Sample records for leg bones

  1. A new leg voxel model in two different positions for simulation of the non-uniform distribution of (241)Am in leg bones.

    PubMed

    Khalaf, Majid; Brey, Richard R; Meldrum, Jeff

    2013-01-01

    A new leg voxel model in two different positions (straight and bent) has been developed for in vivo measurement calibration purposes. This voxel phantom is a representation of a human leg that may provide a substantial enhancement to Monte Carlo modeling because it more accurately models different geometric leg positions and the non-uniform distribution of Am throughout the leg bones instead of assuming a one-position geometry and a uniform distribution of radionuclides. This was accomplished by performing a radiochemical analysis on small sections of the leg bones from the U.S. Transuranium and Uranium Registries (USTUR) case 0846. USTUR case 0846 represents an individual who was repeatedly contaminated by Am via chronic inhalation. To construct the voxel model, high resolution (2 mm) computed tomography (CT) images of the USTUR case 0846 leg were obtained in different positions. Thirty-six (36) objects (universes) were segmented manually from the CT images using 3D-Doctor software. Bones were divided into 30 small sections with an assigned weight exactly equal to the weight of bone sections obtained from radiochemical analysis of the USTUR case 0846 leg. The segmented images were then converted into a boundary file, and the Human Monitoring Laboratory (HML) voxelizer was used to convert the boundary file into the leg voxel phantom. Excluding the surrounding air regions, the straight leg phantom consists of 592,023 voxels, while the bent leg consists of 337,567 voxels. The resulting leg voxel model is now ready for use as an MCNPX input file to simulate in vivo measurement of bone-seeking radionuclides.

  2. Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.

    PubMed

    Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C

    2018-04-01

    Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p < 0.001] respectively). Changes in period 2 compared with period 1 were smaller for leg BMD (p = 0.001), leg BMC (p < 0.001), leg fat mass (p = 0.028), and total BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.

  3. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa).

    PubMed

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B; Romanek, Christopher S; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. © 2013 Elsevier B.V. All rights reserved.

  4. Young's modulus and SEM analysis of leg bones exposed to simulated microgravity by hind limb suspension (HLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Niravkumar D.; Mehta, Rahul; Ali, Nawab

    2013-04-19

    The aim of this study was to determine composition of the leg bone tissue of rats that were exposed to simulated microgravity by Hind-Limb Suspension (HLS) by tail for one week. The leg bones were cross sectioned, cleaned of soft tissues, dried and sputter coated, and then placed horizontally on the stage of a Scanning Electron Microscope (SEM) for analysis. Interaction of a 17.5 keV electron beam, incident from the vertical direction on the sample, generated images using two detectors. X-rays emitted from the sample during electron bombardment were measured with an Energy Dispersive Spectroscopy (EDS) feature of SEM usingmore » a liquid-nitrogen cooled Si(Li) detector with a resolution of 144 eV at 5.9 keV ({sub 25}Mn K{sub {alpha}} x-ray). K{sub {alpha}}- x-rays from carbon, oxygen, phosphorus and calcium formed the major peaks in the spectrum. Relative percentages of these elements were determined using a software that could also correct for ZAF factors namely Z(atomic number), A(X-ray absorption) and F(characteristic fluorescence). The x-rays from the control groups and from the experimental (HLS) groups were analyzed on well-defined parts (femur, tibia and knee) of the leg bone. The SEM analysis shows that there are definite changes in the hydroxyl or phosphate group of the main component of the bone structure, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}], due to hind limb suspension. In a separate experiment, entire leg bones (both from HLS and control rats) were subjected to mechanical stress by mean of a variable force. The stress vs. strain graph was fitted with linear and polynomial function, and the parameters reflecting the mechanical strength of the bone, under increasing stress, were calculated. From the slope of the linear part of the graph the Young's modulus for HLS bones were calculated and found to be 2.49 times smaller than those for control bones.« less

  5. Young's modulus and SEM analysis of leg bones exposed to simulated microgravity by hind limb suspension (HLS)

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar D.; Mehta, Rahul; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2013-04-01

    The aim of this study was to determine composition of the leg bone tissue of rats that were exposed to simulated microgravity by Hind-Limb Suspension (HLS) by tail for one week. The leg bones were cross sectioned, cleaned of soft tissues, dried and sputter coated, and then placed horizontally on the stage of a Scanning Electron Microscope (SEM) for analysis. Interaction of a 17.5 keV electron beam, incident from the vertical direction on the sample, generated images using two detectors. X-rays emitted from the sample during electron bombardment were measured with an Energy Dispersive Spectroscopy (EDS) feature of SEM using a liquid-nitrogen cooled Si(Li) detector with a resolution of 144 eV at 5.9 keV (25Mn Kα x-ray). Kα- x-rays from carbon, oxygen, phosphorus and calcium formed the major peaks in the spectrum. Relative percentages of these elements were determined using a software that could also correct for ZAF factors namely Z(atomic number), A(X-ray absorption) and F(characteristic fluorescence). The x-rays from the control groups and from the experimental (HLS) groups were analyzed on well-defined parts (femur, tibia and knee) of the leg bone. The SEM analysis shows that there are definite changes in the hydroxyl or phosphate group of the main component of the bone structure, hydroxyapatite [Ca10(PO4)6(OH)2], due to hind limb suspension. In a separate experiment, entire leg bones (both from HLS and control rats) were subjected to mechanical stress by mean of a variable force. The stress vs. strain graph was fitted with linear and polynomial function, and the parameters reflecting the mechanical strength of the bone, under increasing stress, were calculated. From the slope of the linear part of the graph the Young's modulus for HLS bones were calculated and found to be 2.49 times smaller than those for control bones.

  6. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

  7. Broken Leg

    MedlinePlus

    ... devices into the broken bone to maintain proper alignment during healing. Other injuries may be treated with ... that extend into the joint and poor bone alignment can cause osteoarthritis years later. If your leg ...

  8. Leg lengthening - series (image)

    MedlinePlus

    ... as Legg-Perthes disease Previous injuries or bone fractures that may stimulate excessive bone growth Abnormal spinal ... in the bone to be lengthened; usually the lower leg bone (tibia) or upper ... small steps, usually over the course of several months.

  9. Leg size and muscle functions associated with leg compliance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  10. Simulated bone remodeling around two types of osseointegrated implants for direct fixation of upper-leg prostheses.

    PubMed

    Tomaszewski, P K; Verdonschot, N; Bulstra, S K; Rietman, J S; Verkerke, G J

    2012-11-01

    Direct attachment of an upper leg prosthesis to the skeletal system by a percutaneous implant is an alternative solution to the traditional socket fixation. In this study, we investigated long-term periprosthetic bone changes around two types of fixation implants using two different initial conditions, namely immediate post-amputation implantation and the conventional implantation after considerable time of socket prosthesis use. We questioned the difference in bone modeling response the implants provoked and if it could lead to premature bone fracture. Generic CT-based finite element models of an intact femoral bone and amputated bone implanted with models of two existing direct-fixation implants, the OPRA system (Integrum AB) and the ISP Endo/Exo prosthesis (ESKA Implants AG) were created for this study. Adaptive bone-remodeling simulations used the heel-strike and toe-off loads from a normal walking cycle. The bone loss caused by prolonged use of socket prosthesis had more severe effects on the ultimate bone quality than adaptation induced by the direct-fixation implants. Both implants showed considerable bone remodeling; the titanium screw implant (OPRA system) provoked more bone loss than the porous coated CoCrMo stem (ISP implant). The chance of the peri-prosthetic bone fracture remained higher for the post-socket case as compared to the direct amputation cases. In conclusion, both direct-fixation implants lead to considerable bone loss and bone loss is more severe after a prolonged period of post-socket use. Hence, from a biomechanical perspective it is better to limit the post-socket time and to re-design direct fixation devices to reduce bone loss and the probability of peri-prosthetic bone fractures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Bone Grafts

    MedlinePlus

    ... allograft bone comes from donors who have died. Tissue banks screen these donors and disinfect and test the donated bone to make sure it is safe to use. If the transplanted bone comes ... an autograft. Autograft bone often comes from your ribs, hips or a leg.

  12. Incubation lighting schedules and their interaction with matched or mismatched post hatch lighting schedules: Effects on broiler bone development and leg health at slaughter age.

    PubMed

    van der Pol, Carla W; van Roovert-Reijrink, Inge A M; Aalbers, Gerald; Kemp, Bas; van den Brand, Henry

    2017-10-01

    The incidence of leg pathologies in broiler chickens with a developmental origin may be decreased by stimulating embryonic bone development through lighting schedules during incubation, but this may depend on post hatch lighting conditions. Aim was to investigate how lighting schedules during incubation and their interactions with matched or mismatched lighting schedules post hatch affected bone development and leg health at slaughter age. In a 3×2 factorial designed experiment, eggs were incubated under continuous cool white LED light (Inc 24L ), 16h of light, 8h of darkness (Inc 16L:8D ), or continuous darkness (Inc 24D ) from set till hatch. After hatch, broilers were housed under continuous light (PH 24L , to match Inc 24L and Inc 24D ) or 16h of light, 8h of darkness (PH 16L:8D , to match Inc 16L:8D ). Gait scores were determined on D21, D28, and D34. After slaughter on D35, legs were scored for varus-valgus deformities, rotated tibia, tibial dyschondroplasia, bacterial chondronecrosis with osteomyelitis (BCO), epiphyseolysis, and epiphyseal plate abnormalities from 1=absent to 4=severe. Femur and tibia dimensions and mineral density were determined. Inc 24L led to more epiphyseal plate abnormalities than Inc 16L:8D or Inc 24D . Inc 24D led to more BCO than Inc 16L:8D . Gait scores on D21, D28, and D34, and bone dimensions did not differ between treatments. Inc 24L led to higher femur mineral density than Inc 24D with Inc 16L:8D intermediate. Providing a chicken with a matched post hatch lighting schedule did not affect most measurements of bone development and health. It can be concluded that a circadian incubation lighting schedule may improve leg health in broilers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Benefits of Ilizarov automated bone distraction for nerves and articular cartilage in experimental leg lengthening.

    PubMed

    Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey

    2017-09-18

    To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30 th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peroneal and tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed. Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage (thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group. Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes.

  14. Benefits of Ilizarov automated bone distraction for nerves and articular cartilage in experimental leg lengthening

    PubMed Central

    Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey

    2017-01-01

    AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. METHODS Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peroneal and tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed. RESULTS Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage (thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group. CONCLUSION Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes. PMID:28979852

  15. Common Leg Injuries of Long-Distance Runners

    PubMed Central

    Gallo, Robert A.; Plakke, Michael; Silvis, Matthew L.

    2012-01-01

    Context Long-distance running (greater than 3000 m) is often recommended to maintain a healthy lifestyle. Running injury rates increase significantly when weekly mileage extends beyond 40 miles cumulatively. With the development of running analysis and other diagnostic tests, injuries to the leg secondary to bone, musculotendinous, and vascular causes can be diagnosed and successfully managed. Evidence Acquisition Searches used the terms running, injuries, lower extremity, leg, medial tibial stress syndrome, compartment syndrome, stress fractures, popliteal artery entrapment, gastrocnemius soleus tears, and Achilles tendinopathy. Sources included Medline, Google Scholar, and Ovid from 1970 through January 2012. Results Tibial stress fractures and medial tibial stress syndrome can sometimes be prevented and/or treated by correcting biomechanical abnormalities. Exertional compartment syndrome and popliteal artery entrapment syndrome are caused by anatomic abnormalities and are difficult to treat without surgical correction. Conclusion Leg pain due to bone, musculotendinous, and vascular causes is common among long-distance runners. Knowledge of the underlying biomechanical and/or anatomic abnormality is necessary to successfully treat these conditions. PMID:24179587

  16. Early Conversion of External Fixation to Interlocked Nailing in Open Fractures of Both Bone Leg Assisted with Vacuum Closure (VAC) - Final Outcome

    PubMed Central

    Raj, Manish; Kumar, Sunil; Singh, Pulkesh; Kumar, Dinesh; Singh, Jasveer; Deep, Akash

    2016-01-01

    Introduction Management of compound grade III fractures of both bone leg includes external stabilization for long period, followed by various soft tissue coverage procedures. Primary interlocking of tibia had been also done with variable results. External fixation for long time without any bone loss often leads to infected nonunion, loss of reduction, pin tract infection and failure of fixation, primary interlocking in compound grade III fractures had shown high medullary infection rate. We managed all cases of compound grade III A/B fractures with primary external fixation, simultaneous wound management using vacuum assisted closure (VAC) followed by early conversion to interlocking within 2 weeks of fixator application. Aim To determine the effectiveness of vacuum assisted closure (VAC) for the early conversion of external fixator to definitive interlocking in open fractures of the both bone leg. Materials and Methods In current study we selected 84 cases of compound grade IIIA/B diaphyseal fractures of both bone leg during period of May 2010 to September 2013. We managed these cases by immediate debridement and application of external fixation followed by repeated debridement, application of vacuum assisted closure (VAC) and conversion to interlocking within two weeks. Results Out of 84 cases union was achieved in 80(95%) of cases with definitive tibial interlocking. Excellent to good result were obtained in 77(91.8%) of cases and fair to poor result seen in rest of 7(8.2%) of cases according to modified Ketenjian’s criteria. 5 out of these 7 poor result group cases were from Compound Grade III B group to start with. Deep infection rate in our series were 7% i.e. total 6 cases and 4 out of these were from compound Grade III B group to start with. Conclusion Vacuum assisted closure (VAC) give a good help for rapid closure of the wound and help in early conversion to definitive intramedullary nailing. Reamed nail could well be used in compound grade IIIA

  17. [Lower limb salvage with a free fillet fibula flap harvested from the contralateral amputated leg].

    PubMed

    Bouyer, M; Corcella, D; Forli, A; Mesquida, V; Semere, A; Moutet, F

    2015-06-01

    We report a unusual case of "fillet flap" to reconstruct the lower limb with the amputated contralateral leg. This kind of procedure was first described by Foucher et al. in 1980 for traumatic hand surgery as the "bank finger". A 34-year-old man suffered a microlight accident with bilateral open legs fractures. A large skin defect of the left leg exposed the ankle, the calcaneus and a non-vascularized part of the tibial nerve (10 cm). The patient came to the OR for surgical debridement and had massive bone resection of the left calcaneus. The right leg showed limited skin defect at the lower part, exposing the medial side of the ankle and a tibial bone defect, measuring 10 cm. Salvage the left leg was impossible due to complex nerve, bones and skin associated injuries, so this leg was sacrificed and used as a donor limb, to harvest a free fibula flap for contralateral tibial reconstruction. At 18 months of follow-up, the patient was very satisfied, the clinical result was very good on both lower limbs and X-rays showed excellent integration of the free fibula flap. The patient had normal dailies occupations, can run and have bicycle sport practice with a functional left leg fit prosthesis. This case showed an original application of the "fillet flap concept" to resolve complex and rare traumatic situations interesting the both lower limbs. In our opinion, this strategy must be a part of the plastic surgeon skills in uncommon situations. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners.

    PubMed

    Bex, T; Iannaccone, F; Stautemas, J; Baguet, A; De Beule, M; Verhegghe, B; Aerts, P; De Clercq, D; Derave, W

    2017-03-01

    Excellence in either sprinting or endurance running requires specific musculo-skeletal characteristics of the legs. This study aims to investigate the morphology of the leg of sprinters and endurance runners of Caucasian ethnicity. Eight male sprinters and 11 male endurance runners volunteered to participate in this cross-sectional study. They underwent magnetic resonance imaging and after data collection, digital reconstruction was done to calculate muscle volumes and bone lengths. Sprinters have a higher total upper leg volume compared to endurance runners (7340 vs 6265 cm 3 ). Specifically, the rectus femoris, vastus lateralis, and hamstrings showed significantly higher muscle volumes in the sprint group. For the lower leg, only a higher muscle volume was found in the gastrocnemius lateralis for the sprinters. No differences were found in muscle volume distribution, center of mass in the different muscles, or relative bone lengths. There was a significant positive correlation between ratio hamstrings/quadriceps volume and best running performance in the sprint group. Sprinters and endurance runners of Caucasian ethnicity showed the greatest distinctions in muscle volumes, rather than in muscle distributions or skeletal measures. Sprinters show higher volumes in mainly the proximal and lateral leg muscles than endurance runners. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Radiating leg pain and positive straight leg raising in spondylolysis in children.

    PubMed

    Halperin, N; Copeliovitch, L; Schachner, E

    1983-09-01

    Three children presented with low back pain radiating to the leg and with spasm of the hamstring and paravertebral muscles. Since the pain could not be ascribed to trauma, it was necessary to exclude the presence of infection or tumors. All the signs--localization of the pain, tenderness on one side of the back, X-ray film findings of unilateral or bilateral spondylolysis, and localized positive bone scan--pointed to spondylolysis as the cause of pain. All three children exhibited symptoms resembling those found in the facet syndrome described by Mooney and Robertson.

  20. Sagittal plane bending moments acting on the lower leg during running.

    PubMed

    Haris Phuah, Affendi; Schache, Anthony G; Crossley, Kay M; Wrigley, Tim V; Creaby, Mark W

    2010-02-01

    Sagittal bending moments acting on the lower leg during running may play a role in tibial stress fracture development. The purpose of this study was to evaluate these moments at nine equidistant points along the length of the lower leg (10% point-90% point) during running. Kinematic and ground reaction force data were collected for 20 male runners, who each performed 10 running trials. Inverse dynamics and musculoskeletal modelling techniques were used to estimate sagittal bending moments due to reaction forces and muscle contraction. The muscle moment was typically positive during stance, except at the most proximal location (10% point) on the lower leg. The reaction moment was predominantly negative throughout stance and greater in magnitude than the muscle moment. Hence, the net sagittal bending moment acting on the lower leg was principally negative (indicating tensile loads on the posterior tibia). Peak moments typically occurred around mid-stance, and were greater in magnitude at the distal, compared with proximal, lower leg. For example, the peak reaction moment at the most distal point was -9.61+ or - 2.07%Bw.Ht., and -2.73 + or - 1.18%Bw.Ht. at the most proximal point. These data suggest that tensile loads on the posterior tibia are likely to be higher toward the distal end of the bone. This finding may explain the higher incidence of stress fracture in the distal aspect of the tibia, observed by some authors. Stress fracture susceptibility will also be influenced by bone strength and this should also be accounted for in future studies. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Report of a man with heterotopic ossification of the legs.

    PubMed

    García-Arpa, Mónica; Flores-Terry, Miguel A; Franco-Muñoz, Monserrat; Villasanti-Rivas, Natalia; González-Ruiz, Lucía; Banegas-Illescas, M Eugenia

    2018-05-21

    Heterotopic ossification is an uncommon disorder that consists of deposition of ectopic bone outside the extraskeletal tissues. In the skin, it can be primary, in association with genetic syndromes, or be secondary to different disorders. The latter include subcutaneous ossification of the legs in chronic venousinsufficiency, an infrequent and unrecognized complication. We report the case of a patient with subcutaneous ossification of both legs secondary to venous insufficiency and review the literature. Copyright © 2018 Sociedad Española de Reumatologña y Colegio Mexicano de Reumatologña. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Shin-splints: common exercise-related syndromes affecting the lower leg.

    PubMed

    Williamson, B L; Arthur, C H C

    2014-01-01

    Lower leg pain is a common complaint of athletically active individuals, often limiting physical activities. As such, the group of lower leg conditions related to athletic pursuits and physical exercise confer considerable operational implications for the military. Whilst acute injuries to the lower limb are commonly encountered and are clearly of significance, this article focuses instead on chronic conditions related to physical activity. These include insults to bone such as stress fractures and medial tibial stress syndrome, and those related to the soft tissues such as chronic exertional compartment syndrome. In this article we will examine the presentation and management of these conditions.

  3. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitz, H.; Jenkins, M.; Lodwick, J.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometricmore » phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.« less

  4. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    PubMed

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-06-01

    Leg order during sequential single-leg cycling (i.e., exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 yr) completed six 1-min double-leg intervals interspersed with 1 min of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with 1 min of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume, and power output were measured throughout each session. Oxygen consumption, heart rate, and power output were not different between sets of single-leg intervals, but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 vs 104 ± 9 mm Hg, P < 0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 vs 101 ± 10 mm Hg, P < 0.05). The increase in muscle blood volume from baseline was similar between the active single leg and the double leg (267 ± 150 vs 214 ± 169 μM·cm, P = 0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (P < 0.05) when the leg was active in the initial (-52.3% ± 111.6%) compared with second set (65.1% ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  5. Parental smoking during pregnancy shortens offspring's legs.

    PubMed

    Żądzińska, E; Kozieł, S; Borowska-Strugińska, B; Rosset, I; Sitek, A; Lorkiewicz, W

    2016-12-01

    One of the most severe detrimental environmental factors acting during pregnancy is foetal smoke exposure. The aim of this study was to assess the effect of maternal, paternal and parental smoking during pregnancy on relative leg length in 7- to 10-year-old children. The research conducted in the years 2001-2002 included 978 term-born children, 348 boys and 630 girls, at the age of 7-10 years. Information concerning the birth weight of a child was obtained from the health records of the women. Information about the mother's and the father's smoking habits during pregnancy and about the mothers' education level was obtained from a questionnaire. The influence of parental smoking on relative leg length, controlled for age, sex, birth weight and the mother's education, as a proxy measure of socioeconomic status, and controlled for an interaction between sex and birth weight, was assessed by an analysis of covariance, where relative leg length was the dependent variable, smoking and sex were the independent variables, and birth weight as well as the mother's education were the covariates. Three separate analyses were run for the three models of smoking habits during pregnancy: the mother's smoking, the father's smoking and both parents' smoking. Only both parents' smoking showed a significant effect on relative leg length of offspring. It is probable that foetal hypoxia caused by carbon monoxide contained in smoke decelerated the growth of the long bones of foetuses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†

    NASA Astrophysics Data System (ADS)

    Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal

    The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.

  7. Ulcer osteoma and periosteal reactions to chronic leg ulcers.

    PubMed

    Karasick, D; Schweitzer, M E; Deely, D M

    1997-01-01

    The purpose of this study was to describe the types of periosteal reaction seen in response to long-standing leg ulcers and to differentiate the types associated with osteomyelitis. Over a 10-year span, we retrospectively evaluated the radiographs of 20 patients with lower leg soft-tissue ulceration and adjacent periosteal bone reaction of the tibia or fibula. Two of us evaluated the location and appearance of periosteal reaction, and one of us evaluated the patients' medical records for evidence of peripheral vascular disease, systemic illnesses, and osteomyelitis. Twelve patients had organized periosteal reactions that resulted in the appearance of ulcer osteoma. None of these patients subsequently developed osteomyelitis. Eight patients had interrupted lamellar nodular periosteal reactions; six of the eight patients had superimposed osteomyelitis. Our study showed two types of periosteal response to chronic leg ulcers: a solid organized type that over time formed an ulcer osteoma and a lamellar nodular type that was often associated with osteomyelitis. Both types of ulcers were seen in patients with peripheral vascular disease, IV drug abuse, sickle cell disease, and neurologic impairment.

  8. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  9. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg.

    PubMed

    van der Harst, J J; Gokeler, A; Hof, A L

    2007-07-01

    Anterior cruciate ligament (ACL) deficiency can be a major problem for athletes and subsequent reconstruction of the ACL may be indicated if a conservative regimen has failed. After ACL reconstruction signs of abnormality in the use of the leg remain for a long time. It is expected that the landing after a single-leg hop for distance (horizontal hop) might give insight in the differences in kinematics and kinetics between uninjured legs and ACL-reconstructed legs. Before the ACL-reconstructed leg can be compared with the contralateral leg, knowledge of differences between legs of uninjured subjects is needed. Kinematic and kinetic variables of both legs were measured with an optoelectronic system and a force plate and calculated by inverse dynamics. The dominant leg (the leg with biggest horizontal hop distance) and the contralateral leg of nine uninjured subjects were compared. No significant differences were found in most of the kinematic and kinetic variables between dominant leg and contralateral leg of uninjured subjects. Only hop distance and hip extension angles differed significantly. This study suggests that there are no important differences between dominant leg and contralateral leg in healthy subjects. As a consequence, the uninvolved leg of ACL-reconstructed patients can be used as a reference. The observed variables of this study can be used as a reference of normal values and normal differences between legs in healthy subjects.

  10. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way

  11. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft.

    PubMed

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-04-20

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  12. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    PubMed Central

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  13. Maximal voluntary isokinetic knee flexion torque is associated with femoral shaft bone strength indices in knee replacement patients.

    PubMed

    Rantalainen, T; Valtonen, A; Sipilä, S; Pöyhönen, T; Heinonen, A

    2012-03-01

    It is currently unknown whether knee replacement-associated bone loss is modified by rehabilitation programs. Thus, a sample of 45 (18 men and 25 women) persons with unilateral knee replacement were recruited; age 66 years (sd 6), height 169 cm (sd 8), body mass 83 kg (sd 15), time since operation 10 months (sd 4) to explore the associations between maximal torque/power in knee extension/flexion and femoral mid-shaft bone traits (Cortical cross-sectional area (CoA, mm(2)), cortical volumetric bone mineral density (CoD, mg/mm(3)) and bone bending strength index (SSI, mm(3))). Bone traits were calculated from a single computed tomography slice from the femoral mid-shaft. Pain in the operated knee was assessed with the WOMAC questionnaire. Stepwise regression models were built for the operated leg bone traits, with knee extension and flexion torque and power, age, height, body mass, pain score and time since operation as independent variables. CoA was 2.3% (P=0.015), CoD 1.2% (P<0.001) and SSI 1.6% (P=0.235) lower in the operated compared to non-operated leg. The overall proportions of the variation explained by the regression models were 50%, 29% and 55% for CoA, CoD and SSI, respectively. Body mass explained 12% of Coa, 11% of CoD and 11% of SSI (P≤0.003). Maximal knee flexion torque explained 38% of Coa, 7% of CoD and 44% of SSI (p≤0.047). For CoD time since operation also became a significant predictor (11%, P=0.045). Knee flexion torque of the operated leg was positively associated with bone strength in the operated leg. Thus, successful rehabilitation may diminish bone loss in the operated leg. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of resistance training with vibration and compression on the formation of muscle and bone.

    PubMed

    Zinner, Christoph; Baessler, Bettina; Weiss, Kilian; Ruf, Jasmine; Michels, Guido; Holmberg, Hans-Christer; Sperlich, Billy

    2017-12-01

    In this study we investigated the effects of resistance training with vibration in combination with leg compression to restrict blood flow on strength, muscle oxygenation, muscle mass, and bone formation. Twelve participants were tested before and after 12 weeks of resistance training with application of vibration (VIBRA; 1-2 mm, 30 Hz) to both legs and compression (∼35 mm Hg, VIBRA+COMP) to only 1 leg. VIBRA+COMP and VIBRA improved 1 repetition maximum (1-RM), increased the number of repetitions preceding muscle exhaustion, enhanced cortical bone mass, and lowered the mass and fat fraction in the thigh, with no changes in total muscle mass. The mass of cancellous bone decreased to a similar extent after VIBRA and VIBRA+COMP. Resistance training with VIBRA+COMP and VIBRA improved 1-RM, increased the number of repetitions preceding muscular exhaustion, and enhanced formation of cortical bone, with no alteration of muscle mass. Muscle Nerve 56: 1137-1142, 2017. © 2017 Wiley Periodicals, Inc.

  15. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    PubMed

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs

  16. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery

  17. [Paraesthesia in the legs].

    PubMed

    Eisensehr, Ilonka

    2007-10-18

    Paraesthesia in the legs can have numerous causes. In addition to the restless legs syndrome, other primary causes include venous insufficiency in the leg, propriospinal myoclonus, nocturnal leg cramps, peripheral polyneuropathy that affects mostly the legs or neuroleptic drug-induced akathisia. Through detailed questioning of the patient, restless legs syndrome can be specifically distinguished from the other named differential diagnoses.

  18. Subacute reconstruction of lower leg and foot defects due to high velocity-high energy injuries caused by gunshots, missiles, and land mines.

    PubMed

    Celiköz, Bahattin; Sengezer, Mustafa; Işik, Selçuk; Türegün, Murat; Deveci, Mustafa; Duman, Haluk; Acikel, Cengiz; Nişanci, Mustafa; Oztürk, Serdar

    2005-01-01

    The present study reviews 215 male patients suffering high velocity-high energy injuries of the lower leg or foot caused by war weapons such as missiles, gunshots, and land mines. They were treated in the Department of Plastic and Reconstructive Surgery at Gulhane Military Medical Academy (Ankara, Turkey) between November 1993-January 2001. Severe soft-tissue defects requiring flap coverage and associated open bone fractures that were treated 7-21 days (mean, 9.6 days) after the injury were included in the study. Twenty-three of 226 extremities (10.2%) underwent primary below-knee amputation. The number of debridements prior to definitive treatment was between 1-3 (mean, 1.9). Gustilo type III open tibia fractures accompanied 104 of 126 soft-tissue defects of the lower leg. Sixty-four bone defects accompanied 83 soft-tissue defects of the feet. Eighteen local pedicled muscle flaps and 208 free muscle flaps (latissimus dorsi, rectus abdominis, and gracilis) were used in soft-tissue coverage of 209 defects. Overall, the free muscle flap success rate was 91.3%. Bone defects were restored with 106 bone grafts, 25 free fibula flaps, and 14 distraction osteogenesis procedures. Osseous and soft-tissue defects were reconstructed simultaneously at the first definitive treatment in 94% of cases. The mean follow-up after definitive treatment was 25 (range, 9-47) months. The average full weight-bearing times for lower leg and feet injuries were 8.4 months and 4 months, respectively. Early, aggressive, and serial debridement of osseous and soft tissue, early restoration of bone and soft-tissue defects at the same stage, intensive rehabilitation, and patient education were the key points in the management of high velocity-high energy injuries of the lower leg and foot. copyright 2005 Wiley-Liss, Inc.

  19. Evaluation of the uncertainties associated with in vivo X-ray fluorescence bone lead calibrations

    NASA Astrophysics Data System (ADS)

    Lodwick, Jeffrey C.

    An anthropometric leg phantom developed at the University of Cincinnati (UC) was used to evaluate the effects that changes in leg position and variation between subjects has on in vivo x-ray fluorescence (XRF) measurements of stable lead in bone. The changes in leg position that were evaluated include changes in source-phantom distance ranging between 0.0 mm and 30.0 mm and phantom rotation over 40 degrees. Source-phantom distance was determined to have a significant effect on XRF measurement results particularly at source-phantom distances greater than 10.0 mm. Rotation of the leg phantom through 40 degrees was determined to have no significant effect on XRF measurement results. Between subject factors that were evaluated include bone calcium content and overlying tissue thickness. Bone calcium content was determined to have a significant effect on XRF measurements when measuring lead in micrograms per gram bone material. However, if measurement results of micrograms of lead per gram calcium (or per gram bone mineral) is used the normalization method makes the change in calcium content not significant. Overlying tissue thickness was determined to have no significant effect on XRF measurement results with tissue thickness ranging between 5.7 and 11.62 mm. The UC leg phantom was modified to include a fibula bone phantom so that the effect that the fibula has on XRF measurement results could be evaluated. The fibula was determined to have no significant effect on XRF measurement results and in the future need not be incorporated into in vivo XRF calibration phantoms. A knee phantom was also developed for purposes of calibrations of in vivo XRF measurement of lead in the patella. XRF measurement results using this phantom were compared to results of XRF measurements made using the plaster-of-Paris (POP) phantoms. A significant difference was observed between the normalized count rates of the two phantom types when either micrograms of lead per gram of bone material or

  20. Task driven optimal leg trajectories in insect-scale legged microrobots

    NASA Astrophysics Data System (ADS)

    Doshi, Neel; Goldberg, Benjamin; Jayaram, Kaushik; Wood, Robert

    Origami inspired layered manufacturing techniques and 3D-printing have enabled the development of highly articulated legged robots at the insect-scale, including the 1.43g Harvard Ambulatory MicroRobot (HAMR). Research on these platforms has expanded its focus from manufacturing aspects to include design optimization and control for application-driven tasks. Consequently, the choice of gait selection, body morphology, leg trajectory, foot design, etc. have become areas of active research. HAMR has two controlled degrees-of-freedom per leg, making it an ideal candidate for exploring leg trajectory. We will discuss our work towards optimizing HAMR's leg trajectories for two different tasks: climbing using electroadhesives and level ground running (5-10 BL/s). These tasks demonstrate the ability of single platform to adapt to vastly different locomotive scenarios: quasi-static climbing with controlled ground contact, and dynamic running with un-controlled ground contact. We will utilize trajectory optimization methods informed by existing models and experimental studies to determine leg trajectories for each task. We also plan to discuss how task specifications and choice of objective function have contributed to the shape of these optimal leg trajectories.

  1. Modeling of the pliant surfaces of the thigh and leg during gait

    NASA Astrophysics Data System (ADS)

    Ball, Kevin A.; Pierrynowski, Michael R.

    1998-05-01

    Rigid Body Modeling, a 6 degree of freedom (DOF) method, provides state of the art human movement analysis, but with one critical limitation; it assumes segment rigidity. A non- rigid 12 DOF method, Pliant Surface Modeling (PSM) was developed to model the simultaneous pliant characteristics (scaling and shearing) of the human body's soft tissues. For validation, bone pins were surgically inserted into the tibia and femur of three volunteers. Infrared markers (44) were placed upon the thigh, leg, and bone pin surfaces. Two synchronized OPTOTRAK/3020TM cameras (Northern Digital Inc., Waterloo, ON) were used to record 120 seconds of treadmill gait per subject. In comparison to the 'gold standard' bone pin rotational results, PSM located the tibia, femur and tibiofemoral joint with root mean square (RMS) errors of 2.4 degrees, 4.0 degrees and 4.6 degrees, respectively. These performances met or exceeded (P less than .01) the current state of the art for surface data, Rigid Surface Modeling. The thigh's measured surface experienced uniform repeatable changes in scale: 40% mediolateral, 5% anterioposterior, 5% superioinferior, and planar shears of: 25 degrees transverse, 15 degrees sagittal, 5 degrees frontal. With the brief exception of push-off, the lower leg demonstrated much greater rigidity: less than 5% scaling and less than 5 degrees shearing. Thus, PSM offers superior 'rigid' estimates of knee motion with the ability to quantify 'pliant' surface changes.

  2. Tibial Geometry in Individuals with Neurofibromatosis Type 1 without Anterolateral Bowing of the Lower Leg Using Peripheral Quantitative Computed Tomography

    PubMed Central

    Stevenson, David A.; Viskochil, David H.; Carey, John C.; Slater, Hillarie; Murray, Mary; Sheng, Xiaoming; D’Astous, Jacques; Hanson, Heather; Schorry, Elizabeth; Moyer-Mileur, Laurie J.

    2008-01-01

    Introduction Lower leg bowing with tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1). The objective of the study is to determine if the geometry of the lower limb in individuals with neurofibromatosis type 1 (NF1) differs from controls, and to characterize the osseous components of the tibia in NF1. Methods Peripheral quantitative computed tomography (pQCT) of the lower limb was performed (90 individuals with NF1 without tibial and/or fibular dysplasia: 474 healthy individuals without NF1). Subjects were 4–18 years of age. Individuals with NF1 were compared to controls using an analysis-of-covariance with a fixed set of covariates (age, weight, height, Tanner stage, and gender). Results Using pQCT, NF1 individuals without bowing of the lower leg have smaller periosteal circumferences (p<0.0001), smaller cortical area (p<0.0001), and decreased tibial cortical and trabecular bone mineral content (BMC) (p<0.0001) compared to controls. Discussion Individuals with NF1 have a different geometry of the lower leg compared to healthy controls suggesting that NF1 haploinsufficiency impacts bone homeostasis although not resulting in overt anterolateral bowing of the lower leg. PMID:19118659

  3. Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men--a clinical research center study.

    PubMed

    Wang, C; Eyre, D R; Clark, R; Kleinberg, D; Newman, C; Iranmanesh, A; Veldhuis, J; Dudley, R E; Berman, N; Davidson, T; Barstow, T J; Sinow, R; Alexander, G; Swerdloff, R S

    1996-10-01

    To study the effects of androgen replacement therapy on muscle mass and strength and bone turnover markers in hypogonadal men, we administered sublingual testosterone (T) cyclodextrin (SLT; 5 mg, three times daily) to 67 hypogonadal men (baseline serum T, < 8.4 nmol/L) recruited from 4 centers in the U.S.: Torrance (n = 34), Durham (n = 12), New York (n = 9), and Salem (n = 12). Subjects who had received prior T therapy were withdrawn from injections for at least 6 weeks and from oral therapy for 4 weeks. Body composition, muscle strength, and serum and urinary bone turnover markers were measured before and after 6 months of SLT. We have shown previously that this regimen for 60 days will maintain adequate serum T levels and restore sexual function. Total body (P = 0.0104) and lean body mass (P = 0.007) increased with SLT treatment in the 34 subjects in whom body composition was assessed. There was no significant change in total body fat or percent fat. The increase in lean body mass was mainly in the legs; the right leg lean mass increased from 8.9 +/- 0.3 kg at 0 months to 9.2 +/- 0.3 kg at 6 months (P = 0.0008). This increase in leg lean mass was associated with increased leg muscle strength, assessed by leg press (0 months, 139.0 +/- 4.0 kg; 6 months, 147.7 +/- 4.2 kg; P = 0.0038). SLT replacement in hypogonadal men led to small, but significant, decreases in serum Ca (P = 0.0029) and the urinary calcium/creatinine ratio (P = 0.0066), which were associated with increases in serum PTH (P = 0.0001). At baseline, the urinary type I collagen-cross linked N-telopeptides/creatinine ratio [75.6 +/- 7.9 nmol bone collagen equivalents (BCE/mmol] was twice the normal adult male mean (41.0 +/- 3.6 nmol BCE/mmol) and was significantly decreased in response to SLT treatment at 6 months (68.2 +/- 7.7 nmol BCE/mmol; P = 0.0304) without significant changes in urinary creatinine. Serum skeletal alkaline phosphatase did not change. In addition, SLT replacement caused significant

  4. Hot-boning enhances cook yield of boneless skinless chicken thighs.

    PubMed

    Zhuang, H; Bowker, B C; Buhr, R J; Brambila, G Sanchez

    2014-06-01

    Three experiments were conducted to evaluate the effects of postmortem deboning time on cook yield of boneless skinless chicken thighs. In experiment 1, chicken thigh meat was deboned at 0.75 (hot-bone), 2, and 24 h postmortem (PM) and trimmed to obtain mainly iliotibialis muscle. Samples were cooked directly from a frozen state. Cook yield of the muscle was significantly influenced by PM deboning time. Hot-boned thighs exhibited a 7% greater cook yield than the samples deboned at 24 h. In experiment 2, boneless skinless chicken thighs were deboned at 0.3, 2, and 24 h PM and cooked directly from a fresh, never-frozen state at 24 h PM. Cook yield of the hot-boned thighs was significantly higher than those of the 2 and 24 h deboned samples, which did not differ from each other. In experiment 3, whole legs (thigh + drumstick) were cut from the carcass backbone at 0.3 (hot-cut), 2, and 24 h PM. Thighs were separated from the legs (drumsticks) at either the same time the whole legs were removed from the carcasses or at 24 h PM. Intact thighs (bone in) were cooked fresh at 24 h PM. Color of fresh thigh muscles, cook yield, and Warner-Bratzler shear force of cooked samples were measured. Cook yield of the thighs cut from the backbone before chilling was significantly higher than those cut from the carcasses at 2 and 24 h PM, which did not differ from each other. The PM time at which intact thighs were separated from the leg (drumstick) did not influence cook yield. These results demonstrate that postmortem deboning time can significantly affect cook yield of boneless skinless chicken thigh products. Deboning chicken thighs after chilling reduces the cook yield. Differences in the cook yield of thighs may also result from the removal of whole chicken legs from the carcass backbone. Poultry Science Association Inc.

  5. The Lindsay Leg Club: supporting the NHS to provide leg ulcer care.

    PubMed

    McKenzie, Morag

    2013-06-01

    Public health services will need to cope with additional demands due to an ageing society and the increasing prevalence of chronic conditions. Lower-limb ulceration is a long-term, life-changing condition and leg ulcer management can be challenging for nursing staff. The Lindsay Leg Club model is a unique partnership between community nurses, members and the local community, which provides quality of care and empowerment for patients with leg ulcers, while also supporting and educating nursing staff. The Leg Club model works in accord with core themes of Government and NHS policy. Patient feedback on the Leg Club model is positive and the Leg Clubs provide a service to members which is well accepted by patients, yet is more economically efficient than the traditional district nursing practice of home visits. Lindsay Leg Clubs provide a valuable support service to the NHS in delivering improved quality of care while improving efficiency.

  6. Time-Dependent Effects of Chlorhexidine Soaks on Grossly Contaminated Bone

    DTIC Science & Technology

    2012-10-01

    decontaminate . Methods: Fifty four bone segments were harvested from fresh frozen porcine legs. Each specimen was dropped onto a Mueller Hinton medium that was...P, 0.0001) and no difference between the 2%CHLand 4%CHLgroups. Conclusions: This study provides new data supporting the use of CHL to decontaminate ...bone may expedite the process of biofilm formation.1,6,7 Therefore, grossly contaminated bone seg- ments should be decontaminated with effective

  7. Handball Practice Enhances Bone Mass in Specific Sites Among Prepubescent Boys.

    PubMed

    Missawi, Kawther; Zouch, Mohamed; Chakroun, Yosra; Chaari, Hamada; Tabka, Zouhair; Bouajina, Elyès

    2016-01-01

    This investigation's purpose is to focus on the effects of practicing handball for at least 2 yr on bone acquisition among prepubescent boys. One hundred prepubescent boys aged 10.68 ± 0.85 yr were divided into 2 groups: 50 handball players (HP group) and 50 controls (C group). Bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were evaluated by using dual-photon X-ray absorptiometry on the whole body, lumbar spine (L2-L4), legs, arms, femoral necks, hips and radiuses. Results showed greater values of BMD in both right and left femoral neck and total hip in handball players than in controls. In addition, handball players had higher values of legs and right total hip BMC than controls without any obvious variation of BA measurement in all sites between groups. All results of the paired t-test displayed an obviously marked variation of bone mass parameters between the left and right sides in the trained group without any marked variation among controls. Data showed an increased BMD of the supporting sites between the left and the right leg among handball players. However, "BMC" results exhibited higher values in the right than in the left total hip, and in the right total radius than in the left correspondent site. In addition, differences in the "BA" measurements were observed in the left total hip and in the right arm. Specific bone sites are markedly stimulated by handball training in prepubescent boys. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  8. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  9. The Relationship among Leg Strength, Leg Power and Alpine Skiing Success.

    ERIC Educational Resources Information Center

    Gettman, Larry R.; Huckel, Jack R.

    The purpose of this study was to relate leg strength and power to alpine skiing success as measured by FIS points. Isometric leg strength was represented by the knee extension test described by Clarke. Leg power was measured by the vertical jump test and the Margaria-Kalamen stair run. Results in the strength and power tests were correlated with…

  10. Computational Evaluation of the Effects of Bone Ingrowth on Bone Resorptive Remodeling after a Cementless Total Hip Arthroplasty

    NASA Astrophysics Data System (ADS)

    Jung, Duk-Young; Kang, Yu-Bong; Tsutsumi, Sadami; Nakai, Ryusuke; Ikeuchi, Ken; Sekel, Ron

    In this study, we simulated a wide cortex separation from a cementless hip prosthesis using the bone resorption remodeling method that is based on the generation of high compressive stress around the distal cortical bone. Thereafter, we estimated the effect on late migration quantities of the hip prosthesis produced by the interface state arising from bone ingrowth. This was accomplished using cortical bone remodeling over a long period of time. Two-dimensional natural hip and implanted hip FEM models were constructed with each of the following interface statements between the bone and prosthesis: (1) non-fixation, (2) proximal 1/3, (3) proximal 2/3 and (4) full-fixation. The fixation interfaces in the fully and partially porous coated regions were rigidly fixed by bony ingrowth. The non-fixation model was constructed as a critical situation, with the fibrous or bony tissue not integrated at all into the implant surface. The daily load history was generated using the three loading cases of a one-legged stance as well as abduction and adduction motions. With the natural hip and one-legged stance, the peak compressive principal stresses were found to be under the criteria value for causing bone resorption, while no implant movement occurred. The migration magnitude of the stem of the proximal 1/3 fixation model with adduction motion was much higher, reaching 6%, 11%and 21%greater than those of the non-fixation, proximal 2/3 fixation and all-fixation models, respectively. The full-fixation model showed the lowest compressive principal stress and implant movement. Thus, we concluded that the late loosening and subsequent movement of the stem in the long term could be estimated with the cortical bone remodeling method based on a high compressive stress at the bone-implant interface. The change caused at the bone-prosthesis interface by bony or fibrous tissue ingrowth constituted the major factor in determining the extent of cortical bone resorption occurring with

  11. A system for evaluation and exercise-conditioning of paralyzed leg muscles.

    PubMed

    Gruner, J A; Glaser, R M; Feinberg, S D; Collins, S R; Nussbaum, N S

    1983-07-01

    The purpose of this project was to develop instrumentation and protocols in which electrical stimulation is used to induce exercise in paralyzed quadriceps muscles strength and endurance evaluation and conditioning. A computer-controlled electrical stimulation system, using surface electrodes, automatically regulates the bouts of leg extension exercise. Load weights attached just above the ankles can be progressively increased over a number of training sessions in such a manner that a measure of the fitness of the legs can be obtained. With three exercise sessions per week for 9 weeks, the strength and endurance of the quadriceps muscles of two paraplegic and four quadriplegic subjects were gradually and safely increased. During exercise at a means load weight of 5.4 kg, means heart rate did not rise above rest, whereas systolic blood pressure increased about 20 mm Hg, and skin temperature above the active muscles increased about 1.75 degrees C. Such exercise conditioning appears to be safe and may provide important health benefits, including improved fitness of the muscles and bones, better circulation in the paralyzed limbs, and enhanced self-image. Conditioned electrically stimulated paralyzed leg muscles may be used for locomotion in conjunction with special vehicles.

  12. Single-leg squats can predict leg alignment in dancers performing ballet movements in "turnout".

    PubMed

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve "turning out" or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in "turned out" postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat.

  13. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    PubMed Central

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  14. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality.

    PubMed

    Okagbare, Paul I; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A; Morris, Michael D

    2012-09-01

    We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies.

  15. Development of a Vibration Based Countermeasure to Inhibit the Bone Erosion and Muscle Deterioration That Parallels Spaceflight

    NASA Technical Reports Server (NTRS)

    Kaplan, Tamara; Qin, Yi-Xian; Judex, Stefan; Rubin, Clinton

    2003-01-01

    The extent of bone and muscle loss in astronauts on missions longer than 30 days poses significant acute and chronic health risks. Recent work in a variety of species has revealed that low magnitude, high frequency (25-90 Hz) mechanical stimulation is anabolic and may inhibit hypothesis that short-term, low-intensi(y mechanical in the lower limb that parallels extended exposure to microgravity. If this experiment is selected for flight, 12 right leg serves as a contralateral control. Each astronaut will undergo treatment for 10 minutes per day, five days Pre- and post-flight bone and muscle testing will be used to assess efficacy as well as intra-subject comparison of the experimental leg to the control leg.

  16. [Fractures of the lower extremities in childhood : Part 2: lower leg and ankle fractures].

    PubMed

    Voth, M; Kremer, L; Marzi, I

    2017-11-01

    The treatment of pediatric patients in trauma surgery is a special situation in every aspect. For deciding on the correct treatment of fractures of the lower leg and ankle joint, various parameters, such as residual growth rate, skeletal age and height of the patient are decisive. The differences between fractures in children and adolescents are the open epiphyseal plate and the resulting residual growth. The bones of young children have a higher healing tendency and a greater potential for correction than in adolescents. Especially in the lower leg and the ankle joint, the potential for correction is decisive for the healing of fractures and for possible development of growth disorders. The limits of tolerance concerning axial malalignments and the expected spontaneous potential for correction must play an essential role for further treatment with conservative or operative therapy. This article deals with the special features of pediatric fractures of the lower leg and ankle joint.

  17. Dynamically Stable Legged Locomotion.

    DTIC Science & Technology

    1983-01-27

    sweeps the leg during stance, and the third places the foot during flight and controls body attitude during stance. Each of the three methods elucidates...secondary strategy has been to examine systems with springy legs, so that the role of resonant oscillatory leg behavior might be better understood. ’ The ...body attitude : I lopping _leit: ’ The control system rcgulate:; hopping height by manlil)Lulating hopping energy. The leg is springy, so hopping is a

  18. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-02-01

    In our first article1 on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find that this effect is important for the geometry of the bone. We find that larger theropods (including Tyrannosaurus rex) were less athletic than smaller theropods.

  19. Bone growth and bone development in the presence of implants or after induced leg-lengthening studied using the Oxford Scanning Proton Microprobe

    NASA Astrophysics Data System (ADS)

    Pålsgård, Eva; Johansson, Carina; Li, Gang; Grime, Geoff W.; Triffitt, J. T.

    1997-07-01

    To respond to varying environmental demands the bone tissue in the body is under continual reconstruction throughout life. It is known that metallic elements are important for maintaining normal bone structure, but their roles are not well understood. More information about the effects of metal excess or deficiency is needed to help in the development of metallic bone implants and to improve the treatment of bone fractures and defects. The Oxford Scanning Proton Microprobe (SPM) is being applied in two studies involving metal ions in bone: (1) bone regrowth and bonding to titanium bone implants may be influenced by diffusion of Ti ions into the bone. We are using microPIXE to determine the metal ion content of bone developing in contact with implants of pure Nb, Ti and Ti alloys. (2) Bone lengthening as a surgical procedure is induced by fracturing the bone and allowing it to heal with a small gap between the fractured ends created by the use of external fixators. The gap can be slowly increased during the healing process to stimulate the production of new bone. The enzymes and other constituents of the developing bone need certain metals for their function. Using experimental animals we have studied the concentrations of the metals and whether a deficiency of trace metals limits the optimum rate of bone lengthening.

  20. Venous leg ulcers

    PubMed Central

    2011-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids

  1. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture.

    PubMed

    Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie

    2012-02-01

    Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia

  2. Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.

    PubMed

    Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M

    2007-03-01

    Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.

  3. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    PubMed Central

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. PMID:27895518

  4. Combat sports practice favors bone mineral density among adolescent male athletes.

    PubMed

    Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Neffeti, Fadoua; Najjar, Mohamed Fadhel; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair

    2015-01-01

    The aim of this study was to determine the impact of combat sports practice on bone mineral density (BMD) and to analyze the relationship between bone parameters and anthropometric measurements, bone markers, and activity index (AI). In other words, to detect the most important determinant of BMD in the adolescent period among combat sports athletes. Fifty athletes engaged in combat sports, mean age 17.1±0.2 yr, were compared with 30 sedentary subjects who were matched for age, height, and pubertal stage. For all subjects, the whole-body BMD, lumbar spine BMD (L2-L4), and BMD in the pelvis, arms, and legs was measured by dual-energy X-ray absorptiometry, and anthropometric measurements were evaluated. Daily calcium intake, bone resorption, and formation markers were measured. BMD measurements were greater in the combat sports athletes than in the sedentary group (p<0.01). Weight, body mass index, and lean body mass were significantly correlated with BMD in different sites. Daily calcium consumption lower than daily calcium intake recommended in both athletes and sedentary group. AI was strongly correlated with all BMD measurements particularly with the whole body, legs, and arms. Negative correlations were observed between bone markers and BMD in different sites. The common major predictor of BMD measurements was AI (p<0.0001). AI associated to lean body mass determined whole-body BMD until 74%. AI explained both BMD in arms and L2-L4 at 25%. AI associated to height can account for 63% of the variance in BMD legs. These observations suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the AI. Children and adolescents should be encouraged to participate in combat sports to maximize their bone accrual. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter

    2016-02-01

    We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Orthopedic pathology of the lower extremities: scintigraphic evaluation in the thigh, knee, and leg.

    PubMed

    Etchebehere, E C; Etchebehere, M; Gamba, R; Belangero, W; Camargo, E E

    1998-01-01

    Radionuclide imaging (RI) of the osseous and nonosseous structures of the thigh, knee, and leg provide important diagnostic and prognostic information upon which the orthopedic surgeon can base treatment planning and management decisions. 99mTc-MDP scintigraphy is essential in overuse injuries such as stress fractures and shin splints. RI is important in assessing complications of trauma. It is the only imaging modality able to assess the magnitude of physeal stimulus caused by femoral fractures and to predict a favorable or unfavorable outcome of leg length by semiquantitative analysis; SPECT imaging can detect and locate decreased metabolism associated with posttraumatic closure of the physeal plate to predict growth arrest and deformities. Three-phase bone imaging (TPBI) is essential to differentiate hypervascular from avascular nonunions and follow delayed union. In osteonecrosis of the knee, bone scintigraphy precedes radiography changes even in stage l of the disease. 99mTc-MDP and 99mTc-HIG imaging are powerful tools in determining the outcomes of osteoarthritis and rheumatoid arthritis, respectively. Bone scintigraphy can also detect chronic ligament and acute and chronic meniscal lesions. The combined use of TPBI, gallium-67 citrate imaging, and indium-111 or 99mTc-HMPAO labeled leukocytes is important to diagnose and differentiate acute from chronic osteomyelitis, and to detect infected knee prostheses. Thallium-201 chloride imaging and 99mTc-sestamibi imaging have an important role in the assessment of tumor response to chemotherapy and in the quantification of tumor viability.

  7. Effects of Ibuprofen and Resistance Training on Bone and Muscle: A Randomized Controlled Trial in Older Women.

    PubMed

    Duff, Whitney R D; Chilibeck, Philip D; Candow, Darren G; Gordon, Julianne J; Mason, Riley S; Taylor-Gjevre, Regina; Nair, Bindu; Szafron, Michael; Baxter-Jones, Adam; Zello, Gordon A; Kontulainen, Saija A

    2017-04-01

    Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.

  8. Restless Legs Syndrome

    MedlinePlus

    ... Legs Syndrome Condition Restless Legs Syndrome Share Print Table of Contents1. Overview2. Symptoms3. Diagnosis4. Treatment5. Questions Overview ... twitch when you try and sleep (also called periodic limb movements of sleep or PLMS). Diagnosis How ...

  9. [Problems and complications of leg lengthening with the Wagner apparatus].

    PubMed

    Herzog, R; Hefti, F

    1992-06-01

    Since 1971, we have performed 189 leg lengthening procedures using the Wagner method at our institution. The results obtained in the first 26 cases (1971-1973) showed a high complication rate, which led us to reconsider the indications for this procedure. In the present paper, we analyze the results of 37 leg lengthening procedures carried out in 32 patients during the last 10 years (1981-1990) in the children's unit of the orthopedic department of the University of Basle. We found a complication rate of 78%, and in 46% of cases there was more than one major complication. We did not distinguish between "complications" and "problems", because such distinctions are of little importance to the patient. The average age at the time of surgery was 14.8 years, and the average increase in length was 4.3 (2.2-9.2) cm. For each 1 cm of lengthening, an average of 21 days in hospital and 64 days of reduced weight-bearing were needed. Our conclusion is that the Wagner method makes it possible to attain the goal of leg lengthening, but the second step cannot reduce the length of stay in hospital or the length of time the patient needs the help of crutches. Bone remodeling is disturbed. Our preliminary experience with the Ilizarov method is more encouraging.

  10. Venous leg ulcers

    PubMed Central

    2008-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 80 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide, thromboxane alpha2 antagonists, zinc), peri

  11. A rationale for treating leg length discrepancy using photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Johnson, Crystal; Diab, Mohammed; Wilson, Brian C.; Burch, Shane

    2005-09-01

    This study investigates the use of photodynamic therapy (PDT) in regulating bone development with a view to its potential role in treating Juvenile leg length discrepancy (LLD). Transgenic mice expressing the luciferase firefly gene upon activation of a promoter sequence specific to the vascular endothelial growth factor (VEGF) gene were subject to benzoporphyrin derivative monoacid (BPD-MA)-mediated PDT in the right, tibial epiphyseal growth plate at the age of 3 weeks. BPD-MA was administered intracardially (2mg/kg) followed 10 mins later by a laser light (690 +/- 5 nm) at a range of doses (5-27J, 50 mW output) delivered either as a single or repeat regimen (x2-3). Contra-lateral legs served as no-light controls. Further controls included animals that received light treatment in the absence of photosensitizer or no treatment. Mice were imaged for VEGF related bioluminescence (photons/sec/steradian) at t= 0, 24, 48, 72 h and 1-4 weeks post PDT. FaxitronTM x-ray images provided accurate assessment of bone morphometry. Upon sacrifice, the tibia and femur of the treated and untreated limbs were harvested, imaged and measured again and prepared for histology. A number of animals were sacrificed at 24 h post PDT to allow immunohistochemical staining for CD31, VEGF and hypoxia-inducible factor (HIF-1 alpha) within the bone. PDT-treated (10 J, x2) mice displayed enhanced bioluminescence at the treatment site (and ear nick) for up to 4 weeks post treatment while control mice were bioluminescent at the ear-nick site only. Repeat regimens provided greater shortening of the limb than the corresponding single treatment. PDT-treated limbs were shorter by 3-4 mm on average as compared to the contra lateral and light only controls (10 J, x2). Immunohistochemistry confirmed the enhanced expression VEGF and CD31 at 4 weeks post-treatment although no increase in HIF-1α was evident at either 24 h or 4 weeks post PDT treatment. Results confirm the utility of PDT to provide localized

  12. Evaluating Weight Status and Sex as Moderators of the Association of Serum Leptin with Bone Mineral Density in Children and Adolescents
.

    PubMed

    Armaiz-Flores, Sara A; Kelly, Nichole R; Galescu, Ovidiu A; Demidowich, Andrew P; Altschul, Anne M; Brady, Sheila M; Hubbard, Van S; Pickworth, Courtney K; Tanofsky-Kraff, Marian; Shomaker, Lauren B; Reynolds, James C; Yanovski, Jack A

    2017-01-01

    Animal studies suggest that leptin may adversely affect bone mineral density (BMD). Clinical studies have yielded conflicting results. We therefore investigated associations between leptin and bone parameters in children. 830 healthy children (age = 11.4 ± 3.1 years; 75% female; BMI standard deviation score [BMIz] = 1.5 ± 1.1) had fasting serum leptin measured with ELISA and body composition by dual-energy X-ray absorptiometry. The main effects for leptin and BMIz plus leptin's interactions with sex and BMIz were examined using hierarchical linear regressions for appendicular, pelvis, and lumbar spine BMD as well as bone mineral content (BMC), and bone area (BA). Accounting for demographic, pubertal development, and anthropometric variables, leptin was negatively and independently associated with lumbar spine BMC and BA, pelvis BA, and leg BA (p < 0.05 for all). Sex, but not BMIz, moderated the associations of leptin with bone parameters. In boys, leptin was negatively correlated with leg and arm BMD, BMC at all bone sites, and BA at the subtotal and lumbar spine (p < 0.01 for all). In girls, leptin was positively correlated with leg and arm BMD (p < 0.05 for both). Independent of body size, leptin is negatively associated with bone measures; however, these associations are moderated by sex: boys, but not girls, have a negative independent association between leptin and BMD.
. © 2017 S. Karger AG, Basel.

  13. Study of bone mineral metabolism. [during body immobilization, bed rest, and space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    The use of Sr-85 as an indicator of the skeletal location and relative amount of bone demineralization which occurs during immobilization of the body or body parts, bed-rest or space flight was studied. The bone mineral replacement which occurs after immobilization was measured rather than the bone loss which occurs during immobilization. In a study with two adult beagle dogs, the Sr-85 uptake in a leg which had been immobilized for two months was 400 percent higher than the uptake in the legs in regular use. This increased uptake probably resulted from only a few percent loss in bone mineral and indicates that losses less than one percent can be easily detected and located. The sensitivity, simplicity, and low radiation dose associated with the use of this method indicates that it should receive consideration for use on humans in bed-rest and space flight studies. Methods for measuring changes in total body nitrogen and in assisting the Johnson Space Center in calibrating a whole body counter for total body potassium measurements were also investigated.

  14. Movement of the sacroiliac joint during the Active Straight Leg Raise test in patients with long-lasting severe sacroiliac joint pain.

    PubMed

    Kibsgård, Thomas J; Röhrl, Stephan M; Røise, Olav; Sturesson, Bengt; Stuge, Britt

    2017-08-01

    The Active Straight Leg Raise is a functional test used in the assessment of pelvic girdle pain, and has shown to have good validity, reliability and responsiveness. The Active Straight Leg Raise is considered to examine the patients' ability to transfer load through the pelvis. It has been hypothesized that patients with pelvic girdle pain lack the ability to stabilize the pelvic girdle, probably due to instability or increased movement of the sacroiliac joint. This study examines the movement of the sacroiliac joints during the Active Straight Leg Raise in patients with pelvic girdle pain. Tantalum markers were inserted in the dorsal sacrum and ilium of 12 patients with long-lasting pelvic girdle pain scheduled for sacroiliac joint fusion surgery. Two to three weeks later movement of the sacroiliac joints during the Active Straight Leg Raise was measured with radiostereometric analysis. Small movements were detected. There was larger movement of the sacroiliac joint of the rested leg's sacroiliac joint compared to the lifted leg's side. A mean backward rotation of 0.8° and inward tilt of 0.3° were seen in the rested leg's sacroiliac joint. The movements of the sacroiliac joints during the Active Straight Leg Raise are small. There was a small backward rotation of the innominate bone relative to sacrum on the rested leg's side. Our findings contradict an earlier understanding that a forward rotation of the lifted leg's innominate occur while performing the Active Straight Leg Raise. Copyright © 2017. Published by Elsevier Ltd.

  15. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    PubMed

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  16. Steerable Hopping Six-Legged Robot

    NASA Technical Reports Server (NTRS)

    Younse, Paulo; Aghazarian, Hrand

    2010-01-01

    The figure depicts selected aspects of a six-legged robot that moves by hopping and that can be steered in the sense that it can be launched into a hop in a controllable direction. This is a prototype of hopping robots being developed for use in scientific exploration of rough terrain on remote planets that have surface gravitation less than that of Earth. Hopping robots could also be used on Earth, albeit at diminished hopping distances associated with the greater Earth gravitation. The upper end of each leg is connected through two universal joints to an upper and a lower hexagonal frame, such that the tilt of the leg depends on the relative position of the two frames. Two non-back-driveable worm-gear motor drives are used to control the relative position of the two frames along two axes 120 apart, thereby controlling the common tilt of all six legs and thereby, further, controlling the direction of hopping. Each leg includes an upper and a lower aluminum frame segment with a joint between them. A fiberglass spring, connected via hinges to both segments, is used to store hopping energy prior to launch into a hop and to cushion the landing at the end of the hop. A cable for loading the spring is run into each leg through the center of the universal joints and then down along the center lines of the segments to the lower end of the leg. A central spool actuated by a motor with a harmonic drive and an electromagnetic clutch winds in all six cables to compress all six springs (thereby also flexing all six legs) simultaneously. To ensure that all the legs push off and land in the same direction, timing- belt pulley drives are attached to the leg segments, restricting the flexing and extension of all six legs to a common linear motion. In preparation for a hop, the spool can be driven to load the spring legs by an amount corresponding to a desired hop distance within range. The amount of compression can be computed from the reading of a shaft-angle encoder that

  17. Negative Pressure Wound Therapy (NPWT) to Treat Complex Defect of the Leg after Electrical Burn.

    PubMed

    Tevanov, Iulia; Enescu, Dan M; Bălănescu, Radu; Sterian, G; Ulici, Alexandru

    2016-01-01

    Negative pressure wound therapy is a non-invasive treatment that uses under atmospheric pressure to increase blood supply to the wound, stimulating the formation of granulation tissue, angiogenesis, proliferation of fibroblasts and endothelial cells. Negative pressure therapy has also the ability to decrease the bacterial load, reduce swelling and decrease exudate while maintaining a moist environment that facilitates healing. Our patient, a 17 year old male, suffered major third and fourth-degree high voltage electrical burns on 60% of the body surface, in November 2011. After the excision of the necrotic tissue (muscles and tendons), the lower extremity of the right leg- the tibial bone, the fibula, external and internal malleoli became exposed circularly. The soft-tissue defect was partially covered by using an internal twin muscle flap and free split skin. Then, a cross leg flap technique has been used, partially covering the defect with a contralateral thigh flap. Surface swab cultures were positive for Pseudomonas aeruginosa. In October 2013 the patient was transferred to our department. The clinical examination of the right leg showed that the tibial bone had been exposed on an area of 15/3 cm in the lower half. The peroneal malleolus had also been exposed. The resection of the devitalized, exposed tibia and the avivement of the wound edges were performed. Then the NPWT was started and performed by intermittent suction. Local cleansing, soft-tissue avivement and dressing changes were performed twice a week for 6 weeks. After six weeks of NPWT and eleven dressing changes under general anaesthesia, the wounds were ready for skin grafting. Granulation tissue was formed, covering the entire surface of both the tibia bone and the peroneal malleolus. Both receptor beds were covered with free skin graft harvested from the ipsilateral thigh. The mechanical suture of the skin grafts was performed and the grafts were covered with damp dressing. By using the NPWT it

  18. Leg Injuries and Disorders

    MedlinePlus

    ... are important for motion and standing. Playing sports, running, falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. ...

  19. Prevalence of rickets-like bone deformities in rural Gambian children.

    PubMed

    Jones, Helen L; Jammeh, Lamin; Owens, Stephen; Fulford, Anthony J; Moore, Sophie E; Pettifor, John M; Prentice, Ann

    2015-08-01

    The aim of this study was to estimate the burden of childhood rickets-like bone deformity in a rural region of West Africa where rickets has been reported in association with a low calcium intake. A population-based survey of children aged 0.5-17.9 years living in the province of West Kiang, The Gambia was conducted in 2007. 6221 children, 92% of those recorded in a recent census, were screened for physical signs of rickets by a trained survey team with clinical referral of suspected cases. Several objective measures were tested as potential screening tools. The prevalence of bone deformity in children <18.0 years was 3.3%. The prevalence was greater in males (M = 4.3%, F = 2.3%, p < 0.001) and in children <5.0 years (5.7%, M = 8.3%, F = 2.9%). Knock-knee was more common (58%) than bow-leg (31%) or windswept deformity (9%). Of the 196 examined clinically, 36 were confirmed to have a deformity outside normal variation (47% knock-knee, 53% bow-leg), resulting in more conservative prevalence estimates of bone deformity: 0.6% for children <18.0 years (M = 0.9%, F = 0.2%), 1.5% for children < 5.0 years (M = 2.3%, F = 0.6%). Three of these children (9% of those with clinically-confirmed deformity, 0.05% of those screened) had active rickets on X-ray at the time of medical examination. This emphasises the difficulties in comparing prevalence estimates of rickets-like bone deformities from population surveys and clinic-based studies. Interpopliteal distance showed promise as an objective screening measure for bow-leg deformity. In conclusion, this population survey in a rural region of West Africa with a low calcium diet has demonstrated a significant burden of rickets-like bone deformity, whether based on physical signs under survey conditions or after clinical examination, especially in boys < 5.0 years. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Prevalence of rickets-like bone deformities in rural Gambian children

    PubMed Central

    Jones, Helen L.; Jammeh, Lamin; Owens, Stephen; Fulford, Anthony J.; Moore, Sophie E.; Pettifor, John M.; Prentice, Ann

    2015-01-01

    The aim of this study was to estimate the burden of childhood rickets-like bone deformity in a rural region of West Africa where rickets has been reported in association with a low calcium intake. A population-based survey of children aged 0.5–17.9 years living in the province of West Kiang, The Gambia was conducted in 2007. 6221 children, 92% of those recorded in a recent census, were screened for physical signs of rickets by a trained survey team with clinical referral of suspected cases. Several objective measures were tested as potential screening tools. The prevalence of bone deformity in children < 18.0 years was 3.3%. The prevalence was greater in males (M = 4.3%, F = 2.3%, p < 0.001) and in children < 5.0 years (5.7%, M = 8.3%, F = 2.9%). Knock-knee was more common (58%) than bow-leg (31%) or windswept deformity (9%). Of the 196 examined clinically, 36 were confirmed to have a deformity outside normal variation (47% knock-knee, 53% bow-leg), resulting in more conservative prevalence estimates of bone deformity: 0.6% for children < 18.0 years (M = 0.9%, F = 0.2%), 1.5% for children < 5.0 years (M = 2.3%, F = 0.6%). Three of these children (9% of those with clinically-confirmed deformity, 0.05% of those screened) had active rickets on X-ray at the time of medical examination. This emphasises the difficulties in comparing prevalence estimates of rickets-like bone deformities from population surveys and clinic-based studies. Interpopliteal distance showed promise as an objective screening measure for bow-leg deformity. In conclusion, this population survey in a rural region of West Africa with a low calcium diet has demonstrated a significant burden of rickets-like bone deformity, whether based on physical signs under survey conditions or after clinical examination, especially in boys < 5.0 years. PMID:25871880

  1. Athletes' leg pains.

    PubMed Central

    Orava, S.; Puranen, J.

    1979-01-01

    The frequency and nature of exertion pains of the leg in athletes were studied in 2,750 cases of overuse injuries treated at the Sports Clinic of the Deaconess Institute of Oulu, Finland, during the years 1972-1977. 465 cases of exertion pain (18%) were located in the shin. The medial tibial syndrome was the most common overuse injury among these athletes, comprising 9.5% of all exertion injuries and 60% of the leg exertion pains. Together with stress fracture of the tibia, the second most common exertion pain of the leg, it accounted for 75% of the total leg pains. There are certain difficulties in differentiating between the medial tibial syndrome and stress fracture of the tibia. They both occur at the same site with similar symptoms. Radiological examination and isotope scanning are needed. The medial tibial syndrome is an overuse injury at the medial tibial border caused by running exercises. The pain is elicited by exertional ischaemia. The pathogenesis is explained by increased pressure in the fascial compartment of the deep flexor muscles due to prolonged exercise. Similar chronic ischaemic pains from exercise are also found in other fascial compartments of the leg, especially in the anterior compartment. The only treatment needed for stress fractures is rest from training. Fascial compartment pains also usually subside. If chronic fascial syndromes prevent training, fasciotomy is recommended as a reliable method to restore the athlete to normal training without pains. PMID:486888

  2. Bone transport osteogenesis for reconstruction of a bone defect in the tibiotarsus of a yellow-naped Amazon parrot (Amazona ochrocephala auropalliata).

    PubMed

    Johnston, Matthew S; Thode, Henry P; Ehrhart, Nicole P

    2008-03-01

    A yellow-naped Amazon parrot (Amazona ochrocephala auropalliata) was presented 5 months after a traumatic fracture of its left tibiotarsus. Fixation of the simple, closed, mid-diaphyseal fracture was originally with an intramedullary pin and external coaptation with a modified Robert-Jones bandage. During the subsequent 5 months, the bone became osteopenic, and the middle third of the tibiotarsus exhibited probable avascular necrosis. After various fixation attempts failed, the parrot was fitted with a ring fixator device, and bone transport osteogenesis was attempted. Within 7 weeks, the left tibiotarsus had regrown to full length, but the docking site at the proximal fracture line had not healed. After 2 more surgeries to debride bone ends to stimulate healing, the leg in this parrot became functional. This is the first reported clinical use of bone transport osteogenesis in a pet bird. Materials and techniques were applied successfully to this parrot, which suggests that bone transport osteogenesis deserves further study for the repair of large bone defects in birds.

  3. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Diverse bone scan abnormalitites in "shin splints".

    PubMed

    Spencer, R P; Levinson, E D; Baldwin, R D; Sziklas, J J; Witek, J T; Rosenberg, R

    1979-12-01

    Four young patients who presented with pain over the anterior compartment of the legs, gave a recent athletic history suggesting stress fractures. Although radiographs were initially normal in all four cases, the bone scintigrams were positive. The individual findings, however, were quite different. In one there was a single focal area of increased radioactivity in each of the tibias; the second patient had uneven uptake of radiotracer and several foci of accumulation in the fibulas; the third showed diffuse linear tibial uptake suggesting periosteal lesions; and the fourth case revealed uptake in the lateral malleolus and in bones of the foot.

  5. A morphometric study of bone surfaces and skin reactions after stimulation with static magnetic fields in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder-Aronson, S.; Lindskog, S.

    1991-01-01

    The present investigation was undertaken to measure any bone surface changes after stimulation with orthodontic magnets and, furthermore, to examine the soft tissue in immediate contact with the magnets. Both distal parts of the tibial hind legs in six groups of young rats were fitted with devices holding two orthodontic magnets in the experimental legs and similar devices without magnets in the control legs. The animals were killed after 2, 3, and 4 weeks. Morphometric evaluation showed significant increases in resorbing areas after 3 and 4 weeks. Similarly, a reduction was evident in the number of epithelial cells under themore » areas where the magnets had been applied. These findings indicate that the stimulation of bone resorption in the present study may have been caused by inhibition of the bone-lining osteoblasts. This proposition is supported by the apparent inhibitory effect of the magnetic fields on epithelial recycling that was seen as a reduced thickness of the epithelium under the magnets. Consequently, static magnetic fields should be used with care in orthodontic practice until a more complete understanding of their mechanism of action has been established.« less

  6. A morphometric study of bone surfaces and skin reactions after stimulation with static magnetic fields in rats.

    PubMed

    Linder-Aronson, S; Lindskog, S

    1991-01-01

    The present investigation was undertaken to measure any bone surface changes after stimulation with orthodontic magnets and, furthermore, to examine the soft tissue in immediate contact with the magnets. Both distal parts of the tibial hind legs in six groups of young rats were fitted with devices holding two orthodontic magnets in the experimental legs and similar devices without magnets in the control legs. The animals were killed after 2, 3, and 4 weeks. Morphometric evaluation showed significant increases in resorbing areas after 3 and 4 weeks. Similarly, a reduction was evident in the number of epithelial cells under the areas where the magnets had been applied. These findings indicate that the stimulation of bone resorption in the present study may have been caused by inhibition of the bone-lining osteoblasts. This proposition is supported by the apparent inhibitory effect of the magnetic fields on epithelial recycling that was seen as a reduced thickness of the epithelium under the magnets. Consequently, static magnetic fields should be used with care in orthodontic practice until a more complete understanding of their mechanism of action has been established.

  7. Practice of martial arts and bone mineral density in adolescents of both sexes

    PubMed Central

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  8. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    PubMed

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Building a bone μCT images atlas for micro-architecture recognition

    NASA Astrophysics Data System (ADS)

    Freuchet, E.; Recur, B.; Guédon, Jp.; Kingston, A.; Autrusseau, F.; Amouriq, Y.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper, we started to investigate the relationships between bone and vessels and we also proposed to build a Bone Atlas. This study describes how to proceed for the elaboration and use of such an atlas. Here, we restricted the Atlas to legs (tibia, femur) of rats in order to work with well known geometry of the bone micro-architecture. From only 6 acquired bone, 132 trabecular bone volumes were generated using simple mathematical morphology tools. The variety and veracity of the created micro-architecture volumes is presented in this paper. Medical application and final goal would be to determinate bone micro-architecture with some angulated radiographs (3 or 4) and to easily diagnose the bone status (healthy, pathological or healing bone...).

  10. Static balance according to hip joint angle of unsupported leg during one-leg standing.

    PubMed

    Cha, Ju-Hyung; Kim, Jang-Joon; Ye, Jae-Gwan; Lee, Seul-Ji; Hong, Jeong-Mi; Choi, Hyun-Kyu; Choi, Ho-Suk; Shin, Won-Seob

    2017-05-01

    [Purpose] This study aimed to determine static balance according to hip joint angle of the unsupported leg during one-leg standing. [Subjects and Methods] Subjects included 45 healthy adult males and females in their 20s. During one-leg standing on the non-dominant leg, the position of the unsupported leg was classified according to hip joint angles of point angle was class. Static balance was then measured using a force plate with eyes open and closed. The total length, sway velocity, maximum deviation, and velocity on the mediolateral and anteroposterior axes of center of pressure were measured. [Results] In balance assessment with eyes open, there were significant differences between groups according to hip joint angle, except for maximum deviation on the anteroposterior axis. In balance assessment with eyes closed, there were significant differences between total length measurements at 0° and 30°, 60° and between 30° and 90°. There were significant differences between sway velocity measurements at 0° and 30° and between 30° and 90°. [Conclusion] Thus, there were differences in static balance according to hip joint angle. It is necessary to clearly identify the hip joint angle during one-leg standing testing.

  11. Numerical modeling anti-personnel blast mines coupled to a deformable leg structure

    NASA Astrophysics Data System (ADS)

    Cronin, Duane; Worswick, Mike; Williams, Kevin; Bourget, Daniel; Pageau, Gilles

    2001-06-01

    The development of improved landmine protective footwear requires an understanding of the physics and damage mechanisms associated with a close proximity blast event. Numerical models have been developed to model surrogate mines buried in soil using the Arbitrary Lagrangian Eulerian (ALE) technique to model the explosive and surrounding air, while the soil is modeled as a deformable Lagrangian solid. The advantage of the ALE model is the ability to model large deformations, such as the expanding gases of a high explosive. This model has been validated using the available experimental data [1]. The effect of varying depth of burial and soil conditions has been investigated with these numerical models and compares favorably to data in the literature. The surrogate landmine model has been coupled to a numerical model of a Simplified Lower Leg (SLL), which is designed to mimic the response and failure mechanisms of a human leg. The SLL consists of a bone and tissue simulant arranged as concentric cylinders. A new strain-rate dependant hyperelastic material model for the tissue simulant, ballistic gelatin, has been developed to model the tissue simulant response. The polymeric bone simulant material has been characterized and implemented as a strain-rate dependent material in the numerical model. The numerical model results agree with the measured response of the SLL during experimental blast tests [2]. The numerical model results are used to explain the experimental data. These models predict that, for a surface or sub-surface buried anti-personnel mine, the coupling between the mine and SLL is an important effect. In addition, the soil properties have a significant effect on the load transmitted to the leg. [1] Bergeron, D., Walker, R. and Coffey, C., 1998, “Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand”, Report number SR 668, Defence Research Establishment Suffield, Canada. [2] Bourget, D., Williams, K., Pageau, G., and Cronin, D.,

  12. An Unexpected Complication of Bone Marrow Aspiration and Trephine Biopsy: Arteriovenous Fistula

    PubMed Central

    Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Kutlu, Ramazan; Koroglu, Mustafa; Yigit, Ali; Unlu, Serkan

    2014-01-01

    Objective To report a case of arteriovenous fistula (AVF) following bone marrow aspiration and trephine biopsy. Clinical Presentation and Intervention A 76-year-old man was diagnosed with acute myeloblastic leukemia. Pain and hematoma were detected in his left leg and hip 4 days after bone marrow aspiration and trephine biopsy. A pelvic arteriography was performed, and a diagnosis of AVF was made. Conclusion This case shows that clinicians should be aware of AVF, especially in cases with refractory bleeding after bone marrow aspiration and trephine biopsy despite normal blood coagulation parameters. PMID:24481007

  13. Associations between variants of bone morphogenetic protein 7 gene and growth traits in chickens.

    PubMed

    Wang, Yan; Guo, Fuyou; Qu, Hao; Luo, Chenglong; Wang, Jie; Shu, Dingming

    2018-04-18

    1. Enhancing bone strength to solve leg disorders in poultry has become an important goal in broiler production. 2. Bone morphogenetic protein 7 (BMP7), a member of the BMP family, represents an attractive therapeutic target for bone regeneration in humans and plays critical roles in skeletal development. 3. The objective of this study was to investigate the relationship between BMP7 gene expression, single nucleotide polymorphisms (SNPs) and growth traits in chickens. Here, a SNP (c.1995T>C) in the chicken (Gallus gallus) BMP7 gene was identified, that was associated with growth and carcass traits. 4. Genotyping revealed that the T allele occurred more frequently in breeds with high growth rates, whereas the C allele was predominant in those with low growth rates. The expression level of BMP7 in the thigh bone of birds with the TT genotype was significantly higher than in those with the CC genotype at 21, 42 and 91 days of age. 5. These findings suggest that selecting the birds with the TT genotype of SNP c.1995T>C could improve bone growth, could reduce leg disorders in fast-growing birds. The SNP c.1995T>C may serve as a selective marker for improving bone growth and increasing the consistency of body weights in poultry breeding.

  14. Restless legs syndrome.

    PubMed

    Ekbom, Karl; Ulfberg, J

    2009-11-01

    Restless legs syndrome (RLS) is a common neurological sensory-motor disorder that is characterized by intense restlessness and unpleasant creeping sensations deep inside the lower legs. Symptoms appear when the legs are at rest and are worst in the evening and at night. They force patients to keep moving their legs, and often to get out of bed and wander about. Periodic limb movements (PLMS) are also common during sleep amongst those suffering from RLS, and sleep efficiency is severely reduced. There are idiopathic as well as symptomatic forms of RLS, the latter being associated with e.g. pregnancy, iron deficiency and chronic renal failure. A family history of RLS is very common and pedigrees in these cases suggest an autosomal-dominant transmission with high penetrance. Genetic investigations have been performed in order to identify genes associated with RLS. Several loci have been found (on chromosomes 12q, 14q, 9p, 2q, 20p and 16p). Pathophysiology of RLS remains incompletely understood. However, advanced brain imaging studies and positive results of dopaminergic treatment suggest that RLS may be generated by dopamine dysfunction locally within the central nervous system. At present, there is a wide range of treatment options including levodopa, dopamine agonists, opioids, benzodiazepines, antiepileptic drugs and iron supplements.

  15. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    PubMed Central

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  16. Development of finite element model for customized prostheses design for patient with pelvic bone tumor.

    PubMed

    Iqbal, Taimoor; Shi, Lei; Wang, Ling; Liu, Yaxiong; Li, Dichen; Qin, Mian; Jin, Zhongmin

    2017-06-01

    The aim of this study was to design a hemi-pelvic prosthesis for a patient affected by pelvic sarcoma. To investigate the biomechanical functionality of the pelvis reconstructed with designed custom-made prosthesis, a patient-specific finite element model of whole pelvis with primary ligaments inclusive was constructed based on the computed tomography images of the patient. Then, a finite element analysis was performed to calculate and compare the stress distribution between the normal and implanted pelvis models when undergoing three different static conditions-both-leg standing, single-leg standing for the healthy and the affected one. No significant differences were observed in the stresses between the normal and reconstructed pelvis for both-leg standing, but 20%-40% larger stresses were predicted for the peak stress of the single-leg standing (affected side). Moreover, two- to threefold of peak stresses were predicted within the prostheses compared to that of the normal pelvis especially for single-leg standing case, however, still below the allowable fatigue limitation. The study on the load transmission functionality of prosthesis indicated that it is crucial to carry out finite element analysis for functional evaluation of the designed customized prostheses before three-dimensional printing manufacturing, allowing better understanding of the possible peak stresses within the bone as well as the implants for safety precaution. The finite element model can be equally applicable to other bone tumor model for biomechanical studying.

  17. Diverse bone scan abnormalities in shin splints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, R.P.; Levinson, E.D.; Baldwin, R.D.

    1979-12-01

    Four young patients who presented with pain over the anterior compartment of the legs, gave a recent athletic history suggesting stress fractures. Although radiographs were initially normal in all four cases, the bone scintigrams were positive. The individual findings, however, were quite different. In one there was a single focal area of increased radioactivity in each of the tibias; the second patient had uneven uptake of radiotracer and several foci of accumulation in the fibulas; the third showed diffuse linear tibial uptake suggesting periosteal lesions; and the fourth case revealed uptake in the lateral malleolus and in bones of themore » foot.« less

  18. The specific scintigraphic pattern of "shin splints in the lower leg": concise communication.

    PubMed

    Holder, L E; Michael, R H

    1984-08-01

    The clinical entity, "shin splints," is now being recognized, and more specifically characterized by the findings of exercise-induced pain and tenderness to palpation along the posterior medial border of the tibia. In this prospective study, ten patients with this syndrome were evaluated using three-phase bone scintigrams, and a specific scintigraphic pattern was determined. Radionuclide angiograms and blood-pool images were all normal. On delayed images, tibial lesions involved the posterior cortex, were longitudinally oriented, were long, involving one third of the length of the bone, and often showed varying tracer uptake along that length. Obtaining both lateral and medial views was crucial. The location of activity suggested that this entity is related to the soleus muscle. These scintigraphic findings can be used to differentiate shin splints from stress fractures or other conditions causing pain in the lower leg in athletes.

  19. Muscular Maximal Strength Indices and Bone Variables in a Group of Elderly Women.

    PubMed

    Nasr, Riad; Al Rassy, Nathalie; Watelain, Eric; Matta, Joseph; Frenn, Fabienne; Rizkallah, Maroun; Maalouf, Ghassan; El Khoury, César; Berro, Abdel-Jalil; El Hage, Rawad

    2018-03-22

    The aim of the present study was to explore the relations between muscular maximal strength indices and bone parameters (bone mineral density [BMD], hip geometry indices, and trabecular bone score [TBS]) in a group of elderly women. This study included 35 healthy elderly women whose ages range between 65 and 75 yr (68.1 ± 3.1 yr). BMD (in gram per square centimeter) was determined for each individual by dual-energy X-ray absorptiometry at the whole body, lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). L1-L4 TBS and hip geometry indices were also evaluated by dual-energy X-ray absorptiometry. Maximal muscle strength of bench press (1-repetition maximum [RM] bench press), maximal muscle strength of leg press (1-RM leg press), and handgrip were measured using validated methods. 1-RM bench press was positively correlated to TH BMD (r = 0.40; p < 0.05), FN BMD (r = 0.41; p < 0.05), FN section modulus (r = 0.33; p < 0.05), and FN cross-sectional moment of inertia (r = 0.35; p < 0.05). 1-RM leg press was positively correlated to TH BMD (r = 0.50; p < 0.01), FN BMD (r = 0.35; p < 0.05), FN cross-sectional area (r = 0.38; p < 0.05), and TBS (r = 0.37; p < 0.05). Handgrip was correlated only to FN cross-sectional moment of inertia (r = 0.43; p < 0.01). This study suggests that 1-RM bench press and 1-RM leg press are positive determinants of BMD in elderly women. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. [Practice of martial arts and bone mineral density in adolescents of both sexes].

    PubMed

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa Junior, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-06-01

    The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. A colored leg banding technique for Amazona parrots

    USGS Publications Warehouse

    Meyers, J.M.

    1995-01-01

    A technique for individual identification of Amazona was developed using plastic leg bands. Bands were made from 5- and 7-mm-wide strips of laminated PVC coiled 2.5 times with an inside diameter 4-5 mm gt the maximum diameter of the parrot's leg. Seventeen parrots were captured in Puerto Rico, marked with individual plastic leg bands, and observed for 204-658 d with only one lost or damaged plastic band. Plastic leg bands did not cause injury to or calluses on parrots' legs. The plastic material used for making leg bands was available in 18 colors in 1994, which would allow unique marking of 306 individuals using one plastic leg band on each leg.

  2. Foot, leg, and ankle swelling

    MedlinePlus

    ... feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... 31. Trayes KP, Studdiford JS, Pickle S, Tully AS. Edema: diagnosis and management. Am Fam Physician . 2013;88( ...

  3. Quantifying Bone–relevant Activity and its Relation to Bone Strength in Girls

    PubMed Central

    Farr, Joshua N.; Lee, Vinson R.; Blew, Robert M.; Lohman, Timothy G.; Going, Scott B.

    2011-01-01

    Physical activity (PA) is critical for maximizing bone development during growth. However, there is no consensus on how well existing PA measurement tools predict bone strength. PURPOSE Compare four methods of quantifying physical activity (PA) (pedometer, 3-day physical activity recall (3DPAR), bone-specific physical activity questionnaire (BPAQ), and past year physical activity questionnaire (PYPAQ)), in young girls and evaluate their ability to predict indices of bone strength. METHODS 329 girls aged 8–13 years completed a pedometer assessment, the 3DPAR, the BPAQ, and a modified PYPAQ. Peripheral quantitative computed tomography (pQCT) was used to assess bone strength index (BSI) at metaphyseal (4% distal femur and tibia) sites and strength-strain index (SSI) at diaphyseal (femur = 20%, tibia = 66%) sites of the non-dominant leg. Correlations and hierarchical multiple regression were used to assess relationships among PA measures and indices of bone strength. RESULTS After adjustment for maturity, correlations between PA measures and indices of bone strength were positive, although low (r = 0.01–0.20). Regression models that included covariates (maturity, body mass, leg length, and ethnicity) and PA variables showed that PYPAQ score was significantly (P < 0.05) associated with BSI and SSI at all sites and explained more variance in BSI and SSI than any other PA measure. Pedometer steps were significantly (P < 0.05) associated with metaphyseal femur and tibia BSI and 3DPAR score was significantly (P < 0.05) associated with metaphyseal femur BSI. BPAQ score was not significantly (P > 0.05) associated with BSI or SSI at any sites. CONCLUSION A modified PYPAQ that accounts for the duration, frequency, and load of PA predicted indices of bone strength better than other PA measures. PMID:20631644

  4. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  5. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  6. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawlmore » through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.« less

  7. Restless legs syndrome mimicking S1 radiculopathy.

    PubMed

    Zambelis, Th; Wolgamuth, B R; Papoutsi, S N; Economou, N T

    2016-01-01

    Α case of a chronic idiopathic form of a severe type of Restless Legs Syndrome (RLS), which developed during pregnancy and persisted after this, misdiagnosed for 34 years as radiculopathy S1, is reported. In spite of the thorough clinical and laboratory investigation, in addition to constant changes of the therapeutic approach, the diagnosis of S1 radiculopathy could not be confirmed, resulting in a chronic clinical course; the latter was characterized by relapses and remissions not attributed or linked in any way to the treatment (various types of). In fact, it was due to a routine workup in a sleep clinic, where the patient was referred because of a coincident chronic insomnia (Restless Legs Syndrome is a known and important cause of insomnia/chronic insomnia), which resulted in a proper diagnosis and treatment of this case. With the use of Restless Legs Syndrome appropriate treatment (Pramipexole 0.18 mg taken at bedtime, a dopaminergic agent and Level A recommended drug for Restless Legs Syndrome) an excellent response and immediate elimination of symptoms was achieved. Restless Legs Syndrome may present with a variety of symptoms (with the most prominent shortly being reported with the acronym URGE: Urge to move the legs usually associated with unpleasant leg sensations, Rest induces symptoms, Getting active brings relief, Evening and night deteriorate symptoms); given the fact that Restless Legs Syndrome presents with a great variety and heterogeneity of symptoms (mostly pain, dysesthesia and paresthesia), which may occur in several other diseases (the so called "RLS mimics"), proper diagnosis of Restless Legs Syndrome usually fails. Restless Legs Syndrome misinterpreted as S1 radiculopathy, to the best of our knowledge, has not been reported yet in the literature. Here, case history, clinical course and common RLS mimics are presented. Different forms of Restless Legs Syndrome manifestations, which are commonly -as in this case- misinterpreted due to their

  8. Soccer helps build strong bones during growth: a systematic review and meta-analysis.

    PubMed

    Lozano-Berges, Gabriel; Matute-Llorente, Ángel; González-Agüero, Alejandro; Gómez-Bruton, Alejandro; Gómez-Cabello, Alba; Vicente-Rodríguez, Germán; Casajús, José A

    2018-03-01

    The aim of this study was to analyze the effects of soccer practice on bone in male and female children and adolescents. MEDLINE, PubMed, SPORTDiscus and Web of Science databases were searched for scientific articles published up to and including October 2016. Twenty-seven studies were included in this systematic review (13 in the meta-analysis). The meta-analysis was performed by using OpenMeta[Analyst] software. It is well documented that soccer practice during childhood provides positive effects on bone mineral content (BMC) and density (BMD) compared to sedentary behaviors and other sports, such as tennis, weightlifting, or swimming. Furthermore, soccer players present higher BMC and BMD in most weight-bearing sites such as the whole body, lumbar spine, hip, and legs. Moreover, bone differences were minimized between groups during prepuberty. Therefore, the maturity status should be considered when evaluating bone. According to meta-analysis results, soccer practice was positively associated with whole-body BMD either in males (mean difference 0.061; 95%CI, 0.042-0.079) or in females (mean difference 0.063; 95%CI, 0.026-0.099). Soccer may be considered a sport that positively affects bone mass during growth. Pubertal soccer players presented increased bone mass compared to controls or other athletes; however, these bone differences are minimized during the prepubertal stage. What is known: • It has been described that childhood and adolescence are important periods for bone mass and structure. • Previous studies have demonstrated that soccer participation improves bone mass in male and female children and adolescents. What is new: • The differences between soccer players and controls are more marked during puberty than prepuberty. • Weight-bearing sites such as lumbar spine, hip, femoral neck, trochanter, intertrochanteric region and both legs are particularly sensitive to soccer actions.

  9. The Benslimane's Artistic Model for Leg Beauty.

    PubMed

    Benslimane, Fahd

    2012-08-01

    In 2000, the author started observing legs considered to be attractive. The goal was to have an ideal aesthetic model and compare the disparity between this model and a patient's reality. This could prove helpful during leg sculpturing to get closer to this ideal. Postoperatively, the result could then be compared to the ideal curves of the model legs and any remaining deviations from the ideal curves could be pointed out and eventually corrected in a second session. The lack of anthropometric studies of legs from the knee to the ankle led the author to select and study attractive legs to find out the common denominators of their beauty. The study consisted in analyzing the features that make legs look attractive. The legs of models in magazines were scanned and inserted into a PowerPoint program. The legs of live models, Barbie dolls, and athletes were photographed. Artistic drawings by Leonardo da Vinci were reviewed and Greek sculptures studied. Sculptures from the National Archaeological Museum of Athens were photographed and included in the PowerPoint program. This study shows that the first criterion for beautiful legs is the straightness of the leg column. Not a single attractive leg was found to deviate from the vertical, and each was in absolute continuity with the thigh. The second criterion is the similarity of curve distribution and progression from knee to ankle. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.

  10. On the Biomimetic Design of Agile-Robot Legs

    PubMed Central

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  11. On the biomimetic design of agile-robot legs.

    PubMed

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  12. Passive zero-gravity leg restraint

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R. (Inventor)

    1989-01-01

    A passive zero or microgravity leg restraint is described which includes a central support post with a top and a bottom. Extending from the central support post are a calf pad tab, to which calf pad is attached, and a foot pad tab, to which foot tab is attached. Also extending from central support post are knee pads. When the restraint is in use the user's legs are forced between pads by a user imposed scissors action of the legs. The user's body is then supported in a zero or microgravity neutral body posture by the leg restraint. The calf pad has semi-ridig elastic padding material covering structural stiffener. The foot pad has padding material and a structural stiffener. Knee pads have s structural tube stiffener at their core.

  13. Ash content of bones in the pigtail monkey, Macaca nemestrina.

    NASA Technical Reports Server (NTRS)

    Vose, G. P.; Roach, T. L.

    1972-01-01

    Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.

  14. Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain).

    PubMed

    Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Arsuaga, Juan Luis

    2018-04-01

    The recovery to date of three complete and five partial femora, seven complete tibiae, and four complete fibulae from the Atapuerca Sima de los Huesos site provides an opportunity to analyze the biomechanical cross-sectional properties in this Middle Pleistocene population and to compare them with those of other fossil hominins and recent modern humans. We have performed direct comparisons of the cross-sectional geometric parameters and reduced major axis (RMA) regression lines among different samples. We have determined that Atapuerca Sima de los Huesos (SH) fossils have significantly thicker cortices than those of recent modern humans for the three leg bones at all diaphyseal levels, except that of the femur at 35% of biomechanical length. The SH bones are similar to those of Neandertals and Middle Pleistocene humans and different from Homo sapiens in their diaphyseal cross-sectional shape and strength parameters. When standardized by estimated body size, both the SH and Neandertal leg bones have in general greater strength than those of H. sapiens from the early modern (EMH), Upper Paleolithic (UP), and recent populations (RH). The Sima de los Huesos human leg bones have, in general terms, an ancestral pattern similar to that of Pleistocene humans and differing from H. sapiens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Whole-body 3D kinematics of bird take-off: key role of the legs to propel the trunk

    NASA Astrophysics Data System (ADS)

    Provini, Pauline; Abourachid, Anick

    2018-02-01

    Previous studies showed that birds primarily use their hindlimbs to propel themselves into the air in order to take-off. Yet, it remains unclear how the different parts of their musculoskeletal system move to produce the necessary acceleration. To quantify the relative motions of the bones during the terrestrial phase of take-off, we used biplanar fluoroscopy in two species of birds, diamond dove ( Geopelia cuneata) and zebra finch ( Taeniopygia guttata). We obtained a detailed 3D kinematics analysis of the head, the trunk and the three long bones of the left leg. We found that the entire body assisted the production of the needed forces to take-off, during two distinct but complementary phases. The first one, a relatively slow preparatory phase, started with a movement of the head and an alignment of the different groups of bones with the future take-off direction. It was associated with a pitch down of the trunk and a flexion of the ankle, of the hip and, to a lesser extent, of the knee. This crouching movement could contribute to the loading of the leg muscles and store elastic energy that could be released in the propulsive phase of take-off, during the extension of the leg joints. Combined with the fact that the head, together with the trunk, produced a forward momentum, the entire body assisted the production of the needed forces to take-off. The second phase was faster with mostly horizontal forward and vertical upward translation motions, synchronous to an extension of the entire lower articulated musculoskeletal system. It led to the propulsion of the bird in the air with a fundamental role of the hip and ankle joints to move the trunk upward and forward. Take-off kinematics were similar in both studied species, with a more pronounced crouching movement in diamond dove, which can be related to a large body mass compared to zebra finch.

  16. Why do flamingos stand on one leg?

    PubMed

    Anderson, Matthew J; Williams, Sarah A

    2010-01-01

    A series of observational studies of captive Caribbean flamingos Phoenicopterus ruber were conducted to determine why flamingos rest on one leg. While frequently asked by the general public, this basic question has remained unanswered by the scientific community. Here we suggest that the latency of flamingos to initiate forward locomotion following resting on one leg is significantly longer than following resting on two, discounting the possibility that unipedal resting reduces muscle fatigue or enhances predatory escape. Additionally, we demonstrate that flamingos do not display lateral preferences at the individual or group levels when resting on one leg, with each bird dividing its resting time across both legs. We show that while flamingos prefer resting on one leg to two regardless of location, the percentage of birds resting on one leg is significantly higher among birds standing in the water than among those on land. Finally, we demonstrate a negative relationship between temperature and the percentage of observed birds resting on one leg, such that resting on one leg decreases as temperature rises. Results strongly suggest that unipedal resting aids flamingos in thermoregulation. (c) 2009 Wiley-Liss, Inc.

  17. Locomotor variation and bending regimes of capuchin limb bones.

    PubMed

    Demes, Brigitte; Carlson, Kristian J

    2009-08-01

    Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further.

  18. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.

    PubMed

    Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor

    2015-06-01

    The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.

  19. Three-phase radionuclide bone imaging in sports medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupani, H.D.; Holder, L.E.; Espinola, D.A.

    Three-phase radionuclide bone (TPB) imaging was performed on 238 patients with sports-related injuries. A wide variety of lesions was encountered, but the most frequent lesions seen were stress fractures of the lower part of the leg at the junction of the middle and distal thirds of the posterior tibial cortex (42 of 79 lesions). There were no differences in the type, location, or distribution of lesions between males and females or between competitive and noncompetitive athletes. In 110 cases, bone stress lesions were often diagnosed when radiographs were normal, whereas subacute or chronic soft-tissue abnormalities had few specific scintigraphic features.more » TPB imaging provides significant early diagnostic information about bone stress lesions. Normal examination results (53 cases) exclude underlying osseous pathologic conditions.« less

  20. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1991-04-02

    This invention is comprised of a pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing. between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair laying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is widemore » and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.« less

  1. [Pedicle flap transfer combined with external fixator to treat leg open fracture with soft tissue defect].

    PubMed

    Luo, Zhongchun; Lou, Hua; Jiang, Junwei; Song, Chunlin; Gong, Min; Wang, Yongcai

    2008-08-01

    To investigate the clinical results of treating leg open fracture with soft tissue defect by pedicle flap transfer in combination with external fixator. From May 2004 to June 2007, 12 cases of leg open fracture with soft tissue defect, 9 males and 3 females aged 18-75 years, were treated. Among them, 8 cases were caused by traffic accidents, 2 crush, 1 falling and 1 mechanical accident. According to the Gustilo Classification, there were 2 cases of type II, 5 of type IIIA and 5 of type IIIB. There were 2 cases of upper-tibia fracture, 3 of middle-tibia and 7 of middle-lower. The sizes of soft tissue defect ranged from 5 cm x 3 cm to 22 cm x 10 cm.The sizes of exposed bone ranged from 3 cm x 2 cm to 6 cm x 3 cm. The course of the disease was 1-12 hours. Fracture fixation was reached by external fixators or external fixators and limited internal fixation with Kirschner wire. The wounds with exposed tendons and bones were repaired by ipsilateral local rotation flap, sural neurocutaneous flap and saphenous nerve flap. The size of selected flap ranged from 5 cm x 4 cm to 18 cm x 12 cm. Granulation wounds were repaired by skin grafting or direct suture. All patients were followed up for 6 months to 2 years. All patients survived, among whom 2 with the wound edge infection and 1 with the distal necrosis were cured by changing the dressing, 8 with pin hole infection were treated by taking out the external fixator, 1 with nonunion received fracture healing after bone graft in comminuted fracture of lower tibia, 2 suffered delayed union in middle-lower tibia fracture. The ROM of ankle in 3 cases was mildly poor with surpass-joint fixation, with plantar extension of 0-10 degrees and plantar flexion of 10-30 degrees, while the others had plantar extension of 10-20 degrees and plantar flexion of 30-50 degrees. The method of pedicle flap transfer combined with external fixator is safe and effective for the leg open fracture with soft tissue defect.

  2. The Legs Problem--For All Ages

    ERIC Educational Resources Information Center

    Way, Jenni

    2005-01-01

    This article presents an example of a versatile multi-solution problem that can be used right across the primary years. The basic problem is: "Noah saw 16 legs go past him into the Ark. How many creatures did he see?" Any even number can be used, although, 2 legs allows only one answer and with 16 legs there are already 14 different…

  3. Diversity of activity participation determines bone mineral content in the lower limbs of pre-pubertal children with developmental coordination disorder.

    PubMed

    Fong, S S M; Vackova, D; Choi, A W M; Cheng, Y T Y; Yam, T T T; Guo, X

    2018-04-01

    This study examined the relationships between activity participation and bone mineralization in children with developmental coordination disorder. Limited participation in physical, recreational, social, and skill-based and self-improvement activities contributed to lower bone mineral content. For improved bone health, these children should participate in a variety of activities, not only physical activities. Limited activity participation in children with developmental coordination disorder (DCD) may have a negative impact on bone mineral accrual. The objectives of this study were to compare bone mineralization and activity participation patterns of pre-pubertal children with DCD and those with typical development, and to determine the association between activity participation patterns and bone mineralization in children with DCD. Fifty-two children with DCD (mean age = 7.51 years) and 61 children with typical development (mean age = 7.22 years) participated in the study. Appendicular and total body (less head) bone mineral content (BMC) and bone mineral density (BMD) were evaluated by a whole-body dual-energy X-ray absorptiometry scan. Activity participation patterns were assessed using the Children's Assessment of Participation and Enjoyment (CAPE) questionnaire. Children with DCD had lower appendicular and total body BMCs and BMDs than children with typical development overall (p < 0.05). They also had lower CAPE total activity and physical activity diversity scores (p < 0.05). After accounting for the effects of age, sex, height, lean mass, and fat mass, the total activity diversity score remained independently associated with leg BMC in children with DCD, explaining 5.1% of the variance (p = 0.030). However, the physical activity diversity score was no longer associated with leg BMC (p = 0.090). Diversity of activity participation and bone mineralization were lower in pre-pubertal children with DCD. Decreased total activity

  4. Multisystemic Sarcoidosis Presenting as Pretibial Leg Ulcers.

    PubMed

    Wollina, Uwe; Baunacke, Anja; Hansel, Gesina

    2016-09-01

    Sarcoidosis is a multisystemic disease of unknown etiology. Up to 30% of patients develop cutaneous manifestations, either specific or nonspecific. Ulcerating sarcoidosis leading to leg ulcers is a rare observation that may lead to confusions with other, more common types of chronic leg ulcers. We report the case of a 45-year-old female patient with chronic multisystemic sarcoidosis presenting with pretibial leg ulcers. Other etiology could be excluded. Histology revealed nonspecific findings. Therefore, the diagnosis of nonspecific leg ulcers in sarcoidosis was confirmed. Treatment consisted of oral prednisolone and good ulcer care. Complete healing was achieved within 6 months. Sarcoidosis is a rare cause of leg ulcers and usually sarcoid granulomas can be found. Our patient illustrates that even in the absence of sarcoid granulomas, leg ulcers can be due to sarcoidosis. © The Author(s) 2016.

  5. Unusually large solitary unicameral bone cyst: case report.

    PubMed

    Singh, Sandeep; Dhammi, Ish Kumar; Arora, Anil; Kumar, Sudhir

    2003-01-01

    A 15-year-old boy presented with complaints of pain and swelling of the right leg. Radiography revealed a large lytic lesion involving the proximal half of the tibia. The patient was taken to surgery, where the cavity was curetted and packed with allogeneic bone graft. Tissue was sent for histopathological evaluation. The patient was kept in an above-knee cast for 4 months, after which partial weight-bearing was allowed. The histopathological diagnosis was a unicameral bone cyst. A radiograph at 1 year showed incorporation of the graft, but a small part of the cavity was still visible and there was a persistent discharge. The patient was again subjected to allogeneic bone grafting in the remaining cavity. At 3.5 years of follow-up now, the patient is walking unsupported, there is no pain, and the radiograph shows complete obliteration of the cavity. Unicameral bone cysts are usually a few centimeters in size. To the best of our knowledge, a unicameral bone cyst of such a large size has never been reported in the literature.

  6. Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis: a cross-sectional study.

    PubMed

    Kierkegaard, Signe; Jørgensen, Peter Bo; Dalgas, Ulrik; Søballe, Kjeld; Mechlenburg, Inger

    2015-09-01

    During movement tasks, patients with medial compartment knee osteoarthritis use compensatory strategies to minimise the joint load of the affected leg. Movement strategies of the knees and trunk have been investigated, but less is known about movement strategies of the pelvis during advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls. 57 patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping. Patients had lower leg extension power than controls (20-39 %, P < 0.01) and used greater pelvic range of motion during stair and step ascending and descending (P ≤ 0.03, except for pelvic range of motion in the frontal plane during ascending, P > 0.06). Furthermore, an inverse association (coefficient: -0.03 to -0.04; R (2) = 13-22 %) between leg extension power and pelvic range of motion during stair and step descending was found in the patients. Compared to controls, patients with medial compartment knee osteoarthritis use greater pelvic movements during advanced functional performance tests, particularly when these involve descending tasks. Further studies should investigate if it is possible to alter these movement strategies by an intervention aimed at increasing strength and power for the patients.

  7. Does a crouched leg posture enhance running stability and robustness?

    PubMed

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height

  8. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.

    PubMed

    Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W; Daley, Monica A

    2014-11-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force-length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force-length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. © 2014. Published by The Company of Biologists Ltd.

  9. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain

    PubMed Central

    Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. PMID:25355848

  10. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  11. [Replantation at lower leg level].

    PubMed

    Daigeler, A; Fansa, H; Westphal, T; Schneider, W

    2003-11-01

    Replantation in reconstructive surgery is an established procedure due to microsurgical techniques. It can be routinely performed in unilateral lower leg amputation. In some cases of bilateral amputation, in which orthotopic replantation is not possible due to the complex trauma, heterotopic replantation is a therapeutic option. This avoids prosthetic fitting. We report five cases of orthotopic and two of heterotopic lower limb replantations. Functional outcome concerning sensibility, mobility, pain, and aesthetic result were assessed clinically and using a questionnaire. Functional outcome and patient satisfaction were good. The psychological situation of the patients as well as mobility and stability of the replanted limbs were satisfying. Heterotopically replanted patients found the replanted legs superior to the prostheses. We conclude that, in lower leg amputation, attempts should be made to replant the extremity. In bilateral lower leg amputations, at least one limb should be reconstructed, even if "only" a heterotopic replantation can be performed.

  12. Deboning broiler chicken legs and wings by dislocation of articular cartilage followed by stripping periosteum.

    PubMed

    Nakano, T; Ozimek, L; Betti, M

    2012-11-01

    The yield of deboned meat is an important economic factor affecting the profit of the meat industry. This study was undertaken to determine whether the yield of boneless meat from broiler chicken leg (thigh and drumstick) and wing (drumette and winglet) is improved by introducing a new deboning method consisting of articular cartilage dislocation followed by stripping periosteum. A total of 44 broiler chicken carcasses were used in the deboning experiment. Right and left legs or wings from the first 22 carcasses were assigned to the new and ordinary hand deboning methods, respectively. For the remaining 22 carcasses, right and left legs or wings were assigned to the ordinary and new methods, respectively. The weight of residue, composed of bone and small amounts of cartilage and noncartilaginous tissues obtained after deboning, was then compared between the right and left legs or wings to see the difference between the 2 methods. The removal of tibia, fibula, humerus, radius, or ulna resulted in formation of a hollow in boneless meat obtained. There was no difference (P > 0.05) between the right and left legs or wings in the weight of residue obtained after deboning as expected. The weight of residue was less (P < 0.05) with the new method compared with the ordinary method in all chicken parts examined. The difference of residue weight between the 2 methods accounted for 10, 12, 14, and 21% of the weight of residue obtained by the ordinary method in thigh, drumstick, drumette, and winglet, respectively. The new method may be useful to deboners at home kitchens as well as the poultry meat industry. The present study also showed the development of a secondary ossification center at the proximal end of the carpometacarpus of chickens. This is, to our knowledge, the first report of development of secondary ossification center in chicken wings.

  13. [Analysis of the results of bone healing in femurs lengthened by the gradual distraction method in children and adolescents].

    PubMed

    Jochymek, J; Skvaril, J; Ondrus, S

    2009-10-01

    Treatment of leg length inequality via lengthening of the shorter extremity is an infrequent orthopedic procedure due to the requirement of special distraction devices and possible serious complications. Essential qualitative changes in operative technique development are associated with the name of G. A. Ilizarov, who paved the way for the autoregenerate gradual distraction method in the 1950s. In the years 1990 through 2007 a total of 67 patients underwent femur lengthening via gradual distraction using various types of external fixators at the Department of Pediatric Surgery, Orthopedics, and Traumatology, Faculty Hospital in Brno. The quality of bone healing was monitored and a number of parameters followed and statistically evaluated using regularly scheduled X-ray examinations. In 13 cases we had to remove the external fixator following the distraction phase, perform an osteosynthesis via a splint and fill the distraction gap via spongioplasty. The bone healing was satisfactory in the remaining 54 patients and the lengthened bone required no other fixation method. The analysis showed statistically significant deceleration in bone healing following distraction in female patients over 12 years of age, and in boys over 14 years of age. Lack of periosteal callus five weeks after surgery always signified serious problems in further healing. Severe complications were recorded in 11 cases during the distraction phase, and in 12 cases after the removal of the distraction apparatus. Our results fully correspond with the data and experience of others cited authors. In addition our study showed deceleration in bone healing in girls over 12 years and in boys over 14 years of age and serious problem in healing when is lack of periostal callus five weeks after surgery. The aim of this report was to present the results of our study of distraction gap bone healing using the gradual lengthening approach. Key words: leg lengthening, gradual distraction, external fixation, leg

  14. Leg stiffness and expertise in men jumping.

    PubMed

    Laffaye, Guillaume; Bardy, Benoît G; Durey, Alain

    2005-04-01

    The aim of the present study is to investigate: a) the leg spring behavior in the one-leg vertical jump, b) the contribution of impulse parameters to this behavior, and c) the effect of jumping expertise on leg stiffness. Four categories of experts (handball, basketball, volleyball players, and Fosbury athletes), as well as novice subjects performed a run-and-jump test to touch a ball with the head. Five experimental conditions were tested from 55 to 95% of the maximum jump height. Kinematic and kinetic data were collected using six cameras and a force plate. The mechanical behavior of the musculoskeleton component of the human body can be modeled as a simple mass-spring system, from which leg stiffness values can be extracted to better understand energy transfer during running or jumping. The results indicate that leg stiffness (mean value of 11.5 kN.m) decreased with jumping height. Leg shortening at takeoff also increased with jumping height, whereas contact time decreased (-18%). No difference was found between experts and novices for leg stiffness. However, a principal components analysis (PCA) indicated the contribution of two main factors to the performance. The first factor emerged out of vertical force, stiffness, and duration of impulse. The second factor included leg shortening and jumping height. Differences between experts and novices were observed in terms of the contribution of leg stiffness to jump height, and more importantly, clear differences existed between experts in jumping parameters. The analysis performed on the sport categories indeed revealed different jumping profiles, characterized by specific, sport-related impulse parameters.

  15. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    PubMed Central

    Knutson, Gary A

    2005-01-01

    Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787

  16. New method of fixation of in-bone implanted prosthesis

    PubMed Central

    Pitkin, Mark; Cassidy, Charles; Muppavarapu, Raghuveer; Raymond, James; Shevtsov, Maxim; Galibin, Oleg; Rousselle, Serge D.

    2013-01-01

    This article presents results on the effectiveness of a new version of the titanium porous composite skin and bone integrated pylon (SBIP). The SBIP is designed for direct skeletal attachment of limb prostheses and was evaluated in a pre-clinical study with three rabbits. In accordance with the study protocol, a new version of the pylon (SBIP-3) was implanted into the hind leg residuum of three rabbits. The SBIP-3 has side fins that are designed to improve the bond between the bone and pylon. The fins are positioned inside two slots precut in the bone walls; their length can be adjusted to match the thickness of the bone walls. After 13 (animal 1) or 26 wk (animals 2 and 3), the animals were sacrificed and samples collected for histopathological analysis. The space between the fins and the bone into which they were fit was filled with fibro-vascular tissue and woven bone. No substantial inflammation was found. We suggest that if further studies substantiate the present results, the proposed method can become an alternative to the established technique of implanting prostheses into the medullar canal of the hosting bone. PMID:24013918

  17. Eyes, bones and teeth in the 16th century Statute law of Rijeka.

    PubMed

    Milovic, Dorde; Milovic Karic, Grozdana

    2008-01-01

    The 16th century statute law or the town of Rijeka treats the eye in two ways. First, it stipulates a severe punishment for deliberate "eye-plucking". Second, for those who commit this crime, it specifies "eye-plucking" as a corporeal punishment (following the eye-for-an-eye principle).The 1530 Statute of Rijeka also pays considerable attention to the bones. Bone breaking by means of intentional or unintentional blow was fined 25 libras (pounds) for the following bones: thighbone, forearm and hand bones, lower leg bone, and foot bone. A fine of 10 libras applied for all other intentional or unintentional bone breaking by a blow. Legal protection of teeth involved a fine of five libras for each of the teeth blown out, and half the fine for a broken tooth. Both fines applied whether the offence was done on purpose or not.

  18. INTRA-RATER RELIABILITY OF THE MULTIPLE SINGLE-LEG HOP-STABILIZATION TEST AND RELATIONSHIPS WITH AGE, LEG DOMINANCE AND TRAINING.

    PubMed

    Sawle, Leanne; Freeman, Jennifer; Marsden, Jonathan

    2017-04-01

    Balance is a complex construct, affected by multiple components such as strength and co-ordination. However, whilst assessing an athlete's dynamic balance is an important part of clinical examination, there is no gold standard measure. The multiple single-leg hop-stabilization test is a functional test which may offer a method of evaluating the dynamic attributes of balance, but it needs to show adequate intra-tester reliability. The purpose of this study was to assess the intra-rater reliability of a dynamic balance test, the multiple single-leg hop-stabilization test on the dominant and non-dominant legs. Intra-rater reliability study. Fifteen active participants were tested twice with a 10-minute break between tests. The outcome measure was the multiple single-leg hop-stabilization test score, based on a clinically assessed numerical scoring system. Results were analysed using an Intraclass Correlations Coefficient (ICC 2,1 ) and Bland-Altman plots. Regression analyses explored relationships between test scores, leg dominance, age and training (an alpha level of p = 0.05 was selected). ICCs for intra-rater reliability were 0.85 for the dominant and non-dominant legs (confidence intervals = 0.62-0.95 and 0.61-0.95 respectively). Bland-Altman plots showed scores within two standard deviations. A significant correlation was observed between the dominant and non-dominant leg on balance scores (R 2 =0.49, p<0.05), and better balance was associated with younger participants in their non-dominant leg (R 2 =0.28, p<0.05) and their dominant leg (R 2 =0.39, p<0.05), and a higher number of hours spent training for the non-dominant leg R 2 =0.37, p<0.05). The multiple single-leg hop-stabilisation test demonstrated strong intra-tester reliability with active participants. Younger participants who trained more, have better balance scores. This test may be a useful measure for evaluating the dynamic attributes of balance. 3.

  19. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.

    PubMed

    Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K

    2017-04-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  20. Effects of soccer vs swim training on bone formation in sedentary middle-aged women.

    PubMed

    Mohr, Magni; Helge, Eva W; Petersen, Liljan F; Lindenskov, Annika; Weihe, Pál; Mortensen, Jann; Jørgensen, Niklas R; Krustrup, Peter

    2015-12-01

    The present study examined the effects of 15 weeks of soccer training and two different swimming training protocols on bone turnover in sedentary middle-aged women. Eighty-three premenopausal mildly hypertensive women [age: 45 ± 6 (± SD) years, height: 165 ± 6 cm, weight: 80.0 ± 14.1 kg, body fat: 42.6 ± 5.7 %, systolic blood pressure/diastolic blood pressure: 138 ± 6/85 ± 3 mmHg] were randomized into soccer training (SOC, n = 21), high-intensity intermittent swimming (HS, n = 21), moderate-intensity swimming (MS, n = 21) intervention groups, and a control group (C, n = 20). The training groups completed three sessions per week for 15 weeks. DXA scans were performed and resting blood samples were drawn pre- and post-intervention. In SOC, plasma osteocalcin, procollagen type I N propeptide and C-terminal telopeptide increased (P < 0.05) by 37 ± 15, 52 ± 23 and 42 ± 18 %, respectively, with no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than in MS, HS and C. In SOC, leg BMC increased (P < 0.05) by 3.1 ± 4.5 %, with a larger increase in SOC than in C. Femoral shaft and trochanter bone mineral density (BMD) increased (P < 0.05) by 1.7 ± 1.9 and 2.4 ± 2.9 %, respectively, in SOC, with a greater (P < 0.05) change in SOC than in MS and C, whereas total body and total leg BMD did not change in any of the groups. In conclusion, 15 weeks of soccer training with sedentary middle-aged women caused marked increases in bone turnover markers, with concomitant increases in leg bone mass. No changes in bone formation and resorption markers were seen after prolonged submaximal or high-intensity intermittent swimming training. Thus, soccer training appears to provide a powerful osteogenic stimulus in middle-aged women.

  1. [Acute leg compartment syndrome after exertion].

    PubMed

    Misović, Sidor; Kronja, Goran; Ignjatović, Dragan; Tomić, Aleksandar

    2005-03-01

    A case of a 22-year old soldier, with a history of pain in the leg during heavy exercise, which desisted at rest, was presented. One day before admission, the patient had felt an extreme exertion-induced pain in his right leg which had not lessenned at rest. At the same time, the patient noticed persistent severe leg edema. On physical examination, the intracompartmental pressure was 62 mmHg (> 30 mmHg). The patient was urgently operated on, and fasciotomy according to Mubarak was used. At second surgery, the debridement of the muscles of the posterior group of the leg, and the evacuation of hemathoma from the anterior and lateral group of the right leg muscles were perfomed. Postoperative recovery was uneventful. Fasciotomy wounds were closed within 14 days of the surgery. The complete physical treatment was done. Follow-up examinations 1, 3, and 6 months afterwards were satisfactory. The soldier completed his compulsory military service without any sequelae. Laboratory results were normal. Overlooked, unrecognized or surgically untreated compartment syndrome can cause severe damage, including even the loss of the extremity.

  2. Long-bone fractures in persons with spinal cord injury.

    PubMed

    Frotzler, A; Cheikh-Sarraf, B; Pourtehrani, M; Krebs, J; Lippuner, K

    2015-09-01

    Retrospective data analysis. To document fracture characteristics, management and related complications in individuals with traumatic spinal cord injury (SCI). Rehabilitation centre for SCI individuals. Patients' records were reviewed. Patients with traumatic SCI and extremity fractures that had occurred after SCI were included. Patient characteristics, fractured bone, fracture localisation, severity and management (operative/conservative), and fracture-related complications were extracted. A total of 156 long-bone fractures in 107 SCI patients (34 women and 73 men) were identified. The majority of patients were paraplegics (77.6%) and classified as American Spinal Injury Association Impairment Scale A (86.0%). Only the lower extremities were affected, whereby the femur (60.9% of all fractures) was fractured more frequently than the lower leg (39.1%). A total of 70 patients (65.4%) had one fracture, whereas 37 patients (34.6%) had two or more fractures. Simple or extraarticular fractures were most common (75.0%). Overall, 130 (83.3%) fractures were managed operatively. Approximately half of the femur fractures (48.2%) were treated with locking compression plates. In the lower leg, fractures were mainly managed with external fixation (48.8%). Conservative fracture management was applied in 16.7% of the cases and consisted of braces or a well-padded soft cast. Fracture-associated complications were present in 13.5% of the cases but did not differ significantly between operative (13.1%) and conservative (15.4%) fracture management. SCI was associated with simple or extraarticular fractures of the distal femur and the lower leg. Fractures were mainly managed operatively with a low complication rate.

  3. Evaluation of arm-leg coordination in flat breaststroke.

    PubMed

    Chollet, D; Seifert, L; Leblanc, H; Boulesteix, L; Carter, M

    2004-10-01

    This study proposes a new method to evaluate arm-leg coordination in flat breaststroke. Five arm and leg stroke phases were defined with a velocity-video system. Five time gaps quantified the time between arm and leg actions during three paces of a race (200 m, 100 m and 50 m) in 16 top level swimmers. Based on these time gaps, effective glide, effective propulsion, effective leg insweep and effective recovery were used to identify the different stroke phases of the body. A faster pace corresponded to increased stroke rate, decreased stroke length, increased propulsive phases, shorter glide phases, and a shorter T1 time gap, which measured the effective body glide. The top level swimmers showed short time gaps (T2, T3, T4, measuring the timing of arm-leg recoveries), which reflected the continuity in arm and leg actions. The measurement of these time gaps thus provides a pertinent evaluation of swimmers' skill in adapting their arm-leg coordination to biomechanical constraints.

  4. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.

    PubMed

    Zhou, R; Alvarado, L; Kim, S; Chong, S L; Mushahwar, V K

    2017-10-01

    The spinal cervico-lumbar interaction during rhythmic movements in humans has recently been studied; however, the role of arm movements in modulating the corticospinal drive to the legs is not well understood. The goals of this study were to investigate the effect of active rhythmic arm movements on the corticospinal drive to the legs ( study 1 ) and assess the effect of simultaneous arm and leg training on the corticospinal pathway after incomplete spinal cord injury (iSCI) ( study 2). In study 1 , neurologically intact (NI) participants or participants with iSCI performed combinations of stationary and rhythmic cycling of the arms and legs while motor evoked potentials (MEPs) were recorded from the vastus lateralis (VL) muscle. In the NI group, arm cycling alone could facilitate the VL MEP amplitude, suggesting that dynamic arm movements strongly modulate the corticospinal pathway to the legs. No significant difference in VL MEP between conditions was found in participants with iSCI. In study 2 , participants with iSCI underwent 12 wk of electrical stimulation-assisted cycling training: one group performed simultaneous arm and leg (A&L) cycling and the other legs-only cycling. MEPs in the tibialis anterior (TA) muscle were compared before and after training. After training, only the A&L group had a significantly larger TA MEP, suggesting increased excitability in the corticospinal pathway. The findings demonstrate the importance of arm movements in modulating the corticospinal drive to the legs and suggest that active engagement of the arms in lower limb rehabilitation may produce better neural regulation and restoration of function. NEW & NOTEWORTHY This study aimed to demonstrate the importance of arm movements in modulating the corticospinal drive to the legs. It provides direct evidence in humans that active movement of the arms could facilitate corticospinal transmission to the legs and, for the first time, shows that facilitation is absent after spinal cord

  5. Dynamic leg length asymmetry during gait is not a valid method for estimating mild anatomic leg length discrepancy.

    PubMed

    Leporace, Gustavo; Batista, Luiz Alberto; Serra Cruz, Raphael; Zeitoune, Gabriel; Cavalin, Gabriel Armondi; Metsavaht, Leonardo

    2018-03-01

    The purpose of this study was to test the validity of dynamic leg length discrepancy (DLLD) during gait as a radiation-free screening method for measuring anatomic leg length discrepancy (ALLD). Thirty-three subjects with mild leg length discrepancy walked along a walkway and the dynamic leg length discrepancy (DLLD) was calculated using a motion analysis system. Pearson correlation and paired Student t -tests were applied to calculate the correlation and compare the differences between DLLD and ALLD (α = 0.05). The results of our study showed DLLD is not a valid method to predict ALLD in subjects with mild limb discrepancy.

  6. Leg stiffness and stride frequency in human running.

    PubMed

    Farley, C T; González, O

    1996-02-01

    When humans and other mammals run, the body's complex system of muscle, tendon and ligament springs behaves like a single linear spring ('leg spring'). A simple spring-mass model, consisting of a single linear leg spring and a mass equivalent to the animal's mass, has been shown to describe the mechanics of running remarkably well. Force platform measurements from running animals, including humans, have shown that the stiffness of the leg spring remains nearly the same at all speeds and that the spring-mass system is adjusted for higher speeds by increasing the angle swept by the leg spring. The goal of the present study is to determine the relative importance of changes to the leg spring stiffness and the angle swept by the leg spring when humans alter their stride frequency at a given running speed. Human subjects ran on treadmill-mounted force platform at 2.5ms-1 while using a range of stride frequencies from 26% below to 36% above the preferred stride frequency. Force platform measurements revealed that the stiffness of the leg spring increased by 2.3-fold from 7.0 to 16.3 kNm-1 between the lowest and highest stride frequencies. The angle swept by the leg spring decreased at higher stride frequencies, partially offsetting the effect of the increased leg spring stiffness on the mechanical behavior of the spring-mass system. We conclude that the most important adjustment to the body's spring system to accommodate higher stride frequencies is that leg spring becomes stiffer.

  7. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  8. Mathematical simulations of photon interactions using Monte Carlo analysis to evaluate the uncertainty associated with in vivo K X-ray fluorescence measurements of stable lead in bone

    NASA Astrophysics Data System (ADS)

    Lodwick, Camille J.

    This research utilized Monte Carlo N-Particle version 4C (MCNP4C) to simulate K X-ray fluorescent (K XRF) measurements of stable lead in bone. Simulations were performed to investigate the effects that overlying tissue thickness, bone-calcium content, and shape of the calibration standard have on detector response in XRF measurements at the human tibia. Additional simulations of a knee phantom considered uncertainty associated with rotation about the patella during XRF measurements. Simulations tallied the distribution of energy deposited in a high-purity germanium detector originating from collimated 88 keV 109Cd photons in backscatter geometry. Benchmark measurements were performed on simple and anthropometric XRF calibration phantoms of the human leg and knee developed at the University of Cincinnati with materials proven to exhibit radiological characteristics equivalent to human tissue and bone. Initial benchmark comparisons revealed that MCNP4C limits coherent scatter of photons to six inverse angstroms of momentum transfer and a Modified MCNP4C was developed to circumvent the limitation. Subsequent benchmark measurements demonstrated that Modified MCNP4C adequately models photon interactions associated with in vivo K XRF of lead in bone. Further simulations of a simple leg geometry possessing tissue thicknesses from 0 to 10 mm revealed increasing overlying tissue thickness from 5 to 10 mm reduced predicted lead concentrations an average 1.15% per 1 mm increase in tissue thickness (p < 0.0001). An anthropometric leg phantom was mathematically defined in MCNP to more accurately reflect the human form. A simulated one percent increase in calcium content (by mass) of the anthropometric leg phantom's cortical bone demonstrated to significantly reduce the K XRF normalized ratio by 4.5% (p < 0.0001). Comparison of the simple and anthropometric calibration phantoms also suggested that cylindrical calibration standards can underestimate lead content of a human leg up

  9. Do sporting activities convey benefits to bone mass throughout the skeleton?

    PubMed

    Nevill, Alan; Holder, Roger; Stewart, Arthur

    2004-07-01

    It is well known that sport and exercise play an important role in stimulating site-specific bone mineral density (BMD). However, what is less well understood is how these benefits dissipate throughout the body. Hence, the aim of the present study was to compare the BMD (recorded at nine sites throughout the skeleton) of 106 male athletes (from nine sports) with that of 15 male non-exercising age-matched controls. Given that BMD is known to increase with body mass and peak with age, multivariate and univariate analyses of covariance were performed to compare the BMD of the nine sports groups with controls (at all sites) using body mass and age as covariates. Our results confirmed a greater adjusted BMD in the arms of the upper-body athletes, the right arm of racket players and the legs of runners (compared with controls), supporting the site-specific nature (i.e. specific to the externally loaded site) of the bone remodelling response (all P <0.01). However, evidence that bone mass acquisition is not just site-specific comes from the results of the rugby players, strength athletes, triathletes and racket players. The rugby players' adjusted BMD was the greatest of all sports groups and greater than controls at all nine sites (all P <0.01), with differences ranging from 8% greater in the left arm to 21% in the lumbar spine. Similarly, the strength athletes' adjusted BMD was superior to that of controls at all sites (P <0.05) except the legs. The adjusted BMD of the triathletes was significantly greater than that of the controls in both the arms and the legs as well as the thoracic and lumbar spine. The racket players not only had significantly greater right arm BMD compared with the controls but also a greater BMD of the lumbar spine, the pelvis and legs. In contrast, the low-strain, low-impact activities of keep-fit, cycling and rowing failed to benefit BMD compared with the age-matched controls. These results suggest that sporting activities involving high impact

  10. THE EFFECT OF THE GROWTH HORMONE FROM THE ANTERIOR LOBE OF THE PITUITARY ON BONE UNDER CONDITIONS OF IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, E.A.

    1963-05-21

    Young rats 3 to 4 days old were given an x-ray dose of 1000 r on the left hind leg. A daily dose of 200 gamma of growth hormone obtained from the pituitary of a bull was administered, until the animals were killed on the 36th, 41st, and 44th days after the irradiation. The length of the tibia in the left and right legs was determined by x rays. In the irradiated animals, the ratio of the length of the left tibia to the right tibia was about 0.50, and the introduction of growth hormone into the rat had onlymore » a slight effect on tibial growth. The bones were then fixed in a Zenkerformalin fluid, and cytological studies were carried out. These studies show that irradiation of the extremity of a four-day rat with an x-ray dose of 2000 r resulted in deep disturbances in the cartilage bone with subsequent arrest in the development of the bone. The introduction of growth hormone ameliorated the changes in bone structure, but did not result in normal bone development. (TTT)« less

  11. Correlation between broiler lameness and anatomical measurements of bone using radiographical projections with assessments of consistency across and within radiographs.

    PubMed

    Toscano, M J; Nasr, M A F; Hothersall, B

    2013-09-01

    Lameness represents a major welfare and production issue in the poultry industry with a recent survey estimating 27% of birds lame and 3% unable to walk by 40 d of age. A variety of factors may induce lameness and are typically grouped into 2 broad classes on the basis of being infectious or skeletal in nature with the latter accounting for the majority of cases. The current work sought to build upon a large body of literature assessing the anatomical properties of bone in lame birds. Our specific objectives sought to identify relationships between relevant anatomical properties of the tibia and metatarsus using digital quantification from radiographs of legs and a measure of walking difficulty. Resulting output was statistically analyzed to assess 1) observer reliability for consistency in placing the leg during the radiograph procedure and quantification of the various measures within a radiograph, 2) the relationship between the various measurements of anatomical bone properties and sex, bird mass, and gait score, and 3) the relationship between each measurement and leg symmetry. Our anatomical bone measures were found to be reliable (intra-rater and test-retest reliabilities < 0.75) within radiograph for all measures and 8 of the 10 measures across radiographs. Several measures of bone properties in the tibia correlated to difficulty walking as measured by gait score (P < 0.05), indicating greater angulations with increasing lameness. Of the measures that manifested a gait score × bird mass interaction, heavier birds appeared to exhibit less angulation with increasing difficulty walking with lighter birds the opposite. These interactions suggest possibilities for influencing effects of activity or feed intake on bone mineralization with the bone angulation observed. Our efforts agree with that of others and indicate that angulation of the tibia may be related to lameness, though subsequent efforts involving comprehensive measures of bird activity, growth rates

  12. Ocean Drilling Program: Completed Legs

    Science.gov Websites

    . Austin Leg summary Repository Wolfgang Schlager 102 14-Mar-85 25-Apr-85 Miami, Florida 418 Bermuda Rise Lisbon, Portugal 902-906 New Jersey Sea-Level Transect Peter Blum Gregory Mountain Leg summary Repository , Nova Scotia 1071-1073 Continuing the New Jersey Sea-Level Transect Mitchell J. Malone James A. Austin

  13. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    NASA Astrophysics Data System (ADS)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  14. Knee arthrodesis with a press-fit modular intramedullary nail without bone-on-bone fusion after an infected revision TKA.

    PubMed

    Iacono, Francesco; Bruni, Danilo; Lo Presti, Mirco; Raspugli, Giovanni; Bondi, Alice; Sharma, Bharat; Marcacci, Maurilio

    2012-10-01

    Knee arthrodesis can be an effective treatment after an infected revision Total Knee Arthroplasty (TKA). The main hypothesis of this study is that a two-stage arthrodesis of the knee using a press-fit, modular intramedullary nail and antibiotic loaded cement, to fill the residual gap between the bone surfaces, prevents an excessive limb shortening, providing satisfactory clinical and functional results even without direct bone-on-bone fusion. The study included 22 patients who underwent knee arthrodesis between 2004 and 2009 because of recurrent infection following revision-TKA (R-TKA). Clinical and functional evaluations were performed using the Visual Analogue Scale (VAS) and the Lequesne Algofunctional Score. A postoperative clinical and radiographical evaluation of the residual limb-length discrepancy was conducted by three independent observers. VAS and LAS results showed a significant improvement with respect to the preoperative condition. The mean leg length discrepancy was less than 1cm. There were three recurrent infections that needed further surgical treatment. This study demonstrated that reinfection after Revision of total knee Arthroplasty can be effectively treated with arthrodesis using a modular intramedullary nail, along with an antibiotic loaded cement spacer and that satisfactory results can be obtained without direct bone-on-bone fusion. Published by Elsevier B.V.

  15. Effects of whole-body vibration exercise on bone mineral content and density in thermally injured children.

    PubMed

    Edionwe, Joel; Hess, Cameron; Fernandez-Rio, Javier; Herndon, David N; Andersen, Clark R; Klein, Gordon L; Suman, Oscar E; Amonette, William E

    2016-05-01

    Loss of bone mass, muscle mass, and strength leads to significant disability in severely burned children. We assessed the effects of exercise combined with whole-body vibration (WBV) on bone mass, lean mass (LM), and muscle strength in children recovering from burns. Nineteen burned children (≥30% total body surface area [TBSA] burns) were randomly assigned to a 6-week exercise regimen either alone (EX; n=10) or in combination with a 6-week WBV training regimen (EX+WBV; n=9). WBV was performed concurrent to the exercise regimen for 5days/week on a vibrating platform. Dual-energy X-ray absorptiometry quantified bone mineral content (BMC), bone mineral density (BMD), and LM; knee extension strength was assessed using isokinetic dynamometry before and after training. Alpha was set at p<0.05. Both groups were similar in age, height, weight, TBSA burned, and length of hospitalization. Whole-body LM increased in the EX group (p=0.041) and trended toward an increase in the EX+WBV group (p=0.055). On the other hand, there were decreases in leg BMC for both groups (EX, p=0.011; EX+WBV, p=0.047), and in leg BMD for only the EX group (EX, p<0.001; EX+WBV, p=0.26). Truncal BMC decreased in only the EX group (EX, p=0.009; EX+WBV, p=0.61), while BMD decreased in both groups (EX, p<0.001; EX+WBV group, p<0.001). Leg strength increased over time in the EX group (p<0.001) and the EX+WBV group (p<0.001; between-group p=0.31). Exercise in combination with WBV may help attenuate regional bone loss in children recovering from burns. Studies are needed to determine the optimal magnitude, frequency, and duration of the vibration protocol, with attention to minimizing any potential interference with wound healing and graft closure. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. Effects of Whole-Body Vibration Exercise on Bone Mineral Content and Density in Thermally Injured Children

    PubMed Central

    Edionwe, Joel; Hess, Cameron; Fernandez-Rio, Javier; Herndon, David N.; Andersen, Clark R.; Klein, Gordon L.; Suman, Oscar E.; Amonette, William E.

    2015-01-01

    Background Loss of bone mass, muscle mass, and strength leads to significant disability in severely burned children. We assessed the effects of exercise combined with whole-body vibration (WBV) on bone mass, lean mass (LM), and muscle strength in children recovering from burns. Methods Nineteen burned children (≥30% total body surface area [TBSA] burns) were randomly assigned to a 6-week exercise regimen either alone (EX; n = 10) or in combination with a 6-week WBV training regimen (EX+WBV; n = 9). WBV was performed concurrent to the exercise regimen for 5 days/week on a vibrating platform. Dual-energy X-ray absorptiometry quantified bone mineral content (BMC), bone mineral density (BMD) and LM; knee extension strength was assessed using isokinetic dynamometry before and after training. Alpha was set at p < 0.05. Results Both groups were similar in age, height, weight, TBSA burned, and length of hospitalization. Whole-body LM increased in the EX group (p = 0.041) and trended toward an increase in the EX+WBV group (p = 0.055). On the other hand, there were decreases in leg BMC for both groups (EX, p = 0.011; EX+WBV, p = 0.047), and in leg BMD for only the EX group (EX, p < 0.001; EX+WBV, p = 0.26). Truncal BMC decreased in only the EX group (EX, p = 0.009; EX+WBV, p = 0.61), while BMD decreased in both groups (EX, p < 0.001; EX+WBV group, p < 0.001). Leg strength increased over time in the EX group (p < 0.001) and the EX+WBV group (p < 0.001; between-group P = 0.31). Conclusions Exercise in combination with WBV may help attenuate regional bone loss in children recovering from burns. Studies are needed to determine the optimal magnitude, frequency, and duration of the vibration protocol, with attention to minimizing any potential interference with wound healing and graft closure. PMID:26796240

  17. High femoral bone mineral content and density in male football (soccer) players.

    PubMed

    Calbet, J A; Dorado, C; Díaz-Herrera, P; Rodríguez-Rodríguez, L P

    2001-10-01

    This investigation examined the effect that long-term football (soccer) participation may have on areal bone mineral density (BMD) and bone mineral content (BMC) in male football players. Dual energy x-ray absorptiometry (DXA) scans were obtained in 33 recreational male football players active in football for the last 12 yr and 19 nonactive subjects from the same population. Both groups had comparable age (23 +/- 4 yr vs 24 +/- 3 yr), body mass (73 +/- 7 kg vs 72 +/- 11 kg), height (176 +/- 5 cm vs 176 +/- 8 cm), and calcium intake (23 +/- 10 mg.kg(-1).d(-1) vs 20 +/- 11 mg.kg(-1).d(-1) (mean +/- SD). The football players showed 8% greater total lean mass (P < 0.001), 13% greater whole-body BMC (P < 0.001), and 5 units lower percentage body fat (P < 0.001) than control subjects. Lumbar spine (L2-L4) BMC and BMD were 13% and 10% higher, respectively, in the football players than in the control subjects (P < 0.05). Furthermore, football players displayed higher femoral neck BMC (24%, 18%, 23%, and 24% for the femoral neck, intertrochanteric, greater trochanter, and Ward's triangle subregions, respectively, P < 0.05) and BMD (21%, 19%, 21%, and 27%, respectively, P < 0.05) than controls. BMC in the whole leg was 16-17% greater in the football players, mainly because of enhanced BMD (9-10%) but also because of bone hypertrophy, since the area occupied by the osseous pixels was 7% higher (867 +/- 63 cm2 vs 814 +/- 26 cm2, P < 0.05). Leg muscle mass was 11% higher in the football players than in the control subjects (20,635 +/- 2,073 g vs 18,331 +/- 2,301 g, P < 0.001). No differences were found between the legs in either groups for BMC, BMD, and muscle mass. Left leg muscle mass was correlated with femoral neck BMC and BMD (P < 0.001), as well as with lumbar spine (L2-L4) BMC and BMD (P < 0.001). Long-term football participation, starting at prepubertal age, is associated with markedly increased BMC and BMD at the femoral neck and lumbar spine regions.

  18. Not letting the left leg know what the right leg is doing: limb-specific locomotor adaptation to sensory-cue conflict.

    PubMed

    Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong

    2003-11-01

    We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.

  19. Quantifying Leg Movement Activity During Sleep.

    PubMed

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Loading and performance of the support leg in kicking.

    PubMed

    Ball, Kevin

    2013-09-01

    The punt kick is important in many football codes and support leg kinematics and ground reaction forces have been implicated in injury and performance in kicking. To evaluate ground reaction forces and support leg kinematics in the punt kick. Cross sectional study. Seven elite Australian football players performed maximal kicks into a net using both the preferred and non-preferred legs. A force plate measured ground reaction forces and an optical motion capture system (200Hz) collected kinematic data during the stance phase of the kick. Preferred and non-preferred legs were compared and performance was evaluated by correlating parameters with foot speed at ball contact. Vertical forces were larger than running at a similar speed but did not reach levels that might be considered an injury risk. Braking forces were directed solely posteriorly, as for soccer kicks, but lateral force patterns varied with some players experiencing greater forces medially and others laterally. A more extended support leg, larger peak vertical and braking force during the stance phase and a shorter stance contact time was associated with larger kick leg foot speed at ball contact. No difference existed between the preferred and non-preferred legs for ground reaction forces or support leg mechanics. To punt kick longer, a straighter support leg, less time on the ground and stronger braking should be encouraged. Conditioning the support leg to provide stronger braking potential is recommended. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  2. Towards a Comparative Measure of Legged Agility

    DTIC Science & Technology

    2014-06-01

    body movement with change of velocity or direction in response to a stimulus” [18]. Notwithstanding the many informative and inspiring studies of legged...specific power (watts per kilogram taken over a gait cycle of leg power output relative to leg muscle mass or body mass) [22, 26–28] but it is not scale...closest to the body mass normalized mea- sure we will introduce below. In contrast, characterizing directional aspects of agility performance seems

  3. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    PubMed

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P < 0.001) and was followed by weight regain in a subgroup of 24 subjects (+6.3 ± 2.9 kg; P < 0.001). With weight loss, bone marrow and extra-osseous adipose tissue decreased whereas BMD increased at the total body, lumbar spine, and the legs (women only) but decreased at the pelvis (men only, all P < 0.05). The decrease in BMD(pelvis) correlated with the loss in visceral adipose tissue (VAT) (P < 0.05). Increases in BMD(legs) were reversed after weight regain and inversely correlated with BMD(legs) decreases. No other associations between changes in BMD and intra- or extra-osseous soft tissue composition were found. In conclusion, changes in extra-osseous soft tissue composition had a minor contribution to changes in BMD with weight loss and decreases in bone marrow adipose tissue (BMAT) were not related to changes in BMD.

  4. Motion of the center of mass in children with spastic hemiplegia: balance, energy transfer, and work performed by the affected leg vs. the unaffected leg.

    PubMed

    Feng, Jing; Pierce, Rosemary; Do, K Patrick; Aiona, Michael

    2014-01-01

    Asymmetry between limbs in people with spastic hemiplegic cerebral palsy (HEMI) adversely affects limb coordination and energy generation and consumption. This study compared how the affected leg and the unaffected leg of children with HEMI would differ based on which leg trails. Full-body gait analysis data and force-plate data were analyzed for 31 children (11.9 ± 3.8 years) with HEMI and 23 children (11.1 ± 3.1 years) with typical development (TD). Results showed that peak posterior center of mass-center of pressure (COM-COP) inclination angles of HEMI were smaller than TD when the affected leg trailed but not when the unaffected leg trailed. HEMI showed greater peak medial COM-COP inclination angles and wider step width than TD, no matter which leg trailed. More importantly, when the affected leg of HEMI trailed, it did not perform enough positive work during double support to propel COM motion. Consequently, the unaffected leg had to perform additional positive work during the early portion of single support, which costs more energy. When the unaffected leg trailed, the affected leg performed more negative work during double support; therefore, more positive work was still needed during early single support, but energy efficiency was closer to that of TD. Energy recovery factor was lower when the affected leg trailed than when the unaffected leg trailed; both were lower than TD. These findings suggest that the trailing leg plays a significant role in propelling COM motion during double support, and the 'unaffected' side of HEMI may not be completely unaffected. It is important to strengthen both legs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Chronic Lower Leg Pain in Athletes

    PubMed Central

    Brewer, Rachel Biber; Gregory, Andrew J. M.

    2012-01-01

    Context: Chronic lower leg pain in athletes can be a frustrating problem for patients and a difficult diagnosis for clinicians. Myriad approaches have been suggested to evaluate these conditions. With the continued evolution of diagnostic studies, evidence-based guidance for a standard approach is unfortunately sparse. Evidence Acquisition: PubMed was searched from January 1980 to May 2011 to identify publications regarding chronic lower leg pain in athletes (excluding conditions related to the foot), including differential diagnosis, clinical presentation, physical examination, history, diagnostic workup, and treatment. Results: Leg pain in athletes can be caused by many conditions, with the most frequent being medial tibial stress syndrome; chronic exertional compartment syndrome, stress fracture, nerve entrapment, and popliteal artery entrapment syndrome are also considerations. Conservative management is the mainstay of care for the majority of causes of chronic lower leg pain; however, surgical intervention may be necessary. Conclusion: Chronic lower extremity pain in athletes includes a wide differential and can pose diagnostic dilemmas for clinicians. PMID:23016078

  6. Clinical effects of leg length discrepancy through ground and joint reaction force responses: A review

    NASA Astrophysics Data System (ADS)

    Zabri, S. W. K. Ali; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Daud, R.

    2017-09-01

    Leg length discrepancy (LLD) is caused either due to functional disorder or shortening of bone structure. This disorder could contribute to the significant effects on body weight distribution and lumbar scoliosis at the certain extend. Ground reaction force and joint reaction force are the parameters that can be used to analyze the responses in weight distribution and kinetics changes on the body joints, respectively. Hence, the purpose of this paper is to review the studies that focus on the clinical effects of LLD to the lower limb and spine through ground and joint reaction force responses that could lead to the orthopedics disorder.

  7. Human hopping on damped surfaces: strategies for adjusting leg mechanics.

    PubMed

    Moritz, Chet T; Farley, Claire T

    2003-08-22

    Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.

  8. The Relationship Between Lower Limb Bone and Muscle in Military Recruits, Response to Physical Training, and Influence of Smoking Status

    PubMed Central

    Puthucheary, Zudin; Kordi, Mehdi; Rawal, Jai; Eleftheriou, Kyriacos I.; Payne, John; Montgomery, Hugh E.

    2015-01-01

    The relationship between bone and skeletal muscle mass may be affected by physical training. No studies have prospectively examined the bone and skeletal muscle responses to a short controlled exercise-training programme. We hypothesised that a short exercise-training period would affect muscle and bone mass together. Methods: Femoral bone and Rectus femoris Volumes (RFVOL) were determined by magnetic resonance imaging in 215 healthy army recruits, and bone mineral density (BMD) by Dual X-Ray Absorptiometry (DXA) and repeated after 12 weeks of regulated physical training. Results: Pre-training, RFVOL was smaller in smokers than non-smokers (100.9 ± 20.2 vs. 108.7 ± 24.5, p = 0.018; 96.2 ± 16.9 vs. 104.8 ± 21.3, p = 0.002 for dominant/non-dominant limbs), although increases in RFVOL with training (of 14.2 ± 14.5% and 13.2 ± 15.6%] respectively, p < 0.001) were independent of prior smoking status. Pre-training RFVOL was related to bone cortical volume (r2 = 0.21 and 0.30, p < 0.001 for dominant and non-dominant legs), and specifically to periosteal (r2 = 0.21 and 0.23, p < 0.001) volume. Pre-training dominant RFVOL was independently associated with Total Hip BMD (p < 0.001). Training-related increases in RFVOL and bone volumes were related. Whilst smokers demonstrated lower muscle mass than non-smokers, differences were abolished with training. Training-related increases in muscle mass were related to increases in periosteal bone volume in both dominant and non-dominant legs. PMID:25792356

  9. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  10. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  11. ODYSSEUS autonomous walking robot: The leg/arm design

    NASA Technical Reports Server (NTRS)

    Bourbakis, N. G.; Maas, M.; Tascillo, A.; Vandewinckel, C.

    1994-01-01

    ODYSSEUS is an autonomous walking robot, which makes use of three wheels and three legs for its movement in the free navigation space. More specifically, it makes use of its autonomous wheels to move around in an environment where the surface is smooth and not uneven. However, in the case that there are small height obstacles, stairs, or small height unevenness in the navigation environment, the robot makes use of both wheels and legs to travel efficiently. In this paper we present the detailed hardware design and the simulated behavior of the extended leg/arm part of the robot, since it plays a very significant role in the robot actions (movements, selection of objects, etc.). In particular, the leg/arm consists of three major parts: The first part is a pipe attached to the robot base with a flexible 3-D joint. This pipe has a rotated bar as an extended part, which terminates in a 3-D flexible joint. The second part of the leg/arm is also a pipe similar to the first. The extended bar of the second part ends at a 2-D joint. The last part of the leg/arm is a clip-hand. It is used for selecting several small weight and size objects, and when it is in a 'closed' mode, it is used as a supporting part of the robot leg. The entire leg/arm part is controlled and synchronized by a microcontroller (68CH11) attached to the robot base.

  12. Human hopping on damped surfaces: strategies for adjusting leg mechanics.

    PubMed Central

    Moritz, Chet T; Farley, Claire T

    2003-01-01

    Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain. PMID:12965003

  13. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF).

    PubMed

    Joeris, Alexander; Lutz, Nicolas; Blumenthal, Andrea; Slongo, Theddy; Audigé, Laurent

    2017-04-01

    Background and purpose - To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the lower extremities of a representative population of children classified according to the PCCF. Patients and methods - We included patients up to the age of 17 who were diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at either of 2 tertiary care university hospitals in Switzerland. Patient charts were retrospectively reviewed. Results - More lower extremity fractures occurred in boys (62%, n = 341). Of 548 fractured long bones in the lower extremity, 25% involved the femur and 75% the lower leg. The older the patients, the more combined fractures of the tibia and fibula were sustained (adolescents: 50%, 61 of 123). Salter-Harris (SH) fracture patterns represented 66% of single epiphyseal fractures (83 of 126). Overall, 74 of the 83 SH patterns occurred in the distal epiphysis. Of all the metaphyseal fractures, 74 of 79 were classified as incomplete or complete. Complete oblique spiral fractures accounted for 57% of diaphyseal fractures (120 of 211). Of all fractures, 7% (40 of 548) were classified in the category "other", including 29 fractures that were identified as toddler's fractures. 5 combined lower leg fractures were reported in the proximal metaphysis, 40 in the diaphysis, 26 in the distal metaphysis, and 8 in the distal epiphysis. Interpretation - The PCCF allows classification of lower extremity fracture patterns in the clinical setting. Re-introduction of a specific code for toddler's fractures in the PCCF should be considered.

  14. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF)

    PubMed Central

    Joeris, Alexander; Lutz, Nicolas; Blumenthal, Andrea; Slongo, Theddy; Audigé, Laurent

    2017-01-01

    Background and purpose To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the lower extremities of a representative population of children classified according to the PCCF. Patients and methods We included patients up to the age of 17 who were diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at either of 2 tertiary care university hospitals in Switzerland. Patient charts were retrospectively reviewed. Results More lower extremity fractures occurred in boys (62%, n = 341). Of 548 fractured long bones in the lower extremity, 25% involved the femur and 75% the lower leg. The older the patients, the more combined fractures of the tibia and fibula were sustained (adolescents: 50%, 61 of 123). Salter-Harris (SH) fracture patterns represented 66% of single epiphyseal fractures (83 of 126). Overall, 74 of the 83 SH patterns occurred in the distal epiphysis. Of all the metaphyseal fractures, 74 of 79 were classified as incomplete or complete. Complete oblique spiral fractures accounted for 57% of diaphyseal fractures (120 of 211). Of all fractures, 7% (40 of 548) were classified in the category "other", including 29 fractures that were identified as toddler’s fractures. 5 combined lower leg fractures were reported in the proximal metaphysis, 40 in the diaphysis, 26 in the distal metaphysis, and 8 in the distal epiphysis. Interpretation The PCCF allows classification of lower extremity fracture patterns in the clinical setting. Re-introduction of a specific code for toddler’s fractures in the PCCF should be considered. PMID:27882811

  15. Night Leg Cramps

    MedlinePlus

    ... feet or thighs might cramp as well. Forcefully stretching the contracted muscle relieves the pain. Most of ... include Drinking plenty of fluids to avoid dehydration Stretching your leg muscles or riding a stationary bicycle ...

  16. Leg MRI scan

    MedlinePlus

    ... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...

  17. A load-based mechanism for inter-leg coordination in insects

    PubMed Central

    2017-01-01

    Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals. PMID:29187626

  18. Frustrated S = 1/2 Two-Leg Ladder with Different Leg Interactions

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Okamoto, Kiyomi; Hikihara, Toshiya; Sakai, Tôru

    2017-04-01

    We explore the ground-state phase diagram of the S = 1/2 two-leg ladder. The isotropic leg interactions J1,a and J1,b between nearest neighbor spins in the legs a and b, respectively, are different from each other. The xy and z components of the uniform rung interactions are denoted by Jr and ΔJr, respectively, where Δ is the XXZ anisotropy parameter. This system has a frustration when J1,aJ1,b < 0 irrespective of the sign of Jr. The phase diagrams on the Δ (0≤Δ<1) versus J1,b plane in the cases of J1,a = - 0.2 and J1,a = 0.2 with Jr = -1 are determined numerically. We employ the physical consideration, the level spectroscopy analysis of the results obtained by the exact diagonalization method and also the density-matrix renormalization-group method. It is found that the non-collinear ferrimagnetic (NCFR) state appears as the ground state in the frustrated region of the parameters. Furthermore, the direct-product triplet-dimer (TD) state in which all rungs form the TD pair is the exact ground state, when J1,a + J1,b = 0 and 0≤ Δ ≲ 0.83. The obtained phase diagrams consist of the TD, XY and Haldane phases as well as the NCFR phase.

  19. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures.

    PubMed

    Vega, E; Ghiringhelli, G; Mautalen, C; Rey Valzacchi, G; Scaglia, H; Zylberstein, C

    1998-05-01

    The bone mineral density (BMD) at the lumbar spine, proximal femur, and total skeleton was evaluated in 38 men with primary osteoporosis and vertebral fractures. BMD of the patients was significantly reduced over all skeletal areas compared with controls. The Z-score of the lumbar spine (-2.8 +/- 0.9) was less than that of the other areas (P < 0.001) except the legs (-2.5 +/- 1.1) (p.n.s.) showing that bone loss had a tendency to be greater over the axial skeleton. Vertebral dimensions compared with age-matched controls were as follows: projected L2-L4 area (cm 2): 45.7 +/- 5.6 versus 53.7 +/- 3. 6 (P < 0.001); vertebral width (cm): 4.37 +/- 0.44 versus 4.90 +/- 0. 36 (P < 0.001). Serum biochemical parameters and testosterone levels were similar between osteoporotic and control men. We conclude that men with vertebral osteoporotic fractures have reduced vertebral BMD and vertebral dimensions compared with age-matched controls. Thus, these findings indicate that the achievement of a reduced bone size at the end of the growth period or a failure of periosteal increase during adult life is likely to contribute to the pathogenesis of the vertebral fractures observed in older men.

  20. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.

    PubMed

    Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline; Donnelly, Cyril

    2018-06-14

    Unplanned sidestepping and single-leg landing have both been used to screen athletes for injury risk in sport. The aim of this study was to directly compare the lower limb mechanics of three single-leg landing tasks and an unplanned sidestepping task. Thirteen elite female team sport athletes completed a series of non-contact single-leg drop landings, single-leg countermovement jumps, single-leg jump landings and unplanned sidestepping in a randomized counterbalanced design. Three dimensional kinematics (250 Hz) and ground reaction force (2,000 Hz) data with a participant specific lower limb skeletal model were used to calculate and compare hip, knee and ankle joint kinematics, peak joint moments, instantaneous joint power and joint work during the weight acceptance phase of each sporting task (α=0.05). Peak knee joint moments and relevant injury risk thresholds were used to classify each athlete's anterior cruciate ligament injury risk during unplanned sidestepping and single-leg jump landing. Results showed that peak joint moments, power and work were greater during the single-leg jump landing task when compared to the single-leg drop landings and single-leg countermovement jumps tasks. Peak frontal and sagittal plane knee joint moments, knee joint power, as well as hip and knee joint work were greater during unplanned sidestepping when compared to the landing tasks. Peak ankle joint moments, power and work were greater during the landing tasks when compared to unplanned sidestepping. For 4 of the 13 athletes tested, their anterior cruciate ligament injury risk classification changed depending on whether they performed an unplanned sidestepping or single-leg jump landing testing procedure. To summarize, a single-leg jump landing testing procedure places a larger mechanical on the ankle joint when compared to single-leg drop landings, single-leg countermovement jumps and unplanned sidestepping. An unplanned sidestepping testing procedure places a larger

  1. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults.

    PubMed

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2014-01-01

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. INDIRECT EFFECT OF X-RADIATION ON BONE GROWTH IN RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conard, R.A.

    1962-12-21

    Effects of 200 to 600 r of x irradiation on tibial bone growth in groups of weanling male rats were studied by in vivo measurement of tibial bone growth in serial radiographs. By comparison of growth rates in shielded with unshielded legs, direct and indirect effects of radiation were demonstrated, both roughly dose dependent, but with the indirect effect being about twice that of the direct effect. Pair-feeding experiments showed that about 70% of the indirect effect was due to radiation-induced lowered food consumption. By partial-body shielding experiments, using pnir-fed controls, it was shown that the abdomen may be themore » site of a non-nutritional abscopal effect. (auth)« less

  3. Microgravity, Mesh-Crawling Legged Robots

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Marzwell, Neville; Matthews, Jaret; Richardson, Krandalyn; Wall, Jonathan; Poole, Michael; Foor, David; Rodgers, Damian

    2008-01-01

    The design, fabrication, and microgravity flight-testing are part of a continuing development of palm-sized mobile robots that resemble spiders (except that they have six legs apiece, whereas a spider has eight legs). Denoted SpiderBots (see figure), they are prototypes of proposed product line of relatively inexpensive walking robots that could be deployed in large numbers to function cooperatively in construction, repair, exploration, search, and rescue activities in connection with exploration of outer space and remote planets.

  4. Maintenance of exercise-induced benefits in physical functioning and bone among elderly women.

    PubMed

    Karinkanta, S; Heinonen, A; Sievänen, H; Uusi-Rasi, K; Fogelholm, M; Kannus, P

    2009-04-01

    This study showed that about a half of the exercise-induced gain in dynamic balance and bone strength was maintained one year after cessation of the supervised high-intensity training of home-dwelling elderly women. However, to maintain exercise-induced gains in lower limb muscle force and physical functioning, continued training seems necessary. Maintenance of exercise-induced benefits in physical functioning and bone structure was assessed one year after cessation of 12-month randomized controlled exercise intervention. Originally 149 healthy women 70-78 years of age participated in the 12-month exercise RCT and 120 (81%) of them completed the follow-up study. Self-rated physical functioning, dynamic balance, leg extensor force, and bone structure were assessed. During the intervention, exercise increased dynamic balance by 7% in the combination resistance and balance-jumping training group (COMB). At the follow-up, a 4% (95% CI: 1-8%) gain compared with the controls was still seen, while the exercise-induced isometric leg extension force and self-rated physical functioning benefits had disappeared. During the intervention, at least twice a week trained COMB subjects obtained a significant 2% benefit in tibial shaft bone strength index compared to the controls. A half of this benefit seemed to be maintained at the follow-up. Exercise-induced benefits in dynamic balance and rigidity in the tibial shaft may partly be maintained one year after cessation of a supervised 12-month multi-component training in initially healthy elderly women. However, to maintain the achieved gains in muscle force and physical functioning, continued training seems necessary.

  5. Promethus Hot Leg Piping Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactormore » (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.« less

  6. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  7. Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness.

    PubMed

    Müller, Roy; Andrada, Emanuel

    2018-01-01

    It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.

  8. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture.

    PubMed

    Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A

    2015-10-01

    Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.

  9. Managing leg ulceration in intravenous drug users.

    PubMed

    Geraghty, Jemell

    2015-09-01

    Chronic venous leg ulceration is a long-term condition commonly associated with lower-limb injecting and chronic venous hypertension caused by collapsed veins, incompetent valves, deep vein thrombosis and reflux. It is not usually a medical emergency, but intravenous (IV) drug users with leg ulcers can attend emergency departments (EDs) with a different primary complaint such as pain or because they cannot access local primary care or voluntary services. Leg ulceration might then be identified during history taking, so it is important that ED nurses know how to assess and manage these wounds. This article explains how to assess and manage chronic venous leg ulcers in patients with a history of IV drug use, and highlights the importance of referral to specialist services when required, and to local primary care or voluntary services, before discharge to prevent admission and re-attendance.

  10. Decreased Hip, Lower Leg, and Humeral Fractures but Increased Forearm Fractures in Highly Active Individuals.

    PubMed

    Stattin, Karl; Hållmarker, Ulf; Ärnlöv, Johan; James, Stefan; Michaëlsson, Karl; Byberg, Liisa

    2018-06-22

    It is not known how physical exercise affects the risk of different types of fractures, especially in highly active individuals. To investigate this association, we studied a cohort of 118,204 men and 71,757 women who from 1991 to 2009 participated in Vasaloppet, a long-distance cross-country skiing race in Sweden, and 505,194 nonparticipants frequency-matched on sex, age, and county of residence from the Swedish population. Participants ranged from recreational exercisers to world-class skiers. Race participation, distance of race run, number of races participated in, and finishing time were used as proxies for physical exercise. Incident fractures from 1991 to 2010 were obtained from national Swedish registers. Over a median follow-up of 8.9 years, 53,175 fractures of any type, 2929 hip, 3107 proximal humerus, 11,875 lower leg, 11,733 forearm, and 2391 vertebral fractures occurred. In a Cox proportional hazard regression analysis using time-updated exposure and covariate information, participation in the race was associated with an increased risk of any type of fracture (hazard ratio [HR], 1.02; 95% CI, 1.00 to 1.05); forearm fractures had an HR, 1.11 with a 95% CI, 1.06 to 1.15. There was a lower risk of hip (HR, 0.75; 95% CI, 0.67 to 0.83), proximal humerus (HR, 0.90; 95% CI, 0.82 to 0.98), and lower leg fractures (HR, 0.93; 95% CI, 0.89 to 0.97), whereas the HR of vertebral fracture was 0.97 with a 95% CI, 0.88 to 1.07. Among participants, the risk of fracture was similar irrespective of race distance and number of races run. Participants close to the median finishing time had a lower risk of fracture compared with faster and slower participants. In summary, high levels of physical exercise were associated with a slightly higher risk of fractures of any type, including forearm fractures, but a lower risk of hip, proximal humerus, and lower leg fractures. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral

  11. [Phytoestrogens role in bone functional structure protection in the ovariectomized rat].

    PubMed

    Mihalache, Gr; Mihalache, Gr D; Indrei, L L; Indrei, Anca; Hegsted, Maren

    2002-01-01

    Effects of soy protein diet on bone formation and density were evaluated in ovariectomized rats as a model for postmenopausal women. Twenty-seven 9-month-old rats were assigned to 3 treatment groups for the 9-week study: sham-surgery (Sh, n = 9); ovariectomy (Ovx, n = 9); ovariectomy + soy diet (OvxS, n = 9). Rats had free access to an AIN-93 M diet or AIN-93 M diet with 7% soy protein concentration and water. At sacrifice, rear legs were removed, and the right femur and tibia were cleaned manually. Serum alkaline phosphatase, a marker of bone formation, was measured colorimetrically. Bone density was measured using Archimedes' Principle. Alkaline phosphatase activity was greater in OvxS (114 +/- 19 U/L) and Ovx (128 +/- 26 U/L) compared to Sh (110 +/- 22 U/L). Femur bone density was greater for OvxS (1.520 +/- 0.02 g/cc) compared to Ovx (1.510 +/- 0.017 g/cc), but not to Sh (1532 +/- 0.025 g/cc). Tibia bone density was greater for OvxS (1.560 +/- 0.019 g/cc) compared to Ovx (1.553 +/- 0.015 g/cc), but not to Sh (1566 +/- 0.03 g/cc). In conclusion soy protein diet increased the rate of bone formation and bone density in some bones, suggesting that may help prevent bone loss in postmenopausal women.

  12. Lower Limb Symmetry: Comparison of Muscular Power Between Dominant and Nondominant Legs in Healthy Young Adults Associated With Single-Leg-Dominant Sports.

    PubMed

    Vaisman, Alex; Guiloff, Rodrigo; Rojas, Juan; Delgado, Iris; Figueroa, David; Calvo, Rafael

    2017-12-01

    Achieving a symmetrical power performance (difference <15%) between lower limbs is generally recommended during sports rehabilitation. However, athletes in single-leg-dominant sports, such as professional soccer players, could develop significant asymmetry between their dominant and nondominant legs, such that symmetry does not act as a viable comparison. To (1) compare maximal muscular power between the dominant and nondominant legs in healthy young adults, (2) evaluate the effect of a single-leg-dominant sport activity performed at the professional level, and (3) propose a parameter of normality for maximal power difference in the lower limbs of this young adult population. Controlled laboratory study. A total of 78 healthy, male, young adults were divided into 2 groups according to sport activity level. Group 1 consisted of 51 nonathletes (mean ± SD age, 20.8 ± 1.5 years; weight, 71.9 ± 10.5 kg) who participated in less than 8 hours a week of recreational physical activity with nonspecific training; group 2 consisted of 27 single-leg-dominant professional soccer players (age, 18.4 ± 0.6 years; weight, 70.1 ± 7.5 kg) who specifically trained and competed at their particular activity 8 hours or more a week. For assessment of maximal leg power, both groups completed the single-leg squat jump test. Dominance was determined when participants completed 2 of 3 specific tests with the same extremity. Statistical analysis included the Student t test. No statistical difference was found for maximal power between dominant and nondominant legs for nonathletes ( t = -1.01, P = .316) or single-leg-dominant professional soccer players ( t = -1.10, P = .281). A majority (95%) of participants studied showed a power difference of less than 15% between their lower extremities. Among young healthy adults, symmetrical power performance is expected between lower extremities independent of the existence of dominance and difference in sport activity level. A less than 15

  13. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].

    PubMed

    Selionov, V A; Solopova, I A; Zhvansky, D S

    2016-01-01

    We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries

  14. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    PubMed

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  15. Leg pairs as virtual wheels

    NASA Astrophysics Data System (ADS)

    Howe, Russel; Duttweiler, Mark; Khanlian, Luke; Setrakian, Mark

    2005-05-01

    We propose the use of virtual wheels as the starting point of a new vehicle design. Each virtual wheel incorporates a pair of simple legs that, by simulating the rotary motion and ground contact of a traditional wheel, combine many of the benefits of legged and wheeled motion. We describe the use of virtual wheels in the design of a robotic mule, presenting an analysis of the mule's mobility the results of our efforts to model and build such a device.

  16. Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.

    PubMed

    Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias

    2017-10-01

    Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.

  17. ORTHOPEDIC LEG BRACE

    NASA Technical Reports Server (NTRS)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  18. Injury due to leg bands in willow flycatchers

    USGS Publications Warehouse

    Sedgwick, J.A.; Klus, R.J.

    1997-01-01

    We report an apparently unusually high incidence of leg injury in Willow Flycatchers (Empidonax traillii) as a result of banding and color banding. Color bands and U.S. Fish and Wildlife Service (USFWS) bands applied to Willow Flycatchers from 1988-1995 resulted in an overall leg injury rate of 9.6% to birds returning to our study areas in subsequent years. Most injuries occurred on legs with only color band(s) (58.3%) or on legs with both a USFWS band and a color band (35%); only 6.7% of injuries (4/60) were due to USFWS bands alone, yielding an overall USFWS band injury rate of only 0.6%. Injuries ranged from severe (swollen, bleeding legs; a missing foot) to relatively minor (irritations on the tarsus). Amputation of the foot occurred in 33.9% of the cases. Return rates of adult injured birds in the year(s) following injury were significantly lower than for the population at large.

  19. The effect of leg preference on postural stability in healthy athletes.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H

    2014-01-03

    In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.

  20. Identification tibia and fibula bone fracture location using scanline algorithm

    NASA Astrophysics Data System (ADS)

    Muchtar, M. A.; Simanjuntak, S. E.; Rahmat, R. F.; Mawengkang, H.; Zarlis, M.; Sitompul, O. S.; Winanto, I. D.; Andayani, U.; Syahputra, M. F.; Siregar, I.; Nasution, T. H.

    2018-03-01

    Fracture is a condition that there is a damage in the continuity of the bone, usually caused by stress, trauma or weak bones. The tibia and fibula are two separated-long bones in the lower leg, closely linked at the knee and ankle. Tibia/fibula fracture often happen when there is too much force applied to the bone that it can withstand. One of the way to identify the location of tibia/fibula fracture is to read X-ray image manually. Visual examination requires more time and allows for errors in identification due to the noise in image. In addition, reading X-ray needs highlighting background to make the objects in X-ray image appear more clearly. Therefore, a method is required to help radiologist to identify the location of tibia/fibula fracture. We propose some image-processing techniques for processing cruris image and Scan line algorithm for the identification of fracture location. The result shows that our proposed method is able to identify it and reach up to 87.5% of accuracy.

  1. Integrated system for single leg walking

    NASA Astrophysics Data System (ADS)

    Simmons, Reid; Krotkov, Eric; Roston, Gerry

    1990-07-01

    The Carnegie Mellon University Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. This report describes an integrated software system capable of navigating a single leg of the robot over rugged terrain. The leg, based on an early design of the Ambler Planetary Rover, is suspended below a carriage that slides along rails. To walk, the system creates an elevation map of the terrain from laser scanner images, plans an appropriate foothold based on terrain and geometric constraints, weaves the leg through the terrain to position it above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced obstacles, and sand hills. The implemented system consists of a number of task-specific processes (two for planning, two for perception, one for real-time control) and a central control process that directs the flow of communication between processes.

  2. Agreement and correlation between the straight leg raise and slump tests in subjects with leg pain.

    PubMed

    Walsh, Jeremy; Hall, Toby

    2009-01-01

    The straight leg raise (SLR) and slump tests have traditionally been used to identify nerve root compression arising from disk herniation. However, they may be more appropriate as tests of lumbosacral neural tissue mechanosensitivity. The aim of this study was to determine agreement and correlation between the SLR and slump tests in a population presenting with back and leg pain. This was an observational, cross-sectional study design. Forty-five subjects with unilateral leg pain were recruited from an outpatient Back Pain Screening Clinic at a large teaching hospital in Ireland. The SLR and slump tests were performed on each side. In the event of symptom reproduction, the ankle was dorsiflexed. Reproduction of presenting symptoms, which were intensified by ankle dorsiflexion, was interpreted as a positive test. An inclinometer was used to measure range of motion (ROM). There was substantial agreement between SLR and slump test interpretation (kappa = 0.69) with good correlation in ROM between the 2 tests (r = 0.64) on the symptomatic side. In subjects who had positive results, ROM for both tests was significantly reduced compared to ROM on the contralateral side and ROM in subjects who had negative results. When the SLR and slump tests are interpreted as positive in the event of reproduction of presenting leg pain that are intensified by ankle dorsiflexion, these tests show substantial agreement and good correlation in the leg pain population. When interpreted in this way, these tests may be appropriate tests of neural tissue mechanosensitivity, but further criteria must be met before a definitive conclusion in relation to neural tissue mechanosensitivity may be drawn.

  3. Compliant leg behaviour explains basic dynamics of walking and running

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2006-01-01

    The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312

  4. p53 Regulates Bone Differentiation and Osteosarcoma Formation | Center for Cancer Research

    Cancer.gov

    Osteosarcoma is an uncommon cancer that usually begins in the large bones of the arm or leg, but is the second leading cause of cancer-related death in children and young adults. The tumor suppressor protein, p53, appears to be an important player in osteosarcomagenesis in part because these cancers are one of the most common to develop in patients with Li-Fraumeni syndrome,

  5. Atrophic femoral nonunion with bone loss: treatment with monorail transport: a case report.

    PubMed

    Gay, David M; Voss, Frank R

    2004-08-01

    Nonunions are an uncommon outcome of femoral fractures. Atrophic nonunions with a leg length discrepancy secondary to bone loss are often the most difficult to treat, and the treatment options are limited. We present a case that uses concomitant monolateral external fixation and intramedullary nailing to heal a nonunion and perform a simultaneous 7-cm lengthening procedure in a 33-year-old female.

  6. [Bone sequestration in alpacas in Germany - A practice report with 12 cases].

    PubMed

    Kobera, Ralph; Wagner, Henrik

    2018-04-01

    Bone sequestration is relatively unknown in New-world camelids in Germany and is frequently wrongly addressed as neoplasia by veterinary practitioners. This clinical case report describes diagnosis and treatment for bone sequestration in alpacas based on 12 cases. The main symptom of the presented alpacas was moderate to severe lameness in one limb. Some of the patients had been treated with nonsteroidal anti-inflammatory drugs by the referring veterinarian. In eight alpacas, palpation of the swelling in the affected leg was painful and in five animals, exudation was observed. Radiographic imaging led to a correct diagnosis in all of the cases. Following surgical removal of the bone sequestrum, the lameness was already noticeably improved by the third postoperative day. In all patients, healing was achieved without any complications. These results show that bone sequestration in alpacas can be treated successfully by timely surgery. This is the first case report on this topic in alpacas in Germany. Schattauer GmbH.

  7. Swimming with stiff legs at low Reynolds number.

    PubMed

    Takagi, Daisuke

    2015-08-01

    Locomotion at low Reynolds number is not possible with cycles of reciprocal motion, an example being the oscillation of a single pair of rigid paddles or legs. Here, I demonstrate the possibility of swimming with two or more pairs of legs. They are assumed to oscillate collectively in a metachronal wave pattern in a minimal model based on slender-body theory for Stokes flow. The model predicts locomotion in the direction of the traveling wave, as commonly observed along the body of free-swimming crustaceans. The displacement of the body and the swimming efficiency depend on the number of legs, the amplitude, and the phase of oscillations. This study shows that paddling legs with distinct orientations and phases offers a simple mechanism for driving flow.

  8. Dimensional synthesis of a leg mechanism

    NASA Astrophysics Data System (ADS)

    Pop, F.; Lovasz, E.-Ch; Pop, C.; Dolga, V.

    2016-08-01

    An eight bar leg mechanism dimensional synthesis is presented. The mathematical model regarding the synthesis is described and the results obtained after computation are verified with help of 2D mechanism simulation in Matlab. This mechanism, inspired from proposed solution of Theo Jansen, is integrated into the structure of a 2 DOF quadruped robot. With help of the kinematic synthesis method described, it is tried to determine new dimensions for the mechanism, based on a set of initial conditions. These are established by taking into account the movement of the end point of the leg mechanism, which enters in contact with the ground, during walking. An optimization process based on the results obtained can be conducted further in order to find a better solution for the leg mechanism.

  9. Muscle changes can account for bone loss after botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-12-01

    Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P < 0.05). BTX-TEN experienced the greatest muscle loss (23-45% lower than other groups) and bone loss (20-30% lower bone volume fraction than other groups). BTX-sham had significantly lower MCSA and bone volume fraction than TEN and sham. After adjusting for differences in MCSA, there were no significant between-group differences in bone properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.

  10. Coordination of planar cell polarity pathways through Spiny-legs

    PubMed Central

    Ambegaonkar, Abhijit A; Irvine, Kenneth D

    2015-01-01

    Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI: http://dx.doi.org/10.7554/eLife.09946.001 PMID:26505959

  11. Comparing immunocompetent and immunodeficient mice as animal models for bone tissue engineering.

    PubMed

    Zhang, Y; Li, X; Chihara, T; Mizoguchi, T; Hori, A; Udagawa, N; Nakamura, H; Hasegawa, H; Taguchi, A; Shinohara, A; Kagami, H

    2015-07-01

    To understand the differences and similarities between immunocompetent and immunodeficient mice as ectopic transplantation animal models for bone tissue engineering. Osteogenic cells from mouse leg bones were cultured, seeded on β-TCP granules, and transplanted onto the backs of either immunocompetent or immunodeficient nude mice. At 1, 2, 4, and 8 weeks postoperatively, samples were harvested and evaluated by hematoxylin-eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemical staining and quantitative PCR. In immunocompetent mice, inflammatory cell infiltration was evident at 1 week postoperatively and relatively higher expression of TNF-α and IL-4 was observed. In immunodeficient mice, new bone area and the number of TRAP-positive cells were larger at 4 weeks than in immunocompetent mice. The volume of new bone area in immunodeficient mice was reduced by 8 weeks. Bone regeneration was feasible in immunocompetent mice. However, some differences were observed between immunocompetent and immunodeficient mice in the bone regeneration process possibly due to different cytokine expression, which should be considered when utilizing in vivo animal models. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot

  13. Essential and toxic metals in animal bone broths

    PubMed Central

    Hsu, Der-jen; Lee, Chia-wei; Tsai, Wei-choung; Chien, Yeh-chung

    2017-01-01

    ABSTRACT Background: This investigation examines the extraction of metals from animal bones into broth, and assesses whether bone broths are good sources of essential metals and the risks associated with the consumption of toxic metals. Method:Three sets of controlled experiments were performed to study the factors (cooking time, acidity, bone type and animal species) that influence metal extractions. Three types of animal bone broth-based foods were also tested. Results: Reducing the broth pH from 8.38 to 5.32 significantly (p < 0.05) increased Ca and Mg extraction by factors of 17.4 and 15.3, respectively. A long cooking time, > 8 h, yielded significantly higher (p < 0.05) Ca and Mg extraction than shorter cooking times. The extraction characteristics of metals, particularly Ca, Mg, Cu and Al, from the leg and rib bones differed. The between-species variations in extraction were larger than those of within-species. Conclusions:The Ca and Mg levels in home-made or commercial broth/soup were found not to exceed low tenths of milligram per serving, or <5% of the daily recommended levels. The risks that are associated with the ingestion of heavy metals such as Pb and Cd in broth are minimal because the levels were in the ranges of a few μg per serving. PMID:28804437

  14. Leg exoskeleton reduces the metabolic cost of human hopping.

    PubMed

    Grabowski, Alena M; Herr, Hugh M

    2009-09-01

    During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.

  15. Study on Mucin in Normal-Appearing Leg Skin.

    PubMed

    Fernandez-Flores, Angel

    2017-03-01

    Dermal deposits of mucin in the legs have been described associated with venous insufficiency. However, some degree of stasis dermatitis is generally common in aged individuals. Therefore, some amount of mucin is expected a priori in the reticular dermis of aged patients, even in the absence of clinical lesions. To test this hypothesis, the authors investigated the mucin in the legs of aged individuals without any dermatologic disease. Cutaneous samples were taken from the legs of 15 autopsy cases. A sample of the skin of the legs (either from the left or the right leg without any distinction being made) was randomly taken (without selecting any specific area or attending to macroscopical features). The skin samples were fixed in formaldehyde, and sections obtained from all samples were stained with hematoxylin and eosin, iron, and Alcian blue. Iron deposits were graded as 0/4 in 7 cases, as 1/4 in 4 cases, as 2/4 in 2 cases, and as 4/4 in 2 cases. Cases with greater deposits of iron also had other signs of stasis, such as neovascularization. All the samples scored 0 for dermal mucin deposits in the reticular dermis. The authors conclude that mucin deposits in the legs are not inherent to aging. Therefore, any mucin deposit in the reticular dermis, as well as expansion of the periadnexal dermis by mucin deposits, should be considered abnormal.

  16. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  17. Laboratory on legs: an architecture for adjustable morphology with legged robots

    NASA Astrophysics Data System (ADS)

    Haynes, G. Clark; Pusey, Jason; Knopf, Ryan; Johnson, Aaron M.; Koditschek, Daniel E.

    2012-06-01

    For mobile robots, the essential units of actuation, computation, and sensing must be designed to fit within the body of the robot. Additional capabilities will largely depend upon a given activity, and should be easily reconfigurable to maximize the diversity of applications and experiments. To address this issue, we introduce a modular architecture originally developed and tested in the design and implementation of the X-RHex hexapod that allows the robot to operate as a mobile laboratory on legs. In the present paper we will introduce the specification, design and very earliest operational data of Canid, an actively driven compliant-spined quadruped whose completely different morphology and intended dynamical operating point are nevertheless built around exactly the same "Lab on Legs" actuation, computation, and sensing infrastructure. We will review as well, more briefly a second RHex variation, the XRL platform, built using the same components.

  18. [Design and application of medical electric leg-raising machine].

    PubMed

    Liang, Jintang; Chen, Jinyuan; Zhao, Zixian; Lin, Jinfeng; Li, Juanhong; Zhong, Jingliang

    2017-08-01

    Passive leg raising is widely used in clinic, but it lacks of specialized mechanical raise equipment. It requires medical staff to raise leg by hand or requires a multi-functional bed to raise leg, which takes time and effort. Therefore we have developed a new medical electric leg-raising machine. The equipment has the following characteristics: simple structure, stable performance, easy operation, fast and effective, safe and comfortable. The height range of the lifter is 50-120 cm, the range of the angle of raising leg is 10degree angle-80degree angle, the maximum supporting weight is 40 kg. Because of raising the height of the lower limbs and making precise angle, this equipment can completely replace the traditional manner of lifting leg by hand with multi-functional bed to lift patients' leg and can reduce the physical exhaustion and time consumption of medical staff. It can change the settings at any time to meet the needs of the patient; can be applied to the testing of PLR and dynamically assessing the hemodynamics; can prevent deep vein thrombosis and some related complications of staying in bed; and the machine is easy to be cleaned and disinfected, which can effectively avoid hospital acquired infection and cross infection; and can also be applied to emergency rescue of various disasters and emergencies.

  19. Goal-directed ultrasound in the detection of long-bone fractures

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Legome, Eric; Sargsyan, Ashot; Li, Shannon Melton James; Noble, Vicki A.; Dulchavsky, Scott A.; Sims, Carrie; Robinson, David

    2004-01-01

    BACKGROUND: New portable ultrasound (US) systems are capable of detecting fractures in the remote setting. However, the accuracy of ultrasound by physicians with minimal ultrasound training is unknown. METHODS: After one hour of standardized training, physicians with minimal US experience clinically evaluated patients presenting with pain and trauma to the upper arm or leg. The investigators then performed a long-bone US evaluation, recording their impression of fracture presence or absence. Results of the examination were compared with routine plain or computer aided radiography (CT). RESULTS: 58 patients were examined. The sensitivity and specificity of US were 92.9% and 83.3%, and of the physical examination were 78.6% and 90.0%, respectively. US provided improved sensitivity with less specificity compared with physical examination in the detection of fractures in long bones. CONCLUSION: Ultrasound scans by minimally trained clinicians may be used to rule out a long-bone fracture in patients with a medium to low probability of fracture.

  20. An index for breathlessness and leg fatigue.

    PubMed

    Borg, E; Borg, G; Larsson, K; Letzter, M; Sundblad, B-M

    2010-08-01

    The features of perceived symptoms causing discontinuation of strenuous exercise have been scarcely studied. The aim was to characterize the two main symptoms causing the discontinuation of heavy work in healthy persons as well as describe the growth of symptoms during exercise. Breathlessness (b) and leg fatigue (l) were assessed using the Borg CR10 Scale and the Borg CR100 (centiMax) Scale, during a standardized exercise test in 38 healthy subjects (24-71 years). The b/l-relationships were calculated for terminal perceptions (ERI(b/l)), and the growth of symptoms determined by power functions for the whole test, as well as by growth response indexes (GRI). This latter index was constructed as a ratio between power levels corresponding to a very strong and a moderate perception. In the majority (71%) of the test subjects, leg fatigue was the dominant symptom at the conclusion of exercise (P<0.001) and the b/l ratio was 0.77 (CR10) and 0.75 (CR100), respectively. The GRI for breathlessness and leg fatigue was similar, with good correlations between GRI and the power function exponent (P<0.005). In healthy subjects, leg fatigue is the most common cause for discontinuing an incremental exercise test. The growth functions for breathlessness and leg fatigue during work are, however, almost parallel.

  1. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  2. Acceleration of tendon-bone healing of anterior cruciate ligament graft using intermittent negative pressure in rabbits.

    PubMed

    Sun, Zhengming; Wang, Xiaoqing; Ling, Ming; Wang, Wei; Chang, Yanhai; Yang, Guang; Dong, Xianghui; Wu, Shixun; Wu, Xueyuan; Yang, Bo; Chen, Ming

    2017-04-18

    The purpose of this study was to test effects of negative pressure on tendon-bone healing after reconstruction of anterior cruciate ligament (ACL) in rabbits. Hind legs of 24 New Zealand White rabbits were randomly selected as negative pressure group and the contralateral hind legs as control. Reconstruction of the ACL was done. Joints of the negative pressure side were placed with drainage tubes connecting the micro-negative pressure aspirator. Control side was placed with ordinary drainage tubes. Drainage tubes on both sides were removed at the same time 5 days after operation. After 6 weeks, joint fluid was drawn to detect the expression levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α); at the same time, femur-ligament-tibia complex was obtained to determine tendon graft tension and to observe the histomorphology, blood vessels of the tendon-bone interface, and expression of vascular endothelial growth factor (VEGF). The maximum load breakage of tendon graft was significantly greater in the negative pressure group than in the control group (P < 0.05). Histological studies of the tendon-bone interface found that there was more new bone formation containing chondroid cells and aligned connective tissue in the negative pressure group than in the control group. Expression of VEGF was higher in the negative pressure group than in the control group (P < 0.01). Content of IL-1β and TNF-α in synovial fluid is lower in the negative pressure group than in the control group (P < 0.01). Intermittent negative pressure plays an active role in tendon-bone healing and creeping substitution of ACL reconstruction in the rabbits.

  3. Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific

    PubMed Central

    Wallace, Joseph M.; Rajachar, Rupak M.; Allen, Matthew R.; Bloomfield, Susan A.; Robey, Pamela G.; Young, Marian F.; Kohn, David H.

    2009-01-01

    Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone’s mechanical environment. Male mice have a greater response to non weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 minutes/day; 12 meters/minute; 5° incline; 7 days/week) would similarly have a greater impact on cross sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial-lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties

  4. Ilizarov bone transport versus fibular graft for reconstruction of tibial bone defects in children.

    PubMed

    Abdelkhalek, Mostafa; El-Alfy, Barakat; Ali, Ayman M

    2016-11-01

    The aim of this study was to compare the results of treatment of segmental tibial defects in the pediatric age group using an Ilizarov external fixator versus a nonvascularized fibular bone graft. This study included 24 patients (age range from 5.5 to 15 years) with tibial bone defects: 13 patients were treated with bone transport (BT) and 11 patients were treated with a nonvascularized fibular graft (FG). The outcome parameters were bone results (union, deformity, infection, leg-length discrepancy) and functional results: external fixation index and external fixation time. In group A (BT), one patient developed refracture at the regenerate site, whereas, in group B (FG), after removal of the external fixator, one of the FGs developed a stress fracture. The external fixator time in group A was 10.7 months (range 8-14.5) versus 7.8 months (range 4-11.5 months) in group B (FG). In group A (BT), one patient had a limb-length discrepancy (LLD), whereas, in group B (FG), three patients had LLD. The functional and bone results of the Ilizarov BT technique were excellent in 23.1 and 30.8%, good in 38.5 and 46.2, fair in 30.8 and 15.4, and poor in 7.6 and 7.6%, respectively. The poor functional result was related to the poor bone result because of prolonged external fixator time resulting in significant pain, limited ankle motion, whereas the functional and bone results of fibular grafting were excellent in 9.1 and 18.2%, good in 63.6 and 45.5%, fair in 18.2 and 27.2%, and poor in 9.1 and 9.1%, respectively. Segmental tibial defects can be effectively treated with both methods. The FG method provides satisfactory results, with early removal of the external fixator. However, it had a limitation in patients with severe infection and those with LLD. Also, it requires a long duration of limb bracing until adequate hypertrophy of the graft. The Ilizarov method has the advantages of early weight bearing, treatment of postinfection bone defect in a one-stage surgery, and the

  5. Investigate methods for measuring muscle and bone mass changes in astronauts and animals which occur during space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1977-01-01

    Sodium-22 is being used as a tracer for bone mineral metabolism studies. Dogs are being grown from puppies to adulthood on a diet containing a constant level of sodium-22 in order to uniformly tag the entire skeleton with a long lived radionuclide. This study is still in progress and the dogs are still growing. Potassium-40 measurements were made on people, who are replacing muscle mass lost due to leg injuries, in a second study. It appears that potassium-40 measurements provide an accurate and convenient method for determining relative changes in the muscle content of the leg.

  6. Leg deformation during imaginal ecdysis in the downy emerald, Cordulia aenea (Odonata, Corduliidae).

    PubMed

    Frantsevich, Leonid; Frantsevich, Ludmilla

    2018-04-01

    A dragonfly larva migrates from the water to the shore, perches on a plant stem and grasps it with strongly flexed legs. Adult legs inside the larval exoskeleton fit to the larval legs joint-to-joint. The adult emerges with stretched legs. During the molt, an imaginal leg must follow all the angles in exuvial joints. In turn, larval apodemes are withdrawn from imaginal legs. We visualized transient shapes of the imaginal legs by the instant fixation of insects at different moments of the molt, photographed isolated exuvial legs with the imaginal legs inside and then removed the exuvial sheath. Instant shapes of the imaginal tibia show sharp intrapodomere bends copying the angle in the larval femoro-tibial joint. The site of bending shifts distad during the molt. This is possible if the imaginal leg is pliable. The same problem of leg squeezing is also common in hemimetabolous insects as well as in other arthropods, whereas holometabolous insects overcome problems of a tight confinement either by using leg pliability in other ways but not squeezing (cyclorrhaphan flies, mosquitoes) or by pulling hardened legs out without change of their pupal zigzag configuration (moths, ants, honey bees). The pupal legs are not intended to grasp any external substrate. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Outcome of Distal Both Bone Leg Fractures Fixed by Intramedulary Nail for Fibula & MIPPO in Tibia.

    PubMed

    Gupta, Anil; Anjum, Rashid; Singh, Navdeep; Hackla, Shafiq

    2015-04-01

    Fractures of the distal third of the tibia are mostly associated with a fibular fracture that often requires fixation. The preferred treatment of distal tibial fracture is the minimally invasive percutaneous plate osteosynthesis (MIPPO) procedure. However, there are no clear cut guidelines on fixation of the fibular fracture and currently most orthopedic surgeons use a plate osteosynthesis for the fibula as well. A common complication associated with dual plating is an increased chance of soft tissue necrosis, infection, and in some cases resulting in an exposed implant. We conducted a prospective study to analyze the results of fractures of the distal in both leg bones managed by the MIPPO procedure for tibial fractures and a rush nail for fibular fractures. The study was conducted in a tertiary care hospital from November 2012 to May 2014, a total of 30 fractures in 30 patients (18 males, 12 females) with a mean age of 42.4 years (26-60 years) were treated in our institution in the aforesaid time period with MIPPO for tibia and rush nail for fibular fractures. All the cases were operated on by a single surgeon in emergency within 24 hours. The patients with skin blistering and compound fractures were excluded from this study. Rehabilitative measures were proceeded as per patient's pain profile, isometric and isotonic exercises were started on the first post-operative day, with full weight bearing at 10-12 weeks after assessing clinical and radiological union. Regular follow up of patients was done, radiographs were taken at the immediate post-operative period and at 3, 6, 12 and 24 weeks. All the patients were available for regular follow up. Radiological and clinical union proceeded normally in all the patients, no patients had signs of any deep infection, delayed union or nonunion, three patients had a superficial infection of the tibial incision that healed with a change in antibiotic. The use of dual plating for fixation of the lower tibia and fibula

  8. [Tibia reconstruction using cross-leg pedicled fibular flaps: report of two cases].

    PubMed

    Molski, M

    2000-01-01

    The paper presents the results of treatment of two children with cross-leg pedicle fibular flaps. A boy (10 years old) was operated because of an extensive defect of the proximal tibial shaft (15 cm) and soft tissue deficit due to osteosarcoma. He had been previously operated several times: tumor resection with chemiotherapy, bone reconstruction using allografts and two other procedures because of inflammatory complications. The second case was a 9-year old girl who underwent an extensive excision of congenital pseudoarthrosis of the tibia due to neurofibroma and reconstruction of the further fragment of the tibia. Vascularized fibula was nailed deep into the tibial shaft, beyond the previously implanted metal elements. This allowed to maintain a correct axis of the limb, a firm stabilization of the transplant and probably evoked a quick periosteal reaction of the tibia. Plaster of Paris was used to immobilize the limb. Postoperative course showed no complications. The flap pedicle was cut off after 3-4 weeks. Progressive bone healing followed by bony hypertrophy was observed after 8 weeks. The children were able to fully load the operated extremities and ambulate without crutches (the boys 12 months post-surgery and the girl 6 months post-surgery).

  9. Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs

    NASA Astrophysics Data System (ADS)

    Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh

    2017-04-01

    Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.

  10. Effect of office-based brief high-impact exercise on bone mineral density in healthy premenopausal women: the Sendai Bone Health Concept Study.

    PubMed

    Niu, Kaijun; Ahola, Riikka; Guo, Hui; Korpelainen, Raija; Uchimaru, Jin; Vainionpää, Aki; Sato, Kyoko; Sakai, Aiko; Salo, Sinikka; Kishimoto, Koshi; Itoi, Eiji; Komatsu, Shoko; Jämsä, Timo; Nagatomi, Ryoichi

    2010-09-01

    Although there is ample evidence supporting the effectiveness of physical activity in the prevention and treatment of osteoporosis, there are no previous studies to examine the effect of office-based brief high-impact exercise (HIE) on bone mineral density (BMD) in healthy premenopausal women. This study evaluated the effects of office-based HIE on BMD in healthy premenopausal Japanese women. Ninety-one healthy premenopausal women were randomized to receive stretching exercise (SE) or HIE (stretching, along with up to 5 × 10 vertical and versatile jumps) for 12 months. The BMD of the lumbar spine and proximal femur was measured using dual-energy X-ray absorptiometry. Several cardiovascular risk factors and leg strength also were assessed. An accelerometer-based recorder was used to measure daily impact loading in four 1-week samples. The progression of the HIE program was ensured by the accelerometer. Thirty-three women (71.7%) in the SE group and 34 (75.6%) in the HIE group completed the study. There was a significant difference in the change in the femoral neck BMD between the groups in favor of the HIE group [0.6% (95% CI: -0.4, 1.7) vs. -1.0% (95% CI: -2.2, 0.2)]. Adiponectin, LDL, HDL, and the leg strength of participants in both the groups improved during the intervention. These finding suggested that office-based brief HIE can be recommended for premenopausal women for preventing bone mineral loss.

  11. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    PubMed

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  12. Low dose PTH improves metaphyseal bone healing more when muscles are paralyzed.

    PubMed

    Sandberg, Olof; Macias, Brandon R; Aspenberg, Per

    2014-06-01

    Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury. One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1-34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma. PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p=0.03). The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Esophageal squamous cell carcinoma with dural and bone marrow metastases.

    PubMed

    Chen, Yen-Hao; Huang, Cheng-Hua

    2014-09-21

    Patients with esophageal squamous cell carcinoma generally present at an advanced stage at the time of diagnosis. The most common sites of visceral metastasis are the lung, liver and bone, but brain and bone marrow involvement is exceedingly rare. Herein, we report a 62-year-old man with a 4-wk history of progressive low back pain with radiation to bilateral lower legs, dysphagia and body weight loss. Esophageal squamous cell carcinoma with regional lymph node, liver and bone metastases was diagnosed. He underwent concurrent chemoradiotherapy and got a partial response. Four months later, he complained of headache, diplopia and severe hearing impairment in the left ear. There was no evidence for bacterial, fungal, tuberculous infection or neoplastic infiltration. Magnetic resonance imaging of the brain demonstrated thickening and enhancement of bilateral pachymeninges and multiple enhancing masses in bilateral skull. Dural metastasis was diagnosed and he received whole brain irradiation. In addition, laboratory examination revealed severe thrombocytopenia and leucopenia, and bone marrow study confirmed the diagnosis of metastatic squamous cell carcinoma. This is the first described case of esophageal squamous cell carcinoma with dural and bone marrow metastases. We also discuss the pathogenesis of unusual metastatic diseases and differential diagnosis of pachymeningeal thickening.

  14. Peripheral artery disease - legs

    MedlinePlus

    ... flow, which can injure nerves and other tissues. Causes PAD is caused by "hardening of the arteries." ... small arteries Coronary artery disease Impotence Open sores (ischemic ulcers on the lower legs) Tissue death (gangrene) ...

  15. Leg lengthening and shortening

    MedlinePlus

    ... to match its length. Proper timing of this treatment is important for best results. Certain health conditions can lead to very unequal leg lengths. They include: Poliomyelitis Cerebral palsy Small, weak muscles or short, tight ( ...

  16. Bioactive and biodegradable silica biomaterial for bone regeneration.

    PubMed

    Wang, Shunfeng; Wang, Xiaohong; Draenert, Florian G; Albert, Olga; Schröder, Heinz C; Mailänder, Volker; Mitov, Gergo; Müller, Werner E G

    2014-10-01

    Biosilica, a biocompatible, natural inorganic polymer that is formed by an enzymatic, silicatein-mediated reaction in siliceous sponges to build up their inorganic skeleton, has been shown to be morphogenetically active and to induce mineralization of human osteoblast-like cells (SaOS-2) in vitro. In the present study, we prepared beads (microspheres) by encapsulation of β-tricalcium phosphate [β-TCP], either alone (control) or supplemented with silica or silicatein, into the biodegradable copolymer poly(d,l-lactide-co-glycolide) [PLGA]. Under the conditions used, ≈5% β-TCP, ≈9% silica, and 0.32μg/mg of silicatein were entrapped into the PLGA microspheres (diameter≈800μm). Determination of the biocompatibility of the β-TCP microspheres, supplemented with silica or silicatein, revealed no toxicity in the MTT based cell viability assay using SaOS-2 cells. The adherence of SaOS-2 cells to the surface of silica-containing microspheres was higher than for microspheres, containing only β-TCP. In addition, the silica-containing β-TCP microspheres and even more pronounced, a 1:1 mixture of microspheres containing β-TCP and silica, and β-TCP and silicatein, were found to strongly enhance the mineral deposition by SaOS-2 cells. Using these microspheres, first animal experiments with silica/biosilica were performed in female, adult New Zealand White rabbits to study the effect of the inorganic polymer on bone regeneration in vivo. The microspheres were implanted into 5mm thick holes, drilled into the femur of the animals, applying a bilateral comparison study design (3 test groups with 4-8 animals each). The control implant on one of the two hind legs contained microspheres with only β-TCP, while the test implant on the corresponding leg consisted either of microspheres containing β-TCP and silica, or a 1:1 mixture of microspheres, supplemented with β-TCP and silica, and β-TCP and silicatein. The results revealed that tissue/bone sections of silica

  17. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

    PubMed

    Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia

    2012-12-15

    The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.

  18. Nutritional factors affecting poultry bone health.

    PubMed

    Fleming, Robert H

    2008-05-01

    Outlined are two main current research concerns relating to skeletal disorders in poultry: (a) osteoporosis in egg-laying hens; (b) leg problems caused by rapid bone growth in broiler chickens. Surveys indicate that 30% of caged laying hens suffer at least one lifetime fracture (a severe welfare issue). Modern hybrids produce one egg per d for 50 weeks. For this period 'normal' bone turnover ceases; only medullary bone (MB) is formed, a woven bone type of limited structural value. MB is resorbed for eggshell formation alongside structural bone, leading to increased fracture risk. Avian osteoporosis is reduced by activity and genetic selection but nutrition is also important. Fluoride and vitamin K are beneficial but the timing of nutritional intervention is important. Ca, inorganic P and vitamin D must be adequate and the form of Ca is critical. Limestone fed as particulates benefits skeletal and eggshell quality. In hens fed particulate limestone compared with flour-fed hens the tibiotarsus breaking strength and radiographic density are increased at 56 weeks of age (P<0.01 and P<0.001 respectively) and the number of tartrate-resistant acid phosphatase-positive stained active osteoclasts (mean number per microscopic field) is decreased (P<0.001). In broiler (meat) chickens selection for rapid growth from approximately 50 g to 3 kg in 42 d has inadvertently produced skeletal disorders such as tibial dyschondroplasia, rickets and associated valgus-varus deformities leading to lameness. The beneficial skeletal effects during growth of increased dietary n-3 PUFA:n-6 PUFA (utilising salmon oil) have been demonstrated. Experiments simulating daylight UVB levels have produced beneficial skeletal effects in Ca- and vitamin D-deficient chicks.

  19. Duck gait: Relationship to hip angle, bone ash, bone density, and morphology.

    PubMed

    Robison, Cara I; Rice, Meredith; Makagon, Maja M; Karcher, Darrin M

    2015-05-01

    The rapid growth meat birds, including ducks, undergo requires skeletal integrity; however, fast growth may not be conducive to adequate bone structure. A relationship likely exists between skeletal changes and duck mobility. Reduced mobility in meat ducks may have impacts on welfare and production. This study examined the relationships among gait score, bone parameters, and hip angle. Commercial Pekin ducks, ages 14 d (n = 100), 21 d (n = 100), and 32 d (n = 100) were weighed and gait scored with a 3-point gait score system by an observer as they walked over a Tekscan gait analysis system. Gait was scored as GS0, GS1, or GS2 with a score of GS0 defined as good walking ability and a score of GS2 as poorest walking ability. Ducks were humanely euthanized, full body scanned using quantitative computed tomography (QCT), and the right femur and tibia were extracted. Leg bones were cleaned, measured, fat extracted, and ashed. QCT scans were rendered to create computerized 3D models where pelvic hip angles and bone density were measured. Statistical analysis was conducted using PROC MIXED with age and gait score in the model. Body weight increased with age, but within an age, body weight decreased as walking ability became worse (P < 0.01). As expected, linear increases in tibia and femur bone width and length were observed as the ducks aged (P < 0.01). Right and left hip angle increased with duck age (P < 0.01). Additionally, ducks with a GS2 had wider hip angles opposed to ducks with a GS0 (P < 0.01). Bone density increased linearly with both age and gait score (P < 0.05). Femur ash content was lowest in 32-day-old ducks and ducks with GS1 and GS2 (P < 0.0001). Tibia ash content increased with age, but decreased as gait score increased (P < 0.001). The observation that right hip angle changed with gait scores merits further investigation into the relationship between duck mobility and skeletal changes during growth. © 2015 Poultry Science Association Inc.

  20. Prenatal nutritional manipulation by in ovo enrichment influences bone structure, composition, and mechanical properties.

    PubMed

    Yair, R; Shahar, R; Uni, Z

    2013-06-01

    The objective of this study was to examine the effect of embryonic nutritional enrichment on the development and properties of broiler leg bones (tibia and femur) from the prenatal period until maturity. To accomplish the objective, 300 eggs were divided into 2 groups: a noninjected group (control) and a group injected in ovo with a solution containing minerals, vitamins, and carbohydrates (enriched). Tibia and femur from both legs were harvested from chicks on embryonic days 19 (E19) and 21 (E21) and d 3, 7, 14, 28, and 54 posthatch (n = 8). The bones were mechanically tested (stiffness, maximal load, and work to fracture) and scanned in a micro-computed tomography (μCT) scanner to examine the structural properties of the cortical [cortical area, medullary area, cortical thickness, and maximal moment of inertia (Imax)] and trabecular (bone volume percent, trabecular thickness, and trabecular number) areas. To examine bone mineralization, bone mineral density (BMD) of the cortical area was obtained from the μCT scans, and bones were analyzed for the ash and mineral content. The results showed improved mechanical properties of the enriched group between E19 and d 3 and on d 14 (P < 0.05). Differences in cortical morphology were noted between E19 and d 14 as the enriched group had greater medullary area on E19 (femur), reduced medullary area on E21 (both bones), greater femoral cortical area on d 3, and greater Imax of both bones on d 14 (P < 0.05). The major differences in bone trabecular architecture were that the enriched group had greater bone volume percent and trabecular thickness in the tibia on d 7 and the femur on d 28 (P < 0.05). The pattern of mineralization between E19 and d 54 showed improved mineralization in the enriched group on E19 whereas on d 3 and 7, the control group showed a mineralization advantage, and on d 28 and 54, the enriched group showed again greater mineralization (P < 0.05). In summary, this study demonstrated that in ovo enrichment

  1. A Comparative Finite-Element Analysis of Bone Failure and Load Transfer of Osseointegrated Prostheses Fixations

    PubMed Central

    Tomaszewski, P. K.; Verdonschot, N.; Bulstra, S. K.

    2010-01-01

    An alternative solution to conventional stump–socket prosthetic limb attachment is offered by direct skeletal fixation. This study aimed to assess two percutaneous trans-femoral implants, the OPRA system (Integrum AB, Göteborg, Sweden), and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck, Germany) on bone failure and stem–bone interface mechanics both early post-operative (before bony ingrowth) and after full bone ingrowth. Moreover, mechanical consequences of implantation of those implants in terms of changed loading pattern within the bone and potential consequences on long-term bone remodeling were studied using finite-element models that represent the intact femur and implants fitted in amputated femora. Two experimentally measured loads from the normal walking cycle were applied. The analyses revealed that implantation of percutaneous prostheses had considerable effects on stress and strain energy density levels in bone. This was not only caused by the implant itself, but also by changed loading conditions in the amputated leg. The ISP design promoted slightly more physiological strain energy distribution (favoring long-term bone maintenance), but the OPRA design generated lower bone stresses (reducing bone fracture risk). The safety factor against mechanical failure of the two percutaneous designs was relatively low, which could be improved by design optimization of the implants. PMID:20309731

  2. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  3. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  4. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  5. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  6. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  7. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  8. The effect of spinal manipulation on imbalances in leg strength.

    PubMed

    Chilibeck, Philip D; Cornish, Stephen M; Schulte, Al; Jantz, Nathan; Magnus, Charlene R A; Schwanbeck, Shane; Juurlink, Bernhard H J

    2011-09-01

    We hypothesized that spinal manipulation (SM) would reduce strength imbalances between legs. Using an un-blinded randomized design, 28 males and 21 females (54 ± 19y) with at least a 15% difference in isometric strength between legs for hip flexion, extension, abduction, or knee flexion were randomized to treatment or placebo (mock spinal manipulation). Strength of the stronger and weaker legs for hip flexion, extension, abduction, and/or knee flexion was assessed before and after the intervention. SM reduced the relative strength difference between legs for knee flexion (mean ± SD 57 ± 53 to 5 ± 14%) and hip flexion (24 ± 12 to 11 ± 15%) compared to placebo (34 ± 29 to 24 ± 36%, and 20 ± 18 to 22 ± 26%, respectively) (p = 0.05). SM also improved strength in the weak leg for hip abduction (104 ± 43 to 116 ± 43 Nm) compared to placebo (84 ± 24 to 85 ± 31 Nm) (p = 0.03). This study suggests that spinal manipulation may reduce imbalances in strength between legs for knee and hip flexion.

  9. A springy pendulum could describe the swing leg kinetics of human walking.

    PubMed

    Song, Hyunggwi; Park, Heewon; Park, Sukyung

    2016-06-14

    The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. The swing leg was modeled as a spring-loaded pendulum hinged at the hip joint, which is under forward motion. The model parameters of the loaded mass were adopted from body parameters and anthropometric tables, whereas the free model parameters for the rest length of the spring and its stiffness were estimated to best match the data for the swing leg joint forces. The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of Exercise Intensity on Percent Body Fat Determined by Leg-to-Leg and Segmental Bioelectrical Impedance Analyses in Adults

    ERIC Educational Resources Information Center

    Andreacci, Joseph L.; Nagle, Trisha; Fitzgerald, Elise; Rawson, Eric S.; Dixon, Curt B.

    2013-01-01

    Purpose: We examined the impact that cycle ergometry exercise had on percent body fat (%BF) estimates when assessed using either leg-to-leg or segmental bioelectrical impedance analysis (LBIA; SBIA) and whether the intensity of the exercise bout impacts the %BF magnitude of change. Method: Seventy-four college-aged adults participated in this…

  11. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults.

    PubMed

    Antony, Benny; Venn, Alison; Cicuttini, Flavia; March, Lyn; Blizzard, Leigh; Dwyer, Terence; Cross, Marita; Jones, Graeme; Ding, Changhai

    2015-10-26

    Physical activity has been recommended to patients with knee osteoarthritis for improving their symptoms. However, it is still controversial if physical activity has effects on joint structures including cartilage volume. The aim of this study was to describe the associations between physical activity and performance measured 5 years prior and tibial cartilage volume and bone area in young adults. Subjects broadly representative of the Australian population (n = 328, aged 31-41 years, female 47.3 %) were selected from the Childhood Determinants of Adult Health study. They underwent T1-weighted fat-suppressed magnetic resonance imaging (MRI) scans of their knees. Tibial bone area and cartilage volume were measured from MRI. Physical activity (measured using long international physical activity questionnaire (IPAQ)) and performance measures (long jump, leg muscle strength, physical work capacity (PWC170)) were measured 5 years prior. In multivariable analyses, total physical activity (min/week) (β: 0.30 mm(3), 95 % CI: 0.13,0.47), vigorous (β: 0.54 mm(3), 95 % CI: 0.13,0.94), moderate (β: 0.34 mm(3), 95 % CI: 0.01,0.67), walking (β: 0.40 mm(3), 95 % CI: 0.07,0.72) and IPAQ category (β: 182.9 mm(3), 95 % CI: 51.8,314.0) were positively associated with total tibial cartilage volume but not tibial bone area. PWC170, long jump and leg muscle strength were positively and significantly associated with both total tibial cartilage volume and total tibial bone area; and the associations with tibial cartilage volume decreased in magnitude but remained significant for PWC170 and long jump after further adjustment for tibial bone area. While tibial bone area is affected only by physical performance, total tibial cartilage volume can be influenced by both physical activity and performance in younger adults. The clinical significance suggests a beneficial effect for cartilage but the bone area association was restricted to performance suggesting other factors

  12. Bone Mineral Content and Density Among Female NCAA Division I Athletes Across the Competitive Season and Over a Multi-Year Time Frame.

    PubMed

    Stanforth, Dixie; Lu, Tao; Stults-Kolehmainen, Matthew A; Crim, Brittany N; Stanforth, Philip R

    2016-10-01

    Stanforth, D, Lu, T, Stults-Kolehmainen, MA, Crim, BN, and Stanforth, PR. Bone mineral content and density among female NCAA Division I athletes across the competitive season and over a multi-year time frame. J Strength Cond Res 30(10): 2828-2838, 2016-Longitudinal and cross-sectional bone mineral content (BMC) and bone mineral density (BMD) comparisons were made among impact and nonimpact sports. Female collegiate athletes, 18-23 years of age, from basketball (BB; n = 38), soccer (SOC; n = 47), swimming (SW; n = 52), track sprinters and jumpers (TR; n = 49), and volleyball (VB; n = 26) had BMC/BMD measures preseason and postseason over 3 years. Control groups of 85 college females, 18-24 years of age, who completed 2 tests 1-3 years apart and of 170 college females, 18-20 years of age, were used for the longitudinal and cross-sectional analyses, respectively. A restricted maximum likelihood linear mixed model regression analysis with a compound symmetric heterogeneous variance-covariance matrix structure was used for all analyses (p ≤ 0.05). Increases from year-1 preseason to year-3 postseason included the following: total BMC (3.3%), total BMD (1.4%), and spine BMD (4.5%) for BB; total BMC (1.5%) and leg BMD (1.2%) for SOC; arm (1.8%), leg (1.9%), and total BMD (5.7%) for SW; total BMC (2.0%), arm (1.7%), leg (2.3%), pelvis (3.4%), spine (6.0%), and total BMD (2.3%) for TR; and arm (4.1%), leg (2.0%), pelvis (2.0%), spine (2.0%), and total BMD (2.7%) for VB. Comparisons among sports determined that BB had higher BMC and BMD values than all other sports for all variables except spine and total BMD; BB, SOC, TR, and VB had higher total BMC (11-29%), leg BMD (13-20%), and total BMD (9-15%) than SW and CON, and there were few differences among SOC, TR, and VB. In conclusion, small, significant increases in many BMC and BMD measures occur during female athlete's collegiate careers. The BMC and BMD differences between impact and nonimpact sports are large compared

  13. An MRI-based leg model used to simulate biomechanical phenomena during cuff algometry: a finite element study.

    PubMed

    Manafi-Khanian, Bahram; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas

    2016-03-01

    Cuff pressure stimulation is applicable for assessing deep-tissue pain sensitivity by exciting a variety of deep-tissue nociceptors. In this study, the relative transfer of biomechanical stresses and strains from the cuff via the skin to the muscle and the somatic tissue layers around bones were investigated. Cuff pressure was applied on the lower leg at three different stimulation intensities (mild pressure to pain). Three-dimensional finite element models including bones and three different layers of deep tissues were developed based on magnetic resonance images (MRI). The skin indentation maps at mild pressure, pain threshold, and intense painful stimulations were extracted from MRI and applied to the model. The mean stress under the cuff position around tibia was 4.6, 4.9 and around fibula 14.8, 16.4 times greater than mean stress of muscle surface in the same section at pain threshold and intense painful stimulations, respectively. At the same stimulation intensities, the mean strains around tibia were 36.4, 42.3 % and around fibula 32.9, 35.0 %, respectively, of mean strain on the muscle surface. Assuming strain as the ideal stimulus for nociceptors the results suggest that cuff algometry is less capable to challenge the nociceptors of tissues around bones as compared to more superficially located muscles.

  14. Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.

    PubMed

    Goossen, A; Weber, G M; Dries, S P M

    2012-01-01

    For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.

  15. Age, gender, and race/ethnic differences in total body and subregional bone density.

    PubMed

    Looker, A C; Melton, L J; Harris, T; Borrud, L; Shepherd, J; McGowan, J

    2009-07-01

    Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999-2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing. Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999-2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing. Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm. This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.

  16. Leg ulceration as a long-term complication of deep vein thrombosis.

    PubMed

    Walker, Natalie; Rodgers, Anthony; Birchall, Nicholas; Norton, Robyn; MacMahon, Stephen

    2003-12-01

    To evaluate the role of deep vein thrombosis as a cause of leg ulcers. A population-based, case-control study was conducted in Central and North Auckland, New Zealand. Cases comprised 241 people aged 40 to 99 years and on the electoral roll, with current leg ulcers (all types). Cases were identified by means of notification from health professionals and by self-referral. Controls were 224 people in the same age group, without leg ulcers, who were selected from the electoral roll by using a stratified random sampling process. The occurrence of leg ulceration as a consequence of exposure to deep vein thrombosis or being at high risk of deep vein thrombosis (that is, people with a family history of deep vein thrombosis, and/or a history of leg fracture and/or hip, leg, or foot surgery). After adjustment for age, sex, and other potential confounding factors, people who had a diagnosed thromboembolism were at almost three times higher risk of having a leg ulcer (odds ratio, 2.92; 95% confidence interval (CI), 1.47 to 6.08). In addition, people who had been at high risk of a venous thrombosis but were not diagnosed with this condition (eg, people with a history of major leg surgery) were also at increased risk of ulceration (odds ratio, 2.25; 95% CI, 1.49-3.42). Overall, 56% (95% CI, 33% - 71%) of leg ulcers were attributed to being at high risk of deep vein thrombosis. Deep vein thrombosis and factors that place people at high risk of deep vein thrombosis are an important cause of leg ulcers in older people. This finding strengthens the rationale for the routine and long-term use of thromboprophylaxis, particularly in high-risk patients.

  17. Multi-leg heat pipe evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  18. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    PubMed Central

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  19. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    PubMed Central

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  20. Rembrandt's 'Beggar with a wooden leg' and other comparable prints.

    PubMed

    ten Kate, J J; Jennekens, F G I; Vos-Niël, J M E

    2009-02-01

    Rembrandt's etching of a beggar with a wooden leg is notable because the two lower limbs of the presumed beggar are present and not deformed. Using the facilities of four specialised Dutch art institutes, we carried out a systematic investigation to find other etchings and engravings of subjects with artificial legs supporting non-amputated limbs, from the period 1500 to 1700 AD. We discovered 28 prints produced by at least 18 artists. Several offered clues to a disorder of a knee, the lower leg or the foot. All individuals were adult males, suggesting the probability of traumatic lesions. We conclude that in this period artificial legs were not only used in the case of absence of part of a lower limb, but also for other reasons, notably disorders of the knee, lower leg or foot. They may also have been used to attract compassion.

  1. Effects of focal vibration on bone mineral density and motor performance of postmenopausal osteoporotic women.

    PubMed

    Brunetti, O; Botti, F M; Brunetti, A; Biscarini, A; Scarponi, A M; Filippi, G M; Pettorossi, V E

    2015-01-01

    This randomized double blind controlled study is aimed at determining the effect of repeated vibratory stimuli focally applied to the contracted quadriceps muscles (repeated muscle vibration=rMV) on bone mineral density, leg power and balance of postmenopausal osteoporotic women. The study has been conducted on 40 voluntary postmenopausal osteoporotic women, randomised at 2 groups for rMV treatment and for control. The treatment group underwent rMV (100Hz, 300-500 μm; three applications per day, each lasting 10-minutes, for 3 consecutive days) applied to voluntary contracted quadriceps (VC=vibrated and contracted group). The control group, received a sham stimulation on contracted quadriceps (NV=non vibrated group). Bone mineral density T-score of proximal femur of the participants, was evaluated in two weeks before and 360 days after intervention; body balance and explosive leg power were measured 1 day before, 30 days and 360 days after treatment. VC group T-score at one year didn't change significantly relative to baseline values (pretreatment: -2.61±0.11, post-treatment -2.62±0.13); conversely in NV subjects T-score decreased significantly from -2.64 ± 0.15 SD down to -2.99 ± 0.28 SD. A significant improvement of balance and explosive leg power was observed only in VC group at 30 and 360 days after the intervention. We conclude that rMV is a safe, short-lasting and non-invasive treatment that can significantly and persistently improve muscle performance and can effectively counteract progressive demineralisation in postmenopausal and osteoporotic women.

  2. Towards active capsular endoscopy: preliminary results on a legged platform.

    PubMed

    Menciassi, Arianna; Stefanini, Cesare; Orlandi, Giovanni; Quirini, Marco; Dario, Paolo

    2006-01-01

    This paper illustrates the problem of active locomotion in the gastrointestinal tract for endoscopic capsules. Authors analyze the problem of locomotion in unstructured, flexible and tubular environments and explain the reasons leading to the selection of a legged system. They present a theoretical simulation of legged capsule locomotion, which is used to define the optimal parameters for capsule design and gait selection. Finally, a legged capsule--about 3 cm3 in volume--is presented; it consists of 4 back legs whose actuation is achieved thanks to a miniaturized DC brushless motor. In vitro tests demonstrate good performance in terms of achievable speed (92 mm/min).

  3. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  4. [Physical treatment modalities for chronic leg ulcers].

    PubMed

    Dissemond, J

    2010-05-01

    An increasing numbers of physical treatment options are available for chronic leg ulcer. In this review article, compression therapy, therapeutic ultrasound, negative pressure therapy, extracorporeal shock wave therapy, electrostimulation therapy, electromagnetic therapy, photodynamic therapy, water-filtered infrared-A-radiation and hydrotherapy are discussed in terms of their practical applications and the underlying evidence. With the exception of compression therapy for most of these treatments, good scientific data are not available. However this is a widespread problem in the treatment of chronic wounds. Nevertheless, several of the described methods such as negative pressure therapy represent one of the gold standards in practical treatment of patients with chronic leg ulcers. Although the use of physical treatment modalities may improve healing in patients with chronic leg ulcers, the diagnosis and treatment of the underlying causes are essential for long-lasting success.

  5. Bilateral asymmetries in max effort single-leg vertical jumps.

    PubMed

    Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F

    2005-01-01

    While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.

  6. Arm to leg coordination in elite butterfly swimmers.

    PubMed

    Chollet, D; Seifert, L; Boulesteix, L; Carter, M

    2006-04-01

    This study proposed the use of four time gaps to assess arm-to-leg coordination in the butterfly stroke at increasing race paces. Fourteen elite male swimmers swam at four velocities corresponding to the appropriate paces for, respectively, the 400-m, 200-m, 100-m, and 50-m events. The different stroke phases of the arm and leg were identified by video analysis and then used to calculate four time gaps (T1: time gap between entry of the hands in the water and the high break-even point of the first undulation; T2: time gap between the beginning of the hands' backward movement and the low break-even point of the first undulation; T3: time gap between the hands' arrival in a vertical plane to the shoulders and the high break-even point of the second undulation; T4: time gap between the hands' release from the water and the low break-even point of the second undulation), the values of which described the changing relationship of arm to leg movements over an entire stroke cycle. With increases in pace, elite swimmers increased the stroke rate, the relative duration of the arm pull, the recovery and the first downward movement of the legs, and decreased the stroke length, the relative duration of the arm catch phase and the body glide with arms forward (measured by T2), until continuity in the propulsive actions was achieved. Whatever the paces, the T1, T3, and T4 values were close to zero and revealed a high degree of synchronisation at key motor points of the arm and leg actions. This new method to assess butterfly coordination could facilitate learning and coaching by situating the place of the leg undulation in relation with the arm stroke.

  7. Determination of muscle mass changes in legs from K-40 measurements

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.

    1979-01-01

    The K-40 content of the upper legs was periodically measured in several subjects whose injured legs had been in a cast for 6 weeks or more. As the subjects began using the leg again, the K-40 content increased as the muscle tissue was replaced. A 25% increase in K-40 content in 6 months is typical for a normal leg use and recovery. This is equivalent to an original muscle mass loss of 20%. By measuring specific body regions, such as arms or legs, with a high-efficiency detector system, muscle mass changes which exceed a few percent can be measured. These methods could be used in space flight and bedrest studies, and in studying nutritional deficiencies due to disease or diet.

  8. The crossed leg sign indicates a favorable outcome after severe stroke

    PubMed Central

    Rémi, J.; Pfefferkorn, T.; Owens, R.L.; Schankin, C.; Dehning, S.; Birnbaum, T.; Bender, A.; Klein, M.; Adamec, J.; Pfister, H.-W.; Straube, A.

    2011-01-01

    Objective: We investigated whether crossed legs are a prognostic marker in patients with severe stroke. Methods: In this controlled prospective observational study, we observed patients with severe stroke who crossed their legs during their hospital stay and matched them with randomly selected severe stroke patients who did not cross their legs. The patients were evaluated upon admission, on the day of leg crossing, upon discharge, and at 1 year after discharge. The Glasgow Coma Scale, the NIH Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel Index (BI) were obtained. Results: Patients who crossed their legs (n = 34) and matched controls (n = 34) did not differ in any scale upon admission. At the time of discharge, the GCS did not differ, but the NIHSS was better in crossed legs patients (6.5 vs 10.6; p = 0.0026), as was the mRS (3.4 vs 5.1, p < 0.001), and the BI (34.0 vs 21.1; p = 0.0073). At 1-year follow-up, mRS (2.9 vs 5.1, p < 0.001) and the BI (71.3 vs 49.2; p = 0.045) were also better in the crossed leg group. The mortality between the groups differed grossly; only 1 patient died in the crossing group compared to 18 in the noncrossing group (p < 0.001). Conclusion: Leg crossing is an easily obtained clinical sign and is independent of additional technical examinations. Leg crossing within the first 15 days after severe stroke indicates a favorable outcome which includes less neurologic deficits, better independence in daily life, and lower rates of death. PMID:21987641

  9. Associations of components of sarcopenic obesity with bone health and balance in older adults.

    PubMed

    Scott, David; Shore-Lorenti, Catherine; McMillan, Lachlan; Mesinovic, Jakub; Clark, Ross A; Hayes, Alan; Sanders, Kerrie M; Duque, Gustavo; Ebeling, Peter R

    To determine characteristics of sarcopenic obesity that are independently associated with bone health and balance in older adults. Cross-sectional study of 168 community-dwelling older adults (mean age 67.7 ± 8.4 years; 55% women). Appendicular lean mass (ALM), whole-body areal BMD (aBMD) and body fat percentage were assessed by dual-energy X-ray absorptiometry. Peripheral quantitative computed tomography assessed muscle density and cortical volumetric BMD (vBMD), area, thickness, and strength-strain index (SSI) at 66% tibial length. Hand grip strength (dynamometry) and balance path length (computerised posturography) were assessed. Obesity was defined as high body fat percentage. Greater lower-leg muscle density was associated with lower balance path length in men (r = -0.36; P < .01) and women (r = -0.40; P = < .01). Obese participants by body fat percentage did not differ to non-obese on bone indices, although a trend towards lower cortical vBMD was observed in obese compared with non-obese men (1041.4 ± 39.8 vs 1058.8 ± 36.1 mg/cm 3 ; P = .051). In multivariable models, ALM was positively associated with all bone parameters in obese women, and with whole-body aBMD, proximal tibial cortical area and SSI in non-obese women, and both non-obese and obese men (all P < .05). Lower-leg muscle density was also positively associated with cortical vBMD (B = 2.91; 95% CI 0.02, 5.80) and area (2.70; 0.06, 5.33) in obese women. Amongst components of sarcopenic obesity, higher ALM is a consistent independent predictor of better bone health. Low muscle density may also compromise bone health and balance. Interventions which improve muscle mass and composition may lower fracture risk in sarcopenic obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Soy undecapeptide induces Drosophila hind leg grooming via dopamine receptor.

    PubMed

    Karim, M Rezaul; Yanagawa, Aya; Ohinata, Kousaku

    2018-05-15

    β-Conglycinin α subunit (323-333) [βCGα(323-333)] is an exogenous neuromodulating undecapeptide found from enzymatic digest of β-conglycinin, a soy major storage protein by mice behavior tests. We investigated effect of βCGα(323-333) on Drosophila behavior. Oral administration of βCGα(323-333) in Drosophila increased hind leg grooming, which may act through specific sets of neurons. It was reported that dopamine receptor (DopR) meditates hind leg grooming, and we tested involvement of DopR in βCGα(323-333)-induced hind leg grooming by using DopR knockout flies. In the wild type but not in the DopR-knockout flies, βCGα(323-333) increased hind leg grooming. These results suggest that βCGα(323-333) induces hind leg grooming via activating the DopR. This is the first report showing that exogenously administered peptide changes fly behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Leg injuries and wound repair among cosmetid harvestmen (Arachnida, Opiliones, Laniatores).

    PubMed

    Townsend, Victor R; Schaus, Maynard H; Zvonareva, Tatyana; Illinik, Jeffrey J; Evans, John T

    2017-01-01

    Previous studies of leg injuries in harvestmen have focused on the fitness consequences for individuals that use autospasy (voluntary detachment of the leg) as a secondary defense mechanism. Leg damage among non-autotomizing species of laniatorean harvestmen has not been investigated. Under laboratory conditions, we damaged femur IV of Cynorta marginalis and observed with scanning electron microscopy (SEM) the changes in these wounds over ten days. We also used SEM to examine leg damage from individuals of three species of cosmetid harvestmen that were collected in the field. On the basis of changes in the external surface of the hemolymph coagulum, we classified these wounds as fresh (coagulum forming), recent (coagulum with smooth surface), older (coagulum is scale-like with visible cell fragments), and fully healed (scale replaced by new cuticle growth on the terminal stump). Our observations indicate that wound healing in harvestmen occurs in a manner comparable to that of other chelicerates. Leg injuries exhibited interspecific variation with respect to the overall frequency of leg wounds and the specific legs that were most commonly damaged. In addition, we measured walking and climbing speeds of adult C. marginalis and found that individuals with fresh injuries (lab-induced) to femur IV walked at speeds significantly slower than uninjured adults or individuals collected from the field that had fully healed wounds to a single leg. J. Morphol. 278:73-88, 2017. ©© 2016 Wiley Periodicals,Inc. © 2016 Wiley Periodicals, Inc.

  12. Determination of in vivo mechanical properties of long bones from their impedance response curves

    NASA Technical Reports Server (NTRS)

    Borders, S. G.

    1981-01-01

    A mathematical model consisting of a uniform, linear, visco-elastic, Euler-Bernoulli beam to represent the ulna or tibia of the vibrating forearm or leg system is developed. The skin and tissue compressed between the probe and bone is represented by a spring in series with the beam. The remaining skin and tissue surrounding the bone is represented by a visco-elastic foundation with mass. An extensive parametric study is carried out to determine the effect of each parameter of the mathematical model on its impedance response. A system identification algorithm is developed and programmed on a digital computer to determine the parametric values of the model which best simulate the data obtained from an impedance test.

  13. Clinical evaluation of an allogeneic bone matrix containing viable osteogenic cells in patients undergoing one- and two-level posterolateral lumbar arthrodesis with decompressive laminectomy.

    PubMed

    Musante, David B; Firtha, Michael E; Atkinson, Brent L; Hahn, Rebekah; Ryaby, James T; Linovitz, Raymond J

    2016-05-27

    Trinity Evolution® cellular bone allograft (TE) possesses the osteogenic, osteoinductive, and osteoconductive elements essential for bone healing. The purpose of this study is to evaluate the radiographic and clinical outcomes when TE is used as a graft extender in combination with locally derived bone in one- and two-level instrumented lumbar posterolateral arthrodeses. In this retrospective evaluation, a consecutive series of subject charts that had posterolateral arthrodesis with TE and a 12-month radiographic follow-up were evaluated. All subjects were diagnosed with degenerative disc disease, radiculopathy, stenosis, and decreased disc height. At 2 weeks and at 3 and 12 months, plain radiographs were performed and the subject's back and leg pain (VAS) was recorded. An evaluation of fusion status was performed at 12 months. The population consisted of 43 subjects and 47 arthrodeses. At 12 months, a fusion rate of 90.7 % of subjects and 89.4 % of surgical levels was observed. High-risk subjects (e.g., diabetes, tobacco use, etc.) had fusion rates comparable to normal patients. Compared with the preoperative leg or back pain level, the postoperative pain levels were significantly (p < 0.0001) improved at every time point. There were no adverse events attributable to TE. Fusion rates using TE were higher than or comparable to fusion rates with autologous iliac crest bone graft that have been reported in the recent literature for posterolateral fusion procedures, and TE fusion rates were not adversely affected by several high-risk patient factors. The positive results provide confidence that TE can safely replace autologous iliac crest bone graft when used as a bone graft extender in combination with locally derived bone in the setting of posterolateral lumbar arthrodesis in patients with or without risk factors for compromised bone healing. Because of the retrospective nature of this study, the trial was not registered.

  14. Lower Extremity Limb Salvage with Cross Leg Pedicle Flap, Cross Leg Free Flap, and Cross Leg Vascular Cable Bridge Flap.

    PubMed

    Manrique, Oscar J; Bishop, Sarah N; Ciudad, Pedro; Adabi, Kian; Martinez-Jorge, Jorys; Moran, Steven L; Huang, Tony; Vijayasekaran, Aparna; Chen, Shih-Heng; Chen, Hung-Chi

    2018-05-16

     Lower extremity salvage following significant soft tissue loss can be complicated by lack of recipient vessel for free tissue transfer. We describe our experience in lower limb salvage for patients with no recipient vessels with the use of pedicle, free and cable bridge flaps.  A retrospective review from 1985 to 2017 of patients undergoing lower limb salvage using a contralateral pedicle cross leg (PCL) flaps, free cross leg (FCL) flaps, or free cable bridge (FCB) flaps was conducted. Demographics, etiology of the reconstruction, type of flap used, donor-site vessels, defect size, operating time, time of pedicle division, length of hospital stay, time to ambulation, and complications were analyzed.  A total of 53 patients (48 males and 5 females) with an average age of 35 years (range, 29-38 years) were identified. The etiology for the reconstruction was trauma in 52 patients and oncological resection in 1 patient. There were 18 PCL, 25 FCL, and 10 FCB completed. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operating room times for PCL, FCL, and FCB flaps were 4, 9, and 10 hours, respectively. The average length of hospital stay was 5 weeks and average time to ambulation was 4 weeks. The average follow-up time was 7.5 years (range, 3-12 years). Complications encountered were hematoma (six), prolonged pain (six), total flap loss (two), reoperation (five), and infection (four). Limb salvage rates were 96.2%.  When ipsilateral limb vessels are not available, and other reconstructive options have been exhausted, cross leg flaps can be a viable option for limb salvage in the setting of extensive defects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Roll type conducting polymer legs for rigid-flexible thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Park, Teahoon; Lim, Hanwhuy; Hwang, Jong Un; Na, Jongbeom; Lee, Hyunki; Kim, Eunkyoung

    2017-07-01

    A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT) between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG). The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.

  16. Island osteoperiosteal flap vitality when isolated from basal bone by silicone interposition: an experimental study in rabbit tibia.

    PubMed

    Laviv, Amir; Ringeman, Jason; Debecco, Meir; Jensen, Ole T; Casap, Nardy

    2014-01-01

    This study sought to confirm, through histologic evaluation, the vitality and viability of the island osteoperiosteal flap (i-flap) in a rabbit tibia model. In four rabbits, an osteotomy was performed on the tibial aspect of the right leg. A bone flap was raised, but the periosteal attachment was kept intact. The free-floating i-flap was separated from the rest of the bone by a silicone sheet. The rabbits were to be sacrificed after 1, 2, 4, and 8 weeks and histologic samples examined. All surgeries were accomplished successfully; however, three animals showed fractured tibiae within a few days after surgery and were sacrificed immediately after the fractures were discovered. The fourth rabbit was sacrificed at 4 weeks. Histologic specimens showed vital new bone in the i-flap area and signs of remodeling in the transition zone and the original basal bone. The i-flap remained vital. This suggests potential for use in bone augmentation strategies, particularly for the alveolar split procedure.

  17. Fatigue characteristics and biocompatability of a totally implantable bone growth stimulator in ponies.

    PubMed

    Collier, M A; Lowe, J E; Rendano, V T

    1985-01-01

    Materials fatigue and gross biocompatability of an implantable bone growth stimulator (BGS) were assessed in a 6-month trial using 6 ponies. The forelegs of each pony were implanted with a BGS; the right leg implant had the cathode and cathode lead preconnected by the manufacturer, and the left leg implant was connected at surgery. Evaluation was by radiographic and clinical examination at the beginning and end of the experimental period. Six of the 12 cathode leads (50%) and 7 of the 12 cathodes (58%) were broken at 6 months. All of the implanted preconnected cathode and insulated cathode leads and 33.3% of the surgically connected cathodes and insulated cathode leads were connected at the titanium connector socket at 6 months. This BGS may exhibit wire fatigue greater than 50% of the time when used in the distal extremity of the horse.

  18. High day-to-day reliability in lower leg volume measured by water displacement.

    PubMed

    Pasley, Jeffrey D; O'Connor, Patrick J

    2008-07-01

    The day-to-day reliability of lower leg volume is poorly documented. This investigation determined the day-to-day reliability of lower leg volume (soleus and gastrocnemius) measured using water displacement. Thirty young adults (15 men and 15 women) had their right lower leg volume measured by water displacement on five separate occasions. The participants performed normal activities of daily living and were measured at the same time of day after being seated for 30 min. The results revealed a high day-to-day reliability for lower leg volume. The mean percentage change in lower leg volume across days compared to day 1 ranged between 0 and 0.37%. The mean within subjects coefficient of variation in lower leg volume was 0.72% and the coefficient of variation for the entire sample across days ranged from 5.66 to 6.32%. A two way mixed model intraclass correlation (30 subjects x 5 days) showed that the lower leg volume measurement was highly reliable (ICC = 0.972). Foot and total lower leg volumes showed similarly high reliability. Water displacement offers a cost effective and reliable solution for the measurement of lower leg edema across days.

  19. Age, gender, and race/ethnic differences in total body and subregional bone density1

    PubMed Central

    Looker, Anne C; Melton, L. Joseph; Harris, Tamara; Borrud, Lori; Shepherd, John; McGowan, Joan

    2011-01-01

    Introduction Total body dual-energy x-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. Methods The present study uses total body DXA data (Hologic QDR 4500A, Hologic Inc, Bedford MA) from the National Health and Nutrition Examination Survey (NHANES) 1999–2004 to examine bone mineral density (BMD) of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults age 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight bearing. Results Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg and arm. Conclusion This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population. PMID:19048179

  20. Leg symptoms associated with sacroiliac joint disorder and related pain.

    PubMed

    Murakami, Eiichi; Aizawa, Toshimi; Kurosawa, Daisuke; Noguchi, Kyoko

    2017-06-01

    The symptoms of sacroiliac joint (SIJ) disorders are usually detected in the buttock and groin, and occasionally referred to the thigh and leg. However, lumbar disorders also cause symptoms in these same body regions. The presence of a characteristic, symptomatic pattern in the legs would be useful for diagnosing SIJ disorders. This study aimed to identify specific leg symptoms in patients with SIJ pain originating from the posterior sacroiliac ligament and determine the rate of occurrence of these symptoms. The source population consisted of 365 consecutive patients from February 2005 to December 2007. One hundred patients were diagnosed with SIJ pain by a periarticular SIJ injection (42 males and 58 females, average age 46 years, age range, 18-75 years). A leg symptom map was made by subtracting the symptoms after a periarticular SIJ injection from the initial symptoms, and evaluating the rate of each individual symptom by area. Ninety-four patients reported pain at or around the posterior-superior iliac spine (PSIS). Leg symptoms comprised pain and a numbness/tingling sensation; ≥60% of the patients had these symptoms. Pain was mainly detected in the back, buttock, groin, and thigh areas, while numbness/tingling was mainly detected in the lateral to posterior thigh and back of the calf. Leg symptoms associated with SIJ pain originating from the posterior sacroiliac ligament include both pain and numbness, which do not usually correspond to the dermatome. These leg symptoms in addition to pain around the PSIS may indicate SIJ disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The second leg home advantage: evidence from European football cup competitions.

    PubMed

    Page, Lionel; Page, Katie

    2007-12-01

    The home advantage is a widely acknowledged sporting phenomenon, especially in association football. Here, we examine the second leg home advantage, an effect that is discussed in the public domain but which has received very little scientific attention. The second leg home advantage effect occurs when on average teams are more likely to win a two-stage knock-out competition when they play at home in the second leg. That is, both teams have a home advantage but this advantage is significantly greater for the team that plays at home second. Examining data from three different European Cup football competitions spanning 51 years, we show that the second leg home advantage is a real phenomenon. The second leg home team has more than a 50% probability to qualify for the next round in the competition even after controlling for extra time and team ability as possible alternative explanations. The second leg home advantage appears, however, to have decreased significantly over the past decade. Possible reasons for its existence and subsequent decline are presented.

  2. Profiling Isokinetic Strength by Leg Preference and Position in Rugby Union Athletes.

    PubMed

    Brown, Scott R; Brughelli, Matt; Bridgeman, Lee A

    2016-05-01

    Muscle imbalances aid in the identification of athletes at risk for lower-extremity injury. Little is known regarding the influence that leg preference or playing position may have on lower-extremity muscle strength and asymmetry. To investigate lower-extremity strength profiles in rugby union athletes and compare isokinetic knee- and hip-strength variables between legs and positions. Thirty male academy rugby union athletes, separated into forwards (n = 15) and backs (n = 15), participated in this cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque, angle of peak torque, and strength ratios of the preferred and nonpreferred legs during seated knee extension/flexion and supine hip extension/flexion at 60°/s. Backs were older (ES = 1.6) but smaller in stature (ES = -0.47) and body mass (ES = -1.3) than the forwards. The nonpreferred leg was weaker than the preferred leg for forwards during extension (ES = -0.37) and flexion (ES = -0.21) actions and for backs during extension (ES = -0.28) actions. Backs were weaker at the knee than forwards in the preferred leg during extension (ES = -0.50) and flexion (ES = -0.66) actions. No differences were observed in strength ratios between legs or positions. Backs produced peak torque at longer muscle lengths in both legs at the knee (ES = -0.93 to -0.94) and hip (ES = -0.84 to -1.17) than the forwards. In this sample of male academy rugby union athletes, the preferred leg and forwards displayed superior strength compared with the nonpreferred leg and backs. These findings highlight the importance of individualized athletic assessments to detect crucial strength differences in male rugby union athletes.

  3. How performing a repetitive one-legged stance modifies two-legged postural control.

    PubMed

    Burdet, Cyril; Vuillerme, Nicolas; Rougier, Patrice R

    2011-10-01

    The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.

  4. Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco

    2014-01-01

    Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249

  5. Bone marrow metastasis of malignant melanoma in childhood arising within a congenital melanocytic nevus.

    PubMed

    Volejnikova, Jana; Bajciova, Viera; Sulovska, Lucie; Geierova, Marie; Buriankova, Eva; Jarosova, Marie; Hajduch, Marian; Sterba, Jaroslav; Mihal, Vladimir

    2016-09-01

    Malignant melanoma in childhood is infrequent and can arise within congenital melanocytic nevi. Spread of malignant melanoma to the bone marrow, especially in children, is extremely rare. Reported is a case of a 5-year-old boy with a congenital large melanocytic nevus of the head and neck who presented with a short history of low back and leg pain, fever and cervical lymphadenopathy. Despite regular follow-up by a dermatologist and plastic surgeon and repeatedly negative histology of previous partial excisions, diffuse bone marrow infiltration with malignant melanoma was diagnosed. The primary site was identified in the post-excision area. The disease progressed rapidly on ipilimumab immunotherapy and led to death at four months from the diagnosis. Surveillance is indispensable in children with a predisposition to melanoma and nonspecific symptoms such as bone pain, gait impairment or cytopenia, should always be taken into account.

  6. Bone fractures following external beam radiotherapy and limb-preservation surgery for lower extremity soft tissue sarcoma: relationship to irradiated bone length, volume, tumor location and dose.

    PubMed

    Dickie, Colleen I; Parent, Amy L; Griffin, Anthony M; Fung, Sharon; Chung, Peter W M; Catton, Charles N; Ferguson, Peter C; Wunder, Jay S; Bell, Robert S; Sharpe, Michael B; O'Sullivan, Brian

    2009-11-15

    To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to >or=40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. For fracture patients, mean dose to bone was 45 +/- 8 Gy (mean dose at fracture site 59 +/- 7 Gy), mean FS was 37 +/- 8 cm, maximum dose was 64 +/- 7 Gy, and V40 was 76 +/- 17%, compared with 37 +/- 11 Gy, 32 +/- 9 cm, 59 +/- 8 Gy, and 64 +/- 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. The risk of radiation-induced fracture appears to be reduced if V40 <64%. Fracture incidence was lower when the mean dose to bone was <37 Gy or maximum dose anywhere along the length of bone was <59 Gy. There was a trend toward lower mean FS for nonfracture patients.

  7. Rotational joint assembly for the prosthetic leg

    NASA Technical Reports Server (NTRS)

    Owens, L. J.; Jones, W. C. (Inventor)

    1977-01-01

    A rotational joint assembly for a prosthetic leg has been devised, which enables an artificial foot to rotate slightly when a person is walking, running or turning. The prosthetic leg includes upper and lower tubular members with the rotational joint assembly interposed between them. The assembly includes a restrainer mechanism which consists of a pivotably mounted paddle element. This device applies limiting force to control the rotation of the foot and also restores torque to return the foot back to its initial position.

  8. Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography.

    PubMed Central

    Vanderkerken, K.; Goes, E.; De Raeve, H.; Radl, J.; Van Camp, B.

    1996-01-01

    The evolution of bone lesions in transplantable C57BL/KaLwRjj 5T mouse myeloma (MM) has been followed in vivo. Mice were anaesthetised and a radiograph of the pelvis and hind legs was performed by a radiograph dedicated for mammography. This is the first description of an in vivo technique under experimental conditions whereby the development of bone lesions owing to the MM growth was demonstrated. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:8664113

  9. CT angiography - arms and legs

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007675.htm CT angiography - arms and legs To use the sharing features on this page, please enable JavaScript. CT angiography combines a CT scan with the injection ...

  10. [Restless Legs Syndrome : A Threat to the quality of life].

    PubMed

    Castaño-Cárcamo, Mauricio; Escobar-Cordoba, Franklin; Rey de Castro, Jorge

    2014-01-01

    Restless legs syndrome is a disorder associated with the imperative need to move the legs, starting at different times of day and it gets worse at night, relieved by activity, affecting the quality of life and sleep who sufferers it. Despite being a common disorder at any age, in adults with a prevalence of up to 10%, is not diagnosed by doctors and first level specialists that is why diagnostic and therapeutic interventions get delayed contributing to the perpetuation of symptoms and worsening quality of life. Since its diagnosis is purely clinical, getting familiar with this disorder is essential to ensure proper focus and thus rule out other diseases commonly confused with this one. Restless legs syndrome has a multi-factorial etiology that ranges from a genetic and hereditary, which are called primary restless legs syndrome, to its association with multiple pathologies, known as secondary restless legs syndrome. As for its management, drug therapy and non-drug therapy is aimed at symptom control, as its cure is not possible, although occasionally the condition can refer to later repeat in months or years.

  11. Haemoglobin saturation during incremental arm and leg exercise.

    PubMed Central

    Powers, S. K.; Dodd, S.; Woodyard, J.; Beadle, R. E.; Church, G.

    1984-01-01

    There are few reports concerning the alterations in the percent of haemoglobin saturated with oxygen (%SO2) during non-steady state incremental exercise. Further, no data exist to describe the %SO2 changes during arm exercise. Therefore, the purpose of this study was made to assess the dynamic changes in %SO2 during incremental arm and leg work. Nine trained subjects (7 males and 2 females) performed incremental arm and leg exercise to exhaustion on an arm crank ergometer and a cycle ergometer, respectively. Ventilation and gas exchange measurements were obtained minute by minute via open circuit spirometry and changes in %SO2 were recorded via an ear oximeter. No significant difference (p greater than 0.05) existed between arm and leg work in end-tidal oxygen (PETO2), end-tidal carbon dioxide (PETCO2), or %SO2 when compared as a function of percent VO2 max. These results provide evidence that arterial O2 desaturation occurs in a similar fashion in both incremental arm and leg work with the greatest changes in %SO2 occurring at work rates greater than 70% VO2 max. PMID:6435715

  12. p53 Regulates Bone Differentiation and Osteosarcoma Formation | Center for Cancer Research

    Cancer.gov

    Osteosarcoma is an uncommon cancer that usually begins in the large bones of the arm or leg, but is the second leading cause of cancer-related death in children and young adults. The tumor suppressor protein, p53, appears to be an important player in osteosarcomagenesis in part because these cancers are one of the most common to develop in patients with Li-Fraumeni syndrome, which is caused by an inherited mutation in p53. However, the precise role of p53 in osteosarcoma development has not been established. To begin investigating its importance to the formation of normal bone and osteosarcomas, Jing Huang, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues, isolated bone marrow-derived mesenchymal stem cells (BMSCs) from p53 wild type (WT) and knock out (KO) mice using a recently validated approach. Because BMSCs are one of the cells-of-origin of osteosarcoma, they serve as a useful model system. BMSCs contain a subset of multipotent stem cells that can differentiate into several cell types, including osteoblasts, and are important mediators of bone homeostasis.

  13. Measurement and simulation of thermoelectric efficiency for single leg

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka

    2015-04-01

    Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150 °C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.

  14. Arthroscopic single-bundle anterior cruciate ligament reconstruction with six-strand hamstring tendon allograft versus bone-patellar tendon-bone allograft.

    PubMed

    Dai, Chengliang; Wang, Fei; Wang, Xiaomeng; Wang, Ruipeng; Wang, Shengjie; Tang, Shiyu

    2016-09-01

    The aim of this study was to compare the clinical outcomes of arthroscopic single-bundle anterior cruciate ligament (ACL) reconstruction with six-strand hamstring tendon (HT) allograft versus bone-patellar tendon-bone (BPTB) allograft. The prospective randomized controlled trial was included 129 patients. Sixty-nine patients received reconstruction with six-strand HT allografts (HT group), whereas 60 patients with BPTB allografts (BPTB group). Outcome assessment included re-rupture findings, International Knee Documentation Committee (IKDC) scores, Lysholm scores, KT-1000 arthrometer, Lachman test, pivot-shift test, range of motion (ROM) and single-leg hop test. At a mean follow-up of 52 months, 113 patients (HT group, 61 patients; BPTB group, 52 patients) completed a minimum 4-year follow-up. Four patients in HT group and six in BPTB group experienced ACL re-rupture (6.2 vs. 10.3 %) and received revision surgery. Significant between-group differences were observed in KT-1000 outcomes and pivot-shift test 1 (1.2 ± 1.5 vs. 1.8 ± 1.3, p = 0.025; positive rate 6.5 vs. 18.9 %, p = 0.036), 2 (1.1 ± 1.4 vs. 1.6 ± 1.2, p = 0.044; 8.1 vs. 20.7 %, p = 0.039), 4 (1.1 ± 1.5 vs. 1.7 ± 1.4, p = 0.031; 9.7 vs. 25 %, p = 0.012) years postoperatively. The outcomes between the two groups were comparable in terms of IKDC scores, Lysholm scores, Lachman test, ROM and single-leg hop test. Six-strand HT allograft achieved superior anteroposterior and rotational stability after single-bundle ACL reconstruction. It is a reasonable graft substitute for ACL reconstruction. II.

  15. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  16. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.

  17. Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography

    PubMed Central

    Umut, İlhan; Çentik, Güven

    2016-01-01

    The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present. PMID:27213008

  18. Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography.

    PubMed

    Umut, İlhan; Çentik, Güven

    2016-01-01

    The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present.

  19. Loss of legs: is it or not a handicap for an orb-weaving spider?

    NASA Astrophysics Data System (ADS)

    Pasquet, Alain; Anotaux, Mylène; Leborgne, Raymond

    2011-07-01

    Leg loss is a common phenomenon in spiders, and according to the species 5% to 40% of the adults can present at least one missing leg. There is no possibility of regeneration after adult moult and the animal must manage with its missing appendages until its death. With the loss of one or more legs, female orb-weaving spiders can be penalized twice: firstly, because the legs are necessary for web construction and secondly, the legs are essential for the control of the prey after its interception by the web. During development, spiders may be also penalized because regeneration has energetic costs that take away resources for survival, growth and reproduction. All these consequences should influence negatively the development of the spider and thus its fitness. We investigated the impact of leg loss in the orb-weaving spider, Zygiella x-notata by studying its frequency in a natural population and web building and prey capture behaviours in laboratory. In field populations, 9.5% to 13%, of the adult females presented the loss of one or more legs; the majority of individuals had lost only one leg (in 48% of cases, a first one). Leg loss seems to affect all the adult spiders, as there is no difference of mass between intact spiders and those with missing leg. Data obtained with laboratory-reared spiders, showed that the loss of legs due to the moult is rare (less than 1%). Considering changes in web design, spiders with missing legs decreased their silk investment, increased the distance between spiral turns but did not change the capture surface of the web. Under our laboratory experimental conditions, spiders with one or two lost legs did not present any difference in prey capture efficiency. In laboratory conditions, spiders with lost leg(s) did not show any difference in egg sac production or in longevity (adult lifespan) compared to intact spiders.

  20. Bone stress: a radionuclide imaging perspective. [/sup 99m/Tc-pyrophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schemamore » is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress.« less

  1. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF)

    PubMed Central

    Audigé, Laurent; Slongo, Theddy; Lutz, Nicolas; Blumenthal, Andrea; Joeris, Alexander

    2017-01-01

    Background and purpose The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF) describes the localization and morphology of fractures, and considers severity in 2 categories: (1) simple, and (2) multifragmentary. We evaluated simple and multifragmentary fractures in a large consecutive cohort of children diagnosed with long bone fractures in Switzerland. Patients and methods Children and adolescents treated for fractures between 2009 and 2011 at 2 tertiary pediatric surgery hospitals were retrospectively included. Fractures were classified according to the AO PCCF. Severity classes were described according to fracture location, patient age and sex, BMI, and cause of trauma. Results Of all trauma events, 3% (84 of 2,730) were diagnosed with a multifragmentary fracture. This proportion was age-related: 2% of multifragmentary fractures occurred in school­children and 7% occurred in adolescents. In patients diagnosed with a single fracture only, the highest percentage of multifragmentation occurred in the femur (12%, 15 of 123). In fractured paired radius/ulna bones, multifragmentation occurred in 2% (11 of 687); in fractured paired tibia/fibula bones, it occurred in 21% (24 of 115), particularly in schoolchildren (5 of 18) and adolescents (16 of 40). In a multivariable regression model, age, cause of injury, and bone were found to be relevant prognostic factors of multifragmentation (odds ratio (OR) > 2). Interpretation Overall, multifragmentation in long bone fractures in children was rare and was mostly observed in adolescents. The femur was mostly affected in single fractures and the lower leg was mostly affected in paired-bone fractures. The clinical relevance of multifragmentation regarding growth and long-term functional recovery remains to be determined. PMID:27882814

  2. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF).

    PubMed

    Audigé, Laurent; Slongo, Theddy; Lutz, Nicolas; Blumenthal, Andrea; Joeris, Alexander

    2017-04-01

    Background and purpose - The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF) describes the localization and morphology of fractures, and considers severity in 2 categories: (1) simple, and (2) multifragmentary. We evaluated simple and multifragmentary fractures in a large consecutive cohort of children diagnosed with long bone fractures in Switzerland. Patients and methods - Children and adolescents treated for fractures between 2009 and 2011 at 2 tertiary pediatric surgery hospitals were retrospectively included. Fractures were classified according to the AO PCCF. Severity classes were described according to fracture location, patient age and sex, BMI, and cause of trauma. Results - Of all trauma events, 3% (84 of 2,730) were diagnosed with a multifragmentary fracture. This proportion was age-related: 2% of multifragmentary fractures occurred in school-children and 7% occurred in adolescents. In patients diagnosed with a single fracture only, the highest percentage of multifragmentation occurred in the femur (12%, 15 of 123). In fractured paired radius/ulna bones, multifragmentation occurred in 2% (11 of 687); in fractured paired tibia/fibula bones, it occurred in 21% (24 of 115), particularly in schoolchildren (5 of 18) and adolescents (16 of 40). In a multivariable regression model, age, cause of injury, and bone were found to be relevant prognostic factors of multifragmentation (odds ratio (OR) > 2). Interpretation - Overall, multifragmentation in long bone fractures in children was rare and was mostly observed in adolescents. The femur was mostly affected in single fractures and the lower leg was mostly affected in paired-bone fractures. The clinical relevance of multifragmentation regarding growth and long-term functional recovery remains to be determined.

  3. Leg orientation as a clinical sign for pusher syndrome

    PubMed Central

    Johannsen, Leif; Broetz, Doris; Karnath, Hans-Otto

    2006-01-01

    Background Effective control of (upright) body posture requires a proper representation of body orientation. Stroke patients with pusher syndrome were shown to suffer from severely disturbed perception of own body orientation. They experience their body as oriented 'upright' when actually tilted by nearly 20° to the ipsilesional side. Thus, it can be expected that postural control mechanisms are impaired accordingly in these patients. Our aim was to investigate pusher patients' spontaneous postural responses of the non-paretic leg and of the head during passive body tilt. Methods A sideways tilting motion was applied to the trunk of the subject in the roll plane. Stroke patients with pusher syndrome were compared to stroke patients not showing pushing behaviour, patients with acute unilateral vestibular loss, and non brain damaged subjects. Results Compared to all groups without pushing behaviour, the non-paretic leg of the pusher patients showed a constant ipsiversive tilt across the whole tilt range for an amount which was observed in the non-pusher subjects when they were tilted for about 15° into the ipsiversive direction. Conclusion The observation that patients with acute unilateral vestibular loss showed no alterations of leg posture indicates that disturbed vestibular afferences alone are not responsible for the disordered leg responses seen in pusher patients. Our results may suggest that in pusher patients a representation of body orientation is disturbed that drives both conscious perception of body orientation and spontaneous postural adjustment of the non-paretic leg in the roll plane. The investigation of the pusher patients' leg-to-trunk orientation thus could serve as an additional bedside tool to detect pusher syndrome in acute stroke patients. PMID:16928280

  4. Genetic analysis of feet and leg conformation traits in Nelore cattle.

    PubMed

    Vargas, G; Neves, H H R; Cardoso, V; Munari, D P; Carvalheiro, R

    2017-06-01

    Feet and leg conformation scores are important traits in beef cattle because they encompass a wide range of locomotion disorders that can lead to productive and reproductive losses. Thus, the study of feet and legs in beef cattle is essential for evaluating possible responses to selection focusing on minimizing economic losses caused by the occurrence of feet and leg problems. The aim of this study was to estimate variance components for feet and leg conformation traits in Nelore cattle. The data set contained records of approximately 300,000 animals that were born between 2000 and 2013. These animals belonged to the commercial beef cattle breeding program of the CRV Lagoa (). Feet and legs were evaluated by assigning visual scores at 2 different time points: feet and leg evaluated as a binary trait (FL1), measured at yearling (about 550 d of age) to identify whether (or not) an animal has feet and leg defects, and feet and leg score (FL2), ranging from 1 (less desirable) to 5 (more desirable) was assigned to the top 20% of animals according to the selection index adopted by the beef cattle breeding program, which was measured 2 to 5 mo after the yearling evaluation. The FL1 and FL2 traits were analyzed together with yearling weight (YW). The (co)variance components and breeding values were estimated by Bayesian inference using 2-trait animal models. The posterior means (standard errors) of the heritabilities for FL1, FL2, and YW were 0.18 (0.04), 0.39 (0.07), and 0.47 (0.01), respectively. The results indicate that the incidence of feet and leg problems in this population might be reduced by selection. The genetic correlation between FL1 and FL2 (-0.47) was moderate and negative as expected because the classification score that holds up each trait has opposite numerical values. The genetic trends estimated for FL1 and FL2 (-0.042 and 0.021 genetic standard deviations per year, respectively) were favorable and they indicate that the independent culling strategy for

  5. [Fractures of the lower leg in professional skiers].

    PubMed

    Mückley, T; Kruis, C; Schütz, T; Brucker, P; Bühren, V

    2004-03-01

    Fractures of the lower leg due to skiing accidents remain an important concern. Few studies have focussed on the special demands of professional athletes who sustain these injuries. We present our experience with three cases of lower leg fractures in competitive professional downhill skiers and discuss management and treatment concepts. We performed limited reamed compression nailing in all the patients presented because it offers the advantages of high mechanical stability and optimized fragment apposition. Plate osteosynthesis of the fibula is not required in most typical fractures. All patients resumed ski training. Two of them returned to World Cup. Only one achieved her pre-injury World Cup level of performance and success. In conclusion, a successful return for professional skiers with lower leg fractures is feasible using an optimized treatment strategy.

  6. Experiments in balance with a 2D one-legged hopping machine

    NASA Astrophysics Data System (ADS)

    Raibert, M. H.; Brown, H. B., Jr.

    1984-03-01

    The ability to balance is important to the mobility obtained by legged creatures found in nature, and may someday lead to versatile legged vehicles. In order to study the role of balance in legged locomotion and to develop appropriate control strategies, a 2D hopping machine was constructed for experimentation. The machine has one leg on which it hops and runs, making balance a prime consideration. Control of the machine's locomotion was decomposed into three separate parts: a vertical height control part, a horizontal velocity part, and an angular attitude control part. Experiments showed that the three part control scheme, while very simple to implement, was powerful enough to permit the machine to hop in place, to run at a desired rate, to translate from place to place, and to leap over obstacles. Results from modeling and computer simulation of a similar one-legged device are described by Raibert (1983).

  7. 11. NORTH VIEW OF INNER FACING OF SOUTHEASTERN LEG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. NORTH VIEW OF INNER FACING OF SOUTHEASTERN LEG OF SEA WALL. SOUTHERN END OF NORTHEASTERN LEG OF SEA WALL IN BACKGROUND. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  8. Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg

    PubMed Central

    Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej

    2015-01-01

    The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the

  9. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  10. Sprint Interval Training Induces A Sexual Dimorphism but does not Improve Peak Bone Mass in Young and Healthy Mice

    PubMed Central

    Koenen, Kathrin; Knepper, Isabell; Klodt, Madlen; Osterberg, Anja; Stratos, Ioannis; Mittlmeier, Thomas; Histing, Tina; Menger, Michael D.; Vollmar, Brigitte; Bruhn, Sven; Müller-Hilke, Brigitte

    2017-01-01

    Elevated peak bone mass in early adulthood reduces the risk for osteoporotic fractures at old age. As sports participation has been correlated with elevated peak bone masses, we aimed to establish a training program that would efficiently stimulate bone accrual in healthy young mice. We combined voluntary treadmill running with sprint interval training modalities that were tailored to the individual performance limits and were of either high or intermediate intensity. Adolescent male and female STR/ort mice underwent 8 weeks of training before the hind legs were analyzed for cortical and trabecular bone parameters and biomechanical strength. Sprint interval training led to increased running speeds, confirming an efficient training. However, males and females responded differently. The males improved their running speeds in response to intermediate intensities only and accrued cortical bone at the expense of mechanical strength. High training intensities induced a significant loss of trabecular bone. The female bones showed neither adverse nor beneficial effects in response to either training intensities. Speculations about the failure to improve geometric alongside mechanical bone properties include the possibility that our training lacked sufficient axial loading, that high cardio-vascular strains adversely affect bone growth and that there are physiological limits to bone accrual. PMID:28303909

  11. The relationship between objectively assessed physical activity and bone health in older adults differs by sex and is mediated by lean mass.

    PubMed

    McMillan, L B; Aitken, D; Ebeling, P; Jones, G; Scott, D

    2018-03-12

    Relationships between objectively assessed free-living physical activity (PA) and changes in bone health over time are poorly understood in older adults. This study suggests these relationships are sex-specific and that body composition may influence the mechanical loading benefits of PA. To investigate associations of objectively assessed PA and bone health in community-dwelling older adults. This secondary analysis of a subset of the Tasmanian Older Adult Cohort study included participants with PA assessed utilising ActiGraph GT1M accelerometers over 7 days (N = 209 participants, 53% female; mean ± SD age 64.5 ± 7.2 years). Steps/day and PA intensity were estimated via established thresholds. Bone mineral content (BMC) was acquired at the total hip, lumbar spine, legs and whole body by DXA at baseline and approximately 2.2 years later. Relationships between PA and BMC were assessed by multivariable linear regression analyses adjusted for age, smoking status, height and total lean mass. Men with above-median total hip BMC completed significantly less steps per day, but there was no significant difference in PA intensity compared with those with below-median BMC. There were no significant differences in PA in women stratified by median BMC. In women, steps/day were positively associated with leg BMC (B = 0.178; P = 0.017), and sedentary behaviour was negatively associated with leg BMC (- 0.165; 0.016) at baseline. After adjustment for confounders including lean mass and height, higher sedentary behaviour at baseline was associated with declines in femoral neck BMC (- 0.286; 0.011) but also with increases in pelvic BMC (0.246; 0.030) in men and increases in total hip BMC (0.215; 0.032) in women, over 2.2 years. No other significant longitudinal associations were observed after adjustment for body composition. Associations of accelerometer-determined sedentary behaviour and PA with bone health in older adults differ by sex and anatomical

  12. A meta-analysis of experiments linking incubation conditions with subsequent leg weakness in broiler chickens.

    PubMed

    Groves, Peter J; Muir, Wendy I

    2014-01-01

    A series of incubation and broiler growth studies were conducted using one strain of broiler chicken (fast feathering dam line) observing incubation effects on femoral bone ash % at hatch and the ability of the bird to remain standing at 6 weeks of age (Latency-To-Lie). Egg shell temperatures during incubation were consistently recorded. Parsimonious models were developed across eight studies using stepwise multiple linear regression of egg shell temperatures over 3-day periods and both bone ash at hatch and Latency-To-Lie. A model for bone ash at hatch explained 70% of the variation in this factor and revealed an association with lower egg shell temperatures during days 4-6 and 13-15 and higher egg shell temperatures during days 16-18 of incubation. Bone ash at hatch and subsequent Latency-To-Lie were positively correlated (r = 0.57, P<0.05). A model described 66% of the variation Latency-To-Lie showing significant association of the interaction of femoral ash at hatch and lower average egg shell temperatures over the first 15 days of incubation. Lower egg shell temperature in the early to mid incubation process (days 1-15) and higher egg shell temperatures at a later stage (days 16-18) will both tend to delay the hatch time of incubating eggs. Incubation profiles that resulted in later hatching chicks produced birds which could remain standing for a longer time at 6 weeks of age. This supports a contention that the effects of incubation observed in many studies may in fact relate more to earlier hatching and longer sojourn of the hatched chick in the final stage incubator. The implication of these outcomes are that the optimum egg shell temperature during incubation for broiler leg strength development may be lower than that regarded as ideal (37.8°C) for maximum hatchability and chick growth.

  13. Effect of radioactive iodine-induced hypothyroidism on longitudinal bone growth during puberty in immature female rats.

    PubMed

    Choi, Hyeonhae; Ryu, Ki-Young; Roh, Jaesook; Bae, Jaeman

    2018-05-22

    Thyroid cancer in children, the most common endocrine malignancy, shows aggressive behavior and has a high recurrence rate after surgical ablation. Radioactive iodine (RAI) treatment is the most effective primary modality for medical ablation of juvenile thyroid cancer, and leads to intentional hypothyroidism. Although several negative impacts of hypothyroidism have been reported in children in response to other antithyroid agents, the combined effects of RAI exposure and hypothyroidism, on growing bones specifically, are unknown. In this study, we investigated the effect of RAI-induced hypothyroidism on the long bones during the pubertal growth spurt using immature female rats. Female Sprague-Dawley rats were randomly divided into a control group, and an RAI-treated group fed with RAI (0.37 MBq/g body weight) twice via gavage. After 4 weeks, we observed a significantly-reduced serum free thyroxine level in the RAI group. The latter group also displayed decreased body weight gain compared to the control. In addition, the lengths of long bones, such as the leg bones and vertebral column, as well as bone mineral content, were reduced in the RAI-treated animals. Our results confirm the negative impacts of RAI-induced thyroid deficiency during puberty on longitudinal bone growth and bone mineralization.

  14. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    NASA Astrophysics Data System (ADS)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  15. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.

    PubMed

    Liew, Bernard; Netto, Kevin; Morris, Susan

    2017-10-01

    Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s -1 ), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s -1 , but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.

  16. 33 CFR 147.817 - Sir Douglas Morpeth Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sir Douglas Morpeth Tension Leg... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.817 Sir Douglas Morpeth Tension Leg Platform safety zone. (a) Description. The Sir Douglas Morpeth Tension Leg Platform (Morpeth...

  17. Endogenous pro-thrombotic biomarkers from the arm and leg may not have the same value.

    PubMed

    Lattimer, Christopher R; Kalodiki, Evi; Geroulakos, George; Hoppensteadt, Debra; Fareed, Jawed

    2016-05-01

    Assessments of endogenous pro-thrombotic biomarkers are performed invariably on arm blood. However, the commonest site for thrombosis is in the leg. A leg blood sample may reflect local pro-thrombotic processes more accurately than systemic arm blood. The aim was to determine whether pro-thrombotic biomarkers from standard venous arm samples differed significantly from leg samples. Concurrent blood samples were taken from an ankle/lower calf varicose vein and an ante-cubital vein in 24 patients awaiting laser treatment as well as age approximated and sex matched healthy controls without venous disease. The following assays were performed: thrombin-antithrombin (ng/ml), antithrombin (%) activity, microparticles (nM), fibrinogen (mg/dl), prothrombin fragment 1.2 (F1.2) (pM) and P-selectin (ng/ml). Expressed as median (inter-quartile range). Significant arm/leg differences were observed in thrombin-antithrombin, antithrombin, prothrombin fragment 1.2 and P-selectin. The legs of patients had significantly reduced antithrombin activity and P-selectin concentrations compared to their arms (leg: 101 (90-108) versus arm: 112 (99-126), P = 0.001 and leg: 42 (26-52) versus 45 (27-52), P = 0.044, respectively). Control leg samples had significantly increased thrombin-antithrombin and P-selectin compared to control arm samples (leg: 2.1 (0.9-3.2) versus arm: 0.8 (0.5-1.7), P = 0.015 and leg: 36 (24-50) versus arm: 30 (23-41), P = 0.007, respectively). However, the control legs had significantly reduced F1.2 (leg: 265 (230-333) versus arm: 299 (236-361), P = 0.028). No significant arm/leg differences were detected in the microparticle or fibrinogen levels. These findings indicate that venous arm blood is significantly different from venous leg blood in four out of six biomarkers studied. Recognition of local venous leg sampling as a site for investigation may unravel why the leg has a greater predisposition to thrombosis and lead the way towards an arm/leg

  18. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.

    PubMed

    Ting, L H; Raasch, C C; Brown, D A; Kautz, S A; Zajac, F E

    1998-09-01

    The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling was chosen as the locomotor task to study because interlimb mechanics can be significantly altered, as pedaling can be executed with the use of either one leg or two legs (cf. walking) and because the load on the limb can be well-controlled. Subjects pedaled a modified bicycle ergometer in a two-legged (bilateral) and a one-legged (unilateral) pedaling condition. The loading on the leg during unilateral pedaling was designed to be identical to the loading experienced by the leg during bilateral pedaling. This loading was achieved by having a trained human "motor" pedal along with the subject and exert on the opposite crank the torque that the subject's contralateral leg generated in bilateral pedaling. The human "motor" was successful at reproducing each subject's one-leg crank torque. The shape of the motor's torque trajectory was similar to that of subjects, and the amount of work done during extension and flexion was not significantly different. Thus the same muscle coordination pattern would allow subjects to pedal successfully in both the bilateral and unilateral conditions, and the afferent signals from the pedaling leg could be the same for both conditions. Although the overall work done by each leg did not change, an 86% decrease in retarding (negative) crank torque during limb flexion was measured in all 11 subjects during the unilateral condition. This corresponded to an increase in integrated electromyography of tibialis anterior (70%), rectus femoris (43%), and biceps femoris (59%) during flexion. Even given visual torque feedback in the unilateral condition

  19. [Contact eczema in patients with leg ulcers].

    PubMed

    Degreef, H; Dooms-Goossens, A; Gladys, K

    1986-01-01

    Patients with leg ulcers or varicose eczema suffer much more often from contact eczema due to the local application of pharmaceutical preparations than patients suffering from other dermatological problems (even those of eczematous origin). This contact allergy may concern not only the active ingredient but also the excipient, the preservative, or even the perfume. In all cases of leg ulcers, of varicose eczema, but also of badly healed ulcers, epicutaneous tests should be carried out with all the components of the pharmaceutical preparations concerned. Moreover, the pharmaceutical industry really must perfect non-allergenic preparations.

  20. Ultrasonography of Skin Changes in Legs with Chronic Venous Disease.

    PubMed

    Caggiati, A

    2016-10-01

    In daily practice, ultrasonography (US) is used only to designate the location and pattern of venous lesions. Skin US is not performed between routine venous investigations. Skin morphology is evaluated by the same probes used for routine Duplex evaluation of superficial veins. US findings from evident skin lesions are comparatively evaluated with those from the surrounding apparently normal skin and from the contralateral leg. Inflammation and dermal edema can be found in the apparently normal skin of C2 legs. Swollen legs show thickening of the subcutaneous layer as a result of diffuse soaking or anechoic cavities, with or without dermal edema. Chronic hypodermitis is characterized by inflammatory edema in initial phases, and by liposclerosis in advanced cases. Recrudescence of inflammation provokes focal rarefactions of the subcutaneous layer, possibly related to ulcer opening. In legs with venous disorders, sonography refines clinical evaluation of the skin and may reveal changes not highlighted by inspection. Some of these changes could require further investigation because they have not yet been explained or described. Skin sonography should improve knowledge of the natural history of skin changes, as well as contribute to a better grading of venous diseases severity In particular, US evidence of cutaneous and subcutaneous changes in C2 legs should be considered to stratify the treatment in C2 legs, by identifying those in which varicose veins are not simply a cosmetic problem. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Directionally compliant legs influence the intrinsic pitch behaviour of a trotting quadruped

    PubMed Central

    Lee, David V; Meek, Sanford G

    2005-01-01

    Limb design is well conserved among quadrupeds, notably, the knees point forward (i.e. cranial inclination of femora) and the elbows point back (i.e. caudal inclination of humeri). This study was undertaken to examine the effects of joint orientation on individual leg forces and centre of mass dynamics. Steady-speed trotting was simulated in two quadrupedal models. Model I had the knee and elbow orientation of a quadruped and model II had a reversed leg configuration in which knees point back and elbows point forward. The model's legs showed directional compliance determined by the orientation of the knee/elbow. In both models, forward pointing knees/elbows produced a propulsive force bias, while rearward pointing knees/elbows produced a braking force bias. Hence, model I showed the same pattern of hind-leg propulsion and fore-leg braking observed in trotting animals. Simulations revealed minimal pitch oscillations during steady-speed trotting of model I, but substantially greater and more irregular pitch oscillations of model II. The reduced pitch oscillation of model I was a result of fore-leg and hind-leg forces that reduced pitching moments during early and late stance, respectively. This passive mechanism for reducing pitch oscillations was an emergent property of directionally compliant legs with the fore–hind configuration of model I. Such intrinsic stability resulting from mechanical design can simplify control tasks and lead to more robust running machines. PMID:15817430

  2. Are differences in leg length predictive of lateral patello-femoral pain?

    PubMed

    Carlson, Mary; Wilkerson, Jerry

    2007-03-01

    Lateral patello-femoral pain can shorten an athletic career and generally decrease an individual's physical activity and functional level, such as preventing stair climbing and reducing the ability to rise from a chair. Leg length inequality is associated with patello-femoral pain. A leg length test that best distinguishes the difference between people who have lateral patello-femoral pain and those who do not would have clinical utility. The purpose of the present study was, first, to determine if unilateral, lateral patello-femoral pain was associated with the longer leg when inequality of leg lengths existed and, second, to determine if leg length direct measurement, indirect measurement or quadriceps angle (Q angle) could correctly classify participants according to the presence or absence of patello-femoral pain. The study used an ex post facto, two-group quasi-experimental design. A volunteer sample of 52 participants (14 males, 38 females), ranged in age from 18 to 52 years. Three methods were used to measure leg lengths: palpation meter (PALM) on anterior superior iliac spines (ASIS) while participants maintained centred weight-bearing position on a high resolution pressure mat; tape measurement from ASIS to medial malleolus (supine); tape measurement from ASIS to lateral malleolus (supine). Additionally, Q angle was measured in supine position. Patellar grind test, medial retinacular and lateral patellar palpation screened for patello-femoral pain. Logistic regression analysis determined correctness of membership in painful and non-painful patello-femoral groups. The PALM method of indirect measurement of leg length differences overall correctly classified approximately 83 % of the participants. Tape measure to medial and lateral malleoli as well as Q angle did not yield significant results. The results suggested that the PALM method of measuring leg length differences may have clinical utility in differentiating between patients who are likely to sustain

  3. Monocoque structure for the SKITTER three-legged walker

    NASA Astrophysics Data System (ADS)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-06-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  4. Monocoque structure for the SKITTER three-legged walker

    NASA Technical Reports Server (NTRS)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-01-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  5. [The monorail system--bone segment transport over unreamed interlocking nails].

    PubMed

    Oedekoven, G; Jansen, D; Raschke, M; Claudi, B F

    1996-11-01

    A treatment protocol is demonstrated, consisting of an osteotomy, either proximal or distal, of the bone defect with subsequent segmental transport via an anteromedially (tibia) or laterally (femur) mounted AO external fixation over an unreamed interlocking nail (monorail system). Twenty patients were treated by this method with indications as follows: 13 had a segmental bone defect of the tibia, 3 of the femur. Three patients showed post-traumatic and postinfectious leg-length discrepancies and one was treated for hypertrophic non-union of the femur. Defect distance varied between 5 and 18.5 cm and average time for transport was 19,42 days/ cm for the tibial shaft, 15,93 days/cm for the femur. Two patients developed deep infection, which required change of treatment, removing the monorail system and application of an Ilizarov apparatus. Despite complications using the monorail system, all patients healed and no amputations were required. The monorail system can be used as an alternative to the Ilizarov method under certain criteria of patient selection; these criteria are shown by an algorithm for segmental bone defects without infection, respecting the soft-tissue status with or without neurovascular compromise.

  6. Interventions for varicose veins and leg oedema in pregnancy.

    PubMed

    Smyth, Rebecca M D; Aflaifel, Nasreen; Bamigboye, Anthony A

    2015-10-19

    Pregnancy is presumed to be a major contributory factor in the increased incidence of varicose veins in women, which can in turn lead to venous insufficiency and leg oedema. The most common symptom of varicose veins and oedema is the substantial pain experienced, as well as night cramps, numbness, tingling, the legs may feel heavy, achy, and possibly be unsightly. Treatments for varicose veins are usually divided into three main groups: surgery, pharmacological and non-pharmacological treatments. Treatments of leg oedema comprise mostly symptom reduction rather than cure and use of pharmacological and non-pharmacological approaches. To assess any form of intervention used to relieve the symptoms associated with varicose veins and leg oedema in pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015) and reference lists of retrieved studies. Randomised trials of treatments for varicose veins or leg oedema, or both, in pregnancy. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We included seven trials (involving 326 women). The trials were largely unclear for selection bias and high risk for performance and detection bias.Two studies were placebo-controlled trials. The first one compared a phlebotonic (rutoside) with placebo for the reduction in symptoms of varicose veins; the second study evaluated the efficacy of troxerutin in comparison to placebo among 30 pregnant women in their second trimester with symptomatic vulvar varicosities and venous insufficiency in their lower extremities. Data from this study were not in useable format, so were not included in the analysis. Two trials compared either compression stockings with resting in left lateral position or reflexology with rest for 15 minutes for the reduction of leg oedema. One trial compared standing water immersion for 20 minutes with sitting upright in a chair with legs elevated for 20

  7. Fatal pox infection in a rough-legged hawk

    USGS Publications Warehouse

    Pearson, G.L.; Pass, D.A.; Beggs, E.C.

    1975-01-01

    Natural pox infection occurred in a free-living rough-legged hawk (Buteo lagopus) in northeastern North Dakota. Gross, histological and electron microscopic findings were typical of pox infection, and characteristic lesions developed in red-tailed hawks (Buteo jamaicensis) but not in great horned owls (Bubo virginianus) following inoculation with case material. Death of the rough-legged hawk was attributed to starvation resulting from inability to capture prey and to blood loss from foot lesions.

  8. Optimum frequency of exercise for bone health: randomised controlled trial of a high-impact unilateral intervention.

    PubMed

    Bailey, Christine A; Brooke-Wavell, Katherine

    2010-04-01

    Exercise can increase bone strength, but to be effective in reducing fracture risk, exercise must be feasible enough to be adopted into daily life and influence potentially vulnerable skeletal sites such as the superolateral cortex of the femoral neck, where thinning is associated with increased fracture risk. Brief, high-impact exercise increases femoral neck bone density but the optimal frequency of such exercise and the location of bone accrual is unknown. This study thus examined (1) the effectiveness of different weekly frequencies of exercise on femoral neck BMD and (2) whether BMD change differed between hip sites using a high-impact, unilateral intervention. Healthy premenopausal women were randomly assigned to exercise 0, 2, 4, or 7 days/week for 6 months. The exercise intervention incorporated 50 multidirectional hops on one randomly selected leg. BMD was measured by DXA at baseline and after 6 months of exercise. Changes in the exercise leg were compared between groups using ANCOVA, with change in the control leg and baseline BMD as covariates. RM-MANOVA was conducted to determine whether bone changes from exercise differed between hip sites. 61 women (age 33.6+/-11.1 years) completed the intervention. Compliance amongst exercisers was 86.7+/-10.6%. Peak ground reaction forces during exercise increased from 2.5 to 2.8 times body weight. The change in femoral neck BMD in the exercise limb (adjusted for change in the control limb and baseline BMD) differed between groups (p=0.015), being -0.3% (-1.2 to 0.6), 0.0% (-1.0 to 1.0), 0.9% (-0.1 to 2.0) and 1.8% (0.8 to 2.8) in those exercising 0, 2, 4 and 7 days per week, respectively. When BMD changes at upper neck, lower neck and trochanter were compared using RM-MANOVA, a significant exercise effect was observed (p=0.048), but this did not differ significantly between sites (p=0.439) despite greatest mean increases at the upper femoral neck. Brief, daily hopping exercises increased femoral neck BMD in

  9. Variability of single-leg versus double-leg stance radiographs in the varus knee.

    PubMed

    Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I

    2009-07-01

    We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.

  10. Frequency and Associated Factors of Bone Fractures in Russians: The Ural Eye and Medical Study.

    PubMed

    Bikbov, Mukharram M; Fayzrakhmanov, Rinat R; Kazakbaeva, Gyulli M; Zainullin, Rinat M; Salavatova, Venera F; Gilmanshin, Timur R; Arslangareeva, Inga I; Nikitin, Nikolai A; Panda-Jonas, Songhomitra; Mukhamadieva, Svetlana R; Yakupova, Dilya F; Khikmatullin, Renat I; Aminev, Said K; Nuriev, Ildar F; Zaynetdinov, Artur F; Uzianbaeva, Yulia V; Jonas, Jost B

    2018-05-10

    With information about frequency of bone fractures in Russia mostly missing, we assessed the frequency of previous bone fractures in a Russian population. The population-based study Ural Eye and Medical Study included 5899 (80.5%) out of 7328 eligible individuals (mean age: 59.0 ± 10.7 years; range: 40-94 years). The history of previous bone fractures was assessed in a standardized interview for 5397 (91.5%) individuals. Mean frequency of any previous bone fracture was 1650/5397 (30.6%; 95% confidence interval (CI): 29, 3, 31.8). In multivariate analysis, higher frequency of bone fractures was associated with male sex (P < 0.001; odds ratio (OR): 1.67; 95% CI: 1.41, 2.00), urban region (P < 0.001; OR: 1.45; 95% CI: 1.23, 1.72), higher prevalence of vigorous activity during leisure (P < 0.001; OR: 1.42; 95% CI: 1.20, 1.68), current smoking (P = 0.001; OR: 1.46; 95% CI: 1.16, 1.82) and higher prevalence of cardiovascular disease (P = 0.007; OR: 1.29; 95% CI: 1.07, 1.56), low blood pressure episodes with hospital admission (P = 0.001; OR: 2.08; 95% CI: 1.37, 3.16), tumbling (P < 0.001; OR: 2.58; 95% CI: 1.37, 3.16) and thoracic spine pain (P < 0.001; OR: 1.43; 95% CI: 1.18, 1.73). In women, menopause (P < 0.001; OR: 2.17; 95% CI: 1.47, 3.22) was additionally associated. The most common single-bone fractures involved leg and knee (229/5397; 4.2%), hand in general (n = 169; 3.1%) or hand wrist only (n = 97; 1.8%), arm (n = 94; 1.7%) and ankle (n = 67; 1.2%). Severe fractures included spine (n = 35; 0.6%), os sacrum (n = 10; 0.2%), skull (n = 6; 0.1%), pelvis (n = 5; 0.1%) and hip (n = 22; 0.4%). Most frequent combined fractures included as most important part the leg (n = 90; 1.7%), spine (n = 18; 0.3%), and hip (n = 18; 0.3). These data give hints on the epidemiology of bone fractures in Russia.

  11. Energy absorption as a predictor of leg impedance in highly trained females.

    PubMed

    Kulas, Anthony S; Schmitz, Randy J; Schultz, Sandra J; Watson, Mary Allen; Perrin, David H

    2006-08-01

    Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.

  12. Effectiveness of various isometric exercises at improving bone strength in cortical regions prone to distal tibial stress fractures.

    PubMed

    Florio, C S

    2018-06-01

    A computational model was used to compare the local bone strengthening effectiveness of various isometric exercises that may reduce the likelihood of distal tibial stress fractures. The developed model predicts local endosteal and periosteal cortical accretion and resorption based on relative local and global measures of the tibial stress state and its surface variation. Using a multisegment 3-dimensional leg model, tibia shape adaptations due to 33 combinations of hip, knee, and ankle joint angles and the direction of a single or sequential series of generated isometric resultant forces were predicted. The maximum stress at a common fracture-prone region in each optimized geometry was compared under likely stress fracture-inducing midstance jogging conditions. No direct correlations were found between stress reductions over an initially uniform circular hollow cylindrical geometry under these critical design conditions and the exercise-based sets of active muscles, joint angles, or individual muscle force and local stress magnitudes. Additionally, typically favorable increases in cross-sectional geometric measures did not guarantee stress decreases at these locations. Instead, tibial stress distributions under the exercise conditions best predicted strengthening ability. Exercises producing larger anterior distal stresses created optimized tibia shapes that better resisted the high midstance jogging bending stresses. Bent leg configurations generating anteriorly directed or inferiorly directed resultant forces created favorable adaptations. None of the studied loads produced by a straight leg was significantly advantageous. These predictions and the insight gained can provide preliminary guidance in the screening and development of targeted bone strengthening techniques for those susceptible to distal tibial stress fractures. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Successful correction of tibial bone deformity through multiple surgical procedures, liquid nitrogen-pretreated bone tumor autograft, three-dimensional external fixation, and internal fixation in a patient with primary osteosarcoma: a case report.

    PubMed

    Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Watanabe, Koji; Miwa, Shinji; Tsuchiya, Hiroyuki

    2015-12-07

    In a previous report, we described a method of reconstruction using tumor-bearing autograft treated by liquid nitrogen for malignant bone tumor. Here we present the first case of bone deformity correction following a tumor-bearing frozen autograft via three-dimensional computerized reconstruction after multiple surgeries. A 16-year-old female student presented with pain in the left lower leg and was diagnosed with a low-grade central tibial osteosarcoma. Surgical bone reconstruction was performed using a tumor-bearing frozen autograft. Bone union was achieved at 7 months after the first surgical procedure. However, local tumor recurrence and lung metastases occurred 2 years later, at which time a second surgical procedure was performed. Five years later, the patient developed a 19° varus deformity and underwent a third surgical procedure, during which an osteotomy was performed using the Taylor Spatial Frame three-dimensional external fixation technique. A fourth corrective surgical procedure was performed in which internal fixation was achieved with a locking plate. Two years later, and 10 years after the initial diagnosis of tibial osteosarcoma, the bone deformity was completely corrected, and the patient's limb function was good. We present the first report in which a bone deformity due to a primary osteosarcoma was corrected using a tumor-bearing frozen autograft, followed by multiple corrective surgical procedures that included osteotomy, three-dimensional external fixation, and internal fixation.

  14. Rotational joint for prosthetic leg

    NASA Technical Reports Server (NTRS)

    Jones, W. C.; Owens, L. J.

    1977-01-01

    Device is installed in standard 30 millimeter tubing used for lower leg prosthetics. Unit allows proper rotation (about 3 degrees) of foot relative to the hip, during normal walking or running. Limited rotational movement with restoring force results in a more natural gait.

  15. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  16. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  17. Experimental research on pedestrian lower leg impact

    NASA Astrophysics Data System (ADS)

    Constantin, B. A.; Iozsa, D. M.; Stan, C.

    2017-10-01

    The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

  18. Reproducibility and day time bias correction of optoelectronic leg volumetry: a prospective cohort study.

    PubMed

    Engelberger, Rolf P; Blazek, Claudia; Amsler, Felix; Keo, Hong H; Baumann, Frédéric; Blättler, Werner; Baumgartner, Iris; Willenberg, Torsten

    2011-10-05

    Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC). A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P < .001). A therefore determined time-correction formula permitted further improvement of CVW. Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula.

  19. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

    PubMed Central

    Geyer, Hartmut

    2016-01-01

    Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935

  20. In vivo assessment of bone healing following Piezotome® ultrasonic instrumentation.

    PubMed

    Reside, Jonathan; Everett, Eric; Padilla, Ricardo; Arce, Roger; Miguez, Patricia; Brodala, Nadine; De Kok, Ingeborg; Nares, Salvador

    2015-04-01

    This pilot study evaluated the molecular, histologic, and radiographic healing of bone to instrumentation with piezoelectric or high speed rotary (R) devices over a 3-week healing period. Fourteen Sprague-Dawley rats (Charles River Laboratories International, Inc., Wilmington, MA, USA) underwent bilateral tibial osteotomies prepared in a randomized split-leg design using Piezotome® (P1) (Satelec Acteon, Merignac, France), Piezotome 2® (P2) (Satelec Acteon), High-speed R instrumentation, or sham surgery (S). At 1 week, an osteogenesis array was used to evaluate differences in gene expression while quantitative analysis assessed percentage bone fill (PBF) and bone mineral density (BMD) in the defect, peripheral, and distant regions at 3 weeks. Qualitative histologic evaluation of healing osteotomies was also performed at 3 weeks. At 1 week, expression of 11 and 18 genes involved in bone healing was significantly (p < .05) lower following P1 and P2 instrumentation, respectively, relative to S whereas 16 and 4 genes were lower relative to R. No differences in PBF or BMD were detected between groups within the osteotomy defect. However, significant differences in PBF (p = .020) and BMD (p = .008) were noted along the peripheral region between P2 and R groups, being R the group with the lowest values. Histologically, smooth osteotomy margins were present following instrumentation using P1 or P2 relative to R. Piezoelectric instrumentation favors preservation of bone adjacent to osteotomies while variations in gene expression suggest differences in healing rates due to surgical modality. Bone instrumented by piezoelectric surgery appears less detrimental to bone healing than high-speed R device. © 2013 Wiley Periodicals, Inc.

  1. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls.

    PubMed

    Yamazaki, J; Muneta, T; Ju, Y J; Sekiya, I

    2010-01-01

    Seventy to eighty percent of all anterior cruciate ligament (ACL) injuries are due to non-contact injury mechanisms. It has been reported that the majority of injuries due to single leg landing come from valgus positioning of the lower leg. Preventing valgus positioning during single leg landing is expected to help reduce the number of ACL injuries. We found that many ACL-deficient patients cannot perform stable single leg squatting. Therefore, we performed 3D motion analysis of the single-legged half squat for ACL-injured patients to evaluate its significance as a risk factor for ACL injuries. We evaluated the relative angles between the body, thigh, and lower leg using an electromagnetic device during single leg half squatting performed by 63 ACL-injured patients (32 males, 31 females) the day before ACL reconstruction and by 26 healthy control subjects with no knee problems. The uninjured leg of ACL-injured male subjects demonstrated significantly less external knee rotation than that of the dominant leg of the male control. The uninjured leg of ACL-injured female subjects demonstrated significantly more external hip rotation and knee flexion and less hip flexion than that of the dominant leg of the female control. Comparing injured and uninjured legs, the injured leg of male subjects demonstrated significantly less external knee and hip rotation, less knee flexion, and more knee varus than that of the uninjured leg of male subjects. The injured leg of female subjects demonstrated more knee varus than that of the uninjured leg of female subjects. Regarding gender differences, female subjects demonstrated significantly more external hip rotation and knee valgus than male subjects did in both the injured and uninjured legs (P < 0.05). The current kinematic study exhibited biomechanical characteristics of female ACL-injured subjects compared with that of control groups. Kinematic correction during single leg half squat would reduce ACL reinjury in female ACL

  2. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    NASA Astrophysics Data System (ADS)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  3. Two-legged walking robot prescribed motion on a rough cylinder

    NASA Astrophysics Data System (ADS)

    Golubev, Yury; Melkumova, Elena

    2018-05-01

    The motion of a walking robot with n legs, that ensure the desired motion of the robot body, is described using general dynamics theoretical framework. When each of the robot legs contacts the surface in a single foothold, the momentum and angular momentum theorems yield a system of six differential equations that form a complete description of the robot motion. In the case of two-leg robot (n = 2) the problem of the existence of the solution can be reduced to a system of algebraic inequalities. Using numerical analysis, the classification of footholds positions for different values of the friction coefficient is obtained.

  4. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  5. STRUCTURE OF PROMINENCE LEGS: PLASMA AND MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levens, P. J.; Labrosse, N.; Schmieder, B.

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are stronglymore » absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s{sup −1} in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.« less

  6. Structure of Prominence Legs: Plasma and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Levens, P. J.; Schmieder, B.; Labrosse, N.; López Ariste, A.

    2016-02-01

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca II (SOT), are not visible in the IRIS Mg II slit-jaw images. This is explained by the large optical thickness of the structures in Mg II, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s-1 in the tornado-like structure. Between the two legs we see loops in Mg II, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.

  7. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    PubMed

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P < 0.0001). There was a significant age-ethnicity interaction for jump power (P = 0.039); after adjustments, this was attenuated (P = 0.088). For every 10 year increase in age, grip strength decreased by 11%. Jump force was positively associated with tibial bone outcomes: a 1 standard deviation

  8. Bioinspired legged-robot based on large deformation of flexible skeleton.

    PubMed

    Mayyas, Mohammad

    2014-11-11

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.

  9. H:q ratios and bilateral leg strength in college field and court sports players.

    PubMed

    Cheung, Roy T H; Smith, Andrew W; Wong, Del P

    2012-06-01

    One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.

  10. The Interday Measurement Consistency of and Relationships Between Hamstring and Leg Musculo-articular Stiffness.

    PubMed

    Waxman, Justin P; Schmitz, Randy J; Shultz, Sandra J

    2015-10-01

    Hamstring stiffness (K(HAM)) and leg stiffness (K(LEG)) are commonly examined relative to athletic performance and injury risk. Given these may be modifiable, it is important to understand day-to-day variations inherent in these measures before use in training studies. In addition, the extent to which K(HAM) and K(LEG) measure similar active stiffness characteristics has not been established. We investigated the interday measurement consistency of K(HAM) and K(LEG), and examined the extent to which K(LEG) predicted K(HAM) in 6 males and 9 females. K(HAM) was moderately consistent day-to-day (ICC(2,5) = .71; SEM = 76.3 N·m(-1)), and 95% limits of agreement (95% LOA) revealed a systematic bias with considerable absolute measurement error (95% LOA = 89.6 ± 224.8 N·m(-1)). Day-to-day differences in procedural factors explained 59.4% of the variance in day-to-day differences in K(HAM). Bilateral and unilateral K(LEG) was more consistent (ICC(2,3) range = .87-.94; SEM range = 1.0-2.91 kN·m(-1)) with lower absolute error (95% LOA bilateral= -2.0 ± 10.3; left leg = -0.36 ± 3.82; right leg = -1.05 ± 3.61 kN·m(-1)). K(LEG) explained 44% of the variance in K(HAM) (P < .01). Findings suggest that procedural factors must be carefully controlled to yield consistent and precise K(HAM) measures. The ease and consistency of K(LEG), and moderate correlation with K(HAM), may steer clinicians toward K(LEG) when measuring lower-extremity stiffness for screening studies and monitoring the effectiveness of training interventions over time.

  11. Relationships between maximal anaerobic power of the arms and legs and javelin performance.

    PubMed

    Bouhlel, E; Chelly, M S; Tabka, Z; Shephard, R

    2007-06-01

    The aim of this study was to examine relationships between maximal anaerobic power, as measured by leg and arm force-velocity tests, estimates of local muscle volume and javelin performance. Ten trained national level male javelin throwers (mean age 19.6+/- 2 years) participated in this study. Maximal anaerobic power, maximal force and maximal velocity were measured during leg (Wmax-L) and arm (Wmax-A) force-velocity tests, performed on appropriately modified forms of Monark cycle ergometer. Estimates of leg and arm muscle volume were made using a standard anthropometric kit. Maximal force of the leg (Fmax-L) was significantly correlated with estimated leg muscle volume (r=0.71, P<0.05). Wmax-L and Wmax-A were both significantly correlated with javelin performance (r=0.76, P<0.01; r=0.71, P <0.05, respectively). Maximal velocity of the leg (Vmax-L) was also significantly correlated with throwing performance (r=0.83; P<0.001). Wmax of both legs and arms were significantly correlated with javelin performance, the closest correlation being for Wmax-L; this emphasizes the importance of the leg muscles in this sport. Fmax-L and Vmax-L were related to muscle volume and to javelin performance, respectively. Force-velocity testing may have value in regulating conditioning and rehabilitation in sports involving throwing.

  12. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  13. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  14. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  15. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  16. 33 CFR 147.821 - Brutus Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safety zone. 147.821 Section 147.821 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.821 Brutus Tension Leg Platform safety zone. (a) Description. The Brutus Tension Leg Platform (Brutus TLP), Green Canyon Block 158 (GC...

  17. Dynamic postural stability for double-leg drop landing.

    PubMed

    Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping

    2013-01-01

    Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.

  18. Bone mineral loss and recovery after 17 weeks of bed rest

    NASA Technical Reports Server (NTRS)

    Leblanc, A. D.; Schneider, V. S.; Evans, H. J.; Engelbretson, D. A.; Krebs, J. M.; LaBlanc, A. D. (Principal Investigator)

    1990-01-01

    The purpose of this work was to determine the rate and extent of bone loss and recovery from long-term disuse and in particular from disuse after exposure to weightlessness. For this purpose, bed rest is used to simulate the reduced stress and strain on the skeleton. This study reports on the bone loss and recovery after 17 weeks of continuous bed rest and 6 months of reambulation in six normal male volunteers. Bone regions measured were the lumbar spine, hip, tibia, forearm, calcaneus, total body, and segmental regions from the total-body scan. The total body, lumbar spine, femoral neck, trochanter, tibia, and calcaneus demonstrated significant loss, p less than 0.05. Expressed as the percentage change from baseline, these were 1.4, 3.9, 3.6, 4.6, 2.2, and 10.4, respectively. Although several areas showed positive slopes during reambulation, only the calcaneus was significant (p less than 0.05), with nearly 100% recovery. Segmental analysis of the total-body scans showed significant loss (p less than 0.05) in the lumbar spine, total spine, pelvis, trunk, and legs. During reambulation, the majority of the regions demonstrated positive slopes, although only the pelvis and trunk were significant (p less than 0.05). Potential redistribution of bone mineral was observed: during bed rest the bone mineral increased in the skull of all subjects. The change in total BMD and calcium from calcium balance were significantly (p less than 0.05) correlated, R = 0.88.

  19. Loss of butt-end leg bands on male wild turkeys

    USGS Publications Warehouse

    Diefenbach, Duane R.; Casalena, Mary Jo; Schiavone, Michael V.; Swanson, David A.; Reynolds, Michael; Boyd, Robert C.; Eriksen, Robert; Swift, Bryan L.

    2009-01-01

    We estimated loss of butt-end leg bands on male wild turkeys (Meleagris gallapavo) captured in New York, Ohio, and Pennsylvania (USA) during December–March, 2006–2008. We used aluminum rivet leg bands as permanent marks to estimate loss of regular aluminum, enameled aluminum, anodized aluminum, and stainless steel butt-end leg bands placed below the spur. We used band loss information from 887 turkeys recovered between 31 days and 570 days after release (x¯  =  202 days). Band loss was greater for turkeys banded as adults (>1 yr old) than juveniles and was greater for aluminum than stainless steel bands. We estimated band retention was 79–96%, depending on age at banding and type of band, for turkeys recovered 3 months after release. Band retention was <50% for all age classes and band types 15 months after banding. We concluded that use of butt-end leg bands on male wild turkeys is inappropriate for use in mark–recapture studies.

  20. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  1. Effects of leg dominance on performance of ballet turns (pirouettes) by experienced and novice dancers.

    PubMed

    Lin, Chia-Wei; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng

    2013-01-01

    Turns (pirouettes) are an important movement in ballet and may be affected by "lateral bias". This study investigated physiological differences exhibited by experienced and novice dancers, respectively, when performing pirouette with dominant and non-dominant leg supports, respectively. Thirteen novice and 13 experienced dancers performed turns on dominant or non-dominant legs. The maximum ankle plantarflexion, knee extension and hip extension were measured during the single-leg support phase. The inclination angle of rotation axis is the angle between instantaneous rotation axis and global vertical axis in the early single-leg support phase. Both groups exhibited a greater hip extension, knee extension, and ankle plantarflexion when performing a turn on the non-dominant leg. For experienced dancers, the inclination angle of rotation axis during the pre-swing phase was generally smaller for dominant leg support than non-dominant leg. However, no significant difference was found in inclination angle of rotation axis of novice dancers. For experienced dancers, an improved performance is obtained when using the dominant leg for support. By contrast, for novice dancers, the performance is independent of choice of support leg. The significant lateral bias in experienced dancers indicates the possible influence of training. That is, repetitive rehearsal on the preferred leg strengthens the impact of side dominance in experienced dancers.

  2. Why a mosquito leg possesses superior load-bearing capacity on water: Experimentals

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Qing; Liu, Jian-Lin; Wu, Cheng-Wei

    2016-04-01

    Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force (WSF) that is 23 times their body weight. Aiming at a full understanding of the origins of this extremely large force, in this study, we concentrate on two aspects of it: the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg. Using a measurement system that we developed ourselves, the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness. The results show that leg flexibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force. Moreover, we discuss the dependence relationship between the maximum WSF and the initial stepping angle, which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff. These findings are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids, miniature boats, biomimetic robots, and microsensors.

  3. California Red-legged Frog - Stipulated Injunction

    EPA Pesticide Factsheets

    EPA will make effects determinations and initiate consultation with the U.S. Fish and Wildlife Service, regarding the potential effects of 66 pesticide active ingredient registrations on the California red-legged frog.

  4. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running.

    PubMed

    Liew, Bernard X W; Morris, Susan; Masters, Ashleigh; Netto, Kevin

    2017-11-07

    Direct kinematic-kinetic modelling currently represents the "Gold-standard" in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual's bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P < .001), and multiplanar method by 24.2%BW/LL (P < .001). Leg stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P < .001). The inclusion of medial-lateral components significantly increased leg deformation magnitude, accounting for the reduction in leg stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prosthetic leg powered by MR brake and SMA wires

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Munguia, Vicente; Calderon, Jose

    2014-04-01

    Current knee designs for prosthetic legs rely on electric motors for both moving and stationary states. The electric motors draw an especially high level of current to sustain a fixed position. The advantage of using magnetorheological (MR) fluid is that it requires less current and can have a variable braking torque. Besides, the proposed prosthetic leg is actuated by NiTinol wire, a popular shape memory alloy (SMA). The incorporation of NiTinol gives the leg more realistic weight distribution with appropriate arrangement of the batteries and wires. The prosthesis in this research was designed with MR brake as stopping component and SMA wire network as actuating component at the knee. The MR brake was designed with novel non-circular shape for the rotor that improved the braking torque while minimizing the power consumption. The design also helped simplify the control of braking process. The SMA wire network was design so that the knee motion was actively rotated in both directions. The SMA wires were arranged and played very similar role as the leg's muscles. The study started with the overall solid design of the knee including both MR and SMA parts. Theoretical models were derived and programmed in Simulink for both components. The simulation was capable of predicting the power required for moving the leg or hold it in a fixed position for a certain amount of time. Subsequently, the design was prototyped and tested to validate the theoretical prediction. The theoretical models were updated accordingly to correlate with the experimental data.

  6. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players.

    PubMed

    Sugiyama, Takashi; Kameda, Mai; Kageyama, Masahiro; Kiba, Kazufusa; Kanehisa, Hiroaki; Maeda, Akira

    2014-12-01

    The present study aimed to clarify the asymmetry between the dominant (DL) and non-dominant takeoff legs (NDL) in terms of lower limb behavior during running single leg jumps (RSJ) in collegiate male basketball players in relation to that of the jump height. Twenty-seven players performed maximal RSJ with a 6 m approach. Three-dimensional kinematics data during RSJ was collected using a 12 Raptor camera infrared motion analysis system (MAC 3D system) at a sampling frequency of 500 Hz. The symmetry index in the jump heights and the kinematics variables were calculated as {2 × (DL - NDL) / (DL + NDL)} × 100. The run-up velocity was similar between the two legs, but the jump height was significantly higher in the DL than in the NDL. During the takeoff phase, the joint angles of the ankle and knee were significantly larger in the DL than the NDL. In addition, the contact time for the DL was significantly shorter than that for the NDL. The symmetry index of the kinematics for the ankle joint was positively correlated with that of jump height, but that for the knee joint was not. The current results indicate that, for collegiate basketball players, the asymmetry in the height of a RSJ can be attributed to that in the joint kinematics of the ankle during the takeoff phase, which may be associated with the ability to effectively transmit run-up velocity to jump height. Key pointsAsymmetry of height during running single leg jump between two legs is due to the behavior of the ankle joint (i.e. stiffer the ankle joint and explosive bounding).The dominant leg can transmit run-up velocity into the vertical velocity at takeoff phase to jump high compared with the non-dominant leg.Basketball players who have a greater asymmetry of the RSJ at the collegiate level could be assessed as non-regulars judging by the magnitude of asymmetry.

  7. Accelerated functional recovery after skeletal muscle ischemia-reperfusion injury using freshly isolated bone marrow cells.

    PubMed

    Corona, Benjamin T; Rathbone, Christopher R

    2014-05-01

    Relatively little information exists regarding the usefulness of bone marrow-derived cells for skeletal muscle ischemia-reperfusion injury (I/R), especially when compared with I/R that occurs in other tissues. The objectives of this study were to evaluate the ability of freshly isolated bone marrow cells to home to injured skeletal muscle and to determine their effects on muscle regeneration. Freshly isolated lineage-depleted bone marrow cells (Lin(-) BMCs) were injected intravenously 2 d after I/R. Bioluminescent imaging was used to evaluate cell localization for up to 28 d after injury. Muscle function, the percentage of fibers with centrally located nuclei, and the capillary-to-fiber ratio were evaluated 14 d after delivery of either saline (Saline) or saline containing Lin(-) BMCs (Lin(-) BMCs). Bioluminescence was higher in the injured leg than the contralateral control leg for up to 7 d after injection (P < 0.05) suggestive of cell homing to the injured skeletal muscle. Fourteen days after injury, there was a significant improvement in maximal tetanic torque (40% versus 22% deficit; P < 0.05), a faster rate of force production (+dP/dt) (123.6 versus 94.5 Nmm/S; P < 0.05), and a reduction in the percentage of fibers containing centrally located nuclei (40 versus 17%; P < 0.05), but no change in the capillary-to-fiber ratio in the Lin(-) BMC as compared with the Saline group. The homing of freshly isolated BMCs to injured skeletal muscle after I/R is associated with an increase in functional outcomes. Published by Elsevier Inc.

  8. Volume measurement of the leg with the depth camera for quantitative evaluation of edema

    NASA Astrophysics Data System (ADS)

    Kiyomitsu, Kaoru; Kakinuma, Akihiro; Takahashi, Hiroshi; Kamijo, Naohiro; Ogawa, Keiko; Tsumura, Norimichi

    2017-02-01

    Volume measurement of the leg is important in the evaluation of leg edema. Recently, method for measurement by using a depth camera is proposed. However, many depth cameras are expensive. Therefore, we propose a method using Microsoft Kinect. We obtain a point cloud of the leg by Kinect Fusion technique and calculate the volume. We measured the volume of leg for three healthy students during three days. In each measurement, the increase of volume was confirmed from morning to evening. It is known that the volume of leg is increased in doing office work. Our experimental results meet this expectation.

  9. Comparison between Unilateral and Bilateral Plyometric Training on Single and Double Leg Jumping Performance and Strength.

    PubMed

    Bogdanis, Gregory C; Tsoukos, Athanasios; Kaloheri, Olga; Terzis, Gerasimos; Veligekas, Panagiotis; Brown, Lee E

    2017-04-18

    This study compared the effects of unilateral and bilateral plyometric training on single and double-leg jumping performance, maximal strength and rate of force development (RFD). Fifteen moderately trained subjects were randomly assigned to either a unilateral (U, n=7) or bilateral group (B, n=8). Both groups performed maximal effort plyometric leg exercises two times per week for 6 weeks. The B group performed all exercises with both legs, while the U group performed half the repetitions with each leg, so that total exercise volume was the same. Jumping performance was assessed by countermovement jumps (CMJ) and drop jumps (DJ), while maximal isometric leg press strength and RFD were measured before and after training for each leg separately and both legs together. CMJ improvement with both legs was not significantly different between U (12.1±7.2%) and B (11.0±5.5%) groups. However, the sum of right and left leg CMJ only improved in the U group (19.0±7.1%, p<0.001) and was unchanged in the B group (3.4±8.4%, p=0.80). Maximal isometric leg press force with both legs was increased similarly between groups (B: 20.1±6.5%, U: 19.9±6.2%). However, the sum of right and left leg maximal force increased more in U compared to B group (23.8±9.1% vs. 11.9±6.2%, p=0.009, respectively). Similarly, the sum of right and left leg RFD0-50 and RFD0-100 were improved only in the U group (34-36%, p<0.01). Unilateral plyometric training was more effective at increasing both single and double-leg jumping performance, isometric leg press maximal force and RFD when compared to bilateral training.

  10. Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion.

    PubMed

    Andrada, Emanuel; Rode, Christian; Sutedja, Yefta; Nyakatura, John A; Blickhan, Reinhard

    2014-12-22

    In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo

    PubMed Central

    Preuschl, Emanuel; Hassmann, Michaela; Baca, Arnold

    2016-01-01

    The jumping front-leg axe-kick is a valid attacking and counterattacking technique in Taekwondo competition (Streif, 1993). Yet, the existing literature on this technique is sparse (Kloiber et al., 2009). Therefore, the goal of this study was to determine parameters contributing significantly to maximum linear speed of the foot at impact. Parameters are timing of segment and joint angular velocity characteristics and segment lengths of the kicking leg. Moreover, we were interested in the prevalence of proximal-to-distal-sequencing. Three-dimensional kinematics of the kicks of 22 male Taekwondo-athletes (age: 23.3 ± 5.3 years) were recorded via a motion capturing system (Vicon Motion Systems Limited, Oxford, UK). The participants performed maximum effort kicks onto a rack-held kicking pad. Only the kick with the highest impact velocity was analysed, as it was assumed to represent the individual’s best performance. Significant Pearson correlations to impact velocity were found for pelvis tilt angular displacement (r = 0.468, p < 0.05) and for hip extension angular velocity (r = -0.446, p < 0.05) and for the timing of the minima of pelvis tilt velocity (r = -0.426, p < 0.05) and knee flexion velocity (r = -0.480, p < 0.05). Backward step linear regression analysis suggests a model consisting of three predictor variables: pelvis tilt angular displacement, hip flexion velocity at target contact and timing of pelvic tilt angular velocity minimum (adjusted R2 = 0.524). Results of Chi-Squared tests show that neither for the leg-raising period (χ2 = 2.909) of the technique, nor for the leg-lowering period a pattern of proximal-to-distal sequencing is prevalent (χ2 = 0.727). From the results we conclude that the jumping front-leg axe-kick does not follow a proximal-to-distal pattern. Raising the leg early in the technique and apprehending the upper body to be leant back during the leg-lowering period seems to be beneficial for high impact velocity. Furthermore, striking

  12. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    PubMed

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  13. Pentoxifylline for treating venous leg ulcers.

    PubMed

    Jull, Andrew B; Arroll, Bruce; Parag, Varsha; Waters, Jill

    2012-12-12

    Healing of venous leg ulcers is improved by the use of compression bandaging but some venous ulcers remain unhealed, and some people are unsuitable for compression therapy. Pentoxifylline, a drug which helps blood flow, has been used to treat venous leg ulcers. To assess the effects of pentoxifylline (oxpentifylline or Trental 400) for treating venous leg ulcers, compared with a placebo or other therapies, in the presence or absence of compression therapy. For this fifth update we searched the Cochrane Wounds Group Specialised Register (searched 20 July 2012); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 7); Ovid MEDLINE (2010 to July Week 2 2012); Ovid MEDLINE (In-Process & Other Non-Indexed Citations, July 19, 2012); Ovid EMBASE (2010 to 2012 Week 28); and EBSCO CINAHL (2010 to July 13 2012). Randomised trials comparing pentoxifylline with placebo or other therapy in the presence or absence of compression, in people with venous leg ulcers. One review author extracted and summarised details from eligible trials using a coding sheet. One other review author independently verified data extraction. No new trials were identified for this update. We included twelve trials involving 864 participants. The quality of trials was variable. Eleven trials compared pentoxifylline with placebo or no treatment. Pentoxifylline is more effective than placebo in terms of complete ulcer healing or significant improvement (RR 1.70, 95% CI 1.30 to 2.24). Pentoxifylline plus compression is more effective than placebo plus compression (RR 1.56, 95% CI 1.14 to 2.13). Pentoxifylline in the absence of compression appears to be more effective than placebo or no treatment (RR 2.25, 95% CI 1.49 to 3.39).More adverse effects were reported in people receiving pentoxifylline (RR 1.56, 95% CI 1.10 to 2.22). Nearly three-quarters (72%) of the reported adverse effects were gastrointestinal. Pentoxifylline is an effective adjunct to compression

  14. Effects of combined high intensity arm and leg training on performance and cardio-respiratory measures.

    PubMed

    Zinner, Christoph; Sperlich, Billy; Born, Dennis-Peter; Michels, Guido

    2017-01-01

    The purpose of this study was to investigate the effects of combined arm and leg high-intensity low-volume interval training (HIITarm+leg) on maximal oxygen uptake, myocardial measures (i.e. stroke volume, cardiac output, ejection fraction), Tissue Oxygenation Index (TOI) of the vastus lateralis and triceps brachii, as well as power output in comparison to leg HIIT (HIITleg) only. The 20 healthy, male and female volunteers completed six sessions of either HIITleg on a cycle ergometer or HIITarm+leg on an arm and leg cycle ergometer. During pre- and post-testing, the volunteers completed a submaximal and incremental test to exhaustion on a cycle ergometer. Magnitude based interference revealed likely to very likely beneficial effects for HIITarm+leg compared to HIITleg in maximal oxygen uptake, cardiac measures as well peak power output. The TOI following HIITarm+leg demonstrated likely to very likely increased oxygenation in the triceps brachii or the vastus lateralis when compared to HIITleg. The results suggest that six sessions of HIITarm+leg may likely to very likely improve maximal oxygen uptake, some inotropy-related cardiac measures with improved tissue oxygenation of the triceps brachii and vastus lateralis muscles resulting in greater leg peak power output.

  15. [Role of an interdisciplinary approach in the healing of long bone fractures in patients with osteogenesis imperfecta].

    PubMed

    Kokavec, M; Novorolský, K; Pribilincová, Z

    2008-06-01

    The aim of the study was to analyze a group of patients who had undergone multilevel osteotomy of long bones and medication therapy for osteogenesis imperfecta (OI). The group included 14 OI patients (nine girls and five boys) operated on in the years 1996 to 2006, who ranged in age from 3 to 17 years (average, 8.2 years). Due to residual deformation following a fracture of or because of treatment for acute trauma to long bones of the lower extremities, the patients underwent multilevel osteotomy with the use of osteosynthesis (Prevot's rod, six patients; Kirschner's wire, three patients; Küntcher's nail, three patients; Rush's nail, one patient; condylar plate, one patient). A special working and rehabilitation program played an important role in the therapeutic protocol. Four patients treated after 2003 received Pamidronate. Sufficient correction of axil deformity of the legs and equal leg length resulting in gait improvement were achieved in 11 patients. In one patient, osteosynthesis with a condylar plate failed and it was necessary to apply intramedullary elastic fixation. In one patient, tibia vara developed following Küntcher's nail osteosynthesis. In one patient, disunion of bone from osteosynthetic material, with a subsequent supracondylar fracture under the Küntcher's nail, was recorded. Pamidronate administered in pre- and post-operative periods to the four patients treated after 2003 reduced the need for their immobilization from 6 to 3 weeks, which permitted early rehabilitation and, in one patient, first standing and walking at the age of 12 years. The treatment of long bone fractures in OI patients is based on the assumptions that bone healing is not affected and that long immobilization leads to deterioration of osteopenia and to a risk of further fractures. For these reasons, surgical procedures using intramedullary fixation have recently been preferred. Pamidronate administration alleviates pain, improves muscle tonus, reduces the period of

  16. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults

    PubMed Central

    Meddeler, Bart M.; Hoogeboom, Thomas J.; Nijhuis-van der Sanden, Maria W. G.; van Cingel, Robert E. H.

    2017-01-01

    Context Since decades leg dominance is suggested to be important in rehabilitation and return to play in athletes with anterior cruciate ligament injuries. However, an ideal method to determine leg dominance in relation to task performance is still lacking. Objective To test the agreement between self-reported and observed leg dominance in bilateral mobilizing and unilateral stabilizing tasks, and to assess whether the dominant leg switches between bilateral mobilizing tasks and unilateral stabilizing tasks. Design Cross-sectional study. Participants Forty-one healthy adults: 21 men aged 36 ± 17 years old and 20 women aged 36 ±15 years old. Measurement and analysis Participants self-reported leg dominance in the Waterloo Footedness Questionnaire-Revised (WFQ-R), and leg dominance was observed during performance of four bilateral mobilizing tasks and two unilateral stabilizing tasks. Descriptive statistics and crosstabs were used to report the percentages of agreement. Results The leg used to kick a ball had 100% agreement between the self-reported and observed dominant leg for both men and women. The dominant leg in kicking a ball and standing on one leg was the same in 66.7% of the men and 85.0% of the women. The agreement with jumping with one leg was lower: 47.6% for men and 70.0% for women. Conclusions It is appropriate to ask healthy adults: “If you would shoot a ball on a target, which leg would you use to shoot the ball?” to determine leg dominance in bilateral mobilizing tasks. However, a considerable number of the participants switched the dominant leg in a unilateral stabilizing task. PMID:29287067

  17. A six-legged rover for planetary exploration

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Krotkov, Eric; Bares, John

    1991-01-01

    To survive the rigors and isolation of planetary exploration, an autonomous rover must be competent, reliable, and efficient. This paper presents the Ambler, a six-legged robot featuring orthogonal legs and a novel circulating gait, which has been designed for traversal of rugged, unknown environments. An autonomous software system that integrates perception, planning, and real-time control has been developed to walk the Ambler through obstacle strewn terrain. The paper describes the information and control flow of the walking system, and how the design of the mechanism and software combine to achieve competent walking, reliable behavior in the face of unexpected failures, and efficient utilization of time and power.

  18. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  19. Biomechanical pole and leg characteristics during uphill diagonal roller skiing.

    PubMed

    Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-11-01

    Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P < 0.05), relative leg swing (r = 0.71), and gliding time (r = 0.74), hip flexion range of motion (ROM) during swing (r = 0.73) and knee extension ROM during gliding (r = 0.71). Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.

  20. Asymmetric balance control between legs for quiet but not for perturbed stance.

    PubMed

    Vieira, Osvaldo; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2014-10-01

    Interlateral performance asymmetry in upright balance control was evaluated in this investigation by comparing unipedal stance on the right versus the left leg. Participants were healthy young adults, hand-foot congruent preference for the right body side. Balance performance was evaluated in unperturbed quiet stance and in the recovery of balance stability following a mechanical perturbation induced by unexpected load release. Evaluation was made under availability of full sensory information, and under deprivation of vision combined with distortion of sensory inputs from the feet soles. Results from perturbed posture revealed that muscular response latency and postural sway were symmetric between the legs. Unipedal stance was more stable when the body was supported on the right as compared with the left leg. No interaction was found between leg and sensory condition. Our findings are interpreted as resulting from specialization of the sensorimotor system controlling the right leg for continuous low-magnitude postural adjustments, while corrections to large-scale stance sway are symmetrically controlled between body sides.

  1. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency

    NASA Technical Reports Server (NTRS)

    Poole, D. C.; Gaesser, G. A.; Hogan, M. C.; Knight, D. R.; Wagner, P. D.

    1992-01-01

    Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.

  2. MRI correlates of alien leg-like phenomenon in corticobasal degeneration.

    PubMed

    Hu, William T; Josephs, Keith A; Ahlskog, J Eric; Shin, Cheolsu; Boeve, Bradley F; Witte, Robert J

    2005-07-01

    We describe the clinical and neuroradiologic correlates in two patients with the clinical picture of CBD and alien leg phenomena. The MRI brain scan in both had unique focal abnormalities in the corresponding leg area of the homunculus that may be the substrate for the alien limb features. Copyright 2005 Movement Disorder Society.

  3. Repeatability and Validity of the Combined Arm-Leg (Cruiser) Ergometer

    ERIC Educational Resources Information Center

    Simmelink, Elisabeth K.; Wempe, Johan B.; Geertzen, Jan H. B.; Dekker, Rienk

    2009-01-01

    The measurement of physical fitness of lower limb amputees is difficult, as the commonly used ergometer tests have limitations. A combined arm-leg (Cruiser) ergometer might be valuable. The aim of this study was to establish the repeatability and validity of the combined arm-leg (Cruiser) ergometer. Thirty healthy volunteers carried out three…

  4. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila

    PubMed Central

    Gowda, Swetha B. M.; Paranjpe, Pushkar D.; Reddy, O. Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich

    2018-01-01

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila. PMID:29440493

  5. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila.

    PubMed

    Gowda, Swetha B M; Paranjpe, Pushkar D; Reddy, O Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich; VijayRaghavan, K

    2018-02-27

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABA A receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila . Copyright © 2018 the Author(s). Published by PNAS.

  6. Leg ulcer assessment techniques in a remote rural area.

    PubMed

    Graham, Julia

    Community-based leg ulcer clinics are a cost-effective and efficient way of managing patients with leg ulcers in the community (Blair et al, 1988; Moffatt and Oldroyd, 1994). According to the Scottish Clinical Standards for Vascular Services (NHS Quality Improvement Scotland, 2003): 'It is essential that all vascular patients are seen by a nurse with vascular expertise, who is able to provide information, support and health promotion advice'.

  7. Compression therapy in patients with venous leg ulcers.

    PubMed

    Dissemond, Joachim; Assenheimer, Bernd; Bültemann, Anke; Gerber, Veronika; Gretener, Silvia; Kohler-von Siebenthal, Elisabeth; Koller, Sonja; Kröger, Knut; Kurz, Peter; Läuchli, Severin; Münter, Christian; Panfil, Eva-Maria; Probst, Sebastian; Protz, Kerstin; Riepe, Gunnar; Strohal, Robert; Traber, Jürg; Partsch, Hugo

    2016-11-01

    Wund-D.A.CH. is the umbrella organization of the various wound care societies in German-speaking countries. The present consensus paper on practical aspects pertinent to compression therapy in patients with venous leg ulcers was developed by experts from Germany, Austria, and Switzerland. In Europe, venous leg ulcers rank among the most common causes of chronic wounds. Apart from conservative and interventional wound and vein treatment, compression therapy represents the basis of all other therapeutic strategies. To that end, there are currently a wide variety of materials and systems available. While especially short-stretch bandages or multicomponent systems should be used in the initial decongestion phase, ulcer stocking systems are recommended for the subsequent maintenance phase. Another - to date, far less common - alternative are adaptive Velcro bandage systems. Medical compression stockings have proven particularly beneficial in the prevention of ulcer recurrence. The large number of treatment options currently available enables therapists to develop therapeutic concepts geared towards their patients' individual needs and abilities, thus resulting in good acceptance and adherence. Compression therapy plays a crucial role in the treatment of patients with venous leg ulcers. In recent years, a number of different treatment options have become available, their use and application differing among German-speaking countries. The present expert consensus is therefore meant to outline concrete recommendations for routine implementation of compression therapy in patients with venous leg ulcers. © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  8. Association of restless legs syndrome, pain, and mood disorders in Parkinson's disease.

    PubMed

    Rana, Abdul Qayyum; Qureshi, Abdul Rehman M; Rahman, Labiba; Jesudasan, Ajantha; Hafez, Kevin K; Rana, Mohammad A

    2016-01-01

    The objectives of the study were to analyze the association between Parkinson's disease and restless legs syndrome, and to explore the relationship between mood disorder comorbidity (anxiety and depression), pain, and restless legs syndrome. This study included 123 Parkinson's disease patients and 123 non-Parkinson's disease patients matched for age and gender, and evaluated for anxiety severity, depression severity, pain severity, pain interference, pain disability, and restless legs syndrome prevalence. This was performed using semi-structured interviews and a neurological examination through the restless legs syndrome diagnostic criteria and the following inventories; Hospital Anxiety and Depression Scale, Brief Pain Inventory, and Pain Disability Index. Parkinson's disease patients had significantly greater anxiety severity, depression severity, pain severity, pain interference, pain disability, and restless legs syndrome prevalence in comparison to controls. In addition, Parkinson's disease patients' comorbid for anxiety and depression had significantly greater pain severity, pain interference, and pain disability, but not RLS prevalence, in comparison to Parkinson's disease only, Parkinson's disease anxiety, and Parkinson's disease depression patients. Pain interference, pain severity, and pain disability is greater among Parkinson's disease patients with anxiety and depression, in comparison to Parkinson's disease patients without anxiety and depression. On the contrary, the prevalence of restless legs syndrome was not found to be relevant.

  9. Growth hormone treatment of growth failure secondary to total body irradiation and bone marrow transplantation.

    PubMed Central

    Papadimitriou, A; Urena, M; Hamill, G; Stanhope, R; Leiper, A D

    1991-01-01

    Growth hormone was given to 13 children (nine boys, four girls) with acute leukaemia who had undergone treatment with cyclophosphamide and total body irradiation before bone marrow transplantation. Mean age at total body irradiation and bone marrow transplantation was 9.0 years (range 3.7-15.8). Endocrinological investigation was carried out at a mean of 2.0 years (range 0.4-4.0) after bone marrow transplantation. Peak serum growth hormone responses to hypoglycaemia were less than 10.0 micrograms/l (less than 20.0 mU/l) in 10, 10.5 micrograms/l (21.0 mU/l) in one, greater than 16.0 micrograms/l (greater than 32.0 mU/l) in two patients. Mean age of the patients at the start of growth hormone treatment was 12.2 years (range 5.8-18.2). The mean time between total body irradiation and bone marrow transplantation and the start of growth hormone treatment was 3.2 years (range, 1.1-5.0). Height velocity SD score (SD) increased from a mean pretreatment value of -1.27 (0.65) to + 0.22 (0.81) in the first year, +0.16 (1.11) in the second year, and +0.42 (0.71) in the third year of treatment. Height SD score (SD) changed only slightly from -1.52 (0.42) to -1.50 (0.47) in the first year, to -1.50 (0.46) in the second year, and -1.74 (0.92) in the third year. Measurement of segmental proportions showed no significant increase in subischial leg length from -0.87 (0.67) to -0.63 (0.65) in the first year, to -0.58 (0.70) in the second year, and -0.80 (1.14) in the third year of treatment. Our data indicate that children who have undergone total body irradiation and bone marrow transplantation respond to treatment with growth hormone in either of two dose regimens, with an increase in height velocity that is adequate to restore a normal growth rate but not to 'catch up', and that total body irradiation impairs not only spinal but also leg growth, possibly by a direct effect of irradiation on the epiphyses and soft tissues. PMID:2053788

  10. Poison ivy on the leg (image)

    MedlinePlus

    This is a typical early appearance of a poison ivy rash, located on the leg. These early lesions ... line where the skin has brushed against the poison ivy plant. The rash is caused by skin contact ...

  11. Associations between bone mineral density, grip strength, and lead body burden in older men.

    PubMed

    Khalil, Naila; Faulkner, Kimberly A; Greenspan, Susan L; Cauley, Jane A

    2014-01-01

    To study the association between blood lead concentration (BPb) and bone mineral density (BMD), physical function, and cognitive function in noninstitutionalized community-dwelling older men. Cross-sectional study. University of Pittsburgh clinic, Pittsburgh, Pennsylvania. Non-Hispanic Caucasian men aged 65 and older (N = 445) recruited as a subset of a prospective cohort for the Osteoporotic Fractures in Men Study. BPb was measured in 2007/08. From 2007 to 2009, BMD (g/cm(2)) was measured using dual-energy X-ray absorptiometry. At the same time, physical performance was measured using five tests: grip strength, leg extension power, walking speed, narrow-walk pace, and chair stands. Cognitive performance was assessed using the modified Mini-Mental State Examination and the Trail-Making Test Part B. Participants were categorized into quartiles of BPb. Multivariate regression analysis was used to evaluate the independent relationship between BPb, BMD, and cognitive and physical function. Mean BPb ± standard deviation was 2.25 ± 1.20 μg/dL (median 2 μg/dL, range 1-10 μg/dL). In multivariate-adjusted models, men in higher BPb quartiles had lower BMD at femoral neck and total hip (P-trend < .001 for both). Men with higher BPb had lower age-adjusted score for grip strength (P-trend < .001), although this association was not significant in multivariate-adjusted models (P-trend < .15). BPb was not associated with lumbar spine BMD, cognition, leg extension power, walking speed, narrow-walk pace, or chair stands. Environmental lead exposure may adversely affect bone health in older men. These findings support consideration of environmental exposure in age-associated bone fragility. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  12. A torsional MRE joint for a C-shaped robotic leg

    NASA Astrophysics Data System (ADS)

    Christie, M. D.; Sun, S. S.; Ning, D. H.; Du, H.; Zhang, S. W.; Li, W. H.

    2017-01-01

    Serving to improve stability and energy efficiency during locomotion, in nature, animals modulate their leg stiffness to adapt to their terrain. Now incorporated into many locomotive robot designs, such compliance control can enable disturbance rejection and improved transition between changing ground conditions. This paper presents a novel design of a variable stiffness leg utilizing a magnetorheological elastomer joint in a literal rolling spring loaded inverted pendulum (R-SLIP) morphology. Through the semi-active control of this hybrid permanent-magnet and coil design, variable stiffness is realized, offering a design which is capable of both softening and stiffening in an adaptive sort of way, with a maximum stiffness change of 48.0%. Experimental characterization first serves to assess the stiffness variation capacity of the torsional joint, and through later comparison with force testing of the leg, the linear stiffness is characterized with the R-SLIP-like behavior of the leg being demonstrated. Through the force relationships applied, a generalized relationship for determining linear stiffness based on joint rotation angle is also proposed, further aiding experimental validation.

  13. Indian girls have higher bone mineral content per unit of lean body than boys through puberty.

    PubMed

    Khadilkar, Anuradha V; Sanwalka, Neha; Mughal, M Zulf; Chiplonkar, Shashi; Khadilkar, Vaman

    2018-05-01

    Our aim is to describe changes in the muscle-bone unit assessed as a ratio of bone mineral content (BMC) to lean body mass (LBM) through puberty at total body and various skeletal sites in Indian boys and girls. A cross-sectional study was conducted (888 children, 480 boys, aged 5-17 years) in Pune, India. Pubertal staging was assessed. BMC, LBM and fat percentage at the arms, legs, android, gynoid and total body (less the head) were assessed by dual energy X-ray absorptiometry. The amount of BMC per unit LBM (BMC/LBM) was computed. Changes in mean BMC/LBM at 5 Tanner (pubertal) stages after adjustment for age and fat percentage were calculated. In boys, adjusted BMC/LBM was significantly higher with successive Tanner stages [legs (TS-II vs TS-I), android (TS-III vs TS-II, TS-IV vs TS-III) and gynoid region (TS-III vs TS-II and TS-II vs TS-I) (p < 0.05)]. In girls, adjusted BMC/LBM was significantly higher with successive Tanner stages at total body, legs and gynoid (TS-III vs TS-II; TS-II vs TS-I; TS-V vs TS-IV), arms (TS-I to TS-V) and android regions (TS-V vs TS-IV) (p < 0.05). Boys had significantly higher adjusted BMC/LBM than girls at earlier Tanner stages (TS-I to TS-III), whereas girls had significantly higher adjusted BMC/LBM than boys at later Tanner stages (TS-IV, TS-V) (p < 0.05). Indian boys and girls showed higher total and regional body, and age- and fat percentage-adjusted BMC/LBM with successive pubertal stages. Girls had higher BMC/LBM than boys which may possibly act as a reservoir for later demands of pregnancy and lactation.

  14. Passive moment about the hip in straight leg raising.

    PubMed

    Lee, R Y; Munn, J

    2000-06-01

    The purpose of this examine is to study the load-deformation characteristics of the hip in straight leg raising. An experimental study in which passive moment about the hip was determined as a function of hip angle. Straight leg raising is widely employed in clinical examination, and there is little information on its mechanical characteristics. Fourteen healthy volunteers were recruited for this study. Three trials of straight leg raise tests were performed while subjects lay supine on a plinth that was fitted with load cells. An electrogoniometer was employed to measure hip flexion during the test. Resistive moment at the hip was determined using a dynamic biomechanical model. The present experimental method was shown to be highly reliable. The moment-angle curves of all subjects were shown to follow an exponential function. Stiffness and strain energy of posterior hip tissues could be derived from the moment-angle curves. Evaluation of such elastic properties is clinically important as they may be altered with injuries of the tissues. Clinically, contracture of hamstring muscles and other posterior hip tissues is evaluated by measuring the available range of hip flexion in straight leg raising. However, this does not provide any information on the elastic properties of the tissues. The present study reports a reliable method of evaluating such properties.

  15. Dynamically Stable Legged Locomotion

    DTIC Science & Technology

    1981-11-30

    the laboratory. Harry Asada, Wayne Book, Nancy Cornelius, Sesh Murthy and Ivan Sutherland read various drafts of this report, for which we are...particularly helpful in providing an atmosphere where things could get started. Craig Fields and Clint Kelly deserve special credit for letting the idea of...legged technology capture their imaginations, even before we could show them tangible results. We are especially indebted to Ivan Sutherland for his

  16. Effect of leg dominance, gender and age on sensory responses to structural differentiation of straight leg raise test in asymptomatic subjects: a cross-sectional study

    PubMed Central

    Torres Lacomba, María; de la Villa Polo, Pedro

    2017-01-01

    Study design Cross-sectional study. Objectives To assess the effect of structural differentiation on sensory responses of asymptomatic individuals to standard neurodynamic tests of straight leg raise (SLR) and to evaluate the relevance of leg dominance, gender, and age. Background SLR test is a well-known neurodynamic test among physical therapists; no studies to date have investigated the influence of gender, age, and leg dominance to the sensory responses of this neurodynamic test and its structured differentiating maneuver. Methods Thirty (16 women) asymptomatic individuals enrolled in this study. Dominancy test was performed for each participant. Pain intensity using visual analogue scale (VAS), symptoms location in a body chart, nature of symptoms evoked, and hip range of motion (ROM) were recorded and compared at ankle neutral position (N-SLR) and dorsiflexion (DF-SLR) in both legs at the point of pain tolerance during SLR (P2). In addition, hip ROM was recorded at the onset of pain (P1). Results There was a statistically significant sex main effect for P1 and P2 between N-SLR and DF-SLR (p < 0.05). Mean hip ROM during the SLR was more than 10° greater in women than men. There was no statistically significant interaction between leg dominance and age group in N-SLR, DF-SLR, and VAS. Pain intensity was moderate for each SLR test. Symptoms most often described were stretch (96.7%), followed by tightness (70%) in the posterior thigh and leg. Conclusions SLR hip ROM is influenced by sex in asymptomatic individuals, leading to a greater hip ROM in SLR in women. Age and limb dominance are not relevant to SLR hip ROM or pain intensity. PMID:28559668

  17. A randomised clinical trial of the efficacy of drop squats or leg extension/leg curl exercises to treat clinically diagnosed jumper's knee in athletes: pilot study

    PubMed Central

    Cannell, L; Taunton, J; Clement, D; Smith, C; Khan, K

    2001-01-01

    Objectives—To compare the therapeutic effect of two different exercise protocols in athletes with jumper's knee. Methods—Randomised clinical trial comparing a 12 week programme of either drop squat exercises or leg extension/leg curl exercises. Measurement was performed at baseline and after six and 12 weeks. Primary outcome measures were pain (visual analogue scale 1–10) and return to sport. Secondary outcome measures included quadriceps and hamstring moment of force using a Cybex II isokinetic dynamometer at 30°/second. Differences in pain response between the drop squat and leg extension/curl treatment groups were assessed by 2 (group) x 3 (time) analysis of variance. Two by two contingency tables were used to test differences in rates of return to sport. Analysis of variance (2 (injured versus non-injured leg) x 2 (group) x 3 (time)) was also used to determine differences for secondary outcome measures. Results—Over the 12 week intervention, pain diminished by 2.3 points (36%) in the leg extension/curl group and 3.2 points (57%) in the squat group. There was a significant main effect of both exercise protocols on pain (p<0.01) with no interaction effect. Nine of 10 subjects in the drop squat group returned to sporting activity by 12 weeks, but five of those subjects still had low level pain. Six of nine of the leg extension/curl group returned to sporting activity by 12 weeks and four patients had low level pain. There was no significant difference between groups in numbers returning to sporting activity. There were no differences in the change in quadriceps or hamstring muscle moment of force between groups. Conclusions—Progressive drop squats and leg extension/curl exercises can reduce the pain of jumper's knee in a 12 week period and permit a high proportion of patients to return to sport. Not all patients, however, return to sport by that time. Key Words: knee; patellar tendon; tendinopathy; tendinosis; eccentric strengthening; strength training

  18. Dynamic legged locomotion in robots and animals

    NASA Astrophysics Data System (ADS)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  19. Chronic leg ulceration in homozygous sickle cell disease: the role of venous incompetence.

    PubMed

    Clare, Andrea; FitzHenley, Michael; Harris, June; Hambleton, Ian; Serjeant, Graham R

    2002-11-01

    Chronic leg ulceration is a common cause of morbidity in Jamaican patients with homozygous sickle cell (SS) disease. Ulcers heal more rapidly on bed rest and deteriorate on prolonged standing, suggesting a role of venous hypertension in their persistence. This hypothesis has been tested by Doppler detection of venous competence in SS patients and in matched controls with a normal haemoglobin (AA) genotype in the Jamaican Cohort Study. Venous incompetence was significantly more frequent in SS disease [137/183 (75%)] than in non-pregnant AA controls [53/137 (39%)]. Past or present ulceration occurred in 78 (43%) SS patients, with a highly significant association between leg ulceration and venous incompetence in the same leg (P < 0.001). Prominence and/or varicosities of the veins and spontaneous leg ulcers were more common among patients with multiple sites of incompetence. The association of venous incompetence with chronic leg ulceration identifies a further pathological mechanism contributing to the morbidity of SS disease. The cause of venous incompetence is unknown but the sluggish circulation associated with dependency, turbidity and impaired linear flow at venous valves, hypoxia-induced sickling, the rheological effects of high white cell counts, and activation of components of the coagulation system may all contribute. Venous hypertension in SS patients with leg ulceration suggests that firm elastic supportive dressings might promote healing of chronic leg ulcers.

  20. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  1. 78 FR 38098 - Proposed Information Collection (Knee and Lower Leg Disability Benefits Questionnaire) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... and Lower Leg Disability Benefits Questionnaire) Activity: Comment Request AGENCY: Veterans Benefits... ``OMB Control No. 2900-NEW (Knee and Lower Leg Conditions Disability Benefits Questionnaire)'' in any... INFORMATION: Title: Knee and Lower Leg Conditions Disability Benefits Questionnaire, VA Form 21-0960M-9. OMB...

  2. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    PubMed

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Leg loss in Lutzomyia longipalpis (Diptera: Psychodidae) due to pyrethroid exposure: Toxic effect or defense by autotomy?

    PubMed

    Santamaría, E; Cabrera, O L; Avendaño, J; Pardo, R H

    2016-01-01

    Phlebotomine sandflies lose their legs after exposure to pyrethroids. In some insects leg loss helps to defend them from intoxication and predation, a phenomenon known as autotomy. A field observation has shown that sandflies that have lost some legs are still able to blood-feed. The aims of the study were to determine whether leg loss in sandflies, after exposure to deltamethrin, is due to autotomy and to establish the effect of the leg loss on blood-feeding. Two experiments were carried out with Lutzomyia longipalpis: (i) Females were individually exposed to a sublethal time of deltamethrin and mortality and the number of leg loss were recorded; and (ii) Groups of females with complete legs or with 1-3 legs lost due to pyrethroid exposure were offered a blood meal and percentages of blood-fed and fully-fed females were recorded. Most females lost a median of 1 leg within 1-48 h post-exposure to deltamethrin. Mortality (after 24 h) was significantly higher for exposed females with lost legs (31.1%), compared to exposed females with complete legs (7.3%), and there were no differences in mortality between females with complete legs and the control (unexposed females). There were no differences between the three treatments in the percentages of blood-fed and fully-fed females. Leg loss in sandflies is a toxic effect of pyrethroids and there was no evidence of autotomy. The loss of up to three legs after exposure to pyrethroids does not affect blood-feeding behaviour in laboratory and probably also in wild conditions.

  4. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2).

    PubMed

    Wong, David A; Kumar, Anant; Jatana, Sanjay; Ghiselli, Gary; Wong, Katherine

    2008-01-01

    Bone morphogenetic protein-2 (BMP-2) (Infuse) has been approved for use in anterior lumbar fusion in conjunction with an LT cage. However, off-label use is seen with anterior cervical fusion, posterior lumbar interbody fusion (PLIF), and transforaminal lumbar interbody fusion (TLIF). The Federal Food and Drug Administration trial of BMP-2 in a PLIF application was halted because of a high incidence of ectopic bone forming in the neural canal (75%). The authors did not find a correlation between ectopic bone and increased leg pain. They concluded that the ectopic bone was a radiographic phenomenon and not associated with clinical findings. Complications using BMP in the cervical spine have been reported. Heretofore, there has not been a similar warning voiced for use of BMP in a lumbar PLIF or TLIF. The purpose was to report five cases of ectopic bone in the canal associated with PLIF/TLIF off-label use of BMP-2 potentially contributing to abnormal neurologic findings. This is an observational cohort study of patients referred to a tertiary care private medical center. This was a retrospective chart review of patients referred to a tertiary spine institute with complications after surgery where BMP-2 had been used in an off-label PLIF or TLIF application. Patient demographics, operating room (OR) notes from the index BMP surgery, imaging studies, and current clinical status were reviewed. Five cases of ectopic bone in the spinal canal with potential neurologic compromise were identified. It does appear that ectopic bone in the spinal canal associated with BMP-2 use in PLIF or TLIF may contribute to symptomatic neurologic findings in rare cases. Revision surgeries are difficult. This article challenges a previous publication, which concluded that the high incidence of ectopic bone was of no clinical significance. Isolating BMP anteriorly in the disc space using layered barriers of bone graft between the BMP and the annular defect may reduce the incidence of ectopic

  5. The Leg Club model: a survey of staff and members' perceptions of this model of care.

    PubMed

    Stephen-Haynes, J

    2010-09-01

    To determine the Leg Club members' perceptions of the Leg Club as a model for delivery of service. An explorative qualitative approach was used. All members and staff at two Leg Clubs in the UK were invited to participate. They were asked to nominate five key words that described their views of the Leg Club model of care. The researcher and a research supervisor then counted them and decided on categories. Members' themes were verified by 10 randomly chosen Leg Club members and staff themes by five randomly chosen staff. All of the 85 Leg Club members and 15 staff approached agreed to take part. Categories identified for the Leg Club members were: sociability, enabling, knowledge and experience, interpersonal relationships, caring and quality. Categories identified for Leg Club staff were: camaraderie, education, empowerment, sociability and tiredness. These results indicate that the community Leg Club environment provides benefits in addition to those of guidelines, wound care expertise and evidence-based care. While the small sample size limits the generalisability of these exploratory data, the results identify the positive views of Leg Club members and highlights the need for further research. Similar data is not available for other health care delivery methods, so this also warrants further exploration.

  6. Space shuttle inflight and postflight fluid shifts measured by leg volume changes.

    PubMed

    Moore, T P; Thornton, W E

    1987-09-01

    This is a study of the inflight and postflight leg volume changes associated with spaceflight on Space Shuttle missions. The results of this study show an inflight volume loss of 2 L from lower extremities, 1 L from each leg, representing an 11.6% volume change. The vast majority of this change appears to be a shift in body fluids, both intravascular and extravascular. The fluid shift occurs rapidly on Mission Day 1 (MD-1), with it being essentially complete by 6 to 10 h. The regional origin of shift and leg volume change shows a far greater absolute volume (708 ml vs. 318 ml) and percentage (69% vs. 31%) of the total change coming from the thigh as compared to the lower leg. Postflight, the return of fluid to the lower extremities occurs rapidly with the majority of volume return complete within 1.5 h postlanding. At 1 week postflight there is a residual leg volume decrement of 283 ml or 3.2% that is probably due to tissue loss secondary to atrophic deconditioning and weight loss.

  7. Space Shuttle inflight and postflight fluid shifts measured by leg volume changes

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.; Thornton, William E.

    1987-01-01

    This is a study of the inflight and postflight leg volume changes associated with spaceflight on Space Shuttle missions. The results show an inflight volume loss of 2 l from the lower extremities, 1 l from each leg, representing an 11.6 percent volume change. The vast majority of this change appears to be a shift in body fluids, both intravascular and extravascular. The fluid shift occurs mostly on Mission Day One and is essentially complete by 6 to 10 hr. The regional origin of shift and leg volume changes shows a far greater absolute volume (708 ml vs. 318 ml) and percentage (69 percent vs. 31 percent) of the total change coming from the higher as compared to the lower leg. Postflight, the return of fluid to the lower extremities occurs rapidly with the majority of volume return complete within 1.5 hr postlanding. At 1 week postflight, there is a residual leg volume decrement of 283 ml or 3.2 percent that is probably due to tissue loss secondary to atrophic deconditioning and weight loss.

  8. [Clinical and physiological evaluation of bone changes among astronauts after long-term space flights

    NASA Technical Reports Server (NTRS)

    Grigoriev, A. I.; Oganov, V. S.; Bakulin, A. V.; Poliakov, V. V.; Voronin, L. I.; Morgun, V. V.; Shnaider, V. S.; Murashko, L. V.; Novikov, V. E.; LeBlank, A.; hide

    1998-01-01

    Results of the joint Russian/US studies of the effect of microgravity on bone tissues in 18 cosmonauts on return from 4.5- to 14.5-month long missions are presented. Dual-energy x-ray gamma-absorbtiometry (QDR-1000 W, Hologic, USA) was used to measure bone mineral density (BMD, g/cm2) and mineral content (BMC, g) in the whole body, the scalp including cervical vertebra, arms, ribs, sternal and lumbar regions of the spinal column, pelvis and legs. A clearly defined dependence of topography of changes upon the position of a skeletal segment in the gravity vector was established. The greatest BMD losses have been observed in the skeleton of the lower body, i.e. in pelvic bones (-11.99 +/- 1.22%), lumbar vertebra (-5.63 +/- 0.817%), and in proximal femur, particularly in the femoral neck (-8.17 +/- 1.24%). Bones of the upper skeleton were either unchanged (insignificant) or showed a positive trend. Overall changes in bone mass of the whole skeleton of male cosmonauts during the period of about 6 months on mission made up -1.41 +/- 0.406% and suggest the mean balance of calcium over flight equal to -227 +/- 62.8 mg/day. Reasoning is given to qualify these states of cosmonauts' bone tissues as local osteopenia. On the literature and results of authors' clinical evidence, discussed is availability of the densitometric data for predicting risk of trauma. A biological nature of the changes under observation is hypothesized.

  9. Leg edema quantification for heart failure patients via 3D imaging.

    PubMed

    Hayn, Dieter; Fruhwald, Friedrich; Riedel, Arthur; Falgenhauer, Markus; Schreier, Günter

    2013-08-14

    Heart failure is a common cardiac disease in elderly patients. After discharge, approximately 50% of all patients are readmitted to a hospital within six months. Recent studies show that home monitoring of heart failure patients can reduce the number of readmissions. Still, a large number of false positive alarms as well as underdiagnoses in other cases require more accurate alarm generation algorithms. New low-cost sensors for leg edema detection could be the missing link to help home monitoring to its breakthrough. We evaluated a 3D camera-based measurement setup in order to geometrically detect and quantify leg edemas. 3D images of legs were taken and geometric parameters were extracted semi-automatically from the images. Intra-subject variability for five healthy subjects was evaluated. Thereafter, correlation of 3D parameters with body weight and leg circumference was assessed during a clinical study at the Medical University of Graz. Strong correlation was found in between both reference values and instep height, while correlation in between curvature of the lower leg and references was very low. We conclude that 3D imaging might be a useful and cost-effective extension of home monitoring for heart failure patients, though further (prospective) studies are needed.

  10. A Comparison of Two Injection Locations in Obese Patients Having Lower Leg/Foot Surgery

    ClinicalTrials.gov

    2015-10-13

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/ or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  11. A Meta-Analysis of Experiments Linking Incubation Conditions with Subsequent Leg Weakness in Broiler Chickens

    PubMed Central

    Groves, Peter J.; Muir, Wendy I.

    2014-01-01

    A series of incubation and broiler growth studies were conducted using one strain of broiler chicken (fast feathering dam line) observing incubation effects on femoral bone ash % at hatch and the ability of the bird to remain standing at 6 weeks of age (Latency-To-Lie). Egg shell temperatures during incubation were consistently recorded. Parsimonious models were developed across eight studies using stepwise multiple linear regression of egg shell temperatures over 3-day periods and both bone ash at hatch and Latency-To-Lie. A model for bone ash at hatch explained 70% of the variation in this factor and revealed an association with lower egg shell temperatures during days 4–6 and 13–15 and higher egg shell temperatures during days 16–18 of incubation. Bone ash at hatch and subsequent Latency-To-Lie were positively correlated (r = 0.57, P<0.05). A model described 66% of the variation Latency-To-Lie showing significant association of the interaction of femoral ash at hatch and lower average egg shell temperatures over the first 15 days of incubation. Lower egg shell temperature in the early to mid incubation process (days 1–15) and higher egg shell temperatures at a later stage (days 16–18) will both tend to delay the hatch time of incubating eggs. Incubation profiles that resulted in later hatching chicks produced birds which could remain standing for a longer time at 6 weeks of age. This supports a contention that the effects of incubation observed in many studies may in fact relate more to earlier hatching and longer sojourn of the hatched chick in the final stage incubator. The implication of these outcomes are that the optimum egg shell temperature during incubation for broiler leg strength development may be lower than that regarded as ideal (37.8°C) for maximum hatchability and chick growth. PMID:25054636

  12. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children.

    PubMed

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-03-01

    Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1-9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9-13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7-6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3-12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures.

  13. A Force-Sensing System on Legs for Biomimetic Hexapod Robots Interacting with Unstructured Terrain

    PubMed Central

    Wu, Rui; Li, Changle; Zang, Xizhe; Zhang, Xuehe; Jin, Hongzhe; Zhao, Jie

    2017-01-01

    The tiger beetle can maintain its stability by controlling the interaction force between its legs and an unstructured terrain while it runs. The biomimetic hexapod robot mimics a tiger beetle, and a comprehensive force sensing system combined with certain algorithms can provide force information that can help the robot understand the unstructured terrain that it interacts with. This study introduces a complicated leg force sensing system for a hexapod robot that is the same for all six legs. First, the layout and configuration of sensing system are designed according to the structure and sizes of legs. Second, the joint toque sensors, 3-DOF foot-end force sensor and force information processing module are designed, and the force sensor performance parameters are tested by simulations and experiments. Moreover, a force sensing system is implemented within the robot control architecture. Finally, the experimental evaluation of the leg force sensor system on the hexapod robot is discussed and the performance of the leg force sensor system is verified. PMID:28654003

  14. Biomechanical analysis of iliac crest loading following cortico-cancellous bone harvesting.

    PubMed

    Schmitz, Paul; Cornelius Neumann, Christoph; Neumann, Carsten; Nerlich, Michael; Dendorfer, Sebastian

    2018-05-09

    Iliac crest bone harvesting is a frequently performed surgical procedure widely used to treat bone defects. The objective of this study is to assess the biomechanical quantities related to risk for pelvic fracture after harvesting an autologous bone graft at the anterior iliac crest. Finite element models with a simulated harvest site (sized 15 × 20 mm, 15 × 35 mm, 30 × 20 mm and 30 × 35 mm) in the iliac wing are created. The relevant loading case is when the ipsilateral leg is lifted off the ground. Musculoskeletal analysis is utilized to compute the muscle and joint forces involved in this motion. These forces are used as boundary conditions for the finite element analyses. Bone tissue stress is analyzed. Critical stress peaks are located between the anterior superior iliac spine (ASIS) and the anterior edge of the harvest site. Irrespective of the graft size, the iliac wing does not show any significant stress peaks with the harvest site being 20 to 25 mm posterior to the ASIS. The harvest area itself inhibits the distribution of the forces applied on the ASIS to extend to the posterior iliac wing. This leads to a lack of stress posterior to the harvest site. A balanced stress distribution with no stress peaks appears when the bone graft is taken below the iliac crest. A harvest site located at least 20 to 25 mm posterior to the ASIS should be preferred to minimize the risk of iliac fatigue fracture.

  15. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb--case report.

    PubMed

    Golubović, Zoran; Vidić, Goran; Trenkić, Srbobran; Vukasinović, Zoran; Lesić, Aleksandar; Stojiljković, Predrag; Stevanović, Goran; Golubović, Ivan; Visnjić, Aleksandar; Najman, Stevo

    2010-01-01

    Aircraft bombs can cause severe orthopaedic injuries. Tibia shaft fractures caused by aircraft bombs are mostly comminuted and followed by bone defects, which makes the healing process extremely difficult and prone to numerous complications. The goal of this paper is to present the method of treatment and the end results of treatment of a serious open tibial fracture with soft and bone tissue defects resulting from aircraft bomb shrapnel wounds. A 26-year-old patient presented with a tibial fracture as the result of a cluster bomb shrapnel wound. He was treated applying the method of external bone fixation done two days after wounding, as well as of early coverage of the lower leg soft tissue defects done on the tenth day after the external fixation of the fracture. The external fixator was removed after five months, whereas the treatment was continued by means of functional plaster cast for another two months. The final functional result was good. Radical wound debridement, external bone fixation of the fracture, and early reconstruction of any soft tissue and bone defects are the main elements of the treatment of serious fractures.

  16. The bothersomeness of sciatica: patients' self-report of paresthesia, weakness and leg pain.

    PubMed

    Grøvle, Lars; Haugen, Anne Julsrud; Keller, Anne; Natvig, Bård; Brox, Jens Ivar; Grotle, Margreth

    2010-02-01

    The objective of the study was to investigate how patients with sciatica due to disc herniation rate the bothersomeness of paresthesia and weakness as compared to leg pain, and how these symptoms are associated with socio-demographic and clinical characteristics. A cross-sectional study was conducted on 411 patients with clinical signs of radiculopathy. Items from the Sciatica Bothersomeness Index (0 = none to 6 = extremely) were used to establish values for paresthesia, weakness and leg pain. Associations with socio-demographic and clinical variables were analyzed by multiple linear regression. Mean scores (SD) were 4.5 (1.5) for leg pain, 3.4 (1.8) for paresthesia and 2.6 (2.0) for weakness. Women reported higher levels of bothersomeness for all three symptoms with mean scores approximately 10% higher than men. In the multivariate models, more severe symptoms were associated with lower physical function and higher emotional distress. Muscular paresis explained 19% of the variability in self-reported weakness, sensory findings explained 10% of the variability in paresthesia, and straight leg raising test explained 9% of the variability in leg pain. In addition to leg pain, paresthesia and weakness should be assessed when measuring symptom severity in sciatica.

  17. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    PubMed Central

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127

  18. Biomechanical analysis of the single‐leg decline squat

    PubMed Central

    Zwerver, J; Bredeweg, S W; Hof, A L

    2007-01-01

    Background The single‐leg squat on a 25° decline board has been described as a clinical assessment tool and as a rehabilitation exercise for patients with patellar tendinopathy. Several assumptions have been made about its working mechanism on patellar load and patellofemoral forces, but these are not substantiated by biomechanical evaluations. Aim To investigate knee moment and patellofemoral contact force as a function of decline angle in the single‐leg squat. Methods Five subjects performed single‐leg eccentric squats at decline angles of 0°, 5°, 10°, 15°, 20° and 25° (with/without a backpack of 10 kg), and 30° on a board that was placed over a forceplate. Kinematic and forceplate data were recorded by the Optotrak system. Joint moments of ankle, knee and hip were calculated by two‐dimensional inverse dynamics. Results Knee moment increased by 40% at decline angles of 15° and higher, whereas hip and ankle moment decreased. Maximum knee and ankle angles increased with steeper decline. With a 10 kg backpack at 25° decline, the knee moment was 23% higher than unloaded. Both patellar tendon and patellofemoral forces increased with higher decline angles, but beyond 60°, the patellofemoral force rose steeper than the tendon force. Conclusions All single‐leg squats at decline angles >15° result in 40% increase in maximum patellar tendon force. In knee flexions >60°, patellofemoral forces increase more than patellar tendon forces. Higher tendon load can be achieved by the use of a backpack with extra weight. PMID:17224441

  19. Leg regeneration stunts wing growth and hinders flight performance in a stick insect (Sipyloidea sipylus).

    PubMed

    Maginnis, Tara L

    2006-07-22

    Major morphological structures are sometimes produced not once, but twice. For example, stick insects routinely shed legs to escape a predator or tangled moult, and these legs are subsequently re-grown. Here, I show that in Sipyloidea sipylus, re-growth of a leg during development causes adults to have disproportionately smaller wings and increases wing loading. These morphological consequences of leg regeneration led to significant reductions in several biologically relevant measures of individual flight performance. This previously unrecognized tradeoff between legs and wings reveals the integrated nature of phasmid phenotypes, and I propose how this tradeoff may have shaped phasmid evolution.

  20. The effect of Brazilian Propolis on leg health in broilers reared under heat stress

    USDA-ARS?s Scientific Manuscript database

    Exposing broiler chickens to heat stress increases leg abnormalities and Gait Score, also it reduced the time of Latency to Lie Test. This experiment was conducted to examine the effect of dietary supplemention with green Brazilian propolis on Latency to Lie Test for leg strength and leg abnormaliti...

  1. Mechanical evidence that flamingos can support their body on one leg with little active muscular force.

    PubMed

    Chang, Young-Hui; Ting, Lena H

    2017-05-01

    Flamingos (Phoenicopteridae) often stand and sleep on one leg for long periods, but it is unknown how much active muscle contractile force they use for the mechanical demands of standing on one leg: body weight support and maintaining balance. First, we demonstrated that flamingo cadavers could passively support body weight on one leg without any muscle activity while adopting a stable, unchanging, joint posture resembling that seen in live flamingos. By contrast, the cadaveric flamingo could not be stably held in a two-legged pose, suggesting a greater necessity for active muscle force to stabilize two-legged versus one-legged postures. Our results suggest that flamingos engage a passively engaged gravitational stay apparatus (proximally located) for weight support during one-legged standing. Second, we discovered that live flamingos standing on one leg have markedly reduced body sway during quiescent versus alert behaviours, with the point of force application directly under the distal joint, reducing the need for muscular joint torque. Taken together, our results highlight the possibility that flamingos stand for long durations on one leg without exacting high muscular forces and, thus, with little energetic expenditure. © 2017 The Author(s).

  2. Supporting adherence and healthy lifestyles in leg ulcer patients: systematic development of the Lively Legs program for dermatology outpatient clinics.

    PubMed

    Heinen, Maud M; Bartholomew, L Kay; Wensing, Michel; van de Kerkhof, Peter; van Achterberg, Theo

    2006-05-01

    The objective of our project was to develop a lifestyle program for leg ulcer patients at outpatient clinics for dermatology. We used the intervention-mapping (IM) framework for systematically developing theory and evidence based health promotion programs. We started with a needs-assessment. A multidisciplinary project group of health care workers and patients was involved in all five IM steps; formulating proximal program objectives, selecting methods and strategies, producing program components, planning for adoption and implementation and planning for evaluation. Several systematic literature reviews and original studies were performed to support this process. Social Cognitive Theory was selected as the main theory behind the program 'Lively Legs' and was combined with elements of Goal-Setting Theory, the precaution adoption model and motivational interviewing. The program is conducted through health counseling by dermatology nurses and was successfully pre-tested. Also, an implementation and evaluation plan were made. Intervention mapping helped us to succeed in developing a lifestyle program with clear goals and methods, operational strategies and materials and clear procedures. Coaching leg ulcer patients towards adherence with compression therapy and healthy lifestyles should be taken on without delay. Systematic development of lifestyle programs for other patient groups should be encouraged.

  3. Reconstruction with distraction osteogenesis for juxta-articular nonunions with bone loss.

    PubMed

    Kabata, Tamon; Tsuchiya, Hiroyuki; Sakurakichi, Keisuke; Yamashiro, Teruhisa; Watanabe, Koji; Tomita, Kasuro

    2005-06-01

    Nonunions of a juxta-articular lesion with bone loss, which represent a challenging therapeutic problem, were treated using external fixation and distraction osteogenesis. Seven juxta-articular nonunions (five septic and two aseptic) were treated. The location of the nonunion was the distal femur in four patients, the proximal tibia in one patient, and the distal tibia in two patients. All of them were located within 5 cm from the affected joints. Preoperative limb shortening was present in six cases, averaging 2.9 cm (range, 1-7 cm). The reconstructive procedure consisted of refreshment of the nonunion site, deformity correction, stabilization by external fixation, and lengthening to eliminate leg length discrepancy or to fill the defect. Shortening-distraction was applied to six patients and bone transport to one patient for reconstruction. Intramedullary nailing to reduce the duration of external fixation was simultaneously performed in two cases. All the patients had at least 1 year of follow-up evaluation. Osseous union without angular deformity or leg length discrepancy greater than 1 cm was achieved in all patients. The mean amount of lengthening was 5.8 cm (range, 2.2-10.0 cm). The mean external fixation period was 219 days (range, 98-317 days), and the mean external fixation index was 34.4 days/cm (range, 24.5-47.6 days/cm). All patients reported excellent pain reduction. There were no recurrences of infection in five patients with prior history of osteomyelitis. The functional results were categorized as excellent in two, good in three, and fair in two. Despite the length of postoperative external fixation, distraction osteogenesis can be a valuable alternative for the treatment of juxta-articular nonunions.

  4. The relationship with restless legs syndrome, fibromyalgia, and depressive symptoms in migraine patients.

    PubMed

    Akdag Uzun, Zehra; Kurt, Semiha; Karaer Unaldi, Hatice

    2018-05-18

    In this study, we aimed to investigate restless legs syndrome, depression, frequency of fibromyalgia and possible causes of its frequencies, and the relationships among these synergies and migraine's prodrome, aura, pain, and postdrome symptoms in patients with migraine. The study group included 200 patients previously or recently diagnosed with definite migraine and according to International Headache Society criteria and 200 healthy volunteers. All subjects underwent a medical interview to confirm restless legs syndrome and fibromyalgia, and they were asked to complete Beck Depression and Anxiety Inventory and "severity of restless legs syndrome inventory." The frequencies of depressive symptoms and fibromyalgia in the patients with migraine were higher than those of the control group. The mean age of the migraine patients with restless legs syndrome was also higher, and this group had migraine headache for a longer time. There was a statistically significant difference with regard to only generalized anxiety and traveler's distress, which were features of the migraine, between migraine patients with and without restless legs syndrome. Restless legs syndrome was more common in migraine patients with and without aura and in those with nonspecific white matter lesions in the cranial MRI. In our study, the greater frequency of restless legs syndrome, depressive symptoms, and fibromyalgia in the patients with migraine supports the role of dopamine, which is common to all three disorders. Interviews focused on these problems among migraine patients may help to decide on the best available treatment modality.

  5. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.

    PubMed

    Spröwitz, Alexander T; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2-3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

  6. A new biarticular actuator design facilitates control of leg function in BioBiped3.

    PubMed

    Sharbafi, Maziar Ahmad; Rode, Christian; Kurowski, Stefan; Scholz, Dorian; Möckel, Rico; Radkhah, Katayon; Zhao, Guoping; Rashty, Aida Mohammadinejad; Stryk, Oskar von; Seyfarth, Andre

    2016-07-01

    Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.

  7. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

    PubMed Central

    Spröwitz, Alexander T.; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware. PMID:24639645

  8. Effects of incubator temperature and oxygen concentration during the plateau stage of oxygen consumption on Turkey embryo long bone development.

    PubMed

    Oviedo-Rondón, E O; Small, J; Wineland, M J; Christensen, V L; Grimes, J L; Funderburk, S V L; Ort, D T; Mann, K M

    2008-08-01

    Temperature (TEM) and O(2) concentrations during the plateau stage of oxygen consumption are known to affect yolk utilization, tissue development, and thyroid metabolism in turkey embryos. Three experiments were conducted to evaluate these incubation effects on long bone development. Fertile eggs of Nicholas turkeys were used. In each trial, standard incubation conditions were used to 24 d, when the eggs containing viable embryos were randomly divided into 4 groups. Four experimental cabinets provided 4 TEM (36, 37, 38, or 39 degrees C) or 4 O(2) concentrations (17, 19, 21, or 23% O(2)). In the third experiment, 2 temperatures (36 and 39 degrees C) and 2 O(2) concentrations (17 and 23%) were evaluated in a 2 x 2 factorial design. Body and residual yolk weights were obtained. Both legs were dissected, and shanks, femur, and tibia weights, length, and thickness were recorded. Relative asymmetry of each leg section was calculated. Chondrocyte density was evaluated in slides stained with hematoxylin and eosin. Immunofluorescence was used to evaluate the presence of collagen type X and transforming growth factor beta. Hot TEM caused reduction of tibia weights and increase of shank weight when compared with cool TEM. The lengths of femur, tibia, and shanks were reduced by 39 degrees C. The relative asymmetry of leg weights were increased at 38 and 39 degrees C. Poult body and part weights were not affected by O(2) concentrations, but poults on 23% O(2) had bigger shanks and heavier tibias than the ones on 17% O(2). High TEM depressed the fluorescence of collagen type X and transforming growth factor beta. The O(2) concentrations did not consistently affect the immunofluorescence of these proteins. The chondrocyte density was affected by TEM and O(2) in resting and hypertrophic zones. In the third experiment, high TEM depressed BW, leg muscle weights, and shank length. Low O(2) reduced tibia and shanks as a proportion of the whole body. We concluded that incubation

  9. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    NASA Astrophysics Data System (ADS)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  10. Maneuvers during legged locomotion

    NASA Astrophysics Data System (ADS)

    Jindrich, Devin L.; Qiao, Mu

    2009-06-01

    Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the

  11. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.

    PubMed

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume

    2017-06-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, P <0.05), which was prevented when sitting was preceded by a bout of cycling exercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P >0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P >0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Model task for the dynamics of an underwater two-legged walker

    NASA Technical Reports Server (NTRS)

    Beletskiy, V. V.; Golubkov, V. V.; Stepanova, Y. A.

    1979-01-01

    A model task of two-legged underwater walking was examined. Characteristics of the walking were established. The underwater walking device is a substantial sphere, which moves on dual-member legs. The dynamics of the device were investigated with the calculation of the buoyancy of Archimedes, and the force of hydrodynamic resistance.

  13. Leg Preference and Interlateral Asymmetry of Balance Stability in Soccer Players

    ERIC Educational Resources Information Center

    Teixeira, Luis Augusto; de Oliveira, Dalton Lustosa; Romano, Rosangela Guimaraes; Correa, Sonia Cavalcanti

    2011-01-01

    To examine the effect of long lasting practice on pedal behavior in sport, we compared experienced adult soccer players and nonsoccer players on leg preference in motor tasks requiring general mobilization, soccer related mobilization, and body balance stabilization. We also evaluated performance asymmetry between the right and left legs in static…

  14. Postural control of typical developing boys during the transition from double-leg stance to single-leg stance.

    PubMed

    Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Kristel; Hermans, Cedric; Lobet, Sebastien

    2017-02-01

    Literature is lacking information about postural control performance of typically developing children during a transition task from double-leg stance to single-leg stance. The purpose of the present study was therefore to evaluate the clinical feasibility of a transition task in typical developing age groups as well as to study the correlation between associated balance measures and age.Thirty-three typically developing boys aged 6-20 years performed a standard transition task from DLS to SLS with eyes open (EO) and eyes closed (EC). Balance features derived from the center of pressure displacement captured by a single force platform were correlated with age on the one hand and considered for differences in the perspective of limb dominance on the other hand.All TDB (typically developing boys) were able to perform the transition task with EO. With respect to EC condition, all TDB from the age group 6-7 years and the youngest of the age group 8-12 years (N = 4) were unable to perform the task. No significant differences were observed between the balance measures of the dominant and non-dominant limbs.With respect to EO condition, correlation analyses indicated that time to new stability point (TNSP) as well as the sway measure after this TNSP were correlated with age (p < 0.0001). For the EC condition, only the anthropometrically scaled sway measure was found to be correlated (p = 0.03). The results provide additional insight into balance development in childhood and may serve as a useful basis for assessing balance impairments in higher functioning children with musculoskeletal problems. What is Known: • Reference data regarding postural balance of typically developing children during walking, running, sit-to-stand, and bipodal and unipodal stance has been well documented in the literature. • These reference data provided not only insight into the maturation process of the postural control system, but also served in diagnosing and managing functional

  15. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  16. Bone microvascular flow differs from skin microvascular flow in response to head-down tilt.

    PubMed

    Howden, Michelle; Siamwala, Jamila H; Hargens, Alan R

    2017-10-01

    Loss of hydrostatic pressures in microgravity may alter skin and bone microvascular flows in the lower extremities and potentially reduce wound healing and bone fracture repair. The purpose of this study was to determine the rate at which skin and bone microvascular flows respond to head-down tilt (HDT). We hypothesized that microvascular flows in tibial bone and overlying skin would increase at different rates during HDT. Tibial bone and skin microvascular flows were measured simultaneously using photoplethysmography (PPG) in a total of 17 subjects during sitting (control posture), supine, 6° HDT, 15° HDT, and 30° HDT postures in random order. With greater angles of HDT, bone microvascular flow increased significantly, but skin microvascular flow did not change. Tibial bone microvascular flow increased from the sitting control posture (0.77 ± 0.41 V) to supine (1.95 ± 1.01 V, P = 0.001) and from supine posture to 15° HDT (3.74 ± 2.43 V, P = 0.004) and 30° HDT (3.91 ± 2.68 V, P = 0.006). Skin microvascular flow increased from sitting (0.703 ± 0.75 V) to supine (2.19 ± 1.72 V, P = 0.02) but did not change from supine posture to HDT ( P = 1.0). We show for the first time that microcirculatory flows in skin and bone of the leg respond to simulated microgravity at different rates. These altered levels of blood perfusion may affect rates of wound and bone fracture healing in spaceflight. NEW & NOTEWORTHY Our data show that bone microvascular flow increases more than cutaneous blood flow with greater degrees of head-down tilt. A higher level of perfusion in bone may give insight into the bone mineral density loss in lower extremities of astronauts and why similar tissue degradation is not observed in the skin of the same areas. Copyright © 2017 the American Physiological Society.

  17. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    PubMed

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; p<0.001). Lateral trunk lean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p < 0.001). A moderate positive correlation was observed between trunk lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  18. Reliability among clinicians diagnosing low back-related leg pain.

    PubMed

    Stynes, Siobhán; Konstantinou, Kika; Dunn, Kate M; Lewis, Martyn; Hay, Elaine M

    2016-09-01

    To investigate agreement and reliability among clinicians when diagnosing low back-related leg pain (LBLP) in primary care consulters. Thirty-six patients were assessed by one of six physiotherapists and diagnosed as having either leg pain due to nerve root involvement (sciatica) or referred leg pain. Assessments were video recorded. In part one, the physiotherapists each viewed videos of six patients they had not assessed. In part two, videos were viewed by another six health professionals. All clinicians made an independent differential diagnosis and rated their confidence with diagnosis (range 50-100 %). In part one agreement was 72 % with fair inter-rater reliability (K = 0.35, 95 % CI 0.07, 0.63). Results for part two were almost identical (K = 0.34, 95 % CI 0.02, 0.69). Agreement and reliability indices improved as diagnostic confidence increased. Reliability was fair among clinicians from different backgrounds when diagnosing LBLP but improved substantially with high confidence in clinical diagnosis.

  19. Walking the talk--speech activates the leg motor cortex.

    PubMed

    Liuzzi, Gianpiero; Ellger, Tanja; Flöel, Agnes; Breitenstein, Caterina; Jansen, Andreas; Knecht, Stefan

    2008-09-01

    Speech may have evolved from earlier modes of communication based on gestures. Consistent with such a motor theory of speech, cortical orofacial and hand motor areas are activated by both speech production and speech perception. However, the extent of speech-related activation of the motor cortex remains unclear. Therefore, we examined if reading and listening to continuous prose also activates non-brachiofacial motor representations like the leg motor cortex. We found corticospinal excitability of bilateral leg muscle representations to be enhanced by speech production and silent reading. Control experiments showed that speech production yielded stronger facilitation of the leg motor system than non-verbal tongue-mouth mobilization and silent reading more than a visuo-attentional task thus indicating speech-specificity of the effect. In the frame of the motor theory of speech this finding suggests that the system of gestural communication, from which speech may have evolved, is not confined to the hand but includes gestural movements of other body parts as well.

  20. On the stiffness analysis of a cable driven leg exoskeleton.

    PubMed

    Sanjeevi, N S S; Vashista, Vineet

    2017-07-01

    Robotic systems are being used for gait rehabilitation of patients with neurological disorder. These devices are externally powered to apply external forces on human limbs to assist the leg motion. Patients while walking with these devices adapt their walking pattern in response to the applied forces. The efficacy of a rehabilitation paradigm thus depends on the human-robot interaction. A cable driven leg exoskeleton (CDLE) use actuated cables to apply external joint torques on human leg. Cables are lightweight and flexible but can only be pulled, thus a CDLE requires redundant cables. Redundancy in CDLE can be utilized to appropriately tune a robot's performance. In this work, we present the stiffness analysis of CDLE. Different stiffness performance indices are established to study the role of system parameters in improving the human-robot interaction.

  1. Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study.

    PubMed

    Zouch, Mohamed; Zribi, Anis; Alexandre, Christian; Chaari, Hamada; Frere, Delphine; Tabka, Zouhair; Vico, Laurence

    2015-01-01

    The aim of this study was to examine the effect of 3-yr soccer practice on bone acquisition in prepubescent boys. We investigated 65 boys (aged 10-13 yr, Tanner stage I) at baseline, among which only 40 boys (Tanner stages II and III) have continued the 3-yr follow-up: 23 soccer players (F) completed 2-5 h of training plus 1 competition game per week and 17 controls (C). Bone mineral density (BMD, g/cm(2)) and bone mineral content (BMC, g) were measured by dual-energy X-ray absorptiometry at different sites. At baseline, BMD was higher in soccer players than in controls in the whole body and legs. In contrast, there was nonsignificant difference BMD in head, femoral neck, arms, and BMC in all measured sites between groups. At 3-yr follow-up, soccer players were found to have higher BMD and BMC at all sites than controls, except for head BMD and BMC and arms BMC in which the difference was nonsignificant between groups. During the 3-yr follow-up, the soccer players were found to gain significantly more in lumbar spine (31.2% ± 2.9% vs 23.9% ± 2.1%; p < 0.05), femoral neck (24.1% ± 1.8% vs 11.4% ± 1.9%; p < 0.001), whole body (16.5% ± 1.4% vs 11.8% ± 1.5%; p < 0.05), and nondominant arm BMD (18.2% ± 1.4% vs 13.6% ± 1.7%; p < 0.05) as well as lumbar spine (62.5% ± 20.1% vs 39.5% ± 20.1%; p < 0.001), femoral neck, (37.7% ± 14.2% vs 28.9% ± 12.8%; p < 0.05) and nondominant arm BMC (68.6% ± 22.9% vs 50.1% ± 22.4%; p < 0.05) than controls. In contrast, soccer players have less %BMD and %BMC changes in the head than controls. A nonsignificant difference was found in legs, dominant arm, head %BMD and %BMC changes, and whole-body %BMC changes between groups. In summary, we suggest that soccer has an osteogenic effect BMD and BMC in loaded sites in pubertal soccer players. The increased bone mass induced by soccer training in the stressed sites was associated to a decreased skull bone mass after 3 yr of follow-up. Copyright © 2015 The International Society for

  2. The bothersomeness of sciatica: patients’ self-report of paresthesia, weakness and leg pain

    PubMed Central

    Haugen, Anne Julsrud; Keller, Anne; Natvig, Bård; Brox, Jens Ivar; Grotle, Margreth

    2009-01-01

    The objective of the study was to investigate how patients with sciatica due to disc herniation rate the bothersomeness of paresthesia and weakness as compared to leg pain, and how these symptoms are associated with socio-demographic and clinical characteristics. A cross-sectional study was conducted on 411 patients with clinical signs of radiculopathy. Items from the Sciatica Bothersomeness Index (0 = none to 6 = extremely) were used to establish values for paresthesia, weakness and leg pain. Associations with socio-demographic and clinical variables were analyzed by multiple linear regression. Mean scores (SD) were 4.5 (1.5) for leg pain, 3.4 (1.8) for paresthesia and 2.6 (2.0) for weakness. Women reported higher levels of bothersomeness for all three symptoms with mean scores approximately 10% higher than men. In the multivariate models, more severe symptoms were associated with lower physical function and higher emotional distress. Muscular paresis explained 19% of the variability in self-reported weakness, sensory findings explained 10% of the variability in paresthesia, and straight leg raising test explained 9% of the variability in leg pain. In addition to leg pain, paresthesia and weakness should be assessed when measuring symptom severity in sciatica. PMID:19488793

  3. Dressings and topical agents for arterial leg ulcers.

    PubMed

    Forster, Rachel; Pagnamenta, Fania

    2015-06-29

    It is estimated that people in industrialised countries have a 1% chance of suffering from a leg ulcer at some time in their life. The majority of leg ulcers are associated with circulation problems; poor blood return in the veins causes venous ulcers (around 70% of ulcers) and poor blood supply to the legs causes arterial ulcers (around 22% of ulcers). Treatment of arterial leg ulcers is directed towards correcting the poor arterial blood supply, for example by correcting arterial blockages (either surgically or pharmaceutically). If the blood supply has been restored, these arterial ulcers can heal following principles of good wound care. Dressings and topical agents make up a part of good wound care for arterial ulcers but there are many products available and it is unclear what impact these have on ulcer healing. This is an update of a review first published in 2003. To determine whether topical agents and wound dressings affect healing in arterial ulcers. To compare healing rates, patient-centred outcomes and costs between wound dressings and topical agents. For this update the Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched November 2014) and The Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library) (2014, Issue 10). Randomised controlled trials (RCTs), or controlled clinical trials (CCTs) evaluating dressings and topical agents in the treatment of arterial leg ulcers were eligible for inclusion. The participants had to have ulcers that were described as arterial, and the time to healing, proportion completely healed, or rate of reduction in ulcer area had to be reported. All wound dressings and topical agents were eligible for inclusion in this review. The two review authors independently extracted information on the participants' characteristics, the interventions, and outcomes using a standardised data extraction form. Disagreements between the review authors

  4. Venogram - leg

    MedlinePlus

    ... through the body to form an image on film. Structures that are dense (such as bone) will ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...

  5. Muscle Activity in Single- vs. Double-Leg Squats.

    PubMed

    DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

  6. Muscle Activity in Single- vs. Double-Leg Squats

    PubMed Central

    DeFOREST, BRADLEY A.; CANTRELL, GREGORY S.; SCHILLING, BRIAN K.

    2014-01-01

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired. PMID:27182408

  7. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans

    PubMed Central

    Strange, S

    1999-01-01

    Skeletal muscle blood flow is thought to be determined by a balance between sympathetic vasoconstriction and metabolic vasodilatation. The purpose of this study was to assess the importance of high levels of sympathetic vasoconstrictor activity in control of blood flow to human skeletal muscle during dynamic exercise.Muscle sympathetic nerve activity to the exercising leg was increased by static or static ischaemic arm exercise added to on-going dynamic leg exercise. Ten subjects performed light (20 W) or moderate (40 W) dynamic knee extension for 6 min with one leg alone or concomitant with bilateral static handgrip at 20% of maximal voluntary contraction force with or without forearm muscle ischaemia or post-exercise forearm muscle ischaemia.Muscle sympathetic nerve activity was measured by microneurography (peroneal nerve) and leg muscle blood flow by a constant infusion thermodilution technique (femoral vein).Activation of an exercise pressor reflex from the arms, causing a 2- to 4-fold increase in muscle sympathetic nerve activity and a 15–32% increase in mean arterial blood pressure, did not affect blood flow to the dynamically exercising leg muscles at any level of leg exercise. Leg vascular conductance was reduced in line with the higher perfusion pressure.The results demonstrate that the vasoconstrictor effects of high levels of muscle sympathetic nerve activity does not affect blood flow to human skeletal muscle exercising at moderate intensities. One question remaining is whether the observed decrease in muscle vascular conductance is the result of sympathetic vasoconstriction or metabolic autoregulation of muscle blood flow. PMID:9831733

  8. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  9. Those are Your Legs: The Effect of Visuo-Spatial Viewpoint on Visuo-Tactile Integration and Body Ownership

    PubMed Central

    Pozeg, Polona; Galli, Giulia; Blanke, Olaf

    2015-01-01

    Experiencing a body part as one’s own, i.e., body ownership, depends on the integration of multisensory bodily signals (including visual, tactile, and proprioceptive information) with the visual top-down signals from peripersonal space. Although it has been shown that the visuo-spatial viewpoint from where the body is seen is an important visual top-down factor for body ownership, different studies have reported diverging results. Furthermore, the role of visuo-spatial viewpoint (sometime also called first-person perspective) has only been studied for hands or the whole body, but not for the lower limbs. We thus investigated whether and how leg visuo-tactile integration and leg ownership depended on the visuo-spatial viewpoint from which the legs were seen and the anatomical similarity of the visual leg stimuli. Using a virtual leg illusion, we tested the strength of visuo-tactile integration of leg stimuli using the crossmodal congruency effect (CCE) as well as the subjective sense of leg ownership (assessed by a questionnaire). Fifteen participants viewed virtual legs or non-corporeal control objects, presented either from their habitual first-person viewpoint or from a viewpoint that was rotated by 90°(third-person viewpoint), while applying visuo-tactile stroking between the participants legs and the virtual legs shown on a head-mounted display. The data show that the first-person visuo-spatial viewpoint significantly boosts the visuo-tactile integration as well as the sense of leg ownership. Moreover, the viewpoint-dependent increment of the visuo-tactile integration was only found in the conditions when participants viewed the virtual legs (absent for control objects). These results confirm the importance of first person visuo-spatial viewpoint for the integration of visuo-tactile stimuli and extend findings from the upper extremity and the trunk to visuo-tactile integration and ownership for the legs. PMID:26635663

  10. Biomechanical study on axillary crutches during single-leg swing-through gait.

    PubMed

    Goh, J C; Toh, S L; Bose, K

    1986-08-01

    This paper describes a kinetic and kinematic study on axillary crutches during one-leg swing-through gait. The primary objective is to evaluate the interplay of forces at the crutch and body interfaces and to relate them in the understanding of problems associated with the use of axillary crutches. Ten normal adult male subjects with simulated left leg impairment participated in the study. For data acquisition, the VICON kinematic system, a Kistler force plate and an instrumented crutch (with force transducers at the two upper struts close to the axillary bar and one near the crutch tip) were used. Results showed that the peak ground reaction force on the weight-bearing leg during lower limb stance increased by 21.6 percent bodyweight. The peak reaction force transmitted to the arm during crutch stance was 44.4 percent bodyweight. These increased loadings could be detrimental to patients with unsound weight-bearing leg and upper extremities respectively. When the crutches were used incorrectly, 34 percent bodyweight was carried by the underarm. This could cause undue pressure over the neurovascular structures at the axillary region.

  11. Evaluation of bone healing in femurs lengthened via the gradual distraction method.

    PubMed

    Jochymek, Jiri; Gal, Petr

    2007-06-01

    Treatment of leg length inequality via lengthening of the shorter extremity is an infrequent orthopedic procedure due to the requirement of special distraction devices and possible serious complications. Essential qualitative changes in operative technique development are associated with the name of G. A. Ilizarov, who paved the way for the autoregenerate gradual distraction method in the 1950s. In the years 1990 through 2006 a total of 57 patients underwent femur lengthening via gradual distraction using various types of external fixators at the Department of Pediatric Surgery, Orthopedics, and Traumatology, Faculty Hospital in Brno. The quality of bone healing was monitored and a number of parameters followed and statistically evaluated using regularly scheduled X-ray examinations. In 11 cases we had to remove the external fixator following the distraction phase, perform an osteosynthesis via a splint and fill the distraction gap via spongioplasty. The bone healing was satisfactory in the remaining 46 patients and the lengthened bone required no other fixation method. The analysis showed statistically significant deceleration in bone healing following distraction in female patients over 12 years of age, and in boys over 14 years of age. Lack of periosteal callus five weeks after surgery always signified serious problems in further healing. Severe complications were recorded in 11 cases during the distraction phase, and in 9 cases after the removal of the distraction apparatus. The aim of this report was to present the results of our study of distraction gap bone healing using the gradual lengthening approach.

  12. Voluntary Movement Frequencies in Submaximal One- and Two-Legged Knee Extension Exercise and Pedaling

    PubMed Central

    Stang, Julie; Wiig, Håvard; Hermansen, Marte; Hansen, Ernst Albin

    2016-01-01

    Understanding of behavior and control of human voluntary rhythmic stereotyped leg movements is useful in work to improve performance, function, and rehabilitation of exercising, healthy, and injured humans. The present study aimed at adding to the existing understanding within this field. To pursue the aim, correlations between freely chosen movement frequencies in relatively simple, single-joint, one- and two-legged knee extension exercise were investigated. The same was done for more complex, multiple-joint, one- and two-legged pedaling. These particular activities were chosen because they could be considered related to some extent, as they shared a key aspect of knee extension, and because they at the same time were different. The activities were performed at submaximal intensities, by healthy individuals (n = 16, thereof eight women; 23.4 ± 2.7 years; 1.70 ± 0.11 m; 68.6 ± 11.2 kg). High and fair correlations (R-values of 0.99 and 0.75) occurred between frequencies generated with the dominant leg and the nondominant leg during knee extension exercise and pedaling, respectively. Fair to high correlations (R-values between 0.71 and 0.95) occurred between frequencies performed with each of the two legs in an activity, and the two-legged frequency performed in the same type of activity. In general, the correlations were higher for knee extension exercise than for pedaling. Correlations between knee extension and pedaling frequencies were of modest occurrence. The correlations between movement frequencies generated separately by each of the legs might be interpreted to support the following working hypothesis, which was based on existing literature. It is likely that involved central pattern generators (CPGs) of the two legs share a common frequency generator or that separate frequency generators of each leg are attuned via interneuronal connections. Further, activity type appeared to be relevant. Thus, the apparent common rhythmogenesis for the two legs appeared

  13. Limb symmetry during double-leg squats and single-leg squats on land and in water in adults with long-standing unilateral anterior knee pain; a cross sectional study.

    PubMed

    Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L

    2017-01-01

    The presence of pain during movement typically results in changes in technique. However, the physical properties of water, such as flotation, means that water-based exercise may not only reduce compensatory movement patterns but also allow pain sufferers to complete exercises that they are unable to perform on land. The purpose of this study was to assess bilateral kinematics during double-leg squats and single-leg squats on land and in water in individuals with unilateral anterior knee pain. A secondary aim was to quantify bilateral asymmetry in both environments in affected and unaffected individuals using a symmetry index. Twenty individuals with unilateral knee pain and twenty healthy, matched controls performed body weight double- and single-leg squats in both environments while inertial sensors (100 Hz) recorded trunk and lower body kinematics. Repeated-measures statistics tested for environmental effects on movement depths and peak angles within the anterior knee pain group. Differences in their inter-limb symmetry in each environments was compared to the control group using analysis of variance tests. Water immersion allowed for greater movement depths during both exercises (double-leg squat: +7 cm, p  = 0.032, single-leg squat: +9 cm, p  = 0.002) for the knee pain group. The double-leg squat was symmetrical on land but water immersion revealed asymmetries in the lower body frontal plane movements. The single-leg squat revealed decreased hip flexion and frontal plane shank motions on the affected limb in both environments. Water immersion also affected the degree of lower limb asymmetry in both groups, with differences also showing between groups. Individuals with anterior knee pain achieved increased squat depth during both exercises whilst in water. Kinematic differences between the affected and unaffected limbs were often increased in water. Individuals with unilateral anterior knee pain appear to utilise different kinematics in the affected

  14. Restless legs syndrome: a rarity in the Nigerian pregnant population?

    PubMed

    Fawale, Michael B; Ismaila, Isiaka A; Kullima, Abubakar A; Komolafe, Morenikeji A; Ijarotimi, Omotade A; Olowookere, Samuel Anu; Oluyombo, Rotimi; Adedeji, Tewogbade Adeoye

    2018-03-01

    The prevalence of RLS in pregnancy is higher when compared with the general population however it remains unknown among indigenous black Africans. Available data indicate that RLS is uncommon in sub-Saharan Africa. We embarked on this study to determine the prevalence and characteristics of RLS in an antenatal clinic sample of Nigerian pregnant women compared with a primary care sample of non-pregnant women. A total of 310 pregnant women and non-pregnant women filled out a questionnaire which incorporated the 2014 minimal criteria of the International Restless Legs Syndrome Study Group. Demographic and clinical data, including sleep duration and samples for blood hemoglobin concentration and urinalysis were obtained. The mean ages of the pregnant and non-pregnant women were 24.9 ± 5.6 years and 23.6 + 5.4 years, respectively (p = 0.003). There was no case of RLS found among pregnant women while five (1.6%) of the non-pregnant women fulfilled the criteria for RLS. Overall, the prevalence report of RLS symptoms was associated with lower mean habitual nocturnal sleep duration (p < 0.05) coffee (p = 0.013) and kola nut (0.023) consumption, report of leg cramps (p < 0.001) and proteinuria (p = 0.047), Report of leg cramps and proteinuria were independently associated with RLS. The prevalence of restless legs syndrome is low among women of child-bearing age in the Nigerian population and may be lower in pregnancy. Report of leg cramps and proteinuria are independently associated with RLS. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of wearing lower leg compression sleeves on locomotion economy.

    PubMed

    Kurz, Eduard; Anders, Christoph

    2018-09-01

    The purpose of this investigation was to assess the effect of compression sleeves on muscle activation cost during locomotion. Twenty-two recreationally active men (age: 25 ± 3 years) ran on a treadmill at four different speeds (ordered sequence of 2.8, 3.3, 2.2, and 3.9 m/s). The tests were performed without (control situation, CON) and while wearing specially designed lower leg compression sleeves (SL). Myoelectric activity of five lower leg muscles (tibialis anterior, fibularis longus, lateral and medial head of gastrocnemius, and soleus) was captured using Surface EMG. To assess muscle activation cost, the cumulative muscle activity per distance travelled (CMAPD) of the CON and SL situations was determined. Repeated measures analyses of variance were performed separately for each muscle. The analyses revealed a reduced lower leg muscle activation cost with respect to test situation for SL for all muscles (p < 0.05, η p 2  > 0.18). The respective significant reductions of CMAPD values during SL ranged between 4% and 16% and were largest at 2.8 m/s. The findings presented point towards an improved muscle activation cost while wearing lower leg compression sleeves during locomotion that have potential to postpone muscle fatigue.

  16. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    PubMed

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Restless Legs Symptoms and Pregnancy and Neonatal Outcomes.

    PubMed

    Oyieng'o, D Onentia; Kirwa, Kipruto; Tong, Iris; Martin, Susan; Antonio Rojas-Suarez, José; Bourjeily, Ghada

    2016-02-01

    Restless legs syndrome (RLS) is a commonly occurring neurologic disorder that affects up to one third of women during pregnancy. RLS has been associated with increased sympathetic tone in the nonpregnant population. We examined whether a RLS surrogate is associated with a higher prevalence of pregnancy and neonatal outcomes. Data were analyzed from a cross-sectional survey of 1000 women interviewed soon after delivery by using an RLS surrogate question. Women were asked how frequently (0 = none, 1 = rarely [<1 time/week], 2 = sometimes [1-2 times/week], 3 = frequently [3-4 times/week], and 4 = always [5-7 times/week]) they had "experienced jumpy or jerky leg movements" in the last 3 months of pregnancy. Clinical charts were reviewed to obtain relevant demographic and clinical data, including the presence of gestational hypertensive disorders and neonatal outcomes at birth. Subjects who "always" experienced RLS were compared with subjects experiencing symptoms less frequently or not at all with respect to prevalence of gestational hypertensive disorder. The mean ([SD]) age, prepregnancy body mass index (BMI), and BMI at delivery were 29.0 (6.1) years, 26.1 (6.2) kg/m(2), and 32.0 (6.3) kg/m(2), respectively. The overall prevalence of the RLS surrogate (jumpy or jerky leg movements) was 35.5% with the following distribution on a Likert scale: score 1 = 6.4%; score 2 = 10.2%; score 3 = 8.1%; and score 4 = 10.8%. Chronic hypertension was present in 2.1%, pregnancy-induced hypertension in 9.5%, and preeclampsia in 4.5% of respondents. Subjects who reported "always" having sensations of jumpy or jerky legs were more likely to have gestational hypertensive disorders compared with those who reported less frequent occurrence of the symptoms. Adjusted odds ratios were 3.74 (95% CI, 1.31-10.72; P = 0.014) for chronic hypertension; 1.26 (95% CI, 0.65-2.46; P = 0.487) for pregnancy-induced hypertension; and 2.15 (95% CI, 0.97-4.75; P = 0.060) for preeclampsia. There was a

  18. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children

    PubMed Central

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-01-01

    Abstract Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1–9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9–13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7–6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3–12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures. PMID:26986106

  19. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.

    PubMed

    Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J

    2010-11-01

    When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.

  20. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    PubMed Central

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2012-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility. PMID:22707874

  1. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.

    PubMed

    Quintero, Hugo A; Farris, Ryan J; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility.

  2. One-leg balance is an important predictor of injurious falls in older persons.

    PubMed

    Vellas, B J; Wayne, S J; Romero, L; Baumgartner, R N; Rubenstein, L Z; Garry, P J

    1997-06-01

    To test the hypothesis that one-leg balance is a significant predictor of falls and injurious falls. Analysis of data from a longitudinal cohort study. Healthy, community-living volunteers older than age 60 enrolled in the Albuquerque Falls Study and followed for 3 years (N = 316; mean age 73 years). Falls and injurious falls detected via reports every other month. Baseline measures of demographics, history, physical examination, Iowa Self Assessment Inventory, balance and gait assessment, and one-leg balance (ability to stand unassisted for 5 seconds on one leg). At baseline, 84.5% of subjects could perform one-leg balance. (Impairment was associated with older age and gait abnormalities.) Over the 3-year follow-up, 71% experienced a fall and 22% an injurious fall. The only independent significant predictor of all falls using logistic regression was age greater than 73. However, impaired one-leg balance was the only significant independent predictor of injurious falls (relative risk: 2.13; 95% CI: 1.04, 4.34; P = .03). One-leg balance appears to be a significant and easy-to-administer predictor of injurious falls, but not of all falls. In our study, it was the strongest individual predictor. However, no single factor seems to be accurate enough to be relied on as a sole predictor of fall risk or fall injury risk because so many diverse factors are involved in falling.

  3. Strength, body composition, and functional outcomes in the squat versus leg press exercises.

    PubMed

    Rossi, Fabrício E; Schoenfeld, Brad J; Ocetnik, Skyler; Young, Jonathan; Vigotsky, Andrew; Contreras, Bret; Krieger, James W; Miller, Michael G; Cholewa, Jason

    2018-03-01

    The purpose of this study was to compare strength, body composition, and functional outcome measures following performance of the back squat, leg press, or a combination of the two exercises. Subjects were pair-matched based on initial strength levels and then randomly assigned to 1 of 3 groups: a squat-only group (SQ) that solely performed squats for the lower body; a leg press-only group (LP) that solely performed leg presses for the lower body, or a combined squat and leg press group (SQ-LP) that performed both squats and leg presses for the lower body. All other RT variables were held constant. The study period lasted 10 weeks with subjects performing 2 lower body workouts per week comprising 6 sets per session at loads corresponding to 8-12 RM with 90- to 120-second rest intervals. Results showed that SQ had greater transfer to maximal squat strength compared to the leg press. Effect sizes favored SQ and SQ-LP versus LP with respect to countermovement jump while greater effect sizes for dynamic balance were noted for SQ-LP and LP compared to SQ, although no statistical differences were noted between conditions. These findings suggest that both free weights and machines can improve functional outcomes, and that the extent of transfer may be specific to the given task.

  4. Postural stabilization after single-leg vertical jump in individuals with chronic ankle instability.

    PubMed

    Nunes, Guilherme S; de Noronha, Marcos

    2016-11-01

    To investigate the impact different ways to define reference balance can have when analysing time to stabilization (TTS). Secondarily, to investigate the difference in TTS between people with chronic ankle instability (CAI) and healthy controls. Cross-sectional study. Laboratory. Fifty recreational athletes (25 CAI, 25 controls). TTS of the center of pressure (CoP) after maximal single-leg vertical jump using as reference method the single-leg stance, pre-jump period, and post-jump period; and the CoP variability during the reference methods. The post-jump reference period had lower values for TTS in the anterior-posterior (AP) direction when compared to single-leg stance (P = 0.001) and to pre-jump (P = 0.002). For TTS in the medio-lateral (ML) direction, the post-jump reference period showed lower TTS when compared to single-leg stance (P = 0.01). We found no difference between CAI and control group for TTS for any direction. The CAI group showed more CoP variability than control group in the single-leg stance reference period for both directions. Different reference periods will produce different results for TTS. There is no difference in TTS after a maximum vertical jump between groups. People with CAI have more CoP variability in both directions during single-leg stance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults’ Gait Speed

    PubMed Central

    Uematsu, Azusa; Tsuchiya, Kazushi; Kadono, Norio; Kobayashi, Hirofumi; Kaetsu, Takamasa; Hortobágyi, Tibor; Suzuki, Shuji

    2014-01-01

    We examined a behavioral mechanism of how increases in leg strength improve healthy old adults’ gait speed. Leg press strength training improved maximal leg press load 40% (p = 0.001) and isometric strength in 5 group of leg muscles 32% (p = 0.001) in a randomly allocated intervention group of healthy old adults (age 74, n = 15) but not in no-exercise control group (age 74, n = 8). Gait speed increased similarly in the training (9.9%) and control (8.6%) groups (time main effect, p = 0.001). However, in the training group only, in line with the concept of biomechanical plasticity of aging gait, hip extensors and ankle plantarflexors became the only significant predictors of self-selected and maximal gait speed. The study provides the first behavioral evidence regarding a mechanism of how increases in leg strength improve healthy old adults’ gait speed. PMID:25310220

  6. Leg length, body proportion, and health: a review with a note on beauty.

    PubMed

    Bogin, Barry; Varela-Silva, Maria Inês

    2010-03-01

    Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature x 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility.

  7. Leg Length, Body Proportion, and Health: A Review with a Note on Beauty

    PubMed Central

    Bogin, Barry; Varela-Silva, Maria Inês

    2010-01-01

    Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature × 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility. PMID:20617018

  8. Temperature and blood flow distribution in the human leg during passive heat stress.

    PubMed

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  9. In-situ soil sensing for planetary micro-rovers with hybrid wheel-leg systems

    NASA Astrophysics Data System (ADS)

    Comin Cabrera, Francisco Jose

    Rover missions exploring other planets are tightly constrained regarding the trade-off between safety and traversal speed. Detecting and avoiding hazards during navigation is capital to preserve the mobility of a rover. Low traversal speeds are often enforced to assure that wheeled rovers do not become stuck in challenging terrain, hindering the performance and scientific return of the mission. Even such precautions do not guarantee safe navigation due to non-geometric hazards hidden in the terrain, such as sand traps beneath thin duricrusts. These issues motivate the research of the interaction with rough and sandy planetary terrains of conventional and innovative robot locomotion concepts. Hybrid wheel-legs combine the mechanical and control simplicity of wheeled locomotion with the enhanced mobility of legged locomotion. This concept has been rarely proposed for planetary exploration and the study of its interaction with granular terrains is at a very early stage. This research focuses on advancing the state-of-the-art of wheel-leg-soil interaction analysis and applying it through in-situ sensing to simultaneously improve the speed and safety of planetary rover missions. The semi-empirical approach used combines both theoretical modelling and experimental analysis of data obtained in laboratory and field analogues. A novel light-weight, low-power sensor system, capable of reliably detecting wheel-leg sinkage and slippage phenomena on-the-fly, is designed, implemented and tested both as part of a simplified single-wheel-leg test bed and integrated in a fully mobile micro-rover. Moreover, existing analytical models for the interaction between deformable terrain and heavily-loaded wheels or lightly-loaded legs are adapted to the generalised medium-loaded multi-legged wheel-leg case and combined into hybrid approaches for better accuracy, as validated against experimental data. Finally, the soil sensor system and analytical models proposed are used to develop and

  10. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING

    PubMed Central

    Oliver, Gretchen D.; Powers, Christopher M.; Michener, Lori A.

    2018-01-01

    Background Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. Hypothesis/Purpose The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Study Design Controlled Laboratory Study; Cross-sectional. Methods Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. Results There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; p<0.001). Lateral trunk lean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R2 = 0.28; p < 0.001). Conclusions A moderate positive correlation was observed between trunk lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Level of Evidence Diagnosis, level 3 PMID:29484242

  11. Transcutaneous laser treatment of leg veins.

    PubMed

    Meesters, Arne A; Pitassi, Luiza H U; Campos, Valeria; Wolkerstorfer, Albert; Dierickx, Christine C

    2014-03-01

    Leg telangiectasias and reticular veins are a common complaint affecting more than 80% of the population to some extent. To date, the gold standard remains sclerotherapy for most patients. However, there may be some specific situations, where sclerotherapy is contraindicated such as needle phobia, allergy to certain sclerosing agents, and the presence of vessels smaller than the diameter of a 30-gauge needle (including telangiectatic matting). In these cases, transcutaneous laser therapy is a valuable alternative. Currently, different laser modalities have been proposed for the management of leg veins. The aim of this article is to present an overview of the basic principles of transcutaneous laser therapy of leg veins and to review the existing literature on this subject, including the most recent developments. The 532-nm potassium titanyl phosphate (KTP) laser, the 585-600-nm pulsed dye laser, the 755-nm alexandrite laser, various 800-983-nm diode lasers, and the 1,064-nm neodymium yttrium-aluminum-garnet (Nd:YAG) laser and various intense pulsed light sources have been investigated for this indication. The KTP and pulsed dye laser are an effective treatment option for small vessels (<1 mm). The side effect profile is usually favorable to that of longer wavelength modalities. For larger veins, the use of a longer wavelength is required. According to the scarce evidence available, the Nd:YAG laser produces better clinical results than the alexandrite and diode laser. Penetration depth is high, whereas absorption by melanin is low, making the Nd:YAG laser suitable for the treatment of larger and deeply located veins and for the treatment of patients with dark skin types. Clinical outcome of Nd:YAG laser therapy approximates that of sclerotherapy, although the latter is associated with less pain. New developments include (1) the use of a nonuniform pulse sequence or a dual-wavelength modality, inducing methemoglobin formation and enhancing the optical absorption

  12. Pentoxifylline for treating venous leg ulcers.

    PubMed

    Jull, A; Arroll, B; Parag, V; Waters, J

    2007-07-18

    Healing of venous leg ulcers is improved by the use of compression bandaging but some venous ulcers remain unhealed, and some people are unsuitable for compression therapy. Pentoxifylline, a drug which helps blood flow, has been used to treat venous leg ulcers. An earlier version of this review included 9 randomised controlled trials, but more research has been since been conducted and an updated review is required. To assess the effects of pentoxifylline (oxpentifylline or Trental 400) for treating venous leg ulcers, compared with placebo, or other therapies, in the presence or absence of compression therapy. For this second update we searched the Cochrane Wounds Group Specialised Register, CENTRAL, MEDLINE, EMBASE and Cinahl (date of last search was February 2007), and reference lists of relevant articles. Randomised trials comparing pentoxifylline with placebo or other therapy in the presence or absence of compression, in people with venous leg ulcers. Details from eligible trials were extracted and summarised by one author using a coding sheet. Data extraction was independently verified by one other author. Twelve trials involving 864 participants were included. The quality of trials was variable. Eleven trials compared pentoxifylline with placebo or no treatment; in seven of these trials patients received compression therapy. In one trial pentoxifylline was compared with defibrotide in patients who also received compression. Combining 11 trials that compared pentoxifylline with placebo or no treatment (with or without compression) demonstrated that pentoxifylline is more effective than placebo in terms of complete ulcer healing or significant improvement (RR 1.70, 95% CI 1.30 to 2.24). Significant heterogeneity was associated with differences in sample populations (hard-to-heal samples compared with "normal" healing samples). Pentoxifylline plus compression is more effective than placebo plus compression (RR 1.56, 95% CI 1.14 to 2.13). Pentoxifylline in the

  13. Dominant side in single-leg stance stability during floor oscillations at various frequencies

    PubMed Central

    2014-01-01

    Background We investigated lateral dominance in the postural stability of single-leg stance with anteroposterior floor oscillations at various frequencies. Methods Thirty adults maintained a single-leg stance on a force platform for 20 seconds per trial. Trials were performed with no oscillation (static condition) and with anteroposterior floor oscillations (2.5-cm amplitude) at six frequencies: 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 Hz (dynamic condition). A set of three trials was performed on each leg in each oscillation frequency in random order. The mean speed of the center of pressure in the anteroposterior direction (CoPap) was calculated as an index of postural stability, and frequency analysis of CoPap sway was performed. Footedness for carrying out mobilizing activities was assessed with a questionnaire. Results CoPap speed exponentially increased as oscillation frequency increased in both legs. The frequency analysis of CoPap showed a peak <0.3 Hz at no oscillation. The frequency components at 0.25-Hz oscillation included common components with no oscillation and those at 1.5-Hz oscillation showed the maximum amplitude among all conditions. Postural stability showed no significant difference between left- and right-leg stance at no oscillation and oscillations ≤1.25 Hz, but at 1.5-Hz oscillation was significantly higher in the right-leg stance than in the left-leg stance. For the lateral dominance of postural stability at individual levels, the lateral difference in postural stability at no oscillation was positively correlated with that at 0.25-Hz oscillation (r = 0.51) and negatively correlated with that at 1.5-Hz oscillation (r = -0.53). For 70% of subjects, the dominant side of postural stability was different at no oscillation and 1.5-Hz oscillation. In the subjects with left- or right-side dominance at no oscillation, 94% or 38% changed their dominant side at 1.5-Hz oscillation, with a significant difference between these percentages. In

  14. Neuromuscular Evaluation With Single-Leg Squat Test at 6 Months After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Hall, Michael P.; Paik, Ronald S.; Ware, Anthony J.; Mohr, Karen J.; Limpisvasti, Orr

    2015-01-01

    Background: Criteria for return to unrestricted activity after anterior cruciate ligament (ACL) reconstruction varies, with some using time after surgery as the sole criterion—most often at 6 months. Patients may have residual neuromuscular deficits, which may increase the risk of ACL injury. A single-leg squat test (SLST) can dynamically assess for many of these deficits prior to return to unrestricted activity. Hypothesis: A significant number of patients will continue to exhibit neuromuscular deficits with SLST at 6 months after ACL reconstruction. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Patients using a standardized accelerated rehabilitation protocol at their 6-month follow-up after primary ACL reconstruction were enrolled. Evaluation included bilateral SLST, single-leg hop distance, hip abduction strength, and the subjective International Knee Documentation Committee (IKDC) score. Results: Thirty-three patients were enrolled. Poor performance of the operative leg SLST was found in 15 of 33 patients (45%). Of those 15 patients, 7 (45%) had concomitant poor performance of the nonoperative leg compared with 2 of 18 patients (11%) in those who demonstrated good performance in the operative leg. The poor performers were significantly older (33.6 years) than the good performers (24.2 years) (P = .007). Those with poor performance demonstrated decreased hip abduction strength (17.6 kg operative leg vs 20.5 kg nonoperative leg) (P = .024), decreased single-leg hop distance (83.3 cm operative leg vs 112.3 cm nonoperative leg) (P = .036), and lower IKDC scores (67.9 vs 82.3) (P = .001). Conclusion: Nearly half of patients demonstrated persistent neuromuscular deficits on SLST at 6 months, which is when many patients return to unrestricted activity. Those with poor performance were of a significantly older age, decreased hip abduction strength, decreased single-leg hop distance, and lower IKDC subjective scores. Clinical Relevance: The SLST

  15. Leg Injuries and Disorders - Multiple Languages

    MedlinePlus

    ... sharing features on this page, please enable JavaScript. Arabic (العربية) Chinese, Simplified (Mandarin dialect) (简体中文) Chinese, Traditional ( ... HealthReach resources will open in a new window. Arabic (العربية) Expand Section Active Leg Range of Motion - ...

  16. Leg coordination during turning on an extremely narrow substrate in a bug, Mesocerus marginatus (Heteroptera, Coreidae).

    PubMed

    Frantsevich, Leonid I; Cruse, Holk

    2005-10-01

    The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.

  17. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking.

    PubMed

    Li, Junyan; McWilliams, Anthony B; Jin, Zhongmin; Fisher, John; Stone, Martin H; Redmond, Anthony C; Stewart, Todd D

    2015-06-01

    Symptomatic leg length inequality accounts for 8.7% of total hip replacement related claims made against the UK National Health Service Litigation authority. It has not been established whether symptomatic leg length inequality patients following total hip replacement have abnormal hip kinetics during gait. Hip kinetics in 15 unilateral total hip replacement patients with symptomatic leg length inequality during gait was determined through multibody dynamics and compared to 15 native hip healthy controls and 15 'successful' asymptomatic unilateral total hip replacement patients. More significant differences from normal were found in symptomatic leg length inequality patients than in asymptomatic total hip replacement patients. The leg length inequality patients had altered functions defined by lower gait velocity, reduced stride length, reduced ground reaction force, decreased hip range of motion, reduced hip moment and less dynamic hip force with a 24% lower heel-strike peak, 66% higher mid-stance trough and 37% lower toe-off peak. Greater asymmetry in hip contact force was also observed in leg length inequality patients. These gait adaptions may affect the function of the implant and other healthy joints in symptomatic leg length inequality patients. This study provides important information for the musculoskeletal function and rehabilitation of symptomatic leg length inequality patients. Copyright © 2015. Published by Elsevier Ltd.

  18. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running.

    PubMed

    Watson, J T; Ritzmann, R E

    1998-01-01

    We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.

  19. An interesting case of peripheral vascular disease, vascular reperfusion, and subsequent development of pain due to Paget's disease of bone.

    PubMed

    Kwun, Sunna; Tucci, Joseph R

    2013-01-01

    To present a case of Paget's disease of bone that was unmasked after vascular reperfusion. In this case study, we review the presentation, evaluation, diagnosis, and management of a patient with Paget's disease and peripheral vascular disease. A 79-year-old-woman with a history of coronary artery heart disease and recent finding of a T5 compression fracture was hospitalized for evaluation of right lower extremity claudication. Angiography demonstrated a focal complete occlusion of the distal right femoral and popliteal arteries. A self-expanding stent was placed in the distal femoral and popliteal arteries. Approximately 48 hours after the procedure, the patient developed severe, right lower leg pain. On endocrine evaluation, the patient was found to have clinical signs suggesting Paget's disease of bone, which was subsequently confirmed by imaging. This patient's development of severe pain following reperfusion of distal femoral and popliteal arteries is in keeping with the known and aforementioned hypervascularity of pagetic bone. The finding of increased warmth over an area of skeletal deformation should always raise the possibility of Paget's disease of bone.

  20. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  1. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  2. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOEpatents

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  3. How to Comply with Requirements to Protect California Red-legged Frog from Pesticides

    EPA Pesticide Factsheets

    This document describes buffer areas around certain habitats of the California red-legged frog, and limits on use of certain pesticides within those habitats and buffer zones to protect the red-legged frog from certain pesticides.

  4. Wake characteristics of an eight-leg tower for a MOD-0 type wind turbine

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Wagner, L. H.; Sinclair, D.

    1977-01-01

    Low speed wind tunnel tests were conducted to determine the flow characteristics of the wake downwind of a 1/25th scale, all tubular eight leg tower concept suitable for application to the DOE-NASA MOD-0 wind power turbine. Measurements were made of wind speed profiles, and from these were determined the wake local minimum velocity, average velocity, and width for several wind approach angles. These data are presented herein along with tower shadow photographs and comparisons with data from an earlier lattice type, four leg tower model constructed of tubular members. Values of average wake velocity defect ratio and average ratio of wake width to blade radius for the eight leg model were estimated to be around 0.17 and 0.30, respectively, at the plane of the rotor blade. These characteristics suggest that the tower wake of the eight leg concept is slightly less than that of the four leg design.

  5. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis.

    PubMed

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone(®) (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone(®), while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone(®) showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone(®) appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone(®) also in humans.

  6. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis

    PubMed Central

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in humans. PMID:22745551

  7. Clinical Characteristics of Mixed Arteriovenous Leg Ulcers: A Descriptive Study.

    PubMed

    Marin, Joseph A; Woo, Kevin Y

    The purpose of this study was to identify the clinical characteristics of mixed arteriovenous leg ulcers (MLU) that differentiated them from venous leg ulcers (VLU). Secondary analysis of data from larger electronic database. The sample comprised 1007 persons with lower extremity ulcers. Two hundred sixty three individuals with MLU were compared to 744 individuals with VLU; their ankle brachial indices were 0.51-0.90 and 0.91-.30 respectively. Subjects were drawn from community care settings from across Canada. Data concerning baseline demographic and pertinent clinical characteristics including ulcer history were collected using multiple validated instruments. The Leg Ulcer Assessment Tool was used to collect demographic and pertinent medical history, The Short Form Health Survey 12 and the Euro Wuol 5D (EQ-5D) were used to measure health related quality of life, the numeric pain scales was used to measure character and intensity of pain. Groups were compared using χ or Mann-Whitney U. Individuals with MLU were significantly older, has lower body mass index, a history of smoking, and more comorbid conditions than subjects with VLU. In many cases, clinical presentation was indicative of significant arterial insufficiency including cool extremities, shiny, cracked and inelastic skin, impaired capillary refill, and weak pedal pulses. Ulcer pain was highly prevalent, but overall pain rating was similar between groups. Mixed arteriovenous leg ulcers were associated with lower health related quality of life, greater mobility impairments, and more deficits in self-care and usual activities. Greater knowledge and understanding of the distinct characteristics of MLU is critical for appropriate screening, prevention, assessment and management of persons with this form of leg ulcer. Pain and health related quality of life factors are important considerations when evaluating and managing these patients.

  8. Leg Movement Activity During Sleep in Adults With Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Garbazza, Corrado; Sauter, Cornelia; Paul, Juliane; Kollek, Jenny; Dujardin, Catharine; Hackethal, Sandra; Dorn, Hans; Peter, Anita; Hansen, Marie-Luise; Manconi, Mauro; Ferri, Raffaele; Danker-Hopfe, Heidi

    2018-01-01

    Objectives: To conduct a first detailed analysis of the pattern of leg movement (LM) activity during sleep in adult subjects with Attention-Deficit/Hyperactivity Disorder (ADHD) compared to healthy controls. Methods: Fifteen ADHD patients and 18 control subjects underwent an in-lab polysomnographic sleep study. The periodic character of LMs was evaluated with established markers of "periodicity," i.e., the periodicity index, intermovement intervals, and time distribution of LM during sleep, in addition to standard parameters such as the periodic leg movement during sleep index (PLMSI) and the periodic leg movement during sleep arousal index (PLMSAI). Subjective sleep and psychiatric symptoms were assessed using several, self-administered, screening questionnaires. Results: Objective sleep parameters from the baseline night did not significantly differ between ADHD and control subjects, except for a longer sleep latency (SL), a longer duration of the periodic leg movements during sleep (PLMS) in REM sleep and a higher PLMSI also in REM sleep. Data from the sleep questionnaires showed perception of poor sleep quality in ADHD patients. Conclusions: Leg movements during sleep in ADHD adults are not significantly more frequent than in healthy controls and the nocturnal motor events do not show an increased periodicity in these patients. The non-periodic character of LMs in ADHD has already been shown in children and seems to differentiate ADHD from other pathophysiological related conditions like restless legs syndrome (RLS) or periodic limb movement disorder (PLMD). The reduced subjective sleep quality reported by ADHD adults contrasted with the normal objective polysomnographic parameters, which could suggest a sleep-state misperception in these individuals or more subtle sleep abnormalities not picked up by the traditional sleep staging.

  9. Survival Model for Foot and Leg High Rate Axial Impact Injury Data.

    PubMed

    Bailey, Ann M; McMurry, Timothy L; Poplin, Gerald S; Salzar, Robert S; Crandall, Jeff R

    2015-01-01

    Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates. This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82). Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of

  10. Effects of vertical and side-alternating vibration training on fall risk factors and bone turnover in older people at risk of falls.

    PubMed

    Corrie, Heather; Brooke-Wavell, Katherine; Mansfield, Neil J; Cowley, Alison; Morris, Robert; Masud, Tahir

    2015-01-01

    whole-body vibration training may improve neuromuscular function, falls risk and bone density, but previous studies have had conflicting findings. this study aimed to evaluate the influence of vertical vibration (VV) and side-alternating vibration (SV) on musculoskeletal health in older people at risk of falls. single-blind, randomised, controlled trial comparing vibration training to sham vibration (Sham) in addition to usual care. participants were 61 older people (37 women and 24 men), aged 80.2 + 6.5 years, referred to an outpatient falls prevention service. participants were randomly assigned to VV, SV or Sham in addition to the usual falls prevention programme. Participants were requested to attend three vibration sessions per week for 12 weeks, with sessions increasing to six, 1 min bouts of vibration. Falls risk factors and neuromuscular tests were assessed, and blood samples collected for determination of bone turnover, at baseline and following the intervention. chair stand time, timed-up-and-go time, fear of falling, NEADL index and postural sway with eyes open improved in the Sham group. There were significantly greater gains in leg power in the VV than in the Sham group and in bone formation in SV and VV compared with the Sham group. Conversely, body sway improved less in the VV than in the Sham group. Changes in falls risk factors did not differ between the groups. whole-body vibration increased leg power and bone formation, but it did not provide any additional benefits to balance or fall risk factors beyond a falls prevention programme in older people at risk of falls. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Physical performance in relation to body composition and bone mineral density in healthy, overweight, and obese postmenopausal women.

    PubMed

    Shin, Hyehyung; Liu, Pei-Yang; Panton, Lynn B; Ilich, Jasminka Z

    2014-01-01

    Diminished physical performance can be detrimental among the older adults, causing falls and subsequent fractures, loss of independence, and increased morbidity and mortality rates. Therefore, it is important to maintain functional ability from the early onset of aging. The purpose of this study was to investigate the relationship between physical performance measures and body composition (bone, fat, and lean mass) in healthy, overweight and obese, early postmenopausal white women. A total of 97 participants aged 56.0 (4.4) years (mean (SD)) with body mass index of 31.0 (4.6) kg/m(2) were included. Weight and height were recorded and 3 days of dietary records and physical activity were collected. Dual-energy x-ray absorptiometry measurements for body composition and bone mineral density were performed. Fasting blood samples were used for serum 25-hydroxy vitamin D (25OHD) analysis. Measures of physical performance included handgrip strength, 8-meter walking speed, one-leg-stance time, 8-foot Timed Get-Up-and-Go Test, and chair sit-to-stand test. Results showed that higher lean mass was related to better physical performance on items assessing body strength, including handgrip (r ranged from 0.22 to 0.25, P < .05) while higher body fat was related to the poorer physical performance in each of the assessed measures. Bone mineral density of the forearm was positively related to the handgrip strength (r = 0.207, P < .05). In regression analyses (controlled for age, weight, height, serum 25OHD status, calcium intake, physical activity, and smoking), fat mass of the lower extremities was inversely related to walking speed, one-leg-stance time, and Get-Up-and-Go measures, all crucial for mobility (r(2) = 0.13-0.23, P < .05). Overall, higher fat and lower lean mass was related to poorer physical performance, while forearm bone mineral density was related to the handgrip strength only. Further investigation may be beneficial for a better understanding of how body

  12. THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT

    PubMed Central

    Schmitz, Randy

    2012-01-01

    Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640

  13. Propeller Perforator Flaps in Distal Lower Leg: Evolution and Clinical Applications

    PubMed Central

    2012-01-01

    Simple or complex defects in the lower leg, and especially in its distal third, continue to be a challenging task for reconstructive surgeons. A variety of flaps were used in the attempt to achieve excellence in form and function. After a long evolution of the reconstructive methods, including random pattern flaps, axial pattern flaps, musculocutaneous flaps and fasciocutaneous flaps, the reappraisal of the works of Manchot and Salmon by Taylor and Palmer opened the era of perforator flaps. This era began in 1989, when Koshima and Soeda, and separately Kroll and Rosenfield described the first applications of such flaps. Perforator flaps, whether free or pedicled, gained a high popularity due to their main advantages: decreasing donor-site morbidity and improving aesthetic outcome. The use as local perforator flaps in lower leg was possible due to a better understanding of the cutaneous circulation, leg vascular anatomy, angiosome and perforasome concepts, as well as innovations in flaps design. This review will describe the evolution, anatomy, flap design, and technique of the main distally pedicled propeller perforator flaps used in the reconstruction of defects in the distal third of the lower leg and foot. PMID:22783507

  14. Mechatronics by Analogy and Application to Legged Locomotion

    NASA Astrophysics Data System (ADS)

    Ragusila, Victor

    A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is

  15. Conservative management of distal leg necrosis in lung transplant recipients.

    PubMed

    Aigner, F; Husmann, M; Huber, L C; Benden, C; Schuurmans, M M

    2017-05-01

    Critical limb ischemia (CLI) with distal leg necrosis in lung transplant recipients (LTR) is associated with a high risk for systemic infection and sepsis. Optimal management of CLI has not been defined so far in LTR. In immunocompetent individuals with leg necrosis, surgical amputation would be indicated and standard care. We report on the outcome of four conservatively managed LTR with distal leg necrosis due to peripheral arterial disease (PAD) with medial calcification of the distal limb vessels. Time interval from lung transplantation to CLI ranged from four years (n = 1) to more than a decade (n = 3). In all cases a multimodal therapy with heparin, acetylsalicylic acid, iloprost and antibiotic therapy was performed, in addition to a trial of catheter-based revascularization. Surgical amputation of necrosis was not undertaken due to fear of wound healing difficulties under long-term immunosuppression and impaired tissue perfusion. Intensive wound care and selective debridement were performed. Two patients developed progressive gangrene followed by auto-amputation during a follow-up of 43 and 49 months with continued ambulation and two patients died of unrelated causes 9 and 12 months after diagnosis of CLI. In conclusion, we report a conservative treatment strategy for distal leg necrosis in LTR without surgical amputation and recommend this approach based on our experience. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  16. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, Nicole; Arellano, Christopher J.; Grabowski, Alena M.

    2013-12-15

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightlymore » less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics.« less

  17. The RiSE climbing robot: body and leg design

    NASA Astrophysics Data System (ADS)

    Saunders, A.; Goldman, D. I.; Full, R. J.; Buehler, M.

    2006-05-01

    The RiSE robot is a biologically inspired, six legged climbing robot, designed for general mobility in scansorial (vertical walls, horizontal ledges, ground level) environments. It exhibits ground reaction forces that are similar to animal climbers and does not rely on suction, magnets or other surface-dependent specializations to achieve adhesion and shear force. We describe RiSE's body and leg design as well as its electromechanical, communications and computational infrastructure. We review design iterations that enable RiSE to climb 90° carpeted, cork covered and (a growing range of) stucco surfaces in the quasi-static regime.

  18. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology.

    PubMed

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Kim, Ho-Young

    2016-12-07

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  19. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  20. Prevalence of restless legs symptoms according to depressive symptoms and depression type: a cross-sectional study.

    PubMed

    Auvinen, Piritta; Mäntyselkä, Pekka; Koponen, Hannu; Kautiainen, Hannu; Korniloff, Katariina; Ahonen, Tiina; Vanhala, Mauno

    2018-01-01

    Restless legs syndrome is a sensorimotor disorder and it is associated with several other diseases especially mental illnesses. To analyze the relationship between the symptoms of restless legs syndrome and the severity of depressive symptoms and the prevalence of restless legs symptoms in depression subtypes. A cross-sectional study of primary care patients in the Central Finland Hospital District. The prevalence of restless legs symptoms was studied in 706 patients with increased depressive symptoms and 426 controls without a psychiatric diagnosis by using a structured questionnaire. The depressive symptoms were evaluated with the Beck Depression Inventory (BDI) and the psychiatric diagnosis was confirmed by means of a diagnostic interview (Mini-International Neuropsychiatric Interview). The subjects with increased depressive symptoms were divided into three groups (subjects with depressive symptoms without a depression diagnosis, melancholic depression and non-melancholic depression). In the whole study population, the prevalence of restless legs symptoms increased with the severity of depressive symptoms. The prevalence of restless legs symptoms was highest in the melancholic and non-melancholic depressive patients (52 and 46%, respectively) and then in subjects with depressive symptoms without a depression diagnosis (43.4%), but the prevalence was also substantial (24.6%) in subjects without a psychiatric diagnosis. Restless legs symptoms are very common in primary care among subjects with depression, regardless of the depression type. The prevalence of restless legs symptoms increased with increasing severity of depressive symptoms, regardless of the diagnosis. These findings should be considered in clinical evaluation and treatment of patients visiting their physician due to restless legs or depressive symptoms.