Science.gov

Sample records for legionella pneumophila hijacks

  1. Molecular Mimicry by an F-Box Effector of Legionella pneumophila Hijacks a Conserved Polyubiquitination Machinery within Macrophages and Protozoa

    PubMed Central

    Al-Quadan, Tasneem; Santic, Marina; Habyarimana, Fabien; Kalia, Awdhesh; Kwaik, Yousef Abu

    2009-01-01

    The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination

  2. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa.

    PubMed

    Price, Christopher T; Al-Khodor, Souhaila; Al-Quadan, Tasneem; Santic, Marina; Habyarimana, Fabien; Kalia, Awdhesh; Kwaik, Yousef Abu

    2009-12-01

    The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the (9)L(10)P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-(9)L(10)P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-(9)L(10)P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved

  3. A plasmid in Legionella pneumophila.

    PubMed Central

    Knudson, G B; Mikesell, P

    1980-01-01

    Sixteen strains from the six serogroups of Legionella pneumophila were examined for the presence of extrachromosomal genetic elements by a modified cleared lysate procedure, dye-buoyant centrifugation, and agarose gel electrophoresis. Two strains, Atlanta-1 and Atlanta-2 from serogroup II, each contained a plasmid of cryptic function with a molecular weight of ca. 30 megadaltons. Images Fig. 1 PMID:7429628

  4. Caspase Exploitation by Legionella pneumophila.

    PubMed

    Krause, Kathrin; Amer, Amal O

    2016-01-01

    Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells. PMID:27148204

  5. Caspase Exploitation by Legionella pneumophila

    PubMed Central

    Krause, Kathrin; Amer, Amal O.

    2016-01-01

    Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells. PMID:27148204

  6. Ecological distribution of Legionella pneumophila

    SciTech Connect

    Fliermans, C B; Cherry, W B; Orrison, L H; Smith, S J; Tison, D L; Pope, D H

    1980-01-01

    Bacteria were concentrated 500-fold from 20-liter water samples collected from 67 different lakes and rivers in the United States. The data suggest that Legionella pneumophila is part of the natural aquatic environment, and that the bacterium is capable of surviving extreme ranges of environmental conditions. The data further demonstrate the effectiveness of the direct fluorescent antibody technique for detecting L. pneumophila in natural aquatic systems. Smears of the concentrated samples were screened microscopically for the serogroups of L. pneumophilia by the direct fluorescent antibody (DFA) technique. Virtually all of the 793 samples were DFA-positive. Those samples (318) containing the largest numbers of DFA positive bacteria which were morphologically consistent with L. pneumophila were injected into guinea pigs for attempted isolations. Isolates were obtained from habitats with a wide range of physical, chemical, and biological parameters. Samples collected monthly from a thermally altered lake demonstrated a seasonality of guinea pig infection, with greatest infection occurring during the summer months.

  7. Hartmannella vermiformis inhibition of Legionella pneumophila cultivability

    EPA Science Inventory

    Hartmannella vermiformis is frequently isolated from drinking water (DW) and is permissive to Legionella pneumophila intracellular replication. Thus, H. vermiformis may play an important role in the growth and survival potential of such environmental pathogens. In this study, Pag...

  8. Natural biofilm formation with Legionella pneumophila.

    PubMed

    Portier, Emilie; Héchard, Yann

    2013-01-01

    Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila. PMID:23150397

  9. Biofilms: The Stronghold of Legionella pneumophila

    PubMed Central

    Abdel-Nour, Mena; Duncan, Carla; Low, Donald E.; Guyard, Cyril

    2013-01-01

    Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation. PMID:24185913

  10. GROWTH OF 'LEGIONELLA PNEUMOPHILA' IN CONTINUOUS CULTURE

    EPA Science Inventory

    A method was developed to grow Legionella pneumophila in continuous culture. A chemostat was used to simulate nutrient-limited, sub-maximal growth in the natural environmental and to provide a precisely-controlled growth regime. Cultures grew under forced aeration under condition...

  11. DNA probe specific for Legionella pneumophila.

    PubMed Central

    Grimont, P A; Grimont, F; Desplaces, N; Tchen, P

    1985-01-01

    A procedure for preparing a DNA probe to be used in the specific detection of Legionella pneumophila by dot or colony hybridization has been devised. When total DNA from L. pneumophila was used as a radioactive probe, cross-hybridization occurred with DNA from many other species belonging to various families (including Legionellaceae, Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae). Cross-hybridizing restriction fragments in L. pneumophila ATCC 33152 DNA were identified on Southern blots. When unlabeled DNA from strain ATCC 33152 was cleaved by endonuclease BamHI, the DNA fragments cross-hybridizing with the labeled DNA from all of the other species and genera tested (or with Escherichia coli 16 + 23 S RNA) had a size of 21.4 and 16.2 kilobase pairs (major bands) and 28.0, 12.8, and 10.1 kilobase pairs (minor bands). BamHI restriction fragments of L. pneumophila DNA deprived of the cross-hybridizing fragments were pooled and used as a probe for the detection of L. pneumophila. This probe proved to be specific for L. pneumophila in colony and dot hybridization. It can potentially be used for the detection of L. pneumophila in clinical and water samples. The procedure described can be readily applied to the preparation of probes specific for phylogenetically isolated bacterial species other than L. pneumophila. Images PMID:3980693

  12. Legionella pneumophila: an aquatic microbe goes astray.

    PubMed

    Steinert, Michael; Hentschel, Ute; Hacker, Jörg

    2002-06-01

    Legionella pneumophila is naturally found in fresh water were the bacteria parasitize within protozoa. It also survives planctonically in water or biofilms. Upon aerosol formation via man-made water systems, L. pneumophila can enter the human lung and cause a severe form of pneumonia, called Legionnaires' disease. The pathogenesis of Legionnaires' disease is largely due to the ability of L. pneumophila to invade and grow within macrophages. An important characteristic of the intracellular survival strategy is the replication within the host vacuole that does not fuse with endosomes or lysosomes. In recent times a great number of bacterial virulence factors which affect growth of L. pneumophila in both macrophages and protozoa have been identified. The ongoing Legionella genome project and the use of genetically tractable surrogate hosts are expected to significantly contribute to the understanding of bacterium-host interactions and the regulation of virulence traits during the infection cycle. Since person-to-person transmission of legionellosis has never been observed, the measures for disease prevention have concentrated on eliminating the pathogen from water supplies. In this respect detection and analysis of Legionella in complex environmental consortia become increasingly important. With the availability of new molecular tools this area of applied research has gained new momentum. PMID:12069880

  13. Genetic structure of populations of Legionella pneumophila.

    PubMed Central

    Selander, R K; McKinney, R M; Whittam, T S; Bibb, W F; Brenner, D J; Nolte, F S; Pattison, P E

    1985-01-01

    The genetic structure of populations of Legionella pneumophila was defined by an analysis of electrophoretically demonstrable allelic variation at structural genes encoding 22 enzymes in 292 isolates from clinical and environmental sources. Nineteen of the loci were polymorphic, and 62 distinctive electrophoretic types (ETs), representing multilocus genotypes, were identified. Principal coordinates and clustering analyses demonstrated that isolates received as L. pneumophila were a heterogeneous array of genotypes that included two previously undescribed species. For 50 ETs of L. pneumophila (strict sense), mean genetic diversity per locus was 0.312, and diversity was equivalent in ETs represented by isolates recovered from clinical sources and those collected from environmental sources. Cluster analysis revealed four major groups or lineages of ETs in L. pneumophila. Genetic diversity among ETs of the same serotype was, on average, 93% of that in the total sample of ETs. Isolates marked by particular patterns of reactivity to a panel of nine monoclonal antibodies were also genetically heterogeneous, mean diversity within patterns being about 75% of the total. Both Pontiac fever and the pneumonic form of legionellosis may be caused by isolates of the same ET. The genetic structure of L. pneumophila is clonal, and many clones apparently are worldwide in distribution. The fact that L. pneumophila is only 60% as variable as Escherichia coli raises the possibility that isolates recovered from clinical cases and man-made environments are a restricted subset of all clones in the species as a whole. PMID:4030689

  14. Amoebae and Legionella pneumophila in saline environments

    PubMed Central

    Gast, Rebecca J.; Moran, Dawn M.; Dennett, Mark R.; Wurtsbaugh, Wayne A.; Amaral- Zettler, Linda A.

    2011-01-01

    Amoeboid protists that harbor bacterial pathogens are of significant interest as potential reservoirs of disease-causing organisms in the environment, but little is known about them in marine and other saline environments. We enriched amoeba cultures from sediments from four sites in the New England estuarine system of Mt. Hope Bay, Massachusetts and from sediments from six sites in the Great Salt Lake, Utah. Cultures of amoebae were enriched using both minimal- and non-nutrient agar plates, made with fresh water, brackish water or saltwater. Recovered amoeba cultures were assayed for the presence of Legionella species using nested polymerase chain reactions (PCR) and primers specific for the genus. Positive samples were then screened with nested amplification using primers specific for the macrophage infectivity potentiator surface protein (mip) gene from L. pneumophila. Forty-eight percent (185 out of 388) of isolated amoeba cultures were positive for the presence of Legionella species. Legionella pneumophila was detected by PCR in 4% of the amoeba cultures (17 out of 388), and most of these amoebae were growing on marine media. Our results show that amoebae capable of growing in saline environments may harbor not only a diverse collection of Legionella species, but also species potentially pathogenic to humans. PMID:21301113

  15. Fatal coinfection with Legionella pneumophila serogroup 8 and Aspergillus fumigatus.

    PubMed

    Guillouzouic, Aurélie; Bemer, Pascale; Gay-Andrieu, Françoise; Bretonnière, Cédric; Lepelletier, Didier; Mahé, Pierre-Joachim; Villers, Daniel; Jarraud, Sophie; Reynaud, Alain; Corvec, Stéphane

    2008-02-01

    Legionella pneumophila is an important cause of community-acquired and nosocomial pneumonia. We report on a patient who simultaneously developed L. pneumophila serogroup 8 pneumonia and Aspergillus fumigatus lung abscesses. Despite appropriate treatments, Aspergillus disease progressed with metastasis. Coinfections caused by L. pneumophila and A. fumigatus remain exceptional. In apparently immunocompetent patients, corticosteroid therapy is a key risk factor for aspergillosis. PMID:17945454

  16. Small Regulatory RNA and Legionella pneumophila

    PubMed Central

    Faucher, Sébastien P.; Shuman, Howard A.

    2011-01-01

    Legionella pneumophila is a gram-negative bacterial species that is ubiquitous in almost any aqueous environment. It is the agent of Legionnaires’ disease, an acute and often under-reported form of pneumonia. In mammals, L. pneumophila replicates inside macrophages within a modified vacuole. Many protein regulators have been identified that control virulence-related properties, including RpoS, LetA/LetS, and PmrA/PmrB. In the past few years, the importance of regulation of virulence factors by small regulatory RNA (sRNAs) has been increasingly appreciated. This is also the case in L. pneumophila where three sRNAs (RsmY, RsmZ, and 6S RNA) were recently shown to be important determinants of virulence regulation and 79 actively transcribed sRNAs were identified. In this review we describe current knowledge about sRNAs and their regulatory properties and how this relates to the known regulatory systems of L. pneumophila. We also provide a model for sRNA-mediated control of gene expression that serves as a framework for understanding the regulation of virulence-related properties of L. pneumophila. PMID:21833335

  17. Legionella pneumophila transcriptional response to chlorine treatment.

    PubMed

    Bodet, Charles; Sahr, Tobias; Dupuy, Mathieu; Buchrieser, Carmen; Héchard, Yann

    2012-03-01

    Legionella pneumophila is a ubiquitous environmental microorganism found in freshwater that can cause an acute form of pneumonia known as Legionnaires' disease. Despite widespread use of chlorine to ensure drinking water quality and awareness that L. pneumophila may escape these treatments, little is known about its effects on L. pneumophila. The aim of this study was to investigate the L. pneumophila transcriptional response induced by chlorine treatment. Transcriptome analysis, using DNA arrays, showed that a sublethal dose of chlorine induces a differential expression of 391 genes involved in stress response, virulence, general metabolism, information pathways and transport. Many of the stress response genes were significantly upregulated, whereas a significant number of virulence genes were repressed. In particular, exposure of L. pneumophila to chlorine induced the expression of cellular antioxidant proteins, stress proteins and transcriptional regulators. In addition, glutathione S-transferase specific activity was enhanced following chlorine treatment. Our results clearly indicate that chlorine induces expression of proteins involved in cellular defence mechanisms against oxidative stress that might be involved in adaptation or resistance to chlorine treatment. PMID:22192759

  18. Cocultivation of Legionella pneumophila and free-living amoebae

    SciTech Connect

    Tyndall, R.L.; Domingue, E.L.

    1982-10-01

    Studies of the interaction of Legionella pneumophila with free-living amoebae showed that Naegleria lovaniensis and Acanthamoeba royreba could use L. pneumophia as a sole food source. However, growth of the amoebae on nonnutrient agar plates seeded with L. pneumophila was slower than growth on nonnutrient agar plates seeded with Escherichia coli. On inoculation of L. pneumophila into axenic cultures of N. lovaniensis and A. roryba, 99.9% of the L. pneumophila was destroyed within 24 h. After several weeks, however, some amoeba cultures became chronically infected and supported the growth of L. pneumophila. Amoebae exposed to L. pneumophila and containing adhered L. pneumophila, L. pneumophila antigens, or both, showed no increased pathogenic potential on intranasal inoculation of weanling mice. Similarly, L. pneumophila propagated in chronically infected amoeba cultures showed no increase in virulence on intraperitoneal inoculation of guinea pigs relative to L. pneumophila grown in yeast extract broth. 20 references, 1 figure, 4 tables.

  19. Enumeration of Legionella pneumophila in cooling tower water systems.

    PubMed

    Türetgen, Irfan; Sungur, Esra Ilhan; Cotuk, Aysin

    2005-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is known to colonise and frequently grow in cooling tower waters. Disease is acquired by inhaling aerosol contaminated by legionellae. Determination of the count of Legionella pneumophila in cooling tower waters may, therefore, be useful for risk assessment. In our survey, 103 water samples from 50 cooling towers were examined over a five-year period to indicate the seasonal distribution and the ecology of L. pneumophila, as regards temperature and pH. L. pneumophila serogroup 1 was found in 44% of the isolated strains, which is primarily responsible for the majority of Legionnaires' disease. The large majority of examined towers had levels of L. pneumophila in the high-risk category. These cooling towers have been linked to many outbreaks of Legionnaires' disease. PMID:15727299

  20. Endogenous lipoid pneumonia associated with Legionella pneumophila serogroup 1.

    PubMed

    Hui, Chee-Kin

    2013-03-01

    Endogenous lipoid pneumonia is an uncommon condition. This is a report of a 29-year-old woman diagnosed with endogenous lipoid pneumonia associated with Legionella pneumophila serogroup 1 infection. The patient's endogenous lipoid pneumonia resolved completely after treatment for Legionella pneumophila infection. This suggests that early diagnosis and aggressive treatment of the underlying infection may prevent any long-term sequelae of lipoid pneumonia. PMID:23546039

  1. Legionella pneumophila pneumonia during pregnancy: a case report.

    PubMed

    Gaillac, Nelly; Floccard, Bernard; Ould, Thierry; Benatir, Farida; Levrat, Albrice; Meunier, Pierre; Allaouchiche, Bernard

    2006-06-01

    Legionella pneumophila pneumonia during pregnancy can have serious consequences for the mother and lead to fetal distress. We report a case of L. pneumophila pneumonia in a pregnant woman at 31 weeks gestation. With early diagnosis and appropriate treatment, the outcome was favorable with delivery of a healthy infant at 40 weeks gestation. PMID:16246423

  2. Detection of Legionella pneumophila by Real-Time PCR for the mip Gene

    PubMed Central

    Wilson, Deborah A.; Yen-Lieberman, Belinda; Reischl, Udo; Gordon, Steve M.; Procop, Gary W.

    2003-01-01

    A real-time PCR assay for the mip gene of Legionella pneumophila was tested with 27 isolates of L. pneumophila, 20 isolates of 14 other Legionella species, and 103 non-Legionella bacteria. Eight culture-positive and 40 culture-negative clinical specimens were tested. This assay was 100% sensitive and 100% specific for L. pneumophila. PMID:12843084

  3. Post-translational modifications are key players of the Legionella pneumophila infection strategy

    PubMed Central

    Michard, Céline; Doublet, Patricia

    2015-01-01

    Post-translational modifications (PTMs) are widely used by eukaryotes to control the enzymatic activity, localization or stability of their proteins. Traditionally, it was believed that the broad biochemical diversity of the PTMs is restricted to eukaryotic cells, which exploit it in extensive networks to fine-tune various and complex cellular functions. During the last decade, the advanced detection methods of PTMs and functional studies of the host–pathogen relationships highlight that bacteria have also developed a large arsenal of PTMs, particularly to subvert host cell pathways to their benefit. Legionella pneumophila, the etiological agent of the severe pneumonia legionellosis, is the paradigm of highly adapted intravacuolar pathogens that have set up sophisticated biochemical strategies. Among them, L. pneumophila has evolved eukaryotic-like and rare/novel PTMs to hijack host cell processes. Here, we review recent progress about the diversity of PTMs catalyzed by Legionella: ubiquitination, prenylation, phosphorylation, glycosylation, methylation, AMPylation, and de-AMPylation, phosphocholination, and de-phosphocholination. We focus on the host cell pathways targeted by the bacteria catalyzed PTMs and we stress the importance of the PTMs in the Legionella infection strategy. Finally, we highlight that the discovery of these PTMs undoubtedly made significant breakthroughs on the molecular basis of Legionella pathogenesis but also lead the way in improving our knowledge of the eukaryotic PTMs and complex cellular processes that are associated to. PMID:25713573

  4. Ciliate Paramecium is a natural reservoir of Legionella pneumophila.

    PubMed

    Watanabe, Kenta; Nakao, Ryo; Fujishima, Masahiro; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2016-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, replicates within alveolar macrophages and free-living amoebae. However, the lifestyle of L. pneumophila in the environment remains largely unknown. Here we established a novel natural host model of L. pneumophila endosymbiosis using the ciliate Paramecium caudatum. We also identified Legionella endosymbiosis-modulating factor A (LefA), which contributes to the change in life stage from endosymbiosis to host lysis, enabling escape to the environment. We isolated L. pneumophila strains from the environment, and they exhibited cytotoxicity toward P. caudatum and induced host lysis. Acidification of the Legionella-containing vacuole (LCV) was inhibited, and enlarged LCVs including numerous bacteria were observed in P. caudatum infected with L. pneumophila. An isogenic L. pneumophila lefA mutant exhibited decreased cytotoxicity toward P. caudatum and impaired the modification of LCVs, resulting in the establishment of endosymbiosis between them. Our results suggest that L. pneumophila may have a mechanism to switch their endosymbiosis in protistan hosts in the environment. PMID:27079173

  5. Ciliate Paramecium is a natural reservoir of Legionella pneumophila

    PubMed Central

    Watanabe, Kenta; Nakao, Ryo; Fujishima, Masahiro; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2016-01-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, replicates within alveolar macrophages and free-living amoebae. However, the lifestyle of L. pneumophila in the environment remains largely unknown. Here we established a novel natural host model of L. pneumophila endosymbiosis using the ciliate Paramecium caudatum. We also identified Legionella endosymbiosis-modulating factor A (LefA), which contributes to the change in life stage from endosymbiosis to host lysis, enabling escape to the environment. We isolated L. pneumophila strains from the environment, and they exhibited cytotoxicity toward P. caudatum and induced host lysis. Acidification of the Legionella-containing vacuole (LCV) was inhibited, and enlarged LCVs including numerous bacteria were observed in P. caudatum infected with L. pneumophila. An isogenic L. pneumophila lefA mutant exhibited decreased cytotoxicity toward P. caudatum and impaired the modification of LCVs, resulting in the establishment of endosymbiosis between them. Our results suggest that L. pneumophila may have a mechanism to switch their endosymbiosis in protistan hosts in the environment. PMID:27079173

  6. Ciliate Paramecium is a natural reservoir of Legionella pneumophila

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenta; Nakao, Ryo; Fujishima, Masahiro; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2016-04-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, replicates within alveolar macrophages and free-living amoebae. However, the lifestyle of L. pneumophila in the environment remains largely unknown. Here we established a novel natural host model of L. pneumophila endosymbiosis using the ciliate Paramecium caudatum. We also identified Legionella endosymbiosis-modulating factor A (LefA), which contributes to the change in life stage from endosymbiosis to host lysis, enabling escape to the environment. We isolated L. pneumophila strains from the environment, and they exhibited cytotoxicity toward P. caudatum and induced host lysis. Acidification of the Legionella-containing vacuole (LCV) was inhibited, and enlarged LCVs including numerous bacteria were observed in P. caudatum infected with L. pneumophila. An isogenic L. pneumophila lefA mutant exhibited decreased cytotoxicity toward P. caudatum and impaired the modification of LCVs, resulting in the establishment of endosymbiosis between them. Our results suggest that L. pneumophila may have a mechanism to switch their endosymbiosis in protistan hosts in the environment.

  7. Association between Legionella pneumophila and amoebae in water.

    PubMed

    Henke, M; Seidel, K M

    1986-09-01

    The presence of amoebae and Legionella pneumophila in ground-water, drinking water supplies and whirlpools was investigated. Volumes of 10 to 1,000 ml were concentrated by membrane filtration. L. pneumophila was detected on buffered charcoal yeast extract (BCYE) agar, and amoebae by inverting filters on nonnutrient agar plates seeded with Escherichia coli that were incubated at 37 C for up to 12 days. In 65% of the samples positive for L. pneumophila amoebae were also detected. L. pneumophila and amoebae were detected together in 38% of warm drinking water samples. The highest isolation temperature for amoebae was 57 C, but fewer amoebae were detected above than below 50 C. In cold drinking water, amoebae were found in 88% of samples. The presence of L. pneumophila and amoebae in whirlpool waters (42%) presents a risk for man. Fresh environmental isolates of an Acanthamoeba species and L. pneumophila serogroup 4 were used for laboratory experiments. The amoebae supported intracellular multiplication of L. pneumophila in Chang's medium and autoclaved tap water, as shown by colony-forming unit (CFU) counts, direct fluorescent antibody test and Gimenez staining. Results confirmed that interaction between L. pneumophila and amoebae could occur in nature, and that the latter could act as hosts for legionellae and support their growth. PMID:3793452

  8. Taxonomic investigation of Legionella pneumophila using monoclonal antibodies.

    PubMed

    Brindle, R J; Bryant, T N; Draper, P W

    1989-03-01

    A panel of 19 monoclonal antibodies was used to produce patterns of immunofluorescent staining of 468 isolates of Legionella pneumophila. Twelve monoclonal antibodies were selected that divided L. pneumophila into 17 phenons which, in the majority of cases, conform to serogroup divisions. These phenons are more easily defined than the present serogroups, and isolates can be placed in them with little ambiguity. The standardized set of monoclonal antibodies was also used to define the subgroups of serogroup 1. PMID:2654183

  9. Rapid Method for Enumeration of Viable Legionella pneumophila and Other Legionella spp. in Water

    PubMed Central

    Delgado-Viscogliosi, Pilar; Simonart, Tristan; Parent, Virginie; Marchand, Grégory; Dobbelaere, Marie; Pierlot, Eric; Pierzo, Véronique; Menard-Szczebara, Florence; Gaudard-Ferveur, Elisabeth; Delabre, Karine; Delattre, Jean Marie

    2005-01-01

    A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required. PMID:16000824

  10. Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba.

    PubMed

    Dupuy, Mathieu; Mazoua, Stéphane; Berne, Florence; Bodet, Charles; Garrec, Nathalie; Herbelin, Pascaline; Ménard-Szczebara, Florence; Oberti, Sandrine; Rodier, Marie-Hélène; Soreau, Sylvie; Wallet, France; Héchard, Yann

    2011-01-01

    Free-living amoebae might be pathogenic by themselves and be a reservoir for bacterial pathogens, such as Legionella pneumophila. Not only could amoebae protect intra-cellular Legionella but Legionella grown within amoebae could undergo physiological modifications and become more resistant and more virulent. Therefore, it is important to study the efficiency of treatments on amoebae and Legionella grown within these amoebae to improve their application and to limit their impact on the environment. With this aim, we compared various water disinfectants against trophozoites of three Acanthamoeba strains and L. pneumophila alone or in co-culture. Three oxidizing disinfectants (chlorine, monochloramine, and chlorine dioxide) were assessed. All the samples were treated with disinfectants for 1 h and the disinfectant concentration was followed to calculate disinfectant exposure (Ct). We noticed that there were significant differences of susceptibility among the Acanthamoeba strains. However no difference was observed between infected and non-infected amoebae. Also, the comparison between the three disinfectants indicates that monochloramine was efficient at the same level towards free or co-cultured L. pneumophila while chlorine and chlorine dioxide were less efficient on co-cultured L. pneumophila. It suggests that these disinfectants should have different modes of action. Finally, our results provide for the first time disinfectant exposure values for Acanthamoeba treatments that might be used as references for disinfection of water systems. PMID:21093012

  11. DIFFERENCE IN VIRULENCE OF ENVIRONMENTAL ISOLATES OF 'LEGIONELLA PNEUMOPHILA'

    EPA Science Inventory

    Endemic nosocomial Legionnaires disease has occurred at Ohio State University Medical Center for several years. Two subtypes of Legionella pneumophila serogroup 1 (UH-1 and RH-1) have been isolated in approximately equal numbers from hospital potable water. However, almost all cl...

  12. Molecular Pathogenesis of Infections Caused by Legionella pneumophila

    PubMed Central

    Newton, Hayley J.; Ang, Desmond K. Y.; van Driel, Ian R.; Hartland, Elizabeth L.

    2010-01-01

    Summary: The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection. PMID:20375353

  13. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A

    PubMed Central

    Belyi, Yury; Niggeweg, Ricarda; Opitz, Bastian; Vogelsgesang, Martin; Hippenstiel, Stefan; Wilm, Matthias; Aktories, Klaus

    2006-01-01

    Legionella pneumophila, the causal agent of Legionnaires' disease, is an intracellular parasite and invades and proliferates within different eukaryotic cells, including human alveolar macrophages. After several 100-fold multiplication within host cells, the pathogens are released for new invasion by induction of apoptosis or necrosis. Here we report that L. pneumophila produces a glucosyltransferase, which selectively modifies an ≈50-kDa mammalian protein by using UDP-glucose as a cosubstrate. MS analysis identified the protein substrate as the mammalian elongation factor (EF)1A. Legionella glucosyltransferase modifies its eukaryotic protein substrate at serine-53, which is located in the GTPase domain of the EF. Glucosylation of EF1A results in inhibition of eukaryotic protein synthesis and death of target cells. Our findings show a mode of inhibition of protein synthesis by microbial pathogens and offer a perspective for understanding of the host-pathogen interaction of L. pneumophila. PMID:17068130

  14. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila

    PubMed Central

    Fonseca, Maris V.; Swanson, Michele S.

    2014-01-01

    The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication. PMID:24575391

  15. Presence and Persistence of Viable, Clinically Relevant Legionella pneumophila Bacteria in Garden Soil in the Netherlands

    PubMed Central

    van Heijnsbergen, E.; van Deursen, A.; Bouwknegt, M.; Bruin, J. P.; Schalk, J. A. C.

    2016-01-01

    ABSTRACT Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila. Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. IMPORTANCE Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. PMID:27316958

  16. Population structure and minimum core genome typing of Legionella pneumophila

    PubMed Central

    Qin, Tian; Zhang, Wen; Liu, Wenbin; Zhou, Haijian; Ren, Hongyu; Shao, Zhujun; Lan, Ruiting; Xu, Jianguo

    2016-01-01

    Legionella pneumophila is an important human pathogen causing Legionnaires’ disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila. PMID:26888563

  17. Population structure and minimum core genome typing of Legionella pneumophila.

    PubMed

    Qin, Tian; Zhang, Wen; Liu, Wenbin; Zhou, Haijian; Ren, Hongyu; Shao, Zhujun; Lan, Ruiting; Xu, Jianguo

    2016-01-01

    Legionella pneumophila is an important human pathogen causing Legionnaires' disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila. PMID:26888563

  18. Legionella pneumophila Seropositivity-Associated Factors in Latvian Blood Donors

    PubMed Central

    Valciņa, Olga; Pūle, Daina; Lucenko, Irina; Krastiņa, Dita; Šteingolde, Žanete; Krūmiņa, Angelika; Bērziņš, Aivars

    2015-01-01

    Continuous environmental exposure of humans to Legionella may induce immune responses and generation of antibodies. The aim of this study was to investigate the seroprevalence of Legionella pneumophila serogroups (SG) 1–6 in the general healthy population and identify the associated host-related and environmental risk factors. L. pneumophila SG 1–6 seroprevalence among a total of 2007 blood samples collected from healthy donors was 4.8%. Seroprevalence was higher in women (5.9%) than men (3.3%) and in areas with a larger number of inhabitants, ranging from 3.5% in rural regions to 6.8% in the capital, Riga. Blood samples from inhabitants of apartment buildings tested positive for L. pneumophila in more cases (5.8%) compared to those from inhabitants of single-family homes (2.7%). Residents of buildings with a municipal hot water supply system were more likely to be seropositive for L. pneumophila (OR = 3.16, 95% CI 1.26–7.91). Previous episodes of fever were additionally identified as a risk factor (OR = 2.42, 95% CI 1.43–4.1). In conclusion, centralized hot water supply, female gender and previous episodes of fever were determined as the main factors associated with L. pneumophila seropositivity in our study population. PMID:26703696

  19. Targeting single-nucleotide polymorphisms in the 16S rRNA gene to detect and differentiate Legionella pneumophila and non-Legionella pneumophila species.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-08-01

    A PCR-based method targeting single-nucleotide polymorphisms (SNPs) in the 16S rRNA gene was developed for differential identification of Legionella pneumophila and non-Legionella pneumophila. Based on the bioinformatics analysis for 176 Legionella 16S rRNA gene fragments of 56 different Legionella species, a set of SNPs, A(628)C(629) was found to be highly specific to L. pneumophila strains. A multiplex assay was designed that was able to distinguish sites with limited sequence heterogeneity between L. pneumophila and non-L. pneumophila in the targeted 16S rRNA gene. The assay amplified a 261-bp amplicon for Legionella spp. and a set of 203- and 97-bp amplicons only specific to L. pneumophila species. Among 49 ATCC strains and 284 Legionella isolates from environmental water and clinical samples, 100 % of L. pneumophila and non-L. pneumophila strains were correctly identified and differentiated by this assay. The assay presents a more rapid, sensitive and alternative method to the currently available PCR-sequencing detection and differentiation method. PMID:27112927

  20. Legionella pneumophila requires polyamines for optimal intracellular growth.

    PubMed

    Nasrallah, Gheyath K; Riveroll, Angela L; Chong, Audrey; Murray, Lois E; Lewis, P Jeffrey; Garduño, Rafael A

    2011-09-01

    The Gram-negative intracellular pathogen Legionella pneumophila replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophila expressing a translocation reporter consisting of the Bordetella pertussisa denylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2 induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophila may require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophila replication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophila proliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila. PMID:21742865

  1. Macrophage permissiveness for Legionella pneumophila growth modulated by iron.

    PubMed Central

    Gebran, S J; Newton, C; Yamamoto, Y; Widen, R; Klein, T W; Friedman, H

    1994-01-01

    We have investigated the modulation of iron in two populations of macrophages which differ in susceptibility to Legionella pneumophila intracellular proliferation. Previously, we reported that thioglycolate-elicited peritoneal macrophages obtained from the inbred A/J mouse strain readily support the intracellular growth of L. pneumophila, while resident macrophages from the same strain do not. In this study, we show that A/J elicited macrophages exhibit markedly higher expression of transferrin receptor and intracellular iron content than A/J resident macrophages. Furthermore, apotransferrin and desferrioxamine inhibited the intracellular proliferation of L. pneumophila in elicited macrophages, and this suppression was reversed by the additions of Fe-transferrin or ferric nitrilotriacetate. Fe-transferrin and ferric nitrilotriacetate did not further increase the intracellular proliferation of L. pneumophila in thioglycolate-elicited macrophages. However, ferric citrate and ferric nitrilotriacetate stimulated in a dose-dependent manner the growth of L. pneumophila in resident macrophages. Furthermore, equimolar concentrations of desferrioxamine reversed the stimulatory effect of iron in these resident cells. These data provide evidence supporting the hypothesis that differences in susceptibility to L. pneumophila growth between permissive elicited macrophages and nonpermissive resident macrophages from the A/J mouse strain are due to intracellular availability of iron. PMID:8300214

  2. Acute Legionella pneumophila infection masquerading as acute alcoholic hepatitis

    PubMed Central

    Hunter, Jonathan Michael; Chan, Julian; Reid, Angeline Louise; Tan, Chistopher

    2013-01-01

    A middle-aged man had deteriorated rapidly in hospital after being misdiagnosed with acute alcoholic hepatitis. Acute Legionnaires disease (Legionellosis) was subsequently diagnosed on rapid antigen urinary testing and further confirmed serologically. This led to appropriate antibiotic treatment and complete clinical resolution. Physicians caring for patients with alcohol-related liver disease should consider Legionella pneumophila in their differential diagnosis even with a paucity of respiratory symptoms. PMID:23355576

  3. Effects of three oxidizing biocides on Legionella pneumophila serogroup 1.

    PubMed Central

    Domingue, E L; Tyndall, R L; Mayberry, W R; Pancorbo, O C

    1988-01-01

    A study was conducted to determine the bactericidal effects of ozone and hydrogen peroxide relative to that of free chlorine on Legionella pneumophila serogroup 1. In laboratory batch-type experiments, organisms seeded at various densities were exposed to different concentrations of these biocides in demand-free buffers. Bactericidal effects were measured by determining the ability of L. pneumophila to grow on buffered charcoal-yeast extract agar supplemented with alpha-ketoglutarate. Ozone was the most potent of the three biocides, with a greater than 99% kill of L. pneumophila occurring during a 5-min exposure to 0.10 to 0.30 micrograms of O3 per ml. The bactericidal action of O3 was not markedly affected by changes in pH or temperature. Concentrations of 0.30 and 0.40 micrograms of free chlorine per ml killed 99% of the L. pneumophila after 30- and 5-min exposures, respectively. A 30-min exposure to 1,000 micrograms of H2O2 per ml was required to effect a 99% reduction of the viable L. pneumophila population. However, no viable L. pneumophila could be detected after a 24-h exposure to 100 or 300 micrograms of H2O2 per ml. Attempts were made to correlate the biocidal effects of O3 and H2O2 with the oxidation of L. pneumophila fatty acids. These tests indicated that certain biocidal concentrations of O3 and H2O2 resulted in a loss or severe reduction of L. pneumophila unsaturated fatty acids. PMID:3377492

  4. Draft Genome Sequences of Five Legionella pneumophila Strains Isolated from Environmental Water Samples

    PubMed Central

    Watanabe, Kenta; Nakao, Ryo; Shimizu, Takashi; Watarai, Masahisa

    2015-01-01

    Legionella pneumophila is the causative agent of legionellosis. Here, we report the draft genome sequences of five L. pneumophila strains, Bnt314, Ofk308, Twr292, Ymg289, and Ymt294, isolated from environmental water samples. Comparative analyses of these genomes may reveal the survival mechanisms and virulence of L. pneumophila in the natural environment. PMID:25977442

  5. Genome Sequence of an Environmental Isolate of the Bacterial Pathogen Legionella pneumophila

    PubMed Central

    Ma, Jian; He, Yongqun

    2013-01-01

    We report here the genomic sequence of Legionella pneumophila strain LPE509 from the water distribution system of a hospital in Shanghai, China. This is the first complete genome sequence of an environmental L. pneumophila isolate. Genomic analyses identified approximately 600 genes unique to LPE509 compared to those of the 7 available L. pneumophila genomes. PMID:23792742

  6. Control of Host Cell Phosphorylation by Legionella Pneumophila

    PubMed Central

    Haenssler, Eva; Isberg, Ralph R.

    2011-01-01

    Phosphorylation is one of the most frequent modifications in intracellular signaling and is implicated in many processes ranging from transcriptional control to signal transduction in innate immunity. Many pathogens modulate host cell phosphorylation pathways to promote growth and establish an infectious disease. The intracellular pathogen Legionella pneumophila targets and exploits the host phosphorylation system throughout the infection cycle as part of its strategy to establish an environment beneficial for replication. Key to this manipulation is the L. pneumophila Icm/Dot type IV secretion system, which translocates bacterial proteins into the host cytosol that can act directly on phosphorylation cascades. This review will focus on the different stages of L. pneumophila infection, in which host kinases and phosphatases contribute to infection of the host cell and promote intracellular survival of the pathogen. This includes the involvement of phosphatidylinositol 3-kinases during phagocytosis as well as the role of phosphoinositide metabolism during the establishment of the replication vacuole. Furthermore, L. pneumophila infection modulates the NF-κB and mitogen-activated protein kinase pathways, two signaling pathways that are central to the host innate immune response and involved in regulation of host cell survival. Therefore, L. pneumophila infection manipulates host cell signal transduction by phosphorylation at multiple levels. PMID:21747787

  7. Legionella pneumophila lipopolysaccharide activates the classical complement pathway.

    PubMed Central

    Mintz, C S; Schultz, D R; Arnold, P I; Johnson, W

    1992-01-01

    Legionella pneumophila is a gram-negative bacterium capable of entering and growing in alveolar macrophages and monocytes. Complement and complement receptors are important in the uptake of L. pneumophila by human mononuclear phagocytes. The surface molecules of L. pneumophila that activate the complement system are unknown. To identify these factors, we investigated the effects of L. pneumophila lipopolysaccharide (LPS) on the classical and alternative complement pathways of normal human serum by functional hemolytic assays. Although incubation of LPS in normal human serum at 37 degrees C resulted in the activation of both pathways, complement activation proceeded primarily through the classical pathway. Activation of the classical pathway by LPS was dependent on natural antibodies of the immunoglobulin M class that were present in various quantities in sera from different normal individuals but were absent in an immunoglobulin-deficient serum obtained from an agammaglobulinemic patient. Additional studies using sheep erythrocytes coated with LPS suggested that the antibodies recognized antigenic sites in the carbohydrate portion of LPS. The ability of LPS to interact with the complement system suggests a role for LPS in the uptake of L. pneumophila by mononuclear phagocytes. PMID:1612744

  8. Rapid quantification method for Legionella pneumophila in surface water.

    PubMed

    Wunderlich, Anika; Torggler, Carmen; Elsässer, Dennis; Lück, Christian; Niessner, Reinhard; Seidel, Michael

    2016-03-01

    World-wide legionellosis outbreaks caused by evaporative cooling systems have shown that there is a need for rapid screening methods for Legionella pneumophila in water. Antibody-based methods for the quantification of L. pneumophila are rapid, non-laborious, and relatively cheap but not sensitive enough for establishment as a screening method for surface and drinking water. Therefore, preconcentration methods have to be applied in advance to reach the needed sensitivity. In a basic test, monolithic adsorption filtration (MAF) was used as primary preconcentration method that adsorbs L. pneumophila with high efficiency. Ten-liter water samples were concentrated in 10 min and further reduced to 1 mL by centrifugal ultrafiltration (CeUF). The quantification of L. pneumophila strains belonging to the monoclonal subtype Bellingham was performed via flow-based chemiluminescence sandwich microarray immunoassays (CL-SMIA) in 36 min. The whole analysis process takes 90 min. A polyclonal antibody (pAb) against L. pneumophila serogroup 1-12 and a monoclonal antibody (mAb) against L. pneumophila SG 1 strain Bellingham were immobilized on a microarray chip. Without preconcentration, the detection limit was 4.0 × 10(3) and 2.8 × 10(3) CFU/mL determined by pAb and mAb 10/6, respectively. For samples processed by MAF-CeUF prior to SMIA detection, the limit of detection (LOD) could be decreased to 8.7 CFU/mL and 0.39 CFU/mL, respectively. A recovery of 99.8 ± 15.9% was achieved for concentrations between 1-1000 CFU/mL. The established combined analytical method is sensitive for rapid screening of surface and drinking water to allow fast hygiene control of L. pneumophila. PMID:26873217

  9. Legionella pneumophila Arthritis: use of medium specific for Mycobacteria for isolation of L. pneumophila in culture of articular fluid specimens.

    PubMed

    Bemer, Pascale; Leautez, Sophie; Ninin, Emmanuelle; Jarraud, Sophie; Raffi, François; Drugeon, Henri

    2002-07-01

    We report the first case, to our knowledge, of acute purulent arthritis due to Legionella pneumophila in an immunosuppressed patient. L. pneumophila was isolated from samples of blood and articular fluid cultured with use of medium specific for mycobacteria (Bactec 13A medium). PMID:12060893

  10. Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure.

    PubMed

    Stojak, Amber R; Raftery, Tara; Klaine, Stephen J; McNealy, Tamara L

    2011-12-01

    Legionella pneumophila is a pathogenic bacterium that forms biofilms in natural and anthropogenic habitats. This feature not only facilitates colonization but also limits the effectiveness of biocides. L. pneumophila was exposed to three sizes of citrate-capped gold nanospheres in both planktonic and biofilm stages. TEM micrographs indicated that gold nanoparticles (AuNPs) adsorbed to the bacterial cell surface, were absorbed into the cells, aggregated within the cells, and integrated into the extrapolymeric matrix of the biofilm. Both 4 and 18 nm, but not 50 nm AuNPs caused an alteration of biofilm morphology. Treatment with 20 nm polystyrene spheres did not induce these changes suggesting that the response was a result of the gold and not just the presence of the nanosphere. The morphological changes observed in the biofilm suggest that aquatic ecosystems may be affected by nanoparticle exposure. This may compromise ecosystem functions such as nutrient cycling facilitated by natural biofilms. PMID:21294606

  11. Characterization of a fluorescent compound isolated from Legionella pneumophila

    SciTech Connect

    Swanson, S.J.

    1987-01-01

    Legionella pneumophila requires the presence of amino acids for growth and utilizes them for energy. Along with other amino acids, either phenylalanine or tyrosine is essential for the growth of the organism and tyrosine has been identified as an energy source. When L. pneumophila is grown in the presence of tyrosine, a brown melanin-like pigment is produced. A green fluorescent pigment, fg2, was isolated from centrifuged culture fluid after the organism was grown in the presence of tyrosine. Fg2 is water soluble with a molecular weight of 152 as determined by mass spectral analysis. A mutant of L. pneumophila unable to produce fg2 was isolated to assist in elucidation of the biosynthesis of fg2. Radiolabeling experiments were utilized to conclude that neither tyrosine nor any other amino acid was a precursor in the biosynthesis of fg2. Shikimic acid, an intermediate in tyrosine biosynthesis, was found to also be an intermediate in the biosynthesis of fg2. A series of experiments in which L. pneumophila was grown in a chemically defined medium containing various combinations of aromatic amino acids determined that fg2 and the brown pigment always occur in tandem.

  12. Antibacterial activities of plant essential oils against Legionella pneumophila.

    PubMed

    Chang, Ching-Wen; Chang, Wei-Lung; Chang, Shang-Tzen; Cheng, Sen-Sung

    2008-01-01

    The objective of this study was to determine the antimicrobial activity of essential oils (EOs) extracted from Cinnamomum osmophloeum leaves and different tissues of Cryptomeria japonica against pathogenic Legionella pneumophila at 42 degrees C. Ten kinds of EOs were extracted by water distillation and their chemical constituents were quantified by gas chromatography-mass spectroscopy (GC-MS). The results showed that cinnamon leaf EO possessed stronger anti-L. pneumophila activity than C. japonica EO. In particular, the highest bactericidal effect was noted in contact with C. osmophloeum leaf EO of cinnamaldehyde type (characterized by its major constituent of cinnamaldehyde accounting for 91.3% of EO), regardless of contacted cell concentration (2 and 4 log CFU ml(-1)) or exposure time (10 and 60 min). Cinnamaldehyde is responsible for anti-L. pneumophila activity based on the results of antimicrobial testing and statistical analysis. Stepwise regression analyses show that EO concentration is the most significant factor affecting the bioactivity of EO. It is concluded that C. osmophloeum leaf oil of cinnamaldehyde type and its major constituent, cinnamaldehyde, possess strong anti-L. pneumophila activities, and have the great potential to be used as an antibacterial agent to control legionellosis associated with hot tubs and spa facilities widely used in homes and resorts. PMID:17659763

  13. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  14. Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems

    EPA Science Inventory

    Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems Jill Hoelle, Michael Coughlin, Elizabeth Sotkiewicz, Jingrang Lu, Stacy Pfaller, Mark Rodgers, and Hodon Ryu U.S. Environmental Protection Agency, Cincinnati...

  15. Legionella pneumophila restrains autophagy by modulating the host's sphingolipid metabolism.

    PubMed

    Rolando, Monica; Escoll, Pedro; Buchrieser, Carmen

    2016-06-01

    Sphingolipids are bioactive molecules playing a key role as membrane components, but they are also central regulators of many intracellular processes including macroautophagy/autophagy. In particular, sphingosine-1-phosphate (S1P) is a critical mediator that controls the balance between sphingolipid-induced autophagy and cell death. S1P levels are adjusted via S1P synthesis, dephosphorylation or degradation, catalyzed by SGPL1 (sphingosine-1-phosphate lyase 1). Intracellular pathogens are able to modulate many different host cell pathways to allow their replication. We have found that infection of eukaryotic cells with the human pathogen Legionella pneumophila triggers a change in the host cell sphingolipid metabolism and specifically affects the levels of sphingosine. Indeed, L. pneumophila secretes a protein highly homologous to eukaryotic SGPL1 (named LpSPL). We solved the crystal structure of LpSPL and showed that it encodes lyase activity, targets the host's sphingolipid metabolism, and plays a role in starvation-induced autophagy during L. pneumophila infection to promote intracellular survival. PMID:27191778

  16. Intragenic tandem repeat variation between Legionella pneumophila strains

    PubMed Central

    Coil, David A; Vandersmissen, Liesbeth; Ginevra, Christophe; Jarraud, Sophie; Lammertyn, Elke; Anné, Jozef

    2008-01-01

    Background Bacterial genomes harbour a large number of tandem repeats, yet the possible phenotypic effects of those found within the coding region of genes are only beginning to be examined. Evidence exists from other organisms that these repeats can be involved in the evolution of new genes, gene regulation, adaptation, resistance to environmental stresses, and avoidance of the immune system. Results In this study, we have investigated the presence and variability in copy number of intragenic tandemly repeated sequences in the genome of Legionella pneumophila, the etiological agent of a severe pneumonia known as Legionnaires' disease. Within the genome of the Philadelphia strain, we have identified 26 intragenic tandem repeat sequences using conservative selection criteria. Of these, seven were "polymorphic" in terms of repeat copy number between a large number of L. pneumophila serogroup 1 strains. These strains were collected from a wide variety of environments and patients in several geographical regions. Within this panel of strains, all but one of these seven genes exhibited statistically different patterns in repeat copy number between samples from different origins (environmental, clinical, and hot springs). Conclusion These results support the hypothesis that intragenic tandem repeats could play a role in virulence and adaptation to different environments. While tandem repeats are an increasingly popular focus of molecular typing studies in prokaryotes, including in L. pneumophila, this study is the first examining the difference in tandem repeat distribution as a function of clinical or environmental origin. PMID:19077205

  17. Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    PubMed Central

    Dolezal, Pavel; Aili, Margareta; Tong, Janette; Jiang, Jhih-Hang; Marobbio, Carlo M.; Lee, Sau fung; Schuelein, Ralf; Belluzzo, Simon; Binova, Eva; Mousnier, Aurelie; Frankel, Gad; Giannuzzi, Giulia; Palmieri, Ferdinando; Gabriel, Kipros; Naderer, Thomas; Hartland, Elizabeth L.; Lithgow, Trevor

    2012-01-01

    The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms. PMID:22241989

  18. Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons

    EPA Science Inventory

    Legionella persistence and amplification in premise drinking water systems is a known contributor to legionellosis outbreaks, especially in the presence of suitable eukaryotic hosts. Here we examined Legionella pneumophila behavior within drinking water biofilms grown on copper ...

  19. Draft Genome Sequence of Legionella pneumophila D-5864, a Serogroup 6 Strain

    PubMed Central

    Morrison, Shatavia S.; Kozak-Muiznieks, Natalia A.; Sammons, Scott; Rowe, Lori A.; Frace, Mike

    2015-01-01

    Legionella pneumophila is the leading etiology of legionellosis infections in North America and Europe. Here we report the draft genome sequence of L. pneumophila D-5864, a serogroup 6 strain, which was isolated from a bronchial alveolar lavage specimen of a male patient from Arizona in 2009. Genes within the lipopolysaccharide (LPS)-biosynthesis region could potentially be determinants of serogroup specificity. PMID:25573935

  20. PRODUCTION OF MONOCLONAL ANTIBODIES TO 'LEGIONELLA PNEUMOPHILA' SEROGROUPS 1 AND 6

    EPA Science Inventory

    To better define the surface antigens of Legionella pneumophila for clinical and experimental purposes, were produced monoclonal antibodies to L. pneumophila serogroups 1 and 6. Two hybridomas were produced in serogroup 1. One antibody, LP-I-17, recognized a serogroup-common anti...

  1. Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States

    EPA Science Inventory

    In the United States 3,522 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and r...

  2. Draft Genome Sequences of Legionella pneumophila JR32 and Lp01 Laboratory Strains Domesticated in Japan.

    PubMed

    Maita, Chinatsu; Matushita, Mizue; Okubo, Torahiko; Matsuo, Junji; Miyake, Masaki; Nagai, Hiroki; Yamaguchi, Hiroyuki

    2016-01-01

    We report here the draft genome sequences of two Legionella pneumophila variant strains (JR32 and Lp01_666) originally derived from a Philadelphia-1 clinical isolate, domesticated in Japan, with distinct susceptibility to amoebae. Detailed genomic analysis will allow us to better understand Legionella adaptation and survival mechanisms in host cells. PMID:27491976

  3. Draft Genome Sequences of Legionella pneumophila JR32 and Lp01 Laboratory Strains Domesticated in Japan

    PubMed Central

    Maita, Chinatsu; Matushita, Mizue; Okubo, Torahiko; Matsuo, Junji; Miyake, Masaki; Nagai, Hiroki

    2016-01-01

    We report here the draft genome sequences of two Legionella pneumophila variant strains (JR32 and Lp01_666) originally derived from a Philadelphia-1 clinical isolate, domesticated in Japan, with distinct susceptibility to amoebae. Detailed genomic analysis will allow us to better understand Legionella adaptation and survival mechanisms in host cells. PMID:27491976

  4. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes.

    PubMed

    Hellinga, Jacqueline R; Garduño, Rafael A; Kormish, Jay D; Tanner, Jennifer R; Khan, Deirdre; Buchko, Kristyn; Jimenez, Celine; Pinette, Mathieu M; Brassinga, Ann Karen C

    2015-08-01

    Legionella pneumophila, a causative agent of Legionnaires' disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila. PMID:26131925

  5. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes

    PubMed Central

    Hellinga, Jacqueline R; Garduño, Rafael A; Kormish, Jay D; Tanner, Jennifer R; Khan, Deirdre; Buchko, Kristyn; Jimenez, Celine; Pinette, Mathieu M; Brassinga, Ann Karen C

    2015-01-01

    Legionella pneumophila, a causative agent of Legionnaires’ disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila. PMID:26131925

  6. Discrete nanoparticles induce loss of Legionella pneumophila biofilms from surfaces.

    PubMed

    Raftery, Tara D; Kerscher, Petra; Hart, Ashley E; Saville, Steven L; Qi, Bin; Kitchens, Christopher L; Mefford, Olin Thompson; McNealy, Tamara L

    2014-08-01

    Nanoparticles (NPs) have been shown to induce dispersal events in microbial biofilms but the mechanism of the dispersal is unknown. Biofilms contaminate many man-made aquatic systems such as cooling towers, spas and dental lines. Within these biofilms, Legionella pneumophila is a primary pathogen, leading to these environments serving as sources for disease outbreaks. Here we show a reduction in biofilm bio-volume upon treatment with citrate-coated 6-nm platinum NPs, polyethylene glycol (PEG)-coated 11-nm gold NPs, and PEG-coated 8-nm iron oxide NPs. Treatment with citrate-coated 8-nm silver NPs, however, did not reduce biomass. The synthesis of NPs that remain dispersed and resist irreversible aggregation in the exposure media appears to be a key factor in the ability of NPs to induce biofilm dispersal. PMID:23586422

  7. Common epitope on the lipopolysaccharide of Legionella pneumophila recognized by a monoclonal antibody.

    PubMed Central

    Barthe, C; Joly, J R; Ramsay, D; Boissinot, M; Benhamou, N

    1988-01-01

    Serogroup-specificity of Legionella pneumophila is related to lipopolysaccharide (LPS), and few cross-reactions between serogroups have been observed with rabbit or monkey antisera. C57BL/6 mice were sequentially immunized with crude outer membrane fractions of L. pneumophila serogroups 1, 5, and 7, Legionella bozemanii, and Legionella micdadei. Spleen cells from these mice were then fused with the Sp2-0/Ag14 mouse myeloma cell line. Outer membrane-rich fractions and LPS were prepared from L. pneumophila serogroups 1 to 8 and other Legionella and non-Legionella species. Immunoblots of these extracts were performed with monoclonal antibody obtained from these fusions. One of these monoclonal antibodies recognized an epitope common to all tested serogroups of L. pneumophila and attached to the major constituent of the outer membrane, LPS. This antibody did not react with other Legionella species and numerous gram-negative rods other than Pseudomonas fluorescens CDC93. This monoclonal antibody may be useful in preliminary identification of L. pneumophila as an alternative to direct fluorescent-antibody testing. Images PMID:2454935

  8. Occurrence of Legionella pneumophila in lakes serving as a cooling system of a power plant.

    PubMed

    Walczak, Maciej; Kletkiewicz, Hanna; Burkowska, Aleksandra

    2013-12-01

    This study was aimed at determining whether Legionella pneumophila can be found in lakes serving as a natural cooling system of a power plant. Water samples were collected from five lakes forming the cooling system of the power plants Pątnów and Konin (Poland). The numbers of bacteria belonging to different phylogenetic groups (bacteria, Legionella sp. and L. pneumophila) were determined with the use of a molecular FISH method. The results of the present study show that thermally altered aquatic environments provide perfect conditions for the growth of L. pneumophila. These microorganisms were identified in the biofilm throughout the entire research period, and in the subsurface water layer in July and August. The percentage of L. pneumophila species in the Legionella genus was 11.55-12.42%. PMID:24141270

  9. Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila.

    PubMed

    Dey, Rafik; Bodennec, Jacques; Mameri, Mouh Oulhadj; Pernin, Pierre

    2009-01-01

    Legionella pneumophila is known as a facultative intracellular parasite of free-living soil and freshwater amoebae, of which several species have been shown to support the growth of the pathogenic bacteria. We report for the first time the behaviour of two strains (c2c and Z503) of the amoeba Willaertia magna towards different strains of L. pneumophila serogroup 1 and compared it with Acanthamoeba castellanii and Hartmannella vermiformis, known to be L. pneumophila permissive. In contrast to the results seen with other amoebae, W. magna c2c inhibited the growth of one strain of Legionella (L. pneumophila, Paris), but not of others belonging to the same serogroup (L. pneumophila, Philadelphia and L. pneumophila, Lens). Also, the different L. pneumophila inhibited cell growth and induced cell death in A. castellanii, H. vermiformis and W. magna Z503 within 3-4 days while W. magna c2c strain remained unaffected even up to 7 days. Electron microscopy demonstrated that the formation of numerous replicative phagosomes observed within Acanthamoeba and Hartmannella is rarely seen in W. magna c2c cocultured with L. pneumophila. Moreover, the morphological differences were observed between L. pneumophila cultured either with Willaertia or other amoebae. These observations show that amoebae are not all equally permissive to L. pneumophila and highlight W. magna c2c as particularly resistant towards some strains of this bacterium. PMID:19016880

  10. Survival of biofilm-associated Legionella pneumophila exposed to various stressors.

    PubMed

    Vatansever, Cansu; Türetgen, Irfan

    2015-03-01

    Biofilm is crucial for the multiplication and survival of Legionella pneumophila. The survival after different stressors of biofilm-associated L. pneumophila was evaluated during 150 days in this study. Mixed biofilms were allowed to develop on coupons in a biofilm reactor, which was experimentally infected with L. pneumophila. A dose of 2 ppm of monochloramine was found ineffective to kill younger (60 days) biofilm-associated L. pneumophila, whereas shock treatment (500 and 1000 ppm) was found to be significantly successful, as expected. Also, short exposure to 60 °C was insufficient to kill all young L. pneumophila within biofilms. A significant amount of young L. pneumophila bacteria also resisted pH 11 and 3 molar salt solution. No significant change was observed after exposure to 4 °C, ultra pure water and pH 5. Interestingly, L. pneumophila bacteria in biofilm became more sensitive after 90 days. PMID:25842533

  11. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    PubMed

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection. PMID:25176171

  12. The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments

    PubMed Central

    Loza-Correa, Maria; Sahr, Tobias; Rolando, Monica; Daniels, Craig; Petit, Pierre; Skarina, Tania; Valero, Laura Gomez; Dervins-Ravault, Delphine; Honoré, Nadine; Savchenko, Aleksey; Buchrieser, Carmen

    2014-01-01

    Summary Legionella pneumophila uses aquatic protozoa as replication niche and protection from harsh environments. Although L. pneumophila is not known to have a circadian clock, it encodes homologues of the KaiBC proteins of Cyanobacteria that regulate circadian gene expression. We show that L. pneumophila kaiB, kaiC and the downstream gene lpp1114, are transcribed as a unit under the control of the stress sigma factor RpoS. KaiC and KaiB of L. pneumophila do not interact as evidenced by yeast and bacterial two-hybrid analyses. Fusion of the C-terminal residues of cyanobacterial KaiB to Legionella KaiB restores their interaction. In contrast, KaiC of L. pneumophila conserved autophosphorylation activity, but KaiB does not trigger the dephosphorylation of KaiC like in Cyanobacteria. The crystal structure of L. pneumophila KaiB suggests that it is an oxidoreductase-like protein with a typical thioredoxin fold. Indeed, mutant analyses revealed that the kai operon-encoded proteins increase fitness of L. pneumophila in competitive environments, and confer higher resistance to oxidative and sodium stress. The phylogenetic analysis indicates that L. pneumophila KaiBC resemble Synechosystis KaiC2B2 and not circadian KaiB1C1. Thus, the L. pneumophila Kai proteins do not encode a circadian clock, but enhance stress resistance and adaption to changes in the environments. PMID:23957615

  13. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    PubMed

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  14. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages

    PubMed Central

    Abu Khweek, Arwa; Fernández Dávila, Natalia S.; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Novotny, Laura A.; Bakaletz, Lauren O.; Amer, Amal O.

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  15. Characterization of Legionella pneumophila Isolated from Environmental Water and Ashiyu Foot Spa

    PubMed Central

    Tachibana, Masato; Nakamoto, Masaya; Kimura, Yui; Shimizu, Takashi; Watarai, Masahisa

    2013-01-01

    Hot springs are the most common infectious source of Legionella pneumophila in Japan. However, little is known about the association between L. pneumophila and environmental waters other than hot springs. In this study, water samples from 22 environmental water sites were surveyed; of the 22 samples, five were L. pneumophila positive (23%). L. pneumophila was mainly isolated from ashiyu foot spas, a type of hot spring for the feet (3/8, 38%). These isolates had genetic loci or genes that encoded the virulence factors of L. pneumophila. Moreover, these isolates showed higher intracellular growth and stronger cytotoxicity compared with the reference strain. These results suggest that ashiyu foot spa can be the original source for L. pneumophila infection. PMID:23956987

  16. Whole-Genome Mapping as a Novel High-Resolution Typing Tool for Legionella pneumophila

    PubMed Central

    Euser, Sjoerd M.; Landman, Fabian; Bruin, Jacob P.; IJzerman, Ed P.; den Boer, Jeroen W.; Schouls, Leo M.

    2015-01-01

    Legionella is the causative agent for Legionnaires' disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h. PMID:26202110

  17. Complete Genome Sequences of Three Outbreak-Associated Legionella pneumophila Isolates.

    PubMed

    Morrison, Shatavia S; Desai, Heta P; Mercante, Jeffrey W; Lapierre, Pascal; Raphael, Brian H; Musser, Kimberlee; Winchell, Jonas M

    2016-01-01

    We report here the complete genome sequences of three Legionella pneumophila isolates that are associated with a Legionnaires' disease outbreak in New York in 2012. Two clinical isolates (D7630 and D7632) and one environmental isolate (D7631) were recovered from this outbreak. A single isolate-specific virulence gene was found in D7632. These isolates were included in a large study evaluating the genomic resolution of various bioinformatics approaches for L. pneumophila serogroup 1 isolates. PMID:27445383

  18. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    PubMed

    Jung, Anna Lena; Stoiber, Cornelia; Herkt, Christina E; Schulz, Christine; Bertrams, Wilhelm; Schmeck, Bernd

    2016-04-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host. PMID:27105429

  19. Complete Genome Sequences of Three Outbreak-Associated Legionella pneumophila Isolates

    PubMed Central

    Morrison, Shatavia S.; Desai, Heta P.; Mercante, Jeffrey W.; Lapierre, Pascal; Raphael, Brian H.; Musser, Kimberlee

    2016-01-01

    We report here the complete genome sequences of three Legionella pneumophila isolates that are associated with a Legionnaires’ disease outbreak in New York in 2012. Two clinical isolates (D7630 and D7632) and one environmental isolate (D7631) were recovered from this outbreak. A single isolate-specific virulence gene was found in D7632. These isolates were included in a large study evaluating the genomic resolution of various bioinformatics approaches for L. pneumophila serogroup 1 isolates. PMID:27445383

  20. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages

    PubMed Central

    Jung, Anna Lena; Stoiber, Cornelia; Herkt, Christina E.; Schulz, Christine; Bertrams, Wilhelm; Schmeck, Bernd

    2016-01-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a’s targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host. PMID:27105429

  1. Widespread Legionella pneumophila contamination of dental stations in a dental school without apparent human infection.

    PubMed Central

    Oppenheim, B. A.; Sefton, A. M.; Gill, O. N.; Tyler, J. E.; O'Mahony, M. C.; Richards, J. M.; Dennis, P. J.; Harrison, T. G.

    1987-01-01

    Following isolation of Legionella pneumophila from a special dental station water circuit, used primarily to cool high-speed dental drills which produce fine aerosols, a case finding and environmental survey was undertaken. Widespread colonization of the dental stations was found and the results suggested that amplification of the background levels of L. pneumophila was taking place within the stations. However there was no evidence for transmission causing human infection. PMID:3609170

  2. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  3. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  4. The Legionella pneumophila Collagen-Like Protein Mediates Sedimentation, Autoaggregation, and Pathogen-Phagocyte Interactions

    PubMed Central

    Abdel-Nour, Mena; Duncan, Carla; Prashar, Akriti; Rao, Chitong; Ginevra, Christophe; Jarraud, Sophie; Low, Donald E.; Ensminger, Alexander W.; Terebiznik, Mauricio R.

    2014-01-01

    Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae. PMID:24334670

  5. Necessity and Effect of Combating Legionella pneumophila in Municipal Shower Systems

    PubMed Central

    Wiik, Ragnhild; Krøvel, Anne Vatland

    2014-01-01

    The objective was to obtain research-based, holistic knowledge about necessity and effect of practiced measures against L. pneumophila in municipal shower systems in Stavanger, Norway. The effects of hot water treatment and membrane-filtering were investigated and compared to no intervention at all. The studies were done under real-world conditions. Additionally, a surveillance pilot study of municipal showers in Stavanger was performed. The validity of high total plate count (TPC) as an indication of L. pneumophila was evaluated. A simplified method, named “dripping method”, for detection and quantification of L. pneumophila was developed. The sensitivity of the dripping method is 5 colony-forming units of L. pneumophila/ml. The transference of L. pneumophila from shower water to aerosols was studied. Interviews and observational studies among the stakeholders were done in order to identify patterns of communication and behavior in a Legionella risk perspective. No substantial effects of the measures against L. pneumophila were demonstrated, except for a distally placed membrane filter. No significant positive correlation between TPC and L. pneumophila concentrations were found. L. pneumophila serogroup 2–14 was demonstrated in 21% of the 29 buildings tested in the surveillance pilot. Relatively few cells of L. pneumophila were transferred from shower water to aerosols. Anxiety appeared as the major driving force in the risk governance of Legionella. In conclusion, the risk of acquiring Legionnaires' disease from municipal shower systems is evaluated as low and uncertain. By eliminating ineffective approaches, targeted Legionella risk governance can be practiced. Risk management by surveillance is evaluated as appropriate. PMID:25490721

  6. Isolation on Chocolate Agar Culture of Legionella pneumophila Isolates from Subcutaneous Abscesses in an Immunocompromised Patient

    PubMed Central

    Cavalie, Laurent; Daviller, Benjamin; Dubois, Damien; Mantion, Benoît; Delobel, Pierre; Debard, Alexa; Prere, Marie-Françoise; Marchou, Bruno; Martin-Blondel, Guillaume

    2015-01-01

    Cutaneous infections due to Legionella species have rarely been reported (L. J. Padrnos, J. E. Blair, S. Kusne, D. J. DiCaudo, and J. R. Mikhael, Transpl Infect Dis 16:307–314, 2014; P. W. Lowry, R. J. Blankenship, W. Gridley, N. J. Troup, and L. S. Tompkins, N Engl J Med 324:109–113, 1991; M. K. Waldor, B. Wilson, and M. Swartz, Clin Infect Dis 16:51–53, 1993). Here we report the identification of Legionella pneumophila isolates, from subcutaneous abscesses in an immunocompromised patient, that grew in an unusual medium for Legionella bacteria. PMID:26292305

  7. Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila

    NASA Technical Reports Server (NTRS)

    Cargill, K. L.; Pyle, B. H.; Sauer, R. L.; McFeters, G. A.

    1992-01-01

    The susceptibility of Legionella pneumophila to iodination was studied with cultures grown in well water, on rich agar media, and attached to stainless-steel surfaces. Legionella pneumophila grown in water cultures in association with other microorganisms were less sensitive to disinfection by chlorine and iodine than were agar-passaged cultures. Differences in sensitivity to disinfection between water-cultured and agar-grown legionellae were determined by comparing C x T values (concentration in milligrams per litre multiplied by time in minutes to achieve 99% decrease in viability) and CM x T values (concentration in molarity). Iodine (1500x) gave a greater difference in CM x T values than did chlorine (68x). Iodine was 50 times more effective than chlorine when used with agar-grown cultures but was only twice as effective when tested against water-grown Legionella cultures. C x T x S values (C x T multiplied by percent survivors), which take into consideration the percent surviving bacteria, were used to compare sensitivities in very resistant populations, such as those in biofilms. Water cultures of legionellae associated with stainless-steel surfaces were 135 times more resistant to iodination than were unattached legionellae, and they were 210,000 times more resistant than were agar-grown cultures. These results indicate that the conditions under which legionellae are grown can dramatically affect their susceptibility to some disinfectants and must be considered when evaluating the efficacy of a disinfecting agent.

  8. Identification of Legionella Pneumophila in Intubated Patients With TaqMan Real Time PCR

    PubMed Central

    Divan Khosroshahi, Nader; Naserpour Farivar, Taghi; Johari, Pouran

    2015-01-01

    Background: Legionellaceae contains Legionella genus with over 52 species and 64 serogroups. It is one of the most important causes of respiratory disease in human. More than 30% of hospital-acquired pneumonia is caused by Legionella. Ventilator-associated pneumonia (VAP) is an infection acquired in hospital wards, particularly in intensive care unit (ICU). This disease approximately affects 9% to 20% of intubated patients. Mortality in these patients varies between 8% and 76%. Legionella is one of the important factors for infection in intubated patients. Objectives: The present study was aimed to investigate the use of molecular methods in diagnosis of infection caused by Legionella pneumophila. Materials and Methods: In this study, 109 samples of lung secretions collected from intubated patients admitted to ICU wards of four university hospitals in a three-month period were examined. Cultivation and Real time Polymerase Chain Reaction (PCR) methods were used to assess L. pneumophila colonization in these samples. Results: Eleven samples had positive results using real time PCR analysis of 16s rRNA gene fragments specific for L. pneumophila, but according to culture method on specific buffered charcoal-yeast extract medium (BCYE), no positive cases were detected. Of the total positive cases, six were males, one female and four infants. The seven adults aged 40-65 years. Conclusions: Using molecular methods in diagnosis of infection caused by L. pneumophila has a great value because of its high specificity and rapid diagnosis potency. PMID:25834717

  9. Identification of Legionella pneumophila Genes Important for Infection of Amoebas by Signature-Tagged Mutagenesis

    PubMed Central

    Polesky, Andrea H.; Ross, Julianna T. D.; Falkow, Stanley; Tompkins, Lucy S.

    2001-01-01

    Legionella pneumophila is a facultative intracellular gram-negative rod that causes pneumonia in humans. Free-living amoebas are thought to serve as a reservoir for Legionella infections. Signature-tagged mutagenesis was employed to identify Legionella pneumophila genes necessary for survival in the amoeba Acanthamoeba castellanii. Six mutant strains were defective in assays of invasion and intracellular growth. Four mutants also exhibited invasion and replication defects in Hartmannella vermiformis, an amoeba linked to hospital outbreaks of Legionella pneumonia. The six mutants also were tested in macrophages derived from peripheral blood mononuclear cells. Two mutants had intracellular replication defects, and two different strains entered cells less efficiently. Two transposon insertions were in known L. pneumophila genes, lspK and aroB. The other four were in novel genes. One gene has similarity to a cytochrome c-type biogenesis protein of Pseudomonas fluorescens. Another has similarity to a transcriptional activator regulating flagellar biosynthesis in Vibrio cholera. The third is similar to traA of Rhizobium sp. strain NGR234, which is involved in conjugal transfer of DNA. The fourth has no homology. By using survival in amoeba as a selection, we have isolated mutant strains with a range of phenotypes; and we have potentially identified new L. pneumophila virulence genes. PMID:11159993

  10. Complete Genome Sequences of the Historical Legionella pneumophila Strains OLDA and Pontiac

    PubMed Central

    Mercante, Jeffrey W.; Morrison, Shatavia S.; Raphael, Brian H.

    2016-01-01

    Here, we report the complete genome sequences of Legionella pneumophila serogroup 1 strains OLDA and Pontiac, which predate the 1976 Philadelphia Legionnaires’ disease outbreak. Strain OLDA was isolated in 1947 from an apparent sporadic case, and strain Pontiac caused an explosive outbreak at a Michigan health department in 1968. PMID:27563044

  11. AEROSOLS CONTAINING 'LEGIONELLA PNEUMOPHILA' GENERATED BY SHOWER HEADS AND HOT-WATER FAUCETS

    EPA Science Inventory

    Shower heads and hot-water faucets containing Legionella pneumophila were evaluated for aerosolization of the organism with a multistage cascade impaction air sampler. Air was collected above two shower doors and from the same rooms approximately 3 ft (91 cm) from the shower door...

  12. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay

    PubMed Central

    Shen, Shu-Min; Chou, Ming-Yuan; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-01-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 102 and 3.3 × 105 cells/l in river water and 72.1–5.7 × 106 cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors. PMID:26184706

  13. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga

    PubMed Central

    2013-01-01

    Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells. PMID:23442526

  14. WIN 57273 is bactericidal for Legionella pneumophila grown in alveolar macrophages.

    PubMed Central

    Edelstein, P H; Edelstein, M A

    1989-01-01

    The in vitro antimicrobial activity of WIN 57273, a new quinolone antimicrobial agent, was determined for 21 Legionella strains, using broth macrodilution and agar dilution testing methods; ciprofloxacin and erythromycin were tested as well. Three different buffered yeast extract media were used for the agar dilution studies, two of which were made with starch rather than charcoal. Broth macrodilution susceptibility testing was performed with buffered yeast extract broth and two Legionella pneumophila strains. Antimicrobial inhibition of L. pneumophila growth in guinea pig alveolar macrophages was also studied, using a method able to detect bacterial killing. The MICs for 90% of the 21 strains of Legionella spp. grown on buffered charcoal yeast extract medium were 0.125 microgram/ml for WIN 57273, 0.25 microgram/ml for ciprofloxacin, and 1.0 micrograms/ml for erythromycin. These MICs were falsely high, because of inhibition of drug activity by the medium used. Use of less drug-antagonistic, starch-containing media did not support good growth of the test strains. The broth macrodilution MICs for two strains of L. pneumophila serogroup 1 were less than or equal to 0.03 microgram/ml for WIN 57273 and ciprofloxacin and 0.125 microgram/ml for erythromycin. WIN 57273, ciprofloxacin, and erythromycin all inhibited growth of L. pneumophila in guinea pig alveolar macrophages at concentrations of 1 microgram/ml, but only WIN 57273 prevented regrowth or killed L. pneumophila after removal of extracellular antimicrobial agent. PMID:2619277

  15. Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride.

    PubMed

    Kuiper, Melanie W; Wullings, Bart A; Akkermans, Antoon D L; Beumer, Rijkelt R; van der Kooij, Dick

    2004-11-01

    The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-microm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% +/- 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation. PMID:15528550

  16. First Case of Legionnaire's Disease Caused by Legionella anisa in Spain and the Limitations on the Diagnosis of Legionella non-pneumophila Infections

    PubMed Central

    Vaccaro, Lucianna; Izquierdo, Fernando; Magnet, Angela; Hurtado, Carolina; Salinas, Mireya A.; Gomes, Thiago Santos; Angulo, Santiago; Salso, Santiago; Pelaez, Jesús; Tejeda, Maria Isabel; Alhambra, Almudena; Gómez, Carmen; Enríquez, Ana; Estirado, Eva; Fenoy, Soledad; del Aguila, Carmen

    2016-01-01

    Legionnaires’ disease is a severe form of pneumonia, with worldwide relevance, caused by Legionella spp. Approximately 90% of all cases of legionellosis are caused by Legionella pneumophila, but other species can also be responsible for this infection. These bacteria are transmitted by inhalation of aerosols or aspiration of contaminated water. In Spain, environmental studies have demonstrated the presence of Legionella non-pneumophila species in drinking water treatment plants and water distribution networks. Aware that this evidence indicates a risk factor and the lack of routine assays designed to detect simultaneously diverse Legionella species, we analyzed 210 urine samples from patients presenting clinical manifestations of pneumonia using a semi-nested PCR for partial amplification of the 16S rDNA gene of Legionella and a diagnostic method used in hospitals for Legionella antigen detection. In this study, we detected a total of 15 cases of legionellosis (7.1%) and the first case of Legionnaires’ disease caused by L. anisa in Spain. While the conventional method used in hospitals could only detect four cases (1.9%) produced by L. pneumophila serogroup 1, using PCR, the following species were identified: Legionella spp. (10/15), L. pneumophila (4/15) and L. anisa (1/15). These results suggest the need to change hospital diagnostic strategies regarding the identification of Legionella species associated with this disease. Therefore, the detection of Legionella DNA by PCR in urine samples seems to be a suitable alternative method for a sensitive, accurate and rapid diagnosis of Legionella pneumonia, caused by L. pneumophila and also for L. non-pneumophila species. PMID:27442238

  17. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    PubMed Central

    Supuran, Claudiu T.

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  18. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets.

    PubMed

    Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO₂ hydration, with kcat values in the range of (3.4-8.3) × 10⁵ s(-1) and kcat/KM values of (4.7-8.5) × 10⁷ M(-1)·s(-1). In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3-90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2-88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  19. Role of biofilm in protection of the replicative form of Legionella pneumophila.

    PubMed

    Andreozzi, Elisa; Di Cesare, Andrea; Sabatini, Luigia; Chessa, Elisa; Sisti, Davide; Rocchi, Marco; Citterio, Barbara

    2014-12-01

    The dual nature of Legionella pneumophila enables its survival in free and intracellular environments and underpins its infection and spread mechanisms. Experiments using bacterial cultures and improved RTqPCR protocols were devised to gain fresh insights into the role of biofilm in protecting the replicative form of L. pneumophila. mip gene expression was used as a marker of virulence in sessile (biofilm-bound) and planktonic (free-floating) cells of L. pneumophila serotype 1 ATCC 33152. The ratio of mip gene expression to transcriptionally active Legionella cells increased both in sessile and free-floating cells demonstrating an up-regulation of mip gene under nutrient depletion. However, a different trend was observed between the two forms, in planktonic cells the mip gene expression/transcriptionally active Legionella cells increased until the end of the experiment, while in the biofilm such increase was observed at the end of the experiment. These findings suggest a possible association between the switch to the transmissive phase of Legionella and a mip up-regulation and a role for biofilm in preserving Legionella cells in replicative form. Moreover, it has been shown that improved RTqPCR protocols are valuable tools to explore bacterial virulence. PMID:25023637

  20. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    SciTech Connect

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  1. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water.

    PubMed

    Gião, M S; Wilks, S A; Keevil, C W

    2015-04-01

    Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted. PMID:25686789

  2. The many forms of a pleomorphic bacterial pathogen—the developmental network of Legionella pneumophila

    PubMed Central

    Robertson, Peter; Abdelhady, Hany; Garduño, Rafael A.

    2014-01-01

    Legionella pneumophila is a natural intracellular bacterial parasite of free-living freshwater protozoa and an accidental human pathogen that causes Legionnaires' disease. L. pneumophila differentiates, and does it in style. Recent experimental data on L. pneumophila's differentiation point at the existence of a complex network that involves many developmental forms. We intend readers to: (i) understand the biological relevance of L. pneumophila's forms found in freshwater and their potential to transmit Legionnaires' disease, and (ii) learn that the common depiction of L. pneumophila's differentiation as a biphasic developmental cycle that alternates between a replicative and a transmissive form is but an oversimplification of the actual process. Our specific objectives are to provide updates on the molecular factors that regulate L. pneumophila's differentiation (Section The Differentiation Process and Its Regulation), and describe the developmental network of L. pneumophila (Section Dissecting Lp's Developmental Network), which for clarity's sake we have dissected into five separate developmental cycles. Finally, since each developmental form seems to contribute differently to the human pathogenic process and the transmission of Legionnaires' disease, readers are presented with a challenge to develop novel methods to detect the various L. pneumophila forms present in water (Section Practical Implications), as a means to improve our assessment of risk and more effectively prevent legionellosis outbreaks. PMID:25566200

  3. The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila.

    PubMed

    Robertson, Peter; Abdelhady, Hany; Garduño, Rafael A

    2014-01-01

    Legionella pneumophila is a natural intracellular bacterial parasite of free-living freshwater protozoa and an accidental human pathogen that causes Legionnaires' disease. L. pneumophila differentiates, and does it in style. Recent experimental data on L. pneumophila's differentiation point at the existence of a complex network that involves many developmental forms. We intend readers to: (i) understand the biological relevance of L. pneumophila's forms found in freshwater and their potential to transmit Legionnaires' disease, and (ii) learn that the common depiction of L. pneumophila's differentiation as a biphasic developmental cycle that alternates between a replicative and a transmissive form is but an oversimplification of the actual process. Our specific objectives are to provide updates on the molecular factors that regulate L. pneumophila's differentiation (Section The Differentiation Process and Its Regulation), and describe the developmental network of L. pneumophila (Section Dissecting Lp's Developmental Network), which for clarity's sake we have dissected into five separate developmental cycles. Finally, since each developmental form seems to contribute differently to the human pathogenic process and the transmission of Legionnaires' disease, readers are presented with a challenge to develop novel methods to detect the various L. pneumophila forms present in water (Section Practical Implications), as a means to improve our assessment of risk and more effectively prevent legionellosis outbreaks. PMID:25566200

  4. Three Genome Sequences of Legionella pneumophila subsp. pascullei Associated with Colonization of a Health Care Facility.

    PubMed

    Kozak-Muiznieks, Natalia A; Morrison, Shatavia S; Sammons, Scott; Rowe, Lori A; Sheth, Mili; Frace, Michael; Lucas, Claressa E; Loparev, Vladimir N; Raphael, Brian H; Winchell, Jonas M

    2016-01-01

    Here, we report the complete genome sequences of three Legionella pneumophila subsp. pascullei strains (including both serogroup 1 and 5 strains) that were found in the same health care facility in 1982 and 2012. PMID:27151801

  5. Three Genome Sequences of Legionella pneumophila subsp. pascullei Associated with Colonization of a Health Care Facility

    PubMed Central

    Kozak-Muiznieks, Natalia A.; Morrison, Shatavia S.; Sammons, Scott; Rowe, Lori A.; Sheth, Mili; Frace, Michael; Lucas, Claressa E.; Loparev, Vladimir N.; Raphael, Brian H.

    2016-01-01

    Here, we report the complete genome sequences of three Legionella pneumophila subsp. pascullei strains (including both serogroup 1 and 5 strains) that were found in the same health care facility in 1982 and 2012. PMID:27151801

  6. Hypoexpression of major histocompatibility complex molecules on Legionella pneumophila phagosomes and phagolysosomes.

    PubMed Central

    Clemens, D L; Horwitz, M A

    1993-01-01

    Legionella pneumophila is a facultative intracellular pathogen that parasitizes host mononuclear phagocytes. Cell-mediated immunity is pivotal to host defense against L. pneumophila, and the infected host cell may play a central role in processing and presenting parasite antigens to lymphocytes mediating cell-mediated immune response. However, in the case of L. pneumophila and intracellular parasites in general, little is known about the intracellular trafficking of parasite antigens, the influence of parasite infection on major histocompatibility complex (MHC) expression, or the relationship of MHC molecules to sites of parasite replication. To learn more about this, we have used flow cytometry to study the expression of HLA-DR by monocytes infected with L. pneumophila and cryosection immunogold electron microscopy to study the distribution of MHC class I and II molecules on L. pneumophila phagosomes. Flow cytometry analysis demonstrated that L. pneumophila infection has little effect on the overall expression of HLA-DR by monocytes. Cryosection immunogold studies revealed abundant staining for MHC class I and II molecules on the plasma membrane of infected monocytes but little or no staining on the membranes of mature L. pneumophila phagosomes. Cryosection immunogold studies of an avirulent mutant of L. pneumophila that, unlike the wild type, does not inhibit phagosome-lysosome fusion and subsequently survives but does not multiply in a phagolysosome yielded similar results. We have previously found that MHC class I and II molecules are excluded from nascent phagosomes during coiling and conventional phagocytosis. The present work demonstrates that MHC molecules do not accumulate appreciably in the L. pneumophila phagosome as it matures and at a point in the life cycle of the organism in which it is replicating and producing immunoprotective T-cell antigens. This suggests that L. pneumophila does not reside in a typical endosomal compartment in the host cell and

  7. Comparison of Legionella longbeachae and Legionella pneumophila cases in Scotland; implications for diagnosis, treatment and public health response.

    PubMed

    Cameron, R L; Pollock, K G J; Lindsay, D S J; Anderson, E

    2016-02-01

    The reported incidence of Legionnaires' disease caused by Legionella longbeachae has increased since 2008 in Scotland. While microbiological and epidemiological studies have identified exposure to growing media as a risk factor for infection, little is known about the differences regarding disease risk factors, clinical features and outcomes of infection with L. longbeachae when compared with L. pneumophila. A nested case-case study was performed comparing 12 L. longbeachae cases with 25 confirmed L. pneumophila cases. Fewer L. longbeachae infected patients reported being smokers [27% (95% CI 2-52%) vs. 68% (95% CI 50-86%), P = 0.034] but more L. longbeachae patients experienced breathlessness [67% (95% CI 40-94%) vs. 28% (95% CI 10-46%), P = 0.036]. Significantly more L. longbeachae-infected patients received treatment in intensive care [50% (95% CI 22-78%) vs. 12% (95% CI 0-25%), P = 0.036]. However, the differences in diagnostic methods between the two groups may have led to only the most severe cases of L. longbeachae being captured by the surveillance system. No differences were observed in any of the other pre-hospital symptoms assessed. Our results highlight the similarity of Legionnaires' disease caused by L. pneumophila and L. longbeachae, and reinforce the importance of diagnostic tools other than the urinary antigen assays for the detection of non-L. pneumophila species. Unfortunately, cases of community-acquired pneumonia caused by Legionella species will continue to be underdiagnosed unless routine testing criteria changes. PMID:26704297

  8. Isolation of protozoa from water associated with a legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila

    SciTech Connect

    Barbaree, J.M.; Fields, B.S.; Feeley, J.C.; Gorman, G.W.; Martin, W.T.

    1986-02-01

    At the site of a legionellosis outbreak, amoebae and two ciliates, Tetrahymena sp. and Cyclidium sp., were isolated from cooling-tower water containing Legionella pneumophila. The Tetrahymena sp. and the amoebae repeatedly showed the ability to support intracellular multiplication of L. pneumophila. Both were isolated from cooling towers specifically implicated as the source for the spread of legionellosis. These protozoa may be reservoirs supporting the survival and multiplication of virulent legionellae in cooling-tower water.

  9. Integrated Real-Time PCR for Detection and Monitoring of Legionella pneumophila in Water Systems▿

    PubMed Central

    Yaradou, Diaraf Farba; Hallier-Soulier, Sylvie; Moreau, Sophie; Poty, Florence; Hillion, Yves; Reyrolle, Monique; André, Janine; Festoc, Gabriel; Delabre, Karine; Vandenesch, François; Etienne, Jerome; Jarraud, Sophie

    2007-01-01

    We evaluated a ready-to-use real-time quantitative Legionella pneumophila PCR assay system by testing 136 hot-water-system samples collected from 55 sites as well as 49 cooling tower samples collected from 20 different sites, in parallel with the standard culture method. The PCR assay was reproducible and suitable for routine quantification of L. pneumophila. An acceptable correlation between PCR and culture results was obtained for sanitary hot-water samples but not for cooling tower samples. We also monitored the same L. pneumophila-contaminated cooling tower for 13 months by analyzing 104 serial samples. The culture and PCR results were extremely variable over time, but the curves were similar. The differences between the PCR and culture results did not change over time and were not affected by regular biocide treatment. This ready-to-use PCR assay for L. pneumophila quantification could permit more timely disinfection of cooling towers. PMID:17194840

  10. Bacterial colonization and occurrence of Legionella pneumophila in warm and cold water, in faucet aerators, and in drains of hospitals.

    PubMed

    Botzenhart, K; Heizmann, W; Sedaghat, S; Heeg, P; Hahn, T

    1986-12-01

    Warm and cold water as well as water from wash basin drains and faucet aerators was examined to determine the number of viable and dead bacteria by culture and by staining and to establish the spectrum of species with special consideration of Legionella pneumophila. The relation between the number of Legionella pneumophila, the temperature, and the iron content of the water was determined in three separate warm water systems. High colony counts (up to 8.9 X 10(5) colony-forming units), were detected in both warm and cold water at certain sampling sites. The most prevalent genera were Pseudomonas, Bacillus, Flavobacterium, Acinetobacter, and Moraxella. Legionella pneumophila was found in every building in 35 of 150 warm samples and in 1 of 43 cold water samples. The highest water temperature of a sample containing Legionella pneumophila was 64 degrees C. The correlation between high colony counts and the occurrence of Legionella pneumophila in the samples was not significant. High iron concentrations, however, appear to have a positive effect on the growth of Legionella pneumophila. PMID:3107260

  11. Legionella pneumophila: From potable water to treated greywater; quantification and removal during treatment.

    PubMed

    Blanky, Marina; Rodríguez-Martínez, Sara; Halpern, Malka; Friedler, Eran

    2015-11-15

    Greywater is an alternative water source that can help alleviate stress on depleted water resources. The main options for greywater reuse are toilet flushing and garden irrigation, both producing aerosols. For that reason transmission of inhalable pathogens like Legionella present a potential risk. To improve the understanding about Legionella in greywater, we traced the pathogen seasonally from the potable water system to the final steps of the greywater treatment in four houses in northern Israel. Physicochemical and microbiological parameters were analyzed in order to assess background greywater quality and to establish possible associations with Legionella. The mean concentrations of Legionella pneumophila isolated from the potable water system were 6.4×10(2) and 5.9×10(3) cfu/l in cold and hot water respectively. By amending the ISO protocol for Legionella isolation from drinking water, we succeeded in quantifying Legionella in greywater. The mean Legionella concentrations that were found in raw, treated and treated chlorinated greywater were 1.2×10(5), 2.4×10(4) and 5.7×10(3) cfu/l respectively. While Legionella counts in potable water presented a seasonal pattern with high concentrations in summer, its counts in greywater presented an almost inversed pattern. Greywater treatment resulted in 95% decrease in Legionella counts. No significant difference was found between Legionella concentrations in potable water and the treated chlorinated greywater. These findings indicate that regarding Legionella, reusing treated chlorinated greywater would exhibit a risk that is very similar to the risk associated with using potable water for the same non-potable uses. PMID:26188406

  12. Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax

    SciTech Connect

    Smith-Somerville, H.E.; Huryn, V.B.; Walker, C.; Winters, A.L. )

    1991-09-01

    The processing of phagosomes containing Legionella pneumophila and Escerichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. Electron micrographs showed no evidence of degradation of L. pneumophila cells through 12 h, while E. coli cells in the process of being digested were observed in vacuoles 75 min after the addition of the bacterium T. vorax ingested L. pneumophila normally, but by 10 to 15 min, the vacuolar membrane appeared denser than that surrounding nascent or newly formed phagosomes. In older vacuoles, electron-dense particles lined portions of the membrane. Acidification of the phagosomes indicated by the accumulation of neutral red was similar in T. vorax containing L. pneumophila or E. coli. This ciliate could provide a model for the analysis of virulence-associated intracellular events independent of the replication of L. pneumophila.

  13. The progeny of Legionella pneumophila in human macrophages shows unique developmental traits.

    PubMed

    Abdelhady, Hany; Garduño, Rafael A

    2013-12-01

    The Gram-negative bacterium Legionella pneumophila is an intracellular parasite of amoebae and an accidental human pathogen that causes a noncommunicable atypical pneumonia known as Legionnaires' disease (LD). In some mammalian cells (e.g. HeLa), L. pneumophila follows a biphasic developmental cycle, differentiating between a replicative form that actively multiplies intracellularly, and a mature infectious form (MIF) that emerges as progeny. To date, it is not known whether the L. pneumophila progenies that emerge from amoebae and human macrophages reach similar developmental stages. Here, we demonstrate that in relation to the fully differentiated and highly infectious MIFs that emerge from amoebae, the L. pneumophila progeny that emerges from macrophages is morphologically undifferentiated, less resistant to antibiotics and less able to initiate infections. However, the L. pneumophila progeny from macrophages did not show any defects in intracellular growth. We thus concluded that macrophage infection with L. pneumophila yields a low number of bona fide MIFs. Because MIFs are the transmissive forms of L. pneumophila produced in vivo, our results showing that they are not efficiently produced in cultured macrophages provide an initial insight into why LD is not communicable. PMID:24206397

  14. Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax.

    PubMed Central

    Smith-Somerville, H E; Huryn, V B; Walker, C; Winters, A L

    1991-01-01

    The processing of phagosomes containing Legionella pneumophila and Escherichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22 degrees C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. Electron micrographs showed no evidence of degradation of L. pneumophila cells through 12 h, while E. coli cells in the process of being digested were observed in vacuoles 75 min after the addition of the bacterium. T. vorax ingested L. pneumophila normally, but by 10 to 15 min, the vacuolar membrane appeared denser than that surrounding nascent or newly formed phagosomes. In older vacuoles, electron-dense particles lined portions of the membrane. Acidification of the phagosomes indicated by the accumulation of neutral red was similar in T. vorax containing L. pneumophila or E. coli. This ciliate could provide a model for the analysis of virulence-associated intracellular events independent of the replication of L. pneumophila. Images PMID:1768146

  15. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    EPA Science Inventory

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  16. Legionella pneumophila Persists within Biofilms Formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under Dynamic Flow Conditions

    PubMed Central

    Stewart, Catherine R.; Muthye, Viraj; Cianciotto, Nicholas P.

    2012-01-01

    Legionella pneumophila, the agent of Legionnaires' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms. Therefore, we examined the ability of L. pneumophila (clinical isolate 130b) to persist within biofilms formed by various types of aquatic bacteria, using a bioreactor with flow, steel surfaces, and low-nutrient conditions. L. pneumophila was able to intercalate into and persist within a biofilm formed by Klebsiella pneumoniae, Flavobacterium sp. or Pseudomonas fluorescens. The levels of L. pneumophila within these biofilms were as much as 4×104 CFU per cm2 of steel coupon and lasted for at least 12 days. These data document that K. pneumoniae, Flavobacterium sp., and P. fluorescens can promote the presence of L. pneumophila in dynamic biofilms. In contrast to these results, L. pneumophila 130b did not persist within a biofilm formed by Pseudomonas aeruginosa, confirming that some bacteria are permissive for Legionella colonization whereas others are antagonistic. In addition to colonizing certain mono-species biofilms, L. pneumophila 130b persisted within a two-species biofilm formed by K. pneumoniae and Flavobacterium sp. Interestingly, the legionellae were also able to colonize a two-species biofilm formed by K. pneumoniae and P. aeruginosa, demonstrating that a species that is permissive for L. pneumophila can override the inhibitory effect(s) of a non-permissive species. PMID:23185637

  17. Development of a standardized subgrouping scheme for Legionella pneumophila serogroup 1 using monoclonal antibodies.

    PubMed Central

    Joly, J R; McKinney, R M; Tobin, J O; Bibb, W F; Watkins, I D; Ramsay, D

    1986-01-01

    A panel of monoclonal antibodies to Legionella pneumophila serogroup 1 and a subclassification scheme were developed in a collaborative project among three laboratories. The seven most useful monoclonal antibodies were selected from three previously developed panels on the basis of indirect fluorescent antibody patterns with 83 strains of L. pneumophila serogroup 1 that were obtained from widely distributed geographic locations. The isolates were divided into 10 major subgroups on the basis of reactivity patterns that can be readily reproduced in any laboratory and are not subject to major inconsistencies of interpretation of staining intensity. A standard protocol for the indirect fluorescent antibody procedure was also developed. PMID:3517064

  18. Impact of non-Legionella bacteria on the uptake and intracellular replication of Legionella pneumophila in Acanthamoeba castellanii and Naegleria lovaniensis.

    PubMed

    Declerck, P; Behets, J; Delaedt, Y; Margineanu, A; Lammertyn, E; Ollevier, F

    2005-11-01

    In aquatic environments, Legionella pneumophila survives, in association with other bacteria, within biofilms by multiplying in free-living amoebae. The precise mechanisms underlying several aspects of the uptake and intracellular replication of L. pneumophila in amoebae, especially in the presence of other bacteria, remain unknown. In the present study, we examined the competitive effect of selected non-Legionella bacteria (Escherichia coli, Aeromonas hydrophila, Flavobacterium breve, and Pseudomonas aeruginosa) on the uptake of L. pneumophila serogroup 1 by the amoebae Acanthamoeba castellanii and Naegleria lovaniensis. We also investigated their possible influence on the intracellular replication of L. pneumophila in both amoeba species. Our results showed that the non-Legionella bacteria did not compete with L. pneumophila for uptake, suggesting that the amoeba hosts took in L. pneumophila through a specific and presumably highly efficient uptake mechanism. Living and heat-inactivated P. aeruginosa best supported the replication of L. pneumophila in N. lovaniensis and A. castellanii, respectively, whereas for both amoeba species, E. coli yielded the lowest number of replicated L. pneumophila. Furthermore, microscopic examination showed that 100% of the A. castellanii and only 2% of the N. lovaniensis population were infected with L. pneumophila at the end of the experiment. This study clearly shows the influence of some non-Legionella bacteria on the intracellular replication of L. pneumophila in A. castellanii and N. lovaniensis. It also demonstrates the different abilities of the two tested amoeba species to serve as a proper host for the replication and distribution of the human pathogen in man-made aquatic environments such as cooling towers, shower heads, and air conditioning systems with potential serious consequences for human health. PMID:16341636

  19. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    PubMed

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated. PMID:7103477

  20. Identification and functional characterization of K+ transporters encoded by Legionella pneumophila kup genes

    PubMed Central

    Hori, Juliana I.; Pereira, Marcelo S.F.; Roy, Craig R.; Nagai, Hiroki; Zamboni, Dario S.

    2013-01-01

    Summary Legionnaires’ disease is an emerging, severe, pneumonia-like illness caused by the Gram-negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication. Here, we investigate three L. pneumophila genes with high similarity to the E. coli K+ transporters. These three genes were expressed by L. pneumophila and have been designated kupA, kupB and kupC. Investigation using the L. pneumophila kup mutants revealed that kupA is involved in K+ acquisition during axenic growth. The kupA mutants replicated efficiently in rich axenic media, but poorly in a chemically defined medium. The kupA mutants were defective in the recruitment of polyubiquitinated proteins to the Legionella-containing vacuole that is formed in macrophages and displayed an intracellular multiplication defect during the replication in Acanthamoeba castellanii and in mouse macrophages. We found that bafilomycin treatment of macrophages was able to rescue the growth defects of kupA mutants, but it did not influence the replication of wild-type bacteria. The defects identified in kupA mutants of L. pneumophila were complemented by the expression E. coli trkD/Kup gene in trans, a bona fide K+ transporter encoded by E. coli. Collectively, our data indicate that KupA is a functional K+ transporter expressed by L. pneumophila that facilitates the bacterial replication intracellularly and in nutrient-limited conditions. PMID:23848378

  1. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation.

    PubMed

    Hindré, Thomas; Brüggemann, Holger; Buchrieser, Carmen; Héchard, Yann

    2008-01-01

    In aquatic environments, biofilms constitute an ecological niche where Legionella pneumophila persists as sessile cells. However, very little information on the sessile mode of life of L. pneumophila is currently available. We report here the development of a model biofilm of L. pneumophila strain Lens and the first transcriptome analysis of L. pneumophila biofilm cells. Global gene expression analysis of sessile cells as compared to two distinct populations of planktonic cells revealed that a substantial proportion of L. pneumophila genes is differentially expressed, as 2.3 % of the 2932 predicted genes exhibited at least a twofold change in gene expression. Comparison with previous results defining the gene expression profile of replicative- and transmissive-phase Legionella suggests that sessile cells resemble bacteria in the replicative phase. Further analysis of the most strongly regulated genes in sessile cells identified two induced gene clusters. One contains genes that encode alkyl hydroperoxide reductases known to act against oxidative stress. The second encodes proteins similar to PvcA and PvcB that are involved in siderophore biosynthesis in Pseudomonas aeruginosa. Since iron has been reported to modify biofilm formation in other species, we further focused on iron control of gene expression and biofilm formation. Among the genes showing the greatest differences in expression between planktonic cells and biofilm, only pvcA and pvcB were regulated by iron concentration. A DeltapvcA L. pneumophila mutant showed no changes in biofilm formation compared to the wild-type, suggesting that the pvcA product is not mandatory for biofilm formation. However, biofilm formation by L. pneumophila wild-type and a DeltapvcA strain was clearly inhibited in iron-rich conditions. PMID:18174123

  2. Permissiveness of freshly isolated environmental strains of amoebae for growth of Legionella pneumophila.

    PubMed

    Dupuy, Mathieu; Binet, Marie; Bouteleux, Celine; Herbelin, Pascaline; Soreau, Sylvie; Héchard, Yann

    2016-03-01

    Legionella pneumophila is a pathogenic bacterium commonly found in water and responsible for severe pneumonia. Free-living amoebae are protozoa also found in water, which feed on bacteria by phagocytosis. Under favorable conditions, some L. pneumophila are able to resist phagocytic digestion and even multiply within amoebae. However, it is not clear whether L. pneumophila could infect at a same rate a large range of amoebae or if there is some selectivity towards specific amoebal genera or strains. Also, most studies have been performed using collection strains and not with freshly isolated strains. In our study, we assess the permissiveness of freshly isolated environmental strains of amoebae, belonging to three common genera (i.e. Acanthamoeba, Naegleria and Vermamoeba), for growth of L. pneumophila at three different temperatures. Our results indicated that all the tested strains of amoebae were permissive to L. pneumophila Lens and that there was no significant difference between the strains. Intracellular proliferation was more efficient at a temperature of 40°C. In conclusion, our work suggests that, under favorable conditions, virulent strains of L. pneumophila could equally infect a large number of isolates of common freshwater amoeba genera. PMID:26832643

  3. DISTRIBUTION OF LEGIONELLA PNEUMOPHILA SEROGROUPS ISOLATED FROM WATER SYSTEMS OF PUBLIC FACILITIES IN BUSAN, SOUTH KOREA.

    PubMed

    Hwang, In-Yeong; Park, Eun-Hee; Park, Yon-Koung; Park, Sun-Hee; Sung, Gyung-Hye; Park, Hye-Young; Lee, Young-Choon

    2016-05-01

    Legionella pneumophila is the major causes of legionellosis worldwide. The distribution of L. pneumophila was investigated in water systems of public facilities in Busan, South Korea during 2007 and 2013-2014. L. pneumophila was isolated from 8.3% of 3,055 samples, of which the highest isolation rate (49%) was from ships and the lowest 4% from fountains. Serogroups of L. pneumophila isolated in 2007 were distributed among serogroups (sgs) 1-7 with the exception of sg 4, while those of isolates during 2013 and 2014 included also 11 sgs ( 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 15). L. pneumophila sg 1 was predominated among isolates from fountains (75%), hotels (60%), buildings (44%), hospitals (38%), and public baths (37%), whereas sg 3 and sg 7 was the most prevalent from ships (46%) and factories (40%), respectively. The predominated serogroup of L. pneumophila isolates from hot and cooling tower water was sg 1 (35% and 46%, respectively), while from cold water was sg 3 (29%). These results should be useful for epidemiological surveys to identify sources of outbreaks of legionellosis in Busan, South Korea. PMID:27405130

  4. Localization of Legionella pneumophila in tissue using FITC-conjugated specific antibody and a background stain

    SciTech Connect

    Lowry, B.S.; Vega, F.G. Jr.; Hedlund, K.W.

    1982-05-01

    Lightly staining formalin-fixed or fresh tissue with Gram's crystal violet obviates interfering nonspecific fluorescence by acting as a metachromatic stain in ultraviolet light. Against the easily recognized background of tissues and cells fluorescein isothiocyanate-tagged Legionella pneumophila antibodies can then identify this bacterium in or on individual cells. This procedure can be run at room temperature in two hours and has the potential for further widespread applicability.

  5. Geographical and Temporal Structures of Legionella pneumophila Sequence Types in Comunitat Valenciana (Spain), 1998 to 2013

    PubMed Central

    Sánchez-Busó, Leonor; Coscollà, Mireia; Palero, Ferran; Camaró, María Luisa; Gimeno, Ana; Moreno, Pilar; Escribano, Isabel; López Perezagua, María Mar; Colomina, Javier; Vanaclocha, Herme

    2015-01-01

    Legionella pneumophila is an accidental human pathogen associated with aerosol formation in water-related sources. High recombination rates make Legionella populations genetically diverse, and nearly 2,000 different sequence types (STs) have been described to date for this environmental pathogen. The spatial distribution of STs is extremely heterogeneous, with some variants being present worldwide and others being detected at only a local scale. Similarly, some STs have been associated with disease outbreaks, such as ST578 or ST23. Spain is among the European countries with the highest incidences of reported legionellosis cases, and specifically, Comunitat Valenciana (CV) is the second most affected area in the country. In this work, we aimed at studying the overall diversity of Legionella pneumophila populations found in the period from 1998 to 2013 in 79 localities encompassing 23 regions within CV. To do so, we performed sequence-based typing (SBT) on 1,088 L. pneumophila strains detected in the area from both environmental and clinical sources. A comparison with the genetic structuring detected in a global data set that included 20 European and 7 non-European countries was performed. Our results reveal a level of diversity in CV that can be considered representative of the diversity found in other countries worldwide. PMID:26231651

  6. H-NOX Regulation of c-di-GMP Metabolism and Biofilm Formation in Legionella pneumophila

    PubMed Central

    Carlson, Hans K.; Vance, Russell E.; Marletta, Michael A.

    2010-01-01

    Summary Heme Nitric oxide/OXygen (H-NOX) domains are a family of hemoprotein sensors that are widespread in bacterial genomes, but limited information is available on their function. Legionella pneumophila is the only prokaryote found thus far to encode two H-NOX proteins. This paper presents data supporting a role for one of the Legionella pneumophila H-NOXs in the regulation of biofilm formation. In summary: (i) unmarked deletions in the hnox1 gene do not affect growth rate in liquid culture or replication in permissive macrophages; (ii) theΔhnox1 strain displays a hyper-biofilm phenotype; (iii) the gene adjacent to hnox1 is a GGDEF-EAL protein, lpg1057, and overexpression in Legionella pneumophila of this protein, or the well-studied diguanylate cyclase, vca0956, results in a hyper-biofilm phenotype; (iv) the Lpg1057 protein displays diguanylate cyclase activity in vitro and this activity is inhibited by the Hnox1 protein in the Fe(II)-NO ligation state, but not the Fe(II) unligated state; (v) consistent with the Hnox1 regulation of Lpg1057, unmarked deletions of lpg1057 in theΔhnox1 background results in reversion of the hyper-biofilm phenotype back to wild-type biofilm levels. Taken together, these results suggest a role for hnox1 in regulating c-di-GMP production by lpg1057 and biofilm formation in response to NO. PMID:20572940

  7. Quantitative risk estimation for a Legionella pneumophila infection due to whirlpool use.

    PubMed

    Bouwknegt, Martijn; Schijven, Jack F; Schalk, Johanna A C; de Roda Husman, Ana Maria

    2013-07-01

    Quantitative microbiological risk assessment was used to quantify the risk associated with the exposure to Legionella pneumophila in a whirlpool. Conceptually, air bubbles ascend to the surface, intercepting Legionella from the traversed water. At the surface the bubble bursts into dominantly noninhalable jet drops and inhalable film drops. Assuming that film drops carry half of the intercepted Legionella, a total of four (95% interval: 1-9) and 4.5×10(4) (4.4×10(4) - 4.7×10(4) ) cfu/min were estimated to be aerosolized for concentrations of 1 and 1,000 legionellas per liter, respectively. Using a dose-response model for guinea pigs to represent humans, infection risks for active whirlpool use with 100 cfu/L water for 15 minutes were 0.29 (∼0.11-0.48) for susceptible males and 0.22 (∼0.06-0.42) for susceptible females. A L. pneumophila concentration of ≥1,000 cfu/L water was estimated to nearly always cause an infection (mean: 0.95; 95% interval: 0.9-∼1). Estimated infection risks were time-dependent, ranging from 0.02 (0-0.11) for 1-minute exposures to 0.93 (0.86-0.97) for 2-hour exposures when the L. pneumophila concentration was 100 cfu/L water. Pool water in Dutch bathing establishments should contain <100 cfu Legionella/L water. This study suggests that stricter provisions might be required to assure adequate public health protection. PMID:23078231

  8. Legionella pneumophila Dot/Icm Translocated Substrates: A Sum of Parts

    PubMed Central

    Ensminger, Alexander W.; Isberg, Ralph R.

    2009-01-01

    SUMMARY Legionella pneumophila is an intracellular pathogen of freshwater amoeba and of alveolar macrophages in human hosts. After phagocytosis, L. pneumophila establishes a unique intracellular vacuolar niche that avoids entry into the lysosomal network. Critical for L. pneumophila intracellular growth is the Dot/Icm type IVB translocation system. While over eighty substrates of the Dot/Icm apparatus have been identified, individual substrates are often genetically redundant, complicating their analysis. Deletion of critical Dot/Icm translocation system components causes a variety of defects during intracellular growth. Many of these effects on the host cell likely result from the actions of one or more Dot/Icm translocated substrates. Loss of single substrates never generates the profound effects observed in strains lacking translocation system components. PMID:19157961

  9. Hemolytic activity of plasma and urine from rabbits experimentally infected with Legionella pneumophila.

    PubMed

    Baine, W B; Rasheed, J K; Maca, H W; Kaufmann, A F

    1979-01-01

    Rabbits were infected with Legionella pneumophila by intravenous administration of allantoic fluid from eggs infected with this organism. Heated plasma from animals with severe illness caused by L. pneumophila lysed erythrocytes from guinea pigs in a radial hemolysis assay. Plasma from control rabbits did not lyse guinea pig erythrocytes in parallel assays. Urine from two of the infected animals also showed hemolytic activity. Attempts to induce illness in rabbits by intranasal administration of L. pneumohpila were less successful. Allantoic fluid from embrynated hen eggs developed hemolytic activity when maintained eithr in vitro at room temperature or in eggs whose embryos were killed by refrigeration. Hemolytic activity in filtrates of allantoic fluid from eggs infected with L. pneumophila, as previously reported, may not be due to the presence of bacterial hemolysins in the fluid. PMID:399383

  10. Contamination of Hospital Water Supplies in Gilan, Iran, with Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa

    PubMed Central

    Ahmadi Jalali Moghadam, Masoumeh; Honarmand, Hamidreza; Asfaram Meshginshahr, Sajad

    2015-01-01

    This study is designed to determine the contamination degree of hospital water supplies with Pseudomonas aeruginosa, Legionella pneumophila, and E. coli in Gilan, Iran. Samples were collected directly into sterile containers and concentrated by centrifuge. Half part of any sample transferred to yeast extract broth and the second part transferred to Trypticase Soy Broth and incubated for 3 days. DNA was extracted by using commercial kit. Four rounds of PCR were performed as follows: multiplex PCR for detecting Pseudomonas aeruginosa, Integron 1, and Metallo-β-lactamases gene; PCR for detecting Legionella pneumophila and mip gene separately; PCR for detecting E. coli; and another PCR for detecting whole bacterial presence. Contamination rates of cold, warm, and incubator water samples with P. aeruginosa, were 16.6%, 37.5%, and 6.8% consequently. Degrees of contamination with L. pneumophila were 3.3%, 9.3%, and 10.9% and with E. coli were zero, 6.2%, and zero. Total bacterial contamination of cold, warm, and incubator water samples was 93.3%, 84.4%, and 89.0% consequently. Metallo-β-lactamases gene was found in 20.0% of all samples. Contamination degree with P. aeruginosa was considerable and with L. pneumophila was moderate. Metallo-β-lactamases gene was found frequently indicating widespread multiple drug resistance bacteria. We suggest using new decontamination method based on nanotechnology. PMID:26448745

  11. Effectiveness of bromicide against Legionella pneumophila in a cooling tower

    SciTech Connect

    Fliermans, C.B.; Harvey, R.S.

    1983-01-01

    Cooling towers are considered to be man-made amplifiers of Legionella. Thus the proper maintenance and choice of biocides is important. The only biocide that has thus far been shown to be effective in field tests is the judicious use of chlorination. Perturbation studies were conducted on an industrial cooling tower shown to contain Legionella, using 1-bromo-3-chloro-5,5-dimethylhydantoin (Bromicide, Great Lakes Chemical Corp.). At the manufacturer's recommended concentrations neither the density nor the activity of Legionella was affected. At concentrations greater than 2.0 ppM free residual, the Bromicide was not effective in reducing Legionella to source water concentrations, nor was it effective in reducing the INT activity of the bacterium in situ. The data indicate that at concentrations up to 2.0 ppM, Bromicide is not effective in these tower studies. 23 references, 3 tables.

  12. Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC.

    PubMed

    Wasilko, David J; Mao, Yuxin

    2016-02-01

    Intracellular bacterial pathogens use secreted effector proteins to alter host cellular processes, with the goal of subverting host defenses and allowing the infection to progress. One such pathogen, Legionella pneumophila, secretes ~300 proteins into its host to alter a number of pathways including intracellular trafficking, phosphoinositide metabolism, and cell signaling. The Legionella effector SidC was previously found to bind to PI(4)P and was responsible for the enrichment of ER proteins and ubiquitinated species on the Legionella-containing vacuoles. Through our recent work, we have discovered that SidC contains a unique N-terminal E3 ubiquitin ligase domain and a C-terminal novel PI(4)P-binding domain. Our results demonstrate that SidC serves to link two distinct cellular pathways, ubiquitin and phosphoinositide. However, how the ubiquitin ligase activity regulates host membrane trafficking events remains to be investigated. PMID:26433729

  13. Prospective monitoring study: isolating Legionella pneumophila in a hospital water system located in the obstetrics and gynecology ward after eradication of Legionella anisa and reconstruction of shower units.

    PubMed

    Koide, Michio; Owan, Tomoko; Nakasone, Chikara; Yamamoto, Natsuo; Haranaga, Shusaku; Higa, Futoshi; Tateyama, Masao; Yamane, Nobuhisa; Fujita, Jiro

    2007-02-01

    We previously reported on the sporadic contamination by Legionella anisa of shower units and sink taps at Ryukyu University Hospital. Starting in July 2003, the neonatal area underwent an 8-month reconstruction, and in March 2005, the boiler system was replaced. We therefore examined shower water and tap water for the presence of Legionella just after replacement of the boiler system. In 3 of the 8 water samples collected from the remodeled area, we isolated Legionella pneumophila serogroup 1 and L. anisa. Moreover, L. pneumophila serogroup 1 was isolated in 4 of the 5 water samples gathered from the unreconstructed area of the same floor. Random amplified polymorphic DNA analysis suggested that a single clone of L. pneumophila might exist throughout the floors of the water distribution system. We replaced the shower units at the Legionella-positive site, and began flushing the sink-faucets with water heated to 55N for at least 1 h every morning. As a result, Legionella was not subsequently isolated in water samples. In this prospective study, we identified a central contamination by L. pneumophila serogroup 1 and showed that flushing with hot tap water was effective to counter this situation. PMID:17314417

  14. Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets.

    PubMed Central

    Bollin, G E; Plouffe, J F; Para, M F; Hackman, B

    1985-01-01

    Shower heads and hot-water faucets containing Legionella pneumophila were evaluated for aerosolization of the organism with a multistage cascade impaction air sampler. Air was collected above two shower doors and from the same rooms approximately 3 ft (91 cm) from the shower doors while the hot water was running. Low numbers (3 to 5 CFU/15 ft3 [0.43 m3] of air) of L. pneumophila were recovered above both shower doors, but none was recovered from the air in either room outside the shower door. Approximately 90% (7 of 8 CFU) of the L. pneumophila recovered were trapped in aerosol particles between 1 and 5 micron in diameter. Air was collected 1 to 3 ft (30 to 91 cm) from 14 sinks while the hot water was running. Low numbers (1 to 5 CFU/15 ft3 of air) were recovered from 6 of 19 air samples obtained. Approximately 50% (6 of 13 CFU) of the organisms recovered were trapped in aerosol particles between 1 and 8 microns in diameter. Shower heads and hot-water taps containing L. pneumophila can aerosolize low numbers of the organism during routine use. The aerosol particle size is small enough to penetrate to the lower human respiratory system. Thus, these sites may be implicated as a means of transmission of L. pneumophila from potable water to the patient. PMID:4091548

  15. Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection.

    PubMed Central

    Müller, A; Hacker, J; Brand, B C

    1996-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease and Pontiac fever, replicates within and eventually kills human macrophages. In this study, we show that L. pneumophila is cytotoxic to HL-60 cells, a macrophage-like cell line. We demonstrate that cell death mediated by L. pneumophila occurred at least in part through apoptosis, as shown by changes in nuclear morphology, an increase in the proportion of fragmented host cell DNA, and the typical ladder pattern of DNA fragmentation indicative of apoptosis. We further sought to determine whether potential virulence factors like the metalloprotease and the macrophage infectivity potentiator of L. pneumophila are involved in the induction of apoptosis. None of these factors are essential for the induction of apoptosis in HL-60 cells but may be involved in other cytotoxic mechanisms that lead to accidental cell death (necrosis). The ability of L. pneumophila to promote cell death may be important for the initiation of infection, bacterial survival, and escape from the host immune response. Alternatively, the triggering of apoptosis in response to bacterial infection may have evolved as a means of the host immune system to reduce or inhibit bacterial replication. PMID:8945524

  16. Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment.

    PubMed

    Alleron, Laëtitia; Merlet, Nicole; Lacombe, Christian; Frère, Jacques

    2008-11-01

    Legionella pneumophila, a facultative intracellular human pathogen, can persist for long periods in natural and artificial aquatic environments. Eradication of this bacterium from plumbing systems is often difficult. We tested L. pneumophila survival after monochloramine treatment. Survival was monitored using the BacLight Bacterial Viability Kit (Molecular Probes), ChemChrome V6 Kit (Chemunex), quantitative polymerase chain reaction and culturability on buffered charcoal-yeast extract agar. In nonculturable samples, regain of culturability was obtained after addition of the amoeba Acanthamoeba castellanii, and esterase activity and membrane integrity were observed after >4 months after treatment. These results demonstrate for the first time that L. pneumophila could persist for long periods in biofilms into the viable but nonculturable (VBNC) state. Monitoring L. pneumophila in water networks is generally done by enumeration on standard solid medium. This method does not take into account VBNC bacteria. VBNC L. pneumophila could persist for long periods and should be resuscitated by amoeba. These cells constitute potential sources of contamination and should be taken into account in monitoring water networks. PMID:18839249

  17. Relationship between Legionella pneumophila and Acanthamoeba polyphaga: Physiological status and susceptibility to chemical inactivation

    SciTech Connect

    Barker, J.; Farrell, I. ); Brown, M.R.W.; Collier, P.J.; Gilbert, P. )

    1992-08-01

    Survival studies were conducted on Legionella pneumophila cells that had been grown intracellulary in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), and 5-chloro-N-methylisothiazolone (CMIT). Susceptibilities were also determined for L. pneumophila grown under iron-sufficient and iron-depleted conditions. BIT was relatively ineffective against cells to PHMB and CMIT. The activities of all three biocides were greatly reduced against L. pneumophila grown in amoebae. PHMB (1 [times] MIC) gave 99.99% reductions in viability for cultures grown in broth within 6 h and no detectable survivors at 24 h but only 90 and 99.9% killing at 6 h and 24 h, respectively, for cells grown in amoebae. The antimicrobial properties of the three biocides against A. polyphaga were also determined. The majority of amoebae recovered from BIT treatment, but few, if any, survived CMIT treatment or exposure of PHMB. This study not only shows the profound effect that intra-amoebal growth has on the physiological status and antimicrobial susceptibility of L. pneumophila but also reveals PHMB to be a potential biocide for effective water treatment. In this respect, PHMB has significant activity, below its recommended use concentrations, against both the host amoeba and L. pneumophila.

  18. Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain.

    PubMed

    Bédard, Emilie; Boppe, Inès; Kouamé, Serge; Martin, Philippe; Pinsonneault, Linda; Valiquette, Louis; Racine, Jules; Prévost, Michèle

    2016-01-01

    Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila. PMID:27092528

  19. Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain

    PubMed Central

    Bédard, Emilie; Boppe, Inès; Kouamé, Serge; Martin, Philippe; Pinsonneault, Linda; Valiquette, Louis; Racine, Jules; Prévost, Michèle

    2016-01-01

    Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila. PMID:27092528

  20. Activity of Six Essential Oils Extracted from Tunisian Plants against Legionella pneumophila.

    PubMed

    Chaftar, Naouel; Girardot, Marion; Quellard, Nathalie; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2015-10-01

    The aim of this study was to investigate the composition of six essential oils extracted from Tunisian plants, i.e., Artemisia herba-alba Asso, Citrus sinensis (L.) Osbeck, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L., and Thymus vulgaris L., and to evaluate their activity against Legionella pneumophila (microdilution assays). Eight Legionella pneumophila strains were studied, including the two well-known serogroup 1 Lens and Paris strains as controls and six environmental strains isolated from Tunisian spas belonging to serogroups 1, 4, 5, 6, and 8. The essential oils were generally active against L. pneumophila. The activities of the A. herba-alba, C. sinensis, and R. officinalis essential oils were strain-dependent, whereas those of the J. phoenicea and T. vulgaris oils, showing the highest anti-Legionella activities, with minimum inhibitory concentrations (MICs) lower than 0.03 and lower than or equal to 0.07 mg/ml, respectively, were independent of the strains' serogroup. Moreover, the microorganisms treated with T. vulgaris essential oil were shorter, swollen, and less electron-dense compared to the untreated controls. Isoborneol (20.91%), (1S)-α-pinene (18.30%) β-phellandrene (8.08%), α-campholenal (7.91%), and α-phellandrene (7.58%) were the major components isolated from the J. phoenicea oil, while carvacrol (88.50%) was the main compound of the T. vulgaris oil, followed by p-cymene (7.86%). This study highlighted the potential interest of some essential oils extracted from Tunisian plants as biocides to prevent the Legionella risk. PMID:26460561

  1. Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila.

    PubMed

    Fiene, Amelie; Baqi, Younis; Malik, Enas M; Newton, Patrice; Li, Wenjin; Lee, Sang-Yong; Hartland, Elizabeth L; Müller, Christa E

    2016-09-15

    Legionella pneumophila is an aerobic, Gram-negative bacterium of the genus Legionella, which constitutes the major causative agent of Legionnaires' disease. Recently a nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila was identified and termed Lp1NTPDase; it was found to be a structural and functional homolog of mammalian NTPDases catalyzing the hydrolysis of ATP to ADP and ADP to AMP. Its activity is believed to contribute to the virulence of Legionella pneumophila. Therefore Lp1NTPDase inhibitors are considered as novel antibacterial drugs. However, only weakly potent compounds are available so far. In the present study, a capillary electrophoresis (CE)-based enzyme assay for monitoring the Lp1NTPDase activity was established. The enzymatic reaction was performed in a test tube followed by separation of substrate and products by CE and subsequent quantification by UV analysis. After kinetic characterization of the enzyme, a series of 1-amino-4-ar(alk)ylamino-2-sulfoanthraquinone derivatives structurally related to the anthraquinone dye Reactive Blue 2, a non-selective ecto-NTPDase inhibitor, was investigated for inhibitory activity on Lp1NTPDase using the CE-based enzyme assay. Derivatives bearing a large lipophilic substituent (e.g., fused aromatic rings) in the 4-position of the 1-amino-2-sulfoanthraquinone showed the highest inhibitory activity. Compounds with IC50 values in the low micromolar range were identified. The most potent inhibitor was 1-amino-4-[phenanthrene-9-yl-amino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28, PSB-16131), with an IC50-value of 4.24μM. It represents the most potent Lp1NTPDase inhibitor described to date. These findings may serve as a starting point for further optimization. Lp1NTPDase inhibition provides a novel approach for the (immuno)therapy of Legionella infections. PMID:27522579

  2. Iron Limitation Triggers Early Egress by the Intracellular Bacterial Pathogen Legionella pneumophila.

    PubMed

    O'Connor, Tamara J; Zheng, Huaixin; VanRheenen, Susan M; Ghosh, Soma; Cianciotto, Nicholas P; Isberg, Ralph R

    2016-08-01

    Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted. PMID:27185787

  3. Validation of a microbead-based format for spoligotyping of Legionella pneumophila.

    PubMed

    Gomgnimbou, Michel Kiréopori; Ginevra, Christophe; Peron-Cane, Caroline; Versapuech, Margaux; Refrégier, Guislaine; Jacotin, Nathalie; Sola, Christophe; Jarraud, Sophie

    2014-07-01

    A 42-plex clustered regularly interspaced short palindromic repeat (CRISPR)-based typing technique (spoligotyping) was recently developed at the French National Reference Center for Legionella. It allows the subtyping of the Legionella pneumophila sequence type 1/Paris pulsotype. In this report, we present the transfer of the membrane-based spoligotyping technique to a microbead-based multiplexed format. This microbead-based high-throughput assay uses devices such as Luminex 200 or the recently launched Magpix system (Luminex Corp., Austin, TX). We designated this new technique LP-SPOL (for L. pneumophila spoligotyping). We used two sets of samples previously subtyped by the membrane-based spoligotyping method to set up and validate the transfer on the two microbead-based systems. The first set of isolates (n = 56) represented the whole diversity of the CRISPR patterns known to date. These isolates were used for transfer setup (determination of spacer cutoffs for both devices). The second set of isolates (n = 245) was used to validate the transfer to the two microbead-based systems. The results obtained by the Luminex 200 system were 100% concordant with those obtained by the Magpix system for the 2 sets of isolates. In total, 10 discrepant results were observed when comparing the membrane-based method to the microbead-based method. These discrepancies were further resolved by repeating either the membrane-based or the microbead-based assay. This new assay is expected to play an emerging role for surveillance of L. pneumophila, starting with one of the most frequent genotypes, the sequence type 1/Paris pulsotype. However, the generalization of this typing method to all L. pneumophila strains is not feasible, since not all L. pneumophila strains contain CRISPRs. PMID:24759720

  4. Validation of a Microbead-Based Format for Spoligotyping of Legionella pneumophila

    PubMed Central

    Gomgnimbou, Michel Kiréopori; Ginevra, Christophe; Peron-Cane, Caroline; Versapuech, Margaux; Refrégier, Guislaine; Jacotin, Nathalie; Jarraud, Sophie

    2014-01-01

    A 42-plex clustered regularly interspaced short palindromic repeat (CRISPR)-based typing technique (spoligotyping) was recently developed at the French National Reference Center for Legionella. It allows the subtyping of the Legionella pneumophila sequence type 1/Paris pulsotype. In this report, we present the transfer of the membrane-based spoligotyping technique to a microbead-based multiplexed format. This microbead-based high-throughput assay uses devices such as Luminex 200 or the recently launched Magpix system (Luminex Corp., Austin, TX). We designated this new technique LP-SPOL (for L. pneumophila spoligotyping). We used two sets of samples previously subtyped by the membrane-based spoligotyping method to set up and validate the transfer on the two microbead-based systems. The first set of isolates (n = 56) represented the whole diversity of the CRISPR patterns known to date. These isolates were used for transfer setup (determination of spacer cutoffs for both devices). The second set of isolates (n = 245) was used to validate the transfer to the two microbead-based systems. The results obtained by the Luminex 200 system were 100% concordant with those obtained by the Magpix system for the 2 sets of isolates. In total, 10 discrepant results were observed when comparing the membrane-based method to the microbead-based method. These discrepancies were further resolved by repeating either the membrane-based or the microbead-based assay. This new assay is expected to play an emerging role for surveillance of L. pneumophila, starting with one of the most frequent genotypes, the sequence type 1/Paris pulsotype. However, the generalization of this typing method to all L. pneumophila strains is not feasible, since not all L. pneumophila strains contain CRISPRs. PMID:24759720

  5. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.

    PubMed

    Case, Christopher L; Kohler, Lara J; Lima, Jonilson B; Strowig, Till; de Zoete, Marcel R; Flavell, Richard A; Zamboni, Dario S; Roy, Craig R

    2013-01-29

    A flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway. Activation by Legionella differed from caspase-11 activation using previously described agonists in that Legionella caspase-11 activation was rapid and required bacteria with a functional type IV secretion system called Dot/Icm. Legionella activation of caspase-11 induced pyroptosis by a mechanism independent of the NAIP/NLRC4 and caspase-1 axis. Legionella activation of caspase-11 stimulated activation of caspase-1 through NLRP3 and ASC. Induction of caspase-11-dependent responses occurred in macrophages deficient in the adapter proteins TRIF or MyD88 but not in macrophages deficient in both signaling factors. Although caspase-11 was produced in macrophages deficient in the type-I IFN receptor, there was a severe defect in caspase-11-dependent pyroptosis in these cells. These data indicate that macrophages respond to microbial signatures to produce proteins that mediate a capsase-11 response and that the caspase-11 system provides an alternative pathway for rapid detection of an intracellular pathogen capable of evading the canonical caspase-1 activation system that responds to bacterial flagellin. PMID:23307811

  6. Predictive parameters of Legionella pneumophila occurrence in hospital water: HPCs and plumbing system installation age.

    PubMed

    Ghanizadeh, Ghader; Mirmohamadlou, Ali; Esmaeli, Davoud

    2016-09-01

    Occurrence of Legionella pneumophila can be relevant to the installation age and the presence of heterotrophic plate counts (HPCs). This research illustrates L. pneumophila contamination of hospital water in accordance with the installation age and the presence of HPCs. One hundred and fifty samples were collected from hot and cold water systems and cultured on R2A and BCYE agar. L. pneumophila identification was done via specific biochemical tests. HPCs and L. pneumophila were detected in 96 and 37.3 % of the samples, respectively. The mean of HPCs density was 947 ± 998 CFU/ml; therefore, 52 % of the samples had higher densities than 500 CFU/ml. High densities of HPCs (>500 CFU/ml) led to colonization of L. pneumophila (≥1000 CFU/ml), mainly observed in cooling systems, gynecological, sonography, and NICU wards. Chi(2) test demonstrated that higher densities (>500 CFU/ml) of HPCs and L. pneumophila contamination in cold water were more frequent than warm water (OR: 2.3 and 1.49, respectively). Univariate regressions implied a significant difference between HPCs density and installation age in positive and negative tests of L. pneumophila (OR = 1.1, p < 0.001, OR = 1.2, p < 0.001). Mann-Whitney U test implied the significant effects of HPCs and installation age on L. pneumophila occurrences (p < 0.001). Spearman correlation and multivariate linear regression revealed significant differences between L. pneumophila and HPCs densities (r s  = 0.33, p < 0.001 and ß = 0.11, p = 0.02), but nonsignificant difference with installation age (r s  = 0.33, p < 0.001 and ß = 0.0, p = 0.91). The occurrence of L. pneumophila, HPCs, and installation age are relevant; so, plumbing system renovation with appropriate materials and promotion of the effective efforts for hospital's water quality assurance is highly recommended. PMID:27573071

  7. Dot/Icm Effector Translocation by Legionella longbeachae Creates a Replicative Vacuole Similar to That of Legionella pneumophila despite Translocation of Distinct Effector Repertoires

    PubMed Central

    Wood, Rebecca E.; Newton, Patrice; Latomanski, Eleanor A.

    2015-01-01

    Legionella organisms are environmental bacteria and accidental human pathogens that can cause severe pneumonia, termed Legionnaires' disease. These bacteria replicate within a pathogen-derived vacuole termed the Legionella-containing vacuole (LCV). Our understanding of the development and dynamics of this vacuole is based on extensive analysis of Legionella pneumophila. Here, we have characterized the Legionella longbeachae replicative vacuole (longbeachae-LCV) and demonstrated that, despite important genomic differences, key features of the replicative LCV are comparable to those of the LCV of L. pneumophila (pneumophila-LCV). We constructed a Dot/Icm-deficient strain by deleting dotB and demonstrated the inability of this mutant to replicate inside THP-1 cells. L. longbeachae does not enter THP-1 cells as efficiently as L. pneumophila, and this is reflected in the observation that translocation of BlaM-RalFLLO (where RalFLLO is the L. longbeachae homologue of RalF) into THP-1 cells by the L. longbeachae Dot/Icm system is less efficient than that by L. pneumophila. This difference is negated in A549 cells where L. longbeachae and L. pneumophila infect with similar entry dynamics. A β-lactamase assay was employed to demonstrate the translocation of a novel family of proteins, the Rab-like effector (Rle) proteins. Immunofluorescence analysis confirmed that these proteins enter the host cell during infection and display distinct subcellular localizations, with RleA and RleC present on the longbeachae-LCV. We observed that the host Rab GTPase, Rab1, and the v-SNARE Sec22b are also recruited to the longbeachae-LCV during the early stages of infection, coinciding with the LCV avoiding endocytic maturation. These studies further our understanding of the L. longbeachae replicative vacuole, highlighting phenotypic similarities to the vacuole of L. pneumophila as well as unique aspects of LCV biology. PMID:26216429

  8. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms

    PubMed Central

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F.; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems

  9. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms.

    PubMed

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires' disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems in

  10. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors

    PubMed Central

    Simon, Sylvia; Hilbi, Hubert

    2015-01-01

    Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called “effector” proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host–cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila. PMID:26441958

  11. A field study of the survival of Legionella pneumophila in a hospital hot-water system.

    PubMed Central

    Farrell, I. D.; Barker, J. E.; Miles, E. P.; Hutchison, J. G.

    1990-01-01

    The colonization, survival and control of Legionella pneumophila in a hospital hot-water system was examined. The organism was consistently isolated from calorifier drain-water samples at temperatures of 50 degrees C or below, despite previous chlorination of the system. When the temperature of one of two linked calorifiers was raised to 60 degrees C, by closing off the cold-water feed, the legionella count decreased from c. 10(4) c.f.u./l to an undetectable level. However, 10 min after turning on the cold-water feed which produced a fall in calorifier temperature, the count in the calorifier drain water returned to its original level. Investigations revealed that the cold-water supply was continually feeding the calorifiers with L. pneumophila. Simple modifications in the design of the system were made so that the cold-water feed no longer exceeds 20 degrees C; these measures have considerably reduced the number of L. pneumophila reaching the calorifiers. PMID:2189741

  12. Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila.

    PubMed

    Gillmaier, Nadine; Schunder, Eva; Kutzner, Erika; Tlapák, Hana; Rydzewski, Kerstin; Herrmann, Vroni; Stämmler, Maren; Lasch, Peter; Eisenreich, Wolfgang; Heuner, Klaus

    2016-03-18

    Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen. PMID:26792862

  13. A single Legionella pneumophila genotype in the freshwater system in a ship experiencing three separate outbreaks of legionellosis in 6 years

    PubMed Central

    Ahlen, Catrine; Aas, Marianne; Krusnell, Jadwiga; Iversen, Ole-Jan

    2016-01-01

    Background Recurrent legionella outbreaks at one and the same location are common. We have identified a single Legionella pneumophila genotype associated with recurrent Legionella outbreaks over 6 years. Methods Field emergency surveys following Legionella outbreaks were performed on a vessel in 2008, 2009 and 2013. Water samples from both the distribution and technical parts of the potable water system were analyzed with respect to L. pneumophila [Real-Time PCR, cultivation, serotyping and genotyping (PFGE)] and free-living amoebae, (FLA). Results Legionella pneumophila serogroup 1 was present in the ship's potable water system during every outbreak. Genotyping of the 2008 survey material showed two separate PFGE genotypes while those in 2009 and 2013 demonstrated the presence of only one of the two genotypes. FLA with intracellular L. pneumophila of the same genotype were also detected. Analyses of the freshwater system on a ship following three separate Legionella outbreaks, for L. pneumophila and FLAs, revealed a single L. pneumophila genotype and FLA (Hartmanella). Conclusions It is reasonable to assume that the L. pneumophila genotype detected in the freshwater system was the causal agent in the outbreaks onboard. Persistence of an apparently low-pathogenic L. pneumophila genotype and FLA in a potable water system represent a potential risk for recurrent outbreaks. PMID:27515183

  14. Induction of Rapid Cell Death by an Environmental Isolate of Legionella pneumophila in Mouse Macrophages

    PubMed Central

    Tao, Lili; Zhu, Wenhan; Hu, Bi-Jie

    2013-01-01

    Legionella pneumophila, the etiological agent for Legionnaires' disease, is ubiquitous in the aqueous environment, where it replicates as an intracellular parasite of free-living protozoa. Our understanding of L. pneumophila pathogenicity is obtained mostly from study of derivatives of several clinical isolates, which employ almost identical virulent determinants to exploit host functions. To determine whether environmental L. pneumophila isolates interact similarly with the model host systems, we analyzed intracellular replication of several recently isolated such strains and found that these strains cannot productively grow in bone marrow-derived macrophages of A/J mice, which are permissive for all examined laboratory strains. By focusing on one strain called LPE509, we found that its deficiency in intracellular replication in primary A/J macrophages is not caused by the lack of important pathogenic determinants because this strain replicates proficiently in two protozoan hosts and the human macrophage U937 cell. We also found that in the early phase of infection, the trafficking of this strain in A/J macrophages is similar to that of JR32, a derivative of strain Philadelphia 1. Furthermore, infection of these cells by LPE509 caused extensive cell death in a process that requires the Dot/Icm type IV secretion system. Finally, we showed that the cell death is caused neither by the activation of the NAIP5/NLRC4 inflammasome nor by the recently described caspase 11-dependent pathway. Our results revealed that some environmental L. pneumophila strains are unable to overcome the defense conferred by primary macrophages from mice known to be permissive for laboratory L. pneumophila strains. These results also suggest the existence of a host immune surveillance mechanism differing from those currently known in responding to L. pneumophila infection. PMID:23753633

  15. A structural comparison of lipopolysaccharide biosynthesis loci of Legionella pneumophila serogroup 1 strains

    PubMed Central

    2013-01-01

    Background The lipopolysaccharide (LPS) is the major immuno-dominant antigen of all Legionella species including L. pneumophila. Its diversity is the basis for the classification of L. pneumophila into serogroups and monoclonal subgroups and is thought to be involved in strain specific virulence. The understanding of the genetic basis of the LPS-antigen is incomplete. Thus, we analyzed the genetic locus involved in LPS-biosynthesis of L. pneumophila serogroup 1 (Sg1) strains with the focus on strain specific gene composition. Results The LPS-biosynthesis loci of 14 L. pneumophila Sg1 strains comprise two distinct regions: A 15 kb region containing LPS-biosynthesis genes that can be found in all L. pneumophila strains and a Sg1-specific 18 kb region. The 15 kb region is highly conserved among Sg1 strains as reflected by high homologies of single ORFs and by a consistent ORF arrangement. In contrast, the Sg1 specific 18 kb region is variable and partially disrupted by phage related genes. We propose that the region spanning from ORF 6 to ORF 11 of the Sg1-specific region is likely involved in late LPS-modification. Due to the high variability of this small region and various combinations of single ORFs within this region a strain specific LPS-structure could be synthesized including modifications of legionaminic acid derivates. Conclusions Our data clearly demonstrate that the gene structure of the LPS-biosynthesis locus of L. pneumophila Sg1 strains show significant interstrain variability. These data can be used for further functional analysis of the LPS synthesis to understand pathogenesis and reactivity with monoclonal antibodies. Moreover, variable but strain specific regions can serve as basis for the development of novel genotyping assays. PMID:24069939

  16. Mixed infection by Legionella pneumophila in outbreak patients.

    PubMed

    Coscollá, Mireia; Fernández, Carmen; Colomina, Javier; Sánchez-Busó, Leonor; González-Candelas, Fernando

    2014-05-01

    During the molecular epidemiological study of a legionellosis outbreak, we obtained sequence based typing (SBT) profiles from uncultured respiratory samples of 15 affected patients. We detected several distinct allelic profiles some of which were a mixture of alleles present in the more common profiles. Chromatograms from the sequences of one patient with mixed profile showed polymorphisms in several positions, which could result from the simultaneous presence of different Legionella variants in the sample. In order to test this possibility, we cloned PCR amplification products from six loci for two patients with a mixed profile and a patient with a pure profile. After obtaining around 20 sequences for each locus of three patients, we detected several variants in two of them and two variants in the third one. In summary, the three analyzed patients showed evidence of more than one Legionella variant during the acute infection. These results indicate that probably some patients were infected by more than one strain, which could be due to co-infection from the same environmental source or, alternatively, to independent infections in a very short period of time. Although our data cannot discriminate between these hypotheses, these results suggest that Legionella infection patterns can be more complex than previously assumed. None of the environmental samples analyzed during this outbreak was even similar to any of the clinical ones. PMID:24309206

  17. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world.

    PubMed

    Ensminger, Alexander W

    2016-02-01

    Many bacterial pathogens use dedicated translocation systems to deliver arsenals of effector proteins to their hosts. Once inside the host cytosol, these effectors modulate eukaryotic cell biology to acquire nutrients, block microbial degradation, subvert host defenses, and enable pathogen transmission to other hosts. Among all bacterial pathogens studied to date, the gram-negative pathogen, Legionella pneumophila, maintains the largest arsenal of effectors, with over 330 effector proteins translocated by the Dot/Icm type IVB translocation system. In this review, I will discuss some of the recent work on understanding the consequences of this large arsenal. I will also present several models that seek to explain how L. pneumophila has acquired and subsequently maintained so many more effectors than its peers. PMID:26709975

  18. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells.

    PubMed

    Isberg, Ralph R; O'Connor, Tamara J; Heidtman, Matthew

    2009-01-01

    The pathogenesis of Legionella pneumophila is derived from its growth within lung macrophages after aerosols are inhaled from contaminated water sources. Interest in this bacterium stems from its ability to manipulate host cell vesicular-trafficking pathways and establish a membrane-bound replication vacuole, making it a model for intravacuolar pathogens. Establishment of the replication compartment requires a specialized translocation system that transports a large cadre of protein substrates across the vacuolar membrane. These substrates regulate vesicle traffic and survival pathways in the host cell. This Review focuses on the strategies that L. pneumophila uses to establish intracellular growth and evaluates why this microorganism has accumulated an unprecedented number of translocated substrates that are targeted at host cells. PMID:19011659

  19. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry.

    PubMed

    Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge

    2015-04-01

    The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. PMID:25725384

  20. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans

    PubMed Central

    Shadoud, Lubana; Almahmoud, Iyad; Jarraud, Sophie; Etienne, Jérôme; Larrat, Sylvie; Schwebel, Carole; Timsit, Jean-François; Schneider, Dominique; Maurin, Max

    2015-01-01

    Background Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. Methods We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. Findings We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. Interpretation In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics. PMID:26501115

  1. Effects of oakmoss and its components on biofilm formation of Legionella pneumophila.

    PubMed

    Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2013-01-01

    Oakmoss and its components are known as antibacterial agents, specifically against Legionella pneumophila. In the present study, we investigated the effects of oakmoss and its components (phenol, didepside and isochromen derivatives) on L. pneumophila biofilm formation, with particular reference to the bactericidal activity (minimum bactericidal concentration; MBC) of these components against the bacterial cells in the biofilm. Of the 20 compounds tested, two didepside derivatives and four phenol derivatives reduced biofilm formation by more than 50% of that observed for the control at their respective minimum inhibitory concentrations (1/2×MIC). The inhibitory activities of these compounds were either equivalent to or greater than that of the clarithromycin reference. Isochromen derivatives had no effect on biofilm formation. Analysis of bactericidal activity of didepside and isochromen derivatives revealed that three of four didepside derivatives and one of four isochromen derivatives exhibited high bactericidal activity (MBC: 32.0-74.7 µg/mL) against the L. pneumophila in the biofilm after 24 h or 48 h of co-incubation; the antibacterial activities of these compounds were almost equivalent to clarithromycin and chlorhexidine gluconate (MBC: 42.7-64.0 µg/mL) that were used as references. Thus, based on their anti-biofilm forming and bactericidal activities, didepside derivatives are considered to be good candidates for disinfectants against L. pneumophila. PMID:23649339

  2. Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase.

    PubMed

    Hurtado-Guerrero, Ramon; Zusman, Tal; Pathak, Shalini; Ibrahim, Adel F M; Shepherd, Sharon; Prescott, Alan; Segal, Gil; van Aalten, Daan M F

    2010-03-15

    Legionnaires' disease is caused by a lethal colonization of alveolar macrophages with the Gram-negative bacterium Legionella pneumophila. LpGT (L. pneumophila glucosyltransferase; also known as Lgt1) has recently been identified as a virulence factor, shutting down protein synthesis in the human cell by specific glucosylation of EF1A (elongation factor 1A), using an unknown mode of substrate recognition and a retaining mechanism for glycosyl transfer. We have determined the crystal structure of LpGT in complex with substrates, revealing a GT-A fold with two unusual protruding domains. Through structure-guided mutagenesis of LpGT, several residues essential for binding of the UDP-glucose-donor and EF1A-acceptor substrates were identified, which also affected L. pneumophila virulence as demonstrated by microinjection studies. Together, these results suggested that a positively charged EF1A loop binds to a negatively charged conserved groove on the LpGT structure, and that two asparagine residues are essential for catalysis. Furthermore, we showed that two further L. pneumophila glycosyltransferases possessed the conserved UDP-glucose-binding sites and EF1A-binding grooves, and are, like LpGT, translocated into the macrophage through the Icm/Dot (intracellular multiplication/defect in organelle trafficking) system. PMID:20030628

  3. Passage through Tetrahymena tropicalis enhances the resistance to stress and the infectivity of Legionella pneumophila.

    PubMed

    Koubar, Mohamad; Rodier, Marie-Hélène; Garduño, Rafael A; Frère, Jacques

    2011-12-01

    Legionella pneumophila is a gram-negative bacterium prevalent in fresh water which accidentally infects humans and is responsible for the disease called legionellosis. Intracellular growth of L. pneumophila in Tetrahymena is inconsistent; in the species Tetrahymena tropicalis stationary-phase forms (SPFs) of L. pneumophila differentiate into mature intracellular forms (MIFs) without apparent bacterial replication and are expelled from the ciliate as pellets containing numerous MIFS. In the present work, we tested the impact of L. pneumophila passage through T. tropicalis. We observed that MIFs released from T. tropicalis are more resistant to various stresses than SPFs. Under our conditions, MIFs harboured a higher gentamicin resistance, maintained even after 3 months as pellets. Long-term survival essays revealed that MIFs survived better in a nutrient-poor environment than SFPs, as a reduction of only about 3 logs was observed after 4 months in the MIF population, whereas no cultivable SPFs were detected after 3 months in the same medium, corresponding to a loss of about 7 logs. We have also observed that MIFs are significantly more infectious in human pneumocyte cells compared with SPFs. These results strongly suggest a potential role of ciliates in increasing the risk of legionellosis. PMID:22092856

  4. Genomic characterization of a large outbreak of Legionella pneumophila serogroup 1 strains in Quebec City, 2012.

    PubMed

    Lévesque, Simon; Plante, Pier-Luc; Mendis, Nilmini; Cantin, Philippe; Marchand, Geneviève; Charest, Hugues; Raymond, Frédéric; Huot, Caroline; Goupil-Sormany, Isabelle; Desbiens, François; Faucher, Sébastien P; Corbeil, Jacques; Tremblay, Cécile

    2014-01-01

    During the summer of 2012, a major Legionella pneumophila serogroup 1 outbreak occurred in Quebec City, Canada, which caused 182 declared cases of Legionnaire's disease and included 13 fatalities. Legionella pneumophila serogroup 1 isolates from 23 patients as well as from 32 cooling towers located in the vicinity of the outbreak were recovered for analysis. In addition, 6 isolates from the 1996 Quebec City outbreak and 4 isolates from patients unrelated to both outbreaks were added to allow comparison. We characterized the isolates using pulsed-field gel electrophoresis, sequence-based typing, and whole genome sequencing. The comparison of patients-isolated strains to cooling tower isolates allowed the identification of the tower that was the source of the outbreak. Legionella pneumophila strain Quebec 2012 was identified as a ST-62 by sequence-based typing methodology. Two new Legionellaceae plasmids were found only in the epidemic strain. The LVH type IV secretion system was found in the 2012 outbreak isolates but not in the ones from the 1996 outbreak and only in half of the contemporary human isolates. The epidemic strains replicated more efficiently and were more cytotoxic to human macrophages than the environmental strains tested. At least four Icm/Dot effectors in the epidemic strains were absent in the environmental strains suggesting that some effectors could impact the intracellular replication in human macrophages. Sequence-based typing and pulsed-field gel electrophoresis combined with whole genome sequencing allowed the identification and the analysis of the causative strain including its likely environmental source. PMID:25105285

  5. Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor

    PubMed Central

    Aurass, Philipp; Oates, Clare V.; Tate, Edward W.; Hartland, Elizabeth L.; Flieger, Antje

    2015-01-01

    Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo. PMID:26216420

  6. The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization.

    PubMed

    Chong, Audrey; Lima, Celia A; Allan, David S; Nasrallah, Gheyath K; Garduño, Rafael A

    2009-11-01

    A portion of the total cellular pool of the Legionella pneumophila chaperonin, HtpB, is found on the bacterial cell surface, where it can mediate invasion of nonphagocytic cells. HtpB continues to be abundantly produced and released by internalized L. pneumophila and may thus have postinvasion functions. We used here two functional models (protein-coated beads and expression of recombinant proteins in CHO cells) to investigate the competence of HtpB in mimicking early intracellular trafficking events of L. pneumophila, including the recruitment of mitochondria, cytoskeletal alterations, the inhibition of phagosome-lysosome fusion, and association with the endoplasmic reticulum. Microscopy and flow cytometry studies indicated that HtpB-coated beads recruited mitochondria in CHO cells and U937-derived macrophages and induced transient changes in the organization of actin microfilaments in CHO cells. Ectopic expression of HtpB in the cytoplasm of transfected CHO cells also led to modifications in actin microfilaments similar to those produced by HtpB-coated beads but did not change the distribution of mitochondria. Association of phagosomes containing HtpB-coated beads with the endoplasmic reticulum was not consistently detected by either fluorescence or electron microscopy studies, and only a modest delay in the fusion of TrOv-labeled lysosomes with phagosomes containing HtpB-coated beads was observed. HtpB is the first Legionella protein and the first chaperonin shown to, by means of our functional models, induce mitochondrial recruitment and microfilament rearrangements, two postinternalization events that typify the early trafficking of virulent L. pneumophila. PMID:19687203

  7. Rapid nutritional remodeling of the host cell upon attachment of Legionella pneumophila.

    PubMed

    Bruckert, William M; Price, Christopher T; Abu Kwaik, Yousef

    2014-01-01

    Upon entry of Legionella pneumophila into amoebas and macrophages, host-mediated farnesylation of the AnkB effector enables its anchoring to the Legionella-containing vacuole (LCV) membrane. On the LCV, AnkB triggers docking of K(48)-linked polyubiquitinated proteins that are degraded by the host proteasomes to elevate cellular levels of amino acids needed for intracellular proliferation. Interference with AnkB function triggers L. pneumophila to exhibit a starvation response and differentiate into the nonreplicative phase in response to the basal levels of cellular amino acids that are not sufficient to power intracellular proliferation of L. pneumophila. Therefore, we have determined whether the biological function of AnkB is temporally and spatially triggered upon bacterial attachment to the host cell to circumvent a counterproductive bacterial differentiation into the nonreplicative phase upon bacterial entry. Here, we show that upon attachment of L. pneumophila to human monocyte-derived macrophages (hMDMs), the host farnesylation and ubiquitination machineries are recruited by the Dot/Icm system to the plasma membrane exclusively beneath sites of bacterial attachment. Transcription and injection of ankB is triggered by attached extracellular bacteria followed by rapid farnesylation and anchoring of AnkB to the cytosolic side of the plasma membrane beneath bacterial attachment, where K(48)-linked polyubiquitinated proteins are assembled and degraded by the proteasomes, leading to a rapid rise in the cellular levels of amino acids. Our data represent a novel strategy by an intracellular pathogen that triggers rapid nutritional remodeling of the host cell upon attachment to the plasma membrane, and as a result, a gratuitous surplus of cellular amino acids is generated to support proliferation of the incoming pathogen. PMID:24126522

  8. Detection of Legionella pneumophila on clinical samples and susceptibility assessment by flow cytometry.

    PubMed

    Faria-Ramos, I; Costa-de-Oliveira, S; Barbosa, J; Cardoso, A; Santos-Antunes, J; Rodrigues, A G; Pina-Vaz, C

    2012-12-01

    Culture in selective media represents the standard diagnostic method to confirm Legionella pneumophila infection, despite requiring a prolonged incubation period; antigen detection by immunofluorescence (IFS) and molecular techniques are also available, but they do not allow antimicrobial susceptibility evaluation. Our objective was to optimise flow cytometry (FC) protocols for the detection of L. pneumophila in respiratory samples and for susceptibility evaluation to first-line drugs. In order to optimise the FC protocol, a specific monoclonal antibody, conjugated with fluorescein isothiocyanate (FITC), was incubated with type strain L. pneumophila ATCC 33152. The limit of detection was established by analysing serial dilutions of bacterial suspension; specificity was assayed using mixtures of prokaryotic and eukaryotic microorganisms. The optimised FC protocol was used to assess 50 respiratory samples and compared with IFS evaluation. The susceptibility profile to erythromycin, ciprofloxacin and levofloxacin was evaluated by FC using propidium iodide and SYBR Green fluorescent dyes; the results were compared with the Etest afterwards. The optimal specific antibody concentration was 20 μg/ml; 10(2)/ml Legionella organisms were detected by this protocol and no cross-reactions with other microorganisms were detected. The five positive respiratory samples (10 %) determined by IFS were also detected by FC, showing 100 % correlation. After 1 h of incubation at 37 °C with different antimicrobials, SYBR Green staining could discriminate between treated and non-treated cells. A novel flow cytometric approach for the detection of L. pneumophila from clinical samples and susceptibility evaluation is now available, representing an important step forward for the diagnosis of this very relevant agent. PMID:22843284

  9. In Vitro and Intracellular Activities of Peptide Deformylase Inhibitor GSK1322322 against Legionella pneumophila Isolates

    PubMed Central

    Dubois, Jacques; Dubois, Maïtée; Martel, Jean-François; Aubart, Kelly

    2014-01-01

    GSK1322322, a novel peptide deformylase inhibitor currently in development as an oral and intravenous agent for the treatment of hospitalized community-acquired bacterial pneumonia, showed poor in vitro activity against a panel of 50 Legionella pneumophila strains, with MICs ranging from 1 to 16 μg/ml and an MIC90 of 16 μg/ml, but very potent intracellular activity, with the minimum extracellular concentrations capable of inhibiting intracellular proliferation (MIECs) ranging from 0.12 to 2 μg/ml and 98% of the strains being inhibited by concentrations of ≤1 μg/ml. PMID:25348534

  10. Crystallization and preliminary crystallographic analysis of an aminoglycoside kinase from Legionella pneumophila

    SciTech Connect

    Lemke, Christopher T.; Hwang, Jiyoung; Xiong, Bing; Cianciotto, Nicholas P.; Berghuis, Albert M.

    2005-06-01

    Two crystal forms of the antibiotic resistance enzyme APH(9)-Ia from L. pneumophila are reported. 9-Aminoglycoside phosphotransferase type Ia [APH(9)-Ia] is a resistance factor in Legionella pneuemophila, the causative agent of legionnaires’ disease. It is responsible for providing intrinsic resistance to the antibiotic spectinomycin. APH(9)-Ia phosphorylates one of the hydroxyl moieties of spectinomycin in an ATP-dependent manner, abolishing the antibiotic properties of this drug. Here, the crystallization and preliminary X-ray studies of this enzyme in two crystal forms is reported. One of the these crystal forms provides diffraction data to a resolution of 1.7 Å.

  11. [The lethiferous journey of a bacterium--the research progress of secretion systems and effectors in Legionella pneumophila].

    PubMed

    Lu, Yong-Jun; Li, Xiang-Hui; Zeng, Yong-Lun

    2011-10-01

    Legionella pneumophila is the intracellular bacterial pathogen that causes severe Legionnaires' disease and flu-like Pontiac fever. To accomplish successful aggression against hosts, L. pneumophila secrets more than 150 kinds of substrate effector proteins into host cells via its Type IVB secretion system. With the multiple functions of effectors, L. pneumophila evades effectively the defense systems of hosts, converts or adjusts intracellular vesicular transport of hosts, modifies or disguises its Legionella containing vacuole (LCV), modulates the cell cycle program and inhibits the apoptosis of host cells, and finally gains the comfortable intracellular replicative niche. Effectors can also help L. pneumophila escape from hosts cells after completing the proliferation.. L. pneumophila has became the distinct model for pathogen-host interaction research, and its secretion systems as well as the substrate effectors are attracting more and more attentions. Researching on T4BSS and effectors could not only help investigate the pathogenesis of intracellular bacterial pathogens, but also promote the comprehension about innate immune responses of hosts. This article reviews the progresses of L. pneumophila T4BSS and effectors, trying to demonstrate to the readers the cunning survival strategy and the delicate virulent machine of L. pneumophila. PMID:21993284

  12. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  13. Detection of Protozoan Hosts for Legionella pneumophila in Engineered Water Systems by Using a Biofilm Batch Test▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; van der Kooij, Dick

    2010-01-01

    Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C. PMID:20851993

  14. Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test.

    PubMed

    Valster, Rinske M; Wullings, Bart A; van der Kooij, Dick

    2010-11-01

    Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C. PMID:20851993

  15. Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells

    PubMed Central

    Gunderson, Felizza F.; Mallama, Celeste A.; Fairbairn, Stephanie G.

    2014-01-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. PMID:25547789

  16. Novel Cycloheximide Derivatives Targeting the Moonlighting Protein Mip Exhibit Specific Antimicrobial Activity Against Legionella pneumophila

    PubMed Central

    Rasch, Janine; Theuerkorn, Martin; Ünal, Can; Heinsohn, Natascha; Tran, Stefan; Fischer, Gunter; Weiwad, Matthias; Steinert, Michael

    2015-01-01

    Macrophage infectivity potentiator (Mip) and Mip-like proteins are virulence factors in a wide range of pathogens including Legionella pneumophila. These proteins belong to the FK506 binding protein (FKBP) family of peptidyl-prolyl-cis/trans-isomerases (PPIases). In L. pneumophila, the PPIase activity of Mip is required for invasion of macrophages, transmigration through an in vitro lung–epithelial barrier, and full virulence in the guinea pig infection model. Additionally, Mip is a moonlighting protein that binds to collagen IV in the extracellular matrix. Here, we describe the development and synthesis of cycloheximide derivatives with adamantyl moieties as novel FKBP ligands, and analyze their effect on the viability of L. pneumophila and other bacteria. All compounds efficiently inhibited PPIase activity of the prototypic human FKBP12 as well as Mip with IC50-values as low as 180 nM and 1.7 μM, respectively. Five of these derivatives inhibited the growth of L. pneumophila at concentrations of 30–40 μM, but exhibited no effect on other tested bacterial species indicating a specific spectrum of antibacterial activity. The derivatives carrying a 3,5-dimethyladamantan-1-[yl]acetamide substitution (MT_30.32), and a 3-ethyladamantan-1-[yl]acetamide substitution (MT_30.51) had the strongest effects in PPIase- and liquid growth assays. MT_30.32 and MT_30.51 were also inhibitory in macrophage infection studies without being cytotoxic. Accordingly, by applying a combinatorial approach, we were able to generate novel, hybrid inhibitors consisting of cycloheximide and adamantane, two known FKBP inhibitors that interact with different parts of the PPIase domain, respectively. Interestingly, despite the proven Mip-inhibitory activity, the viability of a Mip-deficient strain was affected to the same degree as its wild type. Hence, we also propose that cycloheximide derivatives with adamantyl moieties are potent PPIase inhibitors with multiple targets in L

  17. Diverse populations of Legionella pneumophila present in the water of geographically clustered institutions served by the same water reservoir.

    PubMed

    Bezanson, G; Burbridge, S; Haldane, D; Yoell, C; Marrie, T

    1992-03-01

    We cultured potable water from seven institutions (six hospitals and one medical school) every 2 weeks for 6 months for Legionella pneumophila. All of the institutions were located close to each other and received water from the same freshwater source. Two institutions (the medical school and hospital F, a maternity hospital) never had L. pneumophila isolated from their potable water. The remaining five had 17 to 72% of their water samples positive for L. pneumophila. Most of the isolates were serogroup 1; however, in hospital B serogroup 5 accounted for 56% of the isolates. Oxford and OLDA monoclonal antibody subtypes of L. pneumophila serogroup 1 coexisted in four of the five institutions, while subtype France only was found in one institution. All 10 isolates from this institution lacked plasmids. The other four institutions had Legionella populations with plasmid profiles II, III, and VI. Two of these institutions also had isolates with no plasmids. The distribution of the plasmid types was significantly different for all institutions except C and D. The distribution of monoclonal antibody subtypes was significantly different for L. pneumophila isolates recovered from institutions C and D. There were no characteristics that distinguished the culture-positive institutions from the culture-negative areas. We conclude that diverse populations of L. pneumophila exist within these institutions despite their geographic proximity and identical potable water source. PMID:1551972

  18. Diverse populations of Legionella pneumophila present in the water of geographically clustered institutions served by the same water reservoir.

    PubMed Central

    Bezanson, G; Burbridge, S; Haldane, D; Yoell, C; Marrie, T

    1992-01-01

    We cultured potable water from seven institutions (six hospitals and one medical school) every 2 weeks for 6 months for Legionella pneumophila. All of the institutions were located close to each other and received water from the same freshwater source. Two institutions (the medical school and hospital F, a maternity hospital) never had L. pneumophila isolated from their potable water. The remaining five had 17 to 72% of their water samples positive for L. pneumophila. Most of the isolates were serogroup 1; however, in hospital B serogroup 5 accounted for 56% of the isolates. Oxford and OLDA monoclonal antibody subtypes of L. pneumophila serogroup 1 coexisted in four of the five institutions, while subtype France only was found in one institution. All 10 isolates from this institution lacked plasmids. The other four institutions had Legionella populations with plasmid profiles II, III, and VI. Two of these institutions also had isolates with no plasmids. The distribution of the plasmid types was significantly different for all institutions except C and D. The distribution of monoclonal antibody subtypes was significantly different for L. pneumophila isolates recovered from institutions C and D. There were no characteristics that distinguished the culture-positive institutions from the culture-negative areas. We conclude that diverse populations of L. pneumophila exist within these institutions despite their geographic proximity and identical potable water source. PMID:1551972

  19. Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila

    SciTech Connect

    Butler, C.A.; Hoffman, P.S. )

    1990-05-01

    A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled ((35S)cysteine or (35S)methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid per mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus.

  20. Genetic Characterization of Legionella pneumophila Isolated from a Common Watershed in Comunidad Valenciana, Spain

    PubMed Central

    Sánchez-Busó, Leonor; Coscollá, Mireia; Pinto-Carbó, Marta; Catalán, Vicente; González-Candelas, Fernando

    2013-01-01

    Legionella pneumophila infects humans to produce legionellosis and Pontiac fever only from environmental sources. In order to establish control measures and study the sources of outbreaks it is essential to know extent and distribution of strain variants of this bacterium in the environment. Sporadic and outbreak-related cases of legionellosis have been historically frequent in the Comunidad Valenciana region (CV, Spain), with a high prevalence in its Southeastern-most part (BV). Environmental investigations for the detection of Legionella pneumophila are performed in this area routinely. We present a population genetics study of 87 L. pneumophila strains isolated in 13 different localities of the BV area irrigated from the same watershed and compare them to a dataset of 46 strains isolated in different points of the whole CV. Our goal was to compare environmental genetic variation at two different geographic scales, at county and regional levels. Genetic diversity, recombination and population structure were analyzed with Sequence-Based Typing data and three intergenic regions. The results obtained reveal a low, but detectable, level of genetic differentiation between both datasets, mainly, but not only, attributed to the occurrence of unusual variants of the neuA locus present in the BV populations. This differentiation is still detectable when the 10 loci considered are analyzed independently, despite the relatively high incidence of the most common genetic variant in this species, sequence type 1 (ST-1). However, when the genetic data are considered without their associated geographic information, four major groups could be inferred at the genetic level which did not show any correlation with sampling locations. The overall results indicate that the population structure of these environmental samples results from the joint action of a global, widespread ST-1 along with genetic differentiation at shorter geographic distances, which in this case are related to

  1. The Legionella pneumophila Effector Protein, LegC7, Alters Yeast Endosomal Trafficking

    PubMed Central

    O’Brien, Kevin M.; Lindsay, Elizabeth L.; Starai, Vincent J.

    2015-01-01

    The intracellular pathogen, Legionella pneumophila, relies on numerous secreted effector proteins to manipulate host endomembrane trafficking events during pathogenesis, thereby preventing fusion of the bacteria-laden phagosome with host endolysosomal compartments, and thus escaping degradation. Upon expression in the surrogate eukaryotic model Saccharomyces cerevisiae, we find that the L. pneumophila LegC7/YlfA effector protein disrupts the delivery of both biosynthetic and endocytic cargo to the yeast vacuole. We demonstrate that the effects of LegC7 are specific to the endosome:vacuole delivery pathways; LegC7 expression does not disrupt other known vacuole-directed pathways. Deletions of the ESCRT-0 complex member, VPS27, provide resistance to the LegC7 toxicity, providing a possible target for LegC7 function in vivo. Furthermore, a single amino acid substitution in LegC7 abrogates both its toxicity and ability to alter endosomal traffic in vivo, thereby identifying a critical functional domain. LegC7 likely inhibits endosomal trafficking during L. pneumophila pathogenesis to prevent entry of the phagosome into the endosomal maturation pathway and eventual fusion with the lysosome. PMID:25643265

  2. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy.

    PubMed

    Rolando, Monica; Escoll, Pedro; Nora, Tamara; Botti, Joëlle; Boitez, Valérie; Bedia, Carmen; Daniels, Craig; Abraham, Gilu; Stogios, Peter J; Skarina, Tatiana; Christophe, Charlotte; Dervins-Ravault, Delphine; Cazalet, Christel; Hilbi, Hubert; Rupasinghe, Thusitha W T; Tull, Dedreia; McConville, Malcolm J; Ong, Sze Ying; Hartland, Elizabeth L; Codogno, Patrice; Levade, Thierry; Naderer, Thomas; Savchenko, Alexei; Buchrieser, Carmen

    2016-02-16

    Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis. PMID:26831115

  3. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling.

    PubMed

    Pécastaings, Sophie; Allombert, Julie; Lajoie, Barbora; Doublet, Patricia; Roques, Christine; Vianney, Anne

    2016-09-01

    The waterborne pathogen Legionella pneumophila grows as a biofilm, freely or inside amoebae. Cyclic-di-GMP (c-di-GMP), a bacterial second messenger frequently implicated in biofilm formation, is synthesized and degraded by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), respectively. To characterize the c-di-GMP-metabolizing enzymes involved in L. pneumophila biofilm regulation, the consequences on biofilm formation and the c-di-GMP concentration of each corresponding gene inactivation were assessed in the Lens strain. The results showed that one DGC and two PDEs enhance different aspects of biofilm formation, while two proteins with dual activity (DGC/PDE) inhibit biofilm growth. Surprisingly, only two mutants exhibited a change in global c-di-GMP concentration. This study highlights that specific c-di-GMP pathways control L. pneumophila biofilm formation, most likely via temporary and/or local modulation of c-di-GMP concentration. Furthermore, Lpl1054 DGC is required to enable the formation a dense biofilm in response to nitric oxide, a signal for biofilm dispersion in many other species. PMID:27494738

  4. Roles of iron in the survival, growth, and pathogenesis of Legionella pneumophila

    SciTech Connect

    Quinn, F.D.

    1985-01-01

    The essentially of iron for living cells has long been recognized, and the availability of host-iron has been proposed as a contributing factor to virulence in bacterial, fungal, and protozoan infections. The mechanism by which legionella pneumophila causes disease is unknown. Growth of fresh clinical or environmental isolates in pure culture requires 20 times more iron than is needed for most other bacteria. Thus, increased plasma iron levels may be needed for multiplication within human hosts. It was observed that: (1) this organism can be more readily deprived of iron by iron binding agents than all other bacteria studied, and this inhibition can be reversed by the addition of iron; (2) normal human blood serum kills L. pneumophila and the bactericidal action is decreased when complement is inactivated or enough iron to saturate serum transferrin is added to the system; (3) in assays with a radioactive isotope of iron (/sup 55/Fe), no specific iron sequestering system was detected; (4) in analysis of outer membrane proteins with /sup 55/Fe, SDS-polyacrylamide gel electrophoresis, and autoradiography, no specific outer membrane proteins responsible for iron acquisition were observed; and (5) in assays for protease, iron does not stimulate production of extracellular proteases. These observations indicate that L. pneumophila has no specific iron uptake mechanism, but instead relies on passive diffusion and/or non-specific mechanisms to obtain its iron.

  5. A conserved OmpA-like protein in Legionella pneumophila required for efficient intracellular replication.

    PubMed

    Goodwin, Ian P; Kumova, Ogan K; Ninio, Shira

    2016-08-01

    The OmpA-like protein domain has been associated with peptidoglycan-binding proteins, and is often found in virulence factors of bacterial pathogens. The intracellular pathogen Legionella pneumophila encodes for six proteins that contain the OmpA-like domain, among them the highly conserved uncharacterized protein we named CmpA. Here we set out to characterize the CmpA protein and determine its contribution to intracellular survival of L. pneumophila Secondary structure analysis suggests that CmpA is an inner membrane protein with a peptidoglycan-binding domain at the C-teminus. A cmpA mutant was able to replicate normally in broth, but failed to compete with an isogenic wild-type strain in an intracellular growth competition assay. The cmpA mutant also displayed significant intracellular growth defects in both the protozoan host Acanthamoeba castellanii and in primary bone marrow-derived macrophages, where uptake into the cells was also impaired. The cmpA phenotypes were completely restored upon expression of CmpA in trans The data presented here establish CmpA as a novel virulence factor of L. pneumophila that is required for efficient intracellular replication in both mammalian and protozoan hosts. PMID:27421957

  6. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy

    PubMed Central

    Rolando, Monica; Escoll, Pedro; Nora, Tamara; Botti, Joëlle; Boitez, Valérie; Daniels, Craig; Abraham, Gilu; Stogios, Peter J.; Skarina, Tatiana; Christophe, Charlotte; Dervins-Ravault, Delphine; Cazalet, Christel; Hilbi, Hubert; Rupasinghe, Thusitha W. T.; Tull, Dedreia; McConville, Malcolm J.; Ong, Sze Ying; Hartland, Elizabeth L.; Codogno, Patrice; Levade, Thierry; Naderer, Thomas; Savchenko, Alexei; Buchrieser, Carmen

    2016-01-01

    Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen’s Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis. PMID:26831115

  7. Phospholipase PlaB is a new virulence factor of Legionella pneumophila.

    PubMed

    Schunder, Eva; Adam, Patrick; Higa, Futoshi; Remer, Katharina A; Lorenz, Udo; Bender, Jennifer; Schulz, Tino; Flieger, Antje; Steinert, Michael; Heuner, Klaus

    2010-06-01

    We previously identified Legionella pneumophila PlaB as the major cell-associated phospholipase A/lysophospholipase A with contact-dependent hemolytic activity. In this study, we further characterized this protein and found it to be involved in the virulence of L. pneumophila. PlaB was mainly expressed and active during exponential growth. Active PlaB was outer membrane-associated and at least in parts surface-exposed. Transport to the outer membrane was not dependent on the type I (T1SS), II (T2SS), IVB (T4BSS) or Tat secretion pathways. Furthermore, PlaB activity was not dependent on the presence of the macrophage infectivity potentiator (Mip) or the major secreted zinc metalloproteinase A (MspA). Despite the fact that PlaB is not essential for replication in protozoa or macrophage cell lines, we found that plaB mutants were impaired for replication in the lungs and dissemination to the spleen in the guinea pig infection model. Histological sections monitored less inflammation and destruction of the lung tissue after infection with the plaB mutants compared to L. pneumophila wild type. Taken together, PlaB is the first phospholipase A/lysophospholipase A with a confirmed role in the establishment of Legionnaires' disease. PMID:20153694

  8. Host-Mediated Post-Translational Prenylation of Novel Dot/Icm-Translocated Effectors of Legionella Pneumophila

    PubMed Central

    Price, Christopher T. D.; Jones, Snake C.; Amundson, Karen E.; Kwaik, Yousef Abu

    2010-01-01

    The Dot/Icm type IV translocated Ankyrin B (AnkB) effector of Legionella pneumophila is modified by the host prenylation machinery that anchors it into the outer leaflet of the Legionella-containing vacuole (LCV), which is essential for biological function of the effector in vitro and in vivo. Prenylation involves the covalent linkage of an isoprenoid lipid moiety to a C-terminal CaaX motif in eukaryotic proteins enabling their anchoring into membranes. We show here that the LCV harboring an ankB null mutant is decorated with prenylated proteins in a Dot/Icm-dependent manner, indicating that other LCV membrane-anchored proteins are prenylated. In silico analyses of four sequenced L. pneumophila genomes revealed the presence of eleven other genes that encode proteins with a C-terminal eukaryotic CaaX prenylation motif. Of these eleven designated Prenylated effectors of Legionella (Pel), seven are also found in L. pneumophila AA100. We show that six L. pneumophila AA100 Pel proteins exhibit distinct cellular localization when ectopically expressed in mammalian cells and this is dependent on action of the host prenylation machinery and the conserved cysteine residue of the CaaX motif. Although inhibition of the host prenylation machinery completely blocks intra-vacuolar proliferation of L. pneumophila, it only had a modest effect on intracellular trafficking of the LCV. Five of the Pel proteins are injected into human macrophages by the Dot/Icm type IV translocation system of L. pneumophila. Taken together, the Pel proteins are novel Dot/Icm-translocated effectors of L. pneumophila that are post-translationally modified by the host prenylation machinery, which enables their anchoring into cellular membranes, and the prenylated effectors contribute to evasion of lysosomal fusion by the LCV. PMID:21687755

  9. Virulence phenotypes of Legionella pneumophila associated with noncoding RNA lpr0035.

    PubMed

    Jayakumar, Deepak; Early, Julie V; Steinman, Howard M

    2012-12-01

    The Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, contains a recently discovered noncoding RNA, lpr0035. lpr0035 straddles the 5' chromosomal junction of a 45-kbp mobile genetic element, pLP45, which can exist as an episome or integrated in the bacterial chromosome. A 121-bp deletion was introduced in strain JR32, a Philadelphia-1 derivative. The deletion inactivated lpr0035, removed the 49-bp direct repeat at the 5' junction of pLP45, and locked pLP45 in the chromosome. Intracellular multiplication of the deletion mutant was decreased by nearly 3 orders of magnitude in Acanthamoeba castellanii amoebae and nearly 2 orders of magnitude in J774 mouse macrophages. Entry of the deletion mutant into amoebae and macrophages was decreased by >70%. The level of entry in both hosts was restored to that in strain JR32 by plasmid copies of two open reading frames immediately downstream of the 5' junction and plasmid lpr0035 driven by its endogenous promoter. When induced from a tac promoter, plasmid lpr0035 completely reversed the intracellular multiplication defect in macrophages but was without effect in amoebae. These data are the first evidence of a role for noncoding RNA lpr0035, which has homologs in six other Legionella genomes, in entry of L. pneumophila into amoebae and macrophages and in host-specific intracellular multiplication. The data also demonstrate that deletion of a direct-repeat sequence restricts the mobility of pLP45 and is a means of studying the role of pLP45 mobility in Legionella virulence phenotypes. PMID:22966048

  10. Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila.

    PubMed

    Beyrakhova, Ksenia A; van Straaten, Karin; Li, Lei; Boniecki, Michal T; Anderson, Deborah H; Cygler, Miroslaw

    2016-07-22

    Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1. PMID:27226543

  11. Mechanism of invasion of lung epithelial cells by filamentous Legionella pneumophila.

    PubMed

    Prashar, Akriti; Bhatia, Sonam; Tabatabaeiyazdi, Zohreh; Duncan, Carla; Garduño, Rafael A; Tang, Patrick; Low, Donald E; Guyard, Cyril; Terebiznik, Mauricio R

    2012-10-01

    Legionella, the aetiological agent responsible for Legionellosis, is an opportunistic pathogen that infects humans upon the inhalation of contaminated aerosolized water droplets. Legionella is pleomorphic and its different morphotypes exhibit varying degrees of virulence. While the filamentous forms of Legionella pneumophila (Lp) have been reported in patient samples since the first description of legionellosis, their role in disease has not been studied. Our results show that both E-cadherin and β1 integrin receptors mediate filamentous Lp (FLp) attachment to lung epithelial cells (LECs). The activation of these receptors induces the formation of actin enriched membrane surface structures that we designated 'hooks' and 'membrane wraps'. These structures entrap the filaments on the cell surface leading to their gradual internalization through a zipper mechanism of phagocytosis dependent on actomyosin activity. The supply of E-cadherin receptors from the recycling pathway and β1 integrins released from focal adhesion turnover are required to sustain this process. Intracellular FLp inhabits a vacuolar compartment where filaments differentiate into short rods and replicate to produce infective progeny. Here we are reporting a first description of the invasion mechanism used by FLp to invade LECs. Therefore, filamentous morphotype of Lp can induce its own uptake by LECs and has the potential ability to cause disease. PMID:22727141

  12. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction

    PubMed Central

    Cianciotto, Nicholas P

    2015-01-01

    Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires’ disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, ‘model’ organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria. PMID:26000653

  13. Occurrence of virulent genes among environmental isolates of Legionella pneumophila serogroup 1 strains from various parts of peninsular Malaysia.

    PubMed

    Arushothy, Revathy; Ahmad, Norazah

    2008-12-01

    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia. PMID:19287368

  14. Early Events in Phagosome Establishment Are Required for Intracellular Survival of Legionella pneumophila

    PubMed Central

    Wiater, Lawrence A.; Dunn, Kenneth; Maxfield, Frederick R.; Shuman, Howard A.

    1998-01-01

    During infection, the Legionnaires’ disease bacterium, Legionella pneumophila, survives and multiplies within a specialized phagosome that is near neutral pH and does not fuse with host lysosomes. In order to understand the molecular basis of this organism’s ability to control its intracellular fate, we have isolated and characterized a group of transposon-generated mutants which were unable to kill macrophages and were subsequently found to be defective in intracellular multiplication. These mutations define a set of 20 genes (19 icm [for intracellular multiplication] genes and dotA [for defect in organelle trafficking]). In this report, we describe a quantitative assay for phagosome-lysosome fusion (PLF) and its use to measure the levels of PLF in cells that have been infected with either wild-type L. pneumophila or one of several mutants defective in different icm genes or dotA. By using quantitative confocal fluorescence microscopy, PLF could be scored on a per-bacterium basis by determining the extent to which fluorescein-labeled L. pneumophila colocalized with host lysosomes prelabeled with rhodamine-dextran. Remarkably, mutations in the six genes that were studied resulted in maximal levels of PLF as quickly as 30 min following infection. These results indicate that several, and possibly all, of the icm and dotA gene products act at an early step during phagosome establishment to determine whether L. pneumophila-containing phagosomes will fuse with lysosomes. Although not ruled out, subsequent activity of these gene products may not be necessary for successful intracellular replication. PMID:9712800

  15. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing

    PubMed Central

    Rhoads, William J.; Pruden, Amy; Edwards, Marc A.

    2016-01-01

    Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23–24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908

  16. Exposure to Synthetic Gray Water Inhibits Amoeba Encystation and Alters Expression of Legionella pneumophila Virulence Genes

    PubMed Central

    Lu, Jingrang; Ashbolt, Nicholas J.

    2014-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems. PMID:25381242

  17. The Legionella pneumophila Chaperonin - An Unusual Multifunctional Protein in Unusual Locations.

    PubMed

    Garduño, Rafael A; Chong, Audrey; Nasrallah, Gheyath K; Allan, David S

    2011-01-01

    The Legionella pneumophila chaperonin, high temperature protein B (HtpB), was discovered as a highly immunogenic antigen, only a few years after the identification of L. pneumophila as the causative agent of Legionnaires' disease. As its counterparts in other bacterial pathogens, HtpB did not initially receive further attention, particularly because research was focused on a few model chaperonins that were used to demonstrate that chaperonins are essential stress proteins, present in all cellular forms of life and involved in helping other proteins to fold. However, chaperonins have recently attracted increasing interest, particularly after several reports confirmed their multifunctional nature and the presence of multiple chaperonin genes in numerous bacterial species. It is now accepted that bacterial chaperonins are capable of playing a variety of protein folding-independent roles. HtpB is clearly a multifunctional chaperonin that according to its location in the bacterial cell, or in the L. pneumophila-infected cell, plays different roles. HtpB exposed on the bacterial cell surface can act as an invasion factor for non-phagocytic cells, whereas the HtpB released in the host cell can act as an effector capable of altering organelle trafficking, the organization of actin microfilaments and cell signaling pathways. The road to discover the multifunctional nature of HtpB has been exciting and here we provide a historical perspective of the key findings linked to such discovery, as well as a summary of the experimental work (old and new) performed in our laboratory. Our current understanding has led us to propose that HtpB is an ancient protein that L. pneumophila uses as a key molecular tool important to the intracellular establishment of this fascinating pathogen. PMID:21713066

  18. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing.

    PubMed

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2016-01-01

    Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908

  19. Environmental surveillance and molecular epidemiology of waterborne pathogen Legionella pneumophila in health-care facilities of Northeastern Greece: a 4-year survey.

    PubMed

    Alexandropoulou, Ioanna G; Ntougias, Spyridon; Konstantinidis, Theocharis G; Parasidis, Theodoros A; Panopoulou, Maria; Constantinidis, Theodoros C

    2015-05-01

    A 4-year proactive environmental surveillance of Legionella spp. in the water distribution and cooling systems of five health-care facilities was carried out as part of the strategy for the prevention of hospital-acquired Legionnaires' disease in Northeastern Greece. Legionella spp. were detected in 71 out of 458 collected samples. The majority of strains belonged to Legionella pneumophila serogroups 2-15 (75.0%), while all L. pneumophila serogroup 1 strains (23.6%) were isolated from a single hospital. The highest percentage of positive samples was found in distal sites (19.4%), while no Legionella strains were detected in cooling systems. Each hospital was colonized at least once with L. pneumophila, while remedial actions resulted in significant reduction of Legionella concentration. The molecular epidemiology of environmental L. pneumophila strains was also investigated using random amplified polymorphic DNA (RAPD) and multi-gene sequence-based analysis. Based on RAPD patterns, L. pneumophila serogroups 2-15 and serogroup 1 strains were classified into 24 and 9 operational taxonomic units (OTUs), respectively. Sequencing of housekeeping and diversifying pressure-related genes recommended by European Working Group for Legionella Infections (EWGLI) revealed not only a high intraspecies variability but also the circulation and persistence of one specific genotyping profile in the majority of hospitals. This study highlights the necessity for diachronic surveillance of Legionella in health-care facilities by adopting both cultural and molecular methods. PMID:25712880

  20. Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials

    PubMed Central

    2013-01-01

    Background Legionellosis is an uncommon form of pneumonia. After a clinical encounter, the necessary antibiotic treatment is available if the diagnosis is made early in the illness. Before the clinical encounter, early detection of the main pathogen involved, Legionella pneumophila, in hazardous environments is important in preventing infectious levels of this bacterium. In this study a qualitative test based on combined magnetic immunocapture and enzyme-immunoassay for the fast detection of Legionella pneumophila in water samples was compared with the standard method, in both comparative and collaborative trials. The test was based on the use of anti-Legionella pneumophila antibodies immobilized on magnetic microspheres. The final protocol included concentration by filtration, resuspension and immunomagnetic capture. The whole assay took less than 1 hour to complete. Results A comparative trial was performed against the standard culture method (ISO 11731) on both artificially and naturally contaminated water samples, for two matrices: chlorinated tap water and cooling tower water. Performance characteristics of the test used as screening with culture confirmation resulted in sensitivity, specificity, false positive, false negative, and efficiency of 96.6%, 100%, 0%, 3.4%, and 97.8%, respectively. The detection limit at the level under which the false negative rate increases to 50% (LOD50) was 93 colony forming units (CFU) in the volume examined for both tested matrices. The collaborative trial included twelve laboratories. Water samples spiked with certified reference materials were tested. In this study the coincidence level between the two methods was 95.8%. Conclusion Results demonstrate the applicability of this immunosensing technique to the rapid, simple, and efficient detection of Legionella pneumophila in water samples. This test is not based on microbial growth, so it could be used as a rapid screening technique for the detection of L. pneumophila in

  1. First report of Legionella pneumophila in car cabin air filters. Are these a potential exposure pathway for professional drivers?

    PubMed

    Alexandropoulou, Ioanna G; Konstantinidis, Theocharis G; Parasidis, Theodoros A; Nikolaidis, Christos; Panopoulou, Maria; Constantinidis, Theodoros C

    2013-12-01

    Recent findings have identified professional drivers as being at an increased risk of Legionnaires' disease. Our hypothesis was that used car cabin air filters represent a reservoir of Legionella bacteria, and thus a potential pathway for contamination. We analysed used cabin air filters from various types of car. The filters were analysed by culture and by molecular methods. Our findings indicated that almost a third of air filters were colonized with Legionella pneumophila. Here, we present the first finding of Legionella spp. in used car cabin air filters. Further investigations are needed in order to confirm this exposure pathway. The presence of Legionella bacteria in used cabin air filters may have been an unknown source of infection until now. PMID:24099652

  2. Deletion of potD, encoding a putative spermidine-binding protein, results in a complex phenotype in Legionella pneumophila.

    PubMed

    Nasrallah, Gheyath K; Abdelhady, Hany; Tompkins, Nicholas P; Carson, Kaitlyn R; Garduño, Rafael A

    2014-07-01

    L. pneumophila is an intracellular pathogen that replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV). We previously observed that the polyamine spermidine, produced by host cells or added exogenously, enhances the intracellular growth of L. pneumophila. To study this enhancing effect and determine whether polyamines are used as nutrients, we deleted potD from L. pneumophila strain JR32. The gene potD encodes a spermidine-binding protein that in other bacteria is essential for the function of the PotABCD polyamine transporter. Deletion of potD did not affect L. pneumophila growth in vitro in the presence or absence of spermidine and putrescine, suggesting that PotD plays a redundant or no role in polyamine uptake. However, deletion of potD resulted in a puzzlingly complex phenotype that included defects in L. pneumophila's ability to form filaments, tolerate Na(+), associate with macrophages and amoeba, recruit host vesicles to the LCV, and initiate intracellular growth. Moreover, the ΔpotD mutant was completely unable to grow in L929 cells treated with a pharmacological inhibitor of spermidine synthesis. These complex and disparate effects suggest that the L. pneumophila potD encodes either: (i) a multifunctional protein, (ii) a protein that interacts with, or regulates a, multifunctional protein, or (iii) a protein that contributes (directly or indirectly) to a regulatory network. Protein function studies with the L. pneumophila PotD protein are thus warranted. PMID:24928741

  3. Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila.

    PubMed

    Häuslein, Ina; Manske, Christian; Goebel, Werner; Eisenreich, Wolfgang; Hilbi, Hubert

    2016-04-01

    Amino acids represent the prime carbon and energy source for Legionella pneumophila, a facultative intracellular pathogen, which can cause a life-threatening pneumonia termed Legionnaires' disease. Genome, transcriptome and proteome studies indicate that L. pneumophila also utilizes carbon substrates other than amino acids. We show here that glycerol promotes intracellular replication of L. pneumophila in amoeba or macrophages (but not extracellular growth) dependent on glycerol-3-phosphate dehydrogenase, GlpD. An L. pneumophila mutant strain lacking glpD was outcompeted by wild-type bacteria upon co-infection of amoeba, indicating an important role of glycerol during infection. Isotopologue profiling studies using (13) C-labelled substrates were performed in a novel minimal defined medium, MDM, comprising essential amino acids, proline and phenylalanine. In MDM, L. pneumophila utilized (13) C-labelled glycerol or glucose predominantly for gluconeogenesis and the pentose phosphate pathway, while the amino acid serine was used for energy generation via the citrate cycle. Similar results were obtained for L. pneumophila growing intracellularly in amoeba fed with (13) C-labelled glycerol, glucose or serine. Collectively, these results reveal a bipartite metabolism of L. pneumophila, where glycerol and carbohydrates like glucose are mainly fed into anabolic processes, while serine serves as major energy supply. PMID:26691313

  4. Role of Biofilm Roughness and Hydrodynamic Conditions in Legionella pneumophila Adhesion to and Detachment from Simulated Drinking Water Biofilms

    PubMed Central

    Shen, Yun; Monroy, Guillermo L.; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A.; Ashbolt, Nicholas J.; Liu, Wen-Tso; Nguyen, Thanh H.

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography (OCT) imaging technique. Analysis of the OCT images of multispecies biofilms grown under low nutrient condition up to 34 weeks revealed the lack of biofilm deformation even when these biofilms were exposed to flow velocity of 0.7 m/s, typical flow for DWDS. L. pneumophila adhesion on these biofilm under low flow velocity (0.007 m/s) positively correlated with biofilm roughness due to enlarged biofilm surface area and local flow conditions created by roughness asperities. The preadhered L. pneumophila on selected rough and smooth biofilms were found to detach when these biofilms were subjected to higher flow velocity. At the flow velocity of 0.1 and 0.3 m/s, the ratio of detached cell from the smooth biofilm surface was from 1.3 to 1.4 times higher than that from the rough biofilm surface, presumably because of the low shear stress zones near roughness asperities. This study determined that physical structure and local hydrodynamics control adhesion and detachment from simulated drinking water biofilm, thus it is the first step toward reducing the risk of L. pneumophila exposure and subsequent infections. PMID:25699403

  5. A PCR-Based Method for Monitoring Legionella pneumophila in Water Samples Detects Viable but Noncultivable Legionellae That Can Recover Their Cultivability▿

    PubMed Central

    Dusserre, Eric; Ginevra, Christophe; Hallier-Soulier, Sylvie; Vandenesch, François; Festoc, Gabriel; Etienne, Jerome; Jarraud, Sophie; Molmeret, Maëlle

    2008-01-01

    Legionella pneumophila is the causative agent of Legionnaires' disease. This bacterium is ubiquitous in aqueous environments and uses amoebae as an intracellular replicative niche. Real-time PCR has been developed for rapid detection of Legionella DNA in water samples. In addition to culturable bacteria, this method may also detect dead and viable but noncultivable (VBNC) legionellae. In order to understand the significance of positive PCR results in this setting, we prepared water samples containing known concentrations of L. pneumophila and analyzed them comparatively by means of conventional culture, real-time PCR, viability labeling, and immunodetection (solid-phase cytometry). We also examined the influence of chlorination on the results of the four methods. The different techniques yielded similar results for nonchlorinated water samples but not for chlorinated samples. After treatment for 24 h with 0.5 and 1 ppm chlorine, all cultures were negative, PCR and immunodetection showed about 106 genome units and bacteria/ml, and total-viable-count (TVC) labeling detected 105 and 102 metabolically active bacteria/ml, respectively. Thus, PCR also detected bacteria that were VBNC. The recoverability of VBNC forms was confirmed by 5 days of coculture with Acanthamoeba polyphaga. Therefore, some TVC-positive bacteria were potentially infective. These data show that L. pneumophila PCR detects not only culturable bacteria but also VBNC forms and dead bacterial DNA at low chlorine concentrations. PMID:18515476

  6. Legionella pneumophila serogroup 1 subgrouping by monoclonal antibodies--an epidemiological tool.

    PubMed Central

    Watkins, I. D.; Tobin, J. O.; Dennis, P. J.; Brown, W.; Newnham, R.; Kurtz, J. B.

    1985-01-01

    A panel of 10 monoclonal antibodies was used to subgroup 326 strains of Legionella pneumophila serogroup 1. All but two strains could be classified into three major subgroups named after their representative strains Pontiac 1, Olda and Bellingham 1. Of the 50 isolates from patients, 44 representing 32 separate incidents were of the Pontiac subgroup. This subgroup was also found in 16 of 18 buildings epidemiologically associated with Legionnaires' Disease. In contrast, strains of the Olda subgroup predominated in buildings where no infections had occurred. In 9 of the 11 incidents where isolates were available from at least one patient as well as from the suspected environmental source, the monoclonal antibody reaction patterns of strains from patients were identical to those of one or more of their environmental counterparts. PMID:3905954

  7. SPR based immunosensor for detection of Legionella pneumophila in water samples

    NASA Astrophysics Data System (ADS)

    Enrico, De Lorenzis; Manera, Maria G.; Montagna, Giovanni; Cimaglia, Fabio; Chiesa, Maurizio; Poltronieri, Palmiro; Santino, Angelo; Rella, Roberto

    2013-05-01

    Detection of legionellae by water sampling is an important factor in epidemiological investigations of Legionnaires' disease and its prevention. To avoid labor-intensive problems with conventional methods, an alternative, highly sensitive and simple method is proposed for detecting L. pneumophila in aqueous samples. A compact Surface Plasmon Resonance (SPR) instrumentation prototype, provided with proper microfluidics tools, is built. The developed immunosensor is capable of dynamically following the binding between antigens and the corresponding antibody molecules immobilized on the SPR sensor surface. A proper immobilization strategy is used in this work that makes use of an important efficient step aimed at the orientation of antibodies onto the sensor surface. The feasibility of the integration of SPR-based biosensing setups with microfluidic technologies, resulting in a low-cost and portable biosensor is demonstrated.

  8. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila

    PubMed Central

    Zebisch, Matthias; Schäfer, Petra; Lauble, Peter; Sträter, Norbert

    2013-01-01

    Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/β)- and (β/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map. PMID:23519799

  9. Analysis of population structure among Korean and Japanese Legionella pneumophila isolates using hsp60 sequences.

    PubMed

    Park, Chan Geun; Kim, Byoung Jun; Kim, Hee-Youn; Yun, Yeo-Jun; Ko, Kwan Soo; Miyamoto, Hiroshi; Kim, Bum-Joon; Kook, Yoon-Hoh

    2012-08-01

    The population structure of Korean (150 strains) and Japanese (92 strains) Legionella pneumophila isolates along with 18 reference strains were investigated using hsp60 sequence (1647 bp) analysis. Twelve clonal subgroups (hsP-I to hsP-X and hsF-I and hsF-II) were designated on the hsp60 tree, inferred from representative sequences using the neighbor-joining method. Some of the isolates showed unique subgroups depending on the source of isolates, including hsP-I, hsF-I, and hsF-II from cooling tower water, and subgroups hsP-VIII and hsP-X from circulating hot water bath. These subgroups may be useful for epidemiological studies to chase or specify sources of infection in Korea and Japan. PMID:22672106

  10. Passage through Tetrahymena tropicalis triggers a rapid morphological differentiation in Legionella pneumophila.

    PubMed

    Faulkner, Gary; Berk, Sharon G; Garduño, Elizabeth; Ortiz-Jiménez, Marco A; Garduño, Rafael A

    2008-12-01

    The intracellular bacterial pathogen Legionella pneumophila follows a developmental cycle in which replicative forms (RFs) differentiate into infectious stationary-phase forms (SPFs) in vitro and in vivo into highly infectious mature intracellular forms (MIFs). The potential relationships between SPFs and MIFs remain uncharacterized. Previously we determined that L. pneumophila survives, but does not replicate, while it transiently resides (for 1 to 2 h) in food vacuoles of the freshwater ciliate Tetrahymena tropicalis before being expelled as legionellae-laden pellets. We report here that SPFs have the ability to rapidly (<1 h) and directly (in the absence of bacterial replication) differentiate into MIFs while in transit through T. tropicalis, indicating that SPFs and MIFs constitute a differentiation continuum. Mutant RFs lacking the sigma factor gene rpoS, or the response regulator gene letA, were unable to produce normal SPFs in vitro and did not fully differentiate into MIFs in vivo, further supporting the existence of a common mechanism of differentiation shared by SPFs and MIFs. Mutants with a defective Dot/Icm system morphologically differentiated into MIFs while in transit through T. tropicalis. Therefore, T. tropicalis has allowed us to unequivocally conclude that SPFs can directly differentiate into MIFs and that the Dot/Icm system is not required for differentiation, two events that could not be experimentally addressed before. The Tetrahymena model can now be exploited to study the signals that trigger MIF development in vivo and is the only replication-independent model reported to date that allows the differentiation of Dot/Icm mutants into MIFs. PMID:18805971

  11. The phtC-phtD Locus Equips Legionella pneumophila for Thymidine Salvage and Replication in Macrophages

    PubMed Central

    Fonseca, Maris V.; Sauer, John-Demian; Crepin, Sebastien; Byrne, Brenda

    2014-01-01

    The phagosomal transporter (Pht) family of the major facilitator superfamily (MFS) is encoded by phylogenetically related intracellular gammaproteobacteria, including the opportunistic pathogen Legionella pneumophila. The location of the pht genes between the putative thymidine kinase (tdk) and phosphopentomutase (deoB) genes suggested that the phtC and phtD loci contribute to thymidine salvage in L. pneumophila. Indeed, a phtC+ allele in trans restored pyrimidine uptake to an Escherichia coli mutant that lacked all known nucleoside transporters, whereas a phtD+ allele did not. The results of phenotypic analyses of L. pneumophila strains lacking phtC or phtD strongly indicate that L. pneumophila requires PhtC and PhtD function under conditions where sustained dTMP synthesis is compromised. First, in broth cultures that mimicked thymidine limitation or starvation, L. pneumophila exhibited a marked requirement for PhtC function. Conversely, mutation of phtD conferred a survival advantage. Second, in medium that lacked thymidine, multicopy phtC+ or phtD+ alleles enhanced the survival of L. pneumophila thymidylate synthase (thyA)-deficient strains, which cannot synthesize dTMP endogenously. Third, under conditions in which transport of the pyrimidine nucleoside analog 5-fluorodeoxyuridine (FUdR) would inhibit growth, PhtC and PhtD conferred a growth advantage to L. pneumophila thyA+ strains. Finally, when cultured in macrophages, L. pneumophila required the phtC-phtD locus to replicate. Accordingly, we propose that PhtC and PhtD contribute to protect L. pneumophila from dTMP starvation during its intracellular life cycle. PMID:24478086

  12. The phtC-phtD locus equips Legionella pneumophila for thymidine salvage and replication in macrophages.

    PubMed

    Fonseca, Maris V; Sauer, John-Demian; Crepin, Sebastien; Byrne, Brenda; Swanson, Michele S

    2014-02-01

    The phagosomal transporter (Pht) family of the major facilitator superfamily (MFS) is encoded by phylogenetically related intracellular gammaproteobacteria, including the opportunistic pathogen Legionella pneumophila. The location of the pht genes between the putative thymidine kinase (tdk) and phosphopentomutase (deoB) genes suggested that the phtC and phtD loci contribute to thymidine salvage in L. pneumophila. Indeed, a phtC(+) allele in trans restored pyrimidine uptake to an Escherichia coli mutant that lacked all known nucleoside transporters, whereas a phtD(+) allele did not. The results of phenotypic analyses of L. pneumophila strains lacking phtC or phtD strongly indicate that L. pneumophila requires PhtC and PhtD function under conditions where sustained dTMP synthesis is compromised. First, in broth cultures that mimicked thymidine limitation or starvation, L. pneumophila exhibited a marked requirement for PhtC function. Conversely, mutation of phtD conferred a survival advantage. Second, in medium that lacked thymidine, multicopy phtC(+) or phtD(+) alleles enhanced the survival of L. pneumophila thymidylate synthase (thyA)-deficient strains, which cannot synthesize dTMP endogenously. Third, under conditions in which transport of the pyrimidine nucleoside analog 5-fluorodeoxyuridine (FUdR) would inhibit growth, PhtC and PhtD conferred a growth advantage to L. pneumophila thyA(+) strains. Finally, when cultured in macrophages, L. pneumophila required the phtC-phtD locus to replicate. Accordingly, we propose that PhtC and PhtD contribute to protect L. pneumophila from dTMP starvation during its intracellular life cycle. PMID:24478086

  13. Essential Roles and Regulation of the Legionella pneumophila Collagen-Like Adhesin during Biofilm Formation

    PubMed Central

    Mallegol, Julia; Duncan, Carla; Prashar, Akriti; So, Jannice; Low, Donald E.; Terebeznik, Mauricio; Guyard, Cyril

    2012-01-01

    Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface. PMID:23029523

  14. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    PubMed

    Mallegol, Julia; Duncan, Carla; Prashar, Akriti; So, Jannice; Low, Donald E; Terebeznik, Mauricio; Guyard, Cyril

    2012-01-01

    Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface. PMID:23029523

  15. The CpxRA two-component system contributes to Legionella pneumophila virulence.

    PubMed

    Tanner, Jennifer R; Li, Laam; Faucher, Sébastien P; Brassinga, Ann Karen C

    2016-06-01

    The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation. PMID:26934669

  16. Effects of alpha-amylase on in vitro growth of Legionella pneumophila.

    PubMed Central

    Bortner, C A; Miller, R D; Arnold, R R

    1983-01-01

    Sterile parotid saliva inhibited growth of Legionella pneumophila on solid media, and the salivary component involved in this inhibition has been shown to be amylase. Disk diffusion and well plate assays were used to study possible mechanisms for this effect. The amylolytic activity of saliva copurified with inhibitory activity, and both activities were sensitive to proteinase K digestion and heat treatment. In addition, purified alpha-amylase from several sources (bacteria, fungi, porcine pancreas, and human saliva) exhibited similar activity. Incorporation of charcoal or bovine serum albumin into media blocked inhibition by amylase. Replacement of Bacto-Agar with Noble agar (both from Difco Laboratories) prevented growth inhibition in the absence of starch. However, when corn starch was present with Noble agar, amylase-induced growth inhibition occurred. Purification of starch by washing with methanol eliminated some toxic component. The toxic component from starch could be recovered from the methanol wash and inhibited growth of L. pneumophila in the absence of amylase activity. The results suggest that toxic substances exist in media components which may be unmasked during salivary amylase digestion of starch. This effect may explain, in part, the difficulty in recovery of the organism from clinical specimens containing amylase. PMID:6190756

  17. First isolation of Legionella species, including L. pneumophila serogroup 1, in Greek potting soils: possible importance for public health.

    PubMed

    Velonakis, E N; Kiousi, I M; Koutis, C; Papadogiannakis, E; Babatsikou, F; Vatopoulos, A

    2010-06-01

    A total of 21 Legionella isolates were recovered from six out of 22 samples of potting soil from the Athens area, Greece. Legionella pneumophila (serogroups 1 and 2-15) and species and serotypes included in the group of L. longbeachae serogroups 1 and 2, L. bozemanii serogroups 1 and 2, L. dumoffii, L. gormanii, L. jordanis, L. micdadei and L. anisa were isolated on BCYEalpha agar containing cysteine, GVPC and natamycin and on BCYEalpha agar containing cysteine, Wadowsky Yee supplement and natamycin. The bacterial load was 4000-120 000 CFU/g of potting soil. The isolation of L. pneumophila serogroup 1 from Greek potting soils is reported here for the first time. PMID:19747214

  18. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response

    PubMed Central

    Hempstead, Andrew D.; Isberg, Ralph R.

    2015-01-01

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR. PMID:26598709

  19. The Legionella pneumophila Siderophore Legiobactin Is a Polycarboxylate That Is Identical in Structure to Rhizoferrin

    PubMed Central

    Burnside, Denise M.; Wu, Yuyang; Shafaie, Saman

    2015-01-01

    Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe3+ uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner. PMID:26195554

  20. The Legionella pneumophila Siderophore Legiobactin Is a Polycarboxylate That Is Identical in Structure to Rhizoferrin.

    PubMed

    Burnside, Denise M; Wu, Yuyang; Shafaie, Saman; Cianciotto, Nicholas P

    2015-10-01

    Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe(3+) uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner. PMID:26195554

  1. Legionella pneumophila Transcriptional Response following Exposure to CuO Nanoparticles

    PubMed Central

    Struewing, Ian; Buse, Helen Y.; Kou, Jiahui; Shuman, Howard A.; Faucher, Sébastien P.; Ashbolt, Nicholas J.

    2013-01-01

    Copper ions are an effective antimicrobial agent used to control Legionnaires' disease and Pontiac fever arising from institutional drinking water systems. Here, we present data on an alternative bactericidal agent, copper oxide nanoparticles (CuO-NPs), and its efficacy on Legionella pneumophila. In broth cultures, the CuO-NPs caused growth inhibition, which appeared to be concentration and exposure time dependent. The transcriptomic response of L. pneumophila to CuO-NP exposure was investigated by using a whole-genome microarray. The expression of genes involved in metabolism, transcription, translation, DNA replication and repair, and unknown/hypothetical proteins was significantly affected by exposure to CuO-NPs. In addition, expression of 21 virulence genes was also affected by exposure to CuO-NP and further evaluated by quantitative reverse transcription-PCR (qRT-PCR). Some virulence gene responses occurred immediately and transiently after addition of CuO-NPs to the cells and faded rapidly (icmV, icmW, lepA), while expression of other genes increased within 6 h (ceg29, legLC8, legP, lem19, lem24, lpg1689, and rtxA), 12 h (cegC1, dotA, enhC, htpX, icmE, pvcA, and sidF), and 24 h (legP, lem19, and ceg19), but for most of the genes tested, expression was reduced after 24 h of exposure. Genes like ceg29 and rtxA appeared to be the most responsive to CuO-NP exposures and along with other genes identified in this study may prove useful to monitor and manage the impact of drinking water disinfection on L. pneumophila. PMID:23416998

  2. Phylogenetic Reconstruction of the Legionella pneumophila Philadelphia-1 Laboratory Strains through Comparative Genomics

    PubMed Central

    Ensminger, Alexander W.

    2013-01-01

    Over 20 years ago, two groups independently domesticated Legionella pneumophila from a clinical isolate of bacteria collected during the first recognized outbreak of Legionnaires’ disease (at the 1976 American Legion’s convention in Philadelphia). These two laboratory strains, JR32 and Lp01, along with their derivatives, have been disseminated to a number of laboratories around the world and form the cornerstone of much of the research conducted on this important pathogen to date. Nevertheless, no exhaustive examination of the genetic distance between these strains and their clinical progenitor has been performed thus far. Such information is of paramount importance for making sense of several phenotypic differences observed between these strains. As environmental replication of L. pneumophila is thought to exclusively occur within natural protozoan hosts, retrospective analysis of the domestication and axenic culture of the Philadelphia-1 progenitor strain by two independent groups also provides an excellent opportunity to uncover evidence of adaptation to the laboratory environment. To reconstruct the phylogenetic relationships between the common laboratory strains of L. pneumophila Philadelphia-1 and their clinical ancestor, we performed whole-genome Illumina resequencing of the two founders of each laboratory lineage: JR32 and Lp01. As expected from earlier, targeted studies, Lp01 and JR32 contain large deletions in the lvh and tra regions, respectively. By sequencing additional strains derived from Lp01 (Lp02 and Lp03), we retraced the phylogeny of these strains relative to their reported ancestor, thereby reconstructing the evolutionary dynamics of each laboratory lineage from genomic data. PMID:23717549

  3. Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates.

    PubMed

    Eylert, Eva; Herrmann, Vroni; Jules, Matthieu; Gillmaier, Nadine; Lautner, Monika; Buchrieser, Carmen; Eisenreich, Wolfgang; Heuner, Klaus

    2010-07-16

    Legionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L. pneumophila. Cultures of Lp were supplied with [U-(13)C(3)]serine, [U-(13)C(6)]glucose, or [1,2-(13)C(2)]glucose. After growth, (13)C enrichments and isotopologue patterns of protein-derived amino acids and poly-3-hydroxybutyrate were determined by mass spectrometry and/or NMR spectroscopy. The labeling patterns detected in the experiment with [U-(13)C(3)]serine showed major carbon flux from serine to pyruvate and from pyruvate to acetyl-CoA, which serves as a precursor of poly-3-hydroxybutyrate or as a substrate of a complete citrate cycle with Si specificity of the citrate synthase. Minor carbon flux was observed between pyruvate and oxaloacetate/malate by carboxylation and decarboxylation, respectively. The apparent lack of label in Val, Ile, Leu, Pro, Phe, Met, Arg, and Tyr confirmed that L. pneumophila is auxotrophic for these amino acids. Experiments with [(13)C]glucose showed that the carbohydrate is also used as a substrate to feed the central metabolism. The specific labeling patterns due to [1,2-(13)C(2)]glucose identified the Entner-Doudoroff pathway as the predominant route for glucose utilization. In line with these observations, a mutant lacking glucose-6-phosphate dehydrogenase (Delta zwf) did not incorporate label from glucose at significant levels and was slowly outcompeted by the wild type strain in successive rounds of infection in Acanthamoeba castellanii, indicating the importance of this enzyme and of carbohydrate usage in general for the life cycle of Lp. PMID:20442401

  4. Lysine11-Linked Polyubiquitination of the AnkB F-Box Effector of Legionella pneumophila

    PubMed Central

    Bruckert, William M.

    2015-01-01

    The fate of the polyubiquitinated protein is determined by the lysine linkages involved in the polymerization of the ubiquitin monomers, which has seven lysine residues (K6, K11, K27, K29, K33, K48, and K63). The translocated AnkB effector of the intravacuolar pathogen Legionella pneumophila is a bona fide F-box protein, which is localized to the cytosolic side of the Legionella-containing vacuole (LCV) and is essential for intravacuolar proliferation within macrophages and amoebae. The F-box domain of AnkB interacts with the host SCF1 E3 ubiquitin ligase that triggers the decoration of the LCV with K48-linked polyubiquitinated proteins that are targeted for proteasomal degradation. Here we report that AnkB becomes rapidly polyubiquitinated within the host cell, and this modification is independent of the F-box domain of AnkB, indicating host-mediated polyubiquitination. We show that the AnkB effector interacts specifically with the host E3 ubiquitin ligase Trim21. Mass spectrometry analyses have shown that AnkB is modified by K11-linked polyubiquitination, which has no effect on its stability. This work shows the first example of K11-linked polyubiquitination of a bacterial effector and its interaction with the host Trim21 ubiquitin ligase. PMID:26483404

  5. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Reilly, Thomas J; Tanner, John J

    2015-11-01

    Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP. PMID:26380880

  6. Detection of Legionella pneumophila by PCR-ELISA method in industrial cooling tower water.

    PubMed

    Soheili, Majid; Nejadmoghaddam, Mohammad Reza; Babashamsi, Mohammad; Ghasemi, Jamileh; Jeddi Tehrani, Mahmood

    2007-11-15

    Water supply and Cooling Tower Water (CTW) are among the most common sources of Legionella pneumophila (LP) contamination. A nonradio active method is described to detect LP in industrial CTW samples. DNA was purified and amplified by nested -PCR with amplimers specific for the 16s rRNA gene of LP. The 5' end biotinylated oligomer probe was immobilized on sterptavidin B coated microtiter plates. The nested-PCR product was labeled with digoxigenin and then hybridized with 5'-biotinylated probes. The amplification products were detected by using proxidase-labled anti dioxygenin antibody in a colorimetric reaction. The assay detected LP present in 1 L of 5 CTW samples examined. All of the samples were Legionella positive in both culture and PCR-ELISA methods. The PCR-ELISA assay appears to exhibit high specificity and is a more rapid technique in comparison with bacterial culture method. Thus could prove suitable for use in the routine examination of industrial CTW contamination. PMID:19090273

  7. Stationary phase and mature infectious forms of Legionella pneumophila produce distinct viable but non-culturable cells.

    PubMed

    Al-Bana, Badii H; Haddad, Moreen T; Garduño, Rafael A

    2014-02-01

    Legionella pneumophila is an intracellular bacterial parasite of freshwater protozoa and an accidental waterborne human pathogen. L. pneumophila is highly pleomorphic showing several forms that differentiate within its developmental cycle. In water, L. pneumophila produces viable but non-culturable cells (VBNCCs), which remain largely uncharacterized. We produced VBNCCs from two developmental forms of L. pneumophila [stationary phase forms (SPFs) and mature infectious forms (MIFs)] in two water microcosms [double-deionized (dd) and tap water] at 45°C. In contrast with SPFs, MIFs upheld a robust ultrastructure and high viability in the two water microcosms. In dd-water, MIFs and SPFs lost their culturability faster than in tap water and did not consume their poly-β-hydroxybutyrate inclusions. Resuscitation in Acanthamoeba castellani was only possible for VBNCCs produced from SPFs in tap water. Addition of salts to dd-water prolonged L. pneumophila culturability to tap water levels, suggesting that L. pneumophila requires ions to maintain its readiness to resume growth. VBNCCs resisted detergent lysis and digestion in the ciliate Tetrahymena, except for VBNCCs produced from SPFs in dd-water. L. pneumophila VBNCCs thus show distinct traits according to its originating developmental form and the surrounding water microcosm. PMID:23968544

  8. Improved facility and sensitivity in the use of guinea pigs for the isolation of Legionella pneumophila from cooling tower water

    SciTech Connect

    Leinbach, E.D.; Winkler, H.H.; Wood, D.O.; Coggin, J.H. Jr.

    1983-03-01

    The established criteria for the determination of the optimum time for the sacrifice of guinea pigs inoculated with samples of cooling tower water were found to be inadequate for the detection of low levels of Legionella pneumophila. By ignoring the requirement for fever and by sequentially sacrificing the infected guinea pigs on days 3 through 5 postinoculation, we simplified the procedure, and the sensitivity of detection was improved a great deal.

  9. Comparative Genomics Reveal That Host-Innate Immune Responses Influence the Clinical Prevalence of Legionella pneumophila Serogroups

    PubMed Central

    Khan, Mohammad Adil; Knox, Natalie; Prashar, Akriti; Alexander, David; Abdel-Nour, Mena; Duncan, Carla; Tang, Patrick; Amatullah, Hajera; Dos Santos, Claudia C.; Tijet, Nathalie; Low, Donald E.; Pourcel, Christine; Van Domselaar, Gary; Terebiznik, Mauricio; Ensminger, Alexander W.; Guyard, Cyril

    2013-01-01

    Legionella pneumophila is the primary etiologic agent of legionellosis, a potentially fatal respiratory illness. Amongst the sixteen described L. pneumophila serogroups, a majority of the clinical infections diagnosed using standard methods are serogroup 1 (Sg1). This high clinical prevalence of Sg1 is hypothesized to be linked to environmental specific advantages and/or to increased virulence of strains belonging to Sg1. The genetic determinants for this prevalence remain unknown primarily due to the limited genomic information available for non-Sg1 clinical strains. Through a systematic attempt to culture Legionella from patient respiratory samples, we have previously reported that 34% of all culture confirmed legionellosis cases in Ontario (n = 351) are caused by non-Sg1 Legionella. Phylogenetic analysis combining multiple-locus variable number tandem repeat analysis and sequence based typing profiles of all non-Sg1 identified that L. pneumophila clinical strains (n = 73) belonging to the two most prevalent molecular types were Sg6. We conducted whole genome sequencing of two strains representative of these sequence types and one distant neighbour. Comparative genomics of the three L. pneumophila Sg6 genomes reported here with published L. pneumophila serogroup 1 genomes identified genetic differences in the O-antigen biosynthetic cluster. Comparative optical mapping analysis between Sg6 and Sg1 further corroborated this finding. We confirmed an altered O-antigen profile of Sg6, and tested its possible effects on growth and replication in in vitro biological models and experimental murine infections. Our data indicates that while clinical Sg1 might not be better suited than Sg6 in colonizing environmental niches, increased bloodstream dissemination through resistance to the alternative pathway of complement mediated killing in the human host may explain its higher prevalence. PMID:23826259

  10. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide.

    PubMed

    Verdon, Julien; Labanowski, Jérome; Sahr, Tobias; Ferreira, Thierry; Lacombe, Christian; Buchrieser, Carmen; Berjeaud, Jean-Marc; Héchard, Yann

    2011-04-01

    Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid

  11. Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis.

    PubMed Central

    Merriam, J J; Mathur, R; Maxfield-Boumil, R; Isberg, R R

    1997-01-01

    Using a PCR-based strategy and degenerate oligonucleotides, we isolated a Legionella pneumophila gene that showed high sequence similarity to members of the fliI gene family. An insertion mutation that disrupted the fliI open reading frame was recombined onto the L. pneumophila chromosome and analyzed for its effects on production of flagella and intracellular growth. The mutation resulted in loss of surface-localized flagellin protein but had no effect on the ability of the bacteria to grow within cultured cells. Therefore, in spite of the fact that some aflagellar mutations render L. pneumophila unable to grow within macrophages, the isolation of this defined mutant confirms that production of flagella is not required for intracellular growth. PMID:9169800

  12. Development of a DNA Microarray Method for Detection and Identification of All 15 Distinct O-Antigen Forms of Legionella pneumophila

    PubMed Central

    Cao, Boyang; Yao, Fangfang; Liu, Xiangqian; Feng, Lu

    2013-01-01

    Legionella is ubiquitous in many environments. At least 50 species and 70 serogroups of the Gram-negative bacterium have been identified. Of the 50 species, 20 are pathogenic, and Legionella pneumophila is responsible for the great majority (approximately 90%) of the Legionnaires' disease cases that occur. Furthermore, of the 15 L. pneumophila serogroups identified, O1 alone causes more than 84% of the Legionnaires' disease cases that occur worldwide. Rapid and reliable assays for the detection and identification of L. pneumophila in water, environmental, and clinical samples are in great demand. L. pneumophila bacteria are traditionally identified by their O antigens by immunological methods. We have recently developed an O serogroup-specific DNA microarray for the detection of all 15 distinct O-antigen forms of L. pneumophila, including serogroups O1 to O15. A total of 35 strains were used to verify the specificity of the microarray, including 15 L. pneumophila O-antigen standard reference strains and seven L. pneumophila clinical isolates as target strains, seven reference strains of other non-pneumophila Legionella species as closely related strains, and six non-Legionella bacterial species as nonrelated strains. The detection sensitivity was 1 ng of genomic DNA or 0.4 CFU/ml in water samples with filter enrichment and plate culturing. This study demonstrated that the microarray allows specific, sensitive, and reproducible detection of L. pneumophila serogroups. To the best of our knowledge, this is the first report of a microarray serotyping method for all 15 distinct O-antigen forms of L. pneumophila. PMID:23974134

  13. Proteomic regulation during Legionella pneumophila biofilm development: decrease of virulence factors and enhancement of response to oxidative stress.

    PubMed

    Khemiri, Arbia; Lecheheb, Sandra Ahmed; Chi Song, Philippe Chan; Jouenne, Thierry; Cosette, Pascal

    2014-06-01

    Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium, which can be found worldwide in aquatic environments. It tends to persist because it is often protected within biofilms or amoebae. L. pneumophila biofilms have a major impact on water systems, making the understanding of the bacterial physiological adaptation in biofilms a fundamental step towards their eradication. In this study, we report for the first time the influence of the biofilm mode of growth on the proteome of L. pneumophila. We compared the protein patterns of microorganisms grown as suspensions, cultured as colonies on agar plates or recovered with biofilms formed on stainless steel coupons. Statistical analyses of the protein expression data set confirmed the biofilm phenotype specificity which had been previously observed. It also identified dozens of proteins whose abundance was modified in biofilms. Proteins corresponding to virulence factors (macrophage infectivity potentiator protein, secreted proteases) were largely repressed in adherent cells. In contrast, a peptidoglycan-associated lipoprotein (Lpg2043) and a peroxynitrite reductase (Lpg2965) were accumulated by biofilm cells. Remarkably, hypothetical proteins, that appear to be unique to the Legionella genus (Lpg0563, Lpg1111 and Lpg1809), were over-expressed by sessile bacteria. PMID:24937218

  14. Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems.

    PubMed

    Bédard, Emilie; Fey, Stéphanie; Charron, Dominique; Lalancette, Cindy; Cantin, Philippe; Dolcé, Patrick; Laferrière, Céline; Déziel, Eric; Prévost, Michèle

    2015-03-15

    Legionella pneumophila is frequently detected in hot water distribution systems and thermal control is a common measure implemented by health care facilities. A risk assessment based on water temperature profiling and temperature distribution within the network is proposed, to guide effective monitoring strategies and allow the identification of high risk areas. Temperature and heat loss at control points (water heater, recirculation, representative points-of-use) were monitored in various sections of five health care facilities hot water distribution systems and results used to develop a temperature-based risk assessment tool. Detailed investigations show that defective return valves in faucets can cause widespread temperature losses because of hot and cold water mixing. Systems in which water temperature coming out of the water heaters was kept consistently above 60 °C and maintained above 55 °C across the network were negative for Legionella by culture or qPCR. For systems not meeting these temperature criteria, risk areas for L. pneumophila were identified using temperature profiling and system's characterization; higher risk was confirmed by more frequent microbiological detection by culture and qPCR. Results confirmed that maintaining sufficiently high temperatures within hot water distribution systems suppressed L. pneumophila culturability. However, the risk remains as shown by the persistence of L. pneumophila by qPCR. PMID:25622002

  15. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.

    PubMed

    Shen, Yun; Monroy, Guillermo L; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A; Ashbolt, Nicholas J; Liu, Wen-Tso; Nguyen, Thanh H

    2015-04-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography (OCT) imaging technique. Analysis of the OCT images of multispecies biofilms grown under low nutrient condition up to 34 weeks revealed the lack of biofilm deformation even when these biofilms were exposed to flow velocity of 0.7 m/s, typical flow for DWDS. L. pneumophila adhesion on these biofilm under low flow velocity (0.007 m/s) positively correlated with biofilm roughness due to enlarged biofilm surface area and local flow conditions created by roughness asperities. The preadhered L. pneumophila on selected rough and smooth biofilms were found to detach when these biofilms were subjected to higher flow velocity. At the flow velocity of 0.1 and 0.3 m/s, the ratio of detached cell from the smooth biofilm surface was from 1.3 to 1.4 times higher than that from the rough biofilm surface, presumably because of the low shear stress zones near roughness asperities. This study determined that physical structure and local hydrodynamics control L. pneumophila adhesion to and detachment from simulated drinking water biofilm, thus it is the first step toward reducing the risk of L. pneumophila exposure and subsequent infections. PMID:25699403

  16. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment

    PubMed Central

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing. PMID:27092135

  17. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment.

    PubMed

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires' disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing. PMID:27092135

  18. Identification of Two Legionella pneumophila Effectors that Manipulate Host Phospholipids Biosynthesis

    PubMed Central

    Viner, Ram; Chetrit, David; Ehrlich, Marcelo; Segal, Gil

    2012-01-01

    The intracellular pathogen Legionella pneumophila translocates a large number of effector proteins into host cells via the Icm/Dot type-IVB secretion system. Some of these effectors were shown to cause lethal effect on yeast growth. Here we characterized one such effector (LecE) and identified yeast suppressors that reduced its lethal effect. The LecE lethal effect was found to be suppressed by the over expression of the yeast protein Dgk1 a diacylglycerol (DAG) kinase enzyme and by a deletion of the gene encoding for Pah1 a phosphatidic acid (PA) phosphatase that counteracts the activity of Dgk1. Genetic analysis using yeast deletion mutants, strains expressing relevant yeast genes and point mutations constructed in the Dgk1 and Pah1 conserved domains indicated that LecE functions similarly to the Nem1-Spo7 phosphatase complex that activates Pah1 in yeast. In addition, by using relevant yeast genetic backgrounds we examined several L. pneumophila effectors expected to be involved in phospholipids biosynthesis and identified an effector (LpdA) that contains a phospholipase-D (PLD) domain which caused lethal effect only in a dgk1 deletion mutant of yeast. Additionally, LpdA was found to enhance the lethal effect of LecE in yeast cells, a phenomenon which was found to be dependent on its PLD activity. Furthermore, to determine whether LecE and LpdA affect the levels or distribution of DAG and PA in-vivo in mammalian cells, we utilized fluorescent DAG and PA biosensors and validated the notion that LecE and LpdA affect the in-vivo levels and distribution of DAG and PA, respectively. Finally, we examined the intracellular localization of both LecE and LpdA in human macrophages during L. pneumophila infection and found that both effectors are localized to the bacterial phagosome. Our results suggest that L. pneumophila utilize at least two effectors to manipulate important steps in phospholipids biosynthesis. PMID:23133385

  19. Lpg0393 of Legionella pneumophila Is a Guanine-Nucleotide Exchange Factor for Rab5, Rab21 and Rab22

    PubMed Central

    Sohn, Young-Sik; Shin, Ho-Chul; Park, Wei Sun; Ge, Jianning; Kim, Chan-Hee; Lee, Bok Luel; Do Heo, Won; Jung, Jae U.; Rigden, Daniel John; Oh, Byung-Ha

    2015-01-01

    Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella. PMID:25821953

  20. Legionella pneumophila Secretes an Endoglucanase That Belongs to the Family-5 of Glycosyl Hydrolases and Is Dependent upon Type II Secretion

    PubMed Central

    Pearce, Meghan M.; Cianciotto, Nicholas P.

    2009-01-01

    Examination of cell-free culture supernatants revealed that Legionella pneumophila strains secrete an endoglucanase activity. L. pneumophila lspF mutants were deficient for this activity, indicating that the endoglucanase is secreted by the bacterium’s type II protein secretion system. Inactivation of celA, encoding a member of the family-5 of glycosyl hydrolases, abolished the endoglucanase activity in L. pneumophila culture supernatants. The cloned celA gene conferred activity upon recombinant Escherichia coli. Thus, CelA is the major secreted endoglucanase of L. pneumophila. Mutants inactivated for celA grew normally in protozoa and macrophage, indicating that CelA is not required for the intracellular phase of L. pneumophila. The CelA endoglucanase is one of at least 25 proteins secreted by the type II system of L. pneumophila and the seventeenth type of enzyme effector associated with this pathway. Only a subset of the other Legionella species tested expressed secreted endoglucanase activity, suggesting that the type II secretion output differs among the different legionellae. Overall, this study represents the first documentation of an endoglucanase (EC 3.2.1.4) being produced by a strain of Legionella. PMID:19817866

  1. Packaging of live Legionella pneumophila into pellets expelled by Tetrahymena spp. does not require bacterial replication and depends on a Dot/Icm-mediated survival mechanism.

    PubMed

    Berk, Sharon G; Faulkner, Gary; Garduño, Elizabeth; Joy, Mark C; Ortiz-Jimenez, Marco A; Garduño, Rafael A

    2008-04-01

    The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation. PMID:18245233

  2. Spatiotemporal Regulation of a Legionella pneumophila T4SS Substrate by the Metaeffector SidJ

    PubMed Central

    Jeong, Kwang Cheol; Sexton, Jessica A.; Vogel, Joseph P.

    2015-01-01

    Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors. PMID:25774515

  3. Different growth rates in amoeba of genotypically related environmental and clinical Legionella pneumophila strains isolated from a thermal spa.

    PubMed Central

    Molmeret, M.; Jarraud, S.; Mori, J. P.; Pernin, P.; Forey, F.; Reyrolle, M.; Vandenesch, F.; Etienne, J.; Farge, P.

    2001-01-01

    Two cases of legionellosis occurring 3 years apart were acquired in the same French thermal spa and were apparently due to the same strain of Legionella pneumophila serogroup 1, as shown by genomic macrorestriction analysis. Minor differences between the two isolates were found by random amplification PCR profiling which showed an additional band with one of the isolates. Analysis of 107 L. pneumophila strains isolated from the spa waters by genome macrorestriction failed to identify the infective strain, but a closely related L. pneumophila serogroup 3 strain differing from the clinical isolates by only one band was found. To determine if the clinical L. pneumophila serogroup 1 isolates was better adapted for intracellular multiplication than related serogroup 3 environmental isolates, the growth kinetics of six isolates were determined in co-culture with Acanthamoeba lenticulata. One clinical isolate failed to grow within amoeba, while the other clinical isolate yielded the highest increase in bacterial cell count per amoeba (1,200%) and the environmental isolates gave intermediate values. Genetic analysis of L. pneumophila isolates by DNA macrorestriction does not therefore appear to reflect their growth kinetics within amoeba, and is not sufficiently discriminatory to identify potentially virulent strains. PMID:11349974

  4. Different growth rates in amoeba of genotypically related environmental and clinical Legionella pneumophila strains isolated from a thermal spa.

    PubMed

    Molmeret, M; Jarraud, S; Mori, J P; Pernin, P; Forey, F; Reyrolle, M; Vandenesch, F; Etienne, J; Farge, P

    2001-04-01

    Two cases of legionellosis occurring 3 years apart were acquired in the same French thermal spa and were apparently due to the same strain of Legionella pneumophila serogroup 1, as shown by genomic macrorestriction analysis. Minor differences between the two isolates were found by random amplification PCR profiling which showed an additional band with one of the isolates. Analysis of 107 L. pneumophila strains isolated from the spa waters by genome macrorestriction failed to identify the infective strain, but a closely related L. pneumophila serogroup 3 strain differing from the clinical isolates by only one band was found. To determine if the clinical L. pneumophila serogroup 1 isolates was better adapted for intracellular multiplication than related serogroup 3 environmental isolates, the growth kinetics of six isolates were determined in co-culture with Acanthamoeba lenticulata. One clinical isolate failed to grow within amoeba, while the other clinical isolate yielded the highest increase in bacterial cell count per amoeba (1,200%) and the environmental isolates gave intermediate values. Genetic analysis of L. pneumophila isolates by DNA macrorestriction does not therefore appear to reflect their growth kinetics within amoeba, and is not sufficiently discriminatory to identify potentially virulent strains. PMID:11349974

  5. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS.

    PubMed

    Ziltener, Pascal; Reinheckel, Thomas; Oxenius, Annette

    2016-04-01

    Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires' disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF) and reactive oxygen species (ROS) are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM) rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs), as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection. PMID:27105352

  6. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS

    PubMed Central

    Ziltener, Pascal; Reinheckel, Thomas; Oxenius, Annette

    2016-01-01

    Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires’ disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF) and reactive oxygen species (ROS) are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM) rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs), as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection. PMID:27105352

  7. Experimental Evolution of Legionella pneumophila in Mouse Macrophages Leads to Strains with Altered Determinants of Environmental Survival

    PubMed Central

    Ensminger, Alexander W.; Yassin, Yosuf; Miron, Alexander; Isberg, Ralph R.

    2012-01-01

    The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts. PMID:22693450

  8. The natural alternative: protozoa as cellular models for Legionella infection.

    PubMed

    Hoffmann, Christine; Harrison, Christopher F; Hilbi, Hubert

    2014-01-01

    The severe pneumonia known as Legionnaires' disease occurs following infection by the Gram-negative bacterium Legionella pneumophila. Normally resident in fresh-water sources, Legionella are subject to predation by eukaryotic phagocytes such as amoeba and ciliates. To counter this, L. pneumophila has evolved a complex system of effector proteins which allow the bacteria to hijack the phagocytic vacuole, hiding and replicating within their erstwhile killers. These same mechanisms allow L. pneumophila to hijack another phagocyte, lung-based macrophages, which thus avoids a vital part of the immune system and leads to infection. The course of infection can be divided into five main categories: pathogen uptake, formation of the replication-permissive vacuole, intracellular replication, host cell response, and bacterial exit. L. pneumophila effector proteins target every stage of this process, interacting with secretory, endosomal, lysosomal, retrograde and autophagy pathways, as well as with mitochondria. Each of these steps can be studied in protozoa or mammalian cells, and the knowledge gained can be readily applied to human pathogenicity. Here we describe the manner whereby L. pneumophila infects host protozoa, the various techniques which are available to analyse these processes and the implications of this model for Legionella virulence and the pathogenesis of Legionnaires' disease. PMID:24168696

  9. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    PubMed Central

    Hilborn, Elizabeth D.; Arduino, Matthew J.; Pruden, Amy; Edwards, Marc A.

    2015-01-01

    Background Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. Objectives The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. Methods A Water Research Foundation–sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. Discussion OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. Conclusions Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter

  10. The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression of Legionella pneumophila.

    PubMed

    Schell, Ursula; Simon, Sylvia; Sahr, Tobias; Hager, Dominik; Albers, Michael F; Kessler, Aline; Fahrnbauer, Felix; Trauner, Dirk; Hedberg, Christian; Buchrieser, Carmen; Hilbi, Hubert

    2016-02-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, employs the autoinducer compound LAI-1 (3-hydroxypentadecane-4-one) for cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, comprising the autoinducer synthase LqsA, the sensor kinases LqsS and LqsT, as well as the response regulator LqsR. Lqs-regulated processes include pathogen-host interactions, production of extracellular filaments and natural competence for DNA uptake. Here we show that synthetic LAI-1 promotes the motility of L. pneumophila by signalling through LqsS/LqsT and LqsR. Upon addition of LAI-1, autophosphorylation of LqsS/LqsT by [γ-(32) P]-ATP was inhibited in a dose-dependent manner. In contrast, the Vibrio cholerae autoinducer CAI-1 (3-hydroxytridecane-4-one) promoted the phosphorylation of LqsS (but not LqsT). LAI-1 did neither affect the stability of phospho-LqsS or phospho-LqsT, nor the dephosphorylation by LqsR. Transcriptome analysis of L. pneumophila treated with LAI-1 revealed that the compound positively regulates a number of genes, including the non-coding RNAs rsmY and rsmZ, and negatively regulates the RNA-binding global regulator crsA. Accordingly, LAI-1 controls the switch from the replicative to the transmissive growth phase of L. pneumophila. In summary, the findings indicate that LAI-1 regulates motility and the biphasic life style of L. pneumophila through LqsS- and LqsT-dependent phosphorylation signalling. PMID:26538361