect

    Makowiecki, D.; Gordon, H.A.; Ma, H.; Murtagh, M.; Radeka, V.; Rahm, D.; Rescia, S. ); Abrams, G.S.; Groom, D.E.; Kirsten, F.; Levi, M.; Siegrist, J. ); Amako, K.; Inaba, O.; Kondo, T. ); Baden, A.R.; Fong, D.; Hadley, N.; Kunori, S.; Skuja, A. (Maryland U

    1990-01-01

    The NA34 (HELIOS) calorimeter has measured e/{pi} {congruent} 1.1 in a uranium/liquid argon calorimeter with a shaping time of 135 nsec. Lead may be a viable alternative, but e/{pi} must first be measured at fast shaping times in lead. We re preparing to measure e/{pi} at momenta ranging from 0.5 to 20 GeV/c and with shaping times of 50, 100 and 150 nsec.

  17. Fire tests and analyses of a rail cask-sized calorimeter.

    SciTech Connect

    Figueroa, Victor G.; Lopez, Carlos; Suo-Anttila, Ahti Jorma; Greiner, Miles

    2010-10-01

    Three large open pool fire experiments involving a calorimeter the size of a spent fuel rail cask were conducted at Sandia National Laboratories Lurance Canyon Burn Site. These experiments were performed to study the heat transfer between a very large fire and a large cask-like object. In all of the tests, the calorimeter was located at the center of a 7.93-meter diameter fuel pan, elevated 1 meter above the fuel pool. The relative pool size and positioning of the calorimeter conformed to the required positioning of a package undergoing certification fire testing. Approximately 2000 gallons of JP-8 aviation fuel were used in each test. The first two tests had relatively light winds and lasted 40 minutes, while the third had stronger winds and consumed the fuel in 25 minutes. Wind speed and direction, calorimeter temperature, fire envelop temperature, vertical gas plume speed, and radiant heat flux near the calorimeter were measured at several locations in all tests. Fuel regression rate data was also acquired. The experimental setup and certain fire characteristics that were observed during the test are described in this paper. Results from three-dimensional fire simulations performed with the Cask Analysis Fire Environment (CAFE) fire code are also presented. Comparisons of the thermal response of the calorimeter as measured in each test to the results obtained from the CAFE simulations are presented and discussed.

  18. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    SciTech Connect

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG&G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report.

  19. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    NASA Astrophysics Data System (ADS)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  20. The NA62 rare Kaon decay experiment Photon Veto System

    NASA Astrophysics Data System (ADS)

    Perfetto, F.

    2009-12-01

    The NA62 experiment at CERN SPS is aimed at measuring the rare decay K→πνν¯. This poses very stringent requirements on the particle identification capabilities of the apparatus in order to reject the overwhelming K→μν and K→ππ background. In particular, a π rejection at level of 10 is needed to complement the kinematical rejection of ππ events. In order to have a full acceptance from 0 to 50 mrad, partly covered by NA48 liquid Kripton calorimeter, a set of veto anti-counters should be placed along the vacuum decay tank, to catch large angle photons with a detection efficiency better than 10 in a wide energy range: from few hundreds MeV to 35 GeV. Intense R&D programs have been carried out in order to study different technological solutions: a lead-scintillating fibers calorimeter, lead-scintillator sandwich calorimeter and finally an original re-use of the existing barrel of the OPAL lead-glass electromagnetic calorimeter. We present the results on detector performances and compare the three solutions.

  1. D-0 South End Cap Calorimeter Cold Test Results

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-11-26

    The South endcap calorimeter vessel was moved into Lab A on Sept. 18, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on Sept. 26 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. The test of the ECS was performed in the same manner using the same equipment as the ECN cold test. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN-I07, and 3740.210-EN-II0 for information about the CC cold test. Reference EN-260 for the results of the ECN cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 40 microns. The pumping continued overnight (another 16 hours). In the morning the pressure was 11.5 microns. A rate of rise test was performed. With the pump valved off, the pressure rose to 14 microns within 5 minutes and then rose to 16 microns in 6 hours (0.33 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. After 18 hours, the pressure vessel was down to 270 microns. An additional day of pumping took the pressure down to only 250 microns. A leak was then found and fixed around the seal of the rupture disc. The pump was put on line again. The pressure vessel with pump on line was 27 microns after 16.5 hours. A rate of rise was then conducted. The pressure was 90 microns after valving out the pump. After 30 minutes the pressure increased to 107 microns. (34 microns/hr).

  2. LLD Determination for PFP Residues Using the ANTECH Calorimeters

    SciTech Connect

    WESTSIK, G.A.

    2003-07-07

    The Plutonium Finishing Plant (PFP) facility performs waste characterization measurements for disposal of transuranic waste (TRU) at the Waste Isolation Pilot Plant (WIPP). The WIPP's performance assessment requires monitoring and tracking of the following ten radionuclides in the waste that is accepted and disposed of at the WIPP facility. Activities and mass values must be reported for: {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 242}Pu, {sup 233}U, {sup 234}U, {sup 238}U, {sup 90}Sr and {sup 137}Cs on a payload container basis. In addition the system must be able to report other nuclides, which contribute to the FGE, decay heat or contribute to more than 95% of the total radiological hazard. PFP reports the activity and mass of these radionuclides when positively identified in any waste container. In situations where one of the 10 WIPP tracked radionuclides is not positively identified on a PFP assay, PFP either reports a ''zero'', indicating the nuclide was not positively identified in the waste assay and is not identified by the acceptable knowledge (AK), or ''Calorimeters''. This revision addresses the LLD for all (AR-1, AR-5, AR-8, P-13, P-14, P-15, and Q-1) of the calorimeters. This revision also makes significant changes in the way in which the LLD is evaluated and reported. The primary change in the evaluation is from using base power measurements to using zero power measurements. This is because over time the base power can fluctuate do to seasonal variations in temperature as well as other effects. Basing the evaluation on the base power causes the LLD to be unacceptably high on some systems. Using the 0 power measurements is more consistent

  3. Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials

    SciTech Connect

    Bracken, D.S.; Biddle, R.; Rudy, C.

    1998-12-31

    The performance characteristics of a commercially available heat-flow calorimeter will be presented. The heat-flow sensors within the calorimeter are based on thermopile technology with a vendor-quoted sensitivity of 150 {micro}V/mW. The calorimeter is a full-twin design to compensate for ambient temperature fluctuations. The efficacy of temperature fluctuation compensations will also be detailed. Finally, an assessment of design applicability to special nuclear materials control and accountability and safeguarding will be presented.

  4. Development of Metallic Magnetic Calorimeters with a Critical Temperature Switch

    NASA Astrophysics Data System (ADS)

    Kim, S. R.; Choi, J.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, H. L.; Kim, I. W.; Lee, H. J.; Lee, J. H.; Lee, M. K.; Oh, S. Y.; Sala, E.; So, J. H.; Yoon, W. S.; Kim, Y. H.

    2016-07-01

    We report on the progress in the development of meander-shaped metallic magnetic calorimeters (MMCs) with a critical temperature switch. A niobium meander-shaped coil in an MMC is arranged to form a superconducting loop. It is to measure the change in magnetization and to apply a persistent current that magnetizes the MMC sensor material. In this work, part of the superconducting loop is fabricated with another superconducting material with its transition temperature (T_C) lower than that of niobium. A persistent current can be injected in the loop while reducing the temperature from above to below the T_C of the switch. Aluminum (Al) wires and an alloy of molybdenum and germanium (MoGe) were tested as critical temperature switch. The test with the Al switch demonstrated the temperature switch concept for meander-shaped MMCs that require a large field current. Microfabricated MoGe switches showed a T_C near 4.3 K, but only 7 mA of persistent current could be charged due to MoGe film discontinuity. This issue requires further improvement in the fabrication procedure.

  5. Heat-exchanger concepts for neutral-beam calorimeters

    NASA Astrophysics Data System (ADS)

    Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.

    1981-10-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.

  6. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  7. Temporal Gain Correction for X-ray Calorimeter Spectrometers

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.; Sawada, M.; Szymkowiak, A. E.; Takei, Y.; Tashiro, M.; Tsujimoto, M.; Watanabe, T.; Yamada, S.

    2016-07-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-H/SXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  8. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  9. Fast Electromagnetic Calorimeters for the New Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Hertzog, David

    2012-10-01

    The Intensity Frontier era brings a host of challenges for detector systems that must both accumulate data at very high rates while also maintaining an unusually high level of performance stability to suppress systematic uncertainties. The new muon g-2 experiment at Fermilab is typical of a group of next-generation measurements that also includes muon-to-electron conversion and rare kaon decay experiments. A common theme is detectors that must endure very high rates embedded in strong magnetic fields. I will focus on our design of the g-2 electromagnetic calorimeters, which must be compact, very fast, and be placed inside the highly uniform muon storage ring magnetic field. No magnetic materials can be used and stringent constraints exist on local current-generating electronics. We examined home-built W/SciFi detectors, PbF2 crystals and a custom undoped PbWO4 crystal using the Fermilab test beam facility. Very fast PMTs and on-board, large-area silicon photomultipliers (SiPMs) were used for readout options. The leading design is based on PbF2, which produces very short pure Cherenkov light pulses that must be optimally coupled to SiPMs directly placed on the downstream surface. Custom electronics for the candidate SiPM arrays has been designed to preserve the intrinsic fast pulse signal. I will report on our test beam and lab results and our iterations with SiPM devices and electronics.

  10. The CMS central hadron calorimeter DAQ system upgrade

    NASA Astrophysics Data System (ADS)

    Whitbeck, A.; Hirschauer, J.

    2015-05-01

    The CMS central hadron calorimeters will undergo a complete replacement of their data acquisition system electronics. The replacement is phased, with portions of the replacement starting in 2014 and continuing through LHC Long Shutdown 2 in 2018. The existing VME electronics will be replaced with a μTCA-based system. New on-detector QIE electronics cards will transmit data at 4.8 GHz to the new μHTR cards residing in μTCA crates in the CMS electronics cavern. The μTCA crates are controlled by the AMC13, which accepts system clock and trigger throttling control from the CMS global DAQ system. The AMC13 distributes the clock to the μHTR and reads out data buffers from the μHTR into the CMS data acquisition system. The AMC 13 also provides the clock for in-crate GLIBs which in turn distribute the clock to the on-detector front end electronics. We report on the design, development status, and schedule of the DAQ system upgrades.

  11. The Electromagnetic Calorimeter of the GLUEX Particle Detector

    NASA Astrophysics Data System (ADS)

    Katsaganis, Stamatios

    This thesis focuses on the GLUEX Barrel Calorimeter (BCAL), a key subsystem of the GLUE experiment, which is currently under construction. GLUE will shed light on an as yet unexplored area of the interaction between the fundamental constituents of matter, that of confinement. To achieve its goals, GLUE requires a hermetic detector with good acceptance and good energy and position resolution. To that end, a lot of effort has been spent on R&D in order to optimize the performance of the BCAL. Specifically, the effect of the thickness of the lead sheets, used to build the BCAL, on the performance of the BCAL was simulated using Monte Carlo techniques. Using the GEANT simulation package, three different geometry configurations were simulated and the shape of the longitudinal shower profile, energy resolution and the fractional energy deposition and energy leakage were extracted and the results comprise the first half of this thesis. The second half of the thesis consists of an analysis of data collected in 2006 from a beam test performed at Jefferson Lab on a BCAL prototype module. The analysis was done in order to extract the energy resolution for several different angles of incidence, including the 90° which was used as reference.

  12. The New APD Based Readout for the Crystal Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Urban, M.; Honisch, Ch; Steinacher, M.; CBELSA/TAPS Collaboration

    2015-02-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds.

  13. Potentials and limitations of miniaturized calorimeters for bioprocess monitoring.

    PubMed

    Maskow, Thomas; Schubert, Torsten; Wolf, Antje; Buchholz, Friederike; Regestein, Lars; Buechs, Jochen; Mertens, Florian; Harms, Hauke; Lerchner, Johannes

    2011-10-01

    In theory, heat production rates are very well suited for analysing and controlling bioprocesses on different scales from a few nanolitres up to many cubic metres. Any bioconversion is accompanied by a production (exothermic) or consumption (endothermic) of heat. The heat is tightly connected with the stoichiometry of the bioprocess via the law of Hess, and its rate is connected to the kinetics of the process. Heat signals provide real-time information of bioprocesses. The combination of heat measurements with respirometry is theoretically suited for the quantification of the coupling between catabolic and anabolic reactions. Heat measurements have also practical advantages. Unlike most other biochemical sensors, thermal transducers can be mounted in a protected way that prevents fouling, thereby minimizing response drifts. Finally, calorimetry works in optically opaque solutions and does not require labelling or reactants. It is surprising to see that despite all these advantages, calorimetry has rarely been applied to monitor and control bioprocesses with intact cells in the laboratory, industrial bioreactors or ecosystems. This review article analyses the reasons for this omission, discusses the additional information calorimetry can provide in comparison with respirometry and presents miniaturization as a potential way to overcome some inherent weaknesses of conventional calorimetry. It will be discussed for which sample types and scientific question miniaturized calorimeter can be advantageously applied. A few examples from different fields of microbiological and biotechnological research will illustrate the potentials and limitations of chip calorimetry. Finally, the future of chip calorimetry is addressed in an outlook. PMID:21808971

  14. Temporal Gain Correction for X-ray Calorimeter Spectrometers

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.; Sawada, M.; Szymkowiak, A. E.; Takei, Y.; Tashiro, M.; Tsujimoto, M.; Watanabe, T.; Yamada, S.

    2016-01-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-H/SXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  15. Cylindrical boiloff calorimeters for testing of thermal insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.; Meneghelli, B. J.; Coffman, B. E.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a cylindrical configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of a test specimen at a fixed environmental condition (boundary temperatures, cold vacuum pressure, and residual gas composition). Through its heat of vaporization, liquid nitrogen serves as the energy meter, but the design is adaptable for various cryogens. The main instrument, Cryostat-100, is thermally guarded and directly measures absolute thermal performance. A cold mass assembly and all fluid and instrumentation feedthroughs are suspended from a lid of the vacuum canister; and a custom lifting mechanism allows the assembly and specimen to be manipulated easily. Each of three chambers is filled and vented through a single feedthrough for minimum overall heat leakage. The cold mass design precludes direct, solid-conduction heat transfer (other than through the vessel's outer wall itself) from one liquid volume to another, which is critical for achieving very low heat measurements. The cryostat system design details and test methods are discussed, as well as results for select thermal insulation materials. Additional cylindrical boiloff calorimeters and progress toward a liquid hydrogen apparatus are also discussed.

  16. The BGO Calorimeter of BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2015-02-01

    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.

  17. Evaluating vacuum phototriodes designed for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Makónyi, K.; Marcks von Würtemberg, K.; Tegnér, P.-E.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Balkeståhl, L.; Fransson, K.; Johansson, T.; Rosenbaum, C.; Wolke, M.; Erni, W.; Keshelashvili, I.; Krushe, B.

    2014-11-01

    In this work properties of a vacuum phototriode (VPT) and preamplifier unit designed for the electromagnetic calorimeter of the PANDA experiment being built at FAIR are investigated. With the use of lead tungstate and lanthanium bromide scintillators the VPT properties are studied at low photon energies, from tens of keV in the lanthanium bromide measurements and between 10 MeV and 60 MeV in the lead tungstate measurements. At these energies the noise of the VPT unit can be expected to influence its performance significantly. It is shown that the noise contribution to the measured energy resolution, under optimal conditions, is consistent with a fluctuation of (one standard deviation) approximately 200 electrons at the VPT anode. For a lead tungstate crystal this is equivalent to a noise of 1.2 MeV. For lanthanium bromide this makes it possible to use VPTs for gamma ray spectroscopy above a few hundreds of keV without noticeable effects on the energy resolution compared to measurements with a standard photomultiplier.

  18. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    SciTech Connect

    Hsieh, W.-T.; Stevenson, Thomas R.; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.

    2009-12-16

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5x5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  19. Development of cryogenic alpha spectrometers using metallic magnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Ranitzsch, P. C.; Kempf, S.; Pabinger, A.; Pies, C.; Porst, J.-P.; Schäfer, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Jang, Y. S.; Kim, I. H.; Kim, M. S.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Lee, S. J.; Yoon, W. S.; Yuryev, Y. N.

    2011-10-01

    Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. It is based on a planar, 1 mm 2 large paramagnetic temperature sensor made of sputtered Au:Er, which covers a superconducting meander-shaped pickup coil coupled to a low-noise dc-SQUID to monitor the magnetization of the sensor. A piece of gold foil of 2.5×2.5×0.07 mm 3 was glued to the Au:Er film to serve as an absorber for incident alpha particles. The detector performance was investigated with an 241Am source. The signal size comparison for alpha and gamma peaks with a large difference in energy demonstrated that the detector had good linear behavior. An energy resolution of 2.83±0.05 keV in FWHM was obtained for 5.5 MeV alpha particles.

  20. Beam Test Results of the GlueX Forward Calorimeter

    NASA Astrophysics Data System (ADS)

    Bauer, Kevin; Moriya, Kei; Shepherd, Matthew

    2013-04-01

    GlueX is an experiment to begin running in the near future at Jefferson Lab. Our research group is responsible for the forward calorimeter (FCAL) that is designed to measure the energy of photons produced from the decays of mesons. Recently, we conducted a beam test at Jefferson Lab using a prototype of the FCAL. Its goal was to experimentally verify the energy resolution of the FCAL as a function of beam energy. The prototype was tested with recoil electrons ranging in energy from 113MeV to 277MeV. We obtained the resolution by comparing the reconstructed energy to the known energy. In addition, we corrected our measured resolution for multiple scattering and energy loss based on a GEANT4 simulation of the prototype. Another important goal of the beam test was to measure the timing resolution of the channels on our flash analog to digital converters (fADCs). For GlueX, we need to require the timing resolution to be much less than the bunch spacing (2ns). The results of our studies indicate that the energy resolution of the FCAL is consistent with our predictions. We also found the timing resolution as a function of signal size and the results agreed with a similar study. For signals of about at least 75mV, the timing resolution achieved was significantly lower than 2ns.

  1. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.

    2009-12-01

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  2. D0-EC RTD Wiring Layout (North Calorimeter)

    SciTech Connect

    Primdahl, K.; /Fermilab

    1991-06-04

    The temperature of the North End-Calorimeter of the D-Zero detector is to be monitored by several RTD temperature sensors. The location and other important information pertaining to each individual RTD is included in the following tables, which are grouped by bundle number. There are mne 60 pIll port connectors. Each connector corresponds to a bundle of twisted pairs. Twisted pairs, of one of eight colors along with either a black or white wire, run to 10-pin connectors which have a mate on the module or cryostat wall. In general, all 60 pins, or all 10 pins are not used. The color scheme of the wires was designed so that all the twisted pairs with white run West from the instrumentation port, and twisted pairs with black run East. This scheme proved to be very successful and efficient during the installation process. After being installed, every RTD connection was checked and their corresponding resistances were recorded by Jerry Blazey. All the RTD's tested successfully, except for 2. The 2 dead RTD's were: Channel 17 on bundle 4, which is located on the front of MH module 8L; and Channel 13 on bundle 5, which is located on the Bottom of the Middle Coarse Plate of the IH.

  3. Structure design and enviromental test of BGO calorimeter for satellite DAMPE

    NASA Astrophysics Data System (ADS)

    Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    2016-07-01

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.

  4. Pressurized drift tubes scintillating fiber hadron calorimetry. Final report

    SciTech Connect

    Bromberg, C.; Huston, J.; Miller, R.

    1995-03-22

    Under this contract members of the MSU high energy physics group constructed a full-scale Pressurized Drift Tube Chamber intended for the GEM muon system at the SSC. They achieved a position resolution of <90 {mu} over the full 5 m{sup 2} area of the detector. This resolution satisfied the GEM resolution requirements of <100 {mu} by a comfortable margin. Based on their SSC work they developed a new technique for creating wire supports in drift tubes with an overall placement accuracy of <20 {mu}. This technique requires only simple jigging and can be duplicated and operated at low cost. Also, they participated in the design and testing of a hadron calorimeter prototype for GEM. This work lead the authors to develop a semi-automatic welding machine to fuse together two plastic optical fibers. Copies of this machine are currently in use in the CDF endplug upgrade at Fermilab and additional copies are used widely in calorimeter and fiber-tracker construction.

  5. Development of Readout System for the CALET Scintillating Fiber Detector

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Torii, S.; Yoshida, K.; Hibino, K.; Yamagami, T.; Murakami, H.; Kasahara, K.

    2001-08-01

    We have a plan to make observations of high energy electrons and gamma rays with the Japanese Experiment Module (JEM) on the International Space Station (ISS). We are carrying out a R&D for the detector, CALET (CALorimetric Electron Telescope). It consists of an imaging calorimeter (IC) and a total absorption calorimeter (TASC). We will utilize a few hundred-thousands scintillating fibers (SCIFI) for the IC part to visualize cascade showers. We have two options for readout of such amount of SCIFI. First, we have developed a new image intensifier coupled to CCD camera (II-CCD), which is based on the technology utilized and established in the balloon observations with BETS (Balloonborne Electron Telescope with Scintillating fibers). Although the data acquisition rate will be limited to a few 10 Hz, a lot of SCIFI can be read relatively easily with the readout system of the II-CCD. Second, we are developing a readout system with multi-anode photo multipliers (MA-PMT) and front-end chips (VA32 hdr32; one of the Viking family). The readout system with the MA-PMT will enable us to make data acquisition at high frequency of over one thousand Hz.

  6. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). PMID:26348148

  7. Nuclear waste calorimeter for very large drums with 385 litres sample volume

    SciTech Connect

    Jossens, G.; Mathonat, C.; Bachelet, F.

    2015-03-15

    Calorimetry is a very precise and well adapted tool for the classification of drums containing nuclear waste material depending on their level of activities (low, medium, high). A new calorimeter has been developed by SETARAM Instrumentation and the CEA Valduc in France. This new calorimeter is designed for drums having a volume bigger than 100 liters. It guarantees high operator safety by optimizing drum handling and air circulation for cooling, and optimized software for direct measurement of the quantity of nuclear material. The LVC1380 calorimeter makes it possible to work over the range 10 to 3000 mW, which corresponds to approximately 0.03 to 10 g of tritium or 3 to 955 g of {sup 241}Pu in a volume up to 385 liters. This calorimeter is based on the heat flow measurement using Peltier elements which surround the drum in the 3 dimensions and therefore measure all the heat coming from the radioactive stuff whatever its position inside the drum. Calorimeter's insulating layers constitute a thermal barrier designed to filter disturbances until they represent less than 0.001 Celsius degrees and to eliminate long term disturbances associated, for example, with laboratory temperature variations between day and night. A calibration device based on Joule effect has also been designed. Measurement time has been optimized but remains long compared with other methods of measurement such as gamma spectrometry but its main asset is to have a good accuracy for low level activities.

  8. Characterization of an Electromagnetic Calorimeter for the Proposed International Linear Collider

    SciTech Connect

    Frey, Merideth; /Wellesley Coll. /SLAC

    2006-09-11

    The International Linear Collider (ILC) is part of a new generation of accelerators enabling physicists to gain a deeper understanding of the fundamental components of the universe. The proposed ILC will accelerate positrons and electrons towards each other with two facing linear colliders, each twenty kilometers long. Designing and planning for the future accelerator has been undertaken as a global collaboration, with groups working on several possible detectors to be used at the ILC. The following research at the Stanford Linear Accelerator Center (SLAC) pertained to the design of an electromagnetic calorimeter. The energy and spatial resolution of the calorimeter was tested by using computer simulations for proposed detectors. In order to optimize this accuracy, different designs of the electromagnetic calorimeter were investigated along with various methods to analyze the data from the simulated detector. A low-cost calorimeter design was found to provide energy resolution comparable to more expensive designs, and new clustering algorithms offered better spatial resolution. Energy distribution and shape characteristics of electromagnetic showers were also identified to differentiate various showers in the calorimeter. With further research, a well-designed detector will enable the ILC to observe new realms of physics.

  9. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  10. Design and performance of a vacuum-bottle solid-state calorimeter

    SciTech Connect

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-11-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimeter easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented.

  11. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    SciTech Connect

    Mkrtchyan, Hamlet; Carlini, Roger D.; Tadevosyan, Vardan H.; Arrington, John Robert; Asaturyan, Arshak Razmik; Christy, Michael Eric; Dutta, Dipangkar; Ent, Rolf; Fenker, Howard C.; Gaskell, David J.; Horn, Tanja; Jones, Mark K.; Keppel, Cynthia; Mack, David J.; Malace, Simona P.; Mkrtchyan, Arthur; Niculescu, Maria-Ioana; Seely, Charles Jason; Tvaskis, Vladas; Wood, Stephen A.; Zhamkochyan, Simon

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  12. D-0 North End Cap Calorimeter Cold Test Results

    SciTech Connect

    Michael, J.; /Fermilab

    1990-08-02

    The North endcap calorimeter vessel was recieved on July 1, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on July 10-11 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN107, and 3740.210-EN-110 for information about the CC cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 210 microns. Pumping on the vacuum space for the next 15 hours showed no progress and a leak detector was connected to the pumping line. A leak check showed a leak in a thermocouple feedthru on the vacuum space relief plate. After fixing the leak, the pressure dropped to 16 microns in less than one hour. A rate of rise test was performed starting at a pressure of 13 microns. The pressure rose to 39 microns within 8 minutes and then only rose to 43 microns in 2.5 hours (1.6 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. The lowest pressure achieved after 2 days of pumping was 80 microns. Valving out the pump for 30 minutes resulted in a 5 micron per minute rate of rise. The rate of rise was considered acceptable since there were known leak paths through the bolts of the signal ports. The EC North vessel was rolled outside of Lab A in preparation for a 5000 gallon liquid nitrogen trailer which arrived July, 10 at 8:00am. Before filling the vessel, the vacuum space pump was valved off. The pressure in the

  13. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  14. Development of a graphite probe calorimeter for absolute clinical dosimetry

    SciTech Connect

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-02-15

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  15. Strong fibers

    SciTech Connect

    Li, Che-Yu.

    1991-03-01

    This program was directed to a new and generic approach to the development of new materials with novel and interesting properties, and to the precision fabrication of these materials in one and two-dimensional forms. Advanced deposition processes and microfabrication technology were used to produce fibers and grids of metals, semiconductors, ceramics, and mixtures of controlled composition and structure, and with new and interesting mechanical and physical properties. Deposition processes included electron beam evaporation, co-deposition of mixtures by dual electron beam evaporation, thermal evaporation, sputtering of a single element or compound, sputtering of a single element in a gaseous atmosphere to produce compounds, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), and selective tungsten chemical vapor deposition (W-CVD). The approach was to use the deposition processes in coordination with patterns generated by optical lithography to produce fibers with transverse dimensions in the micron range, and lengths from less than a millimeter to several centimeters. The approach is also applicable to the production of two-dimensional grids and particulates of controlled sizes and geometries.

  16. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  17. The limited streamer tubes system for the SLD warm iron calorimeter

    SciTech Connect

    Benvenuti, A.C.; Camanzi, B.; Piemontese, L.; Zucchelli, P. |; Calcaterra, A.; De Sangro, R.; De Simone, P.; De Simone, S.; Gallinaro, M.; Peruzzi, I.; Piccolo, M.; Burrows, P.N.; Busza, W.; Cartwright, S.L.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Williams, D.C.; Yamartino, J.M.; Bacchetta, N.; Bisello, D.; Castro, A.; Galvagni, S.; Loreti, M.; Pescara, L.; Wyss, J. |; Battiston, R.; Biasini, M.; Bilei, G.M.; Checcucci, B; Mancinelli, G.; Mantovani, G.; Pauluzzi, M.; Santocchia, A.; Servoli, L. |; Carpinelli, M.; Castaldi, R.; Cazzola, U.; Dell`Orso, R.; Pieroni, E.; Vannini, C.; Verdini, P.G. |; Byers, B.L.; Escalera, J.; Kharakh, D.; Messner, R.L.; Zdarko, R.W.; Johnson, J.R.

    1992-01-01

    The SLD detector at the Stanford Linear Accelerator Center is a general purpose device for studying e{sup +}{epsilon}{sup {minus}} interaction at the Z{sup 0}. The SLD calorimeter system consists of two parts: a lead Liquid Argon Calorimeter (LAC) with both electromagnetic (22 radiation lengths) and hadronic sections (2.8 absorption lengths) housed inside the coil, and the Warm Ion limited streamer tubes Calorimeter (WIC) outside the coil which uses as radiator the iron of the flux return for the magnetic field. The WIC completes the measurement of the hadronic shower energy ({approximately}85% on average is contained in the LAC) and it provides identification and tracking for muons over 99% of the solid angle. In this note we report on the construction, test and commissioning of such a large system.

  18. New electronics of the spectrometric channel for the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Bogdanchikov, A. G.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Koshuba, S. V.; Kovrizhin, D. P.; Serednyakov, S. I.; Surin, I. K.; Tekut`ev, A. I.; Usov, Yu. V.

    2016-07-01

    The Spherical Neutral Detector (SND) is intended for study of electron-positron annihilation at the VEPP-2000 e+e- collider (BINP, Novosibirsk) in the center-of-mass energy region below 2 GeV. The main part of the detector is a three-layer electromagnetic calorimeter based on NaI(Tl) crystals. The physics program of the SND experiment includes a high statistics study of neutron-antineutron production near threshold, for which time measurements in the calorimeter are required. In this paper we describe new shaping and digitizing calorimeter electronics, which allow to reach a time resolution of about 1 ns for 100 MeV signal and an amplitude resolution of about 250 keV.

  19. The large volume radiometric calorimeter system: A transportable device to measure scrap category plutonium

    SciTech Connect

    Duff, M.F.; Wetzel, J.R.; Breakall, K.L.; Lemming, J.F.

    1987-01-01

    An innovative design concept has been used to design a large volume calorimeter system. The new design permits two measuring cells to fit in a compact, nonevaporative environmental bath. The system is mounted on a cart for transportability. Samples in the power range of 0.50 to 12.0 W can be measured. The calorimeters will receive samples as large as 22.0 cm in diameter by 43.2 cm high, and smaller samples can be measured without lengthening measurement time or increasing measurement error by using specially designed sleeve adapters. This paper describes the design considerations, construction, theory, applications, and performance of the large volume calorimeter system. 2 refs., 5 figs., 1 tab.

  20. The Development of a 3D Imaging Calorimeter of DAMPE for Cosmic Ray Physics

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlong; Hu, Yiming; Feng, Changqing; Liu, Shubin; Wang, Chi; Zhang, Zhiyong; Wei, Yifeng; Huang, Guangshun

    2016-07-01

    The DArk Matter Particle Explorer (DAMPE) experiment began its on-orbit operations on December 17, 2015. The BGO Electromagnetic Calorimeter (BGO ECAL) of the DAMPE is a total absorption calorimeter that allows for a precise three-dimensional imaging of the shower shape. It provides a good energy resolution (<1%@200GeV) and high electron/hadron discrimination (>10^5). The calorimeter also provides a trigger capability to DAMPE. The BGO ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from 5 GeV to 10 TeV. An Engineering qualified model was built and tested using high energy electron and proton beams with energy ranging from 1 GeV to 250GeV. Some pre results will be introduced in this talk.

  1. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  2. The large volume calorimeter for measuring the pressure cooker'' shipping container

    SciTech Connect

    Kasperski, P.W.; Duff, M.F.; Wetzel, J.R. ); Baker, L.B.; MacMurdo, K.W. )

    1991-01-01

    A precise, low wattage, large volume calorimeter system has been developed at Mound to measure two configurations of the 12081 containment vessel. This system was developed and constructed to perform verification measurements at the Savannah River Site. The calorimeter system has performance design specifications of {plus minus}0.3% error above the 2-watt level, and {plus minus}(0.03% plus 0.006 watts) at power levels below 2 watts (one sigma). Data collected during performance testing shows measurement errors well within this range, even down to 0.1-watt power levels. The development of this calorimeter shows that ultra-precise measurements can be achieved on extremely large volume sample configurations. 1 ref., 5 figs.

  3. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  4. Development of 4π Electro-Magnetic Calorimeter Complex Forest for Neutral Meson Photo-Production Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Fujimura, H.; Fukasawa, H.; Hashimoto, R.; Ishikawa, T.; Kasagi, J.; Kuwasaki, S.; Mochizuki, K.; Nawa, K.; Okada, Y.; Onodera, Y.; Sato, M.; Shimizu, H.; Yamazaki, H.; Kawano, A.; Sakamoto, Y.; Maeda, K.

    2010-10-01

    A large solid angle electro-magnetic calorimeter system, FOREST, has been constructed at LNB-Sendai to study the π0 and η photo-production reactions. FOREST consists of three electro-magnetic calorimeters: pure CsI crystals, Lead/SciFi blocks and Lead Glass Cherenkov counters. It covers about 90% of the total solid angle.

  5. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  6. D0 Silicon Upgrade: Summary of Warm-Up After Draining for the D-Zero LAr Calorimeters

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1996-03-14

    After a very successful physics run, the D-Zero detector Liquid Argon Calorimeters were drained in preparation of the detector rollout. During the roll out process, the calorimeters were without cooling. Information regarding the temperatures, estimated heat transfer, and pressure maintenance are documented in this engineering note.

  7. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Kocak, F.

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal-photodiode assemblies.

  8. The Calorimeter Trigger Processor Card: the next generation of high speed algorithmic data processing at CMS

    NASA Astrophysics Data System (ADS)

    Svetek, A.; Blake, M.; Cepeda Hermida, M.; Dasu, S.; Dodd, L.; Fobes, R.; Gomber, B.; Gorski, T.; Guo, Z.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W. H.; Tikalsky, J.; Vicente, M.; Woods, N.

    2016-02-01

    The CMS Level-1 upgraded calorimeter trigger requires a powerful, flexible and compact processing card. The Calorimeter Trigger Processor Card (CTP7) uses the Virtex-7 FPGA as its primary data processor and is the first FPGA based processing card in CMS to employ the ZYNQ System-on-Chip (SoC) running embedded Linux to provide TCP/IP communication and board support functions. The CTP7 was built from the ground up to support AXI infrastructure to provide flexible and modular designs with minimal time from project conception to final implementation.

  9. Measurement of liquid water content in a melting snowpack using cold calorimeter techniques

    NASA Technical Reports Server (NTRS)

    Rango, A.; Jones, E. B.; Howell, S.

    1980-01-01

    Liquid water in a snowpack is a quantifiable parameter of hydrological significance. It is also important in the interpretation of snowpack remote sensing data using microwave techniques. One acceptable approach to measuring liquid water content of a snowpack (by weight) is the cold calorimeter. This technique is presented from theory through application. Silicon oil was used successfully as the freezing agent. Consistent results can be obtained even when using operators with a minimum of training. Data can be obtained approximately every 15 minutes by using two calorimeters and three operators. Accuracy within one to two percent can be achieved under reasonable field conditions.

  10. CALORIC: A readout chip for high granularity calorimeter

    SciTech Connect

    Royer, L.; Bonnard, J.; Manen, S.; Gay, P.; Soumpholphakdy, X.

    2011-07-01

    A very-front-end electronics has been developed to fulfil requirements for the next generation of electromagnetic calorimeters. The compactness of this kind of detector and its large number of channels (up to several millions) impose a drastic limitation of the power consumption and a high level of integration. The electronic channel proposed is first of all composed of a low-noise Charge Sensitive Amplifier (CSA) able to amplify the charge delivered by a silicon diode up to 10 pC. Next, a two-gain shaping, based on a Gated Integration (G.I.), is implemented to cover the 15 bits dynamic range required: a high gain shaper processes signals from 4 fC (charge corresponding to the MIP) up to 1 pC, and a low gain filter handles charges up to 10 pC. The G.I. performs also the analog memorization of the signal until it is digitalized. Hence, the analog-to-digital conversion is carried out through a low-power 12-bit cyclic ADC. If the signal overloads the high-gain channel dynamic range, a comparator selects the low-gain channel instead. Moreover, an auto-trigger channel has been implemented in order to select and store a valid event over the noise. The timing sequence of the channel is managed by a digital IP. It controls the G.I. switches, generates all needed clocks, drives the ADC and delivers the final result over 12 bits. The whole readout channel is power controlled, which permits to reduce the consumption according to the duty cycle of the beam collider. Simulations have been performed with Spectre simulator on the prototype chip designed with the 0.35 {mu}m CMOS technology from Austriamicrosystems. Results show a non-linearity better than 0.1% for the high-gain channel, and a non-linearity limited to 1% for the low-gain channel. The Equivalent Noise Charge referred to the input of the channel is evaluated to 0.4 fC complying with the MIP/10 limit. With the timing sequence of the International Linear Collider, which presents a duty cycle of 1%, the power

  11. Studies of Excess Heat and Convection in a Water Calorimeter

    PubMed Central

    Domen, John K.; Domen, Steve R.

    2001-01-01

    To explain a difference of 0.5 % between the absorbed-dose standards of the National Institute of Standards and Technology (NIST) and the National Research Council of Canada (NRCC), Seuntjens et al. suggest the fault lies with the NIST water calorimeter being operated at 22 °C and the method with which the measurements were made. Their calculations show that this difference is due to overprediction of temperature rises of six consecutive 60Co radiation runs at NIST. However, the consecutive runs they refer to were merely preliminary measurements to determine the procedure for the NIST beam calibration. The beam calibration was determined from only two consecutive runs followed by water circulation to re-establish temperature equilibrium. This procedure was used for measurements on 77 days, with 32 runs per day. Convection external to the glass cylindrical detector assembly performed a beneficial role. It aided (along with conduction) in increasing the rate of excess heat transported away from the thin cylindrical wall. This decreased the rate of heat conducted toward the axially located thermistors. The other sources of excess heat are the: (1) non-water materials in the temperature probe, and (2) exothermic effect of the once-distilled water external to the cylinder. Finite-element calculations were made to determine the separate and combined effects of the excess heat sources for the afterdrift. From this analysis, extrapolation of the measured afterdrifts of two consecutive runs to mid radiation leads to an estimated over-prediction of no more than about 0.1 %. Experimental measurements contradict the calculated results of Seuntjens et al. that convective motion (a plume) originates from the thermistors operated with an electrical power dissipation as low as 0.6 μW, well below the measured threshold of 50 μW. The method used for detecting a plume was sensitive enough to measure a convective plume (if it had started) down to about the 10 μW power level

  12. Flax Fiber - Interfacial Bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measured flax fiber physical and chemical properties potentially impact bonding and thus stress transfer between the matrix and fiber within composites. These first attempts at correlating flax fiber quality and biofiber composites contain the initial steps towards identifying key flax fiber charac...

  13. High-fiber foods

    MedlinePlus

    Dietary fiber - self-care ... Dietary fiber adds bulk to your diet. Because it makes you feel full faster, it can help you ... Grains are another important source of dietary fiber. Eat more: ... Whole-grain breads Brown rice Popcorn High-fiber cereals, such ...

  14. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  15. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  16. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  17. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  18. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  19. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  20. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  1. A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases

    NASA Technical Reports Server (NTRS)

    Evans, Albert; Hibbard, Robert R

    1954-01-01

    A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.

  2. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633,...

  3. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633,...

  4. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633,...

  5. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633,...

  6. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633,...

  7. In-situ probe of the response of the Tile Calorimeter to isolated hadrons

    NASA Astrophysics Data System (ADS)

    Jennens, D.

    2014-06-01

    The Tile calorimeter is the hadronic central barrel of the calorimeter system of the ATLAS experiment for the LHC at CERN. It is based on a sampling technique where scintillating tiles are embedded in iron absorber plates. The tiles are grouped together in cells which are disposed in three different layers. The cells from the two innermost layers cover a Δη × Δϕ range of 0.1 × 0.1, while the outermost layer covers 0.2 × 0.1. An in-situ method to probe the calorimeter response to single charged hadrons can be established by using the ratio of energy measured in the calorimeter cells over the momentum measured by the inner tracking system. This measurement can be used to place constraints on the systematic uncertainty for the jet and tau energy scales. Results from pp collision data from 2010 and 2011 will be shown and discussed as a function of different layer and barrel section. Finally, comparison to MC simulation will prove the good performance of the detector.

  8. A reduced scale e.m. calorimeter prototype for the AMS-02 experiment

    NASA Astrophysics Data System (ADS)

    Cervelli, F.; Chen, G.; Coignet, G.; Di Falco, S.; Falchini, E.; Lomtadze, T.; Liu, Z.; Maestro, P.; Marrocchesi, P. S.; Paoletti, R.; Pilo, F.; Turini, N.; Valle, G.; Vannini, C.; Venanzoni, G.; Yu, Z.

    2002-09-01

    A reduced scale prototype of the Pb-SciFi sampling e.m. calorimeter for the AMS-02 experiment was tested at CERN SPS beam line X5 at energies from 5 to 250 GeV. The detector was equalized with minimum ionizing particles and calibrated with electron beams. Effective sampling thickness, linearity and energy resolution were measured.

  9. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  10. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    ERIC Educational Resources Information Center

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  11. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; Baldini, A. M.; Bemporad, C.; Cei, F.; Nicolò, D.; Galli, L.; Gallucci, G.; Grassi, M.; Papa, A.; Sergiampietri, F.; Venturini, M.

    2016-07-01

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  12. Hadronic models validation in GEANT4 with CALICE highly granular calorimeters

    NASA Astrophysics Data System (ADS)

    Ramilli, Marco; CALICE Collaboration

    2012-12-01

    The CALICE collaboration has constructed highly granular hadronic and electromagnetic calorimeter prototypes to evaluate technologies for the use in detector systems at a future Linear Collider, and to validate hadronic shower models with unprecedented spatial segmentation. The electromagnetic calorimeter is a sampling structure of tungsten and silicon with 9720 readout channels. The hadron calorimeter uses 7608 small plastic scintillator cells individually read out with silicon photomultipliers. This high granularity opens up the possibility for precise three-dimensional shower reconstructions and for software compensation techniques to improve the energy resolution of the detector. We discuss the latest results on the studies of shower shapes and shower properties and the comparison to the latest developed GEANT4 models for hadronic showers. A satisfactory agreement at better than 5% is found between data and simulations for most of the investigated variables. We show that applying software compensation methods based on reconstructed clusters the energy resolution for hadrons improves by a factor of 15%. The next challenge for CALICE calorimeters will be to validate the 4th dimension of hadronic showers, namely their time evolution.

  13. Power loss measurement of implantable wireless power transfer components using a Peltier device balance calorimeter

    NASA Astrophysics Data System (ADS)

    Leung, Ho Yan; Budgett, David M.; Taberner, Andrew; Hu, Patrick

    2014-09-01

    Determining heat losses in power transfer components operating at high frequencies for implantable inductive power transfer systems is important for assessing whether the heat dissipated by the component is acceptable for implantation and medical use. However, this is a challenge at high frequencies and voltages due to limitations in electronic instrumentation. Calorimetric methods of power measurement are immune to the effects of high frequencies and voltages; hence, the measurement is independent of the electrical characteristics of the system. Calorimeters have been widely used to measure the losses of high power electrical components (>50 W), however it is more difficult to perform on low power components. This paper presents a novel power measurement method for components dissipating anywhere between 0.2 W and 1 W of power based on a heat balance calorimeter that uses a Peltier device as a balance sensor. The proposed balance calorimeter has a single test accuracy of ±0.042 W. The experimental results revealed that there was up to 35% difference between the power measurements obtained with electrical methods and the proposed calorimeter.

  14. Simulation of the Hermes Lead Glass Calorimeter using a Look-Up Table

    SciTech Connect

    Vandenbroucke, A.; Miller, C. A.

    2006-10-27

    This contribution describes the Monte Carlo simulation of the Hermes Electromagnetic Lead-Glass Calorimeter. The simulation is based on the GEANT3 simulation package in combination with a Look-Up Table. Details of the simulation as well as a comparison with experimental data are reported.

  15. Status of the ATLAS Liquid Argon Calorimeter; Performance after 2 years of LHC operation

    NASA Astrophysics Data System (ADS)

    AbouZeid, Hass; ATLAS Collaboration

    2012-12-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particle flow is higher. All detectors are housed in three cryostats kept at about 88 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 9 fb-1 (as of June, 2012) of data have been collected at a center of mass energy of 7 and 8 TeV. During all these stages, the calorimeter and its electronics have been operating almost optimally, with performances very close to the specifications.

  16. Study on the compensated lead hadron calorimeter characteristics by means of hadron and electron beams

    NASA Astrophysics Data System (ADS)

    Alekseev, G. A.; Apokin, V. D.; Buyanov, O. V.

    The results on measuring the basic characteristics of a compensated lead calorimeter (NEPTUN experiment) in a hadron and electron beam are presented. A prototype consisting of 30 modulus was used in the measurements. The energy resolution follows the dependence approximately = 57%/sq. root of E, the detector uniformity is (+-)5%, the measured e/h ratio is close to unity.

  17. Initial measurements with an actively cooled calorimeter in a large pool fire

    SciTech Connect

    Koski, J.A.; Kent, L.A.; Wix, S.D.

    1993-11-01

    The initial measurements with a 1 m {times} 1 m water cooled vertical flat plate calorimeter located 0.8 m above and inside a 6 m {times} 6 m JP-4 pool fire are described. Heat fluxes in ten vertical 0. 1 m high {times} 1 m wide zones were measured by means of water calorimetry in quasi-steady-state. The calorimeter face also included an array of intrinsic thermocouples to measure surface temperatures, and an array of Schmidt-Boelter radiometers for a second, more responsive, method of heat flux measurement. Other experimental measurement devices within the pool fire included velocity probes, directional flame thermometers (DFTs), and thermocouples. Water calorimetry indicated heat fluxes of about 65 to 70 kW/m{sup 2} with a gradual decrease with increasing height above the pool. Intrinsic thermocouple measurements recorded typical calorimeter surface temperatures of about 500{degrees}C, with spatial variations of {plus_minus}150{degrees}C. Gas velocities across the calorimeter face averaged 3.4 m/s with a predominant upward component, but with an off-vertical skew. Temperatures of 800 to 1100{degrees}C were measured with the DFTS. The observed decrease in heat flux with increasing vertical height is consistent with analytical fire models derived for constant temperature surfaces. Results from several diagnostics also indicated trends and provided additional insight into events that occurred during the fire. Some events are correlated, and possible explanations are discussed.

  18. An electromagnetic calorimeter for the solenoidal tracker at the Relativistic Heavy Ion Collider

    SciTech Connect

    Westfall, G.D.; Llope, W.J.; Underwood, D.G.

    1993-10-01

    In this document, we outline a proposal to the National Science Foundation (NSF) for the construction of an electromagnetic calorimeter for STAR that fulfills these requirements. This proposal creates the opportunity for the NSF to make a major impact on the experimental program at RHIC by providing a crucial, but defensibly omitted, component of the STAR experiment as approved.

  19. PROGRAM TO DETERMINE PERFORMANCE OF FLUORINATED ETHERS AND FLUORINATED PROPANES IN A COMPRESSOR CALORIMETER

    EPA Science Inventory

    The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...

  20. Sensing disks for slug-type calorimeters have higher temperature stability

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  1. The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/ c

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Adzic, P.; Akchurin, N.; Akgun, U.; Albayrak, E.; Alemany-Fernandez, R.; Almeida, N.; Anagnostou, G.; Andelin, D.; Anderson, E. W.; Anfreville, M.; Anicin, I.; Antchev, G.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Auffray, E.; Argiro, S.; Askew, A.; Atramentov, O.; Ayan, S.; Arcidy, M.; Aydin, S.; Aziz, T.; Baarmand, M.; Babich, K.; Baccaro, S.; Baden, D.; Baffioni, S.; Bakirci, M. N.; Balazs, M.; Banerjee, Sud.; Banerjee, Sun.; Bard, R.; Barge, D.; Barnes, V.; Barney, D.; Barone, L.; Bartoloni, A.; Baty, C.; Bawa, H.; Baiatian, G.; Bandurin, D.; Beauceron, S.; Bell, K. W.; Bencze, G.; Benetta, R.; Bercher, M.; Beri, S.; Bernet, C.; Berntzon, L.; Berthon, U.; Besancon, M.; Betev, B.; Beuselinck, R.; Bhatnagar, V.; Bhatti, A.; Biino, C.; Blaha, J.; Bloch, P.; Blyth, S.; Bodek, A.; Bornheim, A.; Bose, S.; Bose, T.; Bourotte, J.; Brett, A. M.; Brown, R. M.; Britton, D.; Budd, H.; Buehler, M.; Burchesky, K.; Busson, P.; Camanzi, B.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Carrera, E.; Cartiglia, N.; Cavallari, F.; Cerci, S.; Cerutti, M.; Chang, P.; Chang, Y. H.; Charlot, C.; Chen, E. A.; Chen, W. T.; Chen, Z.; Chendvankar, S.; Chipaux, R.; Choudhary, B. C.; Choudhury, R. K.; Chung, Y.; Clarida, W.; Cockerill, D. J. A.; Combaret, C.; Conetti, S.; Cossutti, F.; Cox, B.; Cremaldi, L.; Cushman, P.; Cussans, D. G.; Dafinei, I.; Damgov, J.; da Silva di Calafiori, D. R.; Daskalakis, G.; Davatz, G.; David, A.; de Barbaro, P.; Debbins, P.; Deiters, K.; Dejardin, M.; Djordjevic, M.; Deliomeroglu, M.; Della Negra, R.; Della Ricca, G.; Del Re, D.; Demianov, A.; de Min, A.; Denegri, D.; Depasse, P.; de Visser, T.; Descamps, J.; Deshpande, P. V.; Diaz, J.; Diemoz, M.; di Marco, E.; Dimitrov, L.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dobrzynski, L.; Drndarevic, S.; Duboscq, J. E.; Dugad, S.; Dumanoglu, I.; Duru, F.; Dutta, D.; Dzelalija, M.; Efthymiopoulos, I.; Elias, J.; Elliott-Peisert, A.; El Mamouni, H.; Elvira, D.; Emeliantchik, I.; Eno, S.; Ershov, A.; Erturk, S.; Esen, S.; Eskut, E.; Evangelou, I.; Evans, D. L.; Fabbro, B.; Faure, J. L.; Fay, J.; Fenyvesi, A.; Ferri, F.; Fisher, W.; Flower, P. S.; Franci, D.; Franzoni, G.; Freeman, J.; Freudenreich, K.; Funk, W.; Ganjour, S.; Gargiulo, C.; Gascon, S.; Gataullin, M.; Gaultney, V.; Gamsizkan, H.; Gavrilov, V.; Geerebaert, Y.; Genchev, V.; Gentit, F. X.; Gerbaudo, D.; Gershtein, Y.; Ghezzi, A.; Ghodgaonkar, M. D.; Gilly, J.; Givernaud, A.; Gleyzer, S.; Gninenko, S.; Go, A.; Gobbo, B.; Godinovic, N.; Golubev, N.; Golutvin, I.; Goncharov, P.; Gong, D.; Govoni, P.; Grant, N.; Gras, P.; Grassi, T.; Green, D.; Greenhalgh, R. J. S.; Gribushin, A.; Grinev, B.; Guevara Riveros, L.; Guillaud, J. P.; Gurtu, A.; Murat Güler, A.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Haguenauer, M.; Halyo, V.; Hamel de Monchenault, G.; Hansen, M.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heath, H. F.; Heering, A.; Heister, A.; Heltsley, B.; Hill, J. A.; Hintz, W.; Hirosky, R.; Hobson, P. R.; Honma, A.; Hou, G. W. S.; Hsiung, Y.; Hunt, A.; Husejko, M.; Ille, B.; Ilyina, N.; Imlay, R.; Ingram, D.; Ingram, Q.; Isiksal, E.; Jarry, P.; Jarvis, C.; Jeong, C.; Jessop, C.; Johnson, K.; Jones, J.; Jovanovic, D.; Kaadze, K.; Kachanov, V.; Kaftanov, V.; Kailas, S.; Kalagin, V.; Kalinin, A.; Kalmani, S.; Karmgard, D.; Kataria, S. K.; Kaur, M.; Kaya, M.; Kaya, O.; Kayis-Topaksu, A.; Kellogg, R.; Kennedy, B. W.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kloukinas, K.; Kodolova, O.; Kohli, J.; Kokkas, P.; Kolberg, T.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Kramer, L.; Krasnikov, N.; Krinitsyn, A.; Krokhotin, A.; Krpic, D.; Kryshkin, V.; Kubota, Y.; Kubrik, A.; Kuleshov, S.; Kumar, A.; Kumar, P.; Kunori, S.; Kuo, C. M.; Kurt, P.; Kyberd, P.; Kyriakis, A.; Laasanen, A.; Ladygin, V.; Laird, E.; Landsberg, G.; Laszlo, A.; Lawlor, C.; Lazic, D.; Lebeau, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lee, S.-W.; Leshev, G.; Lethuillier, M.; Levchuk, L.; Lin, S. W.; Lin, W.; Linn, S.; Lintern, A. L.; Litvine, V.; Litvintsev, D.; Litov, L.; Lobolo, L.; Locci, E.; Lodge, A. B.; Longo, E.; Loukas, D.; Los, S.; Lubinsky, V.; Luckey, P. D.; Lukanin, V.; Lustermann, W.; Lynch, C.; Ma, Y.; Machado, E.; Mahlke-Krueger, H.; Maity, M.; Majumder, G.; Malberti, M.; Malclès, J.; Maletic, D.; Mandjavidze, I.; Mans, J.; Manthos, N.; Maravin, Y.; Marchica, C.; Marinelli, N.; Markou, A.; Markou, C.; Marlow, D.; Markowitz, P.; Marone, M.; Martinez, G.; Mathez, H.; Matveev, V.; Mavrommatis, C.; Maurelli, G.; Mazumdar, K.; Meridiani, P.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Mikhailin, V.; Milenovic, P.; Miller, M.; Milleret, G.; Miné, P.; Moeller, A.; Mohammadi-Najafabadi, M.; Mohanty, A. K.; Moissenz, P.

    2009-04-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/ c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/ c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.

  2. Thin film NiTi coatings on optical fiber Bragg sensors

    SciTech Connect

    Mohanchandra, K. P.; Karnani, S.; Emmons, M. C.; Carman, G. P.; Richards, W. L.

    2008-07-21

    This paper describes the sputter deposition and characterization of nickel titanium (NiTi) thin film shape memory alloy onto the surface of an optical fiber Bragg grating. The NiTi coating uniformity, crystallinity, and transformation temperatures are measured using scanning electron microscope, x-ray diffraction, and differential scanning calorimeter, respectively. The strain in the optical fiber is measured using centroid calculation of wavelength shifts. Results show distinct and abrupt changes in the optical fiber signal with the four related transformation temperatures represented by the austenite-martensite forward and reverse phase transformations. These tests demonstrate a coupling present between optical energy and thermal energy, i.e., a modified multiferroic material.

  3. Ageing studies of wavelength shifter fibers for the TILECAL/ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Silva, J.; Maio, A.; Pina, J.; Santos, J.; Saraiva, J. G.

    2007-09-01

    Natural and accelerated ageing studies for the different components of the TILECAL calorimeter, of the ATLAS experiment, play a central role in forecasting the evolution of the detector's performance throughout its operating life. It is possible that the operation of ATLAS will be extended by 5 years in an upgraded LHC scenario. Such prospect makes these studies even more important, in order to assess the contribution of the natural ageing in relation to the other processes inducing performance loss in the optical components. Among other activities in this LHC/CERN collaboration, the Lisbon calorimetry group is involved in studying the impact of radiation damage and natural ageing in optical characteristics of the TILECAL wavelength shifter (WLS) optical fibers and scintillators, and to reevaluate the light budget of the tile/fiber system. The light yield and the attenuation length of the WLS and scintillating optical fibers are measured using an X- Y table. Results are presented for several sets of WLS optical fibers (Kuraray Y11(200)MSJ) whose characteristics have been monitored since 1999. Most of those 338 fibers are from the mass production for the TILECAL detector: 208 non-aluminized 200 cm fibers, from several production batches, and 128 batch #6 aluminized fibers, with lengths ranging from 114 to 207 cm.

  4. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  5. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  6. Specialty optical fibers: revisited

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper contains description of chosen aspects of analysis and design of tailored optical fibers. By specialty optical fibers we understand here the fibers which have complex construction and which serve for the functional processing of optical signal rather than long distance transmission. Thus, they are called also instrumentation optical fibers. The following issues are considered: transmission properties, transformation of optical signal, fiber characteristics, fiber susceptibility to external reactions. The technology of tailored optical fibers offers a wider choice of the design tools for the fiber itself, and then various devices made from these fiber, than classical technology of communication optical fibers. The consequence is different fiber properties, nonstandard dimensions and different metrological problems. The price to be paid for wider design possibilities are bigger optical losses of these fibers and weaker mechanical properties, and worse chemical stability. These fibers find their applications outside the field of telecommunications. The applications of instrumentation optical fibers combine other techniques apart from the photonics ones like: electronic, chemical and mechatronic.

  7. A Triggerless readout system for the bar PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Tiemens, M.; PANDA Collaboration

    2015-02-01

    One of the physics goals of the future bar PANDA experiment at FAIR is to research newly discovered exotic states. Because the detector response created by these particles is very similar to the background channels, a new type of data readout had to be developed, called "triggerless" readout. In this concept, each detector subsystem preprocesses the signal, so that in a later stage, high-level phyiscs constraints can be applied to select events of interest. A dedicated clock source using a protocol called SODANET over optical fibers ensures proper synchronisation between the components. For this new type of readout, a new way of simulating the detector response also needed to be developed, taking into account the effects of pile-up caused by the 20 MHz interaction rate.

  8. Observation and Simulations of the Backsplash Effects in High-Energy Gamma-Ray Telescopes Containing a Massive Calorimeter

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander A.; Ormes, Jonathan F.; Hartman, Robert C.; Johnson, Thomas E.; Mitchell, John W.; Thompson, David J.

    1999-01-01

    Beam test and simulation results are presented for a study of the backsplash effects produced in a high-energy gamma-ray detector containing a massive calorimeter. An empirical formula is developed to estimate the probability (per unit area) of backsplash for different calorimeter materials and thicknesses, different incident particle energies, and at different distances from the calorimeter. The results obtained are applied to the design of Anti-Coincidence Detector (ACD) for the Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST).

  9. Measurement of the response of the ATLAS liquid argon barrel calorimeter to electrons at the 2004 combined test-beam

    SciTech Connect

    Aharrouche, M.; Ma, H.; Adam-Bourdarios, C.; Aleksa, M.; Banfi, D.; Benchekroun, D.; Benslama, K.; Boonekamp, M.; Carli, T.; Carminati, L.; Chen, H.; Citterio, M.; Dannheim, D.; Delmastro, M.; Derue, F.; Di Girolamo, B.; El Kacimi, M.; Fanti, M.; Froeschl, R.; Fournier, D.; Grahn, K.-J.; Kado, M.; Kerschen, N.; Lafaye, R.; Laforge, B.; Lampl, W.; Laplace, S.; Lechowski, M.; Lelas, D.; Liang, Z.; Loureiro, K.; Lund-Jensen, B.; Mandelli, L.; Mazzanti, M.; McPherson, R.; Meng, Z.; Paganis, S.; Prieur, D.; Puzo, P.; Ridel, M.; Riu, I.; Rousseau, D.; Sauvage, G.; Schwemling, P.; Simon, S.; Spano, F.; Straessner, A.; Tarrade, F.; Tartarelli, F.; Thioye, M.; Unal, G.; Wilkens, H.; Wingerter-Seez, I. and Zhang, H.

    2010-03-11

    During summer and fall 2004, the response of a full slice of the ATLAS barrel detector to different particles was studied in controlled beam. One module of the ATLAS liquid argon barrel calorimeter - identical to the production modules and read out by the final front-end and back-end electronics - was used for electromagnetic calorimetry. This paper presents and discusses the electron performance of the LAr barrel calorimeter, including linearity, uniformity, and resolution with different amounts of material upstream the calorimeter and energies ranging from 1 to 250 GeV.

  10. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  11. Fiber optics in adverse environments

    SciTech Connect

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations.

  12. Fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  13. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  14. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  15. Soluble vs. insoluble fiber

    MedlinePlus

    ... diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, and some fruits and vegetables. It is also found in psyllium, ...

  16. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  17. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  18. Spectroscopic investigations of highly charged ions using x-ray calorimeter spectrometers

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel Bristol

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogenlike uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogenlike iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogenlike through carbonlike praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in heliumlike xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  19. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

  20. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the