Science.gov

Sample records for legume cover crops

  1. Differential Soil Acidity Tolerance of Tropical Legume Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical regions, soil acidity and low soil fertility are the most important yield limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also ameliorating soil fertility. Information is limit...

  2. Growth of tropical legume cover crops as influenced by nitrogen fertilization and Rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical legume cover crops are important components in cropping systems due to their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the...

  3. Evaluation of tropical legume cover crops for copper use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are important components of cropping systems due to their role in improving soil quality. Lack of adequate levels of soil micronutrients prevent the success of cover crops in highly weathered tropical soils. A greenhouse experiment was conducted with the objective to evaluate copper use ...

  4. Comparison of rye and legume-rye cover crop mixtures for vegetable production in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rye (Secale cereale L.) is an important cover crop in high-value vegetable production in California but legume-rye mixes have received little research attention. A 2-yr winter study on organic farms in Salinas and Hollister, CA evaluated ground cover, above ground dry matter (DM) and C:N, and weed ...

  5. Legume Cover Crops are More Beneficial than Natual Fallows in MInimally Tilled Ugandan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is important to establish the various eff ects of legume cover crops on soil physicochemical properties because they have been considered for use as improved fallows (with shorter rest periods) to enhance development and maintenance of soil productivity. Our objectives were to assess: (i) abovegr...

  6. Rye-legume winter cover crop mixtures and Palmer amaranth (Amaranthus palmeri)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of glyphosate-resistant Palmer amaranth is a significant challenge for cotton production in Georgia and much of the Southern US. Winter cover crops, rye and rye mixtures with legumes, were evaluated for weed suppression and their influence on cotton production. Two studies were ini...

  7. Seeding Rate and Planting Arrangement Effects on a Legume-Oat Cover Crop in Organic Vegetable Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops are integral components in rotations on high-value, organic vegetable farms in the central coast of California, and can provide benefits such as reducing nitrate leaching, suppressing weeds, and adding soil organic matter. Legume-cereal mixed cover crops may also reduce reliance o...

  8. Photosynthesis in tropical cover crop legumes influenced by irradiance, external carbon dioxide concentration and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plantation crops perennial tropical legumes are grown as understory plants, receive limited irradiance, and are subjected to elevated levels of CO2 and temperature. Independent short-term effects of photosynthetic photon flux density (PPFD), external carbon dioxide concentration [CO2] and temper...

  9. Cover crops and N credits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  10. Legume proportions, poultry litter, and tillage effects on cover crop decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hairy vetch (Vicia villosa Roth.)–cereal rye (Secale cereale L.) cover crop mixtures can provide N scavenging and N provisioning benefits in grain cropping systems. The objectives of this research were to determine, under field conditions, the effects of species proportions, tillage, and pelletized...

  11. Growing cover crops to improve carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different cover crops were grown and evaluated for improving carbon sequestration. The cover crops in the study include not only winter and summer types but also legumes and non-legumes, respectively. Winter legumes are white clover, bell beans, and purple vetch, and winter non-legumes are triticale...

  12. Crimped Cover Crop Legume Residue Effects on Sweet Corn (Zea mays L.) Yield in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crimped legume residue can control weeds and supply N for sweet corn production if biomass is sufficient. Three sweet corn (Zea mays L.) open pollinated variety “Suresweet 2011” plantings (April, 2013; July 2013; February 2014) were conducted on an Oxisol (very fine, kaolinitic, isohyperthermic and...

  13. NITROGEN CAPTURE BY GRAPEVINE ROOTS AND ARBUSCULAR MYCORRHIZAL FUNGI FROM LEGUME COVER CROP RESIDUES UNDER LOW RATES OF MINERAL FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of minimal fertilization on arbuscular mycorrhizal fungi (AMF)-mediated 15N capture from a legume crop (Medicago polymorpha) was examined in Vitis vinifera. We hypothesized that, because the mycorrhizal host was grown in nutrient-limiting soil, minimal fertilization would increase both...

  14. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  15. Insects associated with winter legume cover crops in a sorghum for Bio-fuel and cotton rotation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of novel crops for bio-fuel production requires evaluating the potential for sound ecological and economical implementation in a particular region. We examined the pest and generalist beneficial insect species associated with various winter cover crops (including narrowleaf lupin, white vetch, ...

  16. Winter cover crops influence Amaranthus palmeri establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  17. Tomato response to legume cover crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...

  18. Legume crops phylogeny and genetic diversity for science and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  19. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  20. Cover Crop Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential benefits of cover crops in vegetable production systems depend on the type of cover crop that is used and how it is managed from planting to termination date. This chapter focuses on management practices that are applicable to a broad range cover crops and vegetable production systems ...

  1. Success with cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an important tool for producers interested in improving soil and crop productivity. They help control erosion, improve soil quality, improve soil properties that impact water infiltration and conservation, provide habitat and food for beneficial insects, and provide food for wildlif...

  2. Legumes Can Increase Cadmium Contamination in Neighboring Crops

    PubMed Central

    Tang, Jianjun; Xu, Ligen; Yang, Xiantian; Yong, Jean W. H.; Chen, Xin

    2012-01-01

    Legumes are widely used in many cropping systems because they share their nitrogen fixation products and phosphorus mobilization activities with their neighbors. In the current study, however, we showed that co-cultivation with legumes increased cadmium (Cd) contamination in the adjacent crops. Both field and mesocosm experiments indicated that legumes increased Cd levels in edible parts and shoots of four neighboring crops and five maize varieties tested, regardless of the Cd levels in the soil. This enhanced Cd accumulation in crops was attributed to root interactions that alter the rhizosphere environment. Co-cultivation with legumes reduced soil pH, which somewhat increased the exchangeable forms of Cd. Our results have demonstrated the inevitable increases in Cd levels of crops as a direct result of co-cultivation with legumes even under situations when these levels are below the permissible threshold. With this new revelation, we need to consider carefully the current cropping systems involving legumes and perhaps to re-design the current and future cropping systems in view of avoiding food contamination by Cd. PMID:22905189

  3. Soil and crop nitrogen as influenced by tillage, cover crops, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)],...

  4. Cover crops and vegetable rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers have long known that winter cover crops can decrease soil erosion, increase soil organic matter and fertility, and provide a beneficial impact on the following crop, but it is not always known which cover crop will provide the best results for a specific region and cropping system. Research...

  5. Winter Cover Crop Seeding Rate and Variety Affects during 8 Years of Organic Vegetables 1. Cover Crop Biomass Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term research on cover crops (CC) is needed to help farmers design optimal rotations. Winter CC shoot dry matter (DM) of rye (Secale cereale L.), legume-rye, and mustard mixtures was determined in December, January, and February or March during the first 8 yr of the Salinas Organic Cropping Sy...

  6. Winter Cover Crop Seeding Rate and Variety Affects during 8 Years of Organic Vegetables 2. Cover Crop Nitrogen Accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops (CC) can improve nutrient-use efficiency in vegetable systems. Nitrogen uptake (NU), and shoot residue quality of rye (Secale cereale L.), legume-rye, and mustard was determined in December, January, and February or March during the first 8 yr of the Salinas Organic Cropping Syst...

  7. Hairy vetch seedbank persistence and implications for cover crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hairy vetch (Vicia villosa Roth) is a fast growing, winter hardy annual legume that can produce shoot biomass levels upwards of 6500 kg ha-1. This cover crop is well suited for summer annual grain rotations, as it fixes considerable amounts of nitrogen, reduces erosion through rapid ground cover, an...

  8. Cover crops for erosion control in bioenergy hardwood plantations

    SciTech Connect

    Malik, R.K.; Green, T.H.; Mays, D.

    1996-12-31

    The use of cover crops between tree rows has been suggested as a means of reducing soil erosion in short-rotation woody crops (SRWC) plantations for bioenergy production. This study is designed to test whether cover crops could reduce erosion without significantly reducing the growth and biomass yield of sweetgum (Liquidambar styraciflua L.) planted as the SRWC at a 1.5 X 3 in spacing. Four cover crops, winter rye grass (Lolium multigeonum L., a winter annual grass); tall fescue (Fescuta eliator L., a winter perennial grass); crimson clover (Trifolium incarnatum L., a winter annual legume); and interstate sericea (Lespedeza ameata L., a growing season perennial legume), are tested at two different strip widths (1.22 and 2.44 m) as well as a control with complete competition control. Small berms were built to direct runoff to a sediment fence installed at the down slope ends of each plot. Soil erosion is measured by sediment accumulation near the fence. Height, ground-line diameter and crown width of trees were measured on a monthly basis. During the first growing season all cover crops reduced growth of trees. There were some significant differences among cover crop regimes. Slight differences in soil erosion were detected during the first growing season. The control plots lost more soil per hectare than cover crops, however, strip widths and cover crops did not show any significant difference.

  9. Midwest Cover Crops Field Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers who want to prevent soil erosion, improve nutrient cycling, sustain their soils, and protect/maintain the environment have been returning to a very old practice: planting cover crops. Cover crops are effective tools for reducing soil erosion and increasing nutrient recycling on farmlands, ...

  10. High plains cover crop research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  11. UAV-based high-throughput phenotyping in legume crops

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  12. Sweet corn production and efficiency of nitrogen use in high cover crop residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can provide many benefits to cropping systems including provision of significant quantities of fixed N (legumes) that is readily mineralized. In the humid, temperate mid-Atlantic area of the U.S.A., winter annual cover crops such as hairy vetch produce abundant biomass and N before summ...

  13. High retention of N P nutrients, soil organic carbon, and fine particles by cover crops under tropical climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping system has shown a potential to improve soil quality and carbon sequestration but the residue decomposition rates determined by biotic and abiotic factors play a crucial role to reach such objectives. Legume and non-legume cover crop residues were applied to the surface of two soils i...

  14. ACCUMULATION AND CROP UPTAKE OF SOIL MINERAL NITROGEN AS INFLUEMCED BY TILLAGE, COVER CROPS, AND NITROGEN FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)]...

  15. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N). This...

  16. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Text: Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N)...

  17. COVER CROP EFFECT ON SOIL CARBON FRACTIONS UNDER CONSERVATION TILLAGE COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops may influence soil carbon (C) sequestration and microbial activities by providing additional residue C to soil. We examined the influence of legume [crimson clover (Trifolium incarnatum L.)], nonlegume [rye (Secaele cereale L.)], blend [a mixture of legumes containing balansa clover (Tri...

  18. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    PubMed Central

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  19. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.

    PubMed

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  20. Cover Crop Basics for Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an under-utilized tool in Mid-Atlantic agriculture. Among their many benefits, cover crops supply N for the next crop and/or conserve residual N, and have great potential to improve soil quality. Before using cover crops, growers must identify niches within their cropping system an...

  1. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  2. Biomass potential of selected grass and legume crops

    SciTech Connect

    Cherney, J.H.; Johnson, K.D.; Volenec, J.J.; Greene, D.K. )

    1991-01-01

    Optimum management strategies for herbaceous biomass crops must be investigated concurrently with the development of cost-effective conversion processes. The objective of this paper is to evaluate the agronomic feasibility of several combinations of species and management systems for producing herbaceous biomass on sites ranging from good to marginal cropland in the Midwest region of the United States. Of the perennial grasses and legumes investigated, switchgrass showed the most potential as a biomass species. It requires minimum fertilizer inputs for high yield, is very persistent, and is effective in reducing soil erosion. Sorghum double-cropped with winter annual rye was very productive but required more inputs than switchgrass. Interseeding sorghum into perennial grasses was not a viable option, due to its great dependence on environmental variables. Plant composition varied greatly across species but was not greatly affected by environment or management treatmenst.

  3. Registration of four winter-hardy faba bean germplasm lines for use in winter pulse and cover crop development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Faba bean (Vicia faba L.) is a versatile crop grown for food, feed, vegetable, or cover crop purposes in many countries. In response to the growing demand for winter annual legumes for cover crop development in the United States, we developed four winter-hardy faba bean germplasm lines, WH-1 (Reg. N...

  4. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  5. Use of a New Immunomarking Method to Assess Movement by Generalist Predators Between a Cover Crop and Tree Canopy in a Pear Orchard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor understanding of natural enemy movement between cover crop and crop habitats has slowed progress in using cover crops to enhance biological control of pest arthropods in agricultural systems. To address this problem we used an egg-albumin immunomarker sprayed on a legume cover crop to monitor m...

  6. AGRONOMY AND PHYSIOLOGY OF TROPICAL COVER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are important components of a sustainable crop production system. They can be planted with plantation crops such as cacao, coffee, banana, rubber and oil palm or in rotation with cash crops. Their use in a cropping system is mainly beneficial for soil and water conservation, recycling of...

  7. Cover crops and sampling date effect on on-farm soil carbon pools under conservation tillage cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops may influence soil C sequestration and microbial activities by providing additional residue C to soil. We examined the influence of legume (crimson clover), nonlegume (rye), blend (a mixture of legumes containing balansa clover, hairy vetch, and crimson clover], and rye + blend mixture c...

  8. Winter cover crop seeding rate and variety effects during eight years of organic vegetables: III. Cover crop residue quality and nitrogen mineralization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops (CC) can improve nutrient-use efficiency in tillage-intensive systems. Shoot residue quality and soil mineral N following incorporation of rye (Secale cereale L.), legume-rye, and mustard CC was determined in December to February or March during the first 8 yr of the Salinas Orga...

  9. Timely precipitation drives cover crop outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  10. Roadmap to increased cover crop adoption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are increasingly utilized by farmers and promoted by agronomists for the multiple benefits they contribute to soil and crop management systems. Yet, only a small percentage of cropland is planted to cover crops. In June of 2012, the National Wildlife Federation brought together 36 of the...

  11. Organic supplemental nitrogen sources for field corn production following a hairy vetch cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combined use of legume cover crops and animal byproduct organic amendments could provide agronomic and environmental benefits to organic farmers by increasing corn grain yield while optimizing N and P inputs. To test this hypothesis we conducted a two-year field study and a laboratory soil incu...

  12. Utilization of sunn hemp for cover crops and weed control in temperate climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to develop increasingly integrated pest management and sustainable food production systems has encouraged a greater interest to thoroughly evaluate effective utilization of cover crops in agricultural systems. Sunn hemp, a tropical legume that originated most likely from the Indo-Pakistani ...

  13. Sunn hemp as a cover crop to reduce nitrogen inputs for winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tropical legume sunn hemp (Crotalaria juncea L.) has the potential to perform as a beneficial cover crop in the southeastern United States due to its ability to accumulate large amounts of biomass and symbiotic nitrogen (N) in a short period of time during the summer months. Planting sunn hemp,...

  14. INFLUENCE OF SUMMER COVER CROPS ON SOIL NEMATODES IN A TOMATO FIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to evaluate the effects on populations of nematodes in tomato plots, some on which three legume cover crops (sunn hemp, Crotalaria juncea; velvetbean, Mucuna deeringiana; and cowpea, Vigna unguiculata) had been grown, and some which had been kept as a weed-free fallo...

  15. Effects of cover cropping on soil and rhizosphere microbial community structure in tomato production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black polyethylene film is frequently used in vegetable farming systems to promote rapid warming of the soil in spring, conserve soil moisture, and suppress weeds. Alternative systems have been developed using cover cropping with legumes to provide a weed-suppressive mulch while also fixing nitrogen...

  16. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    PubMed

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  17. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  18. Evaluating shade effects on crop productivity in sorghum-legume intercropping systems using support vector machines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum-legume intercropping has the potential to improve forage productivity, resource use efficiency, and forage quality under irrigation in the Southern High Plains of the United States. Crop production is conversion of solar radiation into biomass and solar radiation is wasted early in the seaso...

  19. Contrasted nitrogen utilization in annual C 3 grass and legume crops: Physiological explorations and ecological considerations

    NASA Astrophysics Data System (ADS)

    Del Pozo, Alejandro; Garnier, Eric; Aronson, James

    2000-01-01

    Although it is well known that legumes have unusually high levels of nitrogen in both reproductive and vegetative organs, the physiological implications of this pattern have been poorly assessed. We conducted a literature survey and used data from two (unpublished) experiments on annual legumes and C 3 grasses in order to test whether these high nitrogen concentrations in legumes are correlated to high rates of carbon gain. Three different temporal/spatial scales were considered: full growing season/stand, days to month/whole plant and seconds/leaf. At the stand level, and for plants grown under both extratropical and tropical settings, biomass per unit organic-nitrogen was lower in legume than in grass crops. At a shorter time scale, the relative growth rate per unit plant nitrogen (`nitrogen productivity') was lower in faba bean ( Vicia faba var. minor cv. Tina) than in wheat ( Triticum aestivum cv. Alexandria), and this was confirmed in a comparison of two wild, circum-Mediterranean annuals - Medicago minima, a legume, and Bromus madritensis, a grass. Finally, at the leaf level, a synthesis of published data comparing soybean ( Glycine max) and rice ( Oryza sativa) on the one hand, and our own data on faba bean and wheat on the other hand, demonstrates that the photosynthetic rate per unit leaf nitrogen (the photosynthetic nitrogen use efficiency) is consistently lower in legumes than in grasses. These results demonstrate that, regardless of the scale considered and although the organic-nitrogen concentration in vegetative organs of legumes is higher than in grasses, this does not lead to higher rates of carbon gain in the former. Various physiological factors affecting the efficiency of nitrogen utilization at the three time scales considered are discussed. The suggestion is made that the ecological significance of the high nitrogen concentration in legumes may be related to a high nitrogen demand for high quality seed production at a time when nitrogen

  20. COVER CROP EXTRACT EFFECTS ON RADISH RADICLE ELONGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation systems using cover crops offer many benefits, including enhanced weed suppression. Researchers have shown that some cover crops leach allelopathic chemicals that contribute to weed growth inhibition. Twelve cover crops were evaluated for allelopathic potential in two experiments usin...

  1. Tuberous legumes: preliminary evaluation of tropical Australian and introduced species as fuel crops

    SciTech Connect

    Saxon, E.C.

    1981-04-01

    The evaluation of native and introduced legumes with starch-storing roots or tubers was undertaken to test whether plants traditionally collected as food by Australian aborigines might have a role in the development of crops for liquid fuel production (by fermentation of carbohydrates to ethanol). Tuberous-rooted legumes from overseas were planted at the Commonwealth Scientific and Industrial Research Organization, division of Tropical Crops and Pastures, Kimberley Research Station, Western Australia (15/sup 0/39'S, 128/sup 0/42'E) in December 1974, March 1978 and February 1979. Roots from the latter plantings were harvested in June 1979. Native plant material was collected during visits to aboriginal communities in the Kimberleys between April and June 1979. The native and introduced specimens were analyzed for fermentable carbohydrate and protein content. Several native plants appear more promising than introduced species as liquid fuel crops.

  2. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics.

    PubMed

    Neelam, Anil; Cassol, Tatiana; Mehta, Roshni A; Abdul-Baki, Aref A; Sobolev, Anatoli P; Goyal, Ravinder K; Abbott, Judith; Segre, Anna L; Handa, Avtar K; Mattoo, Autar K

    2008-01-01

    Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotypexmulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit. PMID:18469323

  3. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics

    PubMed Central

    Neelam, Anil; Cassol, Tatiana; Mehta, Roshni A.; Abdul-Baki, Aref A.; Sobolev, Anatoli P.; Goyal, Ravinder K.; Abbott, Judith; Segre, Anna L.; Handa, Avtar K.; Mattoo, Autar K.

    2008-01-01

    Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotype×mulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit. PMID:18469323

  4. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  5. Coupling cover crops and manure injection: cover crop N and P uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injecting manure into established cover crops may reduce N and P losses by increasing nutrient cycling. The objectives of this research were to quantify fall and spring cover crop shoot dry matter (DM) production and N and P uptake following manure injection at increasing target N rates. Liquid swin...

  6. Control of plant virus diseases in cool-season grain legume crops.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G; van Leur, Joop A G; Jones, Roger A C

    2014-01-01

    Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies. PMID:25410103

  7. THE ECONOMICS OF COVER CROP BIOMASS FOR CORN AND COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inclusion of cover crops into cropping systems brings both direct and indirect costs and benefits to the farm. A myriad of studies have examined the economic benefits of cover crops in multiple cropping systems by comparing them to systems without cover crops. To date, economic research pertaini...

  8. Using cash cover crops to provide pollinator provisions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, the use of winter cover crops in MN and SD has been slow to be adopted. The short growing season and potential for late wet springs make cover crops risky to farmers with little economic return. The use of cash cover crops in this area offers the standard advantages of other cover crops, wi...

  9. Unique cover crops for Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane production practices provide a tremendous opportunity for the use of cover crops following the final sugarcane harvest in the fall of one year and prior to replanting sugarcane during the summer of the next year. A Louisiana sugarcane field is typically replanted every four years...

  10. Cover Crop Effects on Weed Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weeds are often the most common and costly pests in vegetable production, especially in organic production systems. Weeds that germinate during cover cropping and produce seeds will increase the weed seedbank and may increase production costs. This chapter discusses the effect of cultural practices ...

  11. Environmental benefits of growing perennial legumes in cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa offers several environmental benefits to farmers and society. Reduced nitrate leaching due to slower water flow and excellent nitrate removal are valuable in farm fields and at remediation sites. Improved N supply to following crops reduces energy use, economic costs, and greenhouse gas emis...

  12. Yields of Corn Silage Fertilized with Manure and Grown with Legume or Non-legume Companion Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to reducing nitrate and soil losses, cover crops and living mulches could enhance corn silage yields. In a four-year study in southern Wisconsin, no-till corn was grown with herbicide-suppressed Kura-clover or with June-interseeded red clover followed by one year of clover production. Th...

  13. Fluorescence imaging to quantify crop residue cover

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.

    1994-01-01

    Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.

  14. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  15. Winter cover crop effect on corn seedling pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  16. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production

    PubMed Central

    Timper, Patricia; Davis, Richard F.; Tillman, P. Glynn

    2006-01-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of

  17. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  18. Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook.

    PubMed

    Bohra, Abhishek; Sahrawat, Kanwar L; Kumar, Shiv; Joshi, Rohit; Parihar, Ashok K; Singh, Ummed; Singh, Deepak; Singh, Narendra P

    2015-05-01

    Meeting the food demands and ensuring nutritional security of the ever increasing global population in the face of degrading natural resource base and impending climate change is the biggest challenge of the twenty first century. The consequences of mineral/micronutrient deficiencies or the hidden hunger in the developing world are indeed alarming and need urgent attention. In addressing the problems associated with mineral/micronutrient deficiency, grain legumes as an integral component of the farming systems in the developing world have to play a crucial role. For resource-poor populations, a strategy based on selecting and/or developing grain legume cultivars with grains denser in micronutrients, by biofortification, seems the most appropriate and attractive approach to address the problem. This is evident from the on-going global research efforts on biofortification to provide nutrient-dense grains for use by the poorest of the poor in the developing countries. Towards this end, rapidly growing genomics technologies hold promise to hasten the progress of breeding nutritious legume crops. In conjunction with the myriad of expansions in genomics, advances in other 'omics' technologies particularly plant ionomics or ionome profiling open up novel opportunities to comprehensively examine the elemental composition and mineral networks of an organism in a rapid and cost-effective manner. These emerging technologies would effectively guide the scientific community to enrich the edible parts of grain legumes with bio-available minerals and enhancers/promoters. We believe that the application of these new-generation tools in turn would provide crop-based solutions to hidden hunger worldwide for achieving global nutritional security. PMID:25592547

  19. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    PubMed Central

    Rahman, Motior M.; Islam, Aminul M.; Azirun, Sofian M.; Boyce, Amru N.

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility. PMID:24971378

  20. Small Grain Winter Cover Crops for Corn and Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops are plants that cover the soil between harvest and planting of summer annual grain crops. While doing this, cover crops perform important environmental functions that include reducing soil erosion, accumulating nutrients, and increasing soil carbon. This educational module provide...

  1. The use of cover crops to manage soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are used to manage soils for many different reasons. Inserting cover crops into fallow periods and spaces in cropping systems is a beneficial soil management practice. Natural ecosystems typically have some plants growing, covering the soil, transpiring water, taking up nutrients, fixing...

  2. Are Cover Crops Being Used in the Corn Belt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wealth of scientific information exists quantifying the benefits of cover crops, yet adoption of cover crops in agronomic farming systems is low. Research has documented the effectiveness of using cover crops to decrease soil erosion and decrease nitrogen losses to sub-surface drainage water. Othe...

  3. A suggestion for planning cover crop mixtures: zones of occupancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers may be able to improve the competitiveness of cover crop mixtures by selecting species to occupy zones in the cover crop canopy. This suggestion is based on a study where we compared four cover crop treatments, 1, 3, 6, and 9 species mixtures, for biomass production. Treatments were est...

  4. Are Cover Crops Being Used in the US Corn Belt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefits of using cover crops are well established in the scientific literature, but adoption among end-users in agronomic farming systems is uncertain. Furthermore, limited regional information is available quantifying cover crop use in agronomic systems. Before cover crop use can increase, imp...

  5. Establishment of three permanent cover crop seed mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Miglécz, Tamas; Valkó, Orsolya; Donkó, Ádám; Deák, Balázs; Török, Péter; Kelemen, András; Drexler, Dóra; Tóthmérész, Béla

    2015-04-01

    In organic vineyard farming sowing high diversity cover crop seed mixtures offers a great opportunity to overcome high-priority problems mitigating vineyard cultivation, such as gain erosion control, save soil fertility, improve soil microbial activity and control weeds. Furthermore, we can also improve the biodiversity and ecosystem services of vineyards. Mainly non-native or low diversity seed mixtures are used for cover cropping containing some grass, grain or Fabaceae species. We studied vegetation development after sowing native high-diversity seed mixtures in four vineyards in an on farm field trial. We compared the effects of 4 treatments: (i) Biocont-Ecowin mixture (12 species), (ii) Fabaceae mixture (9 species), (iii) Grass-forb mixture (16 species) and control (no seed sowing). Study sites were located in Tokaj wine region, East Hungary. Seed mixtures were sown in March, 2012. After sowing, we recorded the percentage cover of vascular plant species in the end of June 2012, 2013 and 2014 in altogether 80 permanent plots. In the first year the establishment and weed control of Biocont-Ecowin and Legume seed mixture was the best. For the second year in inter-rows sown with Grass-herb and Legume seed mixtures we detected decreasing weed cover scores, while in inter-rows sown with Biocont-Ecowin seed mixture and in control inter-rows we detected higher weed cover scores. In the third year we still detected lower weed cover scores in inter-rows sown with Grass-forb and Legume seed mixtures, however on several sites we also detected decreasing cover of sown species. All sown species were detected in our plots during the time of the study, however some species were present only with low cover scores or only in a few plots. Out of the sown species Lotus corniculatus, Medicago lupulina, Plantago lanceolata, Trifolium repens, T. pratense and Coronilla varia established the most successfully, and had high cover scores on most sites even in the second and third year

  6. Grazing winter cover crops in a cotton-cover crop conservation tillage system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing of winter annual cover crops with cattle offers a way to offset costs and increase farm revenue in conservation tillage systems. However, cattle may create problems due to soil treading and reduction in surface residues needed to reduce soil erosion. Optimizing production efficiencies may re...

  7. Cover crops can improve potato tuber yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is the need to develop sustainable systems with higher yields and crop quality. We conducted studies with cover crops grown under limited irrigation (< 200 mm) to assess the effects of certain types of cover crops on tuber yield and quality. On a commercial farm operation prior to the 2006 and...

  8. Cover Crop Chart: An Intuitive Educational Resource for Extension Professionals

    ERIC Educational Resources Information Center

    Liebig, Mark A.; Johnson, Holly; Archer, David; Hendrickson, John; Nichols, Kristine; Schmer, Marty; Tanaka, Don

    2013-01-01

    Interest in cover crops by agricultural producers has increased the need for information regarding the suitability of crops for addressing different production and natural resource goals. To help address this need, staff at the USDA-ARS Northern Great Plains Research Laboratory developed a decision aid called the Cover Crop Chart (CCC). Visually…

  9. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Chesapeake Bay watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient croppin...

  10. Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can increase soil C and N storage and reduce the potential for N leaching under agronomic crops, but information on their benefits under bioenergy crops is scanty due to the removal of aboveground biomass. The objective of the study was to evaluate the effect of cover crops on soil organ...

  11. Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan.

    PubMed

    Murtaza, G; Javed, W; Hussain, A; Wahid, A; Murtaza, B; Owens, G

    2015-06-01

    Crop irrigation with heavy metal-contaminated effluents is increasingly common worldwide and necessitates management strategies for safe crop production on contaminated soils. This field study examined the phytoavailability of three metals (Cd, Cu, and Zn) in two cereal (wheat, maize) and legume (chickpea, mungbean) crops in response to the application of either phosphatic fertilizer or sewage-derived water irrigation over two successive years. Five fertilizer treatments, i.e. control, recommended nitrogen (N) applied alone and in combination of three levels of phosphorus (P), half, full and 1.5 times of recommended P designated as N0P0, N1P0, N1P0.5, N1P1.0, and N1P1.5, respectively. Tissue concentrations of Cd, Cu, Zn, and P were determined in various plant parts, i.e., root, straw, and grains. On the calcareous soils studied while maximum biomass production was obtained with application of P at half the recommended dose, the concentrations of metals in the crops generally decreased with increasing P levels. Tissue metal concentrations increased with the application of N alone. Translocation and accumulation of Zn and Cu were consistently higher than Cd. And the pattern of Cd accumulation differed among plant species; more Cd being accumulated by dicots than monocots, especially in their grains. The order of Cd accumulation in grains was maize > chickpea > mungbean > wheat. Mungbean and chickpea straws also had higher tissue Cd concentration above permissible limits. The two legume species behaved similarly, while cereal species differed from each other in their Cd accumulation. Metal ion concentrations were markedly higher in roots followed by straw and grains. Increasing soil-applied P also increased the extractable metal and P concentrations in the post-harvest soil. Despite a considerable addition of metals by P fertilizer, all levels of applied P effectively decreased metal phytoavailability in sewage-irrigated soils, and applying half of the

  12. Legumes or nitrification inhibitors to reduce N2O emissions in subtropical cereal cropping systems? A simulation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...

  13. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in sequencing and genotyping technologies have enabled generation of several thousand markers including SSRs, SNPs, DArTs, hundreds of thousands transcript reads and BAC-end sequences in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive tran...

  14. LEGUME GREEN FALLOW EFFECT ON SOIL WATER AT WHEAT PLANTING AND WHEAT YIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing a legume cover crop in place of fallow in a winter wheat-fallow system can provide protection against erosion while adding nitrogen to the soil. However, the water used by the legume may reduce the following wheat yield. This study was conducted to quantify the effect of varying legume termi...

  15. Rye Cover Crops in a Corn Silage-Soybean Rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn silage is often grown in the Upper Midwest to provide feed for cattle. Silage harvest, however, does not leave enough crop residue to adequately protect the soil from erosion and can reduce soil organic matter. Winter cover crops planted after silage harvest and after other crops in the croppin...

  16. Landmark Research in Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes are members of family Fabaceae or Leguminosae and include economically important grain legumes, oilseed crops, forage crops, shrubs and tropical or subtropical trees. Many legumes are rich source of quality protein for humans and animals and enrich the soil by producing their own nitrogen i...

  17. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  18. Cover cropping and no-tillage improve soil health in arid irrigated cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact on soil health of long-term no-tillage (NT) and cover cropping (CC) practices, alone and in combination, was measured and compared with standard tillage (ST) with and without cover crops (NO) in irrigated row crops after 15 years of management in the San Joaquin Valley, CA. Soil aggregat...

  19. Herbicide and cover crop residue integration in conservation tillage tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased adoption of conservation tillage in vegetable production requires more information on the role of various cover crops in weed control, tomato quality, and yield. Three conservation-tillage systems utilizing crimson clover, turnip, and cereal rye as winter cover crops were compared to a...

  20. Black oat cover crop management in watermelon production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  1. REMOTE SENSING OF COVER CROP PERFORMANCE ON MARYLAND'S EASTERN SHORE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of cover crops on agricultural land has been identified as a desirable management practice with potential to positively impact Chesapeake Bay water quality. Accordingly, state cost share programs have been developed to promote cover crops. This project uses a combination of remote sensing an...

  2. Remote Sensing of Cover Crop Production on Maryland's Eastern Shore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of winter cover crops is being promoted throughout Maryland as an effective agricultural best management practice with great promise for reducing nutrient inputs to the Chesapeake Bay. Remote sensing provides a tool for real-time estimation of cover crop productivity and nutrient uptake effi...

  3. Effect of Cover Crops on Soil Fungal Diversity and Biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various cover crops (sordan, mustard, canola, honeysweet, and fallow) to influence soil fungal biomass and diversity were tested in a potato field in the San Luis Valley, Colorado. Soil samples (0-5 cm depth) were randomly selected from each cover crop plot and soil fungal communitie...

  4. Winter cover crops impact on corn production in semiarid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been proposed as a technique to increase soil health. This study examined the impact of winter brassica cover crop cocktails grown after wheat (Triticum aestivum) on corn yields; corn yield losses due to water and N stress; soil bacteria to fungi ratios; mycorrhizal markers; and ge...

  5. Potential use of phytocystatins in crop improvement, with a particular focus on legumes.

    PubMed

    Kunert, Karl J; van Wyk, Stefan G; Cullis, Christopher A; Vorster, Barend J; Foyer, Christine H

    2015-06-01

    Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that function by preventing the catalysis of papain-like cysteine proteases. The action of cystatins in biotic stress resistance has been studied intensively, but relatively little is known about their functions in plant growth and defence responses to abiotic stresses, such as drought. Extreme weather events, such as drought and flooding, will have negative impacts on the yields of crop plants, particularly grain legumes. The concepts that changes in cellular protein content and composition are required for acclimation to different abiotic stresses, and that these adjustments are achieved through regulation of proteolysis, are widely accepted. However, the nature and regulation of the protein turnover machinery that underpins essential stress-induced cellular restructuring remain poorly characterized. Cysteine proteases are intrinsic to the genetic programmes that underpin plant development and senescence, but their functions in stress-induced senescence are not well defined. Transgenic plants including soybean that have been engineered to constitutively express phytocystatins show enhanced tolerance to a range of different abiotic stresses including drought, suggesting that manipulation of cysteine protease activities by altered phytocystatin expression in crop plants might be used to improve resilience and quality in the face of climate change. PMID:25944929

  6. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USGS Publications Warehouse

    Hively, Wells; Sjoerd Duiker; Greg McCarty; Prabhakara, Kusuma

    2015-01-01

    In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery

  7. Cover Crop Biomass and Corn Yield Following 13 Rye, Wheat, and Triticale Cultivars Used as Winter Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce nitrate leaching and erosion in corn-soybean rotations in the upper Midwest. The cover crop growing season between harvest and planting of corn and soybean, however, is short and cold. Additionally, previous studies in Iowa have indicated that winter r...

  8. Legume biology: sequence to seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on legumes is driven, to a large extent, by their importance as food crops worldwide. Some 25% of the world's major crop production is derived from legumes, and more than one-third of humanity's nutritional nitrogen requirement comes from legumes. Moreover, the ability of many legumes to es...

  9. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. PMID:23313999

  10. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly due to biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing ...

  11. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  12. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  13. Assessing effectiveness of winter cover crops to improve water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops are an important conservation practice with potential to improve water quality by reducing excess nitrogen (N), remaining during the winter/early spring in soil, from leaching, runoff, and sediment loss into surface waters after harvest of summer crops. Throughout the Chesapeake B...

  14. Soil Nitrogen Response to Coupling Cover Crops with Manure Injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling winter small grain cover crops (CC) with manure (M) application may increase retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this research was to quantify soil N changes after application of liquid swine M (Sus scrofa L.) at target N rates of 112, 224, an...

  15. Coupling Cover Crops and Manure Injection: Soil Inorganic N Changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of a rye/oat cover crop with liquid swine manure application may enhance retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this study was to evaluate changes in soil inorganic N following injection of liquid swine manure to plots seeded with a rye/oat co...

  16. Cover Crop Chart: An Outreach Tool for Agricultural Producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in cover crops by farmers and ranchers throughout the Northern Great Plains has increased the need for information on the suitability of a diverse portfolio of crops for different production and management resource goals. To help address this need, Northern Great Plains Research Laboratory...

  17. Cover Crop Chart: An intuitive educational resource for extension professionals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in cover crops by agricultural producers has increased the need for information regarding the suitability of crops for addressing different production and natural resource goals. To help address this need, staff at the USDA Agricultural Research Service Northern Great Plains Research Labor...

  18. Assessment of Spectral Indices for Crop Residue Cover Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quantification of surficial crop residue (non-photosynthetic vegetation) cover is important for assessing agricultural tillage practices, rangeland health, and brush fire hazards. The Cellulose Absorption Index (CAI) and the Shortwave Infrared Normalized Difference Residue Index (SINDRI) are two...

  19. Effects of the legume Vigna unguiculata crop on carbon and nitrogen cycles

    NASA Astrophysics Data System (ADS)

    Sánchez-Navarro, Virginia; Zornoza, Raúl; Fernández, Juan; Faz Cano, Ángel

    2015-04-01

    In this study, we investigated the effects of a legume crop (Vigna unguiculata) on soil properties related to the carbon (C) and nitrogen (N) cycles, taking into account different management practices (conventional and organic) and two genotypes. The study was randomly designed in blocks with four replications, in plots of 10 m2. The crop cycle spanned from 29 May 2014 to 13 August 2014. We collected soil samples (0-30 cm) from each plot at the beginning and at the end of the cycle to measure soil total N, organic C, recalcitrant C, organic C labile fractions, microbial biomass C (MBC) and the enzyme activities β-glucosidase and β-glucosaminidase. We collected plant samples (seeds, pods, roots and stem/leaves) at two different maturity stages (fresh and dry pods) to assess the influence of management practices and genotype in the accumulation of N, as indicative of the content of proteins in the crop. In the final plant sampling, we also determined crop production. The results showed that no significant differences were observed between management practices and genotypes in any of the soil properties measured. However, total N, recalcitrant C, most labile C fraction, MBC and β-glucosidase increased at the final sampling compared to initial values. We observed that genotype had a significant effect on the concentration of the second fraction of labile C under organic management. N content in the different plant tissues was significantly higher in the intermediate sampling than in the final harvest, without significant differences between management practices and genotypes. We observed a significant positive correlation between N content in roots, seeds and pods. N content was always higher in seeds, indicating the high quantity of proteins in this crop. C content was significantly lower in stem/leaves than in the rest of tissues, without significant differences among them. No effect of management practice, maturity stage or genotype was observed with regard to C

  20. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  1. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  2. Effect of different cover crops on C and N cycling in sorghum NT systems.

    PubMed

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. PMID:27107651

  3. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Singh, Bharat P; Whitehead, Wayne F; Wang, Shirley

    2006-01-01

    Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop. PMID:16825471

  4. Host Suitability of Potential Cover Crops for Root-knot Nematodes.

    PubMed

    McSorley, R

    1999-12-01

    Several potential cover crops were evaluated for their susceptibility to Meloidogyne arenaria race 1, M. incognita race 1, and M. javanica in a series of five greenhouse experiments. No galls or egg masses were observed on roots of castor (Ricinus communis), cowpea (Vigna unguiculata cv. Iron Clay), crotalaria (Crotalaria spectabilis), or American jointvetch (Aeschynomene americana). Occasional egg masses (rating crops were free of egg masses. Numbers of second-stage juveniles (J2) hatched from eggs per root system were low (crops. Egg-mass levels and numbers of hatched J2 of M. incognita on pearl millet (Pennisetum typhoides, Tifleaf II hybrid) were comparable to those on a susceptible tomato (Lycopersicon esculentum cv. Rutgers). In a test with M. arenaria, egg mass levels and numbers of J2 on Japanese millet (Echinochloa frumentacea) were similar to those on tomato. Japanese millet was susceptible to each of the nematode isolates tested. However, several of the crops evaluated were very poor hosts or non-hosts of the nematode isolates, including several legumes (cowpea, crotalaria, jointvetch, sunn hemp) that have potential use in both nematode and nitrogen management. PMID:19270926

  5. Host Suitability of Potential Cover Crops for Root-knot Nematodes

    PubMed Central

    McSorley, R.

    1999-01-01

    Several potential cover crops were evaluated for their susceptibility to Meloidogyne arenaria race 1, M. incognita race 1, and M. javanica in a series of five greenhouse experiments. No galls or egg masses were observed on roots of castor (Ricinus communis), cowpea (Vigna unguiculata cv. Iron Clay), crotalaria (Crotalaria spectabilis), or American jointvetch (Aeschynomene americana). Occasional egg masses (rating ≤1.0 on 0-5 scale) were observed on marigold (Tagetes minuta) in one test with M. incognita, on sesame (Sesamum indicum cv. Paloma) in a test with M. arenaria, and on sunn hemp (Crotalaria juncea cv. Tropic Sun) in 1 of 2 tests with M. incognita; otherwise, these crops were free of egg masses. Numbers of second-stage juveniles (J2) hatched from eggs per root system were low (≤10/pot) for the abovementioned crops. Egg-mass levels and numbers of hatched J2 of M. incognita on pearl millet (Pennisetum typhoides, Tifleaf II hybrid) were comparable to those on a susceptible tomato (Lycopersicon esculentum cv. Rutgers). In a test with M. arenaria, egg mass levels and numbers of J2 on Japanese millet (Echinochloa frumentacea) were similar to those on tomato. Japanese millet was susceptible to each of the nematode isolates tested. However, several of the crops evaluated were very poor hosts or non-hosts of the nematode isolates, including several legumes (cowpea, crotalaria, jointvetch, sunn hemp) that have potential use in both nematode and nitrogen management. PMID:19270926

  6. 7 CFR 1437.503 - Covered losses and recordkeeping requirements for covered tropical crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Deputy Administrator in individual cases, eligible causes of loss for covered tropical crops will... application for coverage is filed. In this regard: (1) Producers may be selected on a random or targeted...

  7. 7 CFR 1437.503 - Covered losses and recordkeeping requirements for covered tropical crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Administrator in individual cases, eligible causes of loss for covered tropical crops will only include... coverage is filed. In this regard: (1) Producers may be selected on a random or targeted basis...

  8. Cover crops effectiveness for soil erosion control in Sicilian vineyard

    NASA Astrophysics Data System (ADS)

    Gristina, L.; Novara, A.; Saladino, S.; Santoro, A.

    2009-04-01

    In vineyards, which are very common in Mediterranean area, cover crops are becoming increasingly used to reduce soil erosion. Cover crops reduce runoff by increasing infiltration and increasing roughness and then reducing the ovelandflow velocity. The aim of the present study was to quantify soil and water losses under different soil managements systems on vineyards. The study site was a Sauvignon blanc winegrape vineyard located in Southwestern Sicily. Vineyards were managed both traditionally (conventional tillage) and alternative management using cover crops: 1) Vicia faba ; 2) Vicia faba and Vicia sativa; 3) Trifolium subterraneum, Lolium perenne, Festuca rubra; 4)Trifolium subterraneum, Festuca rubra and Festuca ovina, 5) Triticum durum, 6) Triticum durum and Vicia sativa. To monitor water and sediment yield, a Gerlach trough was installed at each treatment on the vineyard inter-row, with the row vineyard used as a border (topographical border). Runoff was measured after each rainfall event (raingauge 0.2 mm accuracy) from November 2005 to April 2007. And sediments were measured after desiccation. The results show that runoff and erosion were reduced considerably under the treatments with Trifolium subterraneum, Lolium perenne, Festuca rubra and Trifolium subterraneum, Festuca rubra and Festuca ovina (treatments 3 and 4). The soil losses were reduced by 73% under treatment 4 compared to the tillage plot. Conventional tillage and alternative management using Vicia faba cover crop (treatment 1) result the most ineffective treatment to soil erosion. These results show that the use of a cover crop can be a simple soil and water conservation practice in Sicilian vineyards. Key words: soil erosion, cover crops, vineyard, Mediterranean area.

  9. Evaluating legume species as alternative trap crops to chickpea for management of Helicoverpa spp. (Lepidoptera: Noctuidae) in central Queensland cotton cropping systems.

    PubMed

    Grundy, P R; Sequeira, R V; Short, K S

    2004-12-01

    Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland's cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an area-wide management programme for Helicoverpa spp. is discussed. PMID:15541187

  10. The potential of climate change adjustment in crops: A synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter covers a study on various field crops like cereals, legumes, oil seeds, vegetables, cash crops, underutilized crops, and energy crops and their genetic adjustment to changing climates. More than 30 major field crops have been covered in different chapters of this book, which highlight h...

  11. Cover crop roller-crimper contributes to weed management in no-till soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Termination of cover crops prior to no-till planting of soybean is typically accomplished with a burndown herbicide. Recent advances in cover crop roller-crimper design offer the possibility of physical termination of cover crops without tillage. We hypothesized that 1) cover crop termination with a...

  12. Using cash cover crops to provide pollinator provisions in the Upper Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, the use of winter cover crops in MN and SD has been slow to be adopted. The short growing season and potential for late, wet springs make cover crops risky to farmers with little economic return. The use of cash cover crops in this area offers the standard advantages of other cover crops, w...

  13. 7 CFR 1437.503 - Covered losses and recordkeeping requirements for covered tropical crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Covered losses and recordkeeping requirements for covered tropical crops. 1437.503 Section 1437.503 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER...

  14. 7 CFR 1437.503 - Covered losses and recordkeeping requirements for covered tropical crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Covered losses and recordkeeping requirements for covered tropical crops. 1437.503 Section 1437.503 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER...

  15. Using Mustard Seed Meal and Cover Crops for Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There continues to be a steady growth in the use of fall planted brassica cover crops in the Columbia Basin especially prior to potatoes. Several benefits include better water infiltration, reclaiming nitrogen, reduced erosion, and suppression of nematodes, diseases, and weeds. Weed suppression is...

  16. Tillage and Cover Crops Effects on Potato Yield and Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Delayed tillage and the inclusion of cover crops can substantially reduce erosion in intensively tilled potato systems. Both of these practices can potentially impact potato yield and quality via changes in soil temperature and soil water status. Research was conducted over seven rotation cycles a...

  17. Modeling cover Crop Effectiveness on Maryland's Eastern Shore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping has become a widely used conservation practice on Maryland’s Eastern shore. It is one of the main practices funded by the Maryland Department of Agriculture’s (MDA) Maryland Agricultural Water Quality Cost Share (MACS) program. The major benefits of this practice include reduction of ...

  18. Corn Belt Assessment of Cover Crop Management and Preferences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveying end-users about their use of technologies and preferences provides information for researchers and educators to develop relevant research and educational programs. A mail survey was sent to Corn Belt farmers during 2006 to quantify cover crop management and preferences. Results indicated t...

  19. Delayed tillage and cover crop effects in potato systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Delayed tillage and the inclusion of cover crops can substantially reduce erosion in intensively tilled potato systems. Both of these practices can potentially impact potato (Solanum tuberosum L.)yield and quality via changes in soil temperature and soil water status, and suppression or enhancement...

  20. MANAGING COVER CROPS IN CONSERVATION AGRICULTURE USING ROLLERS/CRIMPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rollers may provide a viable alternative to herbicides for terminating cover crops, however, excessive vibration generated by rollers and transferred to tractors hinders adoption of this technology in the US. To avoid excessive vibration, producers must limit their operational speed, which increases...

  1. Rolled cover crop mulches for organic corn and soybean production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  2. COVER CROP SYSTEMS AFFECT WEED COMMUNITIES IN A CALIFORNIA VINEYARD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vineyard weed communities were examined under four dormant season cover crop systems representative of those used in the north-coastal grape-growing region of California: no-till annuals (rose clover, soft brome, zorro fescue; ANoT), no-till perennials (blue wildrye, California brome, meadow barley,...

  3. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  4. Assessment of spectral indicies for crop residue cover estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quantification of surficial crop residue cover is important for assessing agricultural tillage practices, rangeland health, and brush fire hazards. The Cellulose Absorption Index (CAI) and the Shortwave Infrared Normalized Difference Residue Index (SINDRI) are two spectral indices that have show...

  5. Cover crop and organic weed control integration in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased adoption of conservation tillage in organic vegetable production requires more information on the role of various cover crops in weed control, tomato quality and yield. An experiment was established in autumn 2005 and 2006 at the North Alabama Horticulture Experiment Station, Cullman,...

  6. Enhancing Nutrient Cycling by Coupling Cover Crops with Manure Injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling winter small grain cover crops (CC) with liquid manure injection may increase manure nutrient capture. The objectives of this research were to quantify manure injection effects using target manure N rates of 112, 224, and 336 kg N ha-1 on CC plant density, fall and spring shoot biomass, N, ...

  7. Summer legume 'green' nitrogen crops affect winter wheat forage in continuous rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Costs for inorganic nitrogen (N) fertilizers in the southern Great Plains (SGP) have increased in recent years with the rise in oil prices. In response, producers have become interested in the potential merits of using annual legumes as N sources. This study described the influence of two summer for...

  8. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  9. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  10. Cover crops can affect subsequent wheat yield in the central great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production systems in the water-limited environment of the semi-arid central Great Plains may not have potential to profitably use cover crops because of lowered subsequent wheat (Triticum asestivum L.) yields following the cover crop. Cover crop mixtures have reportedly shown less yield-reduci...

  11. Manipulating cover crops to increase mycorrhizal colonization in corn (Zea mays)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were performed to determine the influence of cover crop treatments on the abundance of mycorrhizal fungi which can increase nutrient uptake by cash crops. Replicated plots established in spring wheat were assigned to eight cover crop treatments: No cover crop, winter canola, oats, hai...

  12. One Hundred Years of Some Specialty Legume Genetic Resource Contributions and Future Considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NPGS specialty legume curation project includes about 60 genera, 358 species, and 3,604 accessions for uses ranging from forage to medicinal. Historical agricultural value of legumes for cover cropping forage, yield, and disease resistance is known. The earliest known velvetbean cultivar, Flor...

  13. Cover Crop Effects on the Fate of Swine Manure-N Applied to Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal grain cover crops increase surface cover, anchor corn and soybean residues, increase infiltration, reduce both rill and interrill erosion, scavenge excess nutrients from the soil, and are easily obtained and inexpensive compared to other cover crop options. The use of cereal grain cover crops...

  14. Sustainable cropping systems using cover crops, native species field borders and riparian buffers for environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will focus on the application of sustainable management practices for no-till cultivation using cover crops, native species field borders, and fast growing woody species integrated in vegetative strips and riparian buffers. An ongoing field project at the Bradford Research and Exte...

  15. Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti.

    PubMed

    Lynch, M J; Mulvaney, M J; Hodges, S C; Thompson, T L; Thomason, W E

    2016-01-01

    Cover crops are a major focus of conservation agriculture efforts because they can provide soil cover and increase nutrient availability after their mineralization in cropping systems. To evaluate the effect of residue type and placement on rate of decomposition and carbon (C) and nitrogen (N) mineralization, residues from two food crops, maize (Zea mays L.) and common bean (Phaseolus vulgaris L.), and two promising cover crops, sunn hemp (Crotalaria juncea L.) and sorghum sudangrass (Sorghum bicolor [L.] Moench x S. bicolor var. Sudanese [Piper] Stapf) were used in a litterbag study in the Central Plateau region of Haiti from May to September, 2013. Residues were placed in litterbags at a rate equivalent to 3.25 Mg residue ha(-1) either on the soil surface or buried at 15 cm to represent a tilled and no-tillage system, respectively. Initial C:N ratios were: maize > common bean > sorghum sudangrass > sunn hemp. Highest residue mass loss rates and C and N mineralization generally occurred in the reverse order. Overall, surface-placed residues decomposed more slowly with 40 and 17 % of initial residue mass of surface and buried residues, respectively, remaining at 112 days. Carbon and N mineralization was higher when residues were buried. Net N mineralization of buried residues was 0.12, 0.07, 0.06, and 0.03 g N g residue(-1) for sunn hemp, sorghum sudangrass, maize, and common bean, respectively over 112 days. To achieve the goal of increasing nutrient supply while maintaining year-round cover, a combination of grass and legume cover crops may be required with benefits increasing over multiple seasons. PMID:27429883

  16. Cellulosic Biofuel Production with Winter Cover Crops: Yield and Nitrogen Implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable energy sources derived from plant biomass is increasing. Growing cover crops after harvest of the primary crop has been proposed as a solution to producing cellulosic biomass on existing crop-producing land without reducing food-harvest potential. Growing cover crops is a recom...

  17. The potential for cereal rye cover crops to host corn seedling pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil health and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects by growing two grass species in succession. Here, we show that rye cover crops host pathog...

  18. Living cover crops have immediate impacts on soil microbial community structure and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping is a widely promoted strategy to enhance soil health in agricultural systems. Despite a substantial body of literature demonstrating links between cover crops and soil biology, an important component of soil health, research evaluating how specific cover crop species influence soil mi...

  19. Improving soybean performance in the Northern Great Plains through the use of cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are capable of providing “multiple services” for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of...

  20. Cover crop biomass production and water use in the central great plains under varying water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  1. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and weed suppression, however little research has investigated the effects of winter cover crops on soil properties. ...

  2. Soil carbon accumulation after short-term use of rye as a winter cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of winter cover crops has been proposed to protect and enhance soil resources. Cereal rye (Secale cereale L.) can be an effective cover crop since it can produce large amounts of biomass in certain climates. However, short-term benefits of cover crop use on soil carbon accumulation are not w...

  3. Cover crops in mixtures do not use water differently than single-species plantings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. One of those stated benefits is greatly reduced water use by cover crops grown in mixtures. The objectives of this study were to characterize soil wat...

  4. Development of a global, gridded, and time-series crop yield dataset for four major cereal and legume crops

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Yokozawa, M.; Sakurai, G.

    2012-12-01

    Global, gridded crop yield data are essential to study impacts of climate variability and change on food production, atmosphere-soil-managed ecosystem carbon and nitrogen cycle at a global scale. However so far available data are limited to country, time-series data from the Food and Agriculture Organization (FAO) and global, gridded data in the circa 2000 from Monfreda et al. (2008). This necessitates an effort to develop a global, gridded, and time-series dataset. To that end we developed a 25-yr long (1982-2006) dataset with 1.125 x 1.125 grid size for maize, soybean, rice, and wheat by merging county statistics, FAO country statistics, and yield proxy from satellite products. Yield statistics were collected from agricultural agencies in 19 countries: those correspond to 58-95% of the global production in the 2000. The proportion for rice and wheat (58%) is less than those for maize (72%) and soybean (95%). Also net primary production (NPP) for that period was estimated crop by crop from the normalized differential vegetation index bi-monthly time series at 8-km resolution from the Global Inventory Modeling and Mapping Studies group, using the method of Los et al. (2000). When estimating yield from NPP, for each crop, we used the following six procedures: (1) for a given grid where an intended crop grows (evaluated from harvested area from Monfreda et al. (2008)), accumulate NPP time series for the whole growth period from Sacks et al. (2010), considering the temporal distribution of planting/harvesting date through an ensemble calculation of 100 different planting/harvesting date; (2) average over accumulated NPPs that locate within a given country and compute the ratio of a grid NPP against a country mean (this represents the spatial variation of yield); (3) multiply this ratio and country FAO yield year by year; (4) calculate correction coefficient that is a ratio between estimated grid yield in the 2000 and that from Monfreda et al. (2000); (5) repeat (1

  5. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes.

    PubMed

    Abbo, Shahal; Pinhasi van-Oss, Ruth; Gopher, Avi; Saranga, Yehoshua; Ofner, Itai; Peleg, Zvi

    2014-06-01

    'Domestication syndrome' (DS) denotes differences between domesticated plants and their wild progenitors. Crop plants are dynamic entities; hence, not all parameters distinguishing wild progenitors from cultigens resulted from domestication. In this opinion article, we refine the DS concept using agronomic, genetic, and archaeobotanical considerations by distinguishing crucial domestication traits from traits that probably evolved post-domestication in Near Eastern grain crops. We propose that only traits showing a clear domesticated-wild dimorphism represent the pristine domestication episode, whereas traits showing a phenotypic continuum between wild and domesticated gene pools mostly reflect post-domestication diversification. We propose that our approach may apply to other crop types and examine its implications for discussing the timeframe of plant domestication and for modern plant science and breeding. PMID:24398119

  6. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  7. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  8. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practice of planting winter cover crops following summer row crops is recognized as an important agricultural conservation measure with potential to reduce nitrogen losses to groundwater. Sequestration of residual soil nitrogen in growing cover crop biomass can significantly reduce wintertime nu...

  9. 7 CFR 1412.31 - Direct payment yields for covered commodities, except pulse crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... commodities, except pulse crops. (a) The direct payment yield for each covered commodity, except pulse crops... for covered commodities at part 1412 of this chapter in effect on January 1, 2008 (see 7 CFR part 1412... pulse crops. 1412.31 Section 1412.31 Agriculture Regulations of the Department of Agriculture...

  10. 7 CFR 1412.31 - Direct payment yields for covered commodities, except pulse crops.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... commodities, except pulse crops. (a) The direct payment yield for each covered commodity, except pulse crops... for covered commodities at part 1412 of this chapter in effect on January 1, 2008 (see 7 CFR part 1412... pulse crops. 1412.31 Section 1412.31 Agriculture Regulations of the Department of Agriculture...

  11. 7 CFR 1412.31 - Direct payment yields for covered commodities, except pulse crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... commodities, except pulse crops. (a) The direct payment yield for each covered commodity, except pulse crops... for covered commodities at part 1412 of this chapter in effect on January 1, 2008 (see 7 CFR part 1412... pulse crops. 1412.31 Section 1412.31 Agriculture Regulations of the Department of Agriculture...

  12. Winter rye cover crops as a host for corn seedling pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil protection, soil health and water quality. However, emerging implementations of cover cropping, such as winter cereals preceding corn, may dampen beneficial rotation effects by putting similar crop species i...

  13. Winter rye cover crop management influences on soil water, soil nitrate, and corn development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A winter rye (Secale cereale L.) cover crop can be seeded after corn (Zea mays L.) silage to mitigate some of the environmental concerns associated with this cropping system. Rye can be managed as a cover crop by chemical termination or harvested as for forage. A field study was conducted in Morris,...

  14. Agronomic responses to late-seeded cover crops in a semiarid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...

  15. Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees.

    PubMed

    Ellis, Katherine E; Barbercheck, Mary E

    2015-08-01

    The incorporation of cover crops into annual crop rotations is one practice that is used in the Mid-Atlantic United States to manage soil fertility, suppress weeds, and control erosion. Additionally, flowering cover crops have the potential to support beneficial insect communities, such as native bees. Because of the current declines in managed honey bee colonies, the conservation of native bee communities is critical to maintaining "free" pollination services. However, native bees are negatively affected by agricultural intensification and are also in decline across North America. We conducted two experiments to assess the potential of flowering cover crops to act as a conservation resource for native bees. We evaluated the effects of cover crop diversity and fall planting date on floral resource availability and visitation by native bees for overwintering flowering cover crop species commonly used in the Mid-Atlantic region. Cover crop species, crop rotation schedule, and plant diversity significantly influenced floral resource availability. Different cover crop species not only had different blooming phenologies and winter survival responses to planting date, but attracted unique bee communities. Flower density was the primary factor influencing frequency of bee visitation across cover crop diversity and fall planting date treatments. The results from these experiments will be useful for informing recommendations on the applied use of flowering cover crops for pollinator conservation purposes. PMID:26314045

  16. Predicting Crop Water Use from Ground Cover and Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduling irrigations for horticultural crops with evapotranspiration calculations is difficult. Horticultural crops are grown under a wide range of cultural practices and conditions, making it difficult to select appropriate crop coefficients. A primary determinant of crop water use is light in...

  17. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes.

    PubMed

    Bae, Jichul; Benoit, Diane L; Watson, Alan K

    2016-06-01

    In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. PMID:26882164

  18. Responses of reniform nematode and browntop millet to tillage, cover crop, and herbicides in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping practices that reduce competition from reniform nematode (Rotylenchulus reniformis) and browntop millet (Urochlora ramosum) may help minimize losses in cotton (Gossypium hirsutum). The impacts of tillage, rye cover crop, and preemergence and postemergence herbicides on cotton yields, renifo...

  19. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  20. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  1. Polarimetric Synthetic Aperture Radar data for Crop Cover Classification

    NASA Astrophysics Data System (ADS)

    Ramana, K. V.; Srikanth, P.; Deepika, U.; Sesha Sai, M. V. R.

    2014-11-01

    The interest in crop inventory through the use of microwave sensors is on the rise owing to need for accurate crop forecast and the availability of multi polarization data. Till recently, the temporal amplitude data has been used for crop discrimination as well as acreage estimation. With the availability of dual and quadpol data, the differential response of crop geometry at various crop growth stages to various polarizations is being exploited for discrimination and classification of crops. An attempt has been made in the current study with RISAT1 and Radarsat2 C-band single, dual, fully and hybrid polarimetric data for crop inventory. The single date hybrid polarimetric data gave comparable results to the three date single polarization data as well as with the single date fully polarimetric data for crops like rice and cotton.

  2. Edible grain legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible grain legumes including dry bean, dry pea, chickpeas, and lentils, have served as important sources of protein for human diets for thousands of years. In the US, these crops are predominately produced for export markets. The objective of this study was to examine yield gains in these crops ov...

  3. Cover crop options and pros and cons in Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivation of sugarcane in Louisiana usually involves planting seed and waiting 18 months before the harvest of the plant-cane crop. Additional stubble crops are harvested each year between Oct. and Jan. until the stubble is broken out to make the way for a new seed crop the following year. Typical...

  4. Assessing crop residue cover as scene moisture conditions change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue or plant litter is the portion of a crop left in the field after harvest. Crop residues on the soil surface provide a first line of defense against water and wind erosion and reduce the amounts of soil, nutrients, and pesticides that reach streams and rivers. Thus, quantification of cro...

  5. Potential of summer legumes for thermochemical conversion to synthetic fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summer legumes are commonly used worldwide in crop rotations as a nitrogen source. One particular legume, sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding, tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer...

  6. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    NASA Astrophysics Data System (ADS)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  7. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  8. Impact of Cover Cropping and Landscape Positions on Nitrous Oxide Emissions in Northeastern Agroecosystems

    NASA Astrophysics Data System (ADS)

    Han, Z.; Walter, M. T.; Drinkwater, L. E.

    2015-12-01

    Studies investigating agricultural nitrous oxide (N2O) emissions tend to rely on plot-scale experiments. However, to understand the impacts of agricultural practices at a larger scale, it is essential to consider the variability of landscape characteristics along with management treatments. This study compared N2O emissions from a fertilizer-based, conventionally managed farm and an organically managed farm that uses legume cover crops as a primary nutrient source. The objective of the study was to assess how management regimes and slope positions interact to impact N2O emissions and soil characteristics. The field experiment was conducted in two adjacent grain farms in upstate New York that both have been under consistent management for 20 years. In the organic farm, red clover was frost-seeded into a winter grain (spelt), and then incorporated in the spring as a nutrient source for the subsequent corn plants. In contrast, the conventionally managed farm used inorganic fertilizer as the nutrient source. Gas measurement was conducted at two landscape positions at both farms: 1) shoulder and 2) toeslope positions. Comparable N2O emissions were found in the clover-corn phase in the organic site and the bare fallow-corn phase in the conventional site. The spelt-corn phase in the organic farm had the lowest N2O emissions. Soil nitrate concentration was the best predictor for seasonal average N2O emissions. The impact of landscape position on N2O emissions was only found in the conventional site, which was driven by higher denitrfication at toeslopes. In the organic farm, such effect was confounded by higher clover biomass at shoulder slopes. Our study shows that the impact of landscape characteristics on N2O emissions could differ across sites based on the complex interplay between environmental conditions and management.

  9. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  10. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2013-11-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those

  11. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  12. Impact of Winter Cover Crop Biomass Removal on Soil Properties and Cotton Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, there has been a renewed interest on alternatives sources of energy, especially renewable sources. Numerous materials can be used for this purpose, including crop residues. The use of crop residues would give farmers a new source of income. The use of winter cover crops (WCC) is recommende...

  13. Effects of soil composition and mineralogy on remote sensing of crop residue cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of crop residues in agricultural fields influences soil erosion and soil carbon sequestration. Remote sensing methods can efficiently assess crop residue cover and tillaje intensity over many fields in a region. Although the reflectance spectra of soils and crop residues are often s...

  14. Mapping crop Residue Cover and Soil Tillage Intensity Using Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently crop residues were managed primarily to reduce soil erosion and increase soil organic carbon, but demands for biofuels may remove much of the residue. Current methods of measuring crop residue cover are inadequate for characterizing the temporal and spatial variability of crop residu...

  15. Evaluation of Cowpea Germplasm Lines Adapted for Use as a Cover Crop in the Southeastern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpeas (Vigna unguiculata) are desirable as a cover crop, because they are tolerant of heat, drought and poor soils, grow vigorously and compete well against weeds, and provide nitrogen for rotational crops. Cowpeas were grown extensively as a forage and green manure crop in the southeastern U.S. ...

  16. The effect of cover cropping systems and nitrogen fertilization on sorghum grain characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till farming has become an increasing popular cropping practice, due to increased water and soil conservation. Recently, cover cropping has been added to the system to aid in weed prevention and also increase soil fertility. The objective of this study was to determine the effect of cropping sy...

  17. Winter Cover Crops and Vinegar for Early-Season Weed Control in Sustainable Cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weeds in cotton may be suppressed by winter cover crops and the use of organic herbicides such as vinegar. Black oat (Avena strigosa), and hairy vetch (Vicia villosa), winter cover crops were planted in a sustainable production field in the Lower Rio Grande Valley of Texas and were tilled prior to ...

  18. 7 CFR 1412.31 - Direct payment yields for covered commodities, except pulse crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for covered commodities at part 1412 of this chapter in effect on January 1, 2008 (see 7 CFR part 1412... pulse crops. 1412.31 Section 1412.31 Agriculture Regulations of the Department of Agriculture (Continued... commodities, except pulse crops. (a) The direct payment yield for each covered commodity, except pulse...

  19. A comparison of drill and broadcast methods for establishing cover crops on beds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops stands that are sufficiently dense soon after planting are more likely to suppress weeds, scavenge nutrients, and reduce erosion. Small-scale organic vegetable farmers often use broadcasting methods to establish cover crops but lack information on the most effective tool to incorporate ...

  20. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  1. Effect of water content and organic carbon on remote sensing of crop residue cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for res...

  2. Remote Sensing of Cover Crop Nutrient Uptake on Maryland's Eastern Shore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping is recognized as an important agricultural best management practice with great promise for reducing nutrient inputs to the Chesapeake Bay. Accordingly, state-run cost share programs have been established to promote cover cropping on farms throughout Maryland. However, current estimate...

  3. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  4. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few studies have examined the factors that affect the impact of cover crops on nitrous oxide emissions. A meta-analysis of the data obtained from twenty-six peer reviewed articles was conducted using the natural log of the nitrous oxide flux with a cover crop divided by the nitrous oxide flux withou...

  5. Integrating choice of variety, soil amendments, and cover crops to optimize organic rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have completed our first year of this project to determine the impact of winter cover crops, soil amendments, and rice varieties on organic rice production at Beaumont, TX. Two winter cover crops were established successfully and the amounts of dry biomass produced were 4,690 and 5,157 lb/acre f...

  6. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting winter cover crops such as winter rye after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems. Because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and ma...

  7. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic sytems in the southeast offer unique challenges and solutions due to regional soil and climate characterized by highly weather soil types, high precipitation, and the capacity to grow cover crops in the winter. Recently high-residue cover crops and conservation tillage systems have increased...

  8. Utilizing Cover Crop Mulches to Reduce TIllage in Organic Systems in the Southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop roller-crimper trials have been conducted across the southeastern U.S. during the past decade. Regional climatic conditions make the system particularly attractive but also pose their own challenges. Winter annual cover crops productivity can exceed 8 Mg ha-1 (dry weight) for rye (Secale ...

  9. COVER CROPS ENHANCE SOIL ORGANIC MATTER, CARBON DYNAMICS AND MICROBIOLOGICAL FUNCTION IN A MEDITERRANEAN VINEYARD AGROECOSYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impacts of soil tillage and cover crops on soil carbon (C) dynamics and microbiological function were investigated in a vineyard grown in California’s Mediterranean climate. We 1) compared soil organic matter (SOM), C dynamics and microbiological activity of two cover crops [Trios 102 (Triticale x T...

  10. Self-seeding small grain cover crops in a soybean-corn rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops provide environmental benefits, yet adoption in agronomic farming systems is low. Winter rye (Secale cereale L.), wheat (Triticum aestivum L.), and triticale (X Triticosecale Wittmack) were used to develop self-seeding cover crop systems in a soybean [Glycine max (L.) Merr.]-corn (Zea m...

  11. Self-Seeded Cereal Cover Crop Effects on Interspecific Competition with Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perpetuating cereal cover crops through self-seeding may increase adoption by reducing risk and cost. Winter rye (Secale cereale L.), wheat (Triticum aestivum L.), and triticale (x Triticosecale Wittmack) were used to develop self-seeding cover crop systems in a soybean [Glycine max (L.) Merr.]-corn...

  12. The effects of combined cover crop termination and planting in a cotton no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method to save resources while positively impacting the environment is combining agricultural field operations. In no-till systems, cover crop termination and cash crop planting can be performed simultaneously utilizing a tractor as a single power source. A no-till field experiment merging cover...

  13. US-1136, US-1137, and US-1138 Cowpea Germplasm Lines for Use as a Cover Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adoption of sustainable and organic cultural practices in recent years has resulted in an increased use of cover crops. Cowpea (Vigna unguiculata L.) is an excellent warm season cover crop due to its tolerance of heat and drought stress, ability to grow well in sandy, poor, acidic soils, high b...

  14. Innovative methods for measuring cover crop nutrient uptake on a landscape scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because winter cover crops are recognized as an effective agricultural conservation practice for reducing nitrogen losses to groundwater, state cost-share programs have been established to promote cover crops on farms throughout the Chesapeake Bay watershed. Remote sensing provides a tool for real-t...

  15. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. The known benefits of winter cover crops include reduced nitrate leaching, soil erosion, and weed germination, but evidence of improvements in soil productivity would provide further incentive for famers to implemen...

  16. Low-altitude aircraft imagery for assessment of winter cover-crop biomass and nitrogen content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are planted during the autumn to reduce nitrogen inputs to the surface water system. The objective of this research is to determine a method to quickly assess the amount of nitrogen stored in the biomass before the cover crop is removed in the early spring. Two digital cameras were mo...

  17. Forage radish winter cover crop suppresses winter annual weeds in fall and before corn planting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. The objective of this project was to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop and to quantify the sub...

  18. Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G

    2009-05-01

    Cool-season food legumes (faba bean, lentil, chickpea and pea) and cereals (bread and durum wheat and barley) are the most important and widely cultivated crops in West Asia and North Africa (WANA), where they are the main source of carbohydrates and protein for the majority of the population. Persistently transmitted aphid-borne viruses pose a significant limitation to legume and cereal production worldwide. Surveys conducted in many countries in WANA during the last three decades established that the most important of these viruses are: Faba bean necrotic yellows virus (FBNYV: genus Nanovirus; family Nanoviridae), Bean leafroll virus (BLRV: genus Luteovirus; family Luteoviridae), Beet western yellows virus (BWYV: genus Polerovirus; family Luteoviridae), Soybean dwarf virus (SbDV: genus Luteovirus; family Luteoviridae) and Chickpea chlorotic stunt virus (CpCSV: genus Polerovirus; family Luteoviridae) which affect legume crops, and Barley yellow dwarf virus-PAV (BYDV-PAV: genus Luteovirus; family Luteoviridae), Barley yellow dwarf virus-MAV (BYDV-MAV: genus Luteovirus; family Luteoviridae) and Cereal yellow dwarf virus-RPV (CYDV-RPV: genus Polerovirus; family Luteoviridae) which affect cereal crops. Loss in yield caused by these viruses is usually high when infection occurs early in the growing season. Many aphid vector species for the above-mentioned viruses are reported to be prevalent in the WANA region. In addition, in this region many wild species (annual or perennial) were found infected with these viruses and may play an important role in their ecology and spread. Fast spread of these diseases was always associated with high aphid vector populations and activity. Although virus disease management can be achieved by combining several control measures, development of resistant genotypes is undoubtedly one of the most appropriate control methods. Over the last three decades barley and wheat genotypes resistant to BYDV, faba bean genotypes resistant to BLRV, and

  19. Dealing with drought: Securing nitrogen with cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This year the drought in the Midwest has significantly reduced the growth and yield of all crops. When the growth of the cash crop has been reduced by drought or any other cause it is important to remember that more nitrogent than normal will remain in the soil after harvest. This nitrogen will be v...

  20. Cotton population and yield following different cover crops termination practices in an Alabama no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Alabama, under optimal weather conditions, a three-week time period is required after rolling down a cover crop to achieve termination rates above 90%, and to eliminate competition for soil moisture between the cover crop and cash crop. A common method to enhance the cover crop termination proces...

  1. Evaluating stocker cattle in a southern Piedmont conservation tillage cotton-cover crop system to increase productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton producers are often reluctant to plant winter cover crops because of added cost. However, grazing of winter annual cover crops by stocker cattle may help offset cover crop costs and increase farm revenue. Identifying temporal and spatial management needs within cropped/grazed fields can help ...

  2. Effect of Winter Cover Crops on Nematode Population Levels in North Florida

    PubMed Central

    Wang, K.-H.; McSorley, R.; Gallaher, R. N.

    2004-01-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida. PMID:19262833

  3. Effect of winter cover crops on nematode population levels in north Florida.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida. PMID:19262833

  4. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s)

    PubMed Central

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V. Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-01-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  5. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  6. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    PubMed

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed. PMID:21539250

  7. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

    PubMed

    Varshney, Rajeev K; Kudapa, Himabindu; Roorkiwal, Manish; Thudi, Mahendar; Pandey, Manish K; Saxena, Rachit K; Chamarthi, Siva K; Mohan, S Murali; Mallikarjuna, Nalini; Upadhyaya, Hari; Gaur, Pooran M; Krishnamurthy, L; Saxena, K B; Nigam, Shyam N; Pande, Suresh

    2012-11-01

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance

  8. Root-knot Nematode Management in Dryland Taro with Tropical Cover Crops

    PubMed Central

    Sipes, B. S.; Arakaki, A. S.

    1997-01-01

    Twenty-two cover crops were evaluated for their ability to reduce damage by root-knot nematode, Meloidogyne javanica, to taro, Colocastia esculenta, in a tropical cropping system. Cover crops were grown and incorporated into the soil before taro was planted. Barley, greenpanic, glycine, marigold, sesame, sunn hemp, and sorghum x sudangrass DeKalb ST6E were poor or nonhosts to the nematode as measured by low population changes of nematodes in soil between cover crop planting and taro planting. Alfalfa, buckwheat, cowpea, lablab, Lana vetch, mustard, oat, okra, rhodes grass, ryegrain, ryegrass, siratro, sweet corn, and wheat allowed nematode populations to increase dramatically. Taro yields were greatest in the marigold plots and lowest in the ryegrain plots. Taro corm weight decreased with increasing initial nematode population (Pi) (r = 0.22, P = 0.056). Siratro, ryegrass, and Blizzard wheat plots had higher taro yield than plots with similar Pi's but planted to other cover crops. These cover crops may have antagonism to other soil microorganisms or their decomposition products may be toxic or adversely affect the nematodes. Cover crops can be an effective and valuable nematode management tactic for use in minor tropical cropping systems such as taro. PMID:19274275

  9. Legumes as a Model Plant Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human population derives the majority of its nutrition either directly or indirectly (via animal protein) from two plant families: the grasses and the legumes. Grain legumes alone supply approximately 33% of human protein nutrition. Thus, it is critical for genetic improvement of legume crop spe...

  10. Legume Information System (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working o...

  11. Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil.

    PubMed

    Amado, Telmo Jorge Carneiro; Bayer, Cimélio; Conceição, Paulo Cesar; Spagnollo, Evandro; de Campos, Ben-Hur Costa; da Veiga, Milton

    2006-01-01

    The area under no-till (NT) in Brazil reached 22 million ha in 2004-2005, of which approximately 45% was located in the southern states. From the 1970s to the mid-1980s, this region was a source of carbon dioxide to the atmosphere due to decrease of soil carbon (C) stocks and high consumption of fuel by intensive tillage. Since then, NT has partially restored the soil C lost and reduced the consumption of fossil fuels. To assess the potential of C accumulation in NT soils, four long-term experiments (7-19 yr) in subtropical soils (Paleudult, Paleudalf, and Hapludox) varying in soil texture (87-760 g kg(-1) of clay) in agroecologic southern Brazil zones (central region, northwest basaltic plateau in Rio Grande Sul, and west basaltic plateau in Santa Catarina) and with different cropping systems (soybean and maize) were investigated. The lability of soil organic matter (SOM) was calculated as the ratio of total organic carbon (TOC) to particulate organic carbon (POC), and the role of physical protection on stability of SOM was evaluated. In general, TOC and POC stocks in native grass correlated closely with clay content. Conversely, there was no clear effect of soil texture on C accumulation rates in NT soils, which ranged from 0.12 to 0.59 Mg ha(-1) yr(-1). The C accumulation was higher in NT than in conventional-till (CT) soils. The legume cover crops pigeon pea [Cajanus cajan (L.) Millsp] and velvet beans (Stizolobium cinereum Piper & Tracy) in NT maize cropping systems had the highest C accumulation rates (0.38-0.59 Mg ha(-1) yr(-1)). The intensive cropping systems also were effective in increasing the C accumulation rates in NT soils (0.25-0.34 Mg ha(-1) yr(-1)) when compared to the double-crop system used by farmers. These results stress the role of N fixation in improving the tropical and subtropical cropping systems. The physical protection of SOM within soil aggregates was an important mechanism of C accumulation in the sandy clay loam Paleudult under NT

  12. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping. PMID:26926485

  13. USE OF COVER CROPS FOR WEED SUPPRESSION IN HAZELNUT (CORYLUS AVELLANA L.) IN TURKEY.

    PubMed

    Isik, D; Dok, M; Ak, K; Macit, I; Demir, Z; Mennan, H

    2014-01-01

    Weed management is critical in hazelnut (Corylus avellana) production. Weeds reduce nutrient availability, interfere with tree growth, and reduce hand-harvesting efficiency. Field experiments were conducted to test effects of cover crops as alternative weed management strategies in hazelnut. The cover crop treatments consisted of Trifolium repens L., Festuca rubra subsp. rubra L., Festuca arundinacea Schreb., Vicia villosa Roth. And Trifolium meneghinianum Celmand fallow with no cover crop. Control plots such as weedy control, herbicide control and mechanical control were added as reference plots. The lowest weed dry biomass was obtained from Vicia villosa plots, and there were no significant differences among all other cover crop treatments. The highest cover crop dry biomass was measured in the Trifolium meneghinianum plots. Regarding the effect of cover crops on hazelnut yields, the lowest yield was ob- tained from weedy control plots, while the highest yield was obtained from F. arundinacea plots. This research indicated that cover crops could be used as living mulch in integrated weed management programs to manage weeds in the hazelnut orchards. PMID:26084088

  14. Genepool of Wild Populations of Forage and Grain Legume Crops of Northwest and Central Regions of Russia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international plant collection expedition to the northwest and central regions of Russia was undertaken in 2007 to collect seed of wild-growing perennial grass and legume species that have potential for forage and turf applications. These collections are of interest in breeding and selection pro...

  15. THE ROLE OF CROP/POLLINATOR RELATIONSHIP UNDERSTANDING IN BREEDING FOR POLLINATOR-FRIENDLY LEGUME VARIETIES; FROM A BREEDING PERSPECTIVE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following the reports of the decline in solitary and social bees, breeders are encouraged to develop a breeding approach that strives to integrate food production into the healthy functioning of the agro-ecosystems. In the particular case of legumes, this approach should preserve bee fauna by provi...

  16. Erosion control in orchards and vineyards by a new soil and cover crop management method

    NASA Astrophysics Data System (ADS)

    Hartl, Wilfried; Guettler, Hans; Auer, Karl; Erhart, Eva

    2016-04-01

    Cover crops are the basis for an erosion-free soil management in orchards and vineyards. The soil cover provided by the foliage and the intensive root formation counteract erosion. Cover crops provide the soil microfauna with fresh organic matter which improves soil structure and porosity. The water demand of cover crops, however, may pose problems for the water supply of the trees and vines in dry seasons. Therefore it is necessary to adjust the growth of the cover crops to the actual water conditions. In years with ample precipitation cover crops may be allowed lush vegetative growth till flowering and formation of seeds. In dry years, the growth of the cover crop must be restricted to stop the competition for water, sometimes even by cutting off the cover crop roots. The course of the weather is incalculable and rainfall may be very variable during the year, so it is sometimes necessary to adust the cover crop management several times a year. A new special equipment, which can perform all the tasks necessary for the flexible cover crop management has been developed together with the agricultural machinery manufacturers Bodenwerkstatt Ertl-Auer GmbH and Güttler GmbH. The GreenManager® device consists of three modules, namely a specific type of cultivator, a harrow and a prismatic roller with seeding equipment, which can be used separately or in combination. The GreenManager® can reduce cover crops by flattening the plants in the whole row middle, by bringing down the cover crops with the harrow, or by horizontally cutting the cover crop roots a few centimetres beneath the soil surface in the central part of the row middle or in the whole row middle. These measures reduce the water competition by cover crops without generating further losses of soil moisture through intensive soil cultivation. At the same time the risk of soil erosion is kept to a minimum, because the soil remains covered by dead plant biomass. In one passage the GreenManager® can direct

  17. Climate response to Amazon forest replacement by heterogeneous crop cover

    NASA Astrophysics Data System (ADS)

    Badger, A. M.; Dirmeyer, P. A.

    2015-11-01

    Previous modeling studies with atmospheric general circulation models and basic land surface schemes to balance energy and water budgets have shown that by removing the natural vegetation over the Amazon, the region's climate becomes warmer and drier. In this study we use a fully coupled Earth system model and replace tropical forests by a distribution of six common tropical crops with variable planting dates, physiological parameters and irrigation. There is still general agreement with previous studies as areal averages show a warmer (+1.4 K) and drier (-0.35 mm day-1) climate. Using an interactive crop model with a realistic crop distribution shows that regions of vegetation change experience different responses dependent upon the initial tree coverage and whether the replacement vegetation is irrigated, with seasonal changes synchronized to the cropping season. Areas with initial tree coverage greater than 80 % show an increase in coupling with the atmosphere after deforestation, suggesting land use change could heighten sensitivity to climate anomalies, while irrigation acts to dampen coupling with the atmosphere.

  18. Capturing residual soil nitrogen with winter cereal cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide-spread drought during the 2012 summer has resulted in reduced crop growth, poor yields, and an anticipated increase in residual nitrate (NO3) nitrogen (N) in the soil profile. This residual N can potentially increase NO3-N losses to ground and/or surface waters, as well as increase carry-ov...

  19. Climate response to Amazon forest replacement by heterogeneous crop cover

    NASA Astrophysics Data System (ADS)

    Badger, A. M.; Dirmeyer, P. A.

    2015-01-01

    Previous modeling studies with atmospheric general circulation models and basic land surface schemes to balance energy and water budgets have shown that by removing the natural vegetation over the Amazon, the region's climate becomes warmer and drier. In this study we use a fully coupled Earth System Model and replace tropical forests by a distribution of six common tropical crops with variable planting dates, physiological parameters and irrigation. There is still general agreement with previous studies as areal averages show a warmer (+1.4 K) and drier (-0.35 mm day-1) climate. Using an interactive crop model with a realistic crop distribution shows that regions of vegetation change experience different responses dependent upon the initial tree coverage and whether the replacement vegetation is irrigated, with seasonal changes synchronized to the cropping season. Areas with initial tree coverage greater than 80% show an increase in coupling with atmosphere after deforestation, suggesting land use change could heighten sensitivity to climate anomalies, while irrigation acts to dampen coupling with atmosphere.

  20. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  1. Assessing winter cover crop nutrient uptake efficiency using water quality simulation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops are an important conservation practice with potential to improve water quality by reducing excess nitrogen (N), remaining during the winter/early spring in soil, from leaching, runoff, and sediment loss into surface waters after harvest of summer crops. Throughout the Chesapeake B...

  2. The impact of fall cover crops on soil nitrate and corn growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporating cover crops into current production systems can have many beneficial impacts on the current cropping system including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A fiel...

  3. Cover crop in Missouri: putting them to work on your farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunlight powers agriculture and fortunately is free to all farmers. The challenge is harvesting as much sunlight as possible. With commodity crops that may only be in the field for 4 to 5 months, there are several months each year when fields are receiving untapped sunlight. Fortunately, cover crop...

  4. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practice of planting winter cover crops (rye, wheat, barley) following summer row crops (corn, soybean) is recognized as an effective agricultural conservation practice that can significantly reduce nitrogen losses to groundwater. Accordingly, state cost-share programs have been established to p...

  5. The Challenges of Implementing Conservation Tillage and Cover Crops in Clay Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices, such as reduced tillage and cover crops, can improve soil quality and increase soil moisture for crop production. Benefits to production, soil quality, and water conservation have been observed especially in areas with rapidly draining soils. While historically enjoying high ...

  6. Cover crop and poultry litter management influence spatiotemporal availability of topsoil nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green and animal manures provide plant-available nitrogen (N) in annual cropping systems and contribute to improved soil quality. Our objectives were to determine the effects of cover crop residue type and pelletized poultry litter (PPL) application method on: 1) the spatiotemporal distribution of s...

  7. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  8. Short-Term Impact of Winter Cover Crop Biomass Removal On Soil Physical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rye (Secale cereale L.) is often recommended as a winter cover crop for conservation systems in the southeastern United States. Typically, rye is terminated with a glyphosate application 2-3 weeks prior to planting a summer crop. The glyphosate application is followed by a rolling operation to fla...

  9. Decomposition and Nutrient Release of Cover Crops on Different Landscape Positions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decomposition patterns of cover crops determine availability of nutrients to subsequent crops. Decomposition and mineralization patterns of Lupinus albus L. (white lupin), Avena strigosa Shreb (black oat), Trifolium incarnatum L. (crimson clover) and Brassica napus L. (rape) were studied under fiel...

  10. Effects of a custom cover crop residue manager in a no-till cotton system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an important part of no-till conservation agriculture, and these crops must produce optimum biomass amounts to effectively protect the soil surface from erosion and runoff, conserve soil water, and provide a physical barrier against weeds. Because of the large amount of residue produ...