Science.gov

Sample records for leaf beetle galerucella

  1. Differences in preference and performance of the water lily leaf beetle, Galerucella nymphaeae populations on native and introduced aquatic plants.

    PubMed

    Ding, Jianqing; Blossey, Bernd

    2009-12-01

    Plant invasions represent ecological opportunities for herbivorous insects able to exploit novel host plants. The availability of new hosts and rapid adaptations may lead to host race formation and ultimately speciation. We studied potential host race formation in the water lily leaf beetle, Galerucella nymphaeae, in response to invasion by water chestnut, Trapa natans, in eastern North America. This leaf beetle is well suited for such studies because previous work showed that different herbivore populations follow different "evolutionary pathways" and specialize locally in response to differences in habitat preferences and host plant availability. We compared host preference and performance of G. nymphaeae offspring originating from T. natans and offspring of individuals originating from an ancestral host Nuphar lutea, yellow water lily, on T. natans and three native hosts (N. lutea, Nympheae odorata, and Brasenia schreberi). Regardless of origin (Trapa or Nuphar), adults strongly preferred their native host, N. lutea, over T. natans. Although laboratory survival rates (larva to pupa) were extremely high (80%) regardless of origin or host offered, survival rates in a common garden were greatly reduced, particularly for T. natans (24%) and to a lesser extent on N. lutea (54%), regardless of beetle origin. Larval drowning during more frequent leaf changes when developing on small Trapa leaves seems to be responsible for this difference. Preference of females for N. lutea is beneficial considering the much higher larval survival on the ancestral host. Abundant T. natans where the plant is invasive provides an alternative food source that beetles can use after egg/larval loads on their preferred host reach carrying capacity, but this utilization comes at a cost of high larval mortality. PMID:20021761

  2. Effects of cyclamen mite (Phytonemus pallidus) and leaf beetle (Galerucella tenella) damage on volatile emission from strawberry (Fragaria x ananassa Duch.) plants and orientation of predatory mites (Neoseiulus cucumeris, N. californicus, and Euseius finlandicus).

    PubMed

    Himanen, Sari; Vuorinen, Terhi; Tuovinen, Tuomo; Holopainen, Jarmo K

    2005-11-01

    Volatile emission profile of strawberry (Fragaria x ananassa Duch.) plants (cvs. Polka and Honeoye) damaged by cyclamen mite (Phytonemus pallidus Banks) or leaf beetle Galerucella tenella (L.) (cv. Polka) was analyzed to determine the potential of these strawberry plants to emit herbivore-induced volatiles. The total volatile emissions as well as emissions of many green leaf volatiles (e.g., (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate) and methyl salicylate were greater from cyclamen mite-damaged strawberry plants than from intact plants. Leaf beetle feeding increased emissions of monoterpenes (Z)-ocimene and (E)-beta-ocimene, sesquiterpenes (E)-beta-caryophyllene, (E,E)-alpha-farnesene, and germacrene-D, and a homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) significantly. Nevertheless, the naïve generalist predatory mites, Neoseiulus cucumeris, Neoseiulus californicus, and Euseius finlandicus did not prefer P. pallidus- or G. tenella-damaged plants over intact plants in a Y-tube olfactometer, suggesting that these predatory mite species are not attracted by the herbivore-induced volatiles being released from young strawberry plants. PMID:16248563

  3. Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides

    USGS Publications Warehouse

    Lowe, T.P.; Hershberger, T.D.

    2004-01-01

    We evaluated the susceptibility of Galerucella calmariensis, a species used to control purple loosestrife (Lythrum salicaria), to three mosquito control larvicides. Larvae and adults were fed loosestrife cuttings dipped in Abate? (3.75 g?L-1) was reduced significantly and survival was significantly lower among larvae and adults eating cuttings dipped in Abate (>0.17 g?L-1 and >2.27 g?L-1, respectively). Hatching success of eggs dipped in Altosid (>2.52 g?L-1) was reduced significantly. With exposure to Altosid, larval survival to pupation and adult emergence was reduced significantly at concentrations of >2.92 g?L-1 and >0.63 g?L-1, respectively. Altosid (>0.23 g?L-1) also delayed the onset of pupation and adult emergence among larvae that survived to pupate. Larvae that survived with exposure to Altosid (>1.72 g?L-1) grew to 70% larger than those exposed to lower concentrations. Pupal survival was unaffected with exposure to Abate and Altosid and adult survival was unaffected with exposure to Altosid. Bacillus thuringiensis var israeliensis did not adversely affect any life stage of G. calmariensis. The mean Abate concentration on cuttings exposed to operational spraying was in the range that reduced egg hatchability and adult survival but was higher than concentrations that caused complete mortality of larvae. The mean Altosid concentration on cuttings exposed to operational spraying was in the range that reduced hatching success in eggs and delayed pupation and adult emergence of larvae.

  4. Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): sorting by herbivore or plant host

    PubMed Central

    2013-01-01

    Background To understand the ecological and evolutionary consequences of species interactions in food webs necessitates that interactions are properly identified. Genetic analyses suggest that many supposedly generalist parasitoid species should rather be defined as multiple species with a more narrow diet, reducing the probability that such species may mediate indirect interactions such as apparent competition among hosts. Recent studies showed that the parasitoid Asecodes lucens mediate apparent competition between two hosts, Galerucella tenella and G. calmariensis, affecting both interaction strengths and evolutionary feedbacks. The same parasitoid was also recorded from other species in the genus Galerucella, suggesting that similar indirect effects may also occur for other species pairs. Methods To explore the possibility of such interactions, we sequenced mitochondrial and nuclear genetic markers to resolve the phylogeny of both host and parasitoid and to test the number of parasitoid species involved. We thus collected 139 Galerucella larvae from 8 host plant species and sequenced 31 adult beetle and 108 parasitoid individuals. Results The analysis of the Galerucella data, that also included sequences from previous studies, verified the five species previously documented as reciprocally monophyletic, but the Bayesian species delimitation for A. lucens suggested 3–4 cryptic taxa with a more specialised host use than previously suggested. The gene data analyzed under the multispecies coalescent model allowed us to reconstruct the species tree phylogeny for both host and parasitoid and we found a fully congruent coevolutionary pattern suggesting that parasitoid speciation followed upon host speciation. Conclusion Using multilocus sequence data in a Bayesian species delimitation analysis we propose that hymenopteran parasitoids of the genus Asecodes that infest Galerucella larvae constitute at least three species with narrow diet breath. The evolution of

  5. THE PRESENCE OF TIBIAL SPURS AS A MALE SEXUAL CHARACTER FOR GALERUCELLA CALMARIENIS (COLEOPTERA: CHRYSOMELIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Close examination (20-30X) of tibia of Galerucella calmariensis (L.) (Coleoptera: Chrysomelidae) showed that some of these leaf beetles had a single black-colored spur at the distal end of the tibia. These spurs were only observed on the meso- and metatibia and were clearly contrasted against the l...

  6. Early-Summer Pheromone Biology of Galerucella calmariensis and Relationship to Dispersal and Colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Galerucella calmariensis (Coleoptera: Chrysomelidae) has become an effective biological control agent for purple loosestrife (Lythrum salicaria). A male-produced aggregation pheromone was recently identified in this mostly univoltine beetle, and attractiveness to both sexes was demonstrated in the ...

  7. Allozyme gene diversities in some leaf beetles (Coleoptera: Chrysomelidae).

    PubMed

    Krafsur, E S

    1999-08-01

    Gene diversity at allozyme loci was investigated in the bean leaf beetle, Ceratoma trifurcata Forster; the elm leaf beetle, Xanthogaleruca luteola (Muller); the cottonwood leaf beetle, Chrysomela scripta Fabricus; the western corn rootworm, Diabrotica virgifera virgifera LeConte; the southern corn rootworm, also called the spotted cucumber beetle, D. undecimpunctata howardi Baker; the northern corn rootworm, D. barberi Smith and Lawrence; and the Colorado potato beetle, Leptinotarsa decemlineata (Say). Six of these species are economically important pests of crops and display adaptive traits that may correlate with genetic diversity. Gene diversity H(E) in bean leaf beetles was 17.7 +/- 4.0% among 32 loci. In western corn rootworms, H(E) = 4.8 +/- 2.0% among 36 loci, and in spotted cucumber beetles, H(E) = 11.9 +/- 2.7% among 39 loci. Diversity among 27 loci was 10.5 +/- 4.3% in the Colorado potato beetle. The data were compared with gene diversity estimates from other leaf beetle species in which heterozygosities varied from 0.3 to 21% and no correlation was detected among heterozygosities, geographic ranges, or population densities. Distributions of single-locus heterozygosities were consistent with selective neutrality of alleles. PMID:10624512

  8. Soybean N relations and bean leaf beetle larval feeding damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine if soil fertilizer nitrogen (N) input treatments would impact the bean leaf beetle (Cerotoma trifurcate Förster) biology. The experiment was conducted in the soybean [Glycine max (L.) Merr.] phase of a long-term corn (Zea mays L.) and soybean rotation study. S...

  9. Attachment of Galerucella nymphaeae (Coleoptera, Chrysomelidae) to surfaces with different surface energy.

    PubMed

    Grohmann, Constanze; Blankenstein, Andreas; Koops, Sven; Gorb, Stanislav N

    2014-12-01

    Numerous studies deal with insect attachment onto surfaces with different roughness; however, little is known about insect attachment onto surfaces that have different chemistry. In the present study, we describe the attachment structures of the water-lily leaf beetle Galerucella nymphaeae and test the hypothesis that the larval and adult stages generate the strongest attachment on surfaces with contact angles that are similar to those of leaves of their host plants. The larvae bear a smooth attachment system with arolium-like structures at their legs and a pygopodium at the abdomen tip. Adults have pointed setae on the ventral side of the two proximal tarsomeres and densely arranged spatula-shaped ones on their third tarsomere. In a centrifugal force tester, larvae and adults attained the highest friction forces and safety factors on surfaces with a water contact angle of 83 deg compared to those of 6, 26 and 109 deg. This comes close to the contact angle of their host plant Nuphar lutea (86 deg). The similarity in larval and adult performances might be a result of the similar chemical composition of their attachment fluid. We compare our findings with previous studies on the forces that insects generate on surfaces with different surface energies. PMID:25324345

  10. Nitrogen fertilizer management effects on soybean N components and bean leaf beetle populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean leaf beetle [Cerotoma trifurcata (Förster)] larvae consume soybean [Glycine max (L.)] root nodules. This study was conducted to determine if different rates of N contained in starter fertilizer impact soybean shoot N components and bean leaf beetle (BLB) populations. The effects of starter N ...

  11. Endemism patterns in the Italian leaf beetle fauna (Coleoptera, Chrysomelidae)

    PubMed Central

    Biondi, Maurizio; Urbani, Fabrizia; D’Alessandro, Paola

    2013-01-01

    Abstract In this contribution the results of a zoogeographical analysis, carried out on the 123 endemic leaf beetle species (Coleoptera: Chrysomelidae) occurring in Italy and its immediately adjacent regions, are reported. To assess the level of faunistic similarity among the different geographic regions studied, a cluster analysis was performed, based on the endemic component. This was done by calculating the Baroni Urbani & Buser’s similarity index (BUB). Finally, a parsimony analysis of endemicity (PAE) was used to identify the most important areas of endemism in Italy. PMID:24163584

  12. Dock leaf beetle, Gastrophysa viridula Deg., herbivory on Mossy Sorrel, Rumex confertus Willd: Induced plant volatiles and beetle orientation responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive weed Rumex confertus Willd. (mossy sorrel) is fed upon and severely defoliated by Gastrophysa viridula Deg. (dock leaf beetle), a highly promising biological control agent for this weed. We report volatile organic compound (VOC) induction when one leaf on R. confertus was damaged by G. ...

  13. Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis.

    PubMed

    Boychuk, Evelyn C; Smiley, John T; Dahlhoff, Elizabeth P; Bernards, Mark A; Rank, Nathan E; Sinclair, Brent J

    2015-10-01

    Small ectothermic animals living at high altitude in temperate latitudes are vulnerable to lethal cold throughout the year. Here we investigated the cold tolerance of the leaf beetle Chrysomela aeneicollis living at high elevation in California's Sierra Nevada mountains. These insects spend over half their life cycle overwintering, and may therefore be vulnerable to winter cold, and prior studies have demonstrated that survival is reduced by exposure to summertime cold. We identify overwintering microhabitat of this insect, describe cold tolerance strategies in all life stages, and use microclimate data to determine the importance of snow cover and microhabitat buffering for overwinter survival. Cold tolerance varies among life history stages and is typically correlated with microhabitat temperature: cold hardiness is lowest in chill-susceptible larvae, and highest in freeze-tolerant adults. Hemolymph osmolality is higher in quiescent (overwintering) than summer adults, primarily, but not exclusively, due to elevated hemolymph glycerol. In nature, adult beetles overwinter primarily in leaf litter and suffer high mortality if early, unseasonable cold prevents them from entering this refuge. These data suggest that cold tolerance is tightly linked to life stage. Thus, population persistence of montane insects may become problematic as climate becomes more unpredictable and climate change uncouples the phenology of cold tolerance and development from the timing of extreme cold events. PMID:26231921

  14. Confirmation of bean leaf beetle, Cerotoma trifurcata, feeding on cucurbits

    PubMed Central

    Koch, R.L.; Burkness, E.C.; Hutchison, W.D.

    2004-01-01

    The objective of these studies was to assess the degree to which bean leaf beetle, Cerotoma trifurcata (Forster), will feed on cucurbits. In 2003, we documented an infestation of C. trifurcata in a commercial pumpkin field near Rosemount, MN, USA. To evaluate C. trifurcata feeding on cucurbits, we conducted laboratory no-choice and choice test feeding studies. In the laboratory, C. trifurcata fed most heavily on cotyledon-stage cucumber plants, followed by pumpkin and squash. With soybean plants present, C. trifurcata still fed on cucumber plants. However, C. trifurcata appeared to prefer soybeans until the quality of the soybean plants was diminished through feeding damage. This is the first known report of C. trifurcata feeding on cucurbits. The pest potential of C. trifurcata in cucurbit cropping systems should be further evaluated. PMID:15861221

  15. Biological control of saltcedar (Tamarix spp.) by saltcedar leaf beetles (Diorhabda spp.): effects on small mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of introduced saltcedar (Tamarix spp.) throughout many riparian systems across the western United States motivated the introduction of biological control agents that are specific to saltcedar, saltcedar leaf beetles (Diorhabda carinulata, D. elongata; Chrysomelidae). I monitored small mam...

  16. The first record of a leaf-hole shelter in leaf beetles (Coleoptera: Chrysomelidae) with descriptions of two new Orthaltica Crotch species from southern India

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two behavioral novelties in adults of leaf beetles were observed in a couple of new species of Orthaltica Crotch: 1) use of low cost, leaf-hole shelter, which are pre-formed holes produced by larger beetles that fed on the same leaf, or made artificially as part of an experiment; 2) use of feces t...

  17. Physiological Response of Tamarix ramosissima (Salt Cedar) to Diorhabda elongata (Leaf Beetle) Herbivory in a Controlled Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods The effects of Diorhabda elongata (leaf beetle) herbivory on Tamarix ramosissima physiology are largely undocumented. Wounding by the beetle during consumption of leaf tissue and the laying of eggs (oviposition) could increase root and leaf respiration as carbohydrates a...

  18. Genetic variability of bean leaf beetle, Cerotoma trifurcata (Forster), in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean leaf beetle (BLB) is a key pest of soybean in the Midwestern US. Presently there is scant information on genetic structure and gene flow of BLB; This information would be very useful for pest management. Amplified fragment length polymorphism (AFLP) was used to investigates the genetic variabil...

  19. Bean leaf beetle (Coleoptera: Chrysomelidae) response to soybean variety and organic-compliant treatments in Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to concerns from certified organic producers who were experiencing significant market losses due to seed staining of soybean [Glycine max (L.) Merr.], we evaluated alternative ways to manage bean leaf beetles [Cerotoma trifurcata (Forster)] (Coleoptera: Chrysomelidae), a known vector for...

  20. Evaluation of Organic Pest Management Treatments for Bean Leaf Beetle in Soybean in Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many organic soybean producers face the challenge of bean leaf beetle (Ceratoma trifurcata), which harbors bean mottle pod virus and opens infection sites for Fusarium spp., Cercospora kikuchii, and Phomopsis spp., which cause discoloration in soybeans. Stained soybean seed is less acceptable for fo...

  1. Bean leaf beetle (Coleoptera: Chrysomelidae) management for reduction of bean pod mottle virus.

    PubMed

    Krell, Rayda K; Pedigo, Larry P; Hill, John H; Rice, Marlin E

    2004-04-01

    Bean pod mottle virus (BPMV) is a management concern for soybean, Glycine max (L.), producers in the North Central states because it can cause yield loss and reduce seed quality by induction of seed coat mottling. The main vector of BPMV is the bean leaf beetle, Cerotoma trifurcata (Forster). An experiment was conducted in 2000 and 2001 at two locations in northwestern and central Iowa to test three insecticide treatments for suppression of bean leaf beetles, and subsequently, BPMV. Treatments of insecticide applications with lambda-cyhalothrin were 1) a single early-season application (23 g [AI] /ha) (2.5 oz/acre) at the VE-VC soybean developmental stage; 2) two early-season applications, the first the same as treatment 1 and a second at the same rate 9-13 d later; 3) a single early-season application the same as treatment 1, followed by a mid-season application (28 g [AI] /ha (3.2 oz/acre) at approximately R2 (flowering, near 15 July); and 4) an unsprayed control. Application of lambda-cyhalothrin after soybean emergence and again as first-generation bean leaf beetles emerged in northwestern Iowa in 2000 (treatment 3) significantly reduced beetle densities through mid-season, BPMV field incidence by 31.5%, and seed coat mottling by 31.2%, compared with the unsprayed control. Similar effects were measured at the same location when insecticide was applied twice at early season (treatment 2). Yield was 453.7 kg/ha (6.74 bu/acre) greater in treatment 2 and 525.20 kg/ha (7.80 bu/acre) greater in treatment 3 than in the unsprayed control at the northwestern site in 2000. At both locations in 2001 fewer treatment effects were observed, which was likely related to lower beetle populations in that year. Early-season insecticide sprays targeted at overwintered beetles on VC-VE reduced the initial population of vector insects and may have contributed to a lower first-generation population because of reduced overwintered beetle oviposition. In 1 year at one location there

  2. First record of leaf-hole shelters used and modified by leaf beetles (Coleoptera, Chrysomelidae), with descriptions of two new Orthaltica Crotch species from southern India

    PubMed Central

    Prathapan, Kaniyarikkal Divakaran; Konstantinov, Alexander S.; Shameem, K. M.; Balan, A. P.

    2013-01-01

    Abstract Behavioural novelties observed in adult leaf beetles of two new Orthaltica Crotch species include: 1) the use of low cost leaf-hole shelters, either in pre-formed holes produced by larger beetles that fed on the same leaf, or artificially created holes as part of an experiment; and 2) the use of faeces to partition the hole. Two new southern Indian species of the genus Orthaltica are described and illustrated: Orthaltica syzygium and Orthaltica terminalia. Host plants are identified for both species. A key to the Indian species of Orthaltica is provided. PMID:24146572

  3. Coinciding development of winter wheat and leaf beetles along an Alpine transect

    NASA Astrophysics Data System (ADS)

    Bechini, Luca; Morlacchi, Pablo; Baumgärtner, Johann

    2013-02-01

    The degree of temporal coincidence in the development of winter wheat (Triticum aestivum L.) and the cereal leaf beetles Oulema melanopus (L.) and Oulema duftschmidi (Redtenbacher, 1874) was studied by means of explanatory phenology models. Temperature and photoperiod control crop development, whereas oviposition and development of eggs and larvae of the two beetles depend on temperature and crop phases. The models parametrized with literature data satisfactorily represented crop and prepupal insect development at several Swiss and Italian locations. The successfully validated models were used for representing multiannual crop and insect development at seven locations on a European transect between the Danube river in the North and the Po River in the South. Depending on temperature and photoperiod, the crop phases occurred at different time periods but were generally of similar durations. The shifting of the crop phases exposed the cereal leaf beetles to environmental conditions which were similar during oviposition and slightly different as the growing season progressed. The simulated oviposition and prepupal survivorship was much higher for O. melanopus than for O. duftschmidi but did not differ between the locations. The crop phase-dependent mortality (Mc) was consistently higher for O. duftschmidi than for O. melanopus, whose Mc increased with increasing altitude. The extent of coinciding development was investigated by means of the summed larval development rates divided by the summed wheat development rate. During the oviposition period the insect development was coincident with wheat development. With time progression, however, the temperature difference between the locations increased causing an incomplete coincidence in the development of wheat and cereal leaf beetles. These results support the hypothesis that the extent of coinciding development of the three species is largely controlled by temperature and photoperiodic conditions.

  4. Elm leaf beetle performance on ozone-fumigated elm. Forest Service research paper (Final)

    SciTech Connect

    Barger, J.H.; Hall, R.W.; Townsend, A.M.

    1992-01-01

    Leaves (1986) from elm hybrids ('Pioneer', 'Homestead', '970') previously fumigated in open-top chambers with ozone or with charcoal-filtered air (CFA) were evaluated for water and nitrogen content or were fed to adult elm leaf beetles (ELB), Xanthogaleruca = (Pyrrhalta) luteola (Muller), to determine host suitability for beetle fecundity and survivorship. ELB females fed ozone-fumigated leaves laid significantly fewer eggs than females fed CFA-fumigated leaves. Leaf nitrogen or water content was unaffected. Hybrid '970' (1988) was fumigated with CFA or with ozone concentrations to determine effects on ELB fecundity, leaf consumption, and survivorship. Significantly fewer eggs were laid at the higher concentration of ozone. Because higher levels of ozone are found in urban areas and because municipalities often replace American elms, Ulmus americana L., with Dutch elm disease-resistant elm hybrids that are susceptible to ELB defoliation, it is important to explore the relationships between ozone sensitivity of elm and susceptibility to ELB herbivory before recommending replacement use of these elms to municipal arborists. The study was conducted to determine whether ozone pollution influences host quality of elm for ELB and how ELB fecundity, leaf consumption rate, and survivorship are affected.

  5. Management of Yellowmargined Leaf Beetle Microtheca ochroloma (Coleoptera: Chrysomelidae) Using Turnip as a Trap Crop.

    PubMed

    Balusu, Rammohan; Rhodes, Elena; Liburd, Oscar; Fadamiro, Henry

    2015-12-01

    The yellowmargined leaf beetle, Microtheca ochroloma Stål, is a major pest of cruciferous vegetable crops in organic production systems. Very few organically acceptable management options are currently available for this pest. Field studies were conducted at a research station in Alabama and at a commercial organic vegetable farm in Florida to investigate the effectiveness of turnip, Brassica rapa rapa, as a trap crop for M. ochroloma. In the research station trial with cabbage planted as the cash crop, perimeter planting of turnip as a trap crop effectively reduced beetle numbers and crop damage below levels recorded in the control. During the first season of our on-farm trial, with napa cabbage and mustard as the cash crops, using turnip as a trap crop effectively reduced both beetle numbers and cash crop damage below levels found in the control plots, but economic damage was still high. In the second season, beetle populations were too low for significant differences in damage levels to occur between the trap crop and control plots. Together, these results suggest that turnip planted as a trap crop can be an effective control tactic for cruciferous crops, like cabbage, that are much less attractive to M. ochroloma than turnip. In crops, like mustard and napa cabbage, that are equally or only slightly less attractive than turnip, planting turnip as a trap crop would have to be used in combination with other tactics to manage M. ochroloma. PMID:26470380

  6. Tamarisk (Tamarix spp.) water fluxes before, during and after episodic defoliation by the saltcedar leaf beetle

    USGS Publications Warehouse

    Hultine, K.R.; Nagler, P.L.; Dennison, P.E.; Bush, S.E.; Ehleringer, J.R.

    2009-01-01

    Tamarisk (Tamarix) species are among the most successful and economically costly plant invaders in the western United States, in part due to its potential to remove large amounts of water from shallow aquifers. Accordingly, local, state and federal agencies have released a new biological control - the saltcedar leaf beetle (Diorhabda elongata) along many watersheds in the western United States to reduce the spread of tamarisk. The beetle defoliates tamarisk for much of the growing season resulting in potentially large seasonal declines in productivity, fitness, and water loss from tamarisk stands. We measured sap flux density (Js) using heat dissipation sensors to investigate water use patterns of tamarisk before, during and after a single, six week beetle-induced defoliation event in southeastern, Utah, USA. Granier-style probes were installed on 20 dominant trees from May through September 2008, a period that covers almost the entire growing season. As the beetle emerged from dormancy in mid-June, daytime and nighttime Js measurably increased for approximately two weeks before declining to less than 20% of predicted values (predicted by modeling Js with atmospheric vapor pressure deficit in May and June before defoliation). Tamarisk trees in mid-August produced new leaves and Js returned to pre-defoliation levels. Total Js, summed over the duration of the study was 13% lower than predicted values. These data suggest that defoliation results in only small changes in seasonal water loss from tamarisk stands. Current research is focusing on long-term ecohydrological impacts of tamarisk defoliation over multiple growing seasons.

  7. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring. PMID:14584683

  8. Egg-hatching synchrony and larval cannibalism in the dock leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae).

    PubMed

    Kutcherov, Dmitry

    2015-12-01

    Females of leaf beetles and many other herbivorous insects lay eggs in coherent batches. Hatchlings emerge more or less simultaneously and often prey on their late-hatching clutchmates. It is not certain, however, whether this synchrony of hatching is a mere by-product of cannibalism or whether an additional synchronizing factor exists. The following simple experiment was aimed at determining the causal relationship between cannibalism and simultaneous larval emergence. Egg clutches of the dock leaf beetle Gastrophysa viridula were split into two halves. These halves were either kept as coherent groups in two separate dishes or, alternatively, only one half remained whole, whereas the other one was divided into single eggs, each of which was incubated in a separate dish. Halving of a clutch into coherent groups only slightly disrupted the synchrony of emergence. The consequence of individual isolation was more dramatic. Half-clutches consisting of disconnected solitary eggs required almost twice as much time for complete emergence of all larvae, which was significantly more than cannibalism as a sole synchronizing factor might explain. Moreover, survival rates were the same in coherent half-clutches (in the presence of cannibalism) and among isolated individuals. This group effect and the small contribution of cannibalism suggest the existence of an additional synchronizing factor. Possible mechanisms underpinning this phenomenon are discussed. PMID:26482400

  9. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles

    PubMed Central

    Strauss, Anja S; Peters, Sven; Boland, Wilhelm; Burse, Antje

    2013-01-01

    Plant-herbivore interactions dominate the planet’s terrestrial ecology. When it comes to host–plant specialization, insects are among the most versatile evolutionary innovators, able to disarm multiple chemical plant defenses. Sequestration is a widespread strategy to detoxify noxious metabolites, frequently for the insect’s own benefit against predation. In this study, we describe the broad-spectrum ATP-binding cassette transporter CpMRP of the poplar leaf beetle, Chrysomela populi as the first candidate involved in the sequestration of phytochemicals in insects. CpMRP acts in the defensive glands of the larvae as a pacemaker for the irreversible shuttling of pre-selected metabolites from the hemolymph into defensive secretions. Silencing CpMRP in vivo creates a defenseless phenotype, indicating its role in the secretion process is crucial. In the defensive glands of related leaf beetle species, we identified sequences similar to CpMRP and assume therefore that exocrine gland-based defensive strategies, evolved by these insects to repel their enemies, rely on ABC transporters as a key element. DOI: http://dx.doi.org/10.7554/eLife.01096.001 PMID:24302568

  10. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles.

    PubMed

    Strauss, Anja S; Peters, Sven; Boland, Wilhelm; Burse, Antje

    2013-01-01

    Plant-herbivore interactions dominate the planet's terrestrial ecology. When it comes to host-plant specialization, insects are among the most versatile evolutionary innovators, able to disarm multiple chemical plant defenses. Sequestration is a widespread strategy to detoxify noxious metabolites, frequently for the insect's own benefit against predation. In this study, we describe the broad-spectrum ATP-binding cassette transporter CpMRP of the poplar leaf beetle, Chrysomela populi as the first candidate involved in the sequestration of phytochemicals in insects. CpMRP acts in the defensive glands of the larvae as a pacemaker for the irreversible shuttling of pre-selected metabolites from the hemolymph into defensive secretions. Silencing CpMRP in vivo creates a defenseless phenotype, indicating its role in the secretion process is crucial. In the defensive glands of related leaf beetle species, we identified sequences similar to CpMRP and assume therefore that exocrine gland-based defensive strategies, evolved by these insects to repel their enemies, rely on ABC transporters as a key element. DOI: http://dx.doi.org/10.7554/eLife.01096.001. PMID:24302568

  11. Book review: Leaf and Seed Beetles of South Carolina (Coleoptera: Chrysomelidae and Orsodacnidae), by J. C. Ciegler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book entitled Leaf and Seed Beetles of South Carolina (Coleoptera: Chrysomelidae and Orsodacnidae), by J. C. Ciegler. (246 pages, 324 black and white illustrations, 8.5 “ x 11"; ISBN 0-9753471-8-7. Forty dollars, paperback. Biota of South Carolina. Volume 5. Clemson University, Clemson, S. ...

  12. Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tamarisk leaf beetle Diorhabda elongata Brulle deserticola Chen was collected in Northwestern China and has been released in the Western U.S. to control tamarisk (Tamarix spp.). Characteristics of diapause and reproductive development in D. elongata were examined to improve management as a bioc...

  13. Overwintering survival, phenology, voltinism, and reproduction among different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classical biological control program for exotic saltcedars (various Tamarix species and hybrids) has involved the assessment of different populations of the leaf beetle Diorhabda elongata (Brullé) sensu lato that are promising for release in areas of North America that are located south of 37°N ...

  14. Defoliation by introduced Diorhabda elongata leaf beetles (Coleoptera: Chrysomelidae) reduces carbohydrate reserves and regrowth of Tamarix (Tamaricacceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diorhabda elongate (Brulle) sensu lato leaf beetles have been released in the United States for the classical biological control of invasive Tamarix L. species, which are exotic trees that are causing deterioration of riparian ecosystems in western North America. The impact of D. elongate defoliat...

  15. Population structure, genetic variability, and gene flow of the bean leaf beetle, Cerotoma trifurcata, in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is a common pest of soybean in the Midwest. However, there are currently no studies on the genetic variability of C. trifurcata. This study examined 15-30 individuals from 25 subpopulations to determine genetic variability ...

  16. Influences of the Tamarisk Leaf Beetle (Diorhabda carinulata) on the diet of insectivorous birds along the Dolores River in Southwestern Colorado

    USGS Publications Warehouse

    Puckett, Sarah L.; van Riper, Charles, III

    2014-01-01

    We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.

  17. The consequences of alternating diet on performance and food preferences of a specialist leaf beetle.

    PubMed

    Tremmel, Martin; Müller, Caroline

    2013-08-01

    The food quality of a given host plant tissue will influence the performance and may also affect the preference behavior of herbivorous animals. As nutrient contents and defense metabolite concentrations can vary significantly between different parts of a plant and change over time, herbivores are potentially confronted with diet differing in quality even when feeding on a single plant individual. Here we investigated to what extent feeding exclusively either on young or old, mature leaves of Brassica rapa or on a mixed diet of young and old leaves offered in alternating order affects the larval performance, food consumption, and the host preference behavior of adult mustard leaf beetles, Phaedon cochleariae. Analyzing different leaf quality traits, we found lower water contents, no changes in C:N ratio but more than threefold higher glucosinolate concentrations in young compared to old leaves. Individuals reared on mixed diet performed as well as animals reared on young leaves. Thus, compared to animals feeding exclusively on highly nutritious young leaves, diet-mixing individuals may balance the lower nutrient intake by a dilution of adverse secondary metabolites. Alternatively, they may integrate over the variation in their food, using a previously assimilated resource for growth at times of scarcity. Animals reared on old leaves grew less and had a prolonged larval developmental time, although they showed increased consumption indicating compensatory feeding. Additionally, we found that experience with a certain diet affected the preference behavior. Whereas individuals reared exclusively on young leaves preferred young over old leaves for feeding and oviposition, we did not find any preferences by animals reared exclusively on old leaves or by females reared on alternating diet. Thus, in contrast to positive feedbacks for animals reared on young leaves, an integrative growth of diet-mixing individuals potentially leads to a lack of feedback during development

  18. Infestation of grain fields and degree-day phenology of the cereal leaf beetle (Coleoptera: Chrysomelidae) in Utah: long-term patterns.

    PubMed

    Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan

    2014-02-01

    Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments. PMID:24665707

  19. Attraction of Redbay Ambrosia Beetle, Xyleborus Glabratus, To Leaf Volatiles of its Host Plants in North America.

    PubMed

    Martini, Xavier; Hughes, Marc A; Smith, Jason A; Stelinski, Lukasz L

    2015-07-01

    The redbay ambrosia beetle, Xyleborus glabratus, is an important pest of redbay (Persea borbonia) and swamp bay (P. palustris) trees in forests of the southeastern USA. It is also a threat to commercially grown avocado. The beetle is attracted to host wood volatiles, particularly sesquiterpenes. Contrary to other ambrosia beetles that attack stressed, possibly pathogen-infected, and dying trees, X. glabratus readily attacks healthy trees. To date little is known about the role of leaf volatiles in the host selection behavior and ecology of X. glabratus. To address this question, an olfactometer bioassay was developed to test the behavioral response of X. glabratus to plant leaf volatiles. We found that X. glabratus was attracted to the leaf odors of their hosts, redbay and swamp bay, with no attraction to a non-host tree tested (live oak, Quercus virginiana), which served as a negative control. Gas chromatography-mass spectrometry (GS/MS) analysis of leaves revealed the absence of sesquiterpenes known to be attractive to X. glabratus and present in host wood, suggesting that additional leaf-derived semiochemicals may serve as attractants for this beetle. An artificial blend of chemicals was developed based on GC/MS analyses of leaf volatiles and behavioral assays. This blend was attractive to X. glabratus at a level that rivaled currently used lures for practical monitoring of this pest. This synthetic redbay leaf blend also was tested in the field. Baited traps captured more X. glabratus than unbaited controls and equivalently to manuka oil lures. We hypothesize that leaf volatiles may be used by X. glabratus as an additional cue for host location. PMID:26070721

  20. An elm EST database for identifying leaf beetle egg-induced defense genes

    PubMed Central

    2012-01-01

    Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and

  1. Maternally inherited architecture in tertiary leaf beetles: paleoichnology of cryptocephaline fecal cases in Dominican and Baltic amber

    NASA Astrophysics Data System (ADS)

    Chaboo, Caroline S.; Engel, Michael S.; Chamorro-Lacayo, Maria Lourdes

    2009-09-01

    Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence—the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother-offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.

  2. Monitoring impacts of Tamarix leaf beetles (Diorhabda elongata) on the leaf phenology and water use of Tamarix spp. using ground and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Brown, T.; Hultine, K. R.; van Riper, C.; Bean, D. A.; Murray, R.; Pearlstein, S.; Glenn, E. P.

    2010-12-01

    Tamarix leaf beetles (Diorhabda elongata) have been released in several locations on western U.S. rivers to control the introduced shrub, Tamarix ramosissima and related species. As they are expanding widely throughout the region, information is needed on their impact on Tamarix leaf phenology and water use over multiple cycles of annual defoliation. We used networked digital cameras (phenocams) and ground surveys to monitor the defoliation process from 2008-2010 at multiple sites on the Dolores River, and MODIS satellite imagery from 2000 to 2009 to monitor leaf phenology and evapotranspiration (ET) at beetle release sites on the Dolores, Lower Colorado, Carson, Walker and Bighorn Rivers. Enhanced Vegetation Index (EVI) values for selected MODIS pixels were used to estimate green foliage density before and after beetle releases at each site. EVI values were transformed into estimates of ET using an empirical algorithm relating ET to EVI and potential ET (ETo) at each site. Phenocam and ground observations show that beetle damage is temporary, and plants regenerate new leaves following an eight week defoliation period in summer. The original biocontrol model predicted that Tamarix mortality would reach 75-85% over several years of defoliation due to progressive weakening of the shrubs each year, but over the early stages of leaf beetle-Tamarix interactions studied here (3-8 years), our preliminary findings show actual reductions in EVI and ET of only 13-15% across sites due to the relatively brief period of defoliation and because not all plants at a site were defoliated. Also, baseline ET rates varied across sites but averaged only 329 mm yr-1 (23% of ETo), constraining the possibilities for water salvage through biocontrol of Tamarix. The spatial and temperol resolution of MODIS imagery were too coarse to capture the details of the defoliation process, and high-resolution imagery or expanded phenocam networks are needed for future monitoring programs.

  3. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    USGS Publications Warehouse

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  4. Types of geographical distribution of leaf beetles (Chrysomelidae) in Central Europe *

    PubMed Central

    Schmitt, Michael; Rönn, Thomas

    2011-01-01

    Abstract A comparison of the geographical distribution patterns of 647 species of Chrysomelidae in Central Europe revealed 13 types of distribution: (1) widely distributed, (2) southern, (3) southeastern, (4) southwestern, (5) northern, (6) eastern, (7) south east quarter, (8) south west quarter, (9) fragmented, (10) montane, (11) subalpine & alpine, (12) scattered, (13) unusual, and irregular patterns produced by insufficient data. Some of these distributions are trivial (e. g. northern, eastern, etc., alpine) but others are surprising. Some cannot be explained, e. g. the remarkable gaps in the distribution of Chrysolina limbata (Fabricius, 1775) and in Aphthona nonstriata (Goeze, 1777). Although our 63.000 records are necessarily tentative, we found that the distribution maps from these data reflect in many cases the common knowledge on the occurrence of leaf beetles in specific areas. PMID:22303107

  5. Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end

    PubMed Central

    Termonia, Arnaud; Hsiao, Ting H.; Pasteels, Jacques M.; Milinkovitch, Michel C.

    2001-01-01

    Combination of molecular phylogenetic analyses of Chrysomelina beetles and chemical data of their defensive secretions indicate that two lineages independently developed, from an ancestral autogenous metabolism, an energetically efficient strategy that made the insect tightly dependent on the chemistry of the host plant. However, a lineage (the interrupta group) escaped this subordination through the development of a yet more derived mixed metabolism potentially compatible with a large number of new host-plant associations. Hence, these analyses on leaf beetles document a mechanism that can explain why high levels of specialization do not necessarily lead to “evolutionary dead ends.” PMID:11259651

  6. Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae) of an Ecuadorian Mountain Forest Using DNA Barcoding

    PubMed Central

    Thormann, Birthe; Ahrens, Dirk; Marín Armijos, Diego; Peters, Marcell K.; Wagner, Thomas; Wägele, Johann W.

    2016-01-01

    Background Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates. Methodology/Principal Findings Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284–289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469–481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation. Conclusions/Significance Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities

  7. Triterpene saponin hemi-biosynthesis of a leaf beetle's (Platyphora kollari) defensive secretion

    NASA Astrophysics Data System (ADS)

    Ghostin, Jean; Habib-Jiwan, Jean-Louis; Rozenberg, Raoul; Daloze, Désiré; Pasteels, Jacques M.; Braekman, Jean-Claude

    2007-07-01

    The adults of the leaf beetle Platyphora kollari (Chrysomelidae) are able to metabolise the oleanane triterpene β-amyrin (1) into the glycoside 3-O-β-d-glucopyranosyl-(1→4)-β-d-glucuronopyranosyl-hederagenin (2) that is stored in their defensive glands. The aim of this study was to test the hypothesis that oleanolic acid (3) is an intermediate in the conversion of 1 into 2 and to check whether the sequestration of pentacyclic triterpenes is selective in favour of β-amyrin (1). To this end, adults of P. kollari were fed with Ipomoea batatas leaf disks painted with a solution of [2,2,3-2H3]oleanolic acid or [2,2,3-2H3]α-amyrin and the secretion of their defensive glands analysed by HPLC ESIMS. The data presented in this work indicated that the first step of the transformation of β-amyrin (1) into the sequestered glycoside 2 is its oxidation into oleanolic acid (3) and that this conversion is selective but not specific in favour of β-amyrin (1).

  8. Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles

    PubMed Central

    Bodemann, René Roberto; Rahfeld, Peter; Stock, Magdalena; Kunert, Maritta; Wielsch, Natalie; Groth, Marco; Frick, Sindy; Boland, Wilhelm; Burse, Antje

    2012-01-01

    Allomones are widely used by insects to impede predation. Frequently these chemical stimuli are released from specialized glands. The larvae of Chrysomelina leaf beetles produce allomones in gland reservoirs into which the required precursors and also the enzymes are secreted from attached gland cells. Hence, the reservoirs can be considered as closed bio-reactors for producing defensive secretions. We used RNA interference (RNAi) to analyse in vivo functions of proteins in biosynthetic pathways occurring in insect secretions. After a salicyl alcohol oxidase was silenced in juveniles of the poplar leaf beetles, Chrysomela populi, the precursor salicyl alcohol increased to 98 per cent, while salicyl aldehyde was reduced to 2 per cent within 5 days. By analogy, we have silenced a novel protein annotated as a member of the juvenile hormone-binding protein superfamily in the juvenile defensive glands of the related mustard leaf beetle, Phaedon cochleariae. The protein is associated with the cyclization of 8-oxogeranial to iridoids (methylcyclopentanoid monoterpenes) in the larval exudates made clear by the accumulation of the acylic precursor 5 days after RNAi triggering. A similar cyclization reaction produces the secologanin part of indole alkaloids in plants. PMID:22874750

  9. Tamarix and Diorhabda leaf beetle interactions: implications for Tamarix water use and riparian habitat

    USGS Publications Warehouse

    Nagler, Pamela; Glenn, Edward P.

    2013-01-01

    Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western United States rivers to control introduced shrubs in the genus Tamarix, with the goals of saving water through removal of an assumed high water-use plant, and of improving habitat value by removing a competitor of native riparian trees. We review recent studies addressing three questions: (1) to what extent are Tamarix weakened or killed by recurrent cycles of defoliation; (2) can significant water salvage be expected from defoliation; and (3) what are the effects of defoliation on riparian ecology, particularly on avian habit? Defoliation has been patchy at many sites, and shrubs at some sites recover each year even after multiple years of defoliation. Tamarix evapotranspiration (ET) is much lower than originally assumed in estimates of potential water savings, and are the same or lower than possible replacement plants. There is concern that the endangered southwestern willow flycatcher (Empidonax trailli extimus) will be negatively affected by defoliation because the birds build nests early in the season when Tamarix is still green, but are still on their nests during the period of summer defoliation. Affected river systems will require continued monitoring and development of adaptive management practices to maintain or enhance riparian habitat values. Multiplatform remote sensing methods are playing an essential role in monitoring defoliation and rates of ET on affected river systems.

  10. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity.

    PubMed

    McKenna, Duane D; Farrell, Brian D

    2006-07-18

    The high extant species diversity of tropical lineages of organisms is usually portrayed as a relatively recent and rapid development or as a consequence of the gradual accumulation or preservation of species over time. These explanations have led to alternative views of tropical forests as evolutionary "cradles" or "museums" of diversity, depending on the organisms under study. However, biogeographic and fossil evidence implies that the evolutionary histories of diversification among tropical organisms may be expected to exhibit characteristics of both cradle and museum models. This possibility has not been explored in detail for any group of terrestrial tropical organisms. From an extensively sampled molecular phylogeny of herbivorous Neotropical leaf beetles in the genus Cephaloleia, we present evidence for (i) comparatively ancient Paleocene-Eocene adaptive radiation associated with global warming and Cenozoic maximum global temperatures, (ii) moderately ancient lineage-specific diversification coincident with the Oligocene adaptive radiation of Cephaloleia host plants in the genus Heliconia, and (iii) relatively recent Miocene-Pliocene diversification coincident with the collision of the Panama arc with South America and subsequent bridging of the Isthmus of Panama. These results demonstrate that, for Cephaloleia and perhaps other lineages of organisms, tropical forests are at the same time both evolutionary cradles and museums of diversity. PMID:16818884

  11. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity

    PubMed Central

    McKenna, Duane D.; Farrell, Brian D.

    2006-01-01

    The high extant species diversity of tropical lineages of organisms is usually portrayed as a relatively recent and rapid development or as a consequence of the gradual accumulation or preservation of species over time. These explanations have led to alternative views of tropical forests as evolutionary “cradles” or “museums” of diversity, depending on the organisms under study. However, biogeographic and fossil evidence implies that the evolutionary histories of diversification among tropical organisms may be expected to exhibit characteristics of both cradle and museum models. This possibility has not been explored in detail for any group of terrestrial tropical organisms. From an extensively sampled molecular phylogeny of herbivorous Neotropical leaf beetles in the genus Cephaloleia, we present evidence for (i) comparatively ancient Paleocene–Eocene adaptive radiation associated with global warming and Cenozoic maximum global temperatures, (ii) moderately ancient lineage-specific diversification coincident with the Oligocene adaptive radiation of Cephaloleia host plants in the genus Heliconia, and (iii) relatively recent Miocene–Pliocene diversification coincident with the collision of the Panama arc with South America and subsequent bridging of the Isthmus of Panama. These results demonstrate that, for Cephaloleia and perhaps other lineages of organisms, tropical forests are at the same time both evolutionary cradles and museums of diversity. PMID:16818884

  12. Locomotion and attachment of leaf beetle larvae Gastrophysa viridula (Coleoptera, Chrysomelidae)

    PubMed Central

    Zurek, Daniel B.; Gorb, Stanislav N.; Voigt, Dagmar

    2015-01-01

    While adult green dock leaf beetles Gastrophysa viridula use tarsal adhesive setae to attach to and walk on smooth vertical surfaces and ceilings, larvae apply different devices for similar purposes: pretarsal adhesive pads on thoracic legs and a retractable pygopod at the 10th abdominal segment. Both are soft smooth structures and capable of wet adhesion. We studied attachment ability of different larval instars, considering the relationship between body weight and real contact area between attachment devices and the substrate. Larval gait patterns were analysed using high-speed video recordings. Instead of the tripod gait of adults, larvae walked by swinging contralateral legs simultaneously while adhering by the pygopod. Attachment ability of larval instars was measured by centrifugation on a spinning drum, revealing that attachment force decreases relative to weight. Contributions of different attachment devices to total attachment ability were investigated by selective disabling of organs by covering them with melted wax. Despite their smaller overall contact area, tarsal pads contributed to a larger extent to total attachment ability, probably because of their distributed spacing. Furthermore, we observed different behaviour in adults and larvae when centrifuged: while adults gradually slipped outward on the centrifuge drum surface, larvae stayed at the initial position until sudden detachment. PMID:25657837

  13. Transcriptome sequencing and analysis of the coconut leaf beetle, Brontispa longissima.

    PubMed

    Yan, W; Liu, L; Li, C X; Huang, S C; Ma, Z L; Qin, W Q; Peng, Z Q

    2015-01-01

    The coconut leaf beetle, Brontispa longissima, is a destructive pest of palm plants. Although its ecological and biological characteristics are well understood, its genetic information remains largely unknown. To advance our understanding of its molecular ba-sis of biology and ecology, we sequenced and analyzed its whole transcriptome by using high-throughput Illumina paired-end sequencing technology. Approximately 8.08 Gb of clean reads were generated in a single run, which were assembled by using Trinity into 41,652 unigenes with an average length of 932 bp. By sequence similarity searches for known proteins, 23,077 (55.4%) unigenes were annotated by BLASTx searches against the NCBI non-redundant protein database. Of the unigenes assembled, 18,153 and 13,733 were assigned to Gene Ontology and Clusters of Orthologous Groups of proteins, respectively. In addition, 10,415 unigenes were mapped onto 247 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. These transcriptomic resources will facilitate gene identification and elucidate the molecular mechanisms of biological and ecological aspects under-lying this palm pest, in order to design a new control strategy. PMID:26345762

  14. Field resistance of two soybean germplasm lines, HC95-15MB and HC95-24MB, against bean leaf beetle (Coleoptera: Chrysomelidae), western corn rootworm (Coleoptera: Chrysomelidae), and Japanese beetles (Coleoptera: Scarabaidae).

    PubMed

    Hammond, R B; Bierman, P; Levine, E; Cooper, R L

    2001-12-01

    Two recently released, Mexican bean beetle, Epilachna varivestis, Mulsant, resistant soybean, Glycine max (L.) Merrill, germplasm lines, HC95-15MB and HC95-24MB, were examined for foliar and pod feeding resistance to adult bean leaf beetles, Cerotoma trifurcata (Forster), western corn rootworms, Diabrotica virgifera virgifera LeConte, and Japanese beetles, Popillia japonica Newman. Both lines were planted along with a susceptible control cultivar in 18 by 30-m plots and separate 0.8-ha size fields. Insects were sampled on a weekly basis with a sweep net. In late summer, defoliation ratings were recorded along with data on percentage pod feeding. Although a few significant differences in insect densities were obtained among the soybean lines on some sampling dates, no specific trends were observed in the ability of the resistant germplasm to reduce insect numbers. Insect population densities were similarly on all lines. However, both resistant lines were able to reduce defoliation during the growing season. Conversely, percentage pod feeding was similar among all the soybean lines, with no differences observed. The resistant germplasm lines appear able to lower levels of defoliation, and thus, offer a potential management tactic where leaf feeding, i.e., defoliation, is of concern. However, their ability to greatly reduce beetle population densities, and for the bean leaf beetle, to reduce pod feeding, appears limited. PMID:11777070

  15. Two Defensive Lines in Juvenile Leaf Beetles; Esters of 3-nitropropionic Acid in the Hemolymph and Aposematic Warning.

    PubMed

    Pauls, Gerhard; Becker, Tobias; Rahfeld, Peter; Gretscher, Rene R; Paetz, Christian; Pasteels, Jacques; von Reuss, Stephan H; Burse, Antje; Boland, Wilhelm

    2016-03-01

    Juveniles of the leaf beetles in subtribe Chrysomelina have efficient defense strategies against predators. When disturbed, they transiently expose volatile deterrents in large droplets from nine pairs of defensive glands on their back. Here, we report on an additional line of defense consisting of the non-volatile isoxazolin-5-one glucoside and its 3-nitropropanoyl ester in the larval hemolymph. Because isoxazolin-5-one derivatives were not detectable in related leaf beetle taxa, they serve as a diagnostic marker for the Chrysomelina subtribe. Conjugation of isotopically labelled 3-nitropropionic acid to isoxazolin-5-one glucoside in vivo demonstrates its function as a carrier for the 3-nitropropanoyl esters. The previous identification of characteristic glucosides as precursors of the volatile deterrents underlines the general importance of glucosides for sequestration from food plants, and the subsequent transport in the hemolymph to the defense system. The combination of repellent volatiles with non-volatile toxic compounds in the hemolymph has the potential to create synergistic effects since the odorant stimulus may help predators learn to avoid some foods. The combination of the two defense lines has the advantage, that the hemolymph toxins provide reliable and durable protection, while the repellents may vary after a host plant change. PMID:27033853

  16. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: A molecular basis for adaptation and evolution

    PubMed Central

    Kuhn, Jürgen; Pettersson, Eva M.; Feld, Birte K.; Burse, Antje; Termonia, Arnaud; Pasteels, Jacques M.; Boland, Wilhelm

    2004-01-01

    Chrysomeline larvae respond to disturbance and attack by everting dorsal glandular reservoirs, which release defensive secretions. The ancestral defense is based on the de novo synthesis of monoterpene iridoids. The catabolization of the host-plant O-glucoside salicin into salicylaldehyde is a character state that evolved later in two distinct lineages, which specialized on Salicaceae. By using two species producing monoterpenes (Hydrothassa marginella and Phratora laticollis) and two sequestering species (Chrysomela populi and Phratora vitellinae), we studied the molecular basis of sequestration by feeding the larvae structurally different thioglucosides resembling natural O-glucosides. Their accumulation in the defensive systems demonstrated that the larvae possess transport systems, which are evolutionarily adapted to the glycosides of their host plants. Minor structural modifications in the aglycon result in drastically reduced transport rates of the test compounds. Moreover, the ancestral iridoid-producing leaf beetles already possess a fully functional import system for an early precursor of the iridoid defenses. Our data confirm an evolutionary scenario in which, after a host-plant change, the transport system of the leaf beetles may play a pivotal role in the adaptation on new hosts by selecting plant-derived glucosides that can be channeled to the defensive system. PMID:15365181

  17. Innate and Introduced Resistance Traits in Genetically Modified Aspen Trees and Their Effect on Leaf Beetle Feeding

    PubMed Central

    Hjältén, Joakim; Axelsson, E. Petter; Julkunen-Tiitto, Riitta; Wennström, Anders; Pilate, Gilles

    2013-01-01

    Genetic modifications of trees may provide many benefits, e.g. increase production, and mitigate climate change and herbivore impacts on forests. However, genetic modifications sometimes result in unintended effects on innate traits involved in plant-herbivore interactions. The importance of intentional changes in plant defence relative to unintentional changes and the natural variation among clones used in forestry has not been evaluated. By a combination of biochemical measurements and bioassays we investigated if insect feeding on GM aspens is more affected by intentional (induction Bt toxins) than of unintentional, non-target changes or clonal differences in innate plant defence. We used two hybrid wildtype clones (Populus tremula x P. tremuloides and Populus tremula x P. alba) of aspen that have been genetically modified for 1) insect resistance (two Bt lines) or 2) reduced lignin properties (two lines COMT and CAD), respectively. Our measurements of biochemical properties suggest that unintended changes by GM modifications (occurring due to events in the transformation process) in innate plant defence (phenolic compounds) were generally smaller but fundamentally different than differences seen among different wildtype clones (e.g. quantitative and qualitative, respectively). However, neither clonal differences between the two wildtype clones nor unintended changes in phytochemistry influenced consumption by the leaf beetle (Phratora vitellinae). By contrast, Bt induction had a strong direct intended effect as well as a post experiment effect on leaf beetle consumption. The latter suggested lasting reduction of beetle fitness following Bt exposure that is likely due to intestinal damage suffered by the initial Bt exposure. We conclude that Bt induction clearly have intended effects on a target species. Furthermore, the effect of unintended changes in innate plant defence traits, when they occur, are context dependent and have in comparison to Bt induction

  18. Studying the organization of genes encoding plant cell wall degrading enzymes in Chrysomela tremula provides insights into a leaf beetle genome.

    PubMed

    Pauchet, Y; Saski, C A; Feltus, F A; Luyten, I; Quesneville, H; Heckel, D G

    2014-06-01

    The ability of herbivorous beetles from the superfamilies Chrysomeloidea and Curculionoidea to degrade plant cell wall polysaccharides has only recently begun to be appreciated. The presence of plant cell wall degrading enzymes (PCWDEs) in the beetle's digestive tract makes this degradation possible. Sequences encoding these beetle-derived PCWDEs were originally identified from transcriptomes and strikingly resemble those of saprophytic and phytopathogenic microorganisms, raising questions about their origin; e.g. are they insect- or microorganism-derived? To demonstrate unambiguously that the genes encoding PCWDEs found in beetle transcriptomes are indeed of insect origin, we generated a bacterial artificial chromosome library from the genome of the leaf beetle Chrysomela tremula, containing 18 432 clones with an average size of 143 kb. After hybridizing this library with probes derived from 12 C. tremula PCWDE-encoding genes and sequencing the positive clones, we demonstrated that the latter genes are encoded by the insect's genome and are surrounded by genes possessing orthologues in the genome of Tribolium castaneum as well as in three other beetle genomes. Our analyses showed that although the level of overall synteny between C. tremula and T. castaneum seems high, the degree of microsynteny between both species is relatively low, in contrast to the more closely related Colorado potato beetle. PMID:24456018

  19. Oviposition strategy as a means of local adaptation to plant defence in native and invasive populations of the viburnum leaf beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivores have been hypothesized to adapt locally to variation in plant defences and such adaptation could facilitate novel associations in the context of biological invasions. Here, we show that in the native range of the viburnum leaf beetle (VLB, Pyrrhalta viburni), two populations of geographi...

  20. Phenology and Abundance of Bean Leaf Beetle (Coleoptera: Chrysomelidae) in Eastern South Dakota on Alfalfa and Soybean Relative to Tillage, Fertilization and Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenology and abundance of bean leaf beetles, Cerotoma trifurcata (Förster), were examined throughout two eastern South Dakota growing seasons in relation to grain yields in chisel- and ridge-tilled soybeans [Glycine max (L.) Merrill] grown in 2-yr rotation with corn (Zea mays L.) with and without a...

  1. Biological Control of Saltcedar (Tamarix spp.) in South Texas with the Saltcedar Leaf Beetle, Diorhabda elongata, and Effects on Athel (T.aphylla).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of saltcedar (Tamarix spp.) has involved releases of exotic saltcedar leaf beetles, Diorhabda elongata Brullé sensu lato, in the western U.S. Adults in field cages feed, oviposit, and produce larvae on athel (Tamarix aphylla), an evergreen tree used in the southwestern U.S. and n...

  2. Tamarisk Water Flux Patterns Before, During and After Episodic Defoliation by the Salt Cedar Leaf Beetle on the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Nagler, P. L.; Dennison, P. E.

    2008-12-01

    Tamarisk (Tamarix) species are among the most successful plant invaders in the western United States, and has had significant impacts on watershed hydrology and water resources. Accordingly, local, state and federal agencies have undertaken considerable efforts to eradicate tamarisk and restore riparian habitats to pre-invasion status. A biological control - the saltcedar leaf beetle (Diorhabda elongata) - was released in the summer of 2004 at several locations in eastern Utah, USA to control the spread and impact of tamarisk within the Colorado River watershed. Beginning in April of 2008, sap flux techniques were used to monitor changes in transpiration fluxes in response to canopy defoliation by the beetle. Specifically we installed modified (10 mm length) heat dissipation probes into the main stem of 20 mature tamarisk trees within a single stand on the Colorado Plateau. In July, the saltcedar leaf beetle reduced the total leaf area to near 0% of pre-beetle invasion status. Consequently, sap flux declined by up to 80% compared to pre-beetle invasion fluxes. By mid-August, refoliation of the canopy occurred, and sap flux rates returned to pre- defoliation status. Sap flux rates prior to defoliation were modeled against atmospheric vapor pressure deficit in order to predict the amount of water salvage from defoliation. Sap flux from June 1 through September 1 was on average 36% lower than predicted values. Combined with scaling techniques, the heat dissipation approach shows a high potential for monitoring changes in watershed hydrology in response to tamarisk defoliation by the saltcedar leaf beetle. Nevertheless, tamarisk sap flux studies with heat dissipation probes presents several challenges, including, narrow sapwood depth, low flux rates in response to defoliation, and large thermal gradients that are inevitable in warm climates (particularly after defoliation removes canopy shading). We will present results from ongoing research to address these potential

  3. Regional scale impacts of Tamarix leaf beetles (Diorhabda carinulata) on the water availability of western U.S. rivers as determined by multi-scale remote sensing methods

    USGS Publications Warehouse

    Nagler, Pamela L.; Brown, Tim; Hultine, Kevin R.; van Riper, Charles, III; Bean, Daniel W.; Dennison, Philip E.; Murray, R. Scott; Glenn, Edward P.

    2012-01-01

    Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western U.S. rivers to control introduced shrubs in the genus Tamarix. Part of the motivation to control Tamarix is to salvage water for human use. Information is needed on the impact of beetles on Tamarix seasonal leaf production and subsequent water use overwide areas andmultiple cycles of annual defoliation.Herewe combine ground data with high resolution phenocam imagery and moderate resolution (Landsat) and coarser resolution (MODIS) satellite imagery to test the effects of beetles on Tamarix evapotranspiration (ET) and leaf phenology at sites on six western rivers. Satellite imagery covered the period 2000 to 2010 which encompassed years before and after beetle release at each study site. Phenocam images showed that beetles reduced green leaf cover of individual canopies by about 30% during a 6-8 week period in summer, but plants produced new leaves after beetles became dormant in August, and over three years no net reduction in peak summer leaf production was noted. ETwas estimated by vegetation index methods, and both Landsat and MODIS analyses showed that beetles reduced ET markedly in the first year of defoliation, but ET recovered in subsequent years. Over all six sites, ET decreased by 14% to 15% by Landsat and MODIS estimates, respectively. However, resultswere variable among sites, ranging fromno apparent effect on ET to substantial reduction in ET. Baseline ET rates before defoliation were low, 394 mmyr-1 by Landsat and 314 mm yr-1 by MODIS estimates (20-25% of potential ET), further constraining the amount of water that could be salvaged. Beetle-Tamarix interactions are in their early stage of development on this continent and it is too soon to predict the eventual extent towhich Tamarix populationswill be reduced. The utility of remote sensing methods for monitoring defoliation was constrained by the small area covered by each phenocamimage, the low temporal resolution of

  4. Faunistic patterns of leaf beetles (Coleoptera, Chrysomelidae) within elevational and temporal gradients in Sierra de San Carlos, Mexico

    PubMed Central

    Sánchez-Reyes, Uriel Jeshua; Niño-Maldonado, Santiago; Barrientos-Lozano, Ludivina; Clark, Shawn M.; Jones, Robert W.

    2016-01-01

    Abstract The study of biodiversity of Chrysomelidae in Mexico and its variation within ecological gradients has increased recently, although important areas in the country remain to be explored. We conducted a faunistic inventory and analyzed the elevational and temporal variation of leaf beetle communities in the Sierra de San Carlos, in the state of Tamaulipas, in northeastern Mexico. This is an area with high to extreme priority for conservation, and due to its insular geographical position and to the vegetational communities present, it must be considered as a sky island. We selected seven sample sites distributed in different elevations within three localities, and comprising different vegetational communities. At each site, we randomly delimited 12 sample plots of 400 m2 where sampling was conducted by entomological sweep netting and collecting directly by hand. Sampling was conducted monthly at each plot, for a total of 1,008 samples between February 2013 and January 2014. By the end of the study, we had obtained a total of 3,081 specimens belonging to six subfamilies, 65 genera, and 113 species, with Trichaltica scabricula (Crotch, 1873) being recorded for first time in Mexico. Species richness was less than the values observed at other studies conducted in the same region, which is attributed to differences in the number of plant species and to the insular location of Sierra de San Carlos; however, the higher diversity values suggest a higher quality of natural resources and vegetational communities. No consistent pattern of leaf beetle communities was correlated with elevation, although higher values of species richness and diversity were obtained at the highest elevation site. The seasonal gradient showed that the rainy season is most favorable for leaf beetle communities. We found that species composition was different between sites and months, and also that there exists a significant association between the abundance obtained at each site and

  5. Faunistic patterns of leaf beetles (Coleoptera, Chrysomelidae) within elevational and temporal gradients in Sierra de San Carlos, Mexico.

    PubMed

    Sánchez-Reyes, Uriel Jeshua; Niño-Maldonado, Santiago; Barrientos-Lozano, Ludivina; Clark, Shawn M; Jones, Robert W

    2016-01-01

    The study of biodiversity of Chrysomelidae in Mexico and its variation within ecological gradients has increased recently, although important areas in the country remain to be explored. We conducted a faunistic inventory and analyzed the elevational and temporal variation of leaf beetle communities in the Sierra de San Carlos, in the state of Tamaulipas, in northeastern Mexico. This is an area with high to extreme priority for conservation, and due to its insular geographical position and to the vegetational communities present, it must be considered as a sky island. We selected seven sample sites distributed in different elevations within three localities, and comprising different vegetational communities. At each site, we randomly delimited 12 sample plots of 400 m(2) where sampling was conducted by entomological sweep netting and collecting directly by hand. Sampling was conducted monthly at each plot, for a total of 1,008 samples between February 2013 and January 2014. By the end of the study, we had obtained a total of 3,081 specimens belonging to six subfamilies, 65 genera, and 113 species, with Trichaltica scabricula (Crotch, 1873) being recorded for first time in Mexico. Species richness was less than the values observed at other studies conducted in the same region, which is attributed to differences in the number of plant species and to the insular location of Sierra de San Carlos; however, the higher diversity values suggest a higher quality of natural resources and vegetational communities. No consistent pattern of leaf beetle communities was correlated with elevation, although higher values of species richness and diversity were obtained at the highest elevation site. The seasonal gradient showed that the rainy season is most favorable for leaf beetle communities. We found that species composition was different between sites and months, and also that there exists a significant association between the abundance obtained at each site and particular

  6. Host finding and acceptance preference of the yellowmargined leaf beetle, Microtheca ochroloma (Coleoptera: Chrysomelidae), on cruciferous crops.

    PubMed

    Balusu, Rammohan R; Fadamiro, Henry Y

    2011-12-01

    The yellowmargined leaf beetle, Microtheca ochroloma Stål (Coleoptera: Chrysomelidae), is an introduced pest of cruciferous crops in the southern United States, and arguably the most damaging pest of organic crucifer vegetable production in the region. Studies were conducted in the greenhouse and laboratory to investigate host finding and acceptance preference of M. ochroloma on four commonly grown cruciferous crops: cabbage (Brassica oleracea L. variety capitata), collards (B. oleracea L. variety acephala), napa cabbage [B. pekinensis (Lour.)], and turnip (B. rapa L.) First, adult beetles were allowed to choose among the four plants in a multiple-choice greenhouse cage experiment and host preference was evaluated by using three parameters: number of beetles on each plant, number of larvae on each plant, and plant damage ratings. The results showed that M. ochroloma adults actively discriminated among the four host plants, with significantly higher numbers recorded on turnip and napa cabbage than on cabbage or collards. Significantly higher numbers of larvae also were recorded on turnip and napa cabbage starting on day 10. Similarly, higher damage ratings were recorded on turnip and napa cabbage than on the remaining two hosts. Results of four-choice olfactometer experiments, which compared attraction of M. ochroloma to headspace volatiles of the four host plants, demonstrated that host preference is mediated primarily by plant volatiles. Both sexes were significantly more attracted to napa cabbage than to the remaining treatments, with turnip being the second most attractive plant. These results confirm that turnip and napa cabbage are two preferred host plants of M. ochroloma, and may support the development of a trap crop system and attractant-based strategies for managing M. ochroloma in crucifer production. PMID:22217763

  7. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    PubMed Central

    2012-01-01

    Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs). The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH) families: GH11 (xylanases), GH28 (polygalacturonases or pectinases), and GH45 (β-1,4-glucanases or cellulases). Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs) families as well as polygalacturonase-inhibiting proteins (PGIPs) were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome analyses could be

  8. Southern pine beetle, Dendroctonus frontalis, antennal and behavioral responses to nonhost leaf and bark volatiles.

    PubMed

    Shepherd, William P; Sullivan, Brian T

    2013-04-01

    A growing body of evidence suggests that bark beetles detect and avoid release points of volatile compounds associated with nonhost species, and thus such nonhost volatiles may have potential utility in the management of bark beetles. We used a coupled gas chromatograph-electroantennographic detector (GC-EAD) to assay the olfactory sensitivity of the southern pine beetle, Dendroctonus frontalis Zimmermann, to volatiles from leaves and bark of eight species of nonhost angiosperm trees that are common in the range of D. frontalis. Tree species sampled were red maple (Acer rubrum L.), mockernut hickory [Carya alba (L.) Nutt. ex Ell.], sweetgum (Liquidambar styraciflua L.), black tupelo (Nyssa sylvatica Marsh.), black cherry (Prunus serotina Ehrh.), southern red oak (Quercus falcata Michx.), blackjack oak [Quercus marilandica (L.) Muenchh.], and water oak (Quercus nigra L.). Beetle antennae responded to a total of 28 identifiable compounds in these samples. The relative olfactory responsiveness to 14 of these, as well as to nonanoic acid and four additional volatiles reported to be associated with nonhost angiosperms, was assessed in GC-EAD analyses of synthetic dilutions spanning six orders of magnitude. The largest response voltage amplitudes were obtained with trans-conophthorin, nonanoic acid, terpinen-4-ol, phenylethyl alcohol, and eucalyptol, whereas the lowest response thresholds were to nonanoic acid, nonanal, linalool, (E)-2-hexen-1-ol, and phenylethyl alcohol. Funnel traps baited with various combinations of eleven antennally-active angiosperm volatiles along with a standard attractant captured significantly fewer male and female D. frontalis than traps baited with the standard attractant alone. Our data suggest that a diversity of semiochemicals may be involved in host species discrimination by D. frontalis, and several may have utility in their management. PMID:23460417

  9. Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline.

    PubMed

    Zvereva, Elena L; Hunter, Mark D; Zverev, Vitali; Kozlov, Mikhail V

    2016-10-01

    Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores. PMID:27266523

  10. Tissue-Specific Transcript Profiling for ABC Transporters in the Sequestering Larvae of the Phytophagous Leaf Beetle Chrysomela populi

    PubMed Central

    Gretscher, René R.; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Background Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. Results In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. Conclusion We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant

  11. Population Structure, Genetic Variability, and Gene Flow of the Bean Leaf Beetle, Cerotoma trifurcata, in the Midwestern United States

    PubMed Central

    Tiroesele, Bamphitlhi; Skoda, Steven R.; Hunt, Thomas E.; Lee, Donald J.; Molina-Ochoa, Jaime; Foster, John E.

    2014-01-01

    Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is a common pest of soybean in the Midwest United States. However, there are currently no reports on the genetic variability of C. trifurcata. This study examined 15–30 individuals from 25 sample locations to estimate genetic variability and gene flow within and among C. trifurcata from across the Midwest. Amplified fragment length polymorphism generated 175 markers for analyses. Results from analysis of molecular variance (AMOVA) indicated that the majority of genetic variation was from within samples; only a small amount of the total variation was attributed to the variation among the samples. The GST for the entire C. trifurcata population indicated that the majority of genetic variation was found within the samples, further supporting the AMOVA results. The estimated average gene flow among the C. trifurcata samples was 1.83. The Mantel test revealed no indication of correlation between geographical and genetic distance for all the C. trifurcata samples. These findings show that C. trifurcata in the Midwest are genetically heterogeneous and part of a large, interbreeding population. PMID:25373209

  12. Rare Failures of DNA Bar Codes to Separate Morphologically Distinct Species in a Biodiversity Survey of Iberian Leaf Beetles

    PubMed Central

    Baselga, Andrés; Gómez-Rodríguez, Carola; Novoa, Francisco; Vogler, Alfried P.

    2013-01-01

    During a survey of genetic and species diversity patterns of leaf beetle (Coleoptera: Chrysomelidae) assemblages across the Iberian Peninsula we found a broad congruence between morphologically delimited species and variation in the cytochrome oxidase (cox1) gene. However, one species pair each in the genera Longitarsus Berthold and Pachybrachis Chevrolat was inseparable using molecular methods, whereas diagnostic morphological characters (including male or female genitalia) unequivocally separated the named species. Parsimony haplotype networks and maximum likelihood trees built from cox1 showed high genetic structure within each species pair, but no correlation with the morphological types and neither with geographic distributions. This contrasted with all analysed congeneric species, which were recovered as monophyletic. A limited number of specimens were sequenced for the nuclear 18S rRNA gene, which showed no or very limited variation within the species pair and no separation of morphological types. These results suggest that processes of lineage sorting for either group are lagging behind the clear morphological and presumably reproductive separation. In the Iberian chrysomelids, incongruence between DNA-based and morphological delimitations is a rare exception, but the discovery of these species pairs may be useful as an evolutionary model for studying the process of speciation in this ecological and geographical setting. In addition, the study of biodiversity patterns based on DNA requires an evolutionary understanding of these incongruences and their potential causes. PMID:24040352

  13. A Novel Formulation of Bacillus thuringiensis for the Control of Brassica Leaf Beetle, Phaedon brassicae (Coleoptera: Chrysomelidae).

    PubMed

    Kim, Eunseong; Jeoung, Sujin; Park, Youngjin; Kim, Kunwoo; Kim, Yonggyun

    2015-12-01

    Cabbage is a major vegetable crop over the world. Various insect pests can affect cabbage production. Excessive spray of chemical insecticides can lead to the development of insecticide resistance with various adverse effects on the environment and humans. Brassica leaf beetle, Phaedon brassicae Baly, is a coleopteran pest. Both larvae and adults cause damages to cabbage. The objective of this study was to develop an effective microbial insecticide against P. brassicae by adding an immunosuppressive agent to Bacillus thuringiensis (Bt). The immunosuppressive agent was chosen from bacterial cultured broth of Photorhabdus temperata subsp. temperata (Ptt). Reverse phase HPLC revealed that Ptt-cultured broth possessed at least two eicosanoid biosynthesis inhibitors (oxindole and indole) in its hexane extract. The bacterial cultured broth exhibited potent immunosuppressive activity against P. brassicae. Based on toxicity results, B. thuringiensis subsp. tenebrionis (BtT) was selected from four strains of Bts. When Ptt-cultured broth was added to spore-producing BtT cells, the insecticidal activities of BtT against both larvae and adults of P. brassicae were significantly increased. This bacterial mixture applied to develop a "Bt-Plus," which was formulated by mixing BtT cells (10(11) spores per ml) and 48-h Ptt-cultured broth along with additives (surfactant and preservative). When Bt-Plus was sprayed to cabbage infested by P. brassicae at 1,000-fold dilution, the mixture exhibited much higher control efficacy than BtT treatment alone, suggesting it could be used as a novel Bt insecticide for the control of P. brassicae. PMID:26470390

  14. Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L.

    PubMed

    Delaney, Kevin J; Wawrzyniak, Maria; Lemańczyk, Grzegorz; Wrzesińska, Danuta; Piesik, Dariusz

    2013-05-01

    The plant semiochemical cis-jasmone primes/induces plant resistance that deters herbivores and attracts natural enemies. We studied the induction of volatile organic compounds (VOCs) in winter wheat and spring barley after exposure of plants to three synthetic cis-jasmone doses (50 μl of 1, 100, and 1 × 10(4) ng μl(-1)) and durations of exposure (1, 3, and 6 h). Cereal leaf beetle, Oulema melanopus, adult behavioral responses were examined in a Y-tube olfactometer to cis-jasmone induced plant VOC bouquets and to two synthetic blends of VOCs (3 green leaf volatiles (GLVs); 4 terpenes + indole). In both cereals, eight VOCs [(Z)-3-hexanal, (Z)-3-hexanol, (Z)-3-hexanyl acetate, (Z)-β-ocimene, linalool, β-caryophyllene, (E)-ß-farnesene, and indole] were induced 100- to 1000-fold after cis-jasmone exposure. The degree of induction in both cereals was usually positively and linearly associated with increasing exposure dose and duration. However, VOC emission rate was only ~2-fold greater from plants exposed to the highest vs. lowest cis-jasmone exposure doses (1 × 10(4) difference) or durations (6-fold difference). Male and female O. melanopus were deterred by both cereal VOC bouquets after plant exposure to the high cis-jasmone dose (1 × 10(4) ng μl(-1)), while females were also deterred after plant exposure to the low dose (1 ng μl(-1)) but attracted to unexposed plant VOC bouquets. Both O. melanopus sexes were repelled by terpene/indole and GLV blends at two concentrations (25 ng · min(-1); 125 ng · min(-1)), but attracted to the lowest dose (1 ng · min(-1)) of a GLV blend. It is possible that the biologically relevant low cis-jasmone dose has ecological activity and potential for inducing field crop VOCs to deter O. melanopus. PMID:23588742

  15. Functional morphology of the copulatory organs of a reed beetle and a shining leaf beetle (Coleoptera: Chrysomelidae: Donaciinae, Criocerinae) using X-ray micro-computed tomography *

    PubMed Central

    Schmitt, Michael; Uhl, Gabriele

    2015-01-01

    Abstract For more than 100 years it has been known that the sclerotised median lobe of beetles harbours a membranous structure (the "internal sac" or "endophallus") which is everted during copula inside the female genital tract. In order to explore the functional role of this structure and those associated with it, we cryofixed copulating pairs of Donacia semicuprea and Lilioceris lilii and studied the relative position of the elements of the copulatory apparatus of males and females by micro-computer-tomography. We found that the everted endophallus fills the lumen of the bursa copulatrix completely. Our data suggest that in Lilioceris lilii the tip of the sclerotised distal part of the ejaculatory duct, the flagellum, is positioned exactly over the opening of the spermathecal duct inside the bursa copulatrix. The mouth of the bursa copulatrix in Donacia semicuprea is armed with a strong muscle ring, and the whole wall of the bursa is covered externally with a layer of muscle fibres. These morphological differences correspond with differences in mating behaviour: In reed beetles (Donaciinae), females seemingly can control mating to a higher degree than in lily beetles (Lilioceris spp.). PMID:26798321

  16. Overshoot in Leaf Development of Ponderosa Pine in Wet Years Leads to Bark Beetle Outbreaks on Fine-Textured Soils in Drier Years

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Waring, R. H.

    2014-12-01

    Frequent outbreaks of insects and diseases have been recorded in forests of western North America during the past few decades, but the distribution of these outbreaks has not been uniform. In some cases, recent climatic variations along with the age and density of forests may explain some spatial variation. Forest managers and policy makers would benefit if areas prone to disturbance could be recognized so that mitigating actions could be taken. In this paper, we used two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modelling approach that couples information from remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. There was a slight downward trend in precipitation for both sites over the period between 1998 and 2010, and, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier and more severely on one site than the other. The initial canopy density of the two sites was also similar, with leaf area indices derived via Landsat imagery ranging between 1.6- 2.0 m2 m-2. We wondered if the difference in bark beetle activity might be related to soils that were fine-textured at site I and coarse-textured at site II. We applied a process-based stand growth model (3-PG) to analyze the data and evaluate the hypotheses.

  17. Host range validation, molecular identification, and release and establishment of a Chinese biotype of the Asian leaf beetle Lilioceris cheni (Coleoptera:Chrysomelidae:Criocerinae) for control of Dioscorea bulbifera L. in ...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dioscorea bulbifera, an Asian vine, is invasive in the southeastern USA. It rarely flowers but propagates from potato-like bulbils formed in leaf axils, which persist into the subsequent growing season. Lilioceris cheni Gressitt and Kimoto, a foliage-feeding beetle (Coleoptera: Chrysomelidae: Crio...

  18. Stevesaltica, a new genus of moss and leaf-litter inhabiting flea beetles from Bolivia (Coleoptera: Chrysomelidae: Galerucinae: Alticini)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new genus (Stevesaltica) with two new species (S. normi and S. perdita) from Bolivia is described and illustrated. It is similar to Exoceras Jacoby. An identification key for all flea beetle genera known to occur in mosses in the Western Hemisphere is provided....

  19. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve

    PubMed Central

    Rahfeld, Peter; Kirsch, Roy; Kugel, Susann; Wielsch, Natalie; Stock, Magdalena; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Larvae of the leaf beetle subtribe Chrysomelina sensu stricto repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors (e.g. salicylaldehyde). The autonomous production of iridoids, as in Phaedon cochleariae, is the ancestral chrysomeline chemical defence and predates the evolution of salicylaldehyde-based defence. Both biosynthesis strategies include an oxidative step of an alcohol intermediate. In salicylaldehyde-producing species, this step is catalysed by salicyl alcohol oxidases (SAOs) of the glucose-methanol-choline (GMC) oxidoreductase superfamily, but the enzyme oxidizing the iridoid precursor is unknown. Here, we show by in vitro as well as in vivo experiments that P. cochleariae also uses an oxidase from the GMC superfamily for defensive purposes. However, our phylogenetic analysis of chrysomeline GMC oxidoreductases revealed that the oxidase of the iridoid pathway originated from a GMC clade different from that of the SAOs. Thus, the evolution of a host-independent chemical defence followed by a shift to a host-dependent chemical defence in chrysomeline beetles coincided with the utilization of genes from different GMC subfamilies. These findings illustrate the importance of the GMC multi-gene family for adaptive processes in plant–insect interactions. PMID:24943369

  20. Approved quarantine treatment for Hessian fly (Diptera: Cecidomyiidae) in large-size hay bales and Hessian fly and cereal leaf beetle (Coleoptera: Chrysomelidae) control by bale compression.

    PubMed

    Yokoyama, Victoria Y

    2011-06-01

    A quarantine treatment using bale compression (32 kg/cm2 pressure) and phosphine fumigation (61 g/28.3 m3 aluminum phosphide for 7 d at 20 degrees C) was approved to control Hessian fly, Mayetiola destructor (Say), in large-size, polypropylene fabric-wrapped bales exported from the western states to Japan. No Hessian fly puparia (45,366) survived to the adult stage in infested wheat, Triticum aestivum L., seedlings exposed to the treatment in a large-scale commercial test. Daily temperatures (mean +/- SEM) inside and among bales in three test freight containers were 17.8 +/- 0.2 front top, 17.0 +/- 0.2 front bottom, 17.3 +/- 0.2 middle bale, 15.7 +/- 0.3 middle air, 18.5 +/- 0.1 back top, and 18.1 +/- 0.1 degrees C back bottom, allowing the fumigation temperature to be established at > or = 20 degrees C. Mean fumigant concentrations ranged from 208 to 340 ppm during the first 3 d and ranged from 328 to 461 ppm after 7 d of fumigation. Copper plate corrosion values inside the doors, and in the middle of the large-size bales in all locations indicated moderate exposure to hydrogen phosphide (PH3). PH3 residues were below the U.S. Environmental Protection Agency tolerance of 0.1 ppm in animal feeds. The research was approved by Japan and U.S. regulatory agencies, and regulations were implemented on 20 May 2005. Compression in large-size bale compressors resulted in 3-3.6 and 0% survival of Hessian fly puparia and cereal leaf beetle, Oulema melanopus (L.), respectively. Bale compression can be used as a single treatment for cereal leaf beetle and as a component in a systems approach for quarantine control of Hessian fly. PMID:21735895

  1. Leaf beetles are ant-nest beetles: the curious life of the juvenile stages of case-bearers (Coleoptera, Chrysomelidae, Cryptocephalinae).

    PubMed

    Agrain, Federico A; Buffington, Matthew L; Chaboo, Caroline S; Chamorro, Maria L; Schöller, Matthias

    2015-01-01

    Although some species of Cryptocephalinae (Coleoptera: Chrysomelidae) have been documented with ants (Hymenoptera: Formicidae) for almost 200 years, information on this association is fragmentary. This contribution synthesizes extant literature and analysizes the data for biological patterns. Myrmecophily is more common in the tribe Clytrini than in Cryptocephalini, but not documented for Fulcidacini or the closely-related Lamprosomatinae. Myrmecophilous cryptocephalines (34 species in 14 genera) primarily live among formicine and myrmecines ants as hosts. These two ant lineages are putative sister-groups, with their root-node dated to between 77-90 mya. In the New World tropics, the relatively recent radiation of ants from moist forests to more xeric ecosystems might have propelled the association of cryptocephalines and ant nests. Literature records suggest that the defensive behavioral profile or chemical profile (or both) of these ants has been exploited by cryptocephalines. Another pattern appears to be that specialized natural enemies, especially parasitoid Hymenoptera, exploit cryptocephaline beetles inside the ant nests. With the extant data at hand, based on the minimum age of a fossil larva dated to 45 mya, we can infer that the origin of cryptocephaline myrmecophily could have arisen within the Upper Cretaceous or later. It remains unknown how many times myrmecophily has appeared, or how old is the behavior. This uncertainty is compounded by incongruent hypotheses about the origins of Chrysomelidae and angiosperm-associated lineages of cryptocephalines. Living with ants offers multiple advantages that might have aided the colonization of xeric environments by some cryptocephaline species. PMID:26798319

  2. Leaf beetles are ant-nest beetles: the curious life of the juvenile stages of case-bearers (Coleoptera, Chrysomelidae, Cryptocephalinae)

    PubMed Central

    Agrain, Federico A.; Buffington, Matthew L.; Chaboo, Caroline S.; Chamorro, Maria L.; Schöller, Matthias

    2015-01-01

    Abstract Although some species of Cryptocephalinae (Coleoptera: Chrysomelidae) have been documented with ants (Hymenoptera: Formicidae) for almost 200 years, information on this association is fragmentary. This contribution synthesizes extant literature and analysizes the data for biological patterns. Myrmecophily is more common in the tribe Clytrini than in Cryptocephalini, but not documented for Fulcidacini or the closely-related Lamprosomatinae. Myrmecophilous cryptocephalines (34 species in 14 genera) primarily live among formicine and myrmecines ants as hosts. These two ant lineages are putative sister-groups, with their root-node dated to between 77–90 mya. In the New World tropics, the relatively recent radiation of ants from moist forests to more xeric ecosystems might have propelled the association of cryptocephalines and ant nests. Literature records suggest that the defensive behavioral profile or chemical profile (or both) of these ants has been exploited by cryptocephalines. Another pattern appears to be that specialized natural enemies, especially parasitoid Hymenoptera, exploit cryptocephaline beetles inside the ant nests. With the extant data at hand, based on the minimum age of a fossil larva dated to 45 mya, we can infer that the origin of cryptocephaline myrmecophily could have arisen within the Upper Cretaceous or later. It remains unknown how many times myrmecophily has appeared, or how old is the behavior. This uncertainty is compounded by incongruent hypotheses about the origins of Chrysomelidae and angiosperm-associated lineages of cryptocephalines. Living with ants offers multiple advantages that might have aided the colonization of xeric environments by some cryptocephaline species. PMID:26798319

  3. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata)

    USGS Publications Warehouse

    Hultine, K.R.; Nagler, P.L.; Morino, K.; Bush, S.E.; Burtch, K.G.; Dennison, P.E.; Glenn, E.P.; Ehleringer, J.R.

    2010-01-01

    The release of the saltcedar beetle (Diorhabda carinulata) has resulted in the periodic defoliation of tamarisk (Tamarix spp.) along more than 1000 river km in the upper Colorado River Basin and is expected to spread along many other river reaches throughout the upper basin, and possibly into the lower Colorado River Basin. Identifying the impacts of these release programs on tamarisk water use and subsequent water cycling in arid riparian systems are largely unknown, due in part to the difficulty of measuring water fluxes in these systems. We used lab-calibrated, modified heat-dissipation sap flux sensors to monitor tamarisk water use (n=20 trees) before, during and after defoliation by the saltcedar leaf beetle during the 2008 and 2009 growing seasons (May-October) in southeastern Utah. We incorporated a simple model that related mean stem sap flux density (Js) with atmospheric vapor pressure deficit (vpd) before the onset of defoliation in 2008. The model was used to calculate differences between predicted Js and Js measured throughout the two growing seasons. Episodic defoliation resulted in a 16% reduction in mean annual rates of Js in both 2008 and 2009, with decreases occurring only during the periods in which the trees were defoliated (about 6-8 weeks per growing season). In other words, rates of Js rebounded to values predicted by the model when the trees produced new leaves after defoliation. Sap flux data were scaled to stand water use by constructing a tamarisk-specific allometric equation to relate conducting sapwood area to stem diameter, and by measuring the size distribution of stems within the stand. Total water use in both years was 0.224m, representing a reduction of about 0.04myr-1. Results showed that repeated defoliation/refoliation cycles did not result in a progressive decrease in either leaf production or water use over the duration of the study. This investigation improves ground-based estimates of tamarisk water use, and will support

  4. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus.

    PubMed

    Piesik, Dariusz; Lemńczyk, Grzegorz; Skoczek, Agata; Lamparski, Robert; Bocianowski, Jan; Kotwica, Karol; Delaney, Kevin J

    2011-09-01

    Fusarium infection of maize leaves and/or roots through the soil can stimulate the emission of volatile organic compounds (VOCs). It is also well known that VOC emission from maize plants can repel or attract pests. In our experiments, we studied VOC induction responses of Zea mays L. ssp. mays cv. 'Prosna' having Fusarium infection (mix of four species) in leaves or roots, then tested for VOC induction of uninfected neighboring plants, and finally examined wind-tunnel behavioral responses of the adult cereal leaf beetle, Oulema melanopus L. (Chrysomelidae: Coleoptera) behavior to four induced VOCs. In the first part of our experiment, we confirmed that several green leaf volatiles (GLVs; (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexen-1-yl acetate, 1-hexyl acetate), terpenes (β-pinene, β-myrcene, Z-ocimene, linalool, β-caryophyllene), and shikimic acid pathway derivatives (benzyl acetate, methyl salicylate, indole) were positively induced from maize plants infected by Fusarium spp. The quantities of induced VOCs were higher at 7d than 3d post-infection and greater when plants were infected with Fusarium on leaves rather than through soil. In the second part of our experiment, uninfected maize plants also showed significantly positive induction of several VOCs when neighboring an infected plant where the degree of induction was negatively related to the distance from the infected plant. In the third part of our experiment, a Y-tube bioassay was used to evaluate upwind orientation of adult cereal leaf beetles to four individual VOCs. Female and male O. melanopus were significantly attracted to the GLVs (Z)-3-hexenal and (Z)-3-hexenyl acetate, and the terpenes linalool and β-caryophyllene. Our results indicate that a pathogen can induce several VOCs in maize plants that also induce VOCs in neighboring uninfected plants, though VOC induction could increase the range at which an insect pest species is attracted to VOC inducing plants

  5. Ground measured evapotranspiration scaled to stand level using MODIS and Landsat sensors to study Tamarix spp.response to repeated defoliation by the Tamarix leaf beetle at two sites

    NASA Astrophysics Data System (ADS)

    Pearlstein, S.; Nagler, P. L.; Glenn, E. P.; Hultine, K. R.

    2012-12-01

    The Dolores River in Southern Utah and the Virgin River in Southern Nevada are ecosystems under pressure from increased groundwater withdrawal due to growing populations and introduced riparian species. We studied the impact of the biocontrol Tamarix leaf beetles (Dirohabda carinulata and D. elongata) on the introduced riparian species, Tamarix spp., phenology and water use over multiple cycles of annual defoliation. Heat balance sap flow measurements, leaf area index (LAI), well data, allometry and satellite imagery from Landsat Thematic Mapper 5 and EOS-1 Moderate Resolution Imaging Spectrometer (MODIS) sensors were used to assess the distribution of beetle defoliation and its effect on evapotranspiration (ET). Study objectives for the Virgin River were to measure pre-beetle arrival ET, while the Dolores River site has had defoliation since 2004 and is a site of long-term beetle effect monitoring. This study focuses on measurements conducted over two seasons, 2010 and 2011. At the Dolores River site, results from 2010 were inconclusive due to sensor malfunctions but plant ET by sap flow in 2011 averaged 1.02 mm/m^2 leaf area/day before beetle arrival, dropping to an average of 0.75 mm/m^2 leaf area/day after beetle arrival. Stand level estimations from May - December, 2010 by MODIS were about 0.63 mm/ day, results from Landsat were 0.51 mm/day in June and 0.78 in August. For January -September, 2011, MODIS values were about 0.6 mm/day, and Landsat was 0.57 mm/day in June and 0.62 mm/day in August. These values are lower than previously reported ET values for this site meaning that repeated defoliation does diminish stand level water use. The Virgin River site showed plant ET from sap flow averaged about 3.9-4 mm/m^2 leaf area/day from mid-May - September, 2010. In 2011, ET from sap flow averaged 3.83 mm/m^2 leaf area/day during June - July, but dropped to 3.73 mm/ m^2 leaf area/day after beetle arrival in August. The slight drop in plant ET is not significant

  6. A satellite model of Southwestern Willow Flycatcher (Empidonax traillii extimus) breeding habitat and a simulation of potential effects of tamarisk leaf beetles (Diorhabda spp.), southwestern United States

    USGS Publications Warehouse

    Hatten, James R.

    2016-01-01

    The study described in this report represents the first time that a satellite model has been used to identify potential Southwestern Willow Flycatcher (Empidonax traillii extimus) (hereinafter referred to as “flycatcher”) breeding habitat rangewide for 2013–15. Fifty-seven Landsat scenes were required to map the entire range of the flycatcher, encompassing parts of six States and more than 1 billion 30-meter pixels. Predicted flycatcher habitat was summarized in a hierarchical fashion from largest to smallest: regionwide, State, U.S. Fish and Wildlife Service (FWS) management unit, 7.5-minute quadrangle, and critical-habitat reach. The term “predicted habitat” is used throughout this report to distinguish areas the satellite model predicts as suitable flycatcher habitat from what may actually exist on the ground. A rangewide accuracy assessment was done with 758 territories collected in 2014, and change detection was done with yearly habitat maps to identify how and where habitat changed over time. Additionally, effects of tamarisk leaf beetles (Diorhabda spp.) on flycatcher habitat were summarized for the lower Virgin River from 2010 to 2015, and simulations of how tamarisk leaf beetles may affect flycatcher habitat in the lower Colorado and upper Gila Rivers were done for 2015. Model results indicated that the largest areas of predicted flycatcher habitat at elevations below 1,524 meters were in New Mexico and Arizona, areas followed in descending order by California, Texas, Nevada, Utah, and Colorado. By FWS management unit, the largest area of flycatcher habitat during all 3 years were the Middle Rio Grande (New Mexico), followed by the Upper Gila (Arizona and New Mexico) and Middle Gila/San Pedro (Arizona) management units. The area of predicted flycatcher habitat varied considerably in 7.5-minute quadrangles, ranging from 0 to1,398 hectares (ha). Averaged across 3 years, the top three producing quadrangles were Paraje Well (New Mexico), San Marcial

  7. Putative Sugar Transporters of the Mustard Leaf Beetle Phaedon cochleariae: Their Phylogeny and Role for Nutrient Supply in Larval Defensive Glands

    PubMed Central

    Stock, Magdalena; Gretscher, René R.; Groth, Marco; Eiserloh, Simone; Boland, Wilhelm; Burse, Antje

    2013-01-01

    Background Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and transport processes, has to be present in the defensive glands. However, the role of sugar transporters for the production of defensive secretions was not addressed until now. Results To identify sugar transporters in P. cochleariae, a transcript catalogue was created by Illumina sequencing of cDNA libraries. A total of 68,667 transcripts were identified and 68 proteins were annotated as either members of the solute carrier 2 (SLC2) family or trehalose transporters. Phylogenetic analyses revealed an extension of the mammalian GLUT6/8 class in insects as well as one group of transporters exhibiting distinctive conserved motifs only present in the insect order Coleoptera. RNA-seq data of samples derived from the defensive glands revealed six transcripts encoding sugar transporters with more than 3,000 counts. Two of them are exclusively expressed in the glandular tissue. Reduction in secretions production was accomplished by silencing two of four selected transporters. RNA-seq experiments of transporter-silenced larvae showed the down-regulation of the silenced transporter but concurrently the up-regulation of other SLC2 transporters suggesting an adaptive system to maintain sugar homeostasis in the defensive glands. Conclusion We provide the first comprehensive phylogenetic study of the SLC2 family in a phytophagous beetle species. RNAi and RNA-seq experiments underline the importance of SLC2 transporters in defensive glands to achieve a chemical defense for successful

  8. Colorado potato beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colorado potato beetle (CPB) shifted to the potato crop from native solanaceous weeds in the American West in 1859, and has been a serious pest ever since. CPB is a highly fecund leaf-feeder on potato and eggplant, and often tomatoes, with one to several generations per year. It is the most importa...

  9. Molecular phylogenetics and evolution of host plant use in the Neotropical rolled leaf 'hispine' beetle genus Cephaloleia (Chevrolat) (Chrysomelidae: Cassidinae).

    PubMed

    McKenna, Duane D; Farrell, Brian D

    2005-10-01

    Here, we report the results of a species level phylogenetic study of Cephaloleia beetles designed to clarify relationships and patterns of host plant taxon and tissue use among species. Our study is based on up to 2088bp of mtDNA sequence data. Maximum parsimony, maximum likelihood, and Bayesian methods of phylogenetic inference consistently recover a monophyletic Cephaloleia outside of a basal clade of primarily palm feeding species (the 'Arecaceae-feeding clade'), and C. irregularis. In all three analyses, the 'Arecaceae-feeding clade' includes Cephaloleia spp. with unusual morphological features, and a few species currently placed in other cassidine genera and tribes. All three analyses also recover a clade that includes all Zingiberales feeding Cephaloleia and most Cephaloleia species (the 'Zingiberales-feeding clade'). Two notable clades are found within the 'Zingiberales-feeding clade.' One is comprised of beetles that normally feed only on the young rolled leaves of plants in the families Heliconiaceae and Marantaceae (the 'Heliconiaceae & Marantaceae-feeding clade'). The other is comprised of relative host tissue generalist, primarily Zingiberales feeding species (the 'generalist-feeding clade'). A few species in the 'generalist-feeding clade' utilize Cyperaceae or Poaceae as hosts. Overall, relatively basal Cephaloleia (e.g., the 'Arecaceae clade') feed on relatively basal monocots (e.g., Cyclanthaceae and Arecaceae), and relatively derived Cephaloleia (e.g., the 'Zingiberales-feeding clade') feed on relatively derived monocots (mostly in the order Zingiberales). Zingiberales feeding and specialization on young rolled Zingiberales leaves have each apparently evolved just once in Cephaloleia. PMID:16054400

  10. Co-occurrence patterns of common and rare leaf-litter frogs, epiphytic ferns and dung beetles across a gradient of human disturbance.

    PubMed

    Oldekop, Johan A; Bebbington, Anthony J; Truelove, Nathan K; Tysklind, Niklas; Villamarín, Santiago; Preziosi, Richard F

    2012-01-01

    Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed. PMID:22701730

  11. Co-Occurrence Patterns of Common and Rare Leaf-Litter Frogs, Epiphytic Ferns and Dung Beetles across a Gradient of Human Disturbance

    PubMed Central

    Oldekop, Johan A.; Bebbington, Anthony J.; Truelove, Nathan K.; Tysklind, Niklas; Villamarín, Santiago; Preziosi, Richard F.

    2012-01-01

    Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed. PMID:22701730

  12. Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae).

    PubMed

    Palomeque, Teresa; Muñoz-López, Martín; Carrillo, José A; Lorite, Pedro

    2005-01-01

    The present study characterizes the complex satellite DNA from the specialized phytophagous beetle species Chrysolina carnifex. The satellite DNA is formed by six monomer types, partially homologous but having diverged enough to be separate on the phylogenetic trees, since each monomer type is located on a different branch, having statistically significant bootstrap values. Its analysis suggests a common evolutionary origin of all monomers from the same 211-bp sequence mainly by means of base-substitution mutations evolutionarily fixed to each monomer type and duplications and/or deletions of pre-existing segments in the 211-bp sequence. The analysis of the sequences and Southern hybridizations suggest that the monomers are organized in three types of repeats: monomers (211-bp) and higher-order repeats in the form of dimers (477-bp) or even trimers (633-bp). These repetitive units are not isolated from others, and do not present the pattern characteristic for the regular tandem arrangement of satellite DNA. In-situ hybridization with biotinylated probes corresponding to the three types of repeats showed the pericentromeric location of these sequences in all meiotic bivalents, coinciding with the heterochromatic blocks revealed by C-banding, indicating in addition that each type of repeat is neither isolated from others nor located in specific chromosomes but rather that they are intermixed in the heterochromatic regions. The presence of this repetitive DNA in C. haemoptera, C. bankii and C. americana was also tested by Southern analysis. The results show that this satellite DNA sequence is specific to the C. carnifex genome but has not been found in three other species of Chrysolina occupying similar or different host plants. PMID:16331411

  13. Inter- and Intrapopulation Variability in the Composition of Larval Defensive Secretions of Willow-Feeding Populations of the Leaf Beetle Chrysomela lapponica.

    PubMed

    Geiselhardt, Sven; Hilker, Monika; Müller, Frank; Kozlov, Mikhail V; Zvereva, Elena L

    2015-03-01

    We explored the inter- and intrapopulation variability in the larval defensive chemistry of the leaf beetle Chrysomela lapponica with respect to the salicylic glycoside (SG) content of its host species. Secretions of larvae from three populations associated in nature with SG-poor willows contained nearly twice as many components and 40-fold higher concentrations of autogenously produced isobutyrates and 2-methylbutyrates than secretions of larvae from three populations associated with SG-rich willows, which in turn had 200-fold higher concentrations of host-derived salicylaldehyde. Reciprocal transfer experiments showed that the larvae from populations associated with SG-rich willows did not produce appreciable amounts of butyrates on either SG-rich or SG-poor willows, while populations feeding on several SG-poor willow species retained the ability for efficient sequestration of SGs, along with their ability to produce high amounts of isobutyrates and 2-methylbutyrates. Only the populations associated with SG-poor willows demonstrated among-family variation in the composition of defensive secretion and differential responses of individual families to willows with alternative SG levels, which can be seen as the prerequisites for shifting to novel hosts. These non-specialized populations show a dual defensive strategy, which corresponds to the ancestral state of this species, while populations that fully depend on host-derived toxins (feeding on SG-rich willows) or have lost the ability to produce salicylaldehyde (feeding on birches) are most deviant from the ancestral state. The results indicate that defensive strategies may differ between populations within a species, and suggest that this variation reduces extinction risks and maintains the high ecological diversity and wide distribution of C. lapponica. PMID:25804685

  14. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut.

    PubMed

    Tang, Xiao-Tian; Zheng, Fu-Shan; Qin, Jing; Lu, Ming-Xing; Du, Yu-Zhou

    2016-01-01

    Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900-126,500 years ago. PMID:27459279

  15. Host range validation, molecular identification, and release and establishment of a Chinese biotype of the Asian leaf beetle Lilioceris cheni Gressitt & Kimoto

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dioscorea bulbifera, a climbing vine from Asia, is a pernicious invasive plant in the southeastern USA. The plant rarely flowers but propagates by way of potato-like bulbils formed in leaf axils, which persist into the next growing season. Lilioceris cheni Gressitt & Kimoto, a foliage-feeding leaf ...

  16. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut

    PubMed Central

    Qin, Jing; Lu, Ming-Xing; Du, Yu-Zhou

    2016-01-01

    Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900–126,500 years ago. PMID:27459279

  17. Ecophysiological Responses of Salt Cedar (Tamarix spp. L.) to the Northern Tamarisk Beetle (Diorhabda carinulata Desbrochers) In A Controlled Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaf beetle, Diorhabda elongata Brulle, was released in several western states as a biocontrol agent to suppress Tamarix spp. L. which has invaded riparian ecosystems; however, effects of leaf beetle herbivory on Tamarix physiology are largely undocumented and may have ecosystem ramifications. H...

  18. Biologically inspired optics: analog semiconductor model of the beetle exoskeleton

    NASA Astrophysics Data System (ADS)

    Buhl, Kaia; Roth, Zachary; Srinivasan, Pradeep; Rumpf, Raymond; Johnson, Eric

    2008-08-01

    Evolution in nature has produced through adaptation a wide variety of distinctive optical structures in many life forms. For example, pigment differs greatly from the observed color of most beetles because their exoskeletons contain multilayer coatings. The green beetle is disguised in a surrounding leaf by having a comparable reflection spectrum as the leaves. The Manuka and June beetle have a concave structure where light incident at any angle on the concave structures produce matching reflection spectra. In this work, semiconductor processing methods were used to duplicate the structure of the beetle exoskeleton. This was achieved by combining analog lithography with a multilayer deposition process. The artificial exoskeleton, 3D concave multilayer structure, demonstrates a wide field of view with a unique spectral response. Studying and replicating these biologically inspired nanostructures may lead to new knowledge for fabrication and design of new and novel nano-photonic devices, as well as provide valuable insight to how such phenomenon is exploited.

  19. Ambrosia beetle fungiculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambrosia beetle fungiculture, as evidenced by the 11 independent origins and 3,500 species of ambrosia beetles, represents one of the most ecologically and evolutionarily successful symbioses. This presentation focuses on the discovery of a clade within the filamentous fungus Fusarium that is associ...

  20. Carabid Beetles as Parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parasitoid habit is uncommon in beetles; only 11 beetle families include parasitoid species. Three tribes of 76 in the Carabidae are known to have species in which larvae are pupal ectoparasitoids: Brachinini, Peleciini, and Lebiini. The first larval instar is the free-living, host-finding stage...

  1. A Review of the Natural Enemies of Beetles in the Subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for Sustainable Pest Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabroticina is a speciose subtribe of New World Chrysomelidae (Subfamily Galerucinae: Tribe Luperini) that includes pests like corn rootworms, cucumber beetles and bean leaf beetles (e.g. Diabrotica, Acalymma, Cerotoma species). The evolution and spread of pesticide resistance, the European invasio...

  2. Lady beetles of South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...

  3. Electrophysiological responses of the Naupactus bipes beetle to essential oils from Piperaceae species.

    PubMed

    Ramos, Clécio S; Soares, Marisi G; da Silva, Adalberto M; Batista-Pereira, Luciane G; Corrêa, Arlene G; Kato, Massuo J

    2012-08-01

    Electrophysiological responses based on electroantennographic detection (GC-EAD) and electroantennography (EAG) analysis of Naupactus bipes beetles (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) were used to test volatile oils of Piper gaudichaudianum, P. regnellii and P. hispidum. In the EAG experiments, female and male beetles showed significant EAG response to the three volatile oils of Piper species, with the females' responses slightly higher than the males'. The experiments with GC-EAD revealed that some terpenoids (namely, alpha-pinene, beta-pinene, myrcene, alpha-copaene and germacrene) present in the leaf essential oils of the Piper species are perceptible to female and male beetles. PMID:22978240

  4. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides.

    PubMed

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai'i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  5. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides

    PubMed Central

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai’i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  6. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  7. Small Hive Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles (SHB) have become serious pests of honey bees, especially in the southeastern region of the United States. Both adults and larvae cause serious feeding damages and their fecal matters contaminate harvestable honey. At present, Coumaphos (used as an in-hive treatment) and Gardstar ...

  8. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  9. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  10. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  11. Urban soil biomonitoring by beetle and earthworm populations

    SciTech Connect

    Janossy, L.; Bitto, A.

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roads are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.

  12. Utilizing NASA Satellite Missions to Identify Bark Beetle Infestation in Sequoia National Park

    NASA Astrophysics Data System (ADS)

    Newcomer, M. E.; Bird, J. E.; Sabatine, S. M.; Sady, G. C.; Stalzer, A. M.; Wheeler, T. A.; Skiles, J. W.; Schmidt, C.

    2009-12-01

    Bark beetle-induced tree mortality has increased over the last few decades, exacerbated by below-average precipitation and a loss of soil nutrients, forcing park managers to improve bark beetle monitoring techniques. Bark beetle dynamics were investigated during summer 2009 at 32 sites within Sequoia National Park, California with the aim of correlating field data with satellite imagery to provide forest managers with a more efficient methodology for tracking, monitoring, and forecasting bark beetle outbreaks. Field parameters included visual assessments of the presence and degree of bark beetle-induced mortality and percent canopy cover. Ancillary data such as relative leaf chlorophyll concentration and soil nutrients including sodium [Na+], nitrate [NO3-], and potassium [K+] were collected for each 15 × 15 meter plot. The relationship between bark beetle attacks and potassium [K+] shows higher concentrations in healthy areas. Additionally, algorithms from three satellites were used to identify areas of moisture and vegetation stress; including the Ratio Vegetation Index (RVI) from ASTER, Enhanced Wetness Difference Index (EWDI) from Landsat Thematic Mapper (TM5), Disturbance Index (DI) from MODIS, and four other vegetation indices from Landsat TM5. Vegetation indices show uniform stress across various years.

  13. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  14. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  15. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  16. A dynamical model for bark beetle outbreaks.

    PubMed

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  17. Preferential Feeding and Occupation of Sunlit Leaves Favors Defense Response and Development in the Flea Beetle, Altica brevicollis coryletorum – A Pest of Corylus avellana

    PubMed Central

    Łukowski, Adrian; Giertych, Marian J.; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr

    2015-01-01

    The monophagous beetle, Altica brevicollis coryletorum, is a major leaf pest of Corylus avellana (common hazel). In contrast to majority of the other studied species of shrubs, sunlit leaves are grazed to a much greater extent than shaded leaves. Since the observation of a link between leaf irradiance level and A. brevicollis feeding is unique, we hypothesized that feeding preference of this beetle species is related to the speed needed to escape threats i.e. faster jumping. We also hypothesized that sunlit leaves are more nutritious and easier to consume than the leaves of shaded shrubs. Results indicated that beetle mass was greater in beetles occupying sunlit leaves, which is consistent with our second hypothesis. The study also confirmed under laboratory conditions, that larvae, pupae and beetles that were fed full-light (100% of full light) leaves were significantly heavier than those fed with shaded leaves (15% of full light). In the high irradiance conditions (higher temperature) duration of larval development is also reduced. Further results indicated that neither the concentration of soluble phenols, leaf toughness, or the number of trichomes could explain the insect’s preference for sunlit leaves. Notably, measurements of jump length of beetles of this species, both in the field and under laboratory conditions, indicated that the defense pattern related to jumping was associated with light conditions. The jump length of beetles in the sun was significantly higher than in the shade. Additionally, in laboratory tests, beetle defense (jumping) was more strongly affected by temperature (15, 25, or 35°C for 24h) than by leaf type. The effect of sunlit, higher nutrient leaves (greater level of non-structural carbohydrates) on defense (jumping) appears to be indirect, having a positive effect on insect mass in all developmental stages. PMID:25927706

  18. Preferential feeding and occupation of sunlit leaves favors defense response and development in the flea beetle, Altica brevicollis coryletorum--a pest of Corylus avellana.

    PubMed

    Łukowski, Adrian; Giertych, Marian J; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr

    2015-01-01

    The monophagous beetle, Altica brevicollis coryletorum, is a major leaf pest of Corylus avellana (common hazel). In contrast to majority of the other studied species of shrubs, sunlit leaves are grazed to a much greater extent than shaded leaves. Since the observation of a link between leaf irradiance level and A. brevicollis feeding is unique, we hypothesized that feeding preference of this beetle species is related to the speed needed to escape threats i.e. faster jumping. We also hypothesized that sunlit leaves are more nutritious and easier to consume than the leaves of shaded shrubs. Results indicated that beetle mass was greater in beetles occupying sunlit leaves, which is consistent with our second hypothesis. The study also confirmed under laboratory conditions, that larvae, pupae and beetles that were fed full-light (100% of full light) leaves were significantly heavier than those fed with shaded leaves (15% of full light). In the high irradiance conditions (higher temperature) duration of larval development is also reduced. Further results indicated that neither the concentration of soluble phenols, leaf toughness, or the number of trichomes could explain the insect's preference for sunlit leaves. Notably, measurements of jump length of beetles of this species, both in the field and under laboratory conditions, indicated that the defense pattern related to jumping was associated with light conditions. The jump length of beetles in the sun was significantly higher than in the shade. Additionally, in laboratory tests, beetle defense (jumping) was more strongly affected by temperature (15, 25, or 35°C for 24 h) than by leaf type. The effect of sunlit, higher nutrient leaves (greater level of non-structural carbohydrates) on defense (jumping) appears to be indirect, having a positive effect on insect mass in all developmental stages. PMID:25927706

  19. Efficacy of Entomopathogenic Nematodes and Sprayable Polymer Gel Against Crucifer Flea Beetle (Coleoptera: Chrysomelidae) on Canola.

    PubMed

    Antwi, Frank B; Reddy, Gadi V P

    2016-08-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze), is a key pest of canola (Brassica napus L.) in the northern Great Plains of North America. The efficacies of entomopathogenic nematodes (Steinernema spp. and Heterorhabditis spp.), a sprayable polymer gel, and a combination of both were assessed on canola for flea beetle management. Plots were treated soon after colonization by adult flea beetles, when canola was in the cotyledon to one-leaf stage. Ten plants along a 3.6-m section of row were selected and rated at pre-treatment and 7 and 14 d post treatment using the damage-rating scheme advanced by the European Plant Protection Organization, where 1 = 0%, 2 = 2%, 3 = 5%, 4 = 10%, and 5 = 25% leaf area injury. Under moderate flea beetle feeding pressure (1-3.3% leaf area damaged), seeds treated with Gaucho 600 (Bayer CropScience LP Raleigh, NC) (imidacloprid) produced the highest yield (843.2 kg/ha). Meanwhile, Barricade (Barricade International, Inc. Hobe Sound, FL) (polymer gel; 1%) + Scanmask (BioLogic Company Inc, Willow Hill, PA) (Steinernema feltiae) resulted in the highest yields: 1020.8 kg/ha under high (2.0-5.3% leaf area damaged), and 670.2 kg/ha at extremely high (4.3-8.6 % leaf area damaged) feeding pressure. Our results suggest that Barricade (1%) + Scanmask (S. feltiae) can serve as an alternative to the conventional chemical seed treatment. Moreover, Scanmask (S. feltiae) can be used to complement the effects of seed treatment after its protection has run out. PMID:27329629

  20. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2013-05-29

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  1. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  2. Gastrophysa polygoni herbivory on Rumex confertus: Single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report large induction (> 65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC ble...

  3. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    NASA Astrophysics Data System (ADS)

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  4. Raising Beetles in a Classroom.

    ERIC Educational Resources Information Center

    Hackett, Erla

    This guide is designed to provide elementary school teachers with a harmless, inexpensive, clean, odorless, and easy-to-care-for insect-rearing project for the classroom. The following topics are included: (1) instructions for the care and feeding of the beetle larvae; (2) student activities for observing larval characteristics and behavior…

  5. crw1 - A Novel Maize Mutant Highly Susceptible to Foliar Damage by the Western Corn Rootworm Beetle

    PubMed Central

    Venkata, Bala Puchakayala; Lauter, Nick; Li, Xu; Chapple, Clint; Krupke, Christian; Johal, Gurmukh; Moose, Stephen

    2013-01-01

    Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most destructive insect pest of corn (Zea mays L.) in the United States. The adult WCR beetles derive their nourishment from multiple sources including corn pollen and silks as well as the pollen of alternate hosts. Conversely, the corn foliage is largely neglected as a food source by WCR beetles, leading to a perception of a passive interaction between the two. We report here a novel recessive mutation of corn that was identified and named after its foliar susceptibility to corn rootworm beetles (crw1). The crw1 mutant under field conditions was exceptionally susceptible to foliar damage by WCR beetles in an age-specific manner. It exhibits pleiotropic defects on cell wall biochemistry, morphology of leaf epidermal cells and lower structural integrity via differential accumulation of cell wall bound phenolic acids. These findings indicate that crw1 is perturbed in a pathway that was not previously ascribed to WCR susceptibility, as well as implying the presence of an active mechanism(s) deterring WCR beetles from devouring corn foliage. The discovery and characterization of this mutant provides a unique opportunity for genetic analysis of interactions between maize and adult WCR beetles and identify new strategies to control the spread and invasion of this destructive pest. PMID:23951124

  6. crw1--A novel maize mutant highly susceptible to foliar damage by the western corn rootworm beetle.

    PubMed

    Venkata, Bala Puchakayala; Lauter, Nick; Li, Xu; Chapple, Clint; Krupke, Christian; Johal, Gurmukh; Moose, Stephen

    2013-01-01

    Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most destructive insect pest of corn (Zea mays L.) in the United States. The adult WCR beetles derive their nourishment from multiple sources including corn pollen and silks as well as the pollen of alternate hosts. Conversely, the corn foliage is largely neglected as a food source by WCR beetles, leading to a perception of a passive interaction between the two. We report here a novel recessive mutation of corn that was identified and named after its foliar susceptibility to corn rootworm beetles (crw1). The crw1 mutant under field conditions was exceptionally susceptible to foliar damage by WCR beetles in an age-specific manner. It exhibits pleiotropic defects on cell wall biochemistry, morphology of leaf epidermal cells and lower structural integrity via differential accumulation of cell wall bound phenolic acids. These findings indicate that crw1 is perturbed in a pathway that was not previously ascribed to WCR susceptibility, as well as implying the presence of an active mechanism(s) deterring WCR beetles from devouring corn foliage. The discovery and characterization of this mutant provides a unique opportunity for genetic analysis of interactions between maize and adult WCR beetles and identify new strategies to control the spread and invasion of this destructive pest. PMID:23951124

  7. Beetles do it differently: two stereodivergent cyclisation modes in iridoid-producing leaf-beetle larvae.

    PubMed

    Kunert, Maritta; Rahfeld, Peter; Shaker, Kamel H; Schneider, Bernd; David, Anja; Dettner, Konrad; Pasteels, Jacques M; Boland, Wilhelm

    2013-02-11

    Larvae of the Chrysomelina species Phaedon cochleariae, Hydrothassa marginella, Phratora vulgatissima, Gastrophysa viridula, Gastrophysa atrocyanea, Gastrophysa cyanea and Gastrophysa polygoni produce the iridoid chrysomelidial (1) to defend themselves against predators. Feeding experiments with a deuterated precursor ([(2)H(5)]8-hydroxygeraniol 9) and in vitro isotope exchange experiments with defensive secretion in (2)H(2)O revealed differences in the cyclisation of the ultimate precursor 8-oxogeranial (8) to 1, between members of the genus Gastrophysa and all other species. In P. cochleariae, H. marginella and P. vulgatissima 1 is most likely produced by a Rauhut-Currier-type cyclisation via a "transoid dienamine", with loss of a single deuterium atom from C(4) of the precursor. In contrast, members of the genus Gastrophysa cyclise 8 via a "cisoid dienamine" intermediate, with exchange of all three deuterium atoms from the methyl group at C(3). To study whether the different cyclisation modes influence the stereochemistry of 1, the absolute configuration of 1 of the larvae was determined by GC-MS on a chiral column. In accordance with literature (J. Meinwald, T. H. Jones, J. Am. Chem. Soc. 1978, 100, 1883 and N. Shimizu, R. Yakumaru, T. Sakata, S. Shimano, Y. Kuwahara, J. Chem. Ecol. 2012, 38, 29), we found (5S,8S)-chrysomelidial (1) in H. marginella and P. vulgatissima, but P. cochleariae and all investigated members of the genus Gastrophysa synthesise (5R,8R)-chrysomelidial (1). PMID:23341265

  8. Oedemerid blister beetle dermatosis: a review.

    PubMed

    Nicholls, D S; Christmas, T I; Greig, D E

    1990-05-01

    Blister beetle dermatosis is a distinctive vesiculobullous eruption that occurs after contact with three major groups of beetles (Order: Coleoptera). It is caused by a vesicant chemical contained in the body fluids of the beetles. The smallest and least known family is the Oedemeridae. Although there are few references in the medical literature, blister beetle dermatosis caused by oedemerids may be more common and widespread than currently recognized. The best known family is the Meloidae with numerous species worldwide causing blistering. The vesicant chemical in both Oedemeridae and Meloidae is cantharidin. The third group of blister beetles includes species of the genus Paederus (Family: Staphylinidae). The clinicopathologic picture differs because this genus contains a different vesicant agent, pederin. The clinicopathologic features of oedemerid blister beetle dermatosis are described. The world medical and relevant entomologic literature is reviewed. PMID:2189910

  9. Systematics and biology of mites associated with neotropical hispine beetles in unfurled leaves of Heliconia, with descriptions of two new genera of the family Melicharidae (Acari: Mesostigmata: Gamasina: Ascoidea).

    PubMed

    Moraza, María L; Lindquist, Evert E

    2015-01-01

    Two new genera Makarovaia and Hispiniphis are described from adults and immatures of newly described species associated with hispine beetles of the genera Chelobasis and Cephaloleia, respectively, occupying unfurled leaves of Heliconia in lowland rainforest of Costa Rica. The new genera share a suite of unique morphological attributes, but are tentatively assigned to the family Melicharidae. While all instars of the mites can be found under the elytra of their adult beetle hosts, adult mites also move freely on and off the beetles. A new form of laboulbeniaceous fungus of the genus Rickia is frequently associated with adult mites of Makarovaia as well as their beetle hosts, yet evidently rarely with mites of a species of Hispiniphis or its beetle hosts which may co-occupy the same host leaves. Limited data suggest considerable host specificity between mites and their beetle hosts. Whether the association of these mites with hispine beetles may be ancient, prior to the beetles' adaptation to living in unfurled leaves of host plants, or is a more recent invasion and partitioning of the rolled leaf beetle fauna, is discussed. PMID:25781831

  10. Pheromone production in bark beetles.

    PubMed

    Blomquist, Gary J; Figueroa-Teran, Rubi; Aw, Mory; Song, Minmin; Gorzalski, Andrew; Abbott, Nicole L; Chang, Eric; Tittiger, Claus

    2010-10-01

    The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990 s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini

  11. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  12. Adult beetles compensate for poor larval food conditions.

    PubMed

    Müller, Thorben; Müller, Caroline

    2016-05-01

    Life history traits of herbivores are highly influenced by the quality of their hosts, i.e., the composition of primary and secondary plant metabolites. In holometabolous insects, larvae and adults may face different host plants, which differ in quality. It has been hypothesised that adult fitness is either highest when larval and adult environmental conditions match (environmental matching) or it may be mainly determined by optimal larval conditions (silver spoon effect). Alternatively, the adult stage may be most decisive for the actual fitness, independent of larval food exposure, due to adult compensation ability. To determine the influence of constant versus changing larval and adult host plant experiences on growth performance, fitness and feeding preferences, we carried out a match-mismatch experiment using the mustard leaf beetle, Phaedon cochleariae. Larvae and adults were either constantly reared on watercress (natural host) or cabbage (crop plant) or were switched after metamorphosis to the other host. Growth, reproductive traits and feeding preferences were determined repeatedly over lifetime and host plant quality traits analysed. Differences in the host quality led to differences in the development time and female reproduction. Egg numbers were significantly influenced by the host plant species experienced by the adults. Thus, adults were able to compensate for poor larval conditions. Likewise, the current host experience was most decisive for feeding preferences; in adult beetles a feeding preference was shaped regardless of the larval host plant. Larvae or adults reared on the more nutritious host, cabbage, showed a higher preference for this host. Hence, beetles most likely develop a preference when gaining a direct positive feedback in terms of an improved performance, whereby the current experience matters the most. Highly nutritious crop plants may be, in consequence, all the more exploited by potential pests that may show a high plasticity in

  13. Ground beetle (Coleoptera: Carabidae) feeding ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The article reviews some general and applied aspects of the feeding ecology of carabid beetles. General aspects included feeding preferences, prey searching, prey capture, and digestion. Applied aspects included evidence of impact, such as predation of aphids, leafhoppers, flies, beetles and moths...

  14. Standard methods for small hive beetle research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles, Aethina tumida, are parasites and scavengers of honey bee and other social bee colonies native to sub-Saharan Africa, where they are a minor pest only. In contrast, the beetles can be harmful parasites of European honey bee subspecies. Very rapidly after A. tumida established pop...

  15. Book review: Methods for catching beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...

  16. Acoustic characteristics of rhinoceros beetle stridulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  17. Ground beetle (Coleoptera: Carabidae) feeding ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reviews some general and applied aspects of the feeding ecology of carabid beetles. General aspects included feeding preferences, prey searching, prey capture, and digestion. Applied aspects included evidence of impact, such as predation of aphids, leafhoppers, flies, beetles and moth...

  18. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.

  19. Contemporary evolution of host plant range expansion in an introduced herbivorous beetle Ophraella communa.

    PubMed

    Fukano, Y; Doi, H; Thomas, C E; Takata, M; Koyama, S; Satoh, T

    2016-04-01

    Host range expansion of herbivorous insects is a key event in ecological speciation and insect pest management. However, the mechanistic processes are relatively unknown because it is difficult to observe the ongoing host range expansion in natural population. In this study, we focused on the ongoing host range expansion in introduced populations of the ragweed leaf beetle, Ophraella communa, to estimate the evolutionary process of host plant range expansion of a herbivorous insect. In the native range of North America, O. communa does not utilize Ambrosia trifida, as a host plant, but this plant is extensively utilized in the beetle's introduced range. Larval performance and adult preference experiments demonstrated that native O. communa beetles show better survival on host plant individuals from introduced plant populations than those from native plant populations and they also oviposit on the introduced plant, but not on the native plant. Introduced O. communa beetles showed significantly higher performance on and preference for both introduced and native A. trifida plants, when compared with native O. communa. These results indicate the contemporary evolution of host plant range expansion of introduced O. communa and suggest that the evolutionary change of both the host plant and the herbivorous insect involved in the host range expansion. PMID:26728888

  20. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae).

    PubMed

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography-mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms. PMID:18392795

  1. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors

    NASA Astrophysics Data System (ADS)

    Byers, John A.; Zhang, Qing-He; Birgersson, Göran

    The bark beetle, Pityogenes bidentatus (Coleoptera: Scolytidae), searches in mixed conifer and deciduous forests of northern Europe for suitable branches of its host, Scots pine (Pinus sylvestris). We tested whether odors from several diverse nonhost trees and plants common in the habitat (e.g., mountain ash, Sorbus aucuparia; oak, Quercus robur; alder buckthorn, Frangula alnus; blueberry, Vaccinium myrtillus; raspberry, Rubus idaeus; and grass, Deschampsia flexuosa) would reduce the attraction of the bark beetle to traps releasing its aggregation pheromone components in the field. Volatiles from the leaves or bark of each of these plants significantly reduced the attraction of the beetles to their pheromone. Odors collected from these nonhosts and analyzed by GC/MS contained monoterpenes, sesquiterpenes, and ``green-leaf'' alcohols, several of which (e.g., 1-octene-3-ol and β-caryophyllene) reduced the attraction to pheromone in the field and elicited electroantennographic responses. In the laboratory, reproduction by the beetle was marginal in nonhost Norway spruce, Picea abies, and was absent in the other nonhost trees. Olfactory avoidance of unsuitable nonhosts may have evolved due to advantages in avoiding mistakes during host selection.

  2. Anemomenotatic orientation in beetles and scorpions

    NASA Technical Reports Server (NTRS)

    Linsenmair, K. E.

    1972-01-01

    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.

  3. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  4. The complete mitochondrial genome of the flea beetle Agasicles hygrophila.

    PubMed

    Li, Na; Wei, Jia-Ning; Jia, Dong; Li, Shuang; Ma, Rui-Yan

    2016-09-01

    To provide molecular markers for population genetic analysis of the flea beetle Agasicles hygrophila, we determined its mitochondrial genome (mitogenome) for the first time. The mitogenome of A. hygrophila was 15 917 bp in length with an AT content of 75.15%. It had the typical set of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an AT-rich control region. Compared with the ancestral mitogenome of insects, no gene rearrangement occurred in A. hygrophila. Incomplete stop codons were present in PCGs of A. hygrophila. All tRNA genes except for trnS(AGN) could form the typical clover-leaf secondary structures. The phylogenetic analysis indicated that A. hygrophila was close to other species belonging to the same family of Chrysomelidae. PMID:26368047

  5. Notes on the ecology of rolled-leaf hispines (Chrysomelidae, Cassidinae) at La Gamba (Costa Rica).

    PubMed

    Schmitt, Michael; Frank, Meike

    2013-01-01

    A total of 301 adult hispine beetles of the genera Cephaloleia and Chelobasis were found in rolled leaves of plants of 17 species of Zingiberales (families Costaceae, Heliconiaceae, Maranthaceae, Musaceae, and Zingiberaceae) during a field study at La Gamba, Golfito region, Costa Rica. Of these beetles, Cephaloleia belti was recorded from 12 potential host plant species, C. distincta from 7, C. dilaticollis from 5, C., Chelobasis bicolor, C. championi, and C. histrionica from 3, Chelobasis perplexa and C. instabilis from 2, whereas C. trivittata from only one. Of the plant species, Heliconia latispatha had 7 beetle species in its leaf rolls, Calathea lutea had 5, H. imbricata and H. rostrata had 4, H. stricta and Musa paradisiaca had 3, H. wagneriana had 2, while on H. vaginalis, H. danielsiana, H. densiflora, H. longiflora, Calathea crotalifera, C. platystachya, Goeppertia lasiophylla, Alpinia purpurata, Costus pulverulentus and Costus barbatus, H. densiflora, H. vaginalis, and H. danielsana only hispines of one species were found. Cephaloleia belti occurred together with beetles of six other hispine species, whereas Cephaloleia trivittata never shared a leaf roll with another hispine species. The remaining beetle species aggregated with one to four other hispines. Adults of C. belti and C. championi were frequently seen, occasionally also with C. dilaticollis, C. histrionica, and Chelobasis perplexa, to co-occur with the carabid Calophaena ligata in the same leaf roll without any sign of interspecific aggression. A comparison of host choices and the phylogeny of the hispines and of their host plants revealed no signs that beetles used species level phylogenetic relationships within the Zingiberales to select food plants. Obviously, within this plant order, rolled-leaf hispines choose their plant hosts in a nearly opportunistic manner. Seemingly, they use differences among plants at higher taxonomic levels but within the Zingiberales, the availability of young

  6. Knockdown, residual, and antifeedant activity of pyrethroids and home landscape bioinsecticides against Japanese beetles (Coleoptera: Scarabaeidae) on Linden foliage.

    PubMed

    Baumler, Rebecca E; Potter, Daniel A

    2007-04-01

    Residual toxicity and leaf protection capability of five pyrethroids, professional and home garden azadirachtin formulations, and six other bioinsecticides for the home landscape were evaluated against the Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), on linden, Tilia cordata L. Capacity of intoxicated beetles to recover and subsequently feed and disperse also was evaluated to provide insight on activity characteristics of the different compounds. Intact shoots were sprayed and left in the field for varying intervals before being challenged with beetles in no-choice and choice tests. All pyrethroids except permethrin gave greater leaf protection, knockdown, and kill than did carbaryl, the standard, after 14 d of weathering. Deltamethrin, cyfluthrin, bifenthrin, and lamda-cyhalothrin gave a high level of protection for at least 19 d, and azadirachtin (Azatin XL) deterred feeding in choice tests for as long as 14 d. Home garden formulations containing pyrethrins in canola oil (Pyola) or azadiractin (Neem-Away) gave good short-term (< 3-d) protection. Formulations of capsaicin, rotenone + pyrethrins, kaolin particle film, D-limonene, or garlic extract were ineffective, the latter two formulations being highly phytotoxic to linden. Results of this study should help support updating of guidelines for insecticidal control of Japanese beetles. PMID:17461070

  7. Living near the edge: Being close to mature forest increases the rate of succession in beetle communities.

    PubMed

    Fountain-Jones, Nicholas M; Jordan, Gregory J; Baker, Thomas P; Balmer, Jayne M; Wardlaw, Tim; Baker, Susan C

    2015-04-01

    In increasingly fragmented landscapes, it is important to understand how mature forest affects adjacent secondary forest (forest influence). Forest influence on ecological succession of beetle communities is largely unknown. We investigated succession and forest influence using 235 m long transects across boundaries between mature and secondary forest at 15 sites, sampling a chronosequence of three forest age classes (5-10, 23- 29, and 42-46 years since clear-cutting) in tall eucalypt forest in Tasmania, Australia. Our results showed that ground-dwelling beetle communities showed strong successional changes, and in the oldest secondary forests, species considered indicators of mature forest had recolonized to abundance levels similar to those observed within adjacent mature forest stands. However, species composition also showed forest influence gradients in all age classes. Forest influence was estimated to extend 13 m and 20 m in the youngest and intermediate-aged secondary forests, respectively. However, the estimated effect extended to at least 176 m in the oldest secondary forest. Our environmental modeling suggests that leaf litter, microclimate, and soil variables were all important in explaining the spatial variation in beetle assemblages, and the relative importance of factors varied between secondary forest age classes. Mature-forest beetle communities can recolonize successfully from the edge, and our results provide a basis for land managers to build mature habitat connectivity into forest mosaics typical of production forests. Our results also indicate the importance of forest influence in determining potential conservation value of older secondary forest for beetles. PMID:26214924

  8. Approaches to engineer stability of beetle luciferases

    PubMed Central

    Koksharov, Mikhail I.; Ugarova, Natalia N.

    2012-01-01

    Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems. PMID:24688645

  9. Cucurbitacins as kairomones for diabroticite beetles

    PubMed Central

    Metcalf, Robert L.; Metcalf, Robert A.; Rhodes, A. M.

    1980-01-01

    The characteristic bitter substances of the Cucurbitaceae act as kairomones for a large group of diabroticite beetles (Chrysomelidae, Galerucinae, Luperini), promoting host selection and compulsive feeding behavior. These beetles (e.g., Diabrotica undecimpunctata howardi) respond to as little as 1 ng of cucurbitacin (Cuc) B on thin-layer plates by arrest and compulsive feeding. Six species of diabroticite beetles were about 10 times more responsive to Cuc B than to Cuc E and less responsive to Cuc D, I, and L. Chloroform extracts of 18 species of Cucurbita were developed on thin-layer chromatograms and exposed to diabroticite beetles. The feeding patterns showed pronounced beetle responses to three general Cuc distribution patterns: Cuc B and D as in Cucurbita andreana and C. ecuadorensis; Cuc E and I as in C. okeechobeensis and C. martinezii; and Cuc E glycoside in C. texana. All the diabroticites responded in exactly the same feeding patterns. The results demonstrate a coevolutionary association between the Cucurbitaceae and the Luperini, during which the intensely bitter and toxic Cucs that arose to repel herbivores and protect the plants from attack became specific kairomone feeding stimulants for the beetles. PMID:16592849

  10. Cucurbitacins as kairomones for diabroticite beetles.

    PubMed

    Metcalf, R L; Metcalf, R A; Rhodes, A M

    1980-07-01

    The characteristic bitter substances of the Cucurbitaceae act as kairomones for a large group of diabroticite beetles (Chrysomelidae, Galerucinae, Luperini), promoting host selection and compulsive feeding behavior. These beetles (e.g., Diabrotica undecimpunctata howardi) respond to as little as 1 ng of cucurbitacin (Cuc) B on thin-layer plates by arrest and compulsive feeding. Six species of diabroticite beetles were about 10 times more responsive to Cuc B than to Cuc E and less responsive to Cuc D, I, and L. Chloroform extracts of 18 species of Cucurbita were developed on thin-layer chromatograms and exposed to diabroticite beetles. The feeding patterns showed pronounced beetle responses to three general Cuc distribution patterns: Cuc B and D as in Cucurbita andreana and C. ecuadorensis; Cuc E and I as in C. okeechobeensis and C. martinezii; and Cuc E glycoside in C. texana. All the diabroticites responded in exactly the same feeding patterns. The results demonstrate a coevolutionary association between the Cucurbitaceae and the Luperini, during which the intensely bitter and toxic Cucs that arose to repel herbivores and protect the plants from attack became specific kairomone feeding stimulants for the beetles. PMID:16592849

  11. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  12. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution

    PubMed Central

    2009-01-01

    Background Nematodes are putatively the most species-rich animal phylum. They have various life styles and occur in a variety of habitats, ranging from free-living nematodes in aquatic or terrestrial environments to parasites of animals and plants. The rhabditid nematode Caenorhabditis elegans is one of the most important model organisms in modern biology. Pristionchus pacificus of the family of the Diplogastridae has been developed as a satellite model for comparison to C. elegans. The Diplogastridae, a monophyletic clade within the rhabditid nematodes, are frequently associated with beetles. How this beetle-association evolved and whether beetle-nematode coevolution occurred is still elusive. As a prerequisite to answering this question a robust phylogeny of beetle-associated Diplogastridae is needed. Results Sequences for the nuclear small subunit ribosomal RNA and for 12 ribosomal protein encoding nucleotide sequences were collected for 14 diplogastrid taxa yielding a dataset of 5996 bp of concatenated aligned sequences. A molecular phylogeny of beetle-associated diplogastrid nematodes was established by various algorithms. Robust subclades could be demonstrated embedded in a phylogenetic tree topology with short internal branches, indicating rapid ancestral divergences. Comparison of the diplogastrid phylogeny to a comprehensive beetle phylogeny revealed no major congruence and thus no evidence for a long-term coevolution. Conclusion Reconstruction of the phylogenetic history of beetle-associated Diplogastridae yields four distinct subclades, whose deep phylogenetic divergence, as indicated by short internal branch lengths, shows evidence for evolution by successions of ancient rapid radiation events. The stem species of the Diplogastridae existed at the same time period when the major radiations of the beetles occurred. Comparison of nematode and beetle phylogenies provides, however, no evidence for long-term coevolution of diplogastrid nematodes and their

  13. Volatile emissions from the lesser mealworm beetle Alphitobius diaperinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lesser mealworm beetle Alphitobius diaperinus (Panzer) is a serious, cosmopolitan pest in poultry production facilities, consuming grain, carrying disease organisms, and causing structural damage in poultry house walls. Pheromones have been described for many economically important beetle speci...

  14. Do Pine Beetles Fan the Flames in Western Forests?

    NASA Video Gallery

    As mountain pine beetles damage whole regions of Western forests, some worry that the dead trees left behind have created a tinderbox ready to burn. But do pine beetles really increase fire risk? I...

  15. Notes on the ecology of rolled-leaf hispines (Chrysomelidae, Cassidinae) at La Gamba (Costa Rica)1

    PubMed Central

    Schmitt, Michael; Frank, Meike

    2013-01-01

    Abstract A total of 301 adult hispine beetles of the genera Cephaloleia and Chelobasis were found in rolled leaves of plants of 17 species of Zingiberales (families Costaceae, Heliconiaceae, Maranthaceae, Musaceae, and Zingiberaceae) during a field study at La Gamba, Golfito region, Costa Rica. Of these beetles, Cephaloleia belti was recorded from 12 potential host plant species, C. distincta from 7, C. dilaticollis from 5, C., Chelobasis bicolor, C. championi, and C. histrionica from 3, Chelobasis perplexa and C. instabilis from 2, whereas C. trivittata from only one. Of the plant species, Heliconia latispatha had 7 beetle species in its leaf rolls, Calathea lutea had 5, H. imbricata and H. rostrata had 4, H. stricta and Musa paradisiaca had 3, H. wagneriana had 2, while on H. vaginalis, H. danielsiana, H. densiflora, H. longiflora, Calathea crotalifera, C. platystachya, Goeppertia lasiophylla, Alpinia purpurata, Costus pulverulentus and Costus barbatus, H. densiflora, H. vaginalis, and H. danielsana only hispines of one species were found. Cephaloleia belti occurred together with beetles of six other hispine species, whereas Cephaloleia trivittata never shared a leaf roll with another hispine species. The remaining beetle species aggregated with one to four other hispines. Adults of C. belti and C. championi were frequently seen, occasionally also with C. dilaticollis, C. histrionica, and Chelobasis perplexa, to co-occur with the carabid Calophaena ligata in the same leaf roll without any sign of interspecific aggression. A comparison of host choices and the phylogeny of the hispines and of their host plants revealed no signs that beetles used species level phylogenetic relationships within the Zingiberales to select food plants. Obviously, within this plant order, rolled-leaf hispines choose their plant hosts in a nearly opportunistic manner. Seemingly, they use differences among plants at higher taxonomic levels but within the Zingiberales, the availability of

  16. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    PubMed

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  17. [Relationships of Aulacophora beetles feeding behavior with cucurbitacin types in host crops].

    PubMed

    Yang, Xiao; Kong, Chuihua; Liang, Wenju; Zhang, Maoxin; Hu, Fei

    2005-07-01

    Aulacophora fermoralis chinensis and Aulacophora cattigarensis are the two related Aulacophora beetles, but their host selectivity and feeding behavior are significantly different. A. fernzoralis chinensis usually feeds upon Cucumis sativus and Cucurbita moschata, but never upon Luffa acutangula, Momordica charantia and Citrullas lanatus. Its feeding behavior on hosts is to snip a circular trench on their leaves, and then, to feed the leaf tissues isolated by the trench. On the contrary, A. cattigarensis only feeds L. acutangula, and its trenching behavior rarely occurs. This study showed that the host selectivity and feeding behavior of the two beetles were significantly correlated with the types of cucurbitacin biosynthesized by host melon crops. C. sativus and C. moschata might be induced to produce cucurbitacin I by A. fermoralis chinensis feeding, and this compound was responsible for feeding deterrent on A. fermoralis chinensis. Therefore, the feeding behavior of A. fermoralis chinensis was to block the translocation of cucurbitacin I to feeding sites. M. charantia and C. lanatus contained deterrent cucurbitacin D, and thus, both beetles never fed upon them, while L. acutangula contained stimulants cucurbitacin B and E, and made A. cattigarensis directly feed upon it without trenching. The results suggested that the taste responses of insects on specific allelochemicals from plants may play an important role in host selectivity and feeding behavior. PMID:16252877

  18. Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles

    PubMed Central

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  19. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  20. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  1. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments. PMID:11771473

  2. Open field host selection and behavior by tamarisk beetles (Diorhabda spp.)(Coleoptera: Chrysomelidae) in biological control of exotic saltcedars (Tamarix spp.) and risks to non-target athel (T. aphylla) and native Frankenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of exotic, invasive saltcedars (Tamarix spp.) in the western USA involves releases of exotic saltcedar leaf beetles, Diorhabda elongata Brullé sensu lato. Adults in cages alight, feed and oviposit on athel (Tamarix aphylla), an evergreen cold-intolerant tree used for shade and as...

  3. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  4. Small hive beetles survive in honeybee prisons by behavioural mimicry.

    PubMed

    Ellis, J D; Pirk, C W W; Hepburn, H R; Kastberger, G; Elzen, P J

    2002-07-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y. PMID:12216866

  5. Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts.

    PubMed

    Gökçe, Ayhan; Isaacs, Rufus; Whalon, Mark E

    2006-11-01

    Potato leaves were treated with 2, 20 or 200 g kg(-1) solutions of extracts of five plant species collected in Turkey, and then exposed to larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say). During the first 24 h of exposure, leaf consumption was not affected by 2 g kg(-1) extracts, whereas significantly more leaf tissue remained on leaves treated with 20 g kg(-1) extracts of Arctium lappa L., Bifora radians M Bieb, Humulus lupulus L. or Xanthium strumarium L. than on untreated control leaves. Feeding was not affected by the 20 g kg(-1) extract of Verbascum songaricum Schrenk ex Fisch & Mey. Extracts of all species at 200 g kg(-1) reduced larval feeding, with H. lupulus and X. strumarium providing the greatest protection. Observations of larval behaviour over the first 15 min of exposure to these extracts revealed that the interaction of beetles with leaf tissue was significantly affected by plant extracts. Feeding frequency was not affected by 2 g kg(-1) extracts but was reduced by all higher concentrations. Feeding was inhibited completely by 20 g kg(-1) of H. lupulus extract and reduced significantly compared with the controls by all other extracts. Suppression of feeding was caused by all extracts at 200 g kg(-1), with V. songaricum providing 91% reduction in feeding duration. Rejection behaviour, in which larvae did not return to the leaf after their interaction with it, was rare on 2 g kg(-1) extracts but seen in over 60% of larvae on 20 g kg(-1) extracts and over 80% on 200 g kg(-1) extracts. The present results demonstrate that these extracts have significant ability to protect potato leaves for up to 24 h by prevention of feeding behaviour by L. decemlineata. Further studies are needed to determine the potential of these plant extracts, or their active components, for use in biologically based pest management strategies. PMID:16886174

  6. Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livneh, Ben; Deems, Jeffrey S.; Buma, Brian; Barsugli, Joseph J.; Schneider, Dominik; Molotch, Noah P.; Wolter, K.; Wessman, Carol A.

    2015-04-01

    Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p ⩽ 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust

  7. Patterns on the iridescent beetle, Chrysina gloriosa

    NASA Astrophysics Data System (ADS)

    Park, Jung Ok; Sharma, Vivek; Crne, Matija; Srinivasarao, Mohan

    2009-03-01

    The brilliant metallic color of a beetle Chrysina gloriosa has been known to occur due to selective reflectance from a cholesteric structure on the exoskeleton. The surface also appears to have hexagonally packed structures. Crystallographic concepts and Voronoi analysis were used to determine the degree of order in different regions of the beetle. Along the hexagons in the Voronoi diagram, many clustered pentagons and heptagons were observed. Due to the surface curvature, the number of pentagons was found to be higher than the number of heptagons. The cells appear yellow in the center surrounded by a green region with a yellow edge. Confocal microscopy was used to image the underlying structure, which was found to consist of concentric arcs on a surface of a shallow cone. The observed structures resemble the defects on a cholesteric phase with a free surface, and provide an interesting explanation of structural color development in beetles, along with inspiration for the design of chiral photonic structures.

  8. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    PubMed

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed. PMID:21738430

  9. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    PubMed

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time. PMID:21597250

  10. BeetleBase: the model organism database for Tribolium castaneum.

    PubMed

    Wang, Liangjiang; Wang, Suzhi; Li, Yonghua; Paradesi, Martin S R; Brown, Susan J

    2007-01-01

    BeetleBase (http://www.bioinformatics.ksu.edu/BeetleBase/) is an integrated resource for the Tribolium research community. The red flour beetle (Tribolium castaneum) is an important model organism for genetics, developmental biology, toxicology and comparative genomics, the genome of which has recently been sequenced. BeetleBase is constructed to integrate the genomic sequence data with information about genes, mutants, genetic markers, expressed sequence tags and publications. BeetleBase uses the Chado data model and software components developed by the Generic Model Organism Database (GMOD) project. This strategy not only reduces the time required to develop the database query tools but also makes the data structure of BeetleBase compatible with that of other model organism databases. BeetleBase will be useful to the Tribolium research community for genome annotation as well as comparative genomics. PMID:17090595

  11. Dispersal of the spruce beetle, `dendroctonus rufipennis`, and the engraver beetle, `ips perturbatus`, in Alaska. Forest Service research paper

    SciTech Connect

    Werner, R.A.; Holsten, E.H.

    1997-09-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus beetles dispersed up to 30 m from their overwintering sites compared to most D. rufipennis, which dispersed from 90 to 300 m. Ips perturbatus beetles were caught up to 90 m and D. rufipennis up to 600 m from the point of release.

  12. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  13. Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles.

    PubMed

    Yee, Donald A; Taylor, Stacy; Vamosi, Steven M

    2009-05-01

    Dispersal can influence population dynamics, species distributions, and community assembly, but few studies have attempted to determine the factors that affect dispersal of insects in natural populations. Consequently, little is known about how proximate factors affect the dispersal behavior of individuals or populations, or how an organism's behavior may change in light of such factors. Adult predaceous diving beetles are active dispersers and are important predators in isolated aquatic habitats. We conducted interrelated studies to determine how several factors affected dispersal in two common pond-inhabiting species in southern Alberta, Canada: Graphoderus occidentalis and Rhantus sericans. Specifically, we (1) experimentally tested the effect of plant and beetle densities on dispersal probabilities in ponds; (2) surveyed ponds and determined the relationships among beetle densities and plant densities and water depth; and (3) conducted laboratory trials to determine how beetle behavior changed in response to variation in plant densities, conspecific densities, food, and water depth. Our field experiment determined that both species exhibited density dependence, with higher beetle densities leading to higher dispersal probabilities. Low plant density also appeared to increase beetle dispersal. Consistent with our experimental results, densities of R. sericans in ponds were significantly related to plant density and varied also with water depth; G. occidentalis densities did not vary with either factor. In the laboratory, behavior varied with plant density only for R. sericans, which swam at low density but were sedentary at high density. Both species responded to depth, with high beetle densities eliciting beetles to spend more time in deeper water. The presence of food caused opposite responses for G. occidentalis between experiments. Behavioral changes in response to patch-level heterogeneity likely influence dispersal in natural populations and are expected

  14. Systematics of Fusaria associated with Ambrosia beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here, I summarize research efforts directed at characterizing ambrosia beetle-associated fusaria, including the species responsible for avocado wilt in Israel (Mendel et al., Phytoparasitica 2012) and branch dieback in California (Eskalen et al., Pl. Dis. 2012). Our multilocus molecular phylogenetic...

  15. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  16. Research on Asian longhorned beetle in Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An established population of the Asian Longhorned Beetle (ALB) (Anoplophora glabripennis) (Motschulsky) was discovered in 2003 in Toronto, Ontario, Canada. Given the enormous risk that ALB posses to the expansive forests of southern Canada and northern U.S. and the urgent need to eradicate ALB, as ...

  17. Population Dynamics of the Rubber Plantation Litter Beetle Luprops tristis, in Relation to Annual Cycle of Foliage Phenology of Its Host, the Para Rubber Tree, Hevea brasiliensis

    PubMed Central

    Sabu, Thomas K.; Vinod, K.V.

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m2 of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf

  18. The fossil record and macroevolutionary history of the beetles.

    PubMed

    Smith, Dena M; Marcot, Jonathan D

    2015-04-22

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous-Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  19. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  20. Tiger beetle's pursuit of prey depends on distance

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    2015-03-01

    Tiger beetles are fast predators capable of chasing prey under closed-loop visual guidance. We investigated their control system using high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Analysis reveals that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The system gain is shown to depend on the beetle-prey distance in a pattern indicating three hunting phases over the observed distance domain. We show that to explain this behavior the tiger beetle must be capable of visually determining the distance to its target and using that to adapt the gain in its proportional control law. We will end with a discussion on the possible methods for distance detection by the tiger beetle and focus on two of them. Motion parallax, using the natural head sway induced by the walking gait of the tiger beetle, is shown to have insufficient distance range. However elevation in the field of vision, using the angle with respect to the horizon at which a target is observed, has a much larger distance range and is a prime candidate for the mechanism of visual distance detection in the tiger beetle.

  1. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...

  2. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  3. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  4. Towards scaling interannual ecohydrological responses of conifer forests to bark beetle infestations from individuals to landscapes

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.

    2013-12-01

    Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95

  5. Endozoochory by beetles: a novel seed dispersal mechanism

    PubMed Central

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L.; Herrera, Carlos M.; Talavera, Salvador

    2011-01-01

    Background and Aims Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles. Methods Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet. Key Results The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits. Conclusions A novel plant–animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds. PMID:21303784

  6. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  7. Prison construction and guarding behaviour by European honeybees is dependent on inmate small hive beetle density.

    PubMed

    Ellis, J D; Hepburn, H R; Ellis, A M; Elzen, P J

    2003-08-01

    Increasing small hive beetle (Aethina tumida Murray) density changes prison construction and guarding behaviour in European honeybees (Apis mellifera L.). These changes include more guard bees per imprisoned beetle and the construction of more beetle prisons at the higher beetle density. Despite this, the number of beetles per prison (inmate density) did not change. Beetles solicited food more actively at the higher density and at night. In response, guard bees increased their aggressive behaviour towards beetle prisoners but did not feed beetles more at the higher density. Only 5% of all beetles were found among the combs at the low density but this percentage increased five-fold at the higher one. Successful comb infiltration (and thus reproduction) by beetles is a possible explanation for the significant damage beetles cause to European honeybee colonies in the USA. PMID:12955230

  8. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

    PubMed

    Zhao, Tao; Axelsson, Karolin; Krokene, Paal; Borg-Karlson, Anna-Karin

    2015-09-01

    Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems. PMID:26302987

  9. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    PubMed

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra. PMID:25499796

  10. Assessing soybean leaf area and leaf biomass by spectral measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tucker, C. J.; Fan, C. J.

    1979-01-01

    Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.

  11. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance1[OPEN

    PubMed Central

    Erb, Matthias; Robert, Christelle A.M.; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R.; Villard, Neil; Barrière, Yves; Wolfender, Jean-Luc; Turlings, Ted C.J.

    2015-01-01

    Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225

  12. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance.

    PubMed

    Erb, Matthias; Robert, Christelle A M; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R; Villard, Neil; Barrière, Yves; French, B Wade; Wolfender, Jean-Luc; Turlings, Ted C J; Gershenzon, Jonathan

    2015-12-01

    Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225

  13. Water capture by a desert beetle

    NASA Astrophysics Data System (ADS)

    Parker, Andrew R.; Lawrence, Chris R.

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

  14. Loss of flight promotes beetle diversification.

    PubMed

    Ikeda, Hiroshi; Nishikawa, Masaaki; Sota, Teiji

    2012-01-01

    The evolution of flight is a key innovation that may enable the extreme diversification of insects. Nonetheless, many species-rich, winged insect groups contain flightless lineages. The loss of flight may promote allopatric differentiation due to limited dispersal power and may result in a high speciation rate in the flightless lineage. Here we show that loss of flight accelerates allopatric speciation using carrion beetles (Coleoptera: Silphidae). We demonstrate that flightless species retain higher genetic differentiation among populations and comprise a higher number of genetically distinct lineages than flight-capable species, and that the speciation rate with the flightless state is twice that with the flight-capable state. Moreover, a meta-analysis of 51 beetle species from 15 families reveals higher genetic differentiation among populations in flightless compared with flight-capable species. In beetles, which represent almost one-fourth of all described species, repeated evolution of flightlessness may have contributed to their steady diversification since the Mesozoic era. PMID:22337126

  15. Asymmetric hindwing foldings in rove beetles

    PubMed Central

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-01-01

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right–left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  16. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  17. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  18. Fifteen into Three Does Go: Morphology, Genetics and Genitalia Confirm Taxonomic Inflation of New Zealand Beetles (Chrysomelidae: Eucolaspis).

    PubMed

    Doddala, Prasad R C; Minor, Maria A; Rogers, David J; Trewick, Steven A

    2015-01-01

    Eucolaspis Sharp 1886 is a New Zealand native leaf beetle genus (Coleoptera: Chrysomelidae: Eumolpinae) with poorly described species and a complex taxonomy. Many economically important fruit crops are severely damaged by these beetles. Uncertain species taxonomy of Eucolaspis is leaving any biological research, as well as pest management, tenuous. We used morphometrics, mitochondrial DNA and male genitalia to study phylogenetic and geographic diversity of Eucolaspis in New Zealand. Freshly collected beetles from several locations across their distribution range, as well as identified voucher specimens from major museum collections were examined to test the current classification. We also considered phylogenetic relationships among New Zealand and global Eumolpinae (Coleoptera: Chyrosomelidae). We demonstrate that most of the morphological information used previously to define New Zealand Eucolaspis species is insufficient. At the same time, we show that a combination of morphological and genetic evidence supports the existence of just 3 mainland Eucolaspis lineages (putative species), and not 5 or 15, as previously reported. In addition, there may be another closely related lineage (putative species) on an offshore location (Three Kings Islands, NZ). The cladistic structure among the lineages, conferred through mitochondrial DNA data, was well supported by differences in male genitalia. We found that only a single species (lineage) infests fruit orchards in Hawke's Bay region of New Zealand. Species-host plant associations vary among different regions. PMID:26600380

  19. Fifteen into Three Does Go: Morphology, Genetics and Genitalia Confirm Taxonomic Inflation of New Zealand Beetles (Chrysomelidae: Eucolaspis)

    PubMed Central

    Doddala, Prasad R. C.; Minor, Maria A.; Rogers, David J.; Trewick, Steven A.

    2015-01-01

    Eucolaspis Sharp 1886 is a New Zealand native leaf beetle genus (Coleoptera: Chrysomelidae: Eumolpinae) with poorly described species and a complex taxonomy. Many economically important fruit crops are severely damaged by these beetles. Uncertain species taxonomy of Eucolaspis is leaving any biological research, as well as pest management, tenuous. We used morphometrics, mitochondrial DNA and male genitalia to study phylogenetic and geographic diversity of Eucolaspis in New Zealand. Freshly collected beetles from several locations across their distribution range, as well as identified voucher specimens from major museum collections were examined to test the current classification. We also considered phylogenetic relationships among New Zealand and global Eumolpinae (Coleoptera: Chyrosomelidae). We demonstrate that most of the morphological information used previously to define New Zealand Eucolaspis species is insufficient. At the same time, we show that a combination of morphological and genetic evidence supports the existence of just 3 mainland Eucolaspis lineages (putative species), and not 5 or 15, as previously reported. In addition, there may be another closely related lineage (putative species) on an offshore location (Three Kings Islands, NZ). The cladistic structure among the lineages, conferred through mitochondrial DNA data, was well supported by differences in male genitalia. We found that only a single species (lineage) infests fruit orchards in Hawke’s Bay region of New Zealand. Species-host plant associations vary among different regions. PMID:26600380

  20. Resistance of sweetpotato genotypes to spotted and banded cucumber beetles.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay techniques were developed for evaluating the resistance of sweetpotato germplasm to larvae and adults of the banded and spotted cucumber beetles. For the adult bioassay, individual beetles were placed on pieces of sweetpotato peel (periderm and cortex with stele removed) that was embedded ...

  1. Simulation model of the red flour beetle in flour mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red flour beetle (Tribolium castaneum) is one of the most common insect pests infesting wheat flour mills. Structural treatments such as methyl bromide, sulfuryl fluoride and heat, are used to control the red flour beetle. The structural treatments do not provide any residual action and, thus, any s...

  2. A culture method for darkling beetles, Blapstinus spp. (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (> 500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for ...

  3. Formulating entompathogens for control of boring beetles in avocado orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  4. Observations on the Life History of Small Hive Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DeGuzman, L.I.& A.M. Frake. Observations on the Life History of Small Hive Beetles - The life history of small hive beetles (SHB) kept in an incubator (34ºC) and at room temperature (24-28ºC) was compared. Six slides of eggs, obtained using the glass slide technique, were placed individually in rear...

  5. Endocrine control of exaggerated traits in rhinoceros beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  6. Male-specific sesquiterpenes from Phyllotreta flea beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  7. Cantharidin Poisoning due to Blister Beetle Ingestion in Children

    PubMed Central

    Al-Binali, Ali M.; Shabana, Medhat; Al-Fifi, Suliman; Dawood, Sami; Shehri, Amer A.; Al-Barki, Ahmed

    2010-01-01

    Cantharidin is an intoxicant found in beetles in the Meloidae (Coleoptera) family. Ingestion may result in haematemesis, impaired level of consciousness, electrolyte disturbance, haematurea and renal impairment. Here, we report two paediatric cases of meloid beetle ingestion resulting in cantharidin poisoning and the clinical presentation of the ensuing intoxication. PMID:21509239

  8. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  9. Anti-predator defence drives parallel morphological evolution in flea beetles

    PubMed Central

    Ge, Deyan; Chesters, Douglas; Gómez-Zurita, Jesús; Zhang, Lijie; Yang, Xingke; Vogler, Alfried P.

    2011-01-01

    Complex morphological or functional traits are frequently considered evolutionarily unique and hence useful for taxonomic classification. Flea beetles (Alticinae) are characterized by an extraordinary jumping apparatus in the usually greatly expanded femur of their hind legs that separates them from the related Galerucinae. Here, we examine the evolution of this trait using phylogenetic analysis and a time-calibrated tree from mitochondrial (rrnL and cox1) and nuclear (small subunits and large subunits) genes, as well as morphometrics of femora using elliptic Fourier analysis. The phylogeny strongly supports multiple independent origins of the metafemoral spring and therefore rejects the monophyly of Alticinae, as defined by this trait. Geometric outline analysis of femora shows the great plasticity of this structure and its correlation with the type and diversity of the metafemoral springs. The recognition of convergence in jumping apparatus now resolves the long-standing difficulties of Galerucinae–Alticinae classification, and cautions against the value of trait complexity as a measure of taxonomic significance. The lineage also shows accelerated species diversification rates relative to other leaf beetles, which may be promoted by the same ecological factors that also favour the repeated evolution of jumping as an anti-predation mechanism. PMID:21159678

  10. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles.

    PubMed

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  11. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles

    PubMed Central

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Abstract Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  12. Structure of Phoretic Mite Assemblages Across Subcortical Beetle Species at a Regional Scale.

    PubMed

    Pfammatter, Jesse A; Coyle, David R; Gandhi, Kamal J K; Hernandez, Natalie; Hofstetter, Richard W; Moser, John C; Raffa, Kenneth F

    2016-02-01

    Mites associated with subcortical beetles feed and reproduce within habitats transformed by tree-killing herbivores. Mites lack the ability to independently disperse among these habitats, and thus have evolved characteristics that facilitate using insects as transport between resources. Studies on associations between mites and beetles have historically been beetle-centric, where an assemblage of mite species is characterized on a single beetle species. However, available evidence suggests there may be substantial overlap among mite species on various species of beetles utilizing similar host trees. We assessed the mite communities of multiple beetle species attracted to baited funnel traps in Pinus stands in southern Wisconsin, northern Arizona, and northern Georgia to better characterize mite dispersal and the formation of mite-beetle phoretic associations at multiple scales. We identified approximately 21 mite species totaling 10,575 individuals on 36 beetle species totaling 983 beetles. Of the mites collected, 97% were represented by eight species. Many species of mites were common across beetle species, likely owing to these beetles' common association with trees in the genus Pinus. Most mite species were found on at least three beetle species. Histiostoma spp., Iponemus confusus Lindquist, Histiogaster arborsignis Woodring and Trichouropoda australis Hirschmann were each found on at least seven species of beetles. While beetles had largely similar mite membership, the abundances of individual mite species were highly variable among beetle species within each sampling region. Phoretic mite communities also varied within beetle species between regions, notably for Ips pini (Say) and Ips grandicollis (Eichhoff). PMID:26496952

  13. Food Preferences of the Rubber Plantation Litter Beetle, Luprops tristis, a Nuisance Pest in Rubber Tree Plantations

    PubMed Central

    Sabu, Thomas K.; Vinod, K.V.

    2009-01-01

    Massive invasion of the litter dwelling beetle, Luprops tristis Fabricius (Coleoptera: Tenebrionidae), numbering about 0.5 to 4 million per residential building following summer showers, and their prolonged stay in a state of dormancy, make them an extreme nuisance in rubber tree plantation belts of the Western Ghats in south India. Food preference of post-dormancy adults, larvae and teneral adults stages towards tender, mature and senescent leaves were assessed in three choice and no choice leaf disc tests. All stages have strong preference towards fallen tender leaves and lowest preference towards senescent leaves indicating that leaf age is a major attribute determining food selection and food preference of L. tristis. Ready availability of the preferred, prematurely fallen, tender rubber tree leaves as a food resource is suggested as being responsible for the exceptionally high abundance of L. tristis in rubber tree plantation belts. PMID:20050783

  14. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference

    PubMed Central

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  15. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference.

    PubMed

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  16. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  17. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them

    PubMed Central

    Eisner, Thomas; Schroeder, Frank C.; Snyder, Noel; Grant, Jacqualine B.; Aneshansley, Daniel J.; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Summary Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. PMID:18698369

  18. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations

    USGS Publications Warehouse

    Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.

    2013-01-01

    We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.

  19. Using Webcam Technology for Measuring and Scaling Phenology of Tamarisk (Tamarix ramosissima) Infested with the Biocontrol Beetle (Diorhabda carinulata) on the Dolores River, Utah

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Brown, T.; Dennison, P. E.; Hultine, K. R.; Glenn, E. P.

    2009-12-01

    Tamarisk is an introduced shrub/tree that is now widespread in western U.S. riparian corridors. There is concern that tamarisk displaces native vegetation and consumes large amounts of water from riparian aquifers. Consequently, the saltcedar leaf beetle (Diorhabda carinulata) has been introduced into the western US to control the spread of tamarisk. We studied the phenology and water use of tamarisk in two adjacent, beetle infested stands on the Dolores River, in southeastern Utah. A 10 m tower was erected in each tamarisk stand (“orchard” and “gauge”) prior to the 2008 growing season. Beetle damage was measured using fractional cover from images taken from the tower-mounted visible and infrared cameras (“phenocams”) starting in mid-May 2008 and again in mid-May 2009 through the growing season of each year. Tamarisk plants developed fresh leaves ca. mid-April and dense canopies by late-May. In 2008, defoliation became significant by June, whereas in 2009, defoliation became significant by mid-July (orchard) to late-July (gauge). In 2007, cameras were not installed, however defoliation occurred in July. Partial refoliation occurred approximately six weeks after the tamarisk trees were completely defoliated. Time-lapse image sets from the cameras were compared with fine-scale estimates of water use using stem sap flow measurements conducted over three growing seasons (2007-2009). Damage at an intermediate scale was measured with Aster imagery (15 m resolution) and at a coarse scale with MODIS imagery (250 m resolution). Vegetation indices (VIs) from the fine scale (tower phenocams) were comparable to VIs from satellite imagery at the intermediate and coarse scale. Plant transpiration fell dramatically during or shortly after the defoliated period, but recovered when new leaves were produced each year. Potential water salvage was constrained to the relatively brief period of defoliation. At the intermediate scale of measurement, beetle damage was seen to

  20. Yellow leaf blotch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow leaf blotch occurs worldwide in temperate climates. The disease is reported from countries in Asia, Australasia, Oceania, Europe, North America, Central America, the West Indies, and South America. In the northern Great Plains of North America, it is often the major leaf disease on alfalfa....

  1. Negative Feedbacks on Bark Beetle Outbreaks: Widespread and Severe Spruce Beetle Infestation Restricts Subsequent Infestation

    PubMed Central

    Hart, Sarah J.; Veblen, Thomas T.; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  2. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    PubMed

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  3. A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge

    PubMed Central

    Gretscher, René R.; Streicher, Priska E.; Strauß, Anja S.; Wielsch, Natalie; Stock, Magdalena; Wang, Ding; Boland, Wilhelm; Burse, Antje

    2016-01-01

    Extracellular Cu/Zn superoxide dismutases (SODs) are critical for balancing the level of reactive oxygen species in the extracellular matrix of eukaryotes. In the present study we have detected constitutive SOD activity in the haemolymph and defensive secretions of different leaf beetle species. Exemplarily, we have chosen the mustard leaf beetle, Phaedon cochleariae, as representative model organism to investigate the role of extracellular SODs in antimicrobial defence. Qualitative and quantitative proteome analyses resulted in the identification of two extracellular Cu/Zn SODs in the haemolymph and one in the defensive secretions of juvenile P. cochleariae. Furthermore, quantitative expression studies indicated fat body tissue and defensive glands as the main synthesis sites of these SODs. Silencing of the two SODs revealed one of them, PcSOD3.1, as the only relevant enzyme facilitating SOD activity in haemolymph and defensive secretions in vivo. Upon challenge with the entomopathogenic fungus, Metarhizium anisopliae, PcSOD3.1-deficient larvae exhibited a significantly higher mortality compared to other SOD-silenced groups. Hence, our results serve as a basis for further research on SOD regulated host-pathogen interactions. In defensive secretions PcSOD3.1-silencing affected neither deterrent production nor activity against fungal growth. Instead, we propose another antifungal mechanism based on MRJP/yellow proteins in the defensive exudates. PMID:27068683

  4. Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.

    2013-12-01

    The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic

  5. Predatory aquatic beetles, suitable trace elements bioindicators.

    PubMed

    Burghelea, Carmen I; Zaharescu, Dragos G; Hooda, Peter S; Palanca-Soler, Antonio

    2011-05-01

    Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status. PMID:21468408

  6. Brilliant Whiteness in Ultrathin Beetle Scales

    NASA Astrophysics Data System (ADS)

    Vukusic, Pete; Hallam, Benny; Noyes, Joe

    2007-01-01

    The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness.

  7. Brilliant whiteness in ultrathin beetle scales.

    PubMed

    Vukusic, Pete; Hallam, Benny; Noyes, Joe

    2007-01-19

    The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness. PMID:17234940

  8. Water capture by a desert beetle.

    PubMed

    Parker, A R; Lawrence, C R

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines. PMID:11689930

  9. Leaf growth is conformal.

    PubMed

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I; Boudaoud, Arezki

    2016-01-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour. PMID:27597439

  10. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  11. Red List of beetles of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Mahler, V.; Suikat, R.; Aßmann, Th.

    1996-10-01

    As no data on beetles in the Wadden Sea area are available from The Netherlands, the trilateral status of threat only refers to the Danish and German part of the Wadden Sea. In this area, in total, 238 species of beetles are threatened in at least one subregion. Of these, 189 species are threatened in the entire area and are therefore placed on the trilateral Red List. 4 species are (probably) extinct in the entire Wadden Sea area. The status of 24 species of beetles is (probably) critical, 46 species are (probably) endangered, the status of 86 species is (probably) vulnerable and of 29 species (probably) susceptible.

  12. "Excess Water" Following Deforestation by Beetle Kill?

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Miller, S. N.; Anderson-Sprecher, R.; Ewers, B. E.; Speckman, H.

    2014-12-01

    Deforestation resulting from tree mortality by insects and disease may reduce transpiration demand and increase available water in mountain environments throughout. We tested this hypothesis using three large catchments (97-407 km2) located in the Snowy Mountains of Wyoming where hydrology is snowmelt dominated. An epidemic of spruce bark beetle and associated tree mortality emerged in 2006 and has since impacted 60 to 80% of basal area of the spruce-fir and mixed conifer forests. A 25-year continuous record (1998-2013) of daily snowfall, temperature, and stream discharge data between 1 April and 30 September of each year were available for each catchment. We used quantile regression and multivariate time series analysis first to control for the effects of temperature and snow water equivalent on the timing and magnitude of discharge and then to test for changes in discharge trends since 2006. We found no compelling evidence of changes in discharge trends associated with the onset of the beetle epidemic independent of snowmelt trends. Several factors could explain this apparent lack of "excess water" following tree mortality by insects and disease. Any increases in water may be scale dependent, a local phenomenon that does not transfer through large catchments. Other vegetation including young cohorts of affected tree species, shrubs, and herbaceous cover may respond robustly to the open canopy and utilize soil water previously consumed by the infected trees.

  13. Atlas of Iberian water beetles (ESACIB database)

    PubMed Central

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A.; Ribera, Ignacio

    2015-01-01

    Abstract The ESACIB (‘EScarabajos ACuáticos IBéricos’) database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the “Atlas de los Coleópteros Acuáticos de España Peninsular”. In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  14. Dew condensation on desert beetle skin.

    PubMed

    Guadarrama-Cetina, J; Mongruel, A; Medici, M-G; Baquero, E; Parker, A R; Milimouk-Melnytchuk, I; González-Viñas, W; Beysens, D

    2014-11-01

    Some tenebrionind beetles inhabiting the Namib desert are known for using their body to collect water droplets from wind-blown fogs. We aim to determine whether dew water collection is also possible for desert insects. For this purpose, we investigated the infra-red emissivity, and the wetting and structural properties, of the surface of the elytra of a preserved specimen of Physasterna cribripes (Tenebrionidæ) beetle, where the macro-structure appears as a series of "bumps", with "valleys" between them. Dew formation experiments were carried out in a condensation chamber. The surface properties (infra-red emissivity, wetting properties) were dominated by the wax at the elytra surface and, to a lower extent, its micro-structure. We performed scanning electron microscope on histological sections and determined the infra-red emissivity using a scanning pyrometer. The emissivity measured (0.95±0.07 between 8-14 μm) was close to the black body value. Dew formation occurred on the insect's elytra, which can be explained by these surface properties. From the surface coverage of the condensed drops it was found that dew forms primarily in the valleys between the bumps. The difference in droplet nucleation rate between bumps and valleys can be attributed to the hexagonal microstructure on the surface of the valleys, whereas the surface of the bumps is smooth. The drops can slide when they reach a critical size, and be collected at the insect's mouth. PMID:25403836

  15. Atlas of Iberian water beetles (ESACIB database).

    PubMed

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  16. Leaf Tissue Senescence

    PubMed Central

    Manos, Peter J.; Goldthwaite, Jonathan

    1975-01-01

    During winter, excised leaf tissue from Rumex obtusifolius degrades chlorophyll at twice the summer rate but the plant hormones, gibberellic acid and zeatin, inhibit the senescence rate by a constant percentage, regardless of season. PMID:16659225

  17. Micro-structure and frictional characteristics of beetle?s joint

    NASA Astrophysics Data System (ADS)

    Dai, Zhendong; Gorb, Stanislav N.

    2004-01-01

    Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS. The observation by using SEM and microscopy suggested that beetle’s joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3°). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.

  18. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective.

    PubMed

    Haack, Robert A; Hérard, Franck; Sun, Jianghua; Turgeon, Jean J

    2010-01-01

    The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and citrus longhorned beetle (CLB), Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae), are polyphagous xylophages native to Asia and are capable of killing healthy trees. ALB outbreaks began in China in the 1980s, following major reforestation programs that used ALB-susceptible tree species. No regional CLB outbreaks have been reported in Asia. ALB was first intercepted in international trade in 1992, mostly in wood packaging material; CLB was first intercepted in 1980, mostly in live plants. ALB is now established in North America, and both species are established in Europe. After each infestation was discovered, quarantines and eradication programs were initiated to protect high-risk tree genera such as Acer, Aesculus, Betula, Populus, Salix, and Ulmus. We discuss taxonomy, diagnostics, native range, bionomics, damage, host plants, pest status in their native range, invasion history and management, recent research, and international efforts to prevent new introductions. PMID:19743916

  19. Comparative resistance of Russian and Italian honey bees (Hymenoptera: Apidae) to small hive beetles (Coleoptera: Nitidulidae).

    PubMed

    Frake, Amanda M; De Guzman, Lilia I; Rinderer, Thomas E

    2009-02-01

    To compare resistance to small hive beetles (Coleoptera: Nitidulidae) between Russian and commercial Italian honey bees (Hymenoptera: Apidae), the numbers of invading beetles, their population levels through time and small hive beetle reproduction inside the colonies were monitored. We found that the genotype of queens introduced into nucleus colonies had no immediate effect on small hive beetle invasion. However, the influence of honey bee stock on small hive beetle invasion was pronounced once test bees populated the hives. In colonies deliberately freed from small hive beetle during each observation period, the average number of invading beetles was higher in the Italian colonies (29 +/- 5 beetles) than in the Russian honey bee colonies (16 +/- 3 beetles). A similar trend was observed in colonies that were allowed to be freely colonized by beetles throughout the experimental period (Italian, 11.46 +/- 1.35; Russian, 5.21 +/- 0.66 beetles). A linear regression analysis showed no relationships between the number of beetles in the colonies and adult bee population (r2 = 0.1034, P = 0.297), brood produced (r2 = 0.1488, P = 0.132), or amount of pollen (P = 0.1036, P = 0.295). There were more Italian colonies that supported small hive beetle reproduction than Russian colonies. Regardless of stock, the use of entrance reducers had a significant effect on the average number of small hive beetle (with reducer, 16 +/- 3; without reducer, 27 +/- 5 beetles). However, there was no effect on bee population (with reducer, 13.20 +/- 0.71; without reducer, 14.60 +/- 0.70 frames) or brood production (with reducer, 6.12 +/- 0.30; without reducer, 6.44 +/- 0.34 frames). Overall, Russian honey bees were more resistant to small hive beetle than Italian honey bees as indicated by fewer invading beetles, lower small hive beetle population through time, and lesser reproduction. PMID:19253612

  20. Potential for Water Salvage by Release of the Biocontrol Beetle, Diorhabda carinulata, on Tamarisk (Tamarix ramosissima) Dominated Western U.S. Rivers

    NASA Astrophysics Data System (ADS)

    Murray, R. S.; Nagler, P. L.; van Riper, C.; Bean, D.; Glenn, E. P.

    2009-12-01

    100 trees at each site were observed for percent flower and leaf, coupled with ratios of green-to-brown needle observations, done from spring green-up to senescence. Bird census data were collected at 100 m radius circular plot stations (n=20) and birds were captured in mist-nets, in which the type and number of birds were reported as birds per net hour. At each location, the results support our past 3 years of findings for the ET seasonally and annually time-series curves as the beetle came into the area and defoliated saltcedar. This study supports phenological observations showing that beetle damage is spotty and localized at most sites, and reduction in ET is confined mainly to July when beetles are actively feeding. However, beetles are still spreading and the eventual fate of Tamarisk stands remains to be determined.

  1. Pheromone Chemistry of the Smaller European Elm Bark Beetle.

    ERIC Educational Resources Information Center

    Beck, Keith

    1978-01-01

    Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)

  2. The artificial beetle, or a brief manifesto for engineered biomimicry

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  3. Physiological benefits of nectar-feeding by a predatory beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrafloral nectar is an important food source for many animals, including predatory lady beetles (Coleoptera: Coccinellidae), although the physiological benefits of nectar consumption are poorly understood for most consumers. Under laboratory conditions, we confined new females of Coleomegilla macu...

  4. Host plant preference in Colorado potato beetle (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory-choice tests were conducted to better understand host plant preference by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory olfactometer studies, L. decemlineata preferred potato over both tomato and eggplant foli...

  5. Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two species of dynastine scarab beetles are reported for the first time on the island of Hawaii: the Pasadena masked chafer, Cyclocephala pasadenae (Casey)(Scarabaeidae: Dynastinae: Cyclocephalini) and the Temnorhynchus retusus (Fabricius)(Scarabaeidae: Dynastinae: Pentodontini). The Pasadena mask...

  6. New generic synonyms in the Oriental flea beetles (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The following new synonyms are proposed for the genera of flea beetles from Oriental Region: Pseudocrypta Medvedev, 1996 and Sebaethiella Medvedev, 1993 = Acrocrypta Baly, 1862: 457; Bhutajana Scherer, 1979 = Aphthona Chevrolat, 1836; Burmaltica Scherer, 1969 = Aphthonaltica Heikertinger, 1924; Apht...

  7. The Role of Beetle Marks and Flower Colour on Visitation by Monkey Beetles (Hopliini) in the Greater Cape Floral Region, South Africa

    PubMed Central

    Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S.; Manning, John C.

    2007-01-01

    Background and Aims A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Method Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Key Results Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. Conclusions This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers. PMID:17951585

  8. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission.

    PubMed

    Gregory, Nichar; Gómez, Andrés; Oliveira, Trícia Maria F de S; Nichols, Elizabeth

    2015-02-01

    Observational evidence suggests that burial of faeces by dung beetles negatively influences the transmission of directly transmitted gastrointestinal helminths. However, the mechanistic basis for these interactions is poorly characterised, limiting our ability to understand relationships between beetle community composition and helminth transmission. We demonstrate that beetle body size and sex significantly impact tunnel depth, a key variable affecting parasite survival. Additionally, high parasite loads reduce the depth of beetle faeces burial, suggesting that the local prevalence of parasites infecting beetles may impact beetle ecosystem function. Our study represents a first step towards a mechanistic understanding of a potentially epidemiologically relevant ecosystem function. PMID:25496914

  9. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  10. Unisex pheromone detectors and pheromone-binding proteins in scarab beetles.

    PubMed

    Nikonov, Alexander Alexeevich; Peng, Guihong; Tsurupa, Galina; Leal, Walter Soares

    2002-07-01

    Olfaction was studied in two species of scarab beetle, Anomala octiescostata and Anomala cuprea (Coleoptera: Scarabaeidae: Rutelinae), which are temporarily isolated and use the same sex pheromone compounds, (R)-buibuilactone and (R)-japonilure. Single sensillum recordings in A. octiescostata revealed highly sensitive olfactory receptor neurons (ORNs) (threshold <1 pg) that were tuned to the detection of the green leaf volatile compound (Z)-3-hexenyl acetate. As opposed to similar ORNs in another scarab species, Phyllopertha diversa, in A. octiescostata a diazo analogue elicited much lower neuronal responses than the natural ligand. Detectors for other floral and leaf compounds were also characterized. Extremely stereoselective ORNs tuned to sex pheromone were identified in male and female antennae. Biochemical investigations showed that, in A. octiescostata and A. cuprea, the pheromone-binding proteins (PBPs) isolated from male antennae were identical to PBPs obtained from female antennae. AoctPBP and AcupPBP had seven different amino acid residues. Binding of AoctPBP to (R)-japonilure is shown. PdivOBP1, which is also known to bind to (R)-japonilure, differed from AcupPBP in only two amino acid residues, one at the N-terminus and the other near the C-terminus. The structural features of the Bombyx mori PBP are compared with the sequences of eight known scarab odorant-binding proteins. PMID:12142325