Science.gov

Sample records for legionaminic acid biosynthesis

  1. Total synthesis of legionaminic acid as basis for serological studies.

    PubMed

    Matthies, Stefan; Stallforth, Pierre; Seeberger, Peter H

    2015-03-01

    Legionaminic acid is a nine-carbon diamino monosaccharide that is found coating the surface of various bacterial human pathogens. Its unique structure makes it a valuable biological probe, but access via isolation is difficult and no practical synthesis has been reported. We describe a stereoselective synthesis that yields a legionaminic acid building block as well as linker-equipped conjugation-ready legionaminic acid starting from cheap d-threonine. To set the desired amino and hydroxyl group pattern of the target, we designed a concise sequence of stereoselective reactions. The key transformations rely on chelation-controlled organometallic additions and a Petasis multicomponent reaction. The legionaminic acid was synthesized in a form that enables attachment to surfaces. Glycan microarray containing legionaminic acid revealed that human antibodies bind the synthetic glycoside. The synthetic bacterial monosaccharide is a valuable probe to detect an immune response to bacterial pathogens such as Legionella pneumophila, the causative agent of Legionnaire's disease. PMID:25668389

  2. The polar and lateral flagella from Plesiomonas shigelloides are glycosylated with legionaminic acid

    PubMed Central

    Merino, Susana; Aquilini, Eleonora; Fulton, Kelly M.; Twine, Susan M.; Tomás, Juan M.

    2015-01-01

    Plesiomonas shigelloides is the unique member of the Enterobacteriaceae family able to produce polar flagella when grow in liquid medium and lateral flagella when grown in solid or semisolid media. In this study on P. shigelloides 302-73 strain, we found two different gene clusters, one exclusively for the lateral flagella biosynthesis and the other one containing the biosynthetic polar flagella genes with additional putative glycosylation genes. P. shigelloides is the first Enterobacteriaceae were a complete lateral flagella cluster leading to a lateral flagella production is described. We also show that both flagella in P. shigelloides 302-73 strain are glycosylated by a derivative of legionaminic acid (Leg), which explains the presence of Leg pathway genes between the two polar flagella regions in their biosynthetic gene cluster. It is the first bacterium reported with O-glycosylated Leg in both polar and lateral flagella. The flagella O-glycosylation is essential for bacterial flagella formation, either polar or lateral, because gene mutants on the biosynthesis of Leg are non-flagellated. Furthermore, the presence of the lateral flagella cluster and Leg O-flagella glycosylation genes are widely spread features among the P. shigelloides strains tested. PMID:26167161

  3. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure

    PubMed Central

    Lewis, Amanda L.; Desa, Nolan; Hansen, Elizabeth E.; Knirel, Yuriy A.; Gordon, Jeffrey I.; Gagneux, Pascal; Nizet, Victor; Varki, Ajit

    2009-01-01

    Sialic acids (Sias) are nonulosonic acid (NulO) sugars prominently displayed on vertebrate cells and occasionally mimicked by bacterial pathogens using homologous biosynthetic pathways. It has been suggested that Sias were an animal innovation and later emerged in pathogens by convergent evolution or horizontal gene transfer. To better illuminate the evolutionary processes underlying the phenomenon of Sia molecular mimicry, we performed phylogenomic analyses of biosynthetic pathways for Sias and related higher sugars derived from 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids. Examination of ≈1,000 sequenced microbial genomes indicated that such biosynthetic pathways are far more widely distributed than previously realized. Phylogenetic analysis, validated by targeted biochemistry, was used to predict NulO types (i.e., neuraminic, legionaminic, or pseudaminic acids) expressed by various organisms. This approach uncovered previously unreported occurrences of Sia pathways in pathogenic and symbiotic bacteria and identified at least one instance in which a human archaeal symbiont tentatively reported to express Sias in fact expressed the related pseudaminic acid structure. Evaluation of targeted phylogenies and protein domain organization revealed that the “unique” Sia biosynthetic pathway of animals was instead a much more ancient innovation. Pathway phylogenies suggest that bacterial pathogens may have acquired Sia expression via adaptation of pathways for legionaminic acid biosynthesis, one of at least 3 evolutionary paths for de novo Sia synthesis. Together, these data indicate that some of the long-standing paradigms in Sia biology should be reconsidered in a wider evolutionary context of the extended family of NulO sugars. PMID:19666579

  4. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration. PMID:19560175

  5. Oleic acid biosynthesis in cyanobacteria

    SciTech Connect

    VanDusen, W.J.; Jaworski, J.G.

    1986-05-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with /sup 14/CO/sub 2/. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating /sup 14/CO/sub 2/ into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria.

  6. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  7. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  8. Cyclopiazonic acid biosynthesis by Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is an indole-tetramic acid mycotoxin produced by some strains of Aspergillus flavus. Characterization of the CPA biosynthesis gene cluster confirmed that formation of CPA is via a three-enzyme pathway. This review examines the structure and organization of the CPA genes, elu...

  9. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  10. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  11. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    PubMed

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  12. Biosynthesis of the Aromatic Amino Acids.

    PubMed

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  13. Retinoic acid: its biosynthesis and metabolism.

    PubMed

    Napoli, J L

    1999-01-01

    This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis. PMID:10506831

  14. A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate

    PubMed Central

    Sun, Xinxiao; Lin, Yuheng; Huang, Qin; Yuan, Qipeng

    2013-01-01

    Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid. PMID:23603682

  15. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines w...

  16. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    PubMed Central

    Chang, Perng-Kuang; Ehrlich, Kenneth C.; Fujii, Isao

    2009-01-01

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations. PMID:22069533

  17. Heterologous biosynthesis of artemisinic acid in Saccharomyces cerevisiae.

    PubMed

    Li, C; Li, J; Wang, G; Li, X

    2016-06-01

    Artemisinic acid is a precursor of antimalarial compound artemisinin. The titre of biosynthesis of artemisinic acid using Saccharomyces cerevisiae platform has been achieved up to 25 g l(-1) ; however, the performance of platform cells is still industrial unsatisfied. Many strategies have been proposed to improve the titre of artemisinic acid. The traditional strategies mainly focused on partial target sites, simple up-regulation key genes or repression competing pathways in the total synthesis route. However, this may result in unbalance of carbon fluxes and dysfunction of metabolism. In this review, the recent advances on the promising methods in silico and in vivo for biosynthesis of artemisinic acid have been discussed. The bioinformatics and omics techniques have brought a great prospect for improving production of artemisinin and other pharmacal compounds in heterologous platform. PMID:26743771

  18. Regulation of collagen biosynthesis by ascorbic acid: a review.

    PubMed Central

    Pinnell, S. R.

    1985-01-01

    L-ascorbic acid is an essential cofactor for lysyl hydroxylase and prolyl hydroxylase, enzymes essential for collagen biosynthesis. In addition, L-ascorbic acid preferentially stimulates collagen synthesis in a manner which appears unrelated to the effect of L-ascorbic acid on hydroxylation reactions. This reaction is stereospecific and unrelated to intracellular degradation of collagen. The effect apparently occurs at a transcriptional or translational level, since L-ascorbic acid preferentially stimulates collagen-specific mRNA. In addition, it stimulates lysyl hydroxylase activity but inhibits prolyl hydroxylase activity in human skin fibroblasts in culture. PMID:3008449

  19. Protein biosynthesis with conformationally restricted amino acids

    SciTech Connect

    Mendel, D. Lawrence Berkeley Lab., CA ); Ellman, J.; Schultz, P.G. )

    1993-05-19

    The incorporation of conformationally constrained amino acids into peptides is a powerful approach for generating structurally defined peptides as conformational probes and bioactive agents. The ability to site-specifically introduce constrained amino acids into large polypeptide chains would provide a similar opportunity to probe the flexibility, conformation, folding and stability of proteins. To this end, we have examined the competence of the Escherichia coli protein biosynthetic machinery to incorporate a number of these unnatural amino acids into the 164 residue protein T4 lysozyme (T4L). Results clearly demonstrate that the protein biosynthetic machinery can accommodate a wide variety of conformationally constrained amino acids. The expansion of structural motifs that can be biosynthetically incorporated into proteins to include a large number of conformationally constrained amino acids significantly increases the power of mutagenesis methods as probes of protein structure and function and provides additional insights into the steric requirements of the translational machinery. 13 refs., 2 figs.

  20. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    PubMed Central

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  1. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  2. “Teichoic acid biosynthesis as an antibiotic target”

    PubMed Central

    Pasquina, Lincoln W; Santa Maria, John P; Walker, Suzanne

    2013-01-01

    The relentless spread of antibiotic resistant pathogens makes it imperative to develop new chemotherapeutic strategies to overcome infection. The bacterial cell wall has served as a rich source for both validated and unexploited pathways that are essential for virulence and survival. Lipoteichoic acids (LTAs) and wall teichoic acids (WTAs) are cell wall polymers that play fundamental roles in Gram-positive bacterial physiology and pathogenesis, and both have been proposed as novel antibacterial targets. Here we describe recent progress toward the discovery of teichoic acid biosynthesis inhibitors and their potential as antibiotics to combat Staphylococcus aureus infections. PMID:23916223

  3. Physiological insights into all-trans-retinoic acid biosynthesis

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data supports a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. PMID:21621639

  4. Ribonucleic acid (RNA) biosynthesis in human cancer.

    PubMed

    Hajjawi, Omar S

    2015-01-01

    In many respects, the most remarkable chemical substances within the genome of eukaryotic cells are remarkable proteins which are the critical structural and functional units of living cells. The specifications for everything that goes in the cell are natural digital-to-digital decoding process in an archive sequence by deoxyribonucleic acid (DNA) and an articulate construction by ribonucleic acid (RNA). The products of DNA transcription are long polymers of ribonucleotides rather than deoxyribonucleotides and are termed ribonucleic acids. Certain deoxyribonucleotide sequences, or genes, give rise to transfer RNA (tRNA) and other ribosomal RNA (rRNA) when transcribed. The ribonucleotide sequences fold extensively and rRNA is associated with specific proteins to yield the essential cell components, ribosomes. Transcription of other special sequences yields messenger RNAs (mRNAs) that contain ribonucleotide sequences that will be ultimately translated into new types of amino acid sequences of functional cellular protein molecules. This switch to a different variety of cellular molecular sequences is complex, but each sequence of the three ribonucleotides specifies the insertion of one particular amino acid into the polypeptide chain under production. Whilst mRNA is considered the vehicle by which genetic information is transmitted from the genome and allocated in the appropriate cytoplasmic sites for translation into protein via cap-dependent mechanism, the actual translation depends also on the presence of other so-called household and luxury protein molecules. Recent evidence suggests RNA species are required at initiation, because treatment of cells with antibiotics or drugs that inhibit RNA synthesis cause a decrease in protein synthesis. The rRNA is necessary as a structural constituent of the ribosomes upon which translation takes place, whereas tRNA is necessary as an adaptor in amino acid activation and elongation protein chains to ribosomes. In this article

  5. Amino acid biosynthesis in the spirochete Leptospira: evidence for a novel pathway of isoleucine biosynthesis.

    PubMed

    Charon, N W; Johnson, R C; Peterson, D

    1974-01-01

    Radioactive carbon dioxide was incubated with growing cells of Leptospira interrogans serotypes semaranga and tarassovi, and the specific activities and distribution of the label within the cellular amino acids were determined. The origins of the carbon skeletons of all the acid-stable amino acids except isoleucine were found to be consistent with known biosynthetic pathways for these amino acids. Experiments using radioactive carbon dioxide and other tracers indicated that most of the isoleucine was synthesized by a pathway not involving threonine. The origin of the carbon skeleton of isoleucine consisted of two residues of pyruvate (carbons 2 and 3) and acetate of acetyl-coenzyme A by this pathway. Isotope competition studies indicated that the pathway was regulated by isoleucine. The results are discussed in relation to two proposed pathways of isoleucine biosynthesis involving citramalate as an intermediate. PMID:4808901

  6. Biosynthesis of amino acids in Clostridium pasteurianum

    PubMed Central

    Dainty, R. H.; Peel, J. L.

    1970-01-01

    1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) 14C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus 14C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of 14C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate → threonine → glycine ⇌ serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine. PMID:5419750

  7. The Biosynthesis of δ-Aminolevulinic Acid in Higher Plants

    PubMed Central

    Beale, Samuel I.; Castelfranco, Paul A.

    1974-01-01

    δ-Aminolevulinic acid dehydrase activity in cucumber (Cucumis sativus L. var. Alpha green) cotyledons did not change as the tissue was allowed to green for 24 hours. δ-Aminolevulinic acid accumulated in greening cucumber cotyledons, and barley (Hordeum sativum L. var. Numar) and bean (Phaseolus vulgaris L. var. Red Kidney) leaves incubated in the presence of levulinic acid, a specific competitive inhibitor of δ-aminolevulinic acid dehydrase. The rate of δ-aminolevulinic acid accumulation in levulinic acid-treated cucumber cotyledons paralleled the rate of chlorophyll accumulation in the controls, and the quantity of δ-aminolevulinic acid accumulated compensated for the decrease in chlorophyll accumulation. When levulinic acid-treated cucumber cotyledons were returned to darkness, δ-aminolevulinic acid accumulation ceased. δ-Aminolevulinic acid accumulation showed an absolute requirement for oxygen and was inhibited drastically by cyanide and azide, and to a lesser extent by arsenite and malonate. 2,4-Dinitrophenol, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, sodium fluoroacetate, and hydroxylamine hydrochloride showed no effect under the conditions tested. Freezing and thawing of the tissue completely prevented the accumulation of δ-aminolevulinic acid. The findings of this investigation are consistent with the hypothesis that δ-aminolevulinic acid is a chlorophyll precursor in higher plants, and that chlorophyll biosynthesis is regulated at the level of the formation of δ-aminolevulinic acid. PMID:16658693

  8. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    PubMed

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  9. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    SciTech Connect

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  10. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses.

    PubMed

    Northey, Julian G B; Liang, Siyu; Jamshed, Muhammad; Deb, Srijani; Foo, Eloise; Reid, James B; McCourt, Peter; Samuel, Marcus A

    2016-01-01

    Protein farnesylation is a post-translational modification involving the addition of a 15-carbon farnesyl isoprenoid to the carboxy terminus of select proteins(1-3). Although the roles of this lipid modification are clear in both fungal and animal signalling, many of the mechanistic functions of farnesylation in plant signalling are still unknown. Here, we show that CYP85A2, the cytochrome P450 enzyme that performs the last step in brassinosteroid biosynthesis (conversion of castasterone to brassinolide)(4), must be farnesylated to function in Arabidopsis. Loss of either CYP85A2 or CYP85A2 farnesylation results in reduced brassinolide accumulation and increased plant responsiveness to the hormone abscisic acid (ABA) and overall drought tolerance, explaining previous observations(5). This result not only directly links farnesylation to brassinosteroid biosynthesis but also suggests new strategies to maintain crop yield under challenging climatic conditions. PMID:27455172

  11. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products

    PubMed Central

    Metcalf, William W.; van der Donk, Wilfred A.

    2009-01-01

    Natural products containing carbon-phosphorus bonds (phosphonic and phosphinic acids) have found widespread use in medicine and agriculture. Recent years have seen a renewed interest in the biochemistry and biology of these compounds with the cloning of the biosynthetic gene clusters for several family members. This review discusses the commonalities and differences in the molecular logic that lies behind the biosynthesis of these compounds. The current knowledge regarding the metabolic pathways and enzymes involved in the production of a number of natural products, including the approved antibiotic fosfomycin, the widely used herbicide phosphinothricin, and the clinical candidate for treatment of malaria FR900098, is presented. Many of the enzymes involved in the biosynthesis of these compounds catalyze chemically and biologically unprecedented transformations and a wealth of new biochemistry has been revealed through their study. These studies have also suggested new strategies for natural product discovery. PMID:19489722

  12. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  13. Genetic control of abscisic acid biosynthesis in maize.

    PubMed

    Tan, B C; Schwartz, S H; Zeevaart, J A; McCarty, D R

    1997-10-28

    Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants. PMID:9342392

  14. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  15. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  16. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  17. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts.

    PubMed

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ~6500 unique proteins quantified, ~300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. PMID:24625837

  18. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change. PMID:27035483

  19. Inhibitors of fatty acid biosynthesis in sunflower seeds.

    PubMed

    Pleite, Rafael; Martínez-Force, Enrique; Garcés, Rafael

    2006-09-01

    During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds. PMID:16500723

  20. Restoration of nucleic acid biosynthesis after clinical death and factors stimulating the process in vivo.

    PubMed

    Konikova, A S; Petukhova, L M; Pogossova, A V; Vinarskaya, A A; Nikulin, V I

    1975-01-01

    The biosynthesis of RNA and DNA falls almost to zero in 60 min after the death of rabbits from anoxia, in all the organs of the body. Rapid artificial cooling of the rabbits to 20 degrees C undertaken within 10 min after death preserved nucleic acid biosynthesis and permitted restoration of life 3-4 h after death, with recovery beginning in 60 min. During the reanimation the addition of ATP to the blood stimulated the restoration of RNA biosynthesis in the spinal cord to a considerable extent; the addition of cocarboxylase to the blood promoted cardiac RNA biosynthesis as well as cardiac and pancreatic DNA biosynthesis during recovery. PMID:1197938

  1. Intermediates of Salicylic Acid Biosynthesis in Tobacco1

    PubMed Central

    Ribnicky, David M.; Shulaev, Vladimir; Raskin, Ilya

    1998-01-01

    Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis. PMID:9765542

  2. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii.

    PubMed

    Arous, Fatma; Mechichi, Tahar; Nasri, Moncef; Aggelis, George

    2016-07-01

    Fatty acid biosynthesis during the life cycle of the ascomycetous yeast Debaryomyces etchellsii cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD+-isocitrate dehydrogenase (NAD+-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD+-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased. PMID:27129978

  3. Carnosic acid biosynthesis elucidated by a synthetic biology platform.

    PubMed

    Ignea, Codruta; Athanasakoglou, Anastasia; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2016-03-29

    Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies. PMID:26976595

  4. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon

    PubMed Central

    2010-01-01

    Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for biobased building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds possessing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxidation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely biotechnological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system producing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA. This review highlights the potential of these discoveries for a large-scale 2-HIBA biosynthesis from renewable carbon, replacing conventional chemistry as synthesis route and petrochemicals as carbon source. PMID:20184738

  5. Retinoic acid biosynthesis is impaired in human and murine endometriosis.

    PubMed

    Pierzchalski, Keely; Taylor, Robert N; Nezhat, Ceana; Jones, Jace W; Napoli, Joseph L; Yang, Guixiang; Kane, Maureen A; Sidell, Neil

    2014-10-01

    Endometriosis is characterized by the presence of endometrial glands and stroma in extrauterine sites. Our objective was to determine whether endometriotic lesions (ELs) from women with endometriosis have altered retinoid levels compared with their eutopic endometrium, and to test the hypothesis that defects in all-trans retinoic acid (ATRA) biosynthesis in EL is related to reduced expression of cellular retinol-binding protein type 1 (RBP1). Retinoids were evaluated by liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography in eutopic endometrial biopsies (EBs) and ELs from 42 patients with pathologically confirmed endometriosis. The ATRA levels were reduced, whereas the retinol and retinyl ester concentrations were elevated in EL compared with EB tissue. Similar results were found in a mouse model of endometriosis that used green fluorescent protein-positive endometrial tissue injected into the peritoneum of syngeneic hosts to mimic retrograde menses. The ATRA biosynthesis in vitro in retinol-treated primary human endometrial stromal cell (ESC) cultures derived from ELs was reduced compared with that of ESCs derived from patient-matched EBs. Correspondingly, RBP1 expression was reduced in tissue and ESCs derived from EL versus EB. Rbp1(-/-) mice showed reduced endometrial ATRA concentrations compared with wild type, associated with loss of tissue organization and hypercellularity. These findings provide the first quantitative measurements of ATRA in human endometrium and endometriosis, demonstrating reduced ATRA in ectopic tissue and corresponding ESC cultures. Quantitation of retinoids in murine endometriosis and in Rbp1(-/-) mice supports the contention that impaired ATRA synthesis caused by reduced RBP1 promotes an "endometriosis phenotype" that enables cells to implant and grow at ectopic sites. PMID:25143356

  6. Genetic Dissection of Tropodithietic Acid Biosynthesis by Marine Roseobacters▿ ‡

    PubMed Central

    Geng, Haifeng; Bruhn, Jesper Bartholin; Nielsen, Kristian F.; Gram, Lone; Belas, Robert

    2008-01-01

    The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda−) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3) that exhibited a low frequency of spontaneous loss. Homologs of tdaA and tdaB from Silicibacter sp. strain TM1040 were identified by mutagenesis in another TDA-producing roseobacter, Phaeobacter sp. strain 27-4, which also possesses two large plasmids (ca. 60 and ca. 70 kb, respectively), and tda genes were found by DNA-DNA hybridization in 88% of a diverse collection of nine roseobacters with known antibiotic activity. These data suggest that roseobacters may use a common pathway for TDA biosynthesis that involves plasmid-encoded proteins. Using metagenomic library databases and a bioinformatics approach, differences in the biogeographical distribution between the critical TDA synthesis genes were observed. The implications of these results to roseobacter survival and the interaction between TM1040 and its dinoflagellate host are discussed. PMID:18192410

  7. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    SciTech Connect

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-11-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in /sup 18/O/sub 2/. It was found that in stressed leaves three atoms of /sup 18/O from /sup 18/O/sub 2/ are incorporated into the ABA molecule, and that the amount of /sup 18/O incorporated increases with time. One /sup 18/O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in /sup 18/O/sub 2/ shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more /sup 18/O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, /sup 18/O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied /sup 14/C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional /sup 18/O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  8. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  9. Glucosinolate and Amino Acid Biosynthesis in Arabidopsis1

    PubMed Central

    Field, Ben; Cardon, Guillermo; Traka, Maria; Botterman, Johan; Vancanneyt, Guy; Mithen, Richard

    2004-01-01

    Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content. PMID:15155874

  10. A structural comparison of lipopolysaccharide biosynthesis loci of Legionella pneumophila serogroup 1 strains

    PubMed Central

    2013-01-01

    Background The lipopolysaccharide (LPS) is the major immuno-dominant antigen of all Legionella species including L. pneumophila. Its diversity is the basis for the classification of L. pneumophila into serogroups and monoclonal subgroups and is thought to be involved in strain specific virulence. The understanding of the genetic basis of the LPS-antigen is incomplete. Thus, we analyzed the genetic locus involved in LPS-biosynthesis of L. pneumophila serogroup 1 (Sg1) strains with the focus on strain specific gene composition. Results The LPS-biosynthesis loci of 14 L. pneumophila Sg1 strains comprise two distinct regions: A 15 kb region containing LPS-biosynthesis genes that can be found in all L. pneumophila strains and a Sg1-specific 18 kb region. The 15 kb region is highly conserved among Sg1 strains as reflected by high homologies of single ORFs and by a consistent ORF arrangement. In contrast, the Sg1 specific 18 kb region is variable and partially disrupted by phage related genes. We propose that the region spanning from ORF 6 to ORF 11 of the Sg1-specific region is likely involved in late LPS-modification. Due to the high variability of this small region and various combinations of single ORFs within this region a strain specific LPS-structure could be synthesized including modifications of legionaminic acid derivates. Conclusions Our data clearly demonstrate that the gene structure of the LPS-biosynthesis locus of L. pneumophila Sg1 strains show significant interstrain variability. These data can be used for further functional analysis of the LPS synthesis to understand pathogenesis and reactivity with monoclonal antibodies. Moreover, variable but strain specific regions can serve as basis for the development of novel genotyping assays. PMID:24069939

  11. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA. PMID:27004948

  12. Evolution of the biosynthesis of the branched-chain amino acids

    NASA Astrophysics Data System (ADS)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-06-01

    The origin of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threonine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from α-ketoisovaleric acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use of the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  13. Evolution of the biosynthesis of the branched-chain amino acids

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  14. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis.

    PubMed Central

    Elkins, Jonathan M; Clifton, Ian J; Hernández, Helena; Doan, Linh X; Robinson, Carol V; Schofield, Christopher J; Hewitson, Kirsty S

    2002-01-01

    During biosynthesis of the clinically used beta-lactamase inhibitor clavulanic acid, one of the three steps catalysed by clavaminic acid synthase is separated from the other two by a step catalysed by proclavaminic acid amidino hydrolase (PAH), in which the guanidino group of an intermediate is hydrolysed to give proclavaminic acid and urea. PAH shows considerable sequence homology with the primary metabolic arginases, which hydrolyse arginine to ornithine and urea, but does not accept arginine as a substrate. Like other members of the bacterial sub-family of arginases, PAH is hexameric in solution and requires Mn2+ ions for activity. Other metal ions, including Co2+, can substitute for Mn2+. Two new substrates for PAH were identified, N-acetyl-(L)-arginine and (3R)-hydroxy-N-acetyl-(L)-arginine. Crystal structures of PAH from Streptomyces clavuligerus (at 1.75 A and 2.45 A resolution, where 1 A=0.1 nm) imply how it binds beta-lactams rather than the amino acid substrate of the arginases from which it evolved. The structures also suggest how PAH selects for a particular alcohol intermediate in the clavam biosynthesis pathway. As observed for the arginases, each PAH monomer consists of a core of beta-strands surrounded by alpha-helices, and its active site contains a di-Mn2+ centre with a bridging water molecule responsible for hydrolytic attack on to the guanidino group of the substrate. Comparison of structures obtained under different conditions reveals different conformations of a flexible loop, which must move to allow substrate binding. PMID:12020346

  15. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the biosynthesis of oxalic acid is known to occur in a number of bacteria, the mechanism(s) regulating its production remains largely unknown. To date, there is no report on the identification of an oxalic acid biosynthetic pathway gene from bacteria. In an attempt to identify such a gene...

  16. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  17. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids.

    PubMed

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  18. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

    PubMed Central

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  19. The preparation of zaragozic acid A analogues by directed biosynthesis.

    PubMed

    Chen, T S; Petuch, B; MacConnell, J; White, R; Dezeny, G; Arison, B; Bergstrom, J D; Colwell, L; Huang, L; Monaghan, R L

    1994-11-01

    Zaragozic acid A analogues are produced by an unidentified sterile fungus when it is exogenously supplied with 2-thiophenecarboxylic acid, 3-thiophenecarboxylic acid, 2-furoic acid, 2-fluorobenzoic acid, 3-fluorobenzoic acid, or 4-fluorobenzoic acid. The analogues carry 2-thiophenyl, 3-thiophenyl, 2-furyl, o-fluorophenyl, m-fluorophenyl, or p-fluorophenyl group, respectively, at C-6' of the C-1 alkyl side chain replacing the phenyl group of natural zaragozic acid A. All the new analogues of zaragozic acid A possess picomolar inhibitory activity against squalene synthase in vitro. PMID:8002393

  20. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  1. Biosynthesis of piperazic acid via N5-hydroxy-ornithine in Kutzneria spp. 744.

    PubMed

    Neumann, Christopher S; Jiang, Wei; Heemstra, John R; Gontang, Erin A; Kolter, Roberto; Walsh, Christopher T

    2012-05-01

    Which came first? We have investigated the biosynthesis of the piperazic acid (Piz) building blocks in the kutzneride family of metabolites. The flavin-dependent oxygenase KtzI was shown to convert ornithine to N(5)-OH-Orn. LC-MS/MS showed (13)C(5)-labeled versions of these two amino acids to be direct precursors of piperazic acid in vivo. PMID:22522643

  2. Foreign gene recruitment to the fatty acid biosynthesis pathway in diatoms.

    PubMed

    Chan, Cheong Xin; Baglivi, Francesca L; Jenkins, Christina E; Bhattacharya, Debashish

    2013-09-01

    Diatoms are highly successful marine and freshwater algae that contribute up to 20% of global carbon fixation. These species are leading candidates for biofuel production owing to ease of culturing and high fatty acid content. To assist in strain improvement and downstream applications for potential use as a biofuel, it is important to understand the evolution of lipid biosynthesis in diatoms. The evolutionary history of diatoms is however complicated by likely multiple endosymbioses involving the capture of foreign cells and horizontal gene transfer into the host genome. Using a phylogenomic approach, we assessed the evolutionary history of 12 diatom genes putatively encoding functions related to lipid biosynthesis. We found evidence of gene transfer likely from a green algal source for seven of these genes, with the remaining showing either vertical inheritance or evolutionary histories too complicated to interpret given current genome data. The functions of horizontally transferred genes encompass all aspects of lipid biosynthesis (initiation, biosynthesis, and desaturation of fatty acids) as well as fatty acid elongation, and are not restricted to plastid-targeted proteins. Our findings demonstrate that the transfer, duplication, and subfunctionalization of genes were key steps in the evolution of lipid biosynthesis in diatoms and other photosynthetic eukaryotes. This target pathway for biofuel research is highly chimeric and surprisingly, our results suggest that research done on related genes in green algae may have application to diatom models. PMID:24404416

  3. Isolated etioplasts as test system for inhibitors of fatty acid biosynthesis

    SciTech Connect

    Lichtenthaler, H.K.; Kobek, K. )

    1989-04-01

    Isolated intact chloroplasts of mono- and dicotyledonous plants possess the capacity for de novo fatty acid biosynthesis, starting from {sup 14}C-acetate. These can be taken as test system for herbicides affecting fatty acid biosynthesis as shown earlier in our laboratory. The incorporation rates of acetate into the total fatty acids depend on the photosynthetic cofactors ATP and NADPH and amount in the light to 33 kBq (oat) and 39 kBq (pea) per mg chlorophyll x h, whereas in the dark only ca. 10% of these rates are obtained. In order to establish a test system, which is fully independent of light, we isolated and characterized etioplast fractions from oat and pea seedlings with a very high capacity of de novo fatty acid biosynthesis (500 and 400 kBq per mg carotenoids in a 20 min period). This activity was blocked by herbicides such as cycloxydim, sethoxydim and diclofop in a dose-dependent manner. This new test system has the great advantage that one can verify whether inhibitors of photosynthesis affect fatty acid biosynthesis.

  4. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Chen, Guanqun; Wang, Baobei; Han, Danxiang; Sommerfeld, Milton; Lu, Yinghua; Chen, Feng; Hu, Qiang

    2015-01-01

    Astaxanthin, a red ketocarotenoid with strong antioxidant activity and high commercial value, possesses important physiological functions in astaxanthin-producing microalgae. The green microalga Haematococcus pluvialis accumulates up to 4% fatty acid-esterified astaxanthin (by dry weight), and is used as a model species for exploring astaxanthin biosynthesis in unicellular photosynthetic organisms. Although coordination of astaxanthin and fatty acid biosynthesis in a stoichiometric fashion was observed in H. pluvialis, the interaction mechanism is unclear. Here we dissected the molecular mechanism underlying coordination between the two pathways in H. pluvialis. Our results eliminated possible coordination of this inter-dependence at the transcriptional level, and showed that this interaction was feedback-coordinated at the metabolite level. In vivo and in vitro experiments indicated that astaxanthin esterification drove the formation and accumulation of astaxanthin. We further showed that both free astaxanthin biosynthesis and esterification occurred in the endoplasmic reticulum, and that certain diacylglycerol acyltransferases may be the candidate enzymes catalyzing astaxanthin esterification. A model of astaxanthin biosynthesis in H. pluvialis was subsequently proposed. These findings provide further insights into astaxanthin biosynthesis in H. pluvialis. PMID:25353310

  5. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  6. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  7. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  8. Fatty acid biosynthesis by a particulate preparation from germinating pea

    PubMed Central

    Bolton, Paul; Harwood, John L.

    1977-01-01

    1. Fatty acid synthesis was studied in microsomal preparations from germinating pea (Pisum sativum). 2. The preparations synthesized a mixture of saturated fatty acids up to a chain length of C24 from [14C]malonyl-CoA. 3. Whereas hexadecanoic acid was made de novo, octadecanoic acid and icosanoic acid were synthesized by elongation. 4. The products formed during [14C]malonyl-CoA incubation were analysed, and unesterified fatty acids and polar lipids were found to be major products. [14C]Palmitic acid represented a high percentage of the acyl-carrier protein esters, whereas 14C-labelled very-long-chain fatty acids were mainly present as unesterified fatty acids. CoA esters were minor products. 5. The addition of exogenous lipids to the incubation system usually resulted in stimulation of [14C]malonyl-CoA incorporation into fatty acids. The greatest stimulation was obtained with dipalmitoyl phosphatidylcholine. Both exogenous palmitic acid and dipalmitoyl phosphatidylcholine increased the amount of [14C]-stearic acid synthesized, relative to [14C]palmitic acid. Addition of stearic acid increased the amount of [14C]icosanoic acid formed. 6. [14C]Stearic acid was elongated more effectively to icosanoic acid than [14C]stearoyl-CoA, and its conversion was not decreased by addition of unlabelled stearoyl-CoA. 7. Incorporation of [14C]malonyl-CoA into fatty acids was markedly decreased by iodoacetamide and 5,5′-dithiobis-(2-nitrobenzoic acid). Palmitate elongation was sensitive to arsenite addition, and stearate elongation to the presence of Triton X-100 or fluoride. The action of fluoride was not, apparently, due to chelation. 8. The microsomal preparations differed from soluble fractions from germinating pea in (a) synthesizing very-long-chain fatty acids, (b) not utilizing exogenous palmitate–acyl-carrier protein as a substrate for palmitate elongation and (c) having fatty acid synthesis stimulated by the addition of certain complex lipids. PMID:579600

  9. Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts.

    PubMed

    Řezanka, Tomáš; Kolouchová, Irena; Sigler, Karel

    2015-09-01

    Precursor-directed biosynthesis was used for directed preparation of positional isomers of heptadecanoic acid (17:1), which have convenient pharmacological properties. Cultivation of Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica on 20 g/L glucose, 4 g/L acetic, or 4 g/L propionic acids yielded different proportions of 17:1. Cultivation on carbon sources with even numbers of carbon atoms (glucose and acetic acid) produced preferentially 8Z- and 10Z-heptadecenoic acids in about equal amounts, in agreement with the proposed biosynthesis of fatty acids, whereas cultivation on propionic acid as the only carbon source produced over 90 % of total fatty acids of 9-17:1 out of all possible positional isomers. The structures of positional isomers of 17:1 acid were determined using dimethyl disulfides of fatty acid methyl esters. In cultivation of Candida sp. on propionic acid, the yield of heptadecenoic acid reached 111 mg/L cultivation medium. Principal component analysis was used for identifying the effect of cultivation conditions on the production of the 17:1 acid by individual yeast strains. PMID:25813199

  10. Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli.

    PubMed Central

    Cronan, J E; Reed, R; Taylor, F R; Jackson, M B

    1979-01-01

    The lipid phase transition of Escherichia coli phospholipids containing cyclopropane fatty acids was compared with the otherwise homologous phospholipids lacking cyclopropane fatty acids. The phase transitions (determined by scanning calorimetry) of the two preparations were essentially identical. Infection of E. coli with phage T3 inhibited cyclopropane fatty acid formation over 98%, whereas infection with mutants which lack the phage coded S-adenosylmethionine cleavage enzyme had no effect on cyclopropane fatty acid synthesis. These data indicate that S-adenosylmethionine is the methylene in cyclopropane fatty acid synthesis. PMID:374358

  11. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B.

    PubMed

    Hornby, Jacob M; Kebaara, Bessie W; Nickerson, Kenneth W

    2003-07-01

    The dimorphic fungus Candida albicans produces farnesol as a quorum-sensing molecule that regulates cellular morphology. The biosynthetic origin of farnesol has been resolved by treating these cells with zaragozic acid B, a potent inhibitor of squalene synthase in the sterol biosynthetic pathway. Treatment with zaragozic acid B leads to an eightfold increase in the amount of farnesol produced by C. albicans. Furthermore, C. albicans cell extracts contain enzymatic activity to convert [(3)H]farnesyl pyrophosphate to [(3)H]farnesol. Many common antifungal antibiotics (e.g., zaragozic acids, azoles, and allylamines) target steps in sterol biosynthesis. We suggest that the fungicidal activity of zaragozic acid derives in large part from the accumulation of farnesol that accompanies the inhibition of sterol biosynthesis. PMID:12821501

  12. Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium.

    PubMed

    Primerano, D A; Burns, R O

    1983-01-01

    Structural genes have been identified for all of the enzymes involved in the biosynthesis of pantothenic acid in Salmonella typhimurium and Escherichia coli K-12, with the exception of ketopantoic acid reductase, which catalyzes the conversion of alpha-ketopantoate to pantoate. The acetohydroxy acid isomeroreductase from S. typhimurium efficiently bound alpha-ketopantoate (K(m) = 0.25 mM) and catalyzed its reduction at 1/20 the rate at which alpha-acetolactate was reduced. Since two enzymes could apparently participate in the synthesis of pantoate, a S. typhimurium ilvC8 strain was mutagenized to derive strains completely blocked in the conversion of alpha-ketopantoate to pantoate. Several isolates were obtained that grew in isoleucine-valine medium supplemented with either pantoate or pantothenate, but not in the same medium supplemented with alpha-ketopantoate or beta-alanine. The mutations that conferred pantoate auxotrophy (designated panE) to these isolates appeared to be clustered, but were not linked to panB or panC. All panE strains tested had greatly reduced levels of ketopantoic acid reductase (3 to 12% of the activity present in DU201). The capacity of the isomeroreductase to synthesize pantoate in vivo was assessed by determining the growth requirements of ilvC(+) derivatives of panE ilvC8 strains. These strains required either alpha-ketopantoate, pantoate, or pantothenate when the isomeroreductase was present at low levels; when the synthesis of isomeroreductase was induced, panE ilvC(+) strains grew in unsupplemented medium. These phenotypes indicate that a high level of isomeroreductase is sufficient for the synthesis of pantoate. panE ilvC(+) strains also grew in medium supplemented with lysine and methionine. This phenotype resembles that of some S. typhimurium ilvG mutants (e.g., DU501) which are partially blocked in the biosynthesis of coenzyme A and are limited for succinyl coenzyme A. panE ilvC(+) strains which lack the acetohydroxy acid

  13. Phorbic Acid Biosynthesis in the Latex Vessel System of Euphorbia

    PubMed Central

    Nordal, Arnold; Benson, A. A.

    1969-01-01

    Evidence is presented that phorbic acid is formed in the latex producing cell system, rather than in photosynthetic or chlorophyll-free tissues of Euphorbia resinifera Berg. When a branch of the plant was kept first in a 14CO2 atmosphere with 12 hr light-dark periods for 2 days and then left under natural conditions in the air outside for at least 2 to 3 days, radioactive phorbic acid was found in the latex. Phorbic acid synthesis appeared to be independent of the photosynthetic and respiratory activities of the plant. Besides phorbic acid 2 other major radioactive compounds were recognized in the latex, a glycoside or oligosaccharide, and a lipid belonging to the group of triterpenoid compounds characteristic of the latex in several species of Euphorbia. Images PMID:16657036

  14. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus)

    PubMed Central

    2013-01-01

    Background Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial

  15. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid. PMID:24043703

  16. Biosynthesis of pyruvic acid from glucose by Blastobotrys adeninivorans.

    PubMed

    Kamzolova, Svetlana V; Morgunov, Igor G

    2016-09-01

    The ability of taxonomically different yeasts to synthesize pyruvic acid (PA) from glucose was studied. The study showed that many yeasts are able to produce PA from glucose under the condition of growth limitation by thiamine. This ability was found in the yeast Blastobotrys adeninivorans for the first time. The production (oversynthesis) of PA in this yeast can be explained by disturbance in the function of thiamine-dependent pyruvate dehydrogenase. Namely, the partial inhibition of this enzyme brings about the excretion of PA from the yeast cells. Due to incomplete inhibition of pyruvate dehydrogenase, the formation of acetyl-CoA continues, although at a lower level, maintaining the synthesis of α-ketoglutaric acid (KGA) in the tricarboxylic acid (TCA) cycle. KGA is no longer oxidized in the TCA cycle, because thiamine limitation inhibits α-ketoglutarate dehydrogenase. As a result, KGA is excreted from the yeast cells as a byproduct of PA oversynthesis. Furthermore, the increased level of KGA in the yeast cells inhibits NAD-dependent isocitrate dehydrogenase in the TCA cycle and enhances the production and excretion of citric acid, another byproduct of PA oversynthesis. During cultivation in a fermentor, the strain Blastobotrys adeninivorans VKM Y-2677 produced 43.2 g l(-1) PA from glucose with a product yield (YPA) of 0.77 g PA/g glucose. The proportion of PA to byproducts was 18:1 for KGA and 8:1 for citric acid. PMID:27221290

  17. Biosynthesis of Jasmonic Acid by Several Plant Species 1

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1984-01-01

    Six plant species metabolized 18O-labeled 12-oxo-cis,cis-10,15-phytodienoic acid (12-oxo-PDA) to short chain cyclic fatty acids. The plant species were corn (Zea mays L.), eggplant (Solanum melongena L.), flax (Linum usitatissimum L.), oat (Avena sativa L.), sunflower (Helianthus annuus L.), and wheat (Triticum aestivum L.). Among the products was jasmonic acid, a natural plant constituent with growth-regulating properties. The pathway is the same as the one recently reported by us for jasmonic acid synthesis in Vicia faba L. pericarp. First, the ring double bond of 12-oxo-PDA is saturated; then β-oxidation enzymes remove six carbons from the carboxyl side chain of the ring. Substrate specificity studies indicated that neither the stereochemistry of the side chain at carbon 13 of 12-oxo-PDA nor the presence of the double bond at carbon 15 was crucial for either enzyme step. The presence of enzymes which convert 12-oxo-PDA to jasmonic acid in several plant species indicates that this may be a general metabolic pathway in plants. PMID:16663643

  18. Biosynthesis and Elongation of Short- and Medium-Chain-Length Fatty Acids

    PubMed Central

    van der Hoeven, Rutger S.; Steffens, John C.

    2000-01-01

    Short- and medium-chain-length fatty acids (FAs) are important constituents of a wide array of natural products. Branched and straight short-chain-length FAs originate from branched chain amino acid metabolism, and serve as primers for elongation in FA synthase-like reactions. However, a recent model proposes that the one-carbon extension reactions that utilize 2-oxo-3-methylbutyric acid in leucine biosynthesis also catalyze a repetitive one-carbon elongation of short-chain primers to medium-chain-length FAs. The existence of such a mechanism would require a novel form of regulation to control carbon flux between amino acid and FA biosynthesis. A critical re-analysis of the data used to support this pathway fails to support the hypothesis for FA elongation by one-carbon extension cycles of α-ketoacids. Therefore, we tested the hypothesis experimentally using criteria that distinguish between one- and two-carbon elongation mechanisms: (a) isotopomer patterns in terminal carbon atom pairs of branched and straight FAs resulting from differential labeling with [13C]acetate; (b) [13C]threonine labeling patterns in odd- and even chain length FAs; and (c) differential sensitivity of elongation reactions to inhibition by cerulenin. All three criteria indicated that biosynthesis of medium-chain length FAs is mediated primarily by FA synthase-like reactions. PMID:10631271

  19. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    PubMed

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  20. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    PubMed Central

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  1. Branched Chain Amino Acid Metabolism in the Biosynthesis of Lycopersicon pennellii Glucose Esters 1

    PubMed Central

    Walters, Donald S.; Steffens, John C.

    1990-01-01

    Lycopersicon pennellii Corr. (D'Arcy) an insect-resistant, wild tomato possesses high densities of glandular trichomes which exude a mixture of 2,3,4-tri-O-acylated glucose esters that function as a physical impediment and feeding deterrent to small arthropod pests. The acyl moieties are branched C4 and C5 acids, and branched and straight chain C10, C11, and C12 acids. The structure of the branched acyl constituents suggests that the branched chain amino acid biosynthetic pathway participates in their biosynthesis. [14C]Valine and deuterated branched chain amino acids (and their oxo-acid derivatives) were incorporated into branched C4 and C5 acid groups of glucose esters by a process of transamination, oxidative decarboxylation and subsequent acylation. C4 and C5 branched acids were elongated by two carbon units to produce the branched C10-C12 groups. Norvaline, norleucine, allylglycine, and methionine also were processed into acyl moieties and secreted from the trichomes as glucose esters. Changes in the acyl composition of the glucose esters following sulfonylurea herbicide administration support the participation of acetohydroxyacid synthetase and the other enzymes of branched amino acid biosynthesis in the production of glucose esters. PMID:16667654

  2. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. PMID:21257030

  3. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    PubMed Central

    Samadlouie, Hamid-Reza; Hamidi-Esfahani, Zohreh; Alavi, Seyed-Mehdi; Varastegani, Boshra

    2014-01-01

    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase. PMID:25242926

  4. [Biosynthesis of isocitric acid by the yeast yarrowia lipolytica and its regulation].

    PubMed

    Kamzolova, S V; Lunin, Y N; Allayarov, R K; Puntus, I F; Laptev, I A; Samojlenko, V A; Morgunov, I G

    2015-01-01

    We studied the biosynthesis of isocitric acid from rapeseed (canola) oil by the yeast Yarrowia lipolytica and its regulation. We determined a fundamental possibility for directed biosynthesis of isocitric acid by Y lipolytica yeast, with only minimal amounts of citric acid byproduct, when grown on a medium containing canola oil. Wild type strains of Y lipolytica were mutagenized by UV irradiation and treatment with N-methyl-N'-nitro-N-nitrosoguanidine (NG). Subsequent selection on media with acetate and isocitrate resulted in isolation of a UV/NG Y lipolytica UV/NG mutant that synthesized isocitrate and citrate at a ratio of 2.7:1. In the parent strain, this ratio is 1:1. Inhibition of isocitrate lyase, a key enzyme in the metabolism of isocitric acid, by the addition of itaconic acid resulted in increased synthesis of isocitrate with a ratio of isocitrate to citrate reaching 6:1. Culturing of the Y lipolytica UV/NG mutant in a pilot industrial fermenter in the presence of itaconic acid resulted in the production of 88.7 g/L of isocitric acid with a yield of 90%. PMID:26027362

  5. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids.

    PubMed

    Uttaro, Antonio D

    2014-08-01

    As components of phospholipids and glycosylphosphatidylinositol anchors, fatty acids are responsible for forming the core of biological membranes and the correct localization of proteins within membranes. They also contribute to anchoring proteins by direct acylation of specific amino acids. Fatty acids can be used as energy sources and serve as signaling molecules or precursors for their synthesis. All these processes highlight the important role of fatty acids in cell physiology, justifying the diverse strategies for their acquisition evolved by different organisms. This review describes several recent findings in the salvage and biosynthesis of fatty acids by parasitic protists belonging to the class Kinetoplastea. They include two biosynthetic routes, the mitochondrial one and a peculiar membrane-associated pathway, the synthesis of polyunsaturated fatty acids, and the scavenging of lysophospholipids and lipoproteins from host plasma. These different processes are also explored as putative targets for chemotherapy. PMID:24726787

  6. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  7. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis.

    PubMed

    Yu, Fang; Thamm, Antje M K; Reed, Darwin; Villa-Ruano, Nemesio; Quesada, Alfonso Lara; Gloria, Edmundo Lozoya; Covello, Patrick; De Luca, Vincenzo

    2013-07-01

    Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus. PMID:22652241

  8. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    PubMed

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  9. Fatty acid biosynthesis as a target for novel antibacterials

    PubMed Central

    Rock, Charles O

    2006-01-01

    The bacterial fatty acid synthesis pathway has significant potential as a target for the development of novel antibacterials. The pathway has been extensively studied in Escherichia coli, the crystal structures of the compounds involved are known and homologous genes are readily identified in the genomes of important pathogens. The, currently used drugs triclosan and isoniazid are known to target one step in the pathway. Other experimental compounds such as thiolactomycin and cerulenin effectively inhibit other steps. These known pathway inhibitors are reviewed and the areas for potential future developments are explored. PMID:15043388

  10. Regulation of polyunsaturated fatty acid biosynthesis by seaweed fucoxanthin and its metabolite in cultured hepatocytes.

    PubMed

    Aki, Tsunehiro; Yamamoto, Masaya; Takahashi, Toshiaki; Tomita, Kohki; Toyoura, Rieko; Iwashita, Kazuhiro; Kawamoto, Seiji; Hosokawa, Masashi; Miyashita, Kazuo; Ono, Kazuhisa

    2014-02-01

    The effects of a seaweed carotenoid, fucoxanthin, and its physiological metabolite, fucoxanthinol, on the biosynthesis of polyunsaturated fatty acids (PUFA) were investigated using cultured rat hepatoma BRL-3A. The metabolism of α-linolenic acid (18:3n-3) was suppressed by the addition of these carotenoids, resulting in a decrease in the content of eicosapentaenoic acid (20:5n-3), which suggested a down-regulation of metabolic enzymes such as fatty acid desaturase and elongase. An increase in the content of docosahexaenoic acid (22:6n-3), as observed in previous studies in vivo, might be a buffering action to maintain the membrane fluidity. The suppressive effect of fucoxanthinol on ∆6 fatty acid desaturase was not at the level of gene expression but due to specific modifications of the protein via a ubiquitin-proteasome system. A proteomic analysis revealed several factors such as phosphatidylethanolamine-binding protein that might be involved in the observed action of fucoxanthin. These findings will contribute to studies on the elucidation of the precise molecular mechanisms underlying the regulation of PUFA biosynthesis by fucoxanthin. PMID:24174374

  11. Abscisic acid biosynthesis in isolated embryos of Zea mays L

    SciTech Connect

    Gage, D.A.; Fong, F.; Zeevaart, J.A.D. Texas A M Univ., College Station )

    1989-04-01

    Previous labeling experiments with {sup 18}O{sub 2} have supported the hypothesis that stress-induced abscisic acid (ABA) is synthesized through an indirect pathway involving an oxygenated carotenoid (xanthophyll) as a precursor. To investigate ABA formation under nonstress conditions, an {sup 18}O{sub 2} labeling experiment was conducted with isolated embryos from in vitro grown maize (Zea mays L.) kernels. Of the ABA produced during the incubation in {sup 18}O{sub 2}, three-fourths contained a single {sup 18}O atom located in the carboxyl group. Approximately one-fourth of the ABA synthesized during the experiment contained two {sup 18}O atoms. These results suggest that ABA synthesized in maize embryos under nonstress conditions also proceeds via the indirect pathway, requiring a xanthophyll precursor. It was also found that the newly synthesized ABA was preferentially released into the surrounding medium.

  12. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  13. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops.

    PubMed

    Tan, S; Evans, R; Singh, B

    2006-03-01

    Acetohydroxyacid synthase (AHAS) inhibitors interfere with branched-chain amino acid biosynthesis by inhibiting AHAS. Glyphosate affects aromatic amino acid biosynthesis by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Glufosinate inhibits glutamine synthetase and blocks biosynthesis of glutamine. AHAS gene variants that confer tolerance to AHAS inhibitors have been discovered in plants through selection or mutagenesis. Imidazolinone-tolerant crops have been commercialized based on these AHAS gene variants. A modified maize EPSPS gene and CP4-EPSPS gene from Agrobacterium sp. have been used to transform plants for target-based tolerance to glyphosate. A gox gene isolated from Ochrobactrum anthropi has also been employed to encode glyphosate oxidoreductase to detoxify glyphosate in plants. Glyphosate-tolerant crops with EPSPS transgene alone or both EPSPS and gox transgenes have been commercialized. Similarly, bar and pat genes isolated from Streptomyces hygroscopicus and S. viridochromogenes, respectively, have been inserted into plants to encode phosphinothricin N-acetyltransferase to detoxify glufosinate. Glufosinate-tolerant crops have been commercialized using one of these two transgenes. PMID:16547651

  14. Deciphering Carbamoylpolyoxamic Acid Biosynthesis Reveals Unusual Acetylation Cycle Associated with Tandem Reduction and Sequential Hydroxylation.

    PubMed

    Qi, Jianzhao; Wan, Dan; Ma, Hongmin; Liu, Yuanzhen; Gong, Rong; Qu, Xudong; Sun, Yuhui; Deng, Zixin; Chen, Wenqing

    2016-08-18

    Polyoxin, produced by Streptomcyes cacaoi var. asoensis and Streptomyces aureochromogenes, contains two non-proteinogenic amino acids, carbamoylpolyoxamic acid (CPOAA) and polyoximic acid. Although the CPOAA moiety is highly unusual, its biosynthetic logic has remained enigmatic for decades. Here, we address CPOAA biosynthesis by reconstitution of its pathway. We demonstrated that its biosynthesis is initiated by a versatile N-acetyltransferase, PolN, catalyzing L-glutamate (1) to N-acetyl glutamate (2). Remarkably, we verified that PolM, a previously annotated dehydrogenase, catalyzes an unprecedented tandem reduction of acyl-phosphate to aldehyde, and subsequently to alcohol. We also unveiled a distinctive acetylation cycle catalyzed by PolN to synthesize α-amino-δ-hydroxyvaleric acid (6). Finally, we report that PolL is capable of converting a rare sequential hydroxylation of α-amino-δ-carbamoylhydroxyvaleric acid (7) to CPOAA. PolL represents an intriguing family of Fe(II)-dependent α-ketoglutarate dioxygenase with a cupin fold. These data illustrate several novel enzymatic reactions, and also set a foundation for rational pathway engineering for polyoxin production. PMID:27541195

  15. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium

    SciTech Connect

    Wada, M.; Fukunaga, N.; Sasaki, S. )

    1989-08-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. (1-{sup 14}C)palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. (1-{sup 14}C)stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. (1-{sup 14}C)lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from (1-{sup 14}C)acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released {sup 14}CO{sub 2}, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.

  16. [Gene cloning and bioinformatics analysis of new gene for chlorogenic acid biosynthesis of Lonicera hypoglauca].

    PubMed

    Yu, Shu-lin; Huang, Lu-qi; Yuan, Yuan; Qi, Lin-jie; Liu, Da-hui

    2015-03-01

    To obtain the key genes for chlorogenic acid biosynthesis of Lonicera hypoglauca, four new genes ware obtained from the our dataset of L. hypoglauca. And we also predicted the structure and function of LHPAL4, LHHCT1 , LHHCT2 and LHHCT3 proteins. The phylogenetic tree showed that LHPAL4 was closely related with LHPAL1, LHHCT1 was closely related with LHHCT3, LHHCT2 clustered into a single group. By Real-time PCR to detect the gene expressed level in different organs of L. hypoglauca, we found that the transcripted level of LHPAL4, LHHCT1 and LHHCT3 was the highest in defeat flowers, and the transcripted level of LHHCT2 was the highest in leaves. These result provided a basis to further analysis the mechanism of active ingredients in different organs, as well as the element for in vitro biosynthesis of active ingredients. PMID:26087546

  17. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis

    PubMed Central

    2013-01-01

    Background L-ascorbic acid (L-AA) is naturally synthesized in plants from D-glucose by 10 steps pathway. The pathway branch to synthesize L-galactose, the key intermediate for L-ascorbic acid biosynthesis, has been recently elucidated. Budding yeast produces an 5-carbon ascorbic acid analogue Dehydro-D-arabinono 1,4-lactone (D-DAL), which is synthesized from D-arabinose. Yeast is able to synthesize L-ascorbic acid only if it is cultivated in the presence of one of its precursors: L-galactose, L-galactono 1,4-lactone, or L-gulono 1,4-lactone extracted from plants or animals. To avoid feeding the yeast culture with this “L” enantiomer, we engineered Kluyveromyces lactis with L-galactose biosynthesis pathway genes: GDP-mannose 3,5-epimerase (GME), GDP-L-galactose phosphorylase (VTC2) and L-galactose-1-phosphate phosphatase (VTC4) isolated from Arabidopsis thaliana. Results Plasmids were constructed and modified such that the cloned plant genes were targeted to the K. lactis LAC4 Locus by homologous recombination and that the expression was associated to the growth on D-galactose or lactose. Upon K. lactis transformation, GME was under the control of the native LAC4 promoter whereas VTC2 and VTC4 were expressed from the S. cerevisiae promoters GPD1 and ADH1 respectively. The expression in K. lactis, of the L-galactose biosynthesis genes was determined by Reverse Transcriptase-PCR and western blotting. The recombinant yeasts were capable to produce about 30 mg.L-1 of L-ascorbic acid in 48 hours of cultivation when cultured on rich medium with 2% (w/v) D-galactose. We also evaluated the L-AA production culturing recombinant recombinant strains in cheese whey, a waste product during cheese production, as an alternative source of lactose. Conclusions This work is the first attempt to engineer K. lactis cells for L-ascorbic acid biosynthesis by a fermentation process without any trace of “L” isomers precursors in the culture medium. We have engineered K. lactis

  18. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications. PMID:25447786

  19. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase.

    PubMed

    Sun, Jing; Lin, Yuheng; Shen, Xiaolin; Jain, Rachit; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2016-05-01

    3-Phenylpropionic acid (3PPA) and 3-(4-hydroxyphenyl) propionic acid (HPPA) are important commodity aromatic acids widely used in food, pharmaceutical and chemical industries. Currently, 3PPA and HPPA are mainly manufactured through chemical synthesis, which contains multiple steps involving toxic solvents and catalysts harmful to environment. Therefore, replacement of such existing petroleum-derived approaches with simple and environmentally friendly biological processes is highly desirable for manufacture of these chemicals. Here, for the first time we demonstrated the de novo biosynthesis of 3PPA and HPPA using simple carbon sources in E. coli by extending the cinnamic acids biosynthesis pathways through biological hydrogenation. We first screened 11 2-enoate reductases (ER) from nine microorganisms, leading to efficient conversion of cinnamic acid and p-coumaric acid to 3PPA and HPPA, respectively. Surprisingly, we found a strictly oxygen-sensitive Clostridia ER capable of functioning efficiently in E. coli even under aerobic conditions. On this basis, reconstitution of the full pathways led to the de novo production of 3PPA and HPPA and the accumulation of the intermediates (cinnamic acid and p-coumaric acid) with cell toxicity. To address this problem, different expression strategies were attempted to optimize individual enzyme׳s expression level and minimize intermediates accumulation. Finally, the titers of 3PPA and HPPA reached 366.77mg/L and 225.10mg/L in shake flasks, respectively. This study not only demonstrated the potential of microbial approach as an alternative to chemical process, but also proved the possibility of using oxygen-sensitive enzymes under aerobic conditions. PMID:26873116

  20. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase.

    PubMed

    Bergstrom, J D; Dufresne, C; Bills, G F; Nallin-Omstead, M; Byrne, K

    1995-01-01

    The zaragozic acids (ZAs), a family of fungal metabolites containing a novel 4,6,7-trihydroxy-2,8-dioxobicyclo[3.2.1]octane-3,4,5-tricarboxylic acid core, were discovered independently by two separate groups screening natural product sources to discover inhibitors of squalene synthase. This family of compounds all contain the same core but differ in their 1-alkyl and their 6-acyl side chains. Production of the ZAs is distributed over an extensive taxonomic range of Ascomycotina or their anamorphic states. The zaragozic acids are very potent inhibitors of squalene synthase that inhibit cholesterol synthesis and lower plasma cholesterol levels in primates. They also inhibit fungal ergosterol synthesis and are potent fungicidal compounds. The biosynthesis of the zaragozic acids appears to proceed through alkyl citrate intermediates and new members of the family have been produced through directed biosynthesis. These potent natural product based inhibitors of squalene synthase have potential to be developed either as cholesterol lowering agents and/or as antifungal agents. PMID:8561474

  1. Alternative route for the biosynthesis of polyunsaturated fatty acids in K562 cells.

    PubMed Central

    Naval, J; Martínez-Lorenzo, M J; Marzo, I; Desportes, P; Piñeiro, A

    1993-01-01

    K562 human leukaemia cells lack a significant delta 6-desaturase activity. However, they synthesize long-chain polyunsaturated fatty acids (PUFA) from linoleic (C18:2(9,12)) and linolenic (C18:3(9,12,15)) acids, by reactions involving a C2 chain elongation followed by a delta 5-desaturation step and, to some extent, a further elongation. The main products formed were separated by argentation t.l.c. and identified by g.l.c. as the uncommon fatty acids C20:3(5,11,14) and C20:4(5,11,14,17) respectively. These acids were also produced when cells were supplemented with C20:2(11,14) or C20:3(11,14,17) respectively. The presence of a delta 5-desaturase was further confirmed by using its corresponding normal substrates, C20:3(8,11,14) and C20:4(8,11,14,17), which led to C20:4(5,8,11,14) and C20:5(5,8,11,14,17) respectively. On the other hand, a high delta 9-desaturase activity, but no significant delta 4-desaturase activity, were detected in K562 cells. These results indicate the existence of an alternative pathway, involving delta 5-desaturase, which is the only route for PUFA biosynthesis in K562 cells. This pathway may be relevant for the biosynthesis of PUFA in cells lacking delta 6-desaturase activity. PMID:8489510

  2. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis.

    PubMed

    Kinzel, J J; Bhattacharjee, J K

    1979-05-01

    The role of pipecolic acid in the biosynthesis of lysine was investigated in Rhodotorula glutinis, an aerobic red yeast. Supplementation of pipecolic acid in the minimal medium supported the growth of mutants lys2, lys3, and lys5; alpha-aminoadipic acid supported the growth of lys5; but neither alpha-aminoadipic acid nor pipecolic acid supported the growth of mutants MNNG42 and MNNG37. During the growth of the appropriate mutants, pipecolic acid was removed from the growth medium and the intracellular pool. In tracer experiments, radioactivity from [(14)C]pipecolic acid was selectively incorporated into the cellular lysine of lys5 and the wild-type strain. l-Pipecolic acid-dependent enzyme activity did not require any cofactor and was inhibited by mercuric chloride and potassium cyanide. This activity was present in the wild-type strain and all of the mutants tested and was repressed in mutant lys5 when grown in the presence of higher concentration of lysine. The reaction product of pipecolic acid was converted to saccharopine by lys5 enzyme in the presence of glutamate and reduced nicotin-amide adenine dinucleotide phosphate. Mutant MNNG37 lacked the saccharopine dehydrogenase activity, indicating that this step is involved in the conversion of alpha-aminoadipic acid and pipecolic acid to lysine. Mutants MNNG37 and MNNG42 accumulated a p-dimethylaminobenzaldehyde-reacting product in the culture supernatant and in the intracellular pool. Chromatographic properties of the p-dimethylaminobenzaldehyde adduct and that of the pipecolic acid-dependent reaction product were similar. The reaction product and the accumulation product were characterized on the basis of mass and absorption spectra as alpha-aminoadipic-semialdehyde, which in solution remains in equilibrium with Delta(1)-piperideine-6-carboxylic acid. Since alpha-aminoadipic-semialdehyde is a known intermediate of the alpha-aminoadipic acid pathway for the biosynthesis of lysine, it is concluded that pipecolic

  3. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts

    PubMed Central

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Miltyk, Wojciech; Galicka, Elżbieta; Przylipiak, Jerzy; Zaręba, Ilona; Surazynski, Arkadiusz

    2015-01-01

    Introduction The aim of the study was to evaluate the effect of ethanol on collagen biosynthesis in cultured human skin fibroblasts, and the role of hyaluronic acid (HA) in this process. Regarding the mechanism of ethanol action on human skin fibroblasts we investigated: expression of β1 integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), nuclear factor kappa B (NF-κB) transcription factor, cytotoxicity assay and apoptosis, metalloproteinase activity, as well as the influence of HA on these processes. Materials and methods Collagen biosynthesis, activity of prolidase, DNA biosynthesis, and cytotoxicity were measured in confluent human skin fibroblast cultures that have been treated with 25, 50, and 100 mM ethanol and with ethanol and 500 µg/mL HA. Western blot analysis and zymography were performed to evaluate expression of collagen type I, β1 integrin receptor, IGF-IR, NF-κB protein, phospho-Akt protein, kinase MAPK, caspase 9 activity, and matrix metalloproteinases (MMP-9 and MMP-2). Results Ethanol in a dose-dependent manner lead to the impairment of collagen biosynthesis in fibroblast cultures through decreasing prolidase activity and expression of β1 integrin and IGF-IR. This was accompanied by an increased cytotoxicity, apoptosis and lowered expression of the signaling pathway proteins induced by β1 integrin and IGF-IR, that is, MAPK (ERK1/2) kinases. The lowered amount of synthesized collagen and prolidase activity disturbance may also be due to the activation of NF-κB transcription factor, which inhibits collagen gene expression. It suggests that the decrease in fibroblast collagen production may be caused by the disturbance in its biosynthesis but not degradation. The application of HA has a protective effect on disturbances caused by the examined substances. It seems that regulatory mechanism of ethanol-induced collagen aberration take

  4. Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules.

    PubMed

    Bianco, C; Senatore, B; Arbucci, S; Pieraccini, G; Defez, R

    2014-07-01

    To evaluate the dose-response effects of endogenous indole-3-acetic acid (IAA) on Medicago plant growth and dry weight production, we increased the synthesis of IAA in both free-living and symbiosis-stage rhizobial bacteroids during Rhizobium-legume symbiosis. For this purpose, site-directed mutagenesis was applied to modify an 85-bp promoter sequence, driving the expression of iaaM and tms2 genes for IAA biosynthesis. A positive correlation was found between the higher expression of IAA biosynthetic genes in free-living bacteria and the increased production of IAA under both free-living and symbiotic conditions. Plants nodulated by RD65 and RD66 strains, synthetizing the highest IAA concentration, showed a significant (up to 73%) increase in the shoot fresh weight and upregulation of nitrogenase gene, nifH, compared to plants nodulated by the wild-type strain. When these plants were analyzed by confocal microscopy, using an anti-IAA antibody, the strongest signal was observed in bacteroids of Medicago sativa RD66 (Ms-RD66) plants, even when they were located in the senescent nodule zone. We show here a simple system to modulate endogenous IAA biosynthesis in bacteria nodulating legumes suitable to investigate which is the maximum level of IAA biosynthesis, resulting in the maximal increase of plant growth. PMID:24814784

  5. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    PubMed

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators. PMID:25700632

  6. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    PubMed Central

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  7. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  8. 3,7-Dichloroquinolinecarboxylic Acid Inhibits Cell-Wall Biosynthesis in Maize Roots.

    PubMed Central

    Koo, S. J.; Neal, J. C.; DiTomaso, J. M.

    1996-01-01

    The mode of action of the herbicide 3,7-dichloroquinolinecar-boxylic acid (quinclorac) was examined by measuring incorporation of [14C]glucose, [14C]acetate, [3H]thymidine, and [3H]uridine into maize (Zea mays) root cell walls, fatty acids, DNA, and RNA, respectively. Among the precursors examined, 10 [mu]M quinclorac inhibited [14C]glucose incorporation into the cell wall within 3 h. Fatty acid and DNA biosynthesis were subsequently inhibited, whereas RNA biosynthesis was unaffected. In contrast to the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile, quinclorac strongly inhibited cellulose and a hemicellulose fraction presumed to be glucuronoarabinoxylan. However, the synthesis of (1->3),(1->4)-[beta]-D-glucans was only slightly inhibited. The degree of inhibition was time- and dose-dependent. By 4 h after treatment, the concentration that inhibited [14C]glucose incorporation into the cell wall, cellulose, and the sensitive hemicellulose fraction by 50% was about 15, 5, and 20 [mu]M, respectively. Concomitant with an inhibition of [14C]glucose incorporation into the cell wall, quinclorac treatment led to a marked accumulation of radioactivity in the cytosol. The increased radioactivity was found mostly in glucose and fructose. However, total levels of glucose, fructose, and uridine diphosphate-glucose were not changed greatly by quinclorac. These data suggest that quinclorac acts primarily as a cell-wall biosynthesis inhibitor in a susceptible grass by a mechanism that is different from that of 2,6-dichlorobenzonitrile. PMID:12226453

  9. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  10. ZAP1-mediated modulation of triacylglycerol levels in yeast by transcriptional control of mitochondrial fatty acid biosynthesis.

    PubMed

    Singh, Neelima; Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-04-01

    The transcriptional activator Zap1p maintains zinc homeostasis in Saccharomyces cerevisiae. In this study, we examined the role of Zap1p in triacylglycerol (TAG) metabolism. The expression of ETR1 is reduced in zap1Δ. The altered expression of ETR1 results in reduced mitochondrial fatty acid biosynthesis and reduction in lipoic acid content in zap1Δ. The transcription factor Zap1 positively regulates ETR1 expression. Deletion of ETR1 also causes the accumulation of TAG, and the introduction of ETR1 in zap1Δ strain rescues the TAG level. These results demonstrated that the compromised mitochondrial fatty acid biosynthesis causes a reduction in lipoic acid and loss of mitochondrial function in zap1Δ. Functional mitochondria are required for the ATP production and defect in mitochondria slow down the process which may channeled carbon towards lipid biosynthesis and stored in the form of TAG. PMID:26711224

  11. Biosynthesis of Polyunsaturated Fatty Acids in the Oleaginous Marine Diatom Fistulifera sp. Strain JPCC DA0580

    PubMed Central

    Liang, Yue; Maeda, Yoshiaki; Sunaga, Yoshihiko; Muto, Masaki; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Studies of polyunsaturated fatty acid (PUFA) biosynthesis in microalgae are of great importance for many reasons, including the production of biofuel and variable omega 3-long chain PUFAs. The elucidation of the PUFA biosynthesis pathway is necessary for bioengineering to increase or decrease PUFA content in certain microalgae. In this study, we identified the PUFA synthesis pathway in the oleaginous marine diatom, Fistulifera sp. strain JPCC DA0580, a promising candidate for biodiesel production. The data revealed not only the presence of the desaturases and elongases involved in eicosapentaenoic acid (EPA) synthesis, but also the unexpected localization of ω3-desaturase expression in the chloroplast. This suggests that this microalga might perform the final step of EPA synthesis in the chloroplast and not in the endoplasmic reticulum (ER) like other diatoms. The detailed fatty acid profile suggests that the EPA was synthesized only through the ω6-pathway in this strain, which was also different from other diatoms. Finally, the transcriptome analysis demonstrated an overall down-regulation of desaturases and elongases over incubation time. These genetic features might explain the decrease of PUFA percentage over incubation time in this strain. The important insights into metabolite synthesis acquired here will be useful for future metabolic engineering to control PUFA content in this diatom. PMID:24335525

  12. Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1.

    PubMed

    Xu, Zhaoxian; Sun, Zhuzhen; Li, Sha; Xu, Zheng; Cao, Changhong; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2015-01-01

    Poly(L-diaminopropionic acid) (PDAP) is one of the four homopoly(amino acid)s that have been discovered in nature. However, the molecular mechanism of PDAP biosynthesis has yet to be described. In this work, the general layout of the PDAP biosynthetic pathway is characterised in Streptomyces albulus PD-1 by genome mining, gene disruption, heterologous expression and in vitro feeding experiments. As a result, L-diaminopropionic acid (L-DAP), which is the monomer of PDAP, is shown to be jointly synthesised by two protein homologues of cysteine synthetase and ornithine cyclodeaminase. Then, L-DAP is assembled into PDAP by a novel nonribosomal peptide synthetase (NRPS) with classical adenylation and peptidyl carrier protein domains. However, instead of the traditional condensation or thioesterase domain of NRPSs, this NRPS has seven transmembrane domains surrounding three tandem soluble domains at the C-terminus. As far as we know, this novel single-module NRPS structure has only been reported in poly(ε-L-lysine) synthetase. The similar NRPS structure of PDAP synthetase and poly(ε-L-lysine) synthetase may be a common characteristic of homopoly(amino acid)s synthetases. In this case, we may discover and/or design more homopoly(amino acid)s by mining this kind of novel NRPS structure in the future. PMID:26632244

  13. Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1

    PubMed Central

    Xu, Zhaoxian; Sun, Zhuzhen; Li, Sha; Xu, Zheng; Cao, Changhong; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2015-01-01

    Poly(L-diaminopropionic acid) (PDAP) is one of the four homopoly(amino acid)s that have been discovered in nature. However, the molecular mechanism of PDAP biosynthesis has yet to be described. In this work, the general layout of the PDAP biosynthetic pathway is characterised in Streptomyces albulus PD-1 by genome mining, gene disruption, heterologous expression and in vitro feeding experiments. As a result, L-diaminopropionic acid (L-DAP), which is the monomer of PDAP, is shown to be jointly synthesised by two protein homologues of cysteine synthetase and ornithine cyclodeaminase. Then, L-DAP is assembled into PDAP by a novel nonribosomal peptide synthetase (NRPS) with classical adenylation and peptidyl carrier protein domains. However, instead of the traditional condensation or thioesterase domain of NRPSs, this NRPS has seven transmembrane domains surrounding three tandem soluble domains at the C-terminus. As far as we know, this novel single-module NRPS structure has only been reported in poly(ε-L-lysine) synthetase. The similar NRPS structure of PDAP synthetase and poly(ε-L-lysine) synthetase may be a common characteristic of homopoly(amino acid)s synthetases. In this case, we may discover and/or design more homopoly(amino acid)s by mining this kind of novel NRPS structure in the future. PMID:26632244

  14. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  15. Clustered Genes Involved in Cyclopiazonic Acid Production are Next to the Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...

  16. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  17. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  18. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  19. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  20. A Novel Two-Gene Requirement for the Octanoyltransfer Reaction of Bacillus subtilis Lipoic Acid Biosynthesis

    PubMed Central

    Martin, Natalia; Christensen, Quin H.; Mansilla, María C.; Cronan, John E.; de Mendoza, Diego

    2011-01-01

    SUMMARY The Bacillus subtilis genome encodes three apparent lipoyl ligase homologues: yhfJ, yqhM, and ywfL which we have renamed lplJ, lipM and lipL, respectively. We show that LplJ encodes the sole lipoyl ligase of this bacterium. Physiological and biochemical characterization of a ΔlipM strain showed that LipM is absolutely required for the endogenous lipoylation of all lipoate-dependent proteins, confirming its role as the B. subtilis octanoyltransferase. However, we also report that in contrast to E. coli, B. subtilis requires a third protein for lipoic acid assembly, LipL. B. subtilis ΔlipL strains are unable to synthesize lipoic acid despite the presence of LipM and the sulfur insertion enzyme, LipA, which should suffice for lipoic acid biosynthesis based on the E. coli model. LipM is only required for the endogenous lipoylation pathway, whereas LipL also plays a role in lipoic acid scavenging. Expression of E. coli lipB allows growth of B. subtilis ΔlipL or ΔlipM strains in the absence of supplements. In contrast, growth of an E. coli ΔlipB strain can be complemented with lipM, but not lipL. These data together with those of the companion paper (Christensen et al., 2011) provide evidence that LipM and LipL catalyze sequential reactions in a novel pathway for lipoic acid biosynthesis. PMID:21338420

  1. Disruption of cell wall fatty acid biosynthesis in Mycobacterium tuberculosis using a graph theoretic approach

    PubMed Central

    2011-01-01

    Fatty acid biosynthesis of Mycobacterium tuberculosis was analyzed using graph theory and influential (impacting) proteins were identified. The graphs (digraphs) representing this biological network provide information concerning the connectivity of each protein or metabolite in a given pathway, providing an insight into the importance of various components in the pathway, and this can be quantitatively analyzed. Using a graph theoretic algorithm, the most influential set of proteins (sets of {1, 2, 3}, etc.), which when eliminated could cause a significant impact on the biosynthetic pathway, were identified. This set of proteins could serve as drug targets. In the present study, the metabolic network of Mycobacterium tuberculosis was constructed and the fatty acid biosynthesis pathway was analyzed for potential drug targeting. The metabolic network was constructed using the KEGG LIGAND database and subjected to graph theoretical analysis. The nearness index of a protein was used to determine the influence of the said protein on other components in the network, allowing the proteins in a pathway to be ordered according to their nearness indices. A method for identifying the most strategic nodes to target for disrupting the metabolic networks is proposed, aiding the development of new drugs to combat this deadly disease. PMID:21453530

  2. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis

    PubMed Central

    Wilson, Regina; Kumar, Pradeep; Parashar, Vijay; Vilchèze, Catherine; Veyron-Churlet, Romain; Freundlich, Joel S.; Barnes, S. Whitney; Walker, John R.; Szymonifka, Michael J.; Marchiano, Emily; Shenai, Shubhada; Colangeli, Roberto; Jacobs, William R.; Neiditch, Matthew B.; Kremer, Laurent

    2013-01-01

    We report a new class of thiophene (TP) compounds that kill Mycobacterium tuberculosis (Mtb) by the novel mechanism of Pks13 inhibition. An F79S mutation near the catalytic Ser-55 site in Pks13 conferred TP-resistance in Mtb. Over-expression of wild-type pks13 resulted in TP-resistance and over-expression of the F79S pks13 mutant conferred high-level resistance. In vitro, TP inhibited fatty acyl-AMP loading onto Pks13. TP inhibited mycolic acid biosynthesis in wild-type Mtb, but to a much lesser extent in TP-resistant Mtb. TP treatment was bactericidal and equivalent to the first-line drug isoniazid, but it was less likely to permit emergent resistance. Combined isoniazid and TP treatment exhibited sterilizing activity. Computational-docking identified a possible TP-binding groove within the Pks13 ACP domain. This study confirms that Mtb Pks13 is required for mycolic acid biosynthesis, validates it as a druggable target and demonstrates the therapeutic potential of simultaneously inhibiting multiple targets in the same biosynthetic pathway. PMID:23770708

  3. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  4. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    PubMed Central

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  5. The catalytic machinery of a key enzyme in amino Acid biosynthesis.

    PubMed

    Viola, Ronald E; Faehnle, Christopher R; Blanco, Julio; Moore, Roger A; Liu, Xuying; Arachea, Buenafe T; Pavlovsky, Alexander G

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  6. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    SciTech Connect

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2013-02-28

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate {beta}-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.

  7. Terminal Olefin (1-Alkene) Biosynthesis by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species ▿ †

    PubMed Central

    Rude, Mathew A.; Baron, Tarah S.; Brubaker, Shane; Alibhai, Murtaza; Del Cardayre, Stephen B.; Schirmer, Andreas

    2011-01-01

    Terminal olefins (1-alkenes) are natural products that have important industrial applications as both fuels and chemicals. However, their biosynthesis has been largely unexplored. We describe a group of bacteria, Jeotgalicoccus spp., which synthesize terminal olefins, in particular 18-methyl-1-nonadecene and 17-methyl-1-nonadecene. These olefins are derived from intermediates of fatty acid biosynthesis, and the key enzyme in Jeotgalicoccus sp. ATCC 8456 is a terminal olefin-forming fatty acid decarboxylase. This enzyme, Jeotgalicoccus sp. OleT (OleTJE), was identified by purification from cell lysates, and its encoding gene was identified from a draft genome sequence of Jeotgalicoccus sp. ATCC 8456 using reverse genetics. Heterologous expression of the identified gene conferred olefin biosynthesis to Escherichia coli. OleTJE is a P450 from the cyp152 family, which includes bacterial fatty acid hydroxylases. Some cyp152 P450 enzymes have the ability to decarboxylate and to hydroxylate fatty acids (in α- and/or β-position), suggesting a common reaction intermediate in their catalytic mechanism and specific structural determinants that favor one reaction over the other. The discovery of these terminal olefin-forming P450 enzymes represents a third biosynthetic pathway (in addition to alkane and long-chain olefin biosynthesis) to convert fatty acid intermediates into hydrocarbons. Olefin-forming fatty acid decarboxylation is a novel reaction that can now be added to the catalytic repertoire of the versatile cytochrome P450 enzyme family. PMID:21216900

  8. Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae.

    PubMed

    Xu, Yuquan; Zhou, Tong; Espinosa-Artiles, Patricia; Tang, Ying; Zhan, Jixun; Molnár, István

    2014-05-16

    The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin and trans-resorcylide, respectively. Lasiodiplodin production was reconstituted in the heterologous host by co-expressing an O-methyltransferase also encoded in the lasiodiplodin cluster, while a glutathione-S-transferase was found not to be necessary for heterologous production. Clarification of the biogenesis of known resorcylide congeners in the heterologous host helped to disentangle the roles that biosynthetic irregularities and chemical interconversions play in generating chemical diversity. Observation of 14-membered RAL homologues during in vivo heterologous biosynthesis of RAL12 metabolites revealed "stuttering" by fungal iPKSs. The close global and domain-level sequence similarities of the orthologous BDL synthases across different structural subclasses implicate repeated horizontal gene transfers and/or cluster losses in different fungal lineages. The absence of straightforward correlations between enzyme sequences and product structural features (the size of the macrocycle, the conformation of the exocyclic methyl group, or the extent of reduction by the hrPKS) suggest that BDL structural variety is the result of a select few mutations in key active site cavity positions. PMID:24597618

  9. Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Alhawaj, Raed; Patel, Dhara; Kelly, Melissa R.; Sun, Dong

    2015-01-01

    This study examines how heme biosynthesis modulation with δ-aminolevulinic acid (ALA) potentially functions to prevent 21-day hypoxia (10% oxygen)-induced pulmonary hypertension in mice and the effects of 24-h organoid culture with bovine pulmonary arteries (BPA) with the hypoxia and pulmonary hypertension mediator endothelin-1 (ET-1), with a focus on changes in superoxide and regulation of micro-RNA 204 (miR204) expression by src kinase phosphorylation of signal transducer and activator of transcription-3 (STAT3). The treatment of mice with ALA attenuated pulmonary hypertension (assessed through echo Doppler flow of the pulmonary valve, and direct measurements of right ventricular systolic pressure and right ventricular hypertrophy), increases in pulmonary arterial superoxide (detected by lucigenin), and decreases in lung miR204 and mitochondrial superoxide dismutase (SOD2) expression. ALA treatment of BPA attenuated ET-1-induced increases in mitochondrial superoxide (detected by MitoSox), STAT3 phosphorylation, and decreases in miR204 and SOD2 expression. Because ALA increases BPA protoporphyrin IX (a stimulator of guanylate cyclase) and cGMP-mediated protein kinase G (PKG) activity, the effects of the PKG activator 8-bromo-cGMP were examined and found to also attenuate the ET-1-induced increase in superoxide. ET-1 increased superoxide production and the detection of protoporphyrin IX fluorescence, suggesting oxidant conditions might impair heme biosynthesis by ferrochelatase. However, chronic hypoxia actually increased ferrochelatase activity in mouse pulmonary arteries. Thus, a reversal of factors increasing mitochondrial superoxide and oxidant effects that potentially influence remodeling signaling related to miR204 expression and perhaps iron availability needed for the biosynthesis of heme by the ferrochelatase reaction could be factors in the beneficial actions of ALA in pulmonary hypertension. PMID:25659899

  10. Local and Systemic Biosynthesis of Salicylic Acid in Infected Cucumber Plants.

    PubMed Central

    Meuwly, P.; Molders, W.; Buchala, A.; Metraux, J. P.

    1995-01-01

    Radiolabeling studies showed that salicylic acid (SA), an essential component in the signal transduction pathway leading to systemic acquired resistance, is synthesized from phenylalanine (Phe) and benzoic acid in cucumber (Cucumis sativus L.) plants inoculated with pathogens. Leaf discs from plants inoculated with either tobacco necrosis virus or Pseudomonas lachrymans incorporated more [14C]Phe into [14C]SA than mock-inoculated controls. The identity of SA was confirmed by gas chromatography-mass spectrometry. No reduction in specific activity of [14C]SA was observed for either free or bound SA between control and infected plants after feeding [14C]Phe. A specific inhibitor of Phe ammonia-lyase, 2-aminoindan-2-phosphonic acid, completely inhibited the incorporation of [14C]Phe into [14C]SA, although plants treated with 2-aminoindan-2-phosphonic acid could still produce [14C]SA from [14C]benzoic acid. Biosynthesis of SA in tissue inoculated with tobacco necrosis virus followed a transient pattern with the highest induction occurring 72 h postinoculation. Uninfected tissues from an infected plant synthesized de novo more SA than did controls. This suggests the involvement of a systemic signal triggering SA synthesis in tissue distant from the site of infection that display systemic acquired resistance. PMID:12228656

  11. Developmental changes in aspartate-family amino acid biosynthesis in pea chloroplasts

    SciTech Connect

    Mills, W.R.; Cato, L.W.; Stephens, B.W.; Reeves, M. )

    1990-05-01

    Isolated chloroplasts are known to synthesize the asp-derived amino acids (ile, hse, lys and thr) from ({sup 14}C)asp (Mills et al, 1980, Plant Physiol. 65, 1166). Now, we have studied the influence of tissue age on essential amino acid biosynthesis in pea (Pisum sativum) plastids. Chloroplasts from the younger (third and fourth) leaves of 12 day old plants, were 2-3 times more active in synthesizing lys and thr from ({sup 14}C)asp than those from older (first or second) leaves. We also examined two key pathway enzymes (aspartate kinase and homoserine dehydrogenase); with each enzyme,a activity in younger leaves was about 2 times that in plastids from older tissue. Both lys- and thr-sensitive forms of aspartate kinase are known in plants; in agreement with earlier work, we found that lys-sensitive activity was about 4 times higher in the younger tissues, while the thr-sensitive activity changed little during development (Davies and Miflin, 1977, Plant Sci. Lett. 9, 323). Recently the role of aspartate kinase and homoserine dehydrogenase in controlling asp-family amino acid synthesis has been questioned (Giovanelli et al, 1989, Plant Physiol. 90, 1584); we hope that measurements of amino acid levels in chloroplasts as well as further enzyme studies will help us to better understand the regulation of asp-family amino acid synthesis.

  12. Branched-chain-amino-acid biosynthesis in plants: molecular cloning and characterization of the gene encoding acetohydroxy acid isomeroreductase (ketol-acid reductoisomerase) from Arabidopsis thaliana (thale cress).

    PubMed Central

    Dumas, R; Curien, G; DeRose, R T; Douce, R

    1993-01-01

    Towards the goal of gaining a better understanding of the molecular mechanisms controlling branched-chain-amino-acid biosynthesis in plants, we have isolated, sequenced and characterized a gene encoding acetohydroxy acid isomero-reductase (ketol-acid reductoisomerase) from Arabidopsis thaliana (thale cress). Comparison between the acetohydroxy acid isomeroreductase cDNA and the genomic sequence has allowed us to determine the exon structure of the coding region. The isolated acetohydroxy acid isomeroreductase gene is distributed over approx. 4.5 kbp and contains nine introns (79-347 bp). The transcriptional start site was found to be 52 bp upstream of the translational initiation site. Southern-blot analysis of A. thaliana genomic DNA shows that the acetohydroxy acid isomeroreductase is encoded by a single-copy gene. Images Figure 3 Figure 5 PMID:8379936

  13. Systematic profiling of indole-3-acetic acid biosynthesis in bacteria using LC-MS/MS.

    PubMed

    Lin, Guang-Huey; Chang, Chung-Yu; Lin, Huei-Ru

    2015-04-15

    Indole-3-acetic acid (IAA) is produced from tryptophan through five synthesis pathways. A comprehensive method for the quantification of IAA and biosynthesis-related intermediates in a culture medium was developed. Sample preparation was simple with protein precipitation. The analytes were separated on a superficially porous C18 silica column and detected by electrospray ionization-tandem mass spectrometry in the positive ion multiple reaction monitoring mode. The limit of detection was 0.05 μM, and the lower limits of quantification ranged from 0.05 to 2 μM. The intra-day and inter-day precision and accuracy were less than 13.96%. Ion suppression was observed, and the deuterated internal standards were used to compensate for the matrix effect. The method was applied to analyze changes in tryptophan catabolism in a culture medium of Pseudomonas putida. The proposed method is robust and suitable for the systematic profiling of IAA biosynthesis in culture supernatant. PMID:25746752

  14. Role of Acid Metabolism in Streptomyces coelicolor Morphological Differentiation and Antibiotic Biosynthesis

    PubMed Central

    Viollier, Patrick H.; Minas, Wolfgang; Dale, Glenn E.; Folcher, Marc; Thompson, Charles J.

    2001-01-01

    Studies of citrate synthase (CitA) were carried out to investigate its role in morphological development and biosynthesis of antibiotics in Streptomyces coelicolor. Purification of CitA, the major vegetative enzyme activity, allowed characterization of its kinetic properties. The apparent Km values of CitA for acetyl coenzyme A (acetyl-CoA) (32 μM) and oxaloacetate (17 μM) were similar to those of citrate synthases from other gram-positive bacteria and eukaryotes. CitA was not strongly inhibited by various allosteric feedback inhibitors (NAD+, NADH, ATP, ADP, isocitrate, or α-ketoglutarate). The corresponding gene (citA) was cloned and sequenced, allowing construction of a citA mutant (BZ2). BZ2 was a glutamate auxotroph, indicating that citA encoded the major citrate synthase allowing flow of acetyl-CoA into the tricarboxylic acid (TCA) cycle. Interruption of aerobic TCA cycle-based metabolism resulted in acidification of the medium and defects in morphological differentiation and antibiotic biosynthesis. These developmental defects of the citA mutant were in part due to a glucose-dependent medium acidification that was also exhibited by some other bald mutants. Unlike other acidogenic bald strains, citA and bldJ mutants were able to produce aerial mycelia and pigments when the medium was buffered sufficiently to maintain neutrality. Extracellular complementation studies suggested that citA defines a new stage of the Streptomyces developmental cascade. PMID:11325948

  15. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis.

    PubMed

    Tang, Xiaohu; Keenan, Melissa M; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J Will; Freedland, Stephen J; Murphy, Susan K; Chi, Jen-Tsan

    2015-04-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  16. Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis

    PubMed Central

    Tang, Xiaohu; Keenan, Melissa M.; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J. Will; Freedland, Stephen J.; Murphy, Susan K.; Chi, Jen-Tsan

    2015-01-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  17. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. Results We have identified two S. coelicolor genes, named lppα (SCO1102) and lppβ (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppβ genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppβ had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppβ in the wild type strain of S. coelicolor led to a significant increase in TAG production. Conclusions The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single

  18. Fatty acid biosynthesis is involved in the production of hepatitis B virus particles.

    PubMed

    Okamura, Hitomi; Nio, Yasunori; Akahori, Yuichi; Kim, Sulyi; Watashi, Koichi; Wakita, Takaji; Hijikata, Makoto

    2016-06-17

    Hepatitis B virus (HBV) proliferates in hepatocytes after infection, but the host factors that contribute to the HBV lifecycle are poorly understood at the molecular level. We investigated whether fatty acid biosynthesis (FABS), which was recently reported to contribute to the genomic replication of hepatitis C virus, plays a role in HBV proliferation. We examined the effects of inhibitors of the enzymes in the FABS pathway on the HBV lifecycle by using recombinant HBV-producing cultured cells and found that the extracellular HBV DNA level, reflecting HBV particle production, was decreased by treatment with inhibitors suppressed the synthesis of long-chain saturated fatty acids with little cytotoxicity. The reduced HBV DNA level was reversed when palmitic acid, which is the product of fatty acid synthase (FAS) during FABS, was used simultaneously with the inhibitor. We also observed that the amount of intracellular HBV DNA in the cells was increased by FAS inhibitor treatment, suggesting that FABS is associated with HBV particle production but not its genome replication. This suggests that FABS might be a potent target for anti-HBV drug with a mode of action different from current HBV therapy. PMID:27178211

  19. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants.

    PubMed

    Chen, Hao; Saksa, Kristen; Zhao, Feiyi; Qiu, Joyce; Xiong, Liming

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. PMID:20497381

  20. The 5-aminolevulinic acid-induced porphyrin biosynthesis in benign and malignant cells of the skin.

    PubMed

    Lang, K; Bolsen, K; Stahl, W; Ruzicka, T; Sies, H; Lehmann, P; Fritsch, C

    2001-12-01

    In fluorescence diagnosis and photodynamic therapy of neoplastic tissues 5-aminolevulinic acid is used to synthesize endogenous porphyrins as photosensitizers. The efficacy of neoplastic tissues to fluorescence diagnosis and photodynamic therapy is thought to be dependent on the total level of intralesional formed porphyrins. The available profiles of porphyrin metabolites in normal and in neoplastic cell lines after administration of 5-aminolevulinic acid vary considerably. Thus, this is the first in-vitro study which compares the porphyrin biosynthesis in normal skin cells (HaCaT, fibroblasts) with melanoma cells (Bro, SKMel-23, SKMel-28). After incubation with 1 mM 5-aminolevulinic acid, kinetics of porphyrin levels and metabolites were determined in the cells and the corresponding supernatants. Exogenous 5-aminolevulinic acid induced porphyrin formation in all cells with maximum values after an incubation period of 16-36 h. Increase of porphyrin levels varied from 10- to 80-fold (SKMel-28>HaCaT>fibroblasts>SKMel-23>Bro) with minimum 1.5 times higher levels of porphyrins in the supernatants than in the cells. In cells and supernatants protoporphyrin and coproporphyrin were the predominantly formed porphyrin metabolites. Metastatic melanoma cells (SKMel-23, SKMel-28) accumulated much higher porphyrin levels than primary melanoma cells (Bro). In conclusion, by optimizing the treatment modalities, especially the light source, topical photodynamic therapy (PDT) could become a treatment alternative of melanoma metastases in progressive disease. PMID:11748002

  1. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival

    PubMed Central

    Fernandes, João Daniel Santos; Martho, Kevin; Tofik, Veridiana; Vallim, Marcelo A.; Pascon, Renata C.

    2015-01-01

    Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro. PMID:26162077

  2. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  3. An in vitro system from maize seedlings for tryptophan-independent indole-3-acetic acid biosynthesis

    SciTech Connect

    Oestin, A.; Ilic, N.; Cohen, J.D.

    1999-01-01

    The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [{sup 14}C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [{sup 14}C]Trp nor [{sup 14}C]serine substituted for [{sup 14}C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.

  4. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci.

    PubMed

    Lee, Sang Ho; Wang, Hao; Labroli, Marc; Koseoglu, Sandra; Zuck, Paul; Mayhood, Todd; Gill, Charles; Mann, Paul; Sher, Xinwei; Ha, Sookhee; Yang, Shu-Wei; Mandal, Mihir; Yang, Christine; Liang, Lianzhu; Tan, Zheng; Tawa, Paul; Hou, Yan; Kuvelkar, Reshma; DeVito, Kristine; Wen, Xiujuan; Xiao, Jing; Batchlett, Michelle; Balibar, Carl J; Liu, Jenny; Xiao, Jianying; Murgolo, Nicholas; Garlisi, Charles G; Sheth, Payal R; Flattery, Amy; Su, Jing; Tan, Christopher; Roemer, Terry

    2016-03-01

    The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci. PMID:26962156

  5. Role of the delta 8 double bond of agroclavine in lysergic acid amide biosynthesis by Claviceps purpurea.

    PubMed

    Willingale, J; Manzarpour, A; Mantle, P G

    1985-08-15

    Agroclavine, given to actively-growing sclerotial tissue of a strain of Claviceps purpurea which can not normally elaborate ergot alkaloids, was transformed by this tissue into lysergic acid amide with overall efficiency of approximately 40%. By contrast, festuclavine (8,9-dihydro-agroclavine) was not transformed, indicating specificity in the mechanism of lysergyl biosynthesis. PMID:4018228

  6. Role of UDP-Glucuronic Acid Decarboxylase in Xylan Biosynthesis in Arabidopsis.

    PubMed

    Kuang, Beiqing; Zhao, Xianhai; Zhou, Chun; Zeng, Wei; Ren, Junli; Ebert, Berit; Beahan, Cherie T; Deng, Xiaomei; Zeng, Qingyin; Zhou, Gongke; Doblin, Monika S; Heazlewood, Joshua L; Bacic, Antony; Chen, Xiaoyang; Wu, Ai-Min

    2016-08-01

    UDP-xylose (UDP-Xyl) is the Xyl donor used in the synthesis of major plant cell-wall polysaccharides such as xylan (as a backbone-chain monosaccharide) and xyloglucan (as a branching monosaccharide). The biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) is irreversibly catalyzed by UDP-glucuronic acid decarboxylase (UXS). Until now, little has been known about the physiological roles of UXS in plants. Here, we report that AtUXS1, AtUXS2, and AtUXS4 are located in the Golgi apparatus whereas AtUXS3, AtUXS5, and AtUXS6 are located in the cytosol. Although all six single AtUXS T-DNA mutants and the uxs1 usx2 uxs4 triple mutant show no obvious phenotype, the uxs3 uxs5 uxs6 triple mutant has an irregular xylem phenotype. Monosaccharide analysis showed that Xyl levels decreased in uxs3 uxs5 uxs6 and linkage analysis confirmed that the xylan content in uxs3 xus5 uxs6 declined, indicating that UDP-Xyl from cytosol AtUXS participates in xylan synthesis. Gel-permeation chromatography showed that the molecular weight of non-cellulosic polysaccharides in the triple mutants, mainly composed of xylans, is lower than that in the wild type, suggesting an effect on the elongation of the xylan backbone. Upon saccharification treatment stems of the uxs3 uxs5 uxs6 triple mutants released monosaccharides with a higher efficiency than those of the wild type. Taken together, our results indicate that the cytosol UXS plays a more important role than the Golgi-localized UXS in xylan biosynthesis. PMID:27179920

  7. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.

    PubMed

    Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian

    2016-04-01

    Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. PMID:26123657

  8. para-Aminobenzoic Acid Is a Precursor in Coenzyme Q6 Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Marbois, Beth; Xie, Letian X.; Choi, Samuel; Hirano, Kathleen; Hyman, Kyle; Clarke, Catherine F.

    2010-01-01

    Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable 13C6-isotope of pABA (p- amino[aromatic-13C6]benzoic acid ([13C6]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[13C6]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [13C6]pABA or [13C6]4HB generate both 13C6-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product 13C6-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ6. This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ6 quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates. PMID:20592037

  9. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase

    PubMed Central

    Usha, Veeraraghavan; Lloyd, Adrian J.; Roper, David I.; Dowson, Christopher G.; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T.; Blindauer, Claudia A.; Besra, Gurdyal S.

    2016-01-01

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug. PMID:26976706

  10. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. PMID:27214242

  11. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    NASA Astrophysics Data System (ADS)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  12. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.

    PubMed

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  13. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat

    SciTech Connect

    Duane, W.C.; Bjoerkhem, I.H.; Hamilton, J.N.; Mueller, S.M.

    1988-05-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. In the present study, we have quantitated the relative importance of these two pathways in vivo by measuring production of (14C) acetone from (14C)-26-cholesterol. Four days after intraperitoneal injection of 20 to 40 muCi (14C)-26-cholesterol and 1 day after beginning a constant intravenous infusion of unlabeled acetone at 25 mumoles per kg per min, 6 male and 2 female Sprague-Dawley rats underwent breath collections. Expired acetone was trapped and purified as the 2,4-dinitrophenylhydrazine derivative. 14CO2 was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied times the acetone infusion rate to calculate production of (14C)acetone. (14C) Acetone production averaged 1.7% of total release of 14C from (14C)-26-cholesterol, estimated by 14CO2 output. The method was validated by showing that (14C) acetone production from (14C)isopropanol averaged 111% of the (14C)isopropanol infusion rate. We conclude that, in the normal rat, the 25-hydroxylation pathway accounts for less than 2% of bile acid synthesis.

  14. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria

    PubMed Central

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  15. Linoleic acid biosynthesis and characterization of the. Delta. sup 12 desaturase in insects

    SciTech Connect

    Cripps, C.

    1988-01-01

    De novo biosynthesis of linoleic acid was demonstrated in vivo in 8 of 32 insect species examined, including both holometabolous and hemimetabolous species. The incorporation of (1-{sup 14}C) acetate into linoleic acid was demonstrated by radio-gas-liquid chromatography (radio-GLC), and in selected species by radio-high-performance liquid chromatography, silver nitrate thin-layer chromatography, radio-GLC and GLC linked to mass spectrometry of ozonolysis products. Analysis of the ozonolysis products clearly demonstrated that the entire molecule was labeled and that synthesis of linoleate was de novo from acetate. The in vivo incorporation of (1-{sup 14}C)acetate into lipid was monitored during the final three stadia of both male and female house crickets, Acheta domesticus. Characterization of the {Delta}{sup 12}-desaturase showed that, in the house cricket, this enzyme is microsomal and requires a reduced pyridine dinucleotide as a cofactor, with NADPH the preferred electron donor. The optimal substrate concentration for desaturation is about 40 uM. Addition of the microsomal supernatant, MgCl{sub 2} or ATP did not enhance activity. The form of the substrate for the desaturase, oleic acid, was determined and appears to be a CoA derivative, as is true for most animal desaturases, rather than a complex lipid, as it is in plants.

  16. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells. PMID:26922726

  17. Salicylic Acid sans Aspirin in Animals and Man: Persistence in Fasting and Biosynthesis from Benzoic Acid

    PubMed Central

    2008-01-01

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A 13C6 benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  18. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  19. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  20. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin. PMID:25921651

  1. New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves.

    PubMed

    Bonaventure, Gustavo; Baldwin, Ian T

    2010-03-01

    In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway. PMID:20037473

  2. Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid.

    PubMed

    Haeuptle, Micha A; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J; Imbach, Timo; Hennet, Thierry

    2011-02-25

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc(2)Man(5) in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  3. Improvement of Dolichol-linked Oligosaccharide Biosynthesis by the Squalene Synthase Inhibitor Zaragozic Acid*

    PubMed Central

    Haeuptle, Micha A.; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J.; Imbach, Timo; Hennet, Thierry

    2011-01-01

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc2Man5 in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  4. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity.

    PubMed

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-03-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  5. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  6. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    PubMed

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  7. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid

    PubMed Central

    Zheng, Xiao-yu; Zhou, Mian; Yoo, Heejin; Pruneda-Paz, Jose L.; Spivey, Natalie Weaver; Kay, Steve A.; Dong, Xinnian

    2015-01-01

    The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production. PMID:26139525

  8. Biological Role of Aldo–Keto Reductases in Retinoic Acid Biosynthesis and Signaling

    PubMed Central

    Ruiz, F. Xavier; Porté, Sergio; Parés, Xavier; Farrés, Jaume

    2012-01-01

    Several aldo–keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance. PMID:22529810

  9. Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes.

    PubMed

    Xu, Haiyang; Zhang, Fengxia; Liu, Baoxiu; Huhman, David V; Sumner, Lloyd W; Dixon, Richard A; Wang, Guodong

    2013-07-01

    Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyl-CoAs (e.g. isobutyryl-CoA, isovaleryl-CoA and 2-methylbutyryl-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyl-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HlCCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (K cat /K m = 4100 s(-1) M(-1)), whereas recombinant HlCCL4 specifically utilized isobutyric acid (Kcat/K m = 1800 s(-1) M(-1)) and 2-methylbutyric acid (Kcat/K m = 6900 s(-1) M(-1)) as substrates. Both HlCCLs, like hop valerophenone synthase (HlVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HlCCL2 and HlCCL4 with HlVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HlCCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed. PMID:23300257

  10. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  11. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

    PubMed

    Sengupta, Sudeshna; Jonnalagadda, Sudhakar; Goonewardena, Lakshani; Juturu, Veeresh

    2015-12-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroF(FBR), aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  12. Genomic Analysis of Genes Involved in the Biosynthesis of Very Long Chain Polyunsaturated Fatty Acids in Thraustochytrium sp. 26185.

    PubMed

    Zhao, Xianming; Dauenpen, Meesapyodsuk; Qu, Cunmin; Qiu, Xiao

    2016-09-01

    Thraustochytrium sp. 26185 is a marine protist that can produce a large amount of docosahexaenoic acid (DHA, 22:6n-3), an ω3 very long chain polyunsaturated fatty acid (VLCPUFA) of nutritional importance. However, the mechanism of how this fatty acid is synthesized and assembled into the storage lipid triacylglycerol is unclear. Here we report sequencing of the whole genome and genomic analysis of genes involved in the biosynthesis and assembly of the fatty acids in this species. Genome sequencing produced a total of 2,418,734,139 bp clean sequences with about 62 fold genome coverage. Annotation of the genome sequences revealed 10,797 coding genes. Among them, 10,216 genes could be assigned into 25 KOG classes where 451 genes were specifically assigned to the group of lipid transport and metabolism. Detailed analysis of these genes revealed co-existence of both aerobic pathway and anaerobic pathways for the biosynthesis of DHA in this species. However, in the aerobic pathway, a key gene encoding stearate Δ9 desaturase introducing the first double bond to long chain saturated fatty acid 18:0 was missing from the genome. Genomic survey of genes involved in the acyl trafficking among glycerolipids showed that, unlike plants, this protist did not possess phosphatidylcholine:diacylglycerol cholinephosphotransferase, an important enzyme in bridging two types of glycerolipids, diacylglycerols (DAG) and phosphatidylcholines (PtdCho). These results shed new insight on the biosynthesis and assembly of VLCPUFA in the Thraustochytrium. PMID:27514858

  13. How do background ozone concentrations affect the biosynthesis of rosmarinic acid in Melissa officinalis?

    PubMed

    Döring, Anne S; Pellegrini, Elisa; Della Batola, Michele; Nali, Cristina; Lorenzini, Giacomo; Petersen, Maike

    2014-03-01

    Lemon balm (Melissa officinalis; Lamiaceae) plants were exposed to background ozone (O3) dosages (80ppb for 5h), because high background levels of O3 are considered to be as harmful as episodic O3 peaks. Immediately at the end of fumigation the plants appeared visually symptomless, but necrotic lesions were observed later. The biosynthesis of rosmarinic acid (RA) comprises eight enzymes, among them phenylalanine ammonia-lyase (PAL), 4-coumarate:coenzyme A ligase (4CL), tyrosine aminotransferase (TAT) and rosmarinic acid synthase (RAS). The transcript levels of these genes have been investigated by quantitative RT-PCR. There was a quick up-regulation of all genes at 3h of O3 exposure, but at 24h from beginning of exposure (FBE) only RAS and PAL were up-regulated. The specific activity of RAS was closely correlated with a decrease of RA concentration in lemon balm leaves. The specific activity of PAL increased at 12h FBE to 163% in comparison to control levels. This work provides insight into the effect of O3 stress on the formation of the main phenolic ingredient of the pharmaceutically important plant M. officinalis. PMID:24484956

  14. Long Chain (C20 and C22) Fatty Acid Biosynthesis in Developing Seeds of Tropaeolum majus

    PubMed Central

    Pollard, Michael R.; Stumpf, Paul K.

    1980-01-01

    The storage triacylglycerols of nasturtium (Tropaeolum majus) seeds are composed principally of cis-11-eicosenoate and cis-13-docosenoate. To investigate the biosynthesis of these C20 and C22 fatty acids, developing seed tissue was incubated with various 14C-labeled precursors. Incubation with [1-14C]acetate produced primarily cis-11-[1-14C]eicosenoate and cis-13-[1,3-14C]docosenoate in the triacylglycerol fraction, the odd-carbon [U-14C]oleate also formed from [14C] acetate was in the polar lipid fraction. Kinetic data showed that this oleate was not channeled into cis-11-eicosenoate nor cis-13-docosenoate over a 24-hour period. Under suitable conditions, nasturtium seed could also produce [14C]stearate, [14C]eicosenoate, and [14C]docosenoate from [1-14C]acetate. The results are discussed in terms of the number of pathways producing fatty acids. From pool size and other considerations, the results can be rationalized only in terms of different de novo systems for oleate biosythesis, one supplying oleate for incorporation into phospholipids and the other supplying oleate for chain elongation and subsequent esterification into triacylglycerols. Because of the probable heterogeneous nature of the seed tissue, it is not known if these two systems are operating in different cell types, in the same cell type at different stages of development, or in the same cell type concurrently. PMID:16661495

  15. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice

    PubMed Central

    Byeon, Yeong; Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2015-01-01

    Caffeic acid O-methyltransferase (COMT) methylates N-acetylserotonin into melatonin; that is, it has N-acetylserotonin O-methyltransferase (ASMT) activity. The ASMT activity of COMT was first detected in Arabidopsis thaliana COMT (AtCOMT). To confirm the involvement of COMT on melatonin synthesis in other plant species, the ASMT activity of a COMT from rice (Oryza sativa) (OsCOMT) was evaluated. Purified recombinant OsCOMT protein from Escherichia coli was used to validate the high ASMT activity of OsCOMT, similar to that of AtCOMT. The K m and V max values for the ASMT activity of OsCOMT were 243 µM and 2400 pmol min−1 mg protein−1, which were similar to those of AtCOMT. Similar to AtCOMT, OsCOMT was localized in the cytoplasm. In vitro ASMT activity was significantly inhibited by either caffeic acid or quercetin in a dose-dependent manner. Analogously, in vivo production of melatonin was significantly inhibited by quercetin in 4-week-old detached rice leaves. Lastly, the transgenic rice plants overexpressing rice COMT showed an increase in melatonin levels whereas transgenic rice plants suppressing the rice COMT had a significant decrease on melatonin levels, suggestive of the direct role of COMT in melatonin biosynthesis in plants. PMID:26276868

  16. Atomic-Level Characterization of the Chain-Flipping Mechanism in Fatty-Acids Biosynthesis.

    PubMed

    Colizzi, Francesco; Masetti, Matteo; Recanatini, Maurizio; Cavalli, Andrea

    2016-08-01

    During fatty acids biosynthesis the elongating acyl chain is sequestered within the core of the highly conserved acyl carrier protein (ACP). At each catalytic step, the acyl intermediates are transiently delivered from ACP to the active site of the enzymatic counterparts and, at the same time, are protected from the solvent to prevent nonselective reactivity. Yet, the molecular determinants of such a universal transition-termed chain flipping-remain poorly understood. Here we capture the atomic-level details of the chain-flipping mechanism by using metadynamics simulations. We observe the fatty-acid chain gliding through the protein-protein interface with barely 30% of its surface exposed to water molecules. The small ACP's helix III acts as gatekeeper of the process, and we find its conformational plasticity critical for a successful substrate transfer. The results are in agreement with a wide range of experimental observations and provide unprecedented insight on the molecular determinants and driving forces of the chain-flipping process. PMID:27409360

  17. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32

    PubMed Central

    Stanley, Sarah A.; Kawate, Tomohiko; Iwase, Noriaki; Shimizu, Motohisa; Clatworthy, Anne E.; Kazyanskaya, Edward; Sacchettini, James C.; Ioerger, Thomas R.; Siddiqi, Noman A.; Minami, Shoko; Aquadro, John A.; Schmidt Grant, Sarah; Rubin, Eric J.; Hung, Deborah T.

    2013-01-01

    Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets. PMID:23798446

  18. Genetic dissection of the polyoxin building block-carbamoylpolyoxamic acid biosynthesis revealing the “pathway redundancy” in metabolic networks

    PubMed Central

    2013-01-01

    Background Polyoxin, a peptidyl nucleoside antibiotic, consists of three building blocks including a nucleoside skeleton, polyoximic acid (POIA), and carbamoylpolyoxamic acid (CPOAA), however, little is known about the “pathway redundancy” of the metabolic networks directing the CPOAA biosynthesis in the cell factories of the polyoxin producer. Results Here we report the genetic characterization of CPOAA biosynthesis with revealing a “pathway redundancy” in metabolic networks. Independent mutation of the four genes (polL-N and polP) directly resulted in the accumulation of polyoxin I, suggesting their positive roles for CPOAA biosynthesis. Moreover, the individual mutant of polN and polP also partially retains polyoxin production, suggesting the existence of the alternative homologs substituting their functional roles. Conclusions It is unveiled that argA and argB in L-arginine biosynthetic pathway contributed to the “pathway redundancy”, more interestingly, argB in S. cacaoi is indispensible for both polyoxin production and L-arginine biosynthesis. These data should provide an example for the research on the “pathway redundancy” in metabolic networks, and lay a solid foundation for targeted enhancement of polyoxin production with synthetic biology strategies. PMID:24314013

  19. Auxin biosynthesis.

    PubMed

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  20. Auxin Biosynthesis

    PubMed Central

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  1. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    PubMed Central

    Mohedano, Maria L.; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M.; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation. PMID:27610104

  2. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae.

    PubMed

    Mohedano, Maria L; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation. PMID:27610104

  3. Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase

    PubMed Central

    2004-01-01

    Isoprenoid biosynthesis via the methylerythritol phosphate pathway is a target against pathogenic bacteria and the malaria parasite Plasmodium falciparum. 4-(Hydroxyamino)-4-oxobutylphosphonic acid and 4-[hydroxy(methyl)amino]-4-oxobutyl phosphonic acid, two novel inhibitors of DXR (1-deoxy-D-xylulose 5-phosphate reducto-isomerase), the second enzyme of the pathway, have been synthesized and compared with fosmidomycin, the best known inhibitor of this enzyme. The latter phosphonohydroxamic acid showed a high inhibitory activity towards DXR, much like fosmidomycin, as well as significant antibacterial activity against Escherichia coli in tests on Petri dishes. PMID:15473867

  4. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms.

    PubMed

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  5. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms

    PubMed Central

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  6. Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid.

    PubMed

    Nam, Jeong-Won; Kappock, T Joseph

    2007-01-01

    Crepis alpina acetylenase is a variant FAD2 desaturase that catalyses the insertion of a triple bond at the Delta12 position of linoleic acid, forming crepenynic acid in developing seeds. Seeds contain a high level of crepenynic acid but other tissues contain none. Using reverse transcriptase-coupled PCR (RT-PCR), acetylenase transcripts were identified in non-seed C. alpina tissues, which were highest in flower heads. To understand why functional expression of the acetylenase is limited to seeds, genes that affect acetylenase activity by providing substrate (FAD2) or electrons (cytochrome b5), or that compete for substrate (FAD3), were cloned. RT-PCR analysis indicated that the availability of a preferred cytochrome b5 isoform is not a limiting factor. Developing seeds co-express acetylenase and FAD2 isoform 2 (FAD2-2) at high levels. Flower heads co-express FAD2-3 and FAD3 at high levels, and FAD2-2 and acetylenase at moderate levels. FAD2-3 was not expressed in developing seed. Real-time RT-PCR absolute transcript quantitation showed 10(4)-fold higher acetylenase expression in developing seeds than in flower heads. Collectively, the results show that both the acetylenase expression level and the co-expression of other desaturases may contribute to the tissue specificity of crepenynate production. Helianthus annuus contains a Delta12 acetylenase in a polyacetylene biosynthetic pathway, so does not accumulate crepenynate. Real-time RT-PCR analysis showed relatively strong acetylenase expression in young sunflowers. Acetylenase transcription is observed in both species without accumulation of the enzymatic product, crepenynate. Functional expression of acetylenase appears to be affected by competition and collaboration with other enzymes. PMID:17329262

  7. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus.

    PubMed

    Xie, Xi; Tao, Tian; Liu, Mingxin; Zhou, Yanqi; Liu, Zhiye; Zhu, Dongfa

    2016-05-01

    Juvenile hormone (JH) and methyl farnesoate (MF) play essential roles in the development and reproduction of insects and crustaceans respectively. Juvenile hormone acid methyltransferase (JHAMT) catalyzes the methyl esterification in insect JH biosynthesis, while the corresponding step in crustacean MF biosynthesis was long thought to be catalyzed by farnesoic acid O-methyltransferase (FAMeT). However, the new discovery of JHAMT orthologs in crustaceans indicates that JHAMT may also play essential role in the MF biosynthesis in crustaceans. Here we cloned and characterized the full-length cDNA encoding JHAMT in the swimming crab Portunus trituberculatus (PtJHAMT). Sequence and structure analysis of PtJHAMT revealed that it was composed of a 6-stranded β sheet with 9 α helices, and contained a signature Sadenosyl-l-methionine (SAM) binding motif, which is the hallmark in all SAM dependent methyltransferases (SAM-MTs). Several active sites that are critical for the interaction of SAM and JH/FA substrate were also conserved in PtJHAMT. The gene expression of PtJHAMT was highly specific to the mandibular organ, which is the sole site of MF synthesis. PtJHAMT expression significantly increased in the late-vitellogenic stage and mature stage, which suggests a possible role of PtJHAMT in modulating ovarian development. The role of PtJHAMT and PtFAMeT in MF biosynthesis was further investigated by RNA interfering (RNAi). Injection of PtJHAMT and PtFAMeT dsRNA both led to a decrease in hemolymph MF titers. Injection of PtHMGR dsRNA caused the decrease in PtJHAMT expression, but had no effect on mRNA level of PtFAMeT. Together these results suggested that JHAMT and FAMeT are both involved in the MF biosynthesis in crustaceans, while the JHAMT is highly specific to FA substrate, and FAMeT may have more catalytic functions. PMID:26952760

  8. Structure of human NAPE-PLD: regulation of fatty-acid ethanolamide biosynthesis by bile acids

    PubMed Central

    Magotti, Paola; Bauer, Inga; Igarashi, Miki; Babagoli, Masih; Marotta, Roberto; Piomelli, Daniele; Garau, Gianpiero

    2015-01-01

    SUMMARY The fatty-acid ethanolamides (FAEs) are lipid mediators present in all organisms and involved in highly conserved biological functions such as innate immunity, energy balance and stress control. They are produced from membrane N-acylphosphatidylethanolamines (NAPEs) and include agonists for G protein-coupled receptors (e.g. cannabinoid receptors) and nuclear receptors (e.g. PPAR-α). Here we report the crystal structure of human NAPE-hydrolyzing phospholipase D (NAPE-PLD) at 2.65 Å resolution, a membrane enzyme that catalyzes FAE formation in mammals. NAPE-PLD forms homodimers partly separated by an internal ~9 Å-wide channel and uniquely adapted to associate with phospholipids. A hydrophobic cavity provides an entryway for NAPE into the active site, where a binuclear Zn2+ center orchestrates its hydrolysis. Bile acids bind with high affinity to selective pockets in this cavity, enhancing dimer assembly and enabling catalysis. These elements offer multiple targets for the design of small-molecule NAPE-PLD modulators with potential applications in inflammation and metabolic disorders. PMID:25684574

  9. X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster.

    PubMed

    Elkins, Jonathan M; Kershaw, Nadia J; Schofield, Christopher J

    2005-01-15

    The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase enzymes as they catalyse acetyl transfer rather than a hydrolysis reaction. In the present study, we describe the X-ray crystal structure of the OAT, corresponding to the orf6 gene product, to 2.8 A (1 A=0.1 nm) resolution. The larger domain of the structure consists of an alphabetabetaalpha sandwich as in the structures of Ntn hydrolase enzymes. However, differences in the connectivity reveal that OATs belong to a structural family different from that of other structurally characterized Ntn enzymes, with one exception: unexpectedly, the alphabetabetaalpha sandwich of ORF6 (where ORF stands for open reading frame) displays the same fold as an DmpA (L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi), and so the OATs and DmpA form a new structural subfamily of Ntn enzymes. The structure reveals an alpha2beta2-heterotetrameric oligomerization state in which the intermolecular interface partly defines the active site. Models of the enzyme-substrate complexes suggest a probable oxyanion stabilization mechanism as well as providing insight into how the enzyme binds its two differently charged substrates. PMID:15352873

  10. Pantothenic Acid Biosynthesis in the Parasite Toxoplasma gondii: a Target for Chemotherapy

    PubMed Central

    Mageed, Sarmad N.; Cunningham, Fraser; Hung, Alvin Wei; Silvestre, Hernani Leonardo; Wen, Shijun; Blundell, Tom L.; Abell, Chris

    2014-01-01

    Toxoplasma gondii is a major food pathogen and neglected parasitic infection that causes eye disease, birth defects, and fetal abortion and plays a role as an opportunistic infection in AIDS. In this study, we investigated pantothenic acid (vitamin B5) biosynthesis in T. gondii. Genes encoding the full repertoire of enzymes for pantothenate synthesis and subsequent metabolism to coenzyme A were identified and are expressed in T. gondii. A panel of inhibitors developed to target Mycobacterium tuberculosis pantothenate synthetase were tested and found to exhibit a range of values for inhibition of T. gondii growth. Two inhibitors exhibited lower effective concentrations than the currently used toxoplasmosis drug pyrimethamine. The inhibition was specific for the pantothenate pathway, as the effect of the pantothenate synthetase inhibitors was abrogated by supplementation with pantothenate. Hence, T. gondii encodes and expresses the enzymes for pantothenate synthesis, and this pathway is essential for parasite growth. These promising findings increase our understanding of growth and metabolism in this important parasite and highlight pantothenate synthetase as a new drug target. PMID:25049241

  11. Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in Streptomyces clavuligerus.

    PubMed

    Leite, Carla A; Cavallieri, André P; Baptista, Amanda S; Araujo, Maria L G C

    2016-01-01

    Streptomyces clavuligerus produces simultaneously cephamycin C (CephC) and clavulanic acid (CA). Adding 1,3-diaminopropane to culture medium stimulates production of beta-lactam antibiotics. However, there are no studies on the influence of this diamine on coordinated production of CephC and CA. This study indicates that 1,3-diaminopropane can dissociate CephC and CA productions. Results indicated that low diamine concentrations (below 1.25 g l(-1)) in culture medium increased CA production by 200%, but not that of CephC. Conversely, CephC production increased by 300% when 10 g l(-1) 1,3-diaminopropane was added to culture medium. Addition of just L-lysine (18.3 g l(-1)) to culture medium increased both biocompounds. On the other hand, while L-lysine plus 7.5 g l(-1) 1,3-diaminopropane increased volumetric production of CephC by 1100%, its impact on CA production was insignificant. The combined results suggest that extracellular concentration of 1,3-diaminopropane may trigger the dissociation of CephC and CA biosynthesis in S. clavuligerus. PMID:26564965

  12. [Antitoxic properties of pantothenic acid derivatives, precursors of coenzyme A biosynthesis, with regard to kanamycin].

    PubMed

    Moĭseenok, A G; Dorofeev, B F; Sheĭbak, V M; Khomich, T I

    1984-11-01

    The effect of calcium pantothenate (CPN)B 4'-phospho-CPN (PCP), pantetheine (PT) and calcium S-sulfopantetheine (SPN) on acute toxicity of kanamycin sulfate was studied on albino mice. The above derivatives of pantothenic acid except PT lowered the antibiotic toxicity. The coefficient of the antitoxic effect (LD50/ED50) of SPN and PCP was 1.3-1.4 times higher than that of CPN. The combined use of kanamycin (1/5 of the LD50) with CPN, PCP or PT (30 mg/kg bw was equivalent to CPN) for 15 days prevented the increase in the total content of CoA and in the content of the fraction of free CoA and the precursors of its biosynthesis participating in the reaction of N-acetylation in the liver and brain. The contents of these substances were within the normal during the whole experiment. A certain increase in the activity of pantothenate kinase in the liver cytosol due to the use of kanamycin was eliminated by the simultaneous use of PCP and PT. The vitamin-containing compounds PCP and SPN were recommended for the clinical trials as agents preventing complications of kanamycin therapy. PMID:6524887

  13. Promotion by gibberellic Acid of polyamine biosynthesis in internodes of light-grown dwarf peas.

    PubMed

    Dai, Y R; Kaur-Sawhney, R; Galston, A W

    1982-01-01

    When gibberellic acid (GA(3); 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA(3) on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA(3) also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA(3) or by AMO-1618.The results support the hypothesis that ADC and polyamine content are important regulators of plant growth. PMID:16662137

  14. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics.

    PubMed

    Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2011-11-16

    Macrolactam antibiotics are an important class of macrocyclic polyketides that contain a unique nitrogen-containing starter unit. In the present study, a set of starter biosynthetic enzymes in the macrolactam antibiotic vicenistatin was characterized. We found that the protection-deprotection strategy of the aminoacyl-ACP intermediate was critical in this system. On the basis of bioinformatics, the described pathway is also proposed as a common method for carrying amino acids in the biosynthesis of other macrolactam antibiotics. PMID:22010945

  15. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    PubMed

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. PMID:26055979

  16. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.

    PubMed

    Austin, Michael B; Saito, Tamao; Bowman, Marianne E; Haydock, Stephen; Kato, Atsushi; Moore, Bradley S; Kay, Robert R; Noel, Joseph P

    2006-09-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two approximately 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis. PMID:16906151

  17. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia

    PubMed Central

    Brose, Stephen A.; Marquardt, Amanda L.; Golovko, Mikhail Y.

    2014-01-01

    Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined total Gln/Glu incorporation into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0- fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0- fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, TAGs, DAGs, free FA, and phospholipids, with the highest rate of incorporation into TAGs. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. PMID:24266789

  18. Cerebrotendinous xanthomatosis: a defect in mitochondrial 26-hydroxylation required for normal biosynthesis of cholic acid.

    PubMed Central

    Oftebro, H; Björkhem, I; Skrede, S; Schreiner, A; Pederson, J I

    1980-01-01

    Oxidation of side chain of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol was studied in a patient with cerebrotendinous xanthomatosis (CTX) and in control subjects, using various subcellular fractions of liver homogenate and a method based on isotope dilution-mass spectrometry. In the control, 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol was converted into 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid by the mitochondrial fraction, and into 5 beta-cholestane-3 alpha,7 alpha,12 alpha,-25-tetrol by the microsomal fraction. In the CTX patient, liver mitochondria were completely devoid of 26-hydroxylase activity. The same mitochondrial fraction catalyzed 25-hydroxylation of vitamin D3. The microsomal fraction of liver of the subject with CTX contained more than 50-fold the normal amount of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol. The basic metabolid defect in CTX appears to be a lack of the mitochondrial 26-hydroxylase. The excretion in the bile of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 alpha,25-pentol observed in CTX patients may be secondary to the accumulation of the major substrate for the 26-hydroxylase, i. e., 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol, and exposure of this substrate to the normally less active microsomal 25-and 24-hydroxylases. It is concluded that the major pathway in the biosynthesis of cholic acid in human liver involves a mitochondrial C27-steroid 26-hydroxylation. PMID:7410549

  19. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4α

    PubMed Central

    Inoue, Yusuke; Yu, Ai-Ming; Yim, Sun Hee; Ma, Xiaochao; Krausz, Kristopher W.; Inoue, Junko; Xiang, Charlie C.; Brownstein, Michael J.; Eggertsen, Gösta; Björkhem, Ingemar

    2005-01-01

    Hepatocyte nuclear factor 4α (HNF4α) regulates many genes that are preferentially expressed in liver. Mice lacking hepatic expression of HNF4α, HNF4αΔL, exhibited markedly elevated levels of serum bile acids compared to HNF4α-floxed mice, HNF4αF/F. The expression of genes involved in the hydroxylation and side chain β-oxidation of cholesterol including oxysterol 7α-hydroxylase (CYP7B1), sterol 12α-hydroxylase (CYP8B1), and sterol carrier protein x (SCPx) was markedly decreased in HNF4αΔL mice. Cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein were diminished only during the dark cycle in HNF4αΔL mice, whereas expression in the light cycle was not different between and HNF4αΔL and HNF4αF/F mice. Since CYP8B1 expression was reduced in HNF4αΔL mice, it was studied in more detail. In agreement with the mRNA levels, CYP8B1 enzyme activity was absent in HNF4αΔL mice. An HNF4α binding site was found in the mouse Cyp8b1 promoter that was able to direct HNF4α-dependent transcription. Surprisingly, cholic acid-derived BAs, produced as a result of CYP8B1 activity, were still observed in the serum and gallbladder of these mice. These studies reveal that HNF4α plays a central role in BA homeostasis by regulation of genes involved in BA biosynthesis including hydroxylation and side chain β-oxidation of cholesterol in vivo. PMID:16264197

  20. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species

    PubMed Central

    McAdam, Scott A. M.; Sussmilch, Frances C.; Brodribb, Timothy J.; Ross, John J.

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  1. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species.

    PubMed

    McAdam, Scott A M; Sussmilch, Frances C; Brodribb, Timothy J; Ross, John J

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  2. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis

    PubMed Central

    2009-01-01

    Background The original anaerobic unsaturated fatty acid biosynthesis pathway proposed by Goldfine and Bloch was based on in vivo labeling studies in Clostridium butyricum ATCC 6015 (now C. beijerinckii) but to date no dedicated unsaturated fatty acid biosynthetic enzyme has been identified in Clostridia. C. acetobutylicium synthesizes the same species of unsaturated fatty acids as E. coli, but lacks all of the known unsaturated fatty acid synthetic genes identified in E. coli and other bacteria. A possible explanation was that two enzymes of saturated fatty acid synthesis of C. acetobutylicium, FabZ and FabF might also function in the unsaturated arm of the pathway (a FabZ homologue is known to be an unsaturated fatty acid synthetic enzyme in enterococci). Results We report that the FabF homologue located within the fatty acid biosynthetic gene cluster of C. acetobutylicium functions in synthesis of both unsaturated fatty acids and saturated fatty acids. Expression of this protein in E. coli functionally replaced both the FabB and FabF proteins of the host in vivo and replaced E. coli FabB in a defined in vitro fatty acid synthesis system. In contrast the single C. acetobutylicium FabZ homologue, although able to functionally replace E. coli FabZ in vivo and in vitro, was unable to replace FabA, the key dehydratase-isomerase of E. coli unsaturated fatty acid biosynthesis in vivo and lacked isomerase activity in vitro. Conclusion Thus, C. acetobutylicium introduces the double of unsaturated fatty acids by use of a novel and unknown enzyme. PMID:19493359

  3. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis.

    PubMed

    Napoli, J L

    1993-02-01

    The enzymes that constitute the pathway of retinoic acid biosynthesis and metabolism may recognize retinoid binding proteins as effectors and substrates. Apocellular retinol-binding protein (CRBP) stimulates a bile-salt independent membrane-bound retinyl ester hydrolase resulting in the hydrolysis of endogenous retinyl esters and the formation of holoCRBP. HoloCRBP delivers retinol to a microsomal nicotin-amide-adenine dinucleotide phosphate-dependent dehydrogenase, protects it from artifactual oxidation and denies enzymes that cannot recognize the binding protein access to retinol. The retinal synthesized may be transferred from the microsomes to the cytosol by CRBP. A cytosolic retinal dehydrogenase has been purified that produces retinoic acid from retinal generated by microsomes in the presence of CRBP and from the complex CRBP-retinal itself. Thus, CRBP(type I) seems to channel retinoids through the reactions of retinoic acid synthesis via a series of protein-protein interactions. Cellular retinoic acid-binding protein (type I) facilitates retinoic acid metabolism by sequestering it and by acting as a low Km substrate, thereby also modulating the steady-state concentrations of retinoic acid. PMID:8381481

  4. Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii.

    PubMed

    Chi, Xiaoyuan; Zhang, Xiaowen; Guan, Xiangyu; Ding, Ling; Li, Youxun; Wang, Mingqing; Lin, Hanzhi; Qin, Song

    2008-04-01

    Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae). PMID:18545969

  5. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  6. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937.

    PubMed

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O; Glick, Bernard R; Ibekwe, A Mark; Cooksey, Donald A; Yang, Ching-Hong

    2007-02-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  7. Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents

    PubMed Central

    Schrader, Florian C.; Glinca, Serghei; Sattler, Julia M.; Dahse, Hans-Martin; Afanador, Gustavo A.; Prigge, Sean T.; Lanzer, Michael; Mueller, Ann-Kristin; Klebe, Gerhard; Schlitzer, Martin

    2013-01-01

    Malaria is a potentially fatal disease caused by Plasmodium parasites and poses a major medical risk in large parts of the world. The development of new, affordable antimalarial drugs is of vital importance as there are increasing reports of resistance to the currently available therapeutics. In addition, most of the current drugs used for chemoprophylaxis merely act on parasites already replicating in the blood. At this point, a patient might already be suffering from the symptoms associated with the disease and could additionally be infectious to an Anopheles mosquito. These insects act as a vector, subsequently spreading the disease to other humans. In order to cure not only malaria but prevent transmission as well, a drug must target both the blood- and pre-erythrocytic liver stages of the parasite. P. falciparum (Pf) enoyl acyl carrier protein (ACP) reductase (ENR) is a key enzyme of plasmodial type II fatty acid biosynthesis (FAS II). It has been shown to be essential for liver-stage development of Plasmodium berghei and is therefore qualified as a target for true causal chemoprophylaxis. Using virtual screening based on two crystal structures of PfENR, we identified a structurally novel class of FAS inhibitors. Subsequent chemical optimization yielded two compounds that are effective against multiple stages of the malaria parasite. These two most promising derivatives were found to inhibit blood-stage parasite growth with IC50 values of 1.7 and 3.0 µm and lead to a more prominent developmental attenuation of liver-stage parasites than the gold-standard drug, primaquine. PMID:23341167

  8. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.

    PubMed

    Ramzi, Ahmad Bazli; Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering. PMID:26453466

  9. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro.

    PubMed

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-04-01

    Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912

  10. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro

    PubMed Central

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-01-01

    Abstract Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912

  11. Expression of sialic acid and polysialic acid in serogroup B Neisseria meningitidis: divergent transcription of biosynthesis and transport operons through a common promoter region.

    PubMed Central

    Swartley, J S; Ahn, J H; Liu, L J; Kahler, C M; Stephens, D S

    1996-01-01

    We studied capsule-defective (Cap-) serogroup B meningococcal mutants created through Tn916 or omega-fragment mutagenesis. The Cap- phenotypes were the results of insertions in three of four linked genes (synX, synC, and synD) involved in CMP-N-acetylneuraminic acid and polysialic acid capsule biosynthesis, and in ctrA the first of four linked genes involved in capsule membrane transport. Mutations in the CMP-N-acetylneuraminic acid biosynthesis genes synX and synC caused defects in lipooligosaccharide sialylation but not mutations in the putative (alpha2 -> 8)-linked polysialyltransferase (synD) or in ctrA. Reverse transcriptase PCR studies indicated that the four biosynthesis genes (synX to -D) and the capsule transport genes (ctr to -D) were separately transcribed as operons. The operons were separated by a 134-bp intergenic region. Primer extension of synX and ctrA demonstrated that transcription of the operons was divergently initiated from adjacent start sites present in the intergenic region. Both transcriptional start sites were preceded by a perfect -10 Pribnow promoter binding region. The synX to -D, but not the ctrA to -D, transcriptional start site was preceded by a sequence bearing strong homology to the consensus sigma 70 -35 promoter binding sequence. Both promoters showed transcriptional activity when cloned behind a lacZ reporter gene in Escherichia coli. Our results confirm the intrinsic relationship between polysialic acid capsule biosynthesis and lipooligosaccharide sialylation pathways in group B Neisseria meningitidis. Our study also suggests that the intergenic region separating the synX to -D and ctrA to -D operons is an important control point for the regulation of group B capsule expression through coordinated transcriptional regulation of the synX to -D and drA to -D promoters. PMID:8763931

  12. From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis[W][OA

    PubMed Central

    de Kraker, Jan-Willem; Gershenzon, Jonathan

    2011-01-01

    Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilities. Here, we investigated the changes in protein structure that have occurred during the recruitment of IPMS from amino acid to glucosinolate metabolism. The major sequence difference between IPMS and MAM is the absence of 120 amino acids at the C-terminal end of MAM that constitute a regulatory domain for Leu-mediated feedback inhibition. Truncation of this domain in Arabidopsis IPMS2 results in loss of Leu feedback inhibition and quaternary structure, two features common to MAM enzymes, plus an 8.4-fold increase in the kcat/Km for a MAM substrate. Additional exchange of two amino acids in the active site resulted in a MAM-like enzyme that had little residual IPMS activity. Hence, combination of the loss of the regulatory domain and a few additional amino acid exchanges can explain the evolution of MAM from IPMS during its recruitment from primary to secondary metabolism. PMID:21205930

  13. Identification, Biosynthesis, and Function of 1,3,4,6-Hexanetetracarboxylic Acid in Methanobacterium thermoautotrophicum ΔH

    PubMed Central

    Gorkovenko, Alexander; Roberts, Mary F.; White, Robert H.

    1994-01-01

    An unusual compound, 1,3,4,6-hexanetetracarboxylic acid, was identified by 1H and 13C two-dimensional nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry as one of the major components of the small-molecule pool in Methanobacterium thermoautotrophicum ΔH under optimal conditions of cell growth. Incorporation of 13C- and 2H-labeled acetates was consistent with the biosynthesis of this tetracarboxylic acid from α-ketoglutarate, two molecules of acetyl-coenzyme A, and one molecule of CO2, as established for the tetracarboxylic acid moiety of methanofuran. 13CO2 pulse- 12CO2 chase methodology was used to establish the turnover rate for this compound. In contrast to the two other major solutes in this bacterium, cyclic 2,3-diphosphoglycerate and glutamate, which are key metabolic intermediates, this free tetracarboxylic acid was metabolically inactive, with a half-life that exceeded the cell doubling time. Hence, this molecular pool cannot serve as a metabolic intermediate in cell biosynthesis. The functional role of free tetracarboxylate as a conservative part of a system that maintains high positive internal osmotic pressure in this bacterium is proposed. PMID:16349232

  14. Methyl jasmonate stimulates biosynthesis of 2-phenylethylamine, phenylacetic acid and 2-phenylethanol in seedlings of common buckwheat.

    PubMed

    Horbowicz, Marcin; Wiczkowski, Wiesław; Sawicki, Tomasz; Szawara-Nowak, Dorota; Sytykiewicz, Hubert; Mitrus, Joanna

    2015-01-01

    Methyl jasmonate has a strong effect on secondary metabolizm in plants, by stimulating the biosynthesis a number of phenolic compounds and alkaloids. Common buckwheat (Fagopyrum esculentum Moench) is an important source of biologically active compounds. This research focuses on the detection and quantification of 2-phenylethylamine and its possible metabolites in the cotyledons, hypocotyl and roots of common buckwheat seedlings treated with methyl jasmonate. In cotyledons of buckwheat sprouts, only traces of 2-phenylethylamine were found, while in the hypocotyl and roots its concentration was about 150 and 1000-times higher, respectively. Treatment with methyl jasmonate resulted in a 4-fold increase of the 2-phenylethylamine level in the cotyledons of 7-day buckwheat seedlings, and an 11-fold and 5-fold increase in hypocotyl and roots, respectively. Methyl jasmonate treatment led also to about 4-fold increase of phenylacetic acid content in all examined seedling organs, but did not affect the 2-phenylethanol level in cotyledons, and slightly enhanced in hypocotyl and roots. It has been suggested that 2-phenylethylamine is a substrate for the biosynthesis of phenylacetic acid and 2-phenylethanol, as well as cinnamoyl 2-phenethylamide. In organs of buckwheat seedling treated with methyl jasmonate, higher amounts of aromatic amino acid transaminase mRNA were found. The enzyme can be involved in the synthesis of phenylpyruvic acid, but the presence of this compound could not be confirmed in any of the examined organs of common buckwheat seedling. PMID:25856561

  15. Polyunsaturated fatty acid biosynthesis is involved in phenylephrine-mediated calcium release in vascular smooth muscle cells.

    PubMed

    Irvine, Nicola A; Lillycrop, Karen A; Fielding, Barbara; Torrens, Christopher; Hanson, Mark A; Burdge, Graham C

    2015-10-01

    Stimulation of vascular smooth muscle (VSM) α1-adrenoceptors induces myosin phosphorylation and vasoconstriction via mobilisation of intracellular calcium and production of specific eicosanoids. Polyunsaturated fatty acid (PUFA) biosynthesis in VSM cells is involved, although the precise mechanism is not known. To address this, we characterised PUFA biosynthesis in VSM cells and determined its role in intracellular calcium release and eicosanoid production. Murine VSM cells converted 18:2n-6 to longer chain PUFA including 22:5n-6. Δ6 (D6d) and Δ5 (D5d) desaturase, and elongase (Elovl) 5 were expressed. Elovl2 was not detected in human, mouse or rat VSM cells, or in rat or mouse aortae, but tit was not associated with hypermethylation of its promoter. D6d or D5d inhibition reduced 18:3n-6 and 20:4n-6 synthesis, respectively, and induced concentration-related decrease in phenylephrine-mediated calcium release, and in PGE2 and PGF2α secretion. Together these findings suggest that PUFA biosynthesis in VSM cells is involved in calcium release associated with vasoconstriction. PMID:26324193

  16. Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus▿†

    PubMed Central

    Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.

    2011-01-01

    Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin. PMID:21665968

  17. A 7-Deoxyloganetic Acid Glucosyltransferase Contributes a Key Step in Secologanin Biosynthesis in Madagascar Periwinkle[C][W][OPEN

    PubMed Central

    Asada, Keisuke; Salim, Vonny; Masada-Atsumi, Sayaka; Edmunds, Elizabeth; Nagatoshi, Mai; Terasaka, Kazuyoshi; Mizukami, Hajime; De Luca, Vincenzo

    2013-01-01

    Iridoids form a broad and versatile class of biologically active molecules found in thousands of plant species. In addition to the many hundreds of iridoids occurring in plants, some iridoids, such as secologanin, serve as key building blocks in the biosynthesis of thousands of monoterpene indole alkaloids (MIAs) and many quinoline alkaloids. This study describes the molecular cloning and functional characterization of three iridoid glucosyltransfeases (UDP-SUGAR GLYCOSYLTRANSFERASE6 [UGT6], UGT7, and UGT8) from Madagascar periwinkle (Catharanthus roseus) with remarkably different catalytic efficiencies. Biochemical analyses reveal that UGT8 possessed a high catalytic efficiency toward its exclusive iridoid substrate, 7-deoxyloganetic acid, making it better suited for the biosynthesis of iridoids in periwinkle than the other two iridoid glucosyltransfeases. The role of UGT8 in the fourth to last step in secologanin biosynthesis was confirmed by virus-induced gene silencing in periwinkle plants, which reduced expression of this gene and resulted in a large decline in secologanin and MIA accumulation within silenced plants. Localization studies of UGT8 using a carborundum abrasion method for RNA extraction show that its expression occurs preferentially within periwinkle leaves rather than in epidermal cells, and in situ hybridization studies confirm that UGT8 is preferentially expressed in internal phloem associated parenchyma cells of periwinkle species. PMID:24104568

  18. Novel nonadride, heptadride and maleic acid metabolites from the byssochlamic acid producer Byssochlamys fulva IMI 40021 - an insight into the biosynthesis of maleidrides.

    PubMed

    Szwalbe, Agnieszka J; Williams, Katherine; O'Flynn, Daniel E; Bailey, Andrew M; Mulholland, Nicholas P; Vincent, Jason L; Willis, Christine L; Cox, Russell J; Simpson, Thomas J

    2015-12-14

    The filamentous fungus Byssochlamys fulva strain IMI 40021 produces (+)-byssochlamic acid 1, its novel dihydroanalogue 2 and four related secondary metabolites. Agnestadrides A, 17 and B, 18 constitute a novel class of seven-membered ring, maleic anhydride-containing (hence termed heptadride) natural products. The putative maleic anhydride precursor 5 for both nonadride and heptadride biosynthesis was isolated as a fermentation product for the first time and its structure confirmed by synthesis. Acid 5 undergoes facile decarboxylation to anhydride 6. The generic term maleidrides is proposed to encompass biosynthetically-related compounds containing maleic anhydride moieties fused to an alicyclic ring, varying in size and substituents. PMID:26452099

  19. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  20. Profiling and Quantifying Differential Gene Transcription Provide Insights into Ganoderic Acid Biosynthesis in Ganoderma lucidum in Response to Methyl Jasmonate

    PubMed Central

    Shi, Liang; Mu, Da-Shuai; Jiang, Ai-Liang; Han, Qin; Zhao, Ming-Wen

    2013-01-01

    Ganoderma lucidum is a mushroom with traditional medicinal properties that has been widely used in China and other countries in Eastern Asia. Ganoderic acids (GA) produced by G. lucidum exhibit important pharmacological activities. Previous studies have demonstrated that methyl jasmonate (MeJA) is a potent inducer of GA biosynthesis and the expression of genes involved in the GA biosynthesis pathway in G. lucidum. To further explore the mechanism of GA biosynthesis, cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) was used to identify genes that are differentially expressed in response to MeJA. Using 64 primer combinations, over 3910 transcriptionally derived fragments (TDFs) were obtained. Reliable sequence data were obtained for 390 of 458 selected TDFs. Ninety of these TDFs were annotated with known functions through BLASTX searching the GenBank database, and 12 annotated TDFs were assigned into secondary metabolic pathways by searching the KEGGPATHWAY database. Twenty-five TDFs were selected for qRT-PCR analysis to confirm the expression patterns observed with cDNA-AFLP. The qRT-PCR results were consistent with the altered patterns of gene expression revealed by the cDNA-AFLP technique. Additionally, the transcript levels of 10 genes were measured at the mycelium, primordia, and fruiting body developmental stages of G. lucidum. The greatest expression levels were reached during primordia for all of the genes except cytochrome b2 reached its highest expression level in the mycelium stage. This study not only identifies new candidate genes involved in the regulation of GA biosynthesis but also provides further insight into MeJA-induced gene expression and secondary metabolic response in G. lucidum. PMID:23762280

  1. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    PubMed

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb. PMID:20565114

  2. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  3. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk.

    PubMed

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-Yu; Cooper, Thomas B; Burke, Ainsley K; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention. PMID:25972837

  4. DNA Methylation Perturbations in Genes Involved in Polyunsaturated Fatty Acid Biosynthesis Associated with Depression and Suicide Risk

    PubMed Central

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-yu; Cooper, Thomas B.; Burke, Ainsley K.; Oquendo, Maria A.; Mann, J. John; Sublette, M. Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention. PMID:25972837

  5. Influence of Nitrogen Source, Thiamine, and Light on Biosynthesis of Abscisic Acid by Cercospora rosicola Passerini

    PubMed Central

    Norman, Shirley M.; Maier, Vincent P.; Echols, Linda C.

    1981-01-01

    Abscisic acid production by Cercospora rosicola Passerini in liquid shake culture was measured with different amino acids in combination and singly as nitrogen sources and with different amounts of thiamine in the media. Production of abscisic acid was highest with aspartic acid-glutamic acid and aspartic acid-glutamic acid-serine mixtures as nitrogen sources. Single amino acids that supported the highest production of abscisic acid were asparagine and monosodium glutamate. Thiamine was important for abscisic acid production. Leucine inhibited abscisic acid production. C. rosicola produced abscisic acid in the dark, but production more than doubled in the presence of light. PMID:16345761

  6. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis

    PubMed Central

    Wang, Xin; Zhou, Chen; Yang, Xianpeng; Miao, Di; Zhang, Yansheng

    2015-01-01

    The bark of Warburgia ugandensis (Canellaceae family) has been used as a medicinal source for a long history in many African countries. The presence of diverse terpenoids and abundant polyunsaturated fatty acids (PUFAs) in this organ contributes to its broad range of pharmacological properties. Despite its medicinal and economic importance, the knowledge on the biosynthesis of terpenoid and unsaturated fatty acid in W. ugandensis bark remains largely unknown. Therefore, it is necessary to construct a genomic and/or transcriptomic database for the functional genomics study on W. ugandensis. The chemical profiles of terpenoids and fatty acids between the bark and leaves of W. ugandensis were compared by gas chromatography-mass spectrometry (GC-MS) analysis. Meanwhile, the transcriptome database derived from both tissues was created using Illumina sequencing technology. In total, about 17.1 G clean nucleotides were obtained, and de novo assembled into 72,591 unigenes, of which about 38.06% can be aligned to the NCBI non-redundant protein database. Many candidate genes in the biosynthetic pathways of terpenoids and unsaturated fatty acids were identified, including 14 unigenes for terpene synthases. Furthermore, 2,324 unigenes were discovered to be differentially expressed between both tissues; the functions of those differentially expressed genes (DEGs) were predicted by gene ontology enrichment and metabolic pathway enrichment analyses. In addition, the expression of 12 DEGs with putative roles in terpenoid and unsaturated fatty acid metabolic pathways was confirmed by qRT-PCRs, which was consistent with the data of the RNA-sequencing. In conclusion, we constructed a comprehensive transcriptome dataset derived from the bark and leaf of W. ugandensis, which forms the basis for functional genomics studies on this plant species. Particularly, the comparative analysis of the transcriptome data between the bark and leaf will provide critical clues to reveal the regulatory

  7. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413.

    PubMed

    Pope, Matthew A; Spence, Edward; Seralvo, Valentina; Gacesa, Ranko; Heidelberger, Sibylle; Weston, Andrew J; Dunlap, Walter C; Shick, J Malcolm; Long, Paul F

    2015-01-19

    The parent core structure of mycosporine-like amino acids (MAAs) is 4-deoxygadusol, which, in cyanobacteria, is derived from conversion of the pentose phosphate pathway intermediate sedoheptulose 7-phosphate by the enzymes 2-epi-5-epivaliolone synthase (EVS) and O-methyltransferase (OMT). Yet, deletion of the EVS gene from Anabaena variabilis ATCC 29413 was shown to have little effect on MAA production, thus suggesting that its biosynthesis is not exclusive to the pentose phosphate pathway. Herein, we report how, using pathway-specific inhibitors, we demonstrated unequivocally that MAA biosynthesis occurs also via the shikimate pathway. In addition, complete in-frame gene deletion of the OMT gene from A. variabilis ATCC 29413 reveals that, although biochemically distinct, the pentose phosphate and shikimate pathways are inextricably linked to MAA biosynthesis in this cyanobacterium. Furthermore, proteomic data reveal that the shikimate pathway is the predominate route for UV-induced MAA biosynthesis. PMID:25487723

  8. Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments

    PubMed Central

    Allen, Doug K; Laclair, Russell W; Ohlrogge, John B; Shachar-Hill, Yair

    2012-01-01

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state 13C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-13C]-sucrose, [U-13C]-glucose, [U-13C]-glutamine or [U-13C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different 13C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed. PMID:22292468

  9. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2015-03-01

    Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed. PMID:25306882

  10. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  11. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  12. TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Yuan, Guoliang; Yuan, Shaohua; Duan, Wenjing; Wang, Peng; Bai, Jianfang; Zhang, Fengting; Gao, Shiqing; Zhang, Liping; Zhao, Changping

    2016-01-29

    The 12-oxo-phytodienoic acid reductases (OPRs) are involved in the various processes of growth and development in plants, and classified into the OPRⅠ and OPRⅡ subgroups. In higher plants, only OPRⅡ subgroup genes take part in the biosynthesis of endogenous jasmonic acid. In this study, we isolated a novel OPRⅡ subgroup gene named TaOPR2 (GeneBank accession: KM216389) from the thermo-sensitive genic male sterile (TGMS) wheat cultivar BS366. TaOPR2 was predicted to encode a protein with 390 amino acids. The encoded protein contained the typical oxidored_FMN domain, the C-terminus peroxisomal-targeting signal peptide, and conserved FMN-binding sites. TaOPR2 was mapped to wheat chromosome 7B and located on peroxisome. Protein evolution analysis revealed that TaOPR2 belongs to the OPRⅡ subgroup and shares a high degree of identity with other higher plant OPR proteins. The quantitative real-time PCR results indicated that the expression of TaOPR2 is inhibited by abscisic acid (ABA), salicylic acid (SA), gibberellic acid (GA3), low temperatures and high salinity. In contrast, the expression of TaOPR2 can be induced by wounding, drought and methyl jasmonate (MeJA). Furthermore, the transcription level of TaOPR2 increased after infection with Puccinia striiformis f. sp. tritici and Puccinia recondite f. sp. tritici. TaOPR2 has NADPH-dependent oxidoreductase activity. In addition, the constitutive expression of TaOPR2 can rescue the male sterility phenotype of Arabidopsis mutant opr3. These results suggest that TaOPR2 is involved in the biosynthesis of jasmonic acid (JA) in wheat. PMID:26778003

  13. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis

    PubMed Central

    Ye, Jie; Hu, Tixu; Yang, Congmei; Li, Hanxia; Yang, Mingze; Ijaz, Raina; Ye, Zhibiao; Zhang, Yuyang

    2015-01-01

    Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism. PMID:26133783

  14. Regiospecific O-methylation of naphthoic acids catalyzed by NcsB1, an O-methyltransferase involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

    PubMed

    Luo, Yinggang; Lin, Shuangjun; Zhang, Jian; Cooke, Heather A; Bruner, Steven D; Shen, Ben

    2008-05-23

    Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic gene cluster and proposed that the biosynthesis of the naphthoic acid moiety and its incorporation into the neocarzinostatin chromophore are catalyzed by five enzymes NcsB, NcsB1, NcsB2, NcsB3, and NcsB4. Here we report the biochemical characterization of NcsB1, unveiling that: (i) NcsB1 is an S-adenosyl-L-methionine-dependent O-methyltransferase; (ii) NcsB1 catalyzes regiospecific methylation at the 7-hydroxy group of its native substrate, 2,7-dihydroxy-5-methyl-1-naphthoic acid; (iii) NcsB1 also recognizes other dihydroxynaphthoic acids as substrates and catalyzes regiospecific O-methylation; and (iv) the carboxylate and its ortho-hydroxy groups of the substrate appear to be crucial for NcsB1 substrate recognition and binding, and O-methylation takes place only at the free hydroxy group of these dihydroxynaphthoic acids. These findings establish that NcsB1 catalyzes the third step in the biosynthesis of the naphthoic acid moiety of the neocarzinostatin chromophore and further support the early proposal for the biosynthesis of the naphthoic acid and its incorporation into the neocarzinostatin chromophore with free naphthoic acids serving as intermediates. NcsB1 represents another opportunity that can now be exploited to produce novel neocarzinostatin analogs by engineering neocarzinostatin biosynthesis or applying directed biosynthesis strategies. PMID:18387946

  15. DNA Sequence and Expression Variation of Hop (Humulus lupulus) Valerophenone Synthase (VPS), a Key Gene in Bitter Acid Biosynthesis

    PubMed Central

    Castro, Consuelo B.; Whittock, Lucy D.; Whittock, Simon P.; Leggett, Grey; Koutoulis, Anthony

    2008-01-01

    Background The hop plant (Humulus lupulus) is a source of many secondary metabolites, with bitter acids essential in the beer brewing industry and others having potential applications for human health. This study investigated variation in DNA sequence and gene expression of valerophenone synthase (VPS), a key gene in the bitter acid biosynthesis pathway of hop. Methods Sequence variation was studied in 12 varieties, and expression was analysed in four of the 12 varieties in a series across the development of the hop cone. Results Nine single nucleotide polymorphisms (SNPs) were detected in VPS, seven of which were synonymous. The two non-synonymous polymorphisms did not appear to be related to typical bitter acid profiles of the varieties studied. However, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of VPS expression during hop cone development showed a clear link with the bitter acid content. The highest levels of VPS expression were observed in two triploid varieties, ‘Symphony’ and ‘Ember’, which typically have high bitter acid levels. Conclusions In all hop varieties studied, VPS expression was lowest in the leaves and an increase in expression was consistently observed during the early stages of cone development. PMID:18519445

  16. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    PubMed

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  17. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  18. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    PubMed

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  19. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP).

    PubMed

    Banoglu, Erden; Çelikoğlu, Erşan; Völker, Susanna; Olgaç, Abdurrahman; Gerstmeier, Jana; Garscha, Ulrike; Çalışkan, Burcu; Schubert, Ulrich S; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver

    2016-05-01

    In this article, we report novel leukotriene (LT) biosynthesis inhibitors that may target 5-lipoxygenase-activating protein (FLAP) based on the previously identified isoxazole derivative (8). The design and synthesis was directed towards a subset of 4,5-diaryl-isoxazole-3-carboxylic acid derivatives as LT biosynthesis inhibitors. Biological evaluation disclosed a new skeleton of potential anti-inflammatory agents, exemplified by 39 and 40, which potently inhibit cellular 5-LO product synthesis (IC50 = 0.24 μM, each) seemingly by targeting FLAP with weak inhibition on 5-LO (IC50 ≥ 8 μM). Docking studies and molecular dynamic simulations with 5-LO and FLAP provide valuable insights into potential binding modes of the inhibitors. Together, these diaryl-isoxazol-3-carboxylic acids may possess potential as leads for development of effective anti-inflammatory drugs through inhibition of LT biosynthesis. PMID:26922224

  20. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado.

    PubMed

    Chernys, J T; Zeevaart, J A

    2000-09-01

    Avocado (Persea americana Mill. cv Lula) is a climacteric fruit that exhibits a rise in ethylene as the fruit ripens. This rise in ethylene is followed by an increase in abscisic acid (ABA), with the highest level occurring just after the peak in ethylene production. ABA is synthesized from the cleavage of carotenoid precursors. The cleavage of carotenoid precursors produces xanthoxin, which can subsequently be converted into ABA via ABA-aldehyde. Indirect evidence indicates that the cleavage reaction, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED), is the regulatory step in ABA synthesis. Three genes encoding NCED cleavage-like enzymes were cloned from avocado fruit. Two genes, PaNCED1 and PaNCED3, were strongly induced as the fruit ripened. The other gene, PaNCED2, was constitutively expressed during fruit ripening, as well as in leaves. This gene lacks a predicted chloroplast transit peptide. It is therefore unlikely to be involved in ABA biosynthesis. PaNCED1 was induced by water stress, but expression of PaNCED3 was not detectable in dehydrated leaves. Recombinant PaNCED1 and PaNCED3 were capable of in vitro cleavage of 9-cis-xanthophylls into xanthoxin and C(25)-apocarotenoids, but PaNCED2 was not. Taken together, the results indicate that ABA biosynthesis in avocado is regulated at the level of carotenoid cleavage. PMID:10982448

  1. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  2. The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast.

    PubMed

    Daicho, Katsue; Maruyama, Hironori; Suzuki, Asuka; Ueno, Masaru; Uritani, Masahiro; Ushimaru, Takashi

    2007-07-01

    Ergosterol is the yeast functional equivalent of cholesterol in mammalian cells. Deletion of the ERG6 gene, which encodes an enzyme catalyzing a late step of ergosterol biosynthesis, impedes targeting of the tryptophan permease Tat2p to the plasma membrane, but does not promote vacuolar degradation. It is unknown whether similar features appear when other steps of ergosterol biogenesis are inhibited. We show herein that the ergosterol biosynthesis inhibitor zaragozic acid (ZA) evoked massive vacuolar degradation of Tat2p, accompanied by a decrease in tryptophan uptake. ZA inhibits squalene synthetase (SQS, EC 2.5.1.21), which catalyzes the first committed step in the formation of cholesterol/ergosterol. The degradation of Tat2p was dependent on the Rsp5p-mediated ubiquitination of Tat2p and was not suppressed by deletions of VPS1, VPS27, VPS45 or PEP12. We will discuss ZA-mediated Tat2p degradation in the context of lipid rafts. PMID:17531951

  3. Repeated Batch Fermentation Biotechnology for the Biosynthesis of Lipid and Gamma-Linolenic Acid by Cunninghamella bainieri 2A1

    PubMed Central

    Ganjali Dashti, Marjan; Abdeshahian, Peyman; Wan Yusoff, Wan Mohtar; Kalil, Mohd Sahaid; Abdul Hamid, Aidil

    2014-01-01

    The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1–4 g/L) and glucose concentration (20–40 g/L) at three time intervals (12 h, 24 h, and 48 h). Experimental results showed that the highest lipid concentration of 6.2 g/L and the highest GLA concentration of 0.4 g/L were obtained in optimum conditions, where 20.2 g/L glucose, 2.12 g/L ammonium tartrate, and 48 h harvesting time were utilized. Statistical results showed that the interaction between glucose and ammonium tartrate concentration had highly significant effects on lipid and GLA biosynthesis (P < 0.01). Moreover, harvesting time had a significant interaction effect with glucose and ammonium tartrate concentration on lipid production (P < 0.05). PMID:25147817

  4. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate.

    PubMed

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  5. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase.

    PubMed

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W; Covello, Patrick S

    2007-02-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a beta-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  6. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica

    PubMed Central

    2014-01-01

    Background Sterols are vital structural and regulatory components in eukaryotic cells; however, their biosynthetic pathways and functional roles in microalgae remain poorly understood. Results In the oleaginous microalga Nannochloropsis oceanica, the sterol biosynthetic pathway produces phytosterols as minor products and cholesterol as the major product. The evidence together with their deduced biosynthetic pathways suggests that N. oceanica exhibits features of both higher plants and mammals. Temporal tracking of sterol profiles and sterol-biosynthetic transcripts in response to changes in light intensity and nitrogen supply reveal that sterols play roles in cell proliferation, chloroplast differentiation, and photosynthesis. Furthermore, the dynamics of fatty acid (FA) and FA-biosynthetic transcripts upon chemical inhibitor-induced sterol depletion reveal possible co-regulation of sterol production and FA synthesis, in that the squalene epoxidase inhibitor terbinafine reduces sterol content yet significantly elevates free FA production. Thus, a feedback regulation of sterol and FA homeostasis is proposed, with the 1-deoxy-D-xylulose 5-phosphate synthase (DXS, the committed enzyme in isoprenoid and sterol biosynthesis) gene potentially subject to feedback regulation by sterols. Conclusion These findings reveal features of sterol function and biosynthesis in microalgae and suggest new genetic engineering or chemical biology approaches for enhanced oil production in microalgae. PMID:24920959

  7. Rhodobacter capsulatus OlsA is a bifunctional enzyme active in both ornithine lipid and phosphatidic acid biosynthesis.

    PubMed

    Aygun-Sunar, Semra; Bilaloglu, Rahmi; Goldfine, Howard; Daldal, Fevzi

    2007-12-01

    The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis. PMID

  8. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    PubMed

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans. PMID:26806391

  9. Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis.

    PubMed

    Liu, Chaoyang; Long, Jianmei; Zhu, Kaijie; Liu, Linlin; Yang, Wei; Zhang, Hongyan; Li, Li; Xu, Qiang; Deng, Xiuxin

    2016-01-01

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway, and induced a strong accumulation of hydroxycinnamic acid compounds but not the flavonols. The RNAi suppression of CsMYBF1 in citrus callus caused a down-regulation of many phenylpropanoid pathway genes and reduced the contents of hydroxycinnamic acids and flavonols. Transactivation assays indicated that CsMYBF1 activated several promoters of phenylpropanoid pathway genes in tomato and citrus. Interestingly, CsMYBF1 could activate the CHS gene promoter in citrus, but not in tomato. Further examinations revealed that the MYBPLANT cis-elements were essential for CsMYBF1 in activating phenylpropanoid pathway genes. In summary, our data indicated that CsMYBF1 possessed the function in controlling the flavonol and hydroxycinnamic acid biosynthesis, and the regulatory differences in the target metabolite accumulation between two species may be due to the differential activation of CHS promoters by CsMYBF1. Therefore, CsMYBF1 constitutes an important gene source for the engineering of specific phenylpropanoid components. PMID:27162196

  10. Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi.

    PubMed

    Studt, Lena; Janevska, Slavica; Niehaus, Eva-Maria; Burkhardt, Immo; Arndt, Birgit; Sieber, Christian M K; Humpf, Hans-Ulrich; Dickschat, Jeroen S; Tudzynski, Bettina

    2016-03-01

    Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety. PMID:26662839