Science.gov

Sample records for legume nodulation phosphate

  1. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency.

    PubMed

    Sulieman, Saad; Tran, Lam-Son Phan

    2015-10-01

    Legumes have a significant role in effective management of fertilizers and improving soil health in sustainable agriculture. Because of the high phosphorus (P) requirements of N2-fixing nodule, P deficiency represents an important constraint for legume crop production, especially in tropical marginal countries. P deficiency is an important constraint for legume crop production, especially in poor soils present in many tropical degraded areas. Unlike nitrogen, mineral P sources are nonrenewable, and high-grade rock phosphates are expected to be depleted in the near future. Accordingly, developing legume cultivars with effective N2 fixation under P-limited conditions could have a profound significance for improving agricultural sustainability. Legumes have evolved strategies at both morphological and physiological levels to adapt to P deficiency. Molecular mechanisms underlying the adaptive strategies to P deficiency have been elucidated in legumes. These include maintenance of the P-homeostasis in nodules as a main adaptive strategy for rhizobia-legume symbiosis under P deficiency. The stabilization of P levels in the symbiotic tissues can be achieved through several mechanisms, including elevated P allocation to nodules, formation of a strong P sink in nodules, direct P acquisition via nodule surface and P remobilization from organic-P containing substances. The detailed biochemical, physiological and molecular understanding will be essential to the advancement of genetic and molecular approaches for enhancement of legume adaptation to P deficiency. In this review, we evaluate recent progress made to gain further and deeper insights into the physiological, biochemical and molecular reprogramming that legumes use to maintain P-homeostasis in nodules during P scarcity. PMID:26398789

  2. Hormonal Control of Lateral Root and Nodule Development in Legumes

    PubMed Central

    Bensmihen, Sandra

    2015-01-01

    Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana. PMID:27135340

  3. Coordinating nodule morphogenesis with rhizobial infection in legumes.

    PubMed

    Oldroyd, Giles E D; Downie, J Allan

    2008-01-01

    The formation of nitrogen-fixing nodules on legumes requires an integration of infection by rhizobia at the root epidermis and the initiation of cell division in the cortex, several cell layers away from the sites of infection. Several recent developments have added to our understanding of the signaling events in the epidermis associated with the perception of rhizobial nodulation factors and the role of plant hormones in the activation of cell division leading to nodule morphogenesis. This review focuses on the tissue-specific nature of the developmental processes associated with nodulation and the mechanisms by which these processes are coordinated during the formation of a nodule. PMID:18444906

  4. Gamma proteobacteria can nodulate legumes of the genus Hedysarum.

    PubMed

    Benhizia, Yacine; Benhizia, Hayet; Benguedouar, Ammar; Muresu, Rosella; Giacomini, Alessio; Squartini, Andrea

    2004-08-01

    The bacteria hosted in the root nodules of the three Mediterranean wild legume species Hedysarum carnosum, Hedysarum spinosissimum subsp. capitatum, and Hedysarum pallidum, growing in native stands in different habitats in Algeria were isolated. Bacteria were recovered on yeast-mannitol-agar or on minimal media from a total of 52 nodules. Isolates were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA) using the enzyme CfoI, and further sorted by RAPD fingerprinting. A total of ten different types were found and their amplified 16S rDNA was sequenced and compared to databases. The BLAST alignment indicates that all the species whose sequences share 98 to 100% identity to the bacteria found in these nodules belong to the class Gammaproteobacteria and include Pantoea agglomerans, Enterobacter kobei, Enterobacter cloacae, Leclercia adecarboxylata, Escherichia vulneris, and Pseudomonas sp. No evidence of any rhizobial-like sequence was found even upon amplifying from the bulk of microbial cells obtained from the squashed nodules, suggesting that the exclusive occupants of the nodules formed by the three plants tested are members of the orders Enterobacteriales or Pseudomonadales. This is the first report of Gammaproteobacteria associated with legume nodules. Despite the presence of the related crop plant Hedysarum coronarium, specifically nodulated by Rhizobium sullae, these three Hedysarum species demonstrate to have undergone a separate path in terms of endophytic interactions with bacteria. An hypothesis to account for differences between the symbiotic relationships engaged by man-managed legumes, and those found in plants whose ecology is independent from human action, is discussed. PMID:15368852

  5. CARBON AND NITROGEN METABOLISM IN LEGUME NODULES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symbiotic root nodules are in essence highly integrated factories for C utilization and N assimilation. Significant progress has been made in physical, biochemical, and molecular characterization of the primary enzymes involved in C utilization and amide N assimilation. Recent advances in genomic me...

  6. Phenolphthalein false-positive reactions from legume root nodules.

    PubMed

    Petersen, Daniel; Kovacs, Frank

    2014-03-01

    Presumptive tests for blood play a critical role in the examination of physical evidence and in the determination of subsequent analysis. The catalytic power of hemoglobin allows colorimetric reactions employing phenolphthalein (Kastle-Meyer test) to indicate "whether" blood is present. Consequently, DNA profiles extracted from phenolphthalein-positive stains are presumed to be from blood on the evidentiary item and can lead to the identification of "whose" blood is present. Crushed nodules from a variety of legumes yielded phenolphthalein false-positive reactions that were indistinguishable from true bloodstains both in color quality and in developmental time frame. Clothing and other materials stained by nodules also yielded phenolphthalein false-positive reactivity for several years after nodule exposure. Nodules from leguminous plants contain a protein (leghemoglobin) which is structurally and functionally similar to hemoglobin. Testing of purified leghemoglobin confirmed this protein as a source of phenolphthalein reactivity. A scenario is presented showing how the presence of leghemoglobin from nodule staining can mislead investigators. PMID:24313711

  7. Genomic and genetic control of phosphate stress in legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is critical for plant growth and development, particularly for N2-fixing legumes due to the high demand for P in root nodules. Genomic and molecular studies of P-stress in legumes have used a variety of research strategies and have focused primarily on white lupin, common bean, soybea...

  8. Function of glutathione peroxidases in legume root nodules.

    PubMed

    Matamoros, Manuel A; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M; Barja, Maria V; Rouhier, Nicolas; Moore, Marten; James, Euan K; Dietz, Karl-Josef; Becana, Manuel

    2015-05-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  9. Function of glutathione peroxidases in legume root nodules

    PubMed Central

    Matamoros, Manuel A.; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M.; Barja, Maria V.; Rouhier, Nicolas; Moore, Marten; James, Euan K.; Dietz, Karl-Josef; Becana, Manuel

    2015-01-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  10. Polyploidy Did Not Predate the Evolution of Nodulation in All Legumes

    PubMed Central

    Cannon, Steven B.; Ilut, Dan; Farmer, Andrew D.; Maki, Sonja L.; May, Gregory D.; Singer, Susan R.; Doyle, Jeff J.

    2010-01-01

    Background Several lines of evidence indicate that polyploidy occurred by around 54 million years ago, early in the history of legume evolution, but it has not been known whether this event was confined to the papilionoid subfamily (Papilionoideae; e.g. beans, medics, lupins) or occurred earlier. Determining the timing of the polyploidy event is important for understanding whether polyploidy might have contributed to rapid diversification and radiation of the legumes near the origin of the family; and whether polyploidy might have provided genetic material that enabled the evolution of a novel organ, the nitrogen-fixing nodule. Although symbioses with nitrogen-fixing partners have evolved in several lineages in the rosid I clade, nodules are widespread only in legume taxa, being nearly universal in the papilionoids and in the mimosoid subfamily (e.g., mimosas, acacias) – which diverged from the papilionoid legumes around 58 million years ago, soon after the origin of the legumes. Methodology/Principal Findings Using transcriptome sequence data from Chamaecrista fasciculata, a nodulating member of the mimosoid clade, we tested whether this species underwent polyploidy within the timeframe of legume diversification. Analysis of gene family branching orders and synonymous-site divergence data from C. fasciculata, Glycine max (soybean), Medicago truncatula, and Vitis vinifera (grape; an outgroup to the rosid taxa) establish that the polyploidy event known from soybean and Medicago occurred after the separation of the mimosoid and papilionoid clades, and at or shortly before the Papilionoideae radiation. Conclusions The ancestral legume genome was not fundamentally polyploid. Moreover, because there has not been an independent instance of polyploidy in the Chamaecrista lineage there is no necessary connection between polyploidy and nodulation in legumes. Chamaecrista may serve as a useful model in the legumes that lacks a paleopolyploid history, at least relative to

  11. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    PubMed Central

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  12. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    PubMed Central

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  13. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation

    PubMed Central

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-01-01

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant’s response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis. PMID:27213330

  14. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.

    PubMed

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-01-01

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis. PMID:27213330

  15. Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens.

    PubMed

    Muresu, Rosella; Maddau, Giuseppe; Delogu, Giuseppe; Cappuccinelli, Piero; Squartini, Andrea

    2010-02-01

    Bacteria not proficient in nitrogen fixing symbiosis were proven able to invade root nodules of three wild legumes of the genus Hedysarum in Algeria and to be multiplying in these in place of the natural rhizobium symbionts. The involved species featured taxa known as human pathogens including: Enterobacter cloacae, Enterobacter kobei, Escherichia vulneris, Pantoea agglomerans and Leclercia adecarboxylata. A direct screening of the phenotypic determinants of virulence using human cultured cells tested positive for the traits of cytotoxicity, vital stain exclusion and adhesion to epithelia. Antibiogram analyses revealed also a complex pattern of multiple antibiotic resistances. The data suggest that legume root nodules can be a site of survival and of active multiplication for populations of mammalian pathogens, which could thus alternate between the target animal and a number of neutral plant hosts. The worldwide distribution of as yet uninvestigated legumes raises the concern that these represent a general niche that could enhance the hazards posed by microorganisms of clinical nature. PMID:19916054

  16. Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels.

    PubMed

    Vardien, Waafeka; Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech J; Wang, Yaodong; Steenkamp, Emma T; Valentine, Alex J

    2014-11-15

    Legumes have the unique ability to fix atmospheric nitrogen (N2) via symbiotic bacteria in their nodules but depend heavily on phosphorus (P), which affects nodulation, and the carbon costs and energy costs of N2 fixation. Consequently, legumes growing in nutrient-poor ecosystems (e.g., sandstone-derived soils) have to enhance P recycling and/or acquisition in order to maintain N2 fixation. In this study, we investigated the flexibility of P recycling and distribution within the nodules and their effect on N nutrition in Virgilia divaricata Adamson, Fabaceae, an indigenous legume in the Cape Floristic Region of South Africa. Specifically, we assessed tissue elemental localization using micro-particle-induced X-ray emission (PIXE), measured N fixation using nutrient concentrations derived from inductively coupled mass-spectrometry (ICP-MS), calculated nutrient costs, and determined P recycling from enzyme activity assays. Morphological and physiological features characteristic of adaptation to P deprivation were observed for V. divaricata. Decreased plant growth and nodule production with parallel increased root:shoot ratios are some of the plastic features exhibited in response to P deficiency. Plants resupplied with P resembled those supplied with optimal P levels in terms of growth and nutrient acquisition. Under low P conditions, plants maintained an increase in N2-fixing efficiency despite lower levels of orthophosphate (Pi) in the nodules. This can be attributed to two factors: (i) an increase in Fe concentration under low P, and (ii) greater APase activity in both the roots and nodules under low P. These findings suggest that V. divaricata is well adapted to acquire N under P deficiency, owing to the plasticity of its nodule physiology. PMID:25217716

  17. The genetic and biochemical basis for nodulation of legumes by rhizobia

    SciTech Connect

    Pueppke, S.G.

    1996-05-01

    Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes: they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in the knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants. 419 refs.

  18. Carbon metabolism in legume nodules. Progress report, July 1982-July 1983

    SciTech Connect

    LaRue, T.A.

    1983-01-01

    The goal is to understand how the legume nodule metabolizes carbohydrate to provide energy and reductant for symbiotic fixation. The working hypothesis has been that the plant cytosol is microacrobic and that some carbon metabolism may be via anaerobic pathways similar to those in roots of flood tolerant plants. A method of analyzing redox changes in intact mitochondria, bacteroids or bacteria was adapted; a method of manipulating nitrogenase activity by oxygen inhibition was developed; the production of alcohol by soybean nodules was studied; and enzymes metabolizing alcohol/aldehyde were found in other nitrogen fixing systems. (ACR)

  19. Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes

    PubMed Central

    Cannon, Steven B.; McKain, Michael R.; Harkess, Alex; Nelson, Matthew N.; Dash, Sudhansu; Deyholos, Michael K.; Peng, Yanhui; Joyce, Blake; Stewart, Charles N.; Rolf, Megan; Kutchan, Toni; Tan, Xuemei; Chen, Cui; Zhang, Yong; Carpenter, Eric; Wong, Gane Ka-Shu; Doyle, Jeff J.; Leebens-Mack, Jim

    2015-01-01

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae–Cassiinae–Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses. PMID:25349287

  20. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes.

    PubMed

    Cannon, Steven B; McKain, Michael R; Harkess, Alex; Nelson, Matthew N; Dash, Sudhansu; Deyholos, Michael K; Peng, Yanhui; Joyce, Blake; Stewart, Charles N; Rolf, Megan; Kutchan, Toni; Tan, Xuemei; Chen, Cui; Zhang, Yong; Carpenter, Eric; Wong, Gane Ka-Shu; Doyle, Jeff J; Leebens-Mack, Jim

    2015-01-01

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses. PMID:25349287

  1. Carbon metabolism in legume nodules. Progress report, June 1, 1982-January 30, 1983

    SciTech Connect

    LaRue, T.A.

    1983-02-01

    The oxidation and reduction of flavins and pyridine nucleotides in intact bacteria can be monitored by their changes in fluorescence. This technique permits study in nitrogen fixing bacteria of the effect of inhibitors of electron transport, and of the effect of substrates which may provide reductant for nitrogenase or oxidative phosphorylation. The nitrogen fixing ability of intact legume plants or bacteroids isolated from nodules can be manipulated downward by appropriate brief treatment of supra-optimal oxygen concentrations.

  2. NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes[W][OA

    PubMed Central

    Couzigou, Jean-Malo; Zhukov, Vladimir; Mondy, Samuel; Abu el Heba, Ghada; Cosson, Viviane; Ellis, T.H. Noel; Ambrose, Mike; Wen, Jiangqi; Tadege, Million; Tikhonovich, Igor; Mysore, Kirankumar S.; Putterill, Joanna; Hofer, Julie; Borisov, Alexei Y.; Ratet, Pascal

    2012-01-01

    During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ. PMID:23136374

  3. Multiple polyploidy events in the early radiation of nodulating and non-nodulating legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD af...

  4. New ichnospecies of scratching traces from phosphatic nodules (Cenomanian, England)

    NASA Astrophysics Data System (ADS)

    Chumakov, N. M.; Dronov, A. V.; Mikuláš, R.

    2013-05-01

    Surfaces of phosphorite nodules and pebbles from the "Cambridge Green Sand" (Cenomanian, South England) yielded several discernible types of scratches. These originated before the burial of nodules/pebbles as evidenced by fossil epibiotic oysters cemented to cover the scratches. The individual forms of scratches differ in size and shape; therefore, the set of "scratching instruments" also had to be different. The scratches described differ from scratches generated by glacial processes, namely by the regularity of length and intervals, parallel orientation, existence of recurrent forms and placement along the nodule edges. We interpret the scratches as trace fossils of the ichnogenus Machichnus. Three new species, namely M. normani, M. harlandi and M. jeansi, are erected for them herein. The series of scratches originated probably by teeth on a couple of jaws; the makers possibly scraped bacterial or algal film off the surface of nodules that were covered with the phosphate gel. Both homodont and heterodont animals (probably fish) were involved.

  5. Nodulation gene factors and plant response in the Rhizobium-legume symbiosis. [Nodulation

    SciTech Connect

    Long, S.R.

    1990-01-01

    Our original application aimed to identify genes outside the common nod region involved in nodulation and host range of alfalfa. This has been revised by adding other studies on nodulation gene action and removing molecular studies of gene action. Our restated goals and progress are as follows. An early goal was identification and characterization of additional nodulation genes. By means of transposon mutagenesis, mapping and marker exchange we have established 87 independent mutations in a 20kb area represented by plasmid pRmJT5. We discovered four new genes: nodP, nodD3, syrA and syrM. The sequence, start site and protein product for nodFe, nodG, and nodH were also identified. Regulation of nod FEGH was studied. nod FEGH can be induced by luteolin in the presence of noodle; nodD1; noD3 and syrM, a symbiotic regulator gene also increase transcription of nod FEGH. syrA will interact with syrM; syrM also regulates exopolysaccharide genes and is believed to be a master regulator. As part of these studies, an in vitro transcription/translation system for Rhizobium was developed. Adjacent to nodP we discussed nodQ, nodPQ occurrs in two highly consumed copies. nodQ appears by sequence analysis to be similar to initiation and elongation factors, with the highest homology in the GDP binding domain. We have also investigated the nod strain, WL131. WL131 has an insertion, ISRm3, interrupting nodG, and a nonsase mutation in nodH, nodH is responsible for the lack of nodulation. We are currently investigating supernatant factors, host range effects C by spot inoculation, glucaronidase fusion proteins, and are developing, a single root hair inoculation protocol. 7 refs., 6 figs., 1 tab.

  6. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus.

    PubMed

    De Luis, Ana; Markmann, Katharina; Cognat, Valérie; Holt, Dennis B; Charpentier, Myriam; Parniske, Martin; Stougaard, Jens; Voinnet, Olivier

    2012-12-01

    Legumes overcome nitrogen shortage by developing root nodules in which symbiotic bacteria fix atmospheric nitrogen in exchange for host-derived carbohydrates and mineral nutrients. Nodule development involves the distinct processes of nodule organogenesis, bacterial infection, and the onset of nitrogen fixation. These entail profound, dynamic gene expression changes, notably contributed to by microRNAs (miRNAs). Here, we used deep-sequencing, candidate-based expression studies and a selection of Lotus japonicus mutants uncoupling different symbiosis stages to identify miRNAs involved in symbiotic nitrogen fixation. Induction of a noncanonical miR171 isoform, which targets the key nodulation transcription factor Nodulation Signaling Pathway2, correlates with bacterial infection in nodules. A second candidate, miR397, is systemically induced in the presence of active, nitrogen-fixing nodules but not in that of noninfected or inactive nodule organs. It is involved in nitrogen fixation-related copper homeostasis and targets a member of the laccase copper protein family. These findings thus identify two miRNAs specifically responding to symbiotic infection and nodule function in legumes. PMID:23071252

  7. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa.

    PubMed

    Steenkamp, Emma T; van Zyl, Elritha; Beukes, Chrizelle W; Avontuur, Juanita R; Chan, Wai Yin; Palmer, Marike; Mthombeni, Lunghile S; Phalane, Francina L; Sereme, T Karabo; Venter, Stephanus N

    2015-12-01

    Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region. PMID:26472229

  8. Computational Complementation: A Modelling Approach to Study Signalling Mechanisms during Legume Autoregulation of Nodulation

    PubMed Central

    Han, Liqi

    2010-01-01

    Autoregulation of nodulation (AON) is a long-distance signalling regulatory system maintaining the balance of symbiotic nodulation in legume plants. However, the intricacy of internal signalling and absence of flux and biochemical data, are a bottleneck for investigation of AON. To address this, a new computational modelling approach called “Computational Complementation” has been developed. The main idea is to use functional-structural modelling to complement the deficiency of an empirical model of a loss-of-function (non-AON) mutant with hypothetical AON mechanisms. If computational complementation demonstrates a phenotype similar to the wild-type plant, the signalling hypothesis would be suggested as “reasonable”. Our initial case for application of this approach was to test whether or not wild-type soybean cotyledons provide the shoot-derived inhibitor (SDI) to regulate nodule progression. We predicted by computational complementation that the cotyledon is part of the shoot in terms of AON and that it produces the SDI signal, a result that was confirmed by reciprocal epicotyl-and-hypocotyl grafting in a real-plant experiment. This application demonstrates the feasibility of computational complementation and shows its usefulness for applications where real-plant experimentation is either difficult or impossible. PMID:20195551

  9. Diversity of nodule-endophytic agrobacteria-like strains associated with different grain legumes in Tunisia.

    PubMed

    Saïdi, Sabrine; Mnasri, Bacem; Mhamdi, Ridha

    2011-11-01

    This study represents the first report describing the genetic diversity of nodule-endophytic agrobacteria isolated from diverse legumes and their phylogenetic relationships with the valid species of agrobacteria, as well as the non-recognized genomospecies of the former Agrobacterium tumefaciens (Rhizobium radiobacter). The genetic diversity of a collection of 18 non-nodulating agrobacteria-like strains, previously isolated from root nodules of Vicia faba, Cicer arietinum and Phaseolus vulgaris from different geographical regions of Tunisia, was studied by REP-PCR and PCR-RFLP of the 16S-23S rDNA IGS, as well as by sequence analysis of the 16S rDNA and the housekeeping genes recA and atpD. The aim of the work was to study the genetic diversity of the different isolates and to check for any host-specificity. The results from the different techniques were congruent and suggested a specific interaction for P. vulgaris, whereas no specific endophytic interaction was observed for V. faba and C. arietinum. The phylogenetic analysis clearly indicated that some isolates were affiliated to R. radiobacter or to its non-recognized genomic species (genomovars G2, G4 and G9). However, the other isolates probably constitute new species within Rhizobium (Agrobacterium) and Shinella. PMID:21621936

  10. Methylotrophic Methylobacterium Bacteria Nodulate and Fix Nitrogen in Symbiosis with Legumes

    PubMed Central

    Sy, Abdoulaye; Giraud, Eric; Jourand, Philippe; Garcia, Nelly; Willems, Anne; de Lajudie, Philippe; Prin, Yves; Neyra, Marc; Gillis, Monique; Boivin-Masson, Catherine; Dreyfus, Bernard

    2001-01-01

    Rhizobia described so far belong to three distinct phylogenetic branches within the α-2 subclass of Proteobacteria. Here we report the discovery of a fourth rhizobial branch involving bacteria of the Methylobacterium genus. Rhizobia isolated from Crotalaria legumes were assigned to a new species, “Methylobacterium nodulans,” within the Methylobacterium genus on the basis of 16S ribosomal DNA analyses. We demonstrated that these rhizobia facultatively grow on methanol, which is a characteristic of Methylobacterium spp. but a unique feature among rhizobia. Genes encoding two key enzymes of methylotrophy and nodulation, the mxaF gene, encoding the α subunit of the methanol dehydrogenase, and the nodA gene, encoding an acyltransferase involved in Nod factor biosynthesis, were sequenced for the type strain, ORS2060. Plant tests and nodA amplification assays showed that “M. nodulans” is the only nodulating Methylobacterium sp. identified so far. Phylogenetic sequence analysis showed that “M. nodulans” NodA is closely related to Bradyrhizobium NodA, suggesting that this gene was acquired by horizontal gene transfer. PMID:11114919

  11. Applying Reversible Mutations of Nodulation and Nitrogen-Fixation Genes to Study Social Cheating in Rhizobium etli-Legume Interaction

    PubMed Central

    Wang, Hui; Zhong, Zengtao; Zhu, Jun

    2013-01-01

    Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process. PMID:23922937

  12. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes.

    PubMed

    Granqvist, Emma; Sun, Jongho; Op den Camp, Rik; Pujic, Petar; Hill, Lionel; Normand, Philippe; Morris, Richard J; Downie, J Allan; Geurts, Rene; Oldroyd, Giles E D

    2015-08-01

    Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade. PMID:26010117

  13. Nitrate inhibition of legume nodule growth and activity. I. Long term studies with a continuous supply of nitrate

    SciTech Connect

    Streeter, J.G.

    1985-02-01

    The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max (L.) Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NR/sup -/ R. japonicum as in nodules formed by NR/sup +/ R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. The very small concentration of nitrite found in P. vulgaris nodules was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.

  14. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes.

    PubMed

    Laguerre, Gisèle; Louvrier, Philippe; Allard, Marie-Reine; Amarger, Noëlle

    2003-04-01

    Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia were characterized by repetitive extragenomic palindromic-PCR fingerprinting and/or PCR-restriction fragment length polymorphism (RFLP) of 16S-23S ribosomal DNA intergenic spacers as markers of the genomic background and PCR-RFLP of a nodulation gene region, nodD, as a marker of the symbiotic component of the genome. Pairwise comparisons showed differences among the genetic structures of the bulk soil, rhizosphere, and nodule populations and in the degree of host specificity within the Vicieae cross-inoculation group. With fava bean, the symbiotic genotype appeared to be the preponderant determinant of the success in nodule occupancy of rhizobial genotypes independently of the associated genomic background, the plant genotype, and the soil sampled. The interaction between one particular rhizobial symbiotic genotype and fava bean seems to be highly specific for nodulation and linked to the efficiency of nitrogen fixation. By contrast with bulk soil and fava bean-nodulating populations, the analysis of pea-nodulating populations showed preferential associations between genomic backgrounds and symbiotic genotypes. Both components of the rhizobial genome may influence competitiveness for nodulation of pea, and rhizosphere colonization may be a decisive step in competition for nodule occupancy. PMID:12676710

  15. Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond.

    PubMed

    Alunni, Benoît; Gourion, Benjamin

    2016-07-01

    Contents 411 I. 411 II. 412 III. 412 IV. 413 V. 414 VI. 414 VII. 415 VIII. 415 416 References 416 SUMMARY: Terminal bacteroid differentiation (TBD) is a remarkable case of bacterial cell differentiation that occurs after rhizobia are released intracellularly within plant cells of symbiotic legume organs called nodules. The hallmarks of TBD are cell enlargement, genome amplification and membrane permeabilization. This plant-driven process is governed by a large family of bacteroid-targeted nodule-specific cysteine-rich (NCR) peptides that were until recently thought to be restricted to a specific lineage of the legume family, including the model plant Medicago truncatula. Recently, new plant and bacterial factors involved in TBD have been identified, challenging our view of this phenomenon at mechanistic and evolutionary levels. Here, we review the recent literature and discuss emerging questions about the mechanisms and the role(s) of TBD. PMID:27241115

  16. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes.

    PubMed

    Fan, X H; Tang, C; Rengel, Z

    2002-09-01

    Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots. PMID:12234143

  17. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana.

    PubMed

    Ji, Zhaojun; Yan, Hui; Cui, Qingguo; Wang, Entao; Chen, Wenxin; Chen, Wenfeng

    2015-05-01

    Although the biogeography of rhizobia has been investigated extensively, little is known about the adaptive molecular evolution of rhizobia influenced by soil environments and selected by legumes. In this study, microevolution of Mesorhizobium strains nodulating Caragana in a semi-fixing desert belt in northern China was investigated. Five core genes-atpD, glnII, gyrB, recA, and rpoB, six heat-shock factor genes-clpA, clpB, dnaK, dnaJ, grpE, and hlsU, and five nodulation genes-nodA, nodC, nodD, nodG, and nodP, of 72 representative mesorhizobia were studied in order to determine their genetic variations. A total of 21 genospecies were defined based on the average nucleotide identity (ANI) of concatenated core genes using a threshold of 96% similarity, and by the phylogenetic analyses of the core/heat-shock factor genes. Significant genetic divergence was observed among the genospecies in the semi-fixing desert belt (areas A-E) and Yunnan province (area F), which was closely related to the environmental conditions and geographic distance. Gene flow occurred more frequently among the genospecies in areas A-E, and three sites in area B, than between area F and the other five areas. Recombination occurred among strains more frequently for heat-shock factor genes than the other genes. The results conclusively showed that the Caragana-associated mesorhizobia had divergently evolved according to their geographic distribution, and have been selected not only by the environmental conditions but also by the host plants. PMID:25864639

  18. Accumulation of extracellular proteins bearing unique proline-rich motifs in intercellular spaces of the legume nodule parenchyma.

    PubMed

    Sherrier, D J; Taylor, G S; Silverstein, K A T; Gonzales, M B; VandenBosch, K A

    2005-04-01

    Nodulins encoding repetitive proline-rich cell wall proteins (PRPs) are induced during early interactions with rhizobia, suggesting a massive restructuring of the plant extracellular matrix during infection and nodulation. However, the proteins corresponding to these gene products have not been isolated or characterized, nor have cell wall localizations been confirmed. Posttranslational modifications, conformation, and interactions with other wall polymers are difficult to predict on the basis of only the deduced amino acid sequence of PRPs. PsENOD2 is expressed in nodule parenchyma tissue during nodule organogenesis and encodes a protein with distinctive PRP motifs that are rich in glutamate and basic amino acids. A database search for the ENOD2 signature motifs indicates that similar proteins may have a limited phylogenetic distribution, as they are presently only known from legumes. To determine the ultrastructural location of the proteins, antibodies were raised against unique motifs from the predicted ENOD2 sequence. The antibodies recognized nodule-specific proteins in pea (Pisum sativum), with a major band detected at 110 kDa, representing a subset of PRPs from nodules. The protein was detected specifically in organelles of the secretory pathway and intercellular spaces in the nodule parenchyma, but it was not abundant in primary walls. Similar proteins with an analogous distribution were detected in soybean (Glycine max). The use of polyclonal antibodies raised against signature motifs of extracellular matrix proteins thus appears to be an effective strategy to identify and isolate specific structural proteins for functional analysis. PMID:15868212

  19. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

    PubMed

    Qiu, Liping; Lin, Jie-Shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L; Downie, J Allan; Xie, Fang

    2015-10-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. PMID:26517270

  20. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation

    PubMed Central

    Qiu, Liping; Lin, Jie-shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L.; Downie, J. Allan; Xie, Fang

    2015-01-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. PMID:26517270

  1. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis.

    PubMed

    Yano, Koji; Shibata, Satoshi; Chen, Wen-Li; Sato, Shusei; Kaneko, Takakazu; Jurkiewicz, Anna; Sandal, Niels; Banba, Mari; Imaizumi-Anraku, Haruko; Kojima, Tomoko; Ohtomo, Ryo; Szczyglowski, Krzysztof; Stougaard, Jens; Tabata, Satoshi; Hayashi, Makoto; Kouchi, Hiroshi; Umehara, Yosuke

    2009-10-01

    Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus, cerberus, which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti. Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules. PMID:19508425

  2. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  3. Enzymes of the Glyoxylate Cycle in Rhizobia and Nodules of Legumes 1

    PubMed Central

    Johnson, Gordon V.; Evans, Harold J.; Ching, Temay

    1966-01-01

    The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may act as an acetyl CoA precursor, was utilized as the principle carbon source. Malate synthetase was active in extracts of rhizobia from nodules of bush bean (Phaseolus vulgaris L.), cowpea (Vigna sinensis L.), lupine (Lupinus angustifolius L.) and soybean (Glycine max L. Merr.). Activity of malate synthetase was, however, barely detectable in rhizobia from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and pea (Pisum sativum L.) nodules. Appreciable isocitrate lyase activity was not detected in rhizobia from nodules nor was it induced by depletion of endogenous substrates by incubation of excised bush bean nodules. Although rhizobia has the potential for the formation of the key enzymes of the glyoxylate cycle, the absence of isocitrate lyase activity in bacteria isolated from nodules indicated that the glyoxylate cycle does not operate in the symbiotic growth of rhizobia and that the observed high content of fatty acids in nodules and nodule bacteria probably is related to a structural role. PMID:16656404

  4. RRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica.

    PubMed

    Parker, Matthew A

    2004-05-01

    Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events. PMID:15214639

  5. Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium.

    PubMed

    Bejarano, Ana; Ramírez-Bahena, Martha-Helena; Velázquez, Encarna; Peix, Alvaro

    2014-10-01

    Vigna unguiculata was introduced into Europe from its distribution centre in Africa, and it is currently being cultivated in Mediterranean regions with adequate edapho-climatic conditions where the slow growing rhizobia nodulating this legume have not yet been studied. Previous studies based on rrs gene and ITS region analyses have shown that Bradyrhizobium yuanmingense and B. elkanii nodulated V. unguiculata in Africa, but these two species were not found in this study. Using the same phylogenetic markers it was shown that V. unguiculata, a legume from the tribe Phaseolae, was nodulated in Spain by two species of group I, B. cytisi and B. canariense, which are common endosymbionts of Genisteae in both Europe and Africa. These species have not been found to date in V. unguiculata nodules in its African distribution centres. All strains from Bradyrhizobium group I isolated in Spain belonged to the symbiovar genistearum, which is found at present only in Genisteae legumes in both Africa and Europe. V. unguiculata was also nodulated in Spain by a strain from Bradyrhizobium group II that belonged to a novel symbiovar (vignae). Some African V. unguiculata-nodulating strains also belonged to this proposed new symbiovar. PMID:24867807

  6. Relevance of Fucose-Rich Extracellular Polysaccharides Produced by Rhizobium sullae Strains Nodulating Hedysarum coronarium L. Legumes

    PubMed Central

    Carpéné, Marie-Anne; Couderc, François; Benguedouar, Ammar

    2013-01-01

    Specific and complex interactions between soil bacteria, known as rhizobia, and their leguminous host plants result in the development of root nodules. This process implies a complex dialogue between the partners. Rhizobia synthesize different classes of polysaccharides: exopolysaccharides (EPS), Kdo-rich capsular polysaccharides, lipopolysaccharides, and cyclic β-(1,2)-glucans. These polymers are actors of a successful symbiosis with legumes. We focus here on studying the EPS produced by Rhizobium sullae bacteria that nodulate Hedysarum coronarium L., largely distributed in Algeria. We describe the influence of the carbon source on the production and on the composition of EPS produced by R. sullae A6 and RHF strains. High-molecular-weight EPS preserve the bacteria from desiccation. The structural characterization of the EPS produced by R. sullae strains has been performed through sugar analysis by gas chromatography-mass spectrometry. The low-molecular-weight EPS of one strain (RHF) has been totally elucidated using nuclear magnetic resonance and quantitative time-of-flight tandem mass spectrometry analyses. An unusual fucose-rich EPS has been characterized. The presence of this deoxy sugar seems to be related to nodulation capacity. PMID:23183977

  7. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration.

    PubMed

    Avenhaus, Ulrike; Cabeza, Ricardo A; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2015-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  8. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration

    PubMed Central

    Avenhaus, Ulrike; Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2016-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  9. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis.

    PubMed

    Del Cerro, Pablo; Rolla-Santos, Amanda A P; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species. PMID:27096734

  10. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes1[OPEN

    PubMed Central

    Laloum, Tom; Lepage, Agnès; Ariel, Federico; Frances, Lisa; Gamas, Pascal; de Carvalho-Niebel, Fernanda

    2015-01-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants. PMID:26432878

  11. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis

    PubMed Central

    del Cerro, Pablo; Rolla-Santos, Amanda A. P.; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A.; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species. PMID:27096734

  12. Nitrate inhibition of legume nodule growth and activity. II. Short term studies with high nitrate supply

    SciTech Connect

    Streeter, J.G.

    1985-02-01

    Soybean plants (Glycine max (L.) Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR/sup +/ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR/sup -/ rhizobia appeared to be too low to explain the inhibition of nitrogenase. Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N/sub 2/ fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR/sup +/ and one NR/sup -/.

  13. Polyploids did not Predate the Evolution of Nodulation in all Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several lines of evidence indicate that polyploidy occurred by around 54 million years ago, early in the history of legume evolution, but it has not been known whether this event was confined to the papilionoid subfamily (Papilionoideae; e.g., beans, medics, lupins) or occurred earlier. Determining...

  14. Stress-Induced Legume Root Nodule Senescence. Physiological, Biochemical, and Structural Alterations1

    PubMed Central

    Matamoros, Manuel A.; Baird, Lisa M.; Escuredo, Pedro R.; Dalton, David A.; Minchin, Frank R.; Iturbe-Ormaetxe, Iñaki; Rubio, Maria C.; Moran, Jose F.; Gordon, Anthony J.; Becana, Manuel

    1999-01-01

    Nitrate-fed and dark-stressed bean (Phaseolus vulgaris) and pea (Pisum sativum) plants were used to study nodule senescence. In bean, 1 d of nitrate treatment caused a partially reversible decline in nitrogenase activity and an increase in O2 diffusion resistance, but minimal changes in carbon metabolites, antioxidants, and other biochemical parameters, indicating that the initial decrease in nitrogenase activity was due to O2 limitation. In pea, 1 d of dark treatment led to a 96% decline in nitrogenase activity and sucrose, indicating sugar deprivation as the primary cause of activity loss. In later stages of senescence (4 d of nitrate or 2–4 d of dark treatment), nodules showed accumulation of oxidized proteins and general ultrastructural deterioration. The major thiol tripeptides of untreated nodules were homoglutathione (72%) in bean and glutathione (89%) in pea. These predominant thiols declined by approximately 93% after 4 d of nitrate or dark treatment, but the loss of thiol content can be only ascribed in part to limited synthesis by γ-glutamylcysteinyl, homoglutathione, and glutathione synthetases. Ascorbate peroxidase was immunolocalized primarily in the infected and parenchyma (inner cortex) nodule cells, with large decreases in senescent tissue. Ferritin was almost undetectable in untreated bean nodules, but accumulated in the plastids and amyloplasts of uninfected interstitial and parenchyma cells following 2 or 4 d of nitrate treatment, probably as a response to oxidative stress. PMID:10482665

  15. Transport and partitioning of CO/sub 2/ fixed by root nodules of ureide and amide producing legumes. [Vigna angularis; Glycine max; Medicago sativa

    SciTech Connect

    Vance, C.P.; Boylan, K.L.M.; Maxwell, C.A.; Heichel, G.H.; Hardman, L.L.

    1985-01-01

    Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to /sup 14/CO/sub 2/ to investigate the contribution of nodule CO/sub 2/ fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO/sub 2/ fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO/sub 2/ fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO/sub 2/ fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen. 19 references, 2 figures, 5 tables.

  16. Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum.

    PubMed

    Martínez-Hidalgo, Pilar; Flores-Félix, José-David; Menéndez, Esther; Rivas, Raúl; Carro, Lorena; Mateos, Pedro F; Martínez-Molina, Eustoquio; León-Barrios, Milagros; Velázquez, Encarna

    2015-07-01

    Cicer canariense is a threatened endemic legume from the Canary Islands where it can be nodulated by mesorhizobial strains from the symbiovar ciceri, which is the common worldwide endosymbiont of Cicer arietinum linked to the genus Mesorhizobium. However, when C. canariense was cultivated in a soil from mainland Spain, where the symbiovar ciceri is present, only fast-growing rhizobial strains were unexpectedly isolated from its nodules. These strains were classified into the genus Rhizobium by analysis of the recA and atpD genes, and they were phylogenetically related to Rhizobium leguminosarum. The analysis of the nodC gene showed that the isolated strains belonged to the symbiovar trifolii that harbored a nodC allele (β allele) different to that harbored by other strains from this symbiovar. Nodulation experiments carried out with the lacZ-labeled strain RCCHU01, representative of the β nodC allele, showed that it induced curling of root hairs, infected them through infection threads, and formed typical indeterminate nodules where nitrogen fixation took place. This represents a case of exceptional performance between the symbiovar trifolii and a legume from the tribe Cicereae that opens up new possibilities and provides new insights into the study of rhizobia-legume symbiosis. PMID:26032249

  17. Rare-earth element variation in phosphate nodules from midcontinent Pennsylvanian cyclothems

    SciTech Connect

    Kidder, D.L. . Dept. of Geological Sciences); Eddy-Dilek, C.A. . Savannah River Technology Center)

    1994-07-01

    The rare-earth element (REE) geochemistry of phosphate nodules from eastern Kansas and northeastern Oklahoma is dominated by patterns that are generally flat or are enriched in middle REE (MREE). Flat patterns are typical of phosphate nodules preserved in thick shales and in nodules from shales deposited nearest to detrital sources. The flat patterns are probably derived from terrigenous constituents in the host shale. MREE enrichment is evident in phosphate found in relatively thin shales and in distal shales. The authors suggest that the MREE-enriched pattern reflects the contribution of MREE-enriched fecal phosphate. The initial MREE enrichment mechanism may have been analogous to that in which some modern algae preferentially extract MREE from water of marine composition. The MREE-enriched signature may be preserved only in phosphate nodules that formed where terrigenous input was so low that it did not mask the characteristic fecal pattern. Rare Ce depletion patterns reflect a primary seawater REE source that has not been obscured by fecal or detrital components.

  18. Phloem Glutamine and the Regulation of O2 Diffusion in Legume Nodules.

    PubMed Central

    Neo, H. H.; Layzell, D. B.

    1997-01-01

    The aim of the present study was to test the hypothesis that the N content or the composition of the phloem sap that supplies nodulated roots may play a role in the feedback regulation of nitrogenase activity by increasing nodule resistance to O2 diffusion. Treating shoots of lupin (Lupinus albus cv Manitoba) or soybean (Glycine max L. Merr. cv Maple Arrow) with 100 [mu]L L-1 NH3 caused a 1.3-fold (lupin) and 2.6-fold (soybean) increase in the total N content of phloem sap without altering its C content. The increase in phloem N was due primarily to a 4.8-fold (lupin) and 10.5-fold (soybean) increase in the concentration of glutamine N. In addition, there was a decline in both the apparent nitrogenase activity and total nitrogenase activity that began within 4 h and reached about 54% of its initial activity within 6 h of the start of the NH3 treatment. However, the potential nitrogenase activity values in the treated plants were not significantly different from those of the control plants. These results provide evidence that changes in the N composition of the phloem sap, particularly the glutamine content, may increase nodule resistance to O2 diffusion and, thereby, down-regulate nodule metabolism and nitrogenase activity by controlling the supply of O2 to the bacteria-infected cells. PMID:12223605

  19. The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius.

    PubMed

    Trujillo, Martha E; Alonso-Vega, Pablo; Rodríguez, Raúl; Carro, Lorena; Cerda, Eugenia; Alonso, Pilar; Martínez-Molina, Eustoquio

    2010-10-01

    Our current knowledge of plant-microbe interactions indicate that populations inhabiting a host plant are not restricted to a single microbial species but comprise several genera and species. No one knows if communities inside plants interact, and it has been speculated that beneficial effects are the result of their combined activities. During an ecological study of nitrogen-fixing bacterial communities from Lupinus angustifolius collected in Spain, significant numbers of orange-pigmented actinomycete colonies were isolated from surface-sterilized root nodules. The isolates were analysed by BOX-PCR fingerprinting revealing an unexpectedly high genetic variation. Selected strains were chosen for 16S rRNA gene sequencing and phylogenetic analyses confirmed that all strains isolated belonged to the genus Micromonospora and that some of them may represent new species. To determine the possibility that the isolates fixed atmospheric nitrogen, chosen strains were grown in nitrogen-free media, obtaining in some cases, significant growth when compared with the controls. These strains were further screened for the presence of the nifH gene encoding dinitrogenase reductase, a key enzyme in nitrogen fixation. The partial nifH-like gene sequences obtained showed a 99% similarity with the sequence of the nifH gene from Frankia alni ACN14a, an actinobacterium that induces nodulation and fixes nitrogen in symbiosis with Alnus. In addition, in situ hybridization was performed to determine if these microorganisms inhabit the inside of the nodules. This study strongly suggests that Micromonospora populations are natural inhabitants of nitrogen-fixing root nodules. PMID:20445637

  20. Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China.

    PubMed

    Xu, Lin; Zhang, Yong; Wang, Li; Chen, Weimin; Wei, Gehong

    2014-09-01

    A total of 201 endophytic root nodule-associated bacteria collected from two legumes indigenous to different Qilian Mountain altitudes (Hexi Corridor) were characterized through 16S rDNA polymerase chain reaction (PCR)-restriction fragment length polymorphism, 16S rRNA gene sequence analysis, and enterobacterial repetitive intergenic consensus-PCR clustering. The isolates phylogenetically belonged to 35 species in the Phyllobacterium, Ensifer, Rhizobium, Microvirga, Sphingomonas, Paracoccus, Mycobacterium, Paenibacillus, Cohnella, Sporosarcina, Bacillus, Staphylococcus, Brevibacterium, Xenophilus, Erwinia, Leclercia, Acinetobacter, and Pseudomonas genera. Phylogenetic nodA sequence analysis showed higher similarity to Sinorhizobium meliloti with strains related to the Rhizobium, Sinorhizobium, and Acinetobacter genera. Sequence analysis of the nifH gene revealed that the strains belonging to Xenophilus, Acinetobacter, Phyllobacterium, and Rhizobium had genes similar to those of Mesorhizobium and Sinorhizobium. The results indicated that horizontal gene transfer could have occurred between rhizobia and non-rhizobial endophytes. Canonical correspondence analysis revealed that altitude and host plant species contributed more to the bacterial endosymbiont separation than other ecological factors. This study provided valuable information on the interactions between symbiotic bacteria, non-symbiotic bacteria and their habitats, and thus provided knowledge on their genetic diversity and ecology. PMID:24985194

  1. Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis.

    PubMed

    Crespo-Rivas, Juan C; Guefrachi, Ibtissem; Mok, Kenny C; Villaécija-Aguilar, José A; Acosta-Jurado, Sebastián; Pierre, Olivier; Ruiz-Sainz, José E; Taga, Michiko E; Mergaert, Peter; Vinardell, José M

    2016-09-01

    In rhizobial species that nodulate inverted repeat-lacking clade (IRLC) legumes, such as the interaction between Sinorhizobium meliloti and Medicago, bacteroid differentiation is driven by an endoreduplication event that is induced by host nodule-specific cysteine rich (NCR) antimicrobial peptides and requires the participation of the bacterial protein BacA. We have studied bacteroid differentiation of Sinorhizobium fredii HH103 in three host plants: Glycine max, Cajanus cajan and the IRLC legume Glycyrrhiza uralensis. Flow cytometry, microscopy analyses and viability studies of bacteroids as well as confocal microscopy studies carried out in nodules showed that S. fredii HH103 bacteroids, regardless of the host plant, had deoxyribonucleic acid (DNA) contents, cellular sizes and survival rates similar to those of free-living bacteria. Contrary to S. meliloti, S. fredii HH103 showed little or no sensitivity to Medicago NCR247 and NCR335 peptides. Inactivation of S. fredii HH103 bacA neither affected symbiosis with Glycyrrhiza nor increased bacterial sensitivity to Medicago NCRs. Finally, HH103 bacteroids isolated from Glycyrrhiza, but not those isolated from Cajanus or Glycine, showed an altered lipopolysaccharide. Our studies indicate that, in contrast to the S. meliloti-Medicago model symbiosis, bacteroids in the S. fredii HH103-Glycyrrhiza symbiosis do not undergo NCR-induced and bacA-dependent terminal differentiation. PMID:26521863

  2. Single-plant, Sterile Microcosms for Nodulation and Growth of the Legume Plant Medicago truncatula with the Rhizobial Symbiont Sinorhizobium meliloti

    PubMed Central

    Jones, Kathryn M.

    2013-01-01

    Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required. PMID:24121837

  3. Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan.

    PubMed

    Murtaza, G; Javed, W; Hussain, A; Wahid, A; Murtaza, B; Owens, G

    2015-06-01

    Crop irrigation with heavy metal-contaminated effluents is increasingly common worldwide and necessitates management strategies for safe crop production on contaminated soils. This field study examined the phytoavailability of three metals (Cd, Cu, and Zn) in two cereal (wheat, maize) and legume (chickpea, mungbean) crops in response to the application of either phosphatic fertilizer or sewage-derived water irrigation over two successive years. Five fertilizer treatments, i.e. control, recommended nitrogen (N) applied alone and in combination of three levels of phosphorus (P), half, full and 1.5 times of recommended P designated as N0P0, N1P0, N1P0.5, N1P1.0, and N1P1.5, respectively. Tissue concentrations of Cd, Cu, Zn, and P were determined in various plant parts, i.e., root, straw, and grains. On the calcareous soils studied while maximum biomass production was obtained with application of P at half the recommended dose, the concentrations of metals in the crops generally decreased with increasing P levels. Tissue metal concentrations increased with the application of N alone. Translocation and accumulation of Zn and Cu were consistently higher than Cd. And the pattern of Cd accumulation differed among plant species; more Cd being accumulated by dicots than monocots, especially in their grains. The order of Cd accumulation in grains was maize > chickpea > mungbean > wheat. Mungbean and chickpea straws also had higher tissue Cd concentration above permissible limits. The two legume species behaved similarly, while cereal species differed from each other in their Cd accumulation. Metal ion concentrations were markedly higher in roots followed by straw and grains. Increasing soil-applied P also increased the extractable metal and P concentrations in the post-harvest soil. Despite a considerable addition of metals by P fertilizer, all levels of applied P effectively decreased metal phytoavailability in sewage-irrigated soils, and applying half of the

  4. A Model of the Regulation of Nitrogenase Electron Allocation in Legume Nodules (II. Comparison of Empirical and Theoretical Studies in Soybean).

    PubMed Central

    Moloney, A. H.; Guy, R. D.; Layzell, D. B.

    1994-01-01

    In N2-fixing legumes, the proportion of total electron flow through nitrogenase (total nitrogenase activity, TNA) that is used for N2 fixation is called the electron allocation coefficient (EAC). Previous studies have proposed that EAC is regulated by the competitive inhibition of H2 on N2 fixation and that the degree of H2 inhibition can be affected by a nodule's permeability to gas diffusion. To test this hypothesis, EAC was measured in soybean (Glycine max L. Merr.) nodules exposed to various partial pressures of H2 and N2, with or without changes in TNA or nodule permeability to gas diffusion, and the results were compared with the predictions of a mathematical model that combined equations for gas diffusion and competitive inhibition of N2 fixation (A. Moloney and D.B. Layzell [1993] Plant Physiol 103: 421-428). The empirical data clearly showed that decreases in EAC were associated with increases in external pH2, decreases in external pN2, and decreases in nodule permeability to O2 diffusion. The model predicted similar trends in EAC, and the small deviations that occurred between measured and predicted values could be readily accounted for by altering one or more of the following model assumptions: K1(H2) of nitrogenase (range from 2-4% H2), Km(N2) of nitrogenase (range from 4-5% N2), the allocation of less than 100% of whole-nodule respiration to tissues within the diffusion barrier, and the presence of a diffusion pathway that is open pore versus closed pore. The differences in the open-pore and closed-pore versions of the model suggest that it may be possible to use EAC measurements as a tool for the study of legume nodule diffusion barrier structure and function. The ability of the model to predict EAC provided strong support for the hypothesis that H2 inhibition of N2 fixation plays a major role in the in vivo control of EAC and that the presence of a variable barrier to gas diffusion affects the H2 and N2 concentration in the infected cell and

  5. Legume genomics: promise versus reality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume root nodules, the specialized organs in which symbiotic nitrogen fixation (SNF) occurs, are structurally and metabolically complex organs. Their development and function depends upon coordinated gene expression between the host plant and rhizobial partner. Depending upon the symbiosis, nodule...

  6. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes.

    PubMed

    Miranda-Sánchez, Fabiola; Rivera, Javier; Vinuesa, Pablo

    2016-09-01

    Current knowledge about rhizobial diversity patterns in non-nodule habitats is scarce, limiting our understanding of basic aspects of rhizobial ecology like competitiveness for nodule occupancy and host effects on community structure. We used a combination of cultivation-dependent and independent approaches to analyse alpha and beta diversity patterns of Rhizobiaceae communities from a conserved seasonally dry tropical forest site in central Mexico and two nearby agricultural fields. Lineage-specific recA amplicon libraries were generated from soil DNA and their sequences compared with those from root surface and nodule isolates recovered in trapping experiments from two native Acacia species and two Phaseolus vulgaris cultivars. Rarefaction analyses revealed that Rhizobiaceae diversity in soils is larger than on root surfaces, and smallest in nodules. A 'rare biosphere'-like distribution of species was found in the three habitats. Multivariate statistical analyses demonstrated that the plant genus exerted a stronger influence than the land-usage regime on the diversity of rhizobia associated with hosts. Rhizobium etli was the dominant Rhizobiaceae found in the soil libraries. It dominated nodulation of Acacia spp. and predominately harboured symbiovar mimosae-like nodC genes. A novel Rhizobium lineage (Rsp1) dominated bean nodulation. Specialist and generalist genotypes for host nodulation were detected in both species. PMID:26395550

  7. Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate nodule-forming legumes and overproduce an altered EPS.

    PubMed

    Crespo-Rivas, Juan C; Margaret, Isabel; Hidalgo, Angeles; Buendía-Clavería, Ana M; Ollero, Francisco J; López-Baena, Francisco J; del Socorro Murdoch, Piedad; Rodríguez-Carvajal, Miguel A; Soria-Díaz, M Eugenia; Reguera, María; Lloret, Javier; Sumpton, David P; Mosely, Jackie A; Thomas-Oates, Jane E; van Brussel, Anton A N; Gil-Serrano, Antonio; Vinardell, Jose M; Ruiz-Sainz, Jose E

    2009-05-01

    Sinorhizobium fredii HH103 produces cyclic beta glucans (CG) composed of 18 to 24 glucose residues without or with 1-phosphoglycerol as the only substituent. The S. fredii HH103-Rifr cgs gene (formerly known as ndvB) was sequenced and mutated with the lacZ-gentamicin resistance cassette. Mutant SVQ562 did not produce CG, was immobile, and grew more slowly in the hypoosmotic GYM medium, but its survival in distilled water was equal to that of HH103-Rifr. Lipopolysaccharides and K-antigen polysaccharides produced by SVQ562 were not apparently altered. SVQ562 overproduced exopolysaccharides (EPS) and its exoA gene was transcribed at higher levels than in HH103-Rifr. In GYM medium, the EPS produced by SVQ562 was of higher molecular weight and carried higher levels of substituents than that produced by HH103-Rifr. The expression of the SVQ562 cgsColon, two colonslacZ fusion was influenced by the pH and the osmolarity of the growth medium. The S. fredii cgs mutants SVQ561 (carrying cgs::Omega) and SVQ562 only formed pseudonodules on Glycine max (determinate nodules) and on Glycyrrhiza uralensis (indeterminate nodules). Although nodulation factors were detected in SVQ561 cultures, none of the cgs mutants induced any macroscopic response in Vigna unguiculata roots. Thus, the nodulation process induced by S. fredii cgs mutants is aborted at earlier stages in V. unguiculata than in Glycine max. PMID:19348575

  8. Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules.

    PubMed

    Navascués, Joaquín; Pérez-Rontomé, Carmen; Gay, Marina; Marcos, Manuel; Yang, Fei; Walker, F Ann; Desbois, Alain; Abián, Joaquín; Becana, Manuel

    2012-02-14

    Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O(2) transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O(2) and facilitate its diffusion to the N(2)-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lba(m), Lbc(m), and Lbd(m), of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O(2) binding. PMID:22308405

  9. Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules

    PubMed Central

    Navascués, Joaquín; Pérez-Rontomé, Carmen; Gay, Marina; Marcos, Manuel; Yang, Fei; Walker, F. Ann; Desbois, Alain; Abián, Joaquín; Becana, Manuel

    2012-01-01

    Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O2 transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O2 and facilitate its diffusion to the N2-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lbam, Lbcm, and Lbdm, of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O2 binding. PMID:22308405

  10. A Re-Evaluation of the Role of the Infected Cell in the Control of O2 Diffusion in Legume Nodules.

    PubMed Central

    Thumfort, P. P.; Atkins, C. A.; Layzell, D. B.

    1994-01-01

    Two different simulation models were constructed to describe O2 diffusion into the bacteria-infected cells of legume nodules: one based on a central zone of uniform spherical cells and the other on a central zone of packed, uniform cubical cells with air spaces along the edges. The cubical model more closely approximated the geometry and gas diffusion characteristics of infected cells than did the spherical model. The models relied on set values for the innermost O2 concentration in the infected cell (1-20 nM) and predicted values for the free O2 and oxygenated leghemoglobin gradients toward the cell:space interface. The cubical model but not the spherical model predicted saturation of leghemoglobin (Lb) oxygenation at or within a few micrometers of the gas-filled intercellular space and predicted that the space concentration could be as high as 1.3% O2 when the fractional oxygenation of Lb and respiration rate within the infected cell were typical of that which has been measured in vivo. In the model, the higher the space O2 concentration, the greater the saturation of Lb by O2 and the greater the collapse of Lb-facilitated diffusion near the cell:space interface. This was predicted to result in a greater resistance to O2 diffusion from the space to the bacteroids, thereby providing an intrinsic, homeostatic mechanism for controlling the rate of O2 influx into infected cells. Changes in the physiological features of the simulated cubical infected cell, such as the proportion of the cell as cytosol, the surface area of the cell exposed to a space, the maximum rate of cellular respiration, or the concentration of Lb in the cytoplasm, significantly altered the extent to which the infected cell would be able to regulate its diffusive resistance. These results demonstrate the possibility of a Lb-based mechanism for controlling the O2 concentration within the infected cells. If such a mechanism exists in legume nodules, it would give the infected cell an ability to

  11. Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate.

    PubMed

    Pang, Jiayin; Yang, Jiyun; Lambers, Hans; Tibbett, Mark; Siddique, Kadambot H M; Ryan, Megan H

    2015-08-01

    The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g(-1) ) supplied as Ca(H2 PO4 )2 ·H2 O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10 (OH)2 (PO4 )6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6 H6 O24 P6 Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g(-1) was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1-0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g(-1) was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability. PMID:25291346

  12. Influence of Lime and Phosphate on Nodulation of Soil-Grown Trifolium subterraneum L. by Indigenous Rhizobium trifolii†

    PubMed Central

    Almendras, Angela S.; Bottomley, Peter J.

    1987-01-01

    Previous research had identified four serogroups of Rhizobium trifolii indigenous to the acidic Abiqua soil (fine, mixed, mesic Cumulic Ultic Haploxeroll). Nodulation of subterranean clover (Trifolium subterraneum L.) by two of the serogroups, 6 and 36, was differentially influenced by an application of CaCO3 which raised the pH of the soil from 5.0 to 6.5. These studies were designed to characterize this phenomenon more comprehensively. Liming the soil with either CaCO3, Ca(OH)2, MgO, or K2CO3 significantly (P = 0.05) increased the percent nodule occupancy by serogroup 36, whereas the percent nodule occupancy by serogroup 6 was decreased, but the decrease was significant (P = 0.05) only after application of either CaCO3 or Ca(OH)2. Application of KH2PO4 (25 mg of P kg of soil−1), which did not change soil pH, also significantly (P = 0.05) increased the percent nodule occupancy by serogroup 36. Application of KH2PO4 in combination with Ca(OH)2 produced the same increase in nodule occupancy by serogroup 36 as did individual application of the two materials. Soil populations of serogroup 36 consistently, and in the majority of cases significantly (P = 0.05), outnumbered those of serogroup 6 before planting and after harvest regardless of soil treatment or the outcome of nodulation. Soil chemical and plant analyses provided no evidence that liming was simulating phosphate addition by increasing the availability and subsequent uptake of soil Pi by the subclover plants. Liming did, however, result in a significant transformation (30 to 50 mg of P kg of soil−1) of Pi from the residual soil Pi fraction into an NaOH-extractable organic P fraction during the preplant equilibration period. PMID:16347431

  13. Phenotypic and biochemical characterization of root nodule bacteria naturally associated with woody tree legumes in Saudi Arabia.

    PubMed

    Alshaharani, Thobayet Safar; Shetta, Nader Desouky

    2015-03-01

    Thirty root-nodulating bacteria isolates were obtained from the roots of Acacia ampliceps (Maslin), A. ehrenbergiana (Hayne.), A. saligna (Labill.), A. seyal (Del.), A. tortilis (Forssk.), A. tortilis subsp. raddiana (Savi.), Leucaena leucocephala (Lam.) and Vicia faba (L.) trees growing in the Riyadh region. The isolates' phenotypic and biochemical properties were characterized by assessing colony appearance, growth rate, resistance to antibiotics and heavy metals, and tolerance to salinity, elevated temperature and pH. All isolates had same colony morphology and grew on yeast extract mannitol and tryptone yeast agar, but not MGS media. The results also revealed considerable diversity among the isolates, which exhibited different patterns of resistance to abiotic stresses. Most isolates tolerated temperatures up to 37 degrees C and could grow from pH 5.5-8.5 and at a high NaCl concentration (2% w/v). The majority of isolates could utilize a variety of carbohydrates. Most of the isolates displayed resistance to antibiotics in the 75 microg ml(-1) range, with approximately 100 pg ml(-1) the maximum concentration at which growth was observed. All isolates were sensitive to aluminum and resistant to other heavy metals tested, and they were able to reduce nitrate and hydrolyze urea. PMID:25895257

  14. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies

    PubMed Central

    Castro-Guerrero, Norma A.; Isidra-Arellano, Mariel C.; Mendoza-Cozatl, David G.; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals. PMID:27200068

  15. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies.

    PubMed

    Castro-Guerrero, Norma A; Isidra-Arellano, Mariel C; Mendoza-Cozatl, David G; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals. PMID:27200068

  16. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts.

    PubMed

    Ardley, Julie K; Parker, Matthew A; De Meyer, Sofie E; Trengove, Robert D; O'Hara, Graham W; Reeve, Wayne G; Yates, Ron J; Dilworth, Michael J; Willems, Anne; Howieson, John G

    2012-11-01

    Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus Microvirga, with ≥ 96.1% sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6(T) and WSM3557(T) was Microvirga flocculans TFB(T), with 97.6-98.0% similarity, while WSM3693(T) was most closely related to Microvirga aerilata 5420S-16(T), with 98.8% similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6(T), WSM3557(T) and WSM3693(T) within the genus Microvirga. DNA-DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6(T), WSM3557(T) and WSM3693(T) from each other and from other Microvirga species with validly published names. The nodA sequence of Lut6(T) was placed in a clade that contained strains of Rhizobium, Mesorhizobium and Sinorhizobium, while the 100% identical nodA sequences of WSM3557(T) and WSM3693(T) clustered with Bradyrhizobium, Burkholderia and Methylobacterium strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6(T), WSM3557(T) and WSM3693(T) were most closely related to that of Rhizobium etli CFN42(T) nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of Microvirga are proposed: Microvirga lupini sp. nov. (type strain Lut6(T) =LMG 26460(T) =HAMBI 3236(T)), Microvirga lotononidis sp. nov. (type strain WSM3557(T) =LMG 26455(T) =HAMBI 3237(T)) and Microvirga zambiensis sp. nov. (type strain WSM3693(T) =LMG 26454(T) =HAMBI 3238(T)). PMID:22199210

  17. High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India.

    PubMed

    Gehlot, Hukam Singh; Ardley, Julie; Tak, Nisha; Tian, Rui; Poonar, Neetu; Meghwal, Raju R; Rathi, Sonam; Tiwari, Ravi; Adnawani, Wan; Seshadri, Rekha; Reddy, T B K; Pati, Amrita; Woyke, Tanja; Pillay, Manoj; Markowitz, Victor; Baeshen, Mohammed N; Al-Hejin, Ahmed M; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2016-01-01

    Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal. PMID:27340511

  18. High-Resolution Transcriptomic Analyses of Sinorhizobium sp. NGR234 Bacteroids in Determinate Nodules of Vigna unguiculata and Indeterminate Nodules of Leucaena leucocephala

    PubMed Central

    Li, Yan; Tian, Chang Fu; Chen, Wen Feng; Wang, Lei; Sui, Xin Hua; Chen, Wen Xin

    2013-01-01

    The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephala and determinate nodules of Vigna unguiculata. In contrast to exponentially growing free-living bacteria, non-growing bacteroids from both legumes recruited several common cellular functions such as cbb3 oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine. Noteworthy were the distinct expression patterns of genes encoding phasins, which are thought to be involved in regulating the surface/volume ratio of PHB granules. These patterns are in good agreement with the observed granule size difference between bacteroids from L. leucocephala and V. unguiculata. PMID:23936444

  19. The Temperature-Sensitive brush Mutant of the Legume Lotus japonicus Reveals a Link between Root Development and Nodule Infection by Rhizobia[C][W][OA

    PubMed Central

    Maekawa-Yoshikawa, Makoto; Müller, Judith; Takeda, Naoya; Maekawa, Takaki; Sato, Shusei; Tabata, Satoshi; Perry, Jillian; Wang, Trevor L.; Groth, Martin; Brachmann, Andreas; Parniske, Martin

    2009-01-01

    The brush mutant of Lotus japonicus exhibits a temperature-dependent impairment in nodule, root, and shoot development. At 26°C, brush formed fewer nodules, most of which were not colonized by rhizobia bacteria. Primary root growth was retarded and the anatomy of the brush root apical meristem revealed distorted cellular organization and reduced cell expansion. Reciprocal grafting of brush with wild-type plants indicated that this genotype only affected the root and that the shoot phenotype was a secondary effect. The root and nodulation phenotype cosegregated as a single Mendelian trait and the BRUSH gene could be mapped to the short arm of chromosome 2. At 18°C, the brush root anatomy was rescued and similar to the wild type, and primary root length, number of infection threads, and nodule formation were partially rescued. Superficially, the brush root phenotype resembled the ethylene-related thick short root syndrome. However, treatment with ethylene inhibitor did not recover the observed phenotypes, although brush primary roots were slightly longer. The defects of brush in root architecture and infection thread development, together with intact nodule architecture and complete absence of symptoms from shoots, suggest that BRUSH affects cellular differentiation in a tissue-dependent way. PMID:19176723

  20. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes

    PubMed Central

    Chaintreuil, Clémence; Rivallan, Ronan; Bertioli, David J.; Klopp, Christophe; Gouzy, Jérôme; Courtois, Brigitte; Leleux, Philippe; Martin, Guillaume; Rami, Jean-François; Gully, Djamel; Parrinello, Hugues; Séverac, Dany; Patrel, Delphine; Fardoux, Joël; Ribière, William; Boursot, Marc; Cartieaux, Fabienne; Czernic, Pierre; Ratet, Pascal; Mournet, Pierre; Giraud, Eric; Arrighi, Jean-François

    2016-01-01

    Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia. PMID:27298380

  1. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes.

    PubMed

    Chaintreuil, Clémence; Rivallan, Ronan; Bertioli, David J; Klopp, Christophe; Gouzy, Jérôme; Courtois, Brigitte; Leleux, Philippe; Martin, Guillaume; Rami, Jean-François; Gully, Djamel; Parrinello, Hugues; Séverac, Dany; Patrel, Delphine; Fardoux, Joël; Ribière, William; Boursot, Marc; Cartieaux, Fabienne; Czernic, Pierre; Ratet, Pascal; Mournet, Pierre; Giraud, Eric; Arrighi, Jean-François

    2016-08-01

    Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia. PMID:27298380

  2. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus.

    PubMed

    Wang, Jianyun; Si, Zaiyong; Li, Fang; Xiong, Xiaobo; Lei, Lei; Xie, Fuli; Chen, Dasong; Li, Yixing; Li, Youguo

    2015-08-01

    The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation. PMID:26105827

  3. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures.

    PubMed

    Lardi, Martina; Murset, Valérie; Fischer, Hans-Martin; Mesa, Socorro; Ahrens, Christian H; Zamboni, Nicola; Pessi, Gabriella

    2016-01-01

    Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions. PMID:27240350

  4. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures

    PubMed Central

    Lardi, Martina; Murset, Valérie; Fischer, Hans-Martin; Mesa, Socorro; Ahrens, Christian H.; Zamboni, Nicola; Pessi, Gabriella

    2016-01-01

    Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection–time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions. PMID:27240350

  5. The abundance and diversity of legume-nodulating rhizobia in 28-year-old plantations of tropical, subtropical, and exotic tree species: a case study from the Forest Reserve of Bandia, Senegal.

    PubMed

    Sene, Godar; Thiao, Mansour; Samba-Mbaye, Ramatoulaye; Khasa, Damase; Kane, Aboubacry; Mbaye, Mame Samba; Beaulieu, Marie-Ève; Manga, Anicet; Sylla, Samba Ndao

    2013-01-01

    Several fast-growing and multipurpose tree species have been widely used in West Africa to both reverse the tendency of land degradation and restore soil productivity. Although beneficial effects have been reported on soil stabilization, there still remains a lack of information about their impact on soil microorganisms. Our investigation has been carried out in exotic and native tree plantations of 28 years and aimed to survey and compare the abundance and genetic diversity of natural legume-nodulating rhizobia (LNR). The study of LNR is supported by the phylogenetic analysis which clustered the isolates into three genera: Bradyrhizobium, Mesorhizobium, and Sinorhizobium. The results showed close positive correlations between the sizes of LNR populations estimated both in the dry and rainy seasons and the presence of legume tree hosts. There were significant increases in Rhizobium spp. population densities in response to planting with Acacia spp., and high genetic diversities and richness of genotypes were fittest in these tree plantations. This suggests that enrichment of soil Rhizobium spp. populations is host specific. The results indicated also that species of genera Mesorhizobium and Sinorhizobium were lacking in plantations of non-host species. By contrast, there was a widespread distribution of Bradyrhizobium spp. strains across the tree plantations, with no evident specialization in regard to plantation type. Finally, the study provides information about the LNR communities associated with a range of old tree plantations and some aspects of their relationships to soil factors, which may facilitate the management of man-made forest systems that target ecosystem rehabilitation and preservation of soil biota. PMID:22864803

  6. Positioning the nodule, the hormone dictum

    PubMed Central

    Ding, Yiliang

    2009-01-01

    The formation of a nitrogen-fixing nodule involves two diverse developmental processes in the legume root: infection thread initiation in epidermal cells and nodule primordia formation in the cortex. Several plant hormones have been reported to positively or negatively regulate nodulation. These hormones function at different stages in the nodulation process and may facilitate the coordinated development of the epidermal and cortical developmental programs that are necessary to allow bacterial infection into the developing nodule. In this paper, we review and discuss how the tissue specific nature of hormonal action dictates where, when and how a nodule is formed. PMID:19649179

  7. Positioning the nodule, the hormone dictum.

    PubMed

    Ding, Yiliang; Oldroyd, Giles E D

    2009-02-01

    The formation of a nitrogen-fixing nodule involves two diverse developmental processes in the legume root: infection thread initiation in epidermal cells and nodule primordia formation in the cortex. Several plant hormones have been reported to positively or negatively regulate nodulation. These hormones function at different stages in the nodulation process and may facilitate the coordinated development of the epidermal and cortical developmental programs that are necessary to allow bacterial infection into the developing nodule. In this paper, we review and discuss how the tissue specific nature of hormonal action dictates where, when and how a nodule is formed. PMID:19649179

  8. Phytohormone regulation of legume-rhizobia interactions.

    PubMed

    Ferguson, Brett J; Mathesius, Ulrike

    2014-07-01

    The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and

  9. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  10. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  11. How legumes recognize rhizobia

    PubMed Central

    Via, Virginia Dalla; Zanetti, María Eugenia; Blanco, Flavio

    2016-01-01

    ABSTRACT Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria. PMID:26636731

  12. Rhizobial gibberellin negatively regulates host nodule number.

    PubMed

    Tatsukami, Yohei; Ueda, Mitsuyoshi

    2016-01-01

    In legume-rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia. PMID:27307029

  13. Identification of Dehydration Responsive Genes from Two Non-Nodulated Alfalfa Cultivars Using Medicago Truncatula Microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To have a comprehensive understanding of how legume plants respond to drought at the gene expression level and examine whether legume plants that are not fixing nitrogen would behave similar to non-legume plants in drought response, transcriptomes were studied in two non-nodulated alfalfa (Medicago ...

  14. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes

    PubMed Central

    Nelson, Matthew S.; Sadowsky, Michael J.

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity. PMID:26191069

  15. Metabolite Regulation of Partially Purified Soybean Nodule Phosphoenolpyruvate Carboxylase 1

    PubMed Central

    Schuller, Kathryn A.; Turpin, David H.; Plaxton, William C.

    1990-01-01

    Phosphoenolpyruvate carboxylase (PEPC) was purified 40-fold from soybean (Glycine max L. Merr.) nodules to a specific activity of 5.2 units per milligram per protein and an estimated purity of 28%. Native and subunit molecular masses were determined to be 440 and 100 kilodaltons, respectively, indicating that the enzyme is a homotetramer. The response of enzyme activity to phosphoenolpyruvate (PEP) concentration and to various effectors was influenced by assay pH and glycerol addition to the assay. At pH 7 in the absence of glycerol, the Km (PEP) was about twofold greater than at pH 7 in the presence of glycerol or at pH 8. At pH 7 or pH 8 the Km (MgPEP) was found to be significantly lower than the respective Km (PEP) values. Glucose-6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and dihydroxyacetone phosphate activated PEPC at pH 7 in the absence of glycerol, but had no effect under the other assay conditions. Malate, aspartate, glutamate, citrate, and 2-oxoglutarate were potent inhibitors of PEPC at pH 7 in the absence of glycerol, but their effectiveness was decreased by raising the pH to 8 and/or by adding glycerol. In contrast, 3-phosphoglycerate and 2-phosphoglycerate were less effective inhibitors at pH 7 in the absence of glycerol than under the other assay conditions. Inorganic phosphate (up to 20 millimolar) was an activator at pH 7 in the absence of glycerol but an inhibitor under the other assay conditions. The possible significance of metabolite regulation of PEPC is discussed in relation to the proposed functions of this enzyme in legume nodule metabolism. Images Figure 1 Figure 2 PMID:16667849

  16. Thyroid nodule

    MedlinePlus

    ... other thyroid blood tests Thyroid ultrasound Thyroid scan (nuclear medicine) Fine needle aspiration biopsy of the nodule or ... Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocr Pract. 2010;16(suppl ...

  17. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    PubMed Central

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  18. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation. PMID:24072498

  19. NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+ -dependent isocitrate dehydrogenase.

    PubMed

    Marino, Daniel; González, Esther M; Frendo, Pierre; Puppo, Alain; Arrese-Igor, Cesar

    2007-01-01

    The symbiosis between legumes and rhizobia is characterised by the formation of dinitrogen-fixing root nodules. In natural conditions, nitrogen fixation is strongly impaired by abiotic stresses which generate over-production of reactive oxygen species. Since one of the nodule main antioxidant systems is the ascorbate-glutathione cycle, NADPH recycling that is involved in glutathione reduction is of great relevance under stress conditions. NADPH is mainly produced by glucose 6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) from the oxidative pentose phosphate pathway, and also by NADP(+)-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42). In this work, 10 microM paraquat (PQ) was applied to pea roots in order to determine the in vivo relationship between oxidative stress and the activity of the NADPH-generating enzymes in nodules. Whereas G6PDH and 6PGDH activities remained unchanged, a remarkable induction of ICDH gene expression and a dramatic increase of the ICDH activity was observed during the PQ treatment. These results support that ICDH has a key role in NADPH recycling under oxidative stress conditions in pea root nodules. PMID:16896792

  20. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules.

    PubMed

    Jiao, Jian; Wu, Li Juan; Zhang, Biliang; Hu, Yue; Li, Yan; Zhang, Xing Xing; Guo, Hui Juan; Liu, Li Xue; Chen, Wen Xin; Zhang, Ziding; Tian, Chang Fu

    2016-05-01

    To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation. PMID:26883490

  1. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground

    PubMed Central

    Kouchi, Hiroshi; Imaizumi-Anraku, Haruko; Hayashi, Makoto; Hakoyama, Tsuneo; Nakagawa, Tomomi; Umehara, Yosuke; Suganuma, Norio; Kawaguchi, Masayoshi

    2010-01-01

    The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant–microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant–microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes. PMID:20660226

  2. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation?

    PubMed

    Svistoonoff, Sergio; Hocher, Valérie; Gherbi, Hassen

    2014-08-01

    Two groups of bacteria are able to induce the formation of nitrogen-fixing nodules: proteobacteria called rhizobia, which associate with Legumes or Parasponia and actinobateria from the genus Frankia which are able to interact with ∼220 species belonging to eight families called actinorhizal plants. Legumes and different lineages of actinorhizal plants differ in bacterial partners, nodule organogenesis and infection patterns and have independent evolutionary origins. However, recent technical achievements are revealing a variety of conserved signalling molecules and gene networks. Actinorhizal interactions display several primitive features and thus provide the ideal opportunity to determine the minimal molecular toolkit needed to build a nodule and to understand the evolution of root nodule symbioses. PMID:24691197

  3. Landmark Research in Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes are members of family Fabaceae or Leguminosae and include economically important grain legumes, oilseed crops, forage crops, shrubs and tropical or subtropical trees. Many legumes are rich source of quality protein for humans and animals and enrich the soil by producing their own nitrogen i...

  4. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum

    PubMed Central

    Elliott, Geoffrey N.; Chen, Wen-Ming; Bontemps, Cyril; Chou, Jui-Hsing; Young, J. Peter W.; Sprent, Janet I.; James, Euan K.

    2007-01-01

    Background and Aims Species of the genus Burkholderia, from the Betaproteobacteria, have been isolated from legume nodules, but so far they have only been shown to form symbioses with species of Mimosa, sub-family Mimosoideae. This work investigates whether Burkholderia tuberum strains STM678 (isolated from Aspalathus carnosa) and DUS833 (from Aspalathus callosa) can nodulate species of the South African endemic papilionoid genera Cyclopia (tribe Podalyrieae) and Aspalathus (Crotalarieae) as well as the promiscuous legume Macroptilium atropurpureum (Phaseoleae). Method Bacterial strains and the phylogeny of their symbiosis-related (nod) genes were examined via 16S rRNA gene sequencing. Seedlings were grown in liquid culture and inoculated with one of the two strains of B. tuberum or with Sinorhizobium strain NGR 234 (from Lablab purpureus), Mesorhizobium strain DUS835 (from Aspalathus linearis) or Methylobacterium nodulans (from Crotalaria podocarpa). Some nodules, inoculated with green fluorescence protein (GFP)-tagged strains, were examined by light and electron microscopy coupled with immunogold labelling with a Burkholderia-specific antibody. The presence of active nitrogenase was checked by immunolabelling of nitrogenase and by the acetylene reduction assay. B. tuberum STM678 was also tested on a wide range of legumes from all three sub-families. Key Results Nodules were not formed on any of the Aspalathus spp. Only B. tuberum nodulated Cyclopia falcata, C. galioides, C. genistoides, C. intermedia and C. pubescens. It also effectively nodulated M. atropurpureum but no other species tested. GFP-expressing inoculant strains were located inside infected cells of C. genistoides, and bacteroids in both Cyclopia spp. and M. atropurpureum were immunogold-labelled with antibodies against Burkholderia and nitrogenase. Nitrogenase activity was also shown using the acetylene reduction assay. This is the first demonstration that a β-rhizobial strain can effectively

  5. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria.

    PubMed

    Suzaki, Takuya; Yoro, Emiko; Kawaguchi, Masayoshi

    2015-01-01

    Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion. PMID:25805123

  6. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    ERIC Educational Resources Information Center

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  7. [Genetic diversity of rhizobia isolated from common legumes in the Karst area. Northwest Guangxi].

    PubMed

    Liu, Lu; He, Xun-yang; Xie, Qiang; Wang, Ke-lin

    2015-12-01

    Legumes, with a strong resistance to the adverse environmental conditions, are pioneer plants in degraded habitats, and play an important role in ecosystem restoration. In this study, the nodulation characteristics of 24 legumes were surveyed in the Karst area of Northwest Guangxi. A total of 39 nodule samples were collected from 15 legumes, the DNA was extracted and the 16S rDNA and nifH gene were amplified. A phylogenetic tree was then constructed to analyze the genetic diversity of rhizobia. The results showed that 15 legumes were nodulated, of which 14 belonged to the Papilionoideae, one to the Mimosaceae, and none to the Caesalpinoideae. No nodules were found on some legumes that were reported as nodulated, which might result from soil water stress in Karst. BLAST result and phylogenetic analyse indicated that most of the legumes were associated with rhizobia that belonged to the genus Bradyrhizobium, with the exception of two samples from Callerya nitida that were associated with the genus Mesorhizobium. In the phylogenetic tree, the sequences obtained from the same plot or the sequences from the same host species clustered together in most cases. This finding suggested that host selection and the ecological environment are the major factors that influence the genotype of rhizobia. PMID:27112003

  8. Legumes, N2 fixation and the H2 cycle

    NASA Astrophysics Data System (ADS)

    Layzell, D. B.

    2004-12-01

    Legume plants such as soybean or pea can form symbiotic, N2 fixing associations with bacteria that exist in root nodules. For every N2 fixed, 1 to 3 H2 are produced as a by-product of the nitrogenase reaction. Therefore, a typical N2 fixing legume crop produces about 200,000 L H2 gas (at STP) per hectare per crop season. This paper will summarize our current understanding of the processes leading to H2 production in legumes, the magnitude of H2 production associated with global cropping systems, and the implications for its production and oxidation on both the legumes and the soils in which they grow. Specific points may include: ˜ In symbioses lacking uptake hydrogenase (HUP) activity (thought to be the majority of crop legumes), the H2 diffuses into the soil where it is oxidized by soil microbes that grow up around the legume nodules. The kinetic properties of these microbes are very different (higher Km and Vmax) from that of microbes in soils exposed to normal air (ca. 0.5 ppm H2); ˜ Laboratory studies indicate that 60% of the reducing power from H2 is coupled to O2 uptake, whereas 40% is coupled to autotrophic CO2 fixation. The latter process should increase soil carbon stocks by about 25 kg C/ha/yr; ˜ At the site of the nitrogenase enzyme, H2 production is autocatalytic such that the higher the H2 concentration, the more H2 is produced and the less N2 fixed. The variable O2 diffusion barrier in legumes can act to restrict H2 diffusion from the nodule, thereby increasing the relative magnitude of H2 production versus N2 fixation; ˜ Studies to understand why legume symbioses make such an energy investment in H2 production have led to the discovery that H2 treated soils have improved fertility, supporting the growth and yield of legume and non-legume crops. This observation may account for the benefits of legumes when used in rotation with cereal crops, a phenomenon that has been used by farmers for over 2000 years, but which has remained unexplained. An

  9. Glycolytic Flux Is Adjusted to Nitrogenase Activity in Nodules of Detopped and Argon-Treated Alfalfa Plants1

    PubMed Central

    Curioni, Paola M.G.; Hartwig, Ueli A.; Nösberger, Josef; Schuller, Kathryn A.

    1999-01-01

    To investigate the short-term (30–240 min) interactions among nitrogenase activity, NH4+ assimilation, and plant glycolysis, we measured the concentrations of selected C and N metabolites in alfalfa (Medicago sativa L.) root nodules after detopping and during continuous exposure of the nodulated roots to Ar:O2 (80:20, v/v). Both treatments caused an increase in the ratios of glucose-6-phosphate to fructose-1,6-bisphosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, phosphoenolpyruvate (PEP) to pyruvate, and PEP to malate. This suggested that glycolytic flux was inhibited at the steps catalyzed by phosphofructokinase, pyruvate kinase, and PEP carboxylase. In the Ar:O2-treated plants the apparent inhibition of glycolytic flux was reversible, whereas in the detopped plants it was not. In both groups of plants the apparent inhibition of glycolytic flux was delayed relative to the decline in nitrogenase activity. The decline in nitrogenase activity was followed by a dramatic increase in the nodular glutamate to glutamine ratio. In the detopped plants this was coincident with the apparent inhibition of glycolytic flux, whereas in the Ar:O2-treated plants it preceded the apparent inhibition of glycolytic flux. We propose that the increase in the nodular glutamate to glutamine ratio, which occurs as a result of the decline in nitrogenase activity, may act as a signal to decrease plant glycolytic flux in legume root nodules. PMID:9952439

  10. Relationship between photosynthetic capacity, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa) grown with sewage sludge.

    PubMed

    Antolín, M Carmen; Fiasconaro, M Laura; Sánchez-Díaz, Manuel

    2010-10-15

    Sewage sludge has been used as N fertilizer because it contains some of inorganic N, principally as nitrate and ammonium ions. However, sewage sludge addition to legumes could result in impaired nodule metabolism due to the presence of inorganic N from sludge. A greenhouse experiment was conducted to examine the effects of sewage sludge on growth, photosynthesis, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa L. cv. Aragón). Plants were grown in pots with a mixture of perlite and vermiculite (2:1, v/v). The experiment included three treatments: (1) plants inoculated with rhizobia and amended with sewage sludge at rate of 10% (w/w) (RS); (2) plants inoculated with rhizobia without any amendment (R); and (3) non-inoculated plants fed with ammonium nitrate (N). N(2)-fixing plants had lower growth and sucrose phosphate synthase activity but higher photosynthesis than nitrate-fed plants because they compensated the carbon cost of the rhizobia. However, sewage sludge-treated plants evidenced a loss of carbon sink strength due to N(2) fixation by means of decreased photosynthetic capacity, leaf chlorophylls and N concentration in comparison to untreated plants. Sewage sludge did no affect nodulation but decreased nodule enzyme activities involved in carbon and N metabolisms that may lead to accumulation of toxic N-compounds. PMID:20591568

  11. Forage legumes - untrapped resource

    SciTech Connect

    Barnes, R.F.

    1985-02-01

    Legumes are important in nutrition, nitrogen fixation and in reducing dependence on nitrogen fertilizers. At a meeting between scientists from Australia, New Zealand and the United States the role of legumes was assessed and coordinated research programs set up to deal with problems such as disease, soil, climate and selective breeding.

  12. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  13. Medicinal properties of legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to discuss the USDA, ARS medicinal legume germplasm taxonomy, molecular techniques, maintenance, evaluation, utilization, and conventional breeding for use by students and scientists working on medicinal legume genetic resources. The results of this study will provide a valu...

  14. Negotiation of mutualism: rhizobia and legumes

    PubMed Central

    Akçay, Erol; Roughgarden, Joan

    2006-01-01

    The evolution and persistence of biological cooperation have been an important puzzle in evolutionary theory. Here, we suggest a new approach based on bargaining theory to tackle the question. We present a mechanistic model for negotiation of benefits between a nitrogen-fixing nodule and a legume plant. To that end, we first derive growth rates for the nodule and plant from metabolic models of each as a function of material fluxes between them. We use these growth rates as pay-off functions in the negotiation process, which is analogous to collective bargaining between a firm and a workers' union. Our model predicts that negotiations lead to the Nash bargaining solution, maximizing the product of players' pay-offs. This work introduces elements of cooperative game theory into the field of mutualistic interactions. In the discussion of the paper, we argue for the benefits of such an approach in studying the question of biological cooperation. PMID:17015340

  15. Legume biology: sequence to seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on legumes is driven, to a large extent, by their importance as food crops worldwide. Some 25% of the world's major crop production is derived from legumes, and more than one-third of humanity's nutritional nitrogen requirement comes from legumes. Moreover, the ability of many legumes to es...

  16. Study of phenanthrene utilizing bacterial consortia associated with cowpea (Vigna unguiculata) root nodules.

    PubMed

    Sun, Ran; Crowley, David E; Wei, Gehong

    2015-02-01

    Many legumes have been selected as model plants to degrade organic contaminants with their special associated rhizosphere microbes in soil. However, the function of root nodules during microbe-assisted phytoremediation is not clear. A pot study was conducted to examine phenanthrene (PHE) utilizing bacteria associated with root nodules and the effects of cowpea root nodules on phytoremediation in two different types of soils (freshly contaminated soil and aged contaminated soil). Cowpea nodules in freshly-contaminated soil showed less damage in comparison to the aged-contaminated soil, both morphologically and ultra-structurally by scanning electron microscopy. The study of polycyclic aromatic hydrocarbon (PAH) attenuation conducted by high performance liquid chromatography revealed that more PAH was eliminated from liquid culture around nodulated roots than nodule-free roots. PAH sublimation and denaturation gradient gel electrophoresis were applied to analyze the capability and diversity of PAH degrading bacteria from the following four parts of rhizo-microzone: bulk soil, root surface, nodule surface and nodule inside. The results indicated that the surface and inside of cowpea root nodules were colonized with bacterial consortia that utilized PHE. Our results demonstrated that root nodules not only fixed nitrogen, but also enriched PAH-utilizing microorganisms both inside and outside of the nodules. Legume nodules may have biotechnological values for PAH degradation. PMID:25601371

  17. Nodulation genes and type III secretion systems in rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For establishment of symbiosis, rhizobia and legumes have to communicate. Specific signaling starts with the release of flavonoids by the plant. All rhizobia encode at least one NodD protein, which responds to the presence of specific flavonoids by activation of nodulation genes. In Bradyrhizobium j...

  18. Diversity and symbiotic effectiveness of beta-rhizobia isolated from sub-tropical legumes of a Brazilian Araucaria Forest.

    PubMed

    Lammel, Daniel R; Cruz, Leonardo M; Carrer, Helaine; Cardoso, Elke J B N

    2013-12-01

    While the occurrence of Betaproteobacteria occupying the nodules of tropical legumes has been shown, little is known about subtropical areas. Araucaria Forest is a subtropical endangered ecosystem, and a better understanding of the legume-rhizobial symbionts may allow their use in land reclamation. The 16S rRNA gene of bacteria isolated from nine leguminous species was sequenced and their nodulation tested in Mimosa scabrella and Phaseolus vulgaris. 196 isolates were identified as eight genotypes: Pantoea, Pseudomonas, Bradyrhizobium sp1-2, Rhizobium, and Burkholderia sp1-3. The majority of the isolates from native plants (87 %) were taxonomically related to β-rhizobia, namely Burkholderia, however the legumes Galactia crassifolia and Collea speciosa were nodulated by both α and β-rhizobia, and Acacia dealbata, an exotic plant, only by α-rhizobia. The nifH genes of some isolates were sequenced and N-fixing potential shown by the acetylene reduction test. Most of the isolates nodulated the test plants, some were effective in M. scabrella, but all presented low efficiency in the exotic promiscuous legume P. vulgaris. Pantoea and Pseudomonas did not nodulate and probably are endophytic bacteria. The presented data shows diversity of α, β and γ-Proteobacteria in nodules of subtropical legumes, and suggests host specificity with β-rhizobia. Potential isolates were found for M. scabrella, indicating that a high N-fixing strain may be further inoculated in plants for use in reforestation. PMID:23861038

  19. Plant Hormonal Regulation of Nitrogen-Fixing Nodule Organogenesis

    PubMed Central

    Ryu, Hojin; Cho, Hyunwoo; Choi, Daeseok; Hwang, Ildoo

    2012-01-01

    Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions. PMID:22820920

  20. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules

    PubMed Central

    Mohd-Radzman, Nadiatul A.; Djordjevic, Michael A.; Imin, Nijat

    2013-01-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules. PMID:24098303

  1. Thyroid nodules.

    PubMed

    Niedziela, Marek

    2014-03-01

    According to the literature, thyroid nodules (TNs) are quite rare in the first two decades of life and are predominantly non-cancerous, although cancerous TNs are more common in the first two decades of life than in adults. Therefore, it is important for clinicians to distinguish benign from malignant lesions preoperatively because the latter require a total thyroidectomy with or without neck lymph node dissection. A careful work-up and a fine-needle aspiration biopsy (FNAB) are mandatory to improve the preoperative diagnosis. High-resolution thyroid ultrasound and real-time elastosonography are adjuvant presurgical tools in selecting patients for surgery, particularly those with indeterminate or non-diagnostic cytology. Elevated thyroid-stimulating hormone (TSH) level in a patient with a thyroid nodule is a new laboratory predictor of thyroid cancer risk. The majority of thyroid carcinomas derive from the follicular cell, whereas medullary thyroid carcinoma (MTC) derives from calcitonin-producing cells. Patients with MTC are screened for germ-line RET mutations to detect carriers and identify family members for prophylactic or therapeutic thyroidectomy. PMID:24629865

  2. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism.

    PubMed

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, L S

    2016-08-01

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops. PMID:27450089

  3. Adaptation of the symbiotic Mesorhizobium–chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism

    PubMed Central

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, Lam-Son Phan

    2016-01-01

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium–chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)–chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)–chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9–chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31–chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK. These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31–inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops. PMID:27450089

  4. Distribution of N within Pea, Lupin, and Soybean Nodules.

    PubMed

    Kohl, D H; Reynolds, P H; Shearer, G

    1989-06-01

    The (15)N abundance of some, but not all, legume root nodules is significantly elevated compared to that of the whole plant. It seems probable that differences in (15)N enrichment reflect differences in the assimilatory pathway of fixed N. In that context, we have determined the distribution of naturally occurring (15)N in structural fractions of nodules from soybean (Glycine max L. Merr.), yellow lupin (Lupinus luteus), and pea (Pisum sativum) nodules and in chemical components from soybean nodules and to a lesser extent, pea and lupin nodules. None of the fractions of pea nodules (cortex, bacteriod, or host plant cytoplasm) was enriched in (15)N. The differences among bacteriods, cortex, and plant cytoplasm were smaller in lupin than in soybean nodules, but in both, bacteriods had the highest (15)N enrichment. In soybean nodules, the (15)N abundance of bacteriods and cortex was higher than plant cytoplasm, but all three fractions were more enriched in (15)N than the entire plant. Plant cytoplasm from soybean nodules was fractionated into protein-rich material, nonprotein alcohol precipitable material (NA), and a low molecular weight fraction. The N of the latter was further separated into N of ureides, nucleotides and free amino acids. Most of these components were either similar to or lower in (15)N abundance than the plant cytoplasm as a whole, but the NA fraction showed unusual (15)N enrichment. However, the percentage of nodule N in this fraction was small. NA fractions from yellow lupin and pea nodules and from soybean leaves were not enriched in (15)N. Nor was the NA fraction in ruptured bacteriods and cortical tissue of soybean nodules. Variation among soybean nodule fractions in the preponderance in protein of different amino acids was not large enough to explain the differences in (15)N abundances among them. A hypothesis, consistent with all known data, concerning the mechanism leading to the observed excess (15)N of lupin and soybean bacteriods is

  5. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils.

    PubMed

    Yan, Hui; Ji, Zhao Jun; Jiao, Yin Shan; Wang, En Tao; Chen, Wen Feng; Guo, Bao Lin; Chen, Wen Xin

    2016-03-01

    With the increasing cultivation of medicinal legumes in agricultural fields, the rhizobia associated with these plants are facing new stresses, mainly from fertilization and irrigation. In this study, investigations on the nodulation of three cultivated medicinal legumes, Astragalus mongholicus, Astragalus membranaceus and Hedysarum polybotrys were performed. Bacterial isolates from root nodules of these legumes were subjected to genetic diversity and multilocus sequence analyses. In addition, the distribution of nodule bacteria related to soil factors and host plants was studied. A total 367 bacterial isolates were obtained and 13 genospecies were identified. The predominant microsymbionts were identified as Mesorhizobium septentrionale, Mesorhizobium temperatum, Mesorhizobium tianshanense, Mesorhizobium ciceri and Mesorhizobium muleiense. M. septentrionale was found in most root nodules especially from legumes grown in the barren soils (with low available nitrogen and low organic carbon contents), while M. temperatum was predominant in nodules where the plants were grown in the nitrogen-rich fields. A. mongholicus tended to be associated with M. septentrionale, M. temperatum and M. ciceri in different soils, while A. membranaceus and H. polybotrys tended to be associated with M. tianshanense and M. septentrionale, respectively. This study showed that soil fertility may be the main determinant for the distribution of rhizobia associated with these cultured legume plants. PMID:26915496

  6. ANTISENSE INHIBITION OF NADH-GLUTAMATE SYNTHASE IMPAIRS CARBON/NITROGEN ASSIMILATION IN NODULES OF ALFALFA (MEDICAGO SATIVA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes acquire significant amounts of nitrogen for growth from symbiotic nitrogen fixation in root nodules. The glutamine synthetase (GS)/NADH-dependent glutamate synthase (NADH-GOGAT) cycle catalyzes initial nitrogen assimilation. This report describes the impacts of specific reduction on nodule N...

  7. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the...

  8. Edible grain legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible grain legumes including dry bean, dry pea, chickpeas, and lentils, have served as important sources of protein for human diets for thousands of years. In the US, these crops are predominately produced for export markets. The objective of this study was to examine yield gains in these crops ov...

  9. The model legume genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary model legumes to-date have been Medicago truncatula and Lotus japonicus. Both species are tractable both genetically and in the greenhouse, and for both, a substantial sets of tools and resources for molecular genetic research have been assembled. As sequencing costs have declined, howev...

  10. Extrusion cooking: Legume pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  11. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium - legume mutualism.

    PubMed

    Van Cauwenberghe, Jannick; Lemaire, Benny; Stefan, Andrei; Efrose, Rodica; Michiels, Jan; Honnay, Olivier

    2016-07-01

    It is known that the genetic diversity of conspecific rhizobia present in root nodules differs greatly among populations of a legume species, which has led to the suggestion that both dispersal limitation and the local environment affect rhizobial genotypic composition. However, it remains unclear whether rhizobial genotypes residing in root nodules are representative of the entire population of compatible symbiotic rhizobia. Since symbiotic preferences differ among legume populations, the genetic composition of rhizobia found within nodules may reflect the preferences of the local hosts, rather than the full diversity of potential nodulating rhizobia present in the soil. Here, we assessed whether Vicia cracca legume hosts of different provenances select different Rhizobium leguminosarum genotypes than sympatric V. cracca hosts, when presented a natural soil rhizobial population. Through combining V. cracca plants and rhizobia from adjacent and more distant populations, we found that V. cracca hosts are relatively randomly associated with rhizobial genotypes. This indicates that pre-infection partner choice is relatively weak in certain legume hosts when faced with a natural population of rhizobia. PMID:27269381

  12. Ethylene, a Hormone at the Center-Stage of Nodulation.

    PubMed

    Guinel, Frédérique C

    2015-01-01

    Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal

  13. Ethylene, a Hormone at the Center-Stage of Nodulation

    PubMed Central

    Guinel, Frédérique C.

    2015-01-01

    Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal

  14. Small-peptide signals that control root nodule number, development, and symbiosis.

    PubMed

    Djordjevic, Michael A; Mohd-Radzman, Nadiatul A; Imin, Nijat

    2015-08-01

    Many legumes have the capacity to enter into a symbiotic association with soil bacteria generically called 'rhizobia' that results in the formation of new lateral organs on roots called nodules within which the rhizobia fix atmospheric nitrogen (N). Up to 200 million tonnes of N per annum is fixed by this association. Therefore, this symbiosis plays an integral role in the N cycle and is exploited in agriculture to support the sustainable fixation of N for cropping and animal production in developing and developed nations. Root nodulation is an expendable developmental process and competency for nodulation is coupled to low-N conditions. Both nodule initiation and development is suppressed under high-N conditions. Although root nodule formation enables sufficient N to be fixed for legumes to grow under N-deficient conditions, the carbon cost is high and nodule number is tightly regulated by local and systemic mechanisms. How legumes co-ordinate nodule formation with the other main organs of nutrient acquisition, lateral roots, is not fully understood. Independent mechanisms appear to regulate lateral roots and nodules under low- and high-N regimes. Recently, several signalling peptides have been implicated in the local and systemic regulation of nodule and lateral root formation. Other peptide classes control the symbiotic interaction of rhizobia with the host. This review focuses on the roles played by signalling peptides during the early stages of root nodule formation, in the control of nodule number, and in the establishment of symbiosis. Here, we highlight the latest findings and the gaps in our understanding of these processes. PMID:26249310

  15. SymRK and the nodule vascular system

    PubMed Central

    Sanchez-Lopez, Rosana; Jáuregui, David; Quinto, Carmen

    2012-01-01

    Symbiotic legume-rhizobia relationship leads to the formation of nitrogen-fixing nodules. Successful nodulation depends on the expression and cross-talk of a batttery of genes, among them SymRK (symbiosis receptor-like kinase), a leucine-rich repeat receptor-like kinase. SymRK is required for the rhizobia invasion of root hairs, as well as for the infection thread and symbiosome formation. Using immunolocalization and downregulation strategies we have recently provided evidence of a new function of PvSymRK in nodulation. We have found that a tight regulation of PvSymRK expression is required for the accurate development of the vascular bundle system in Phaseolus vulgaris nodules. PMID:22580688

  16. Nodule initiation elicited by noninfective mutants of Rhizobium phaseoli.

    PubMed

    Vandenbosch, K A; Noel, K D; Kaneko, Y; Newcomb, E H

    1985-06-01

    Rhizobium phaseoli CE106, CE110, and CE115, originally derived by transposon mutagenesis (Noel et al., J. Bacteriol. 158:149-155, 1984), induced the formation of uninfected root nodule-like swellings on bean (Phaseolus vulgaris). Bacteria densely colonized the root surface, and root hair curling and initiation of root cortical-cell divisions occurred normally in mutant-inoculated seedlings, although no infection threads formed. The nodules were ineffective, lacked leghemoglobin, and were anatomically distinct from normal nodules. Ultrastructural specialization for ureide synthesis, characteristic of legumes that form determinate nodules, was absent. Colony morphology of the mutant strains on agar plates was less mucoid than that of the wild type, and under some cultural conditions, the mutants did not react with Cellufluor, a fluorescent stain for beta-linked polysaccharide. These observations suggest that the genetic lesions in these mutants may be related to extracellular polysaccharide synthesis. PMID:3997785

  17. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

    PubMed Central

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T.; Weckwerth, Wolfram; Varshney, Rajeev K.

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  18. Aspartate Aminotransferase in Alfalfa Root Nodules : III. Genotypic and Tissue Expression of Aspartate Aminotransferase in Alfalfa and Other Species.

    PubMed

    Farnham, M W; Griffith, S M; Miller, S S; Vance, C P

    1990-12-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N(2)-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N(2)-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. PMID:16667896

  19. Novel Expression Pattern of Cytosolic Gln Synthetase in Nitrogen-Fixing Root Nodules of the Actinorhizal Host, Datisca glomerata1[w

    PubMed Central

    Berry, Alison M.; Murphy, Terence M.; Okubara, Patricia A.; Jacobsen, Karin R.; Swensen, Susan M.; Pawlowski, Katharina

    2004-01-01

    Gln synthetase (GS) is the key enzyme of primary ammonia assimilation in nitrogen-fixing root nodules of legumes and actinorhizal (Frankia-nodulated) plants. In root nodules of Datisca glomerata (Datiscaceae), transcripts hybridizing to a conserved coding region of the abundant nodule isoform, DgGS1-1, are abundant in uninfected nodule cortical tissue, but expression was not detectable in the infected zone or in the nodule meristem. Similarly, the GS holoprotein is immunolocalized exclusively to the uninfected nodule tissue. Phylogenetic analysis of the full-length cDNA of DgGS1-1 indicates affinities with cytosolic GS genes from legumes, the actinorhizal species Alnus glutinosa, and nonnodulating species, Vitis vinifera and Hevea brasilensis. The D. glomerata nodule GS expression pattern is a new variant among reported root nodule symbioses and may reflect an unusual nitrogen transfer pathway from the Frankia nodule microsymbiont to the plant infected tissue, coupled to a distinctive nitrogen cycle in the uninfected cortical tissue. Arg, Gln, and Glu are the major amino acids present in D. glomerata nodules, but Arg was not detected at high levels in leaves or roots. Arg as a major nodule nitrogen storage form is not found in other root nodule types except in the phylogenetically related Coriaria. Catabolism of Arg through the urea cycle could generate free ammonium in the uninfected tissue where GS is expressed. PMID:15247391

  20. Solitary pulmonary nodule

    MedlinePlus

    ... doctor must decide whether the nodule in your lung is most likely benign (not cancer) or of concern. A nodule more likely benign if: The nodule is small, has a smooth border, and has a solid and even appearance on an x-ray or CT scan You are young and do ...

  1. Narrow- and Broad-Host-Range Symbiotic Plasmids of Rhizobium spp. Strains That Nodulate Phaseolus vulgaris

    PubMed Central

    Brom, Susana; Martinez, Esperanza; Dávila, Guillermo; Palacios, Rafael

    1988-01-01

    Agrobacterium transconjugants containing symbiotic plasmids from different Rhizobium spp. strains that nodulate Phaseolus vulgaris were obtained. All transconjugants conserved the parental nodulation host range. Symbiotic (Sym) plasmids of Rhizobium strains isolated originally from P. vulgaris nodules, which had a broad nodulation host range, and single-copy nitrogenase genes conferred a Fix+ phenotype to the Agrobacterium transconjugants. A Fix− phenotype was obtained with Sym plasmids of strains isolated from P. vulgaris nodules that had a narrow host range and reiterated nif genes, as well as with Sym plasmids of strains isolated from other legumes that presented single nif genes and a broad nodulation host range. This indicates that different types of Sym plasmids can confer the ability to establish an effective symbiosis with P. vulgaris. Images PMID:16347637

  2. Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes.

    PubMed

    Aguilera, Yolanda; Díaz, María Felicia; Jiménez, Tania; Benítez, Vanesa; Herrera, Teresa; Cuadrado, Carmen; Martín-Pedrosa, Mercedes; Martín-Cabrejas, María A

    2013-08-28

    The present study describes the effects of germination on nonnutritional factors and antioxidant activity in the nonconventional legumes Vigna unguiculata (cowpea), Canavalia ensiformis (jack bean), Lablab purpureus (dolichos), and Stizolobium niveum (mucuna). Protease inhibitors and lectins were detected in raw legumes and were significantly decreased during the germination. Regarding total and individual inositol phosphates (IP5-IP3), important reductions of IP6 and high increases in the rest of inositol phosphates were also detected during this process. In addition, total phenols, catechins, and proanthocyanidins increased, accompanied by an overall rise of antioxidant activity (79.6 μmol of Trolox/g of DW in the case of mucuna). Germination has been shown to be a very effective process to reduce nonnutritional factors and increase bioactive phenolic compounds and antioxidant activities of these nonconventional legumes. For this reason, they could be used as ingredients to obtain high-value legume flours for food formulation. PMID:23909570

  3. Regulatory Patterns of a Large Family of Defensin-Like Genes Expressed in Nodules of Medicago truncatula

    PubMed Central

    Nallu, Sumitha; Silverstein, Kevin A. T.; Samac, Deborah A.; Bucciarelli, Bruna; Vance, Carroll P.; VandenBosch, Kathryn A.

    2013-01-01

    Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation. PMID:23573247

  4. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development1[OPEN

    PubMed Central

    Li, Xinxin; Zhao, Jing; Tan, Zhiyuan; Liao, Hong

    2015-01-01

    Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean. PMID:26432877

  5. Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration1[OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Martínez, Carlos; Correa, Edwin; Aranda, Jorge; Garcia, Milton; Jaramillo, Carlos; Turner, Benjamin L.

    2011-01-01

    We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (WP) to elevated CO2 concentration ([CO2]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO2 partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO2]. The mean ratio of final plant dry mass at elevated to ambient [CO2] (ME/MA) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in ME/MA among legume species (0.92–2.35), whereas nonlegumes varied much less (1.21–1.29). Variation among legume species in ME/MA was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. WP increased markedly in response to elevated [CO2] in all species. The ratio of intercellular to ambient CO2 partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO2], as did carbon isotope discrimination, suggesting that WP should increase proportionally for a given increase in atmospheric [CO2]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO2] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO2]. PMID:21788363

  6. Nodulation of Sesbania Species by Rhizobium (Agrobacterium) Strain IRBG74 and Other Rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens). However, DNA:DNA hybridisation with R. ...

  7. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.).

    PubMed

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  8. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.)

    PubMed Central

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  9. KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development

    PubMed Central

    Azarakhsh, M.; Kirienko, A. N.; Zhukov, V. A.; Lebedeva, M. A.; Dolgikh, E. A.; Lutova, L. A.

    2015-01-01

    KNOX transcription factors (TFs) regulate different aspects of plant development essentially through their effects on phytohormone metabolism. In particular, KNOX TF SHOOTMERISTEMLESS activates the cytokinin biosynthesis ISOPENTENYL TRANSFERASE (IPT) genes in the shoot apical meristem. However, the role of KNOX TFs in symbiotic nodule development and their possible effects on phytohormone metabolism during nodulation have not been studied to date. Cytokinin is a well-known regulator of nodule development, playing the key role in the regulation of cell division during nodule primordium formation. Recently, the activation of IPT genes was shown to take place during nodulation. Therefore, it was hypothesized that KNOX TFs may regulate nodule development and activate cytokinin biosynthesis upon nodulation. This study analysed the expression of different KNOX genes in Medicago truncatula Gaertn. and Pisum sativum L. Among them, the KNOX3 gene was upregulated in response to rhizobial inoculation in both species. pKNOX3::GUS activity was observed in developing nodule primordium. KNOX3 ectopic expression caused the formation of nodule-like structures on transgenic root without bacterial inoculation, a phenotype similar to one described previously for legumes with constitutive activation of the cytokinin receptor. Furthermore, in transgenic roots with MtKNOX3 knockdown, downregulation of A-type cytokinin response genes was found, as well as the MtIPT3 and LONELYGUY2 (MtLOG2) gene being involved in cytokinin activation. Taken together, these findings suggest that KNOX3 gene is involved in symbiotic nodule development and may regulate cytokinin biosynthesis/activation upon nodule development in legume plants. PMID:26351356

  10. KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development.

    PubMed

    Azarakhsh, M; Kirienko, A N; Zhukov, V A; Lebedeva, M A; Dolgikh, E A; Lutova, L A

    2015-12-01

    KNOX transcription factors (TFs) regulate different aspects of plant development essentially through their effects on phytohormone metabolism. In particular, KNOX TF SHOOTMERISTEMLESS activates the cytokinin biosynthesis ISOPENTENYL TRANSFERASE (IPT) genes in the shoot apical meristem. However, the role of KNOX TFs in symbiotic nodule development and their possible effects on phytohormone metabolism during nodulation have not been studied to date. Cytokinin is a well-known regulator of nodule development, playing the key role in the regulation of cell division during nodule primordium formation. Recently, the activation of IPT genes was shown to take place during nodulation. Therefore, it was hypothesized that KNOX TFs may regulate nodule development and activate cytokinin biosynthesis upon nodulation. This study analysed the expression of different KNOX genes in Medicago truncatula Gaertn. and Pisum sativum L. Among them, the KNOX3 gene was upregulated in response to rhizobial inoculation in both species. pKNOX3::GUS activity was observed in developing nodule primordium. KNOX3 ectopic expression caused the formation of nodule-like structures on transgenic root without bacterial inoculation, a phenotype similar to one described previously for legumes with constitutive activation of the cytokinin receptor. Furthermore, in transgenic roots with MtKNOX3 knockdown, downregulation of A-type cytokinin response genes was found, as well as the MtIPT3 and LONELYGUY2 (MtLOG2) gene being involved in cytokinin activation. Taken together, these findings suggest that KNOX3 gene is involved in symbiotic nodule development and may regulate cytokinin biosynthesis/activation upon nodule development in legume plants. PMID:26351356

  11. Functional nodFE genes are present in Sinorhizobium sp. strain MUS10, a symbiont of tropical legume Sesbania rostrata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sinorhizobium sp. strain MUS10, a rhizobium from the Indian subcontinent, forms nitrogen-fixing nodules on the stems and roots of tropical legume Sesbania rostrata. The structure of Nod factors (NFs) of MUS10 are similar to those of Azorhizobium caulinodans, S. saheli bv sesbaniae and S. terangae bv...

  12. Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    PubMed Central

    Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.

    2011-01-01

    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755

  13. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus.

    PubMed

    Reid, Dugald E; Heckmann, Anne B; Novák, Ondřej; Kelly, Simon; Stougaard, Jens

    2016-02-01

    Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development. PMID:26644503

  14. Involvement of auxin distribution in root nodule development of Lotus japonicus.

    PubMed

    Takanashi, Kojiro; Sugiyama, Akifumi; Yazaki, Kazufumi

    2011-07-01

    The symbiosis between legume plants and rhizobia causes the development of new organs, nodules which function as an apparatus for nitrogen fixation. In this study, the roles of auxin in nodule development in Lotus japonicus have been demonstrated using molecular genetic tools and auxin inhibitors. The expression of an auxin-reporter GH3 fused to β-glucuronidase (GUS) was analyzed in L. japonicus roots, and showed a strong signal in the central cylinder of the root, whereas upon rhizobium infection, generation of GUS signal was observed at the dividing outer cortical cells during the first nodule cell divisions. When nodules were developed to maturity, strong GUS staining was detected in vascular tissues of nodules, suggesting distinct auxin involvement in the determinate nodule development. Numbers and the development of nodules were affected by auxin transport inhibitors (1-naphthylphthalamic acid, NPA and triindobenzoic acid, TIBA), and by a newly synthesized auxin antagonist, α-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA). The common phenotypical alteration by these auxin inhibitors was the inhibition in forming lenticel which is normally developed on the nodule surface from the root outer cortex. The inhibition of lenticel formation was correlated with the inhibition of nodule vascular bundle development. These results indicate that auxin is required for the normal development of determinate nodules in a multidirectional manner. PMID:21369920

  15. Medicago truncatula and Glycine max: Different Drought Tolerance and Similar Local Response of the Root Nodule Proteome

    PubMed Central

    2015-01-01

    Legume crops present important agronomical and environmental advantages mainly due to their capacity to reduce atmospheric N2 to ammonium via symbiotic nitrogen fixation (SNF). This process is very sensitive to abiotic stresses such as drought, but the mechanism underlying this response is not fully understood. The goal of the current work is to compare the drought response of two legumes with high economic impact and research importance, Medicago truncatula and Glycine max, by characterizing their root nodule proteomes. Our results show that, although M. truncatula exhibits lower water potential values under drought conditions compared to G. max, SNF declined analogously in the two legumes. Both of their nodule proteomes are very similar, and comparable down-regulation responses in the diverse protein functional groups were identified (mainly proteins related to the metabolism of carbon, nitrogen, and sulfur). We suggest lipoxygenases and protein turnover as newly recognized players in SNF regulation. Partial drought conditions applied to a split-root system resulted in the local down-regulation of the entire proteome of drought-stressed nodules in both legumes. The high degree of similarity between both legume proteomes suggests that the vast amount of research conducted on M. truncatula could be applied to economically important legume crops, such as soybean. PMID:26503705

  16. Medicago truncatula and Glycine max: Different Drought Tolerance and Similar Local Response of the Root Nodule Proteome.

    PubMed

    Gil-Quintana, Erena; Lyon, David; Staudinger, Christiana; Wienkoop, Stefanie; González, Esther M

    2015-12-01

    Legume crops present important agronomical and environmental advantages mainly due to their capacity to reduce atmospheric N2 to ammonium via symbiotic nitrogen fixation (SNF). This process is very sensitive to abiotic stresses such as drought, but the mechanism underlying this response is not fully understood. The goal of the current work is to compare the drought response of two legumes with high economic impact and research importance, Medicago truncatula and Glycine max, by characterizing their root nodule proteomes. Our results show that, although M. truncatula exhibits lower water potential values under drought conditions compared to G. max, SNF declined analogously in the two legumes. Both of their nodule proteomes are very similar, and comparable down-regulation responses in the diverse protein functional groups were identified (mainly proteins related to the metabolism of carbon, nitrogen, and sulfur). We suggest lipoxygenases and protein turnover as newly recognized players in SNF regulation. Partial drought conditions applied to a split-root system resulted in the local down-regulation of the entire proteome of drought-stressed nodules in both legumes. The high degree of similarity between both legume proteomes suggests that the vast amount of research conducted on M. truncatula could be applied to economically important legume crops, such as soybean. PMID:26503705

  17. Root nodule bacteria from Clitoria ternatea L. are putative invasive nonrhizobial endophytes.

    PubMed

    Aeron, Abhinav; Chauhan, Puneet Singh; Dubey, Ramesh Chand; Maheshwari, Dinesh Kumar; Bajpai, Vivek K

    2015-02-01

    In this study, bacteria (8 species and 5 genera) belonging to the classes Betaproteobacteria, Gammaproteobacteria, and Sphingobacteria were isolated from root nodules of the multipurpose legume Clitoria ternatea L. and identified on the basis of partial 16S rRNA sequencing. The root nodule bacteria were subjected to phenotypic clustering and diversity studies using biochemical kits, including Hi-Media Carbokit™, Enterobacteriaceae™ identification kit, ERIC-PCR, and 16S ARDRA. All the strains showed growth on Ashby's N-free media over 7 generations, indicative of presumptive nitrogen fixation and further confirmed by amplification of the nifH gene. None of the strains showed the capability to renodulate the host plant, neither alone nor in combination with standard rhizobial strains, which was further confirmed by the absence of nodC bands in PCR assay. The results clearly indicate the common existence of nonrhizobial microflora inside the root nodules of legumes, which were thought to be colonized only by rhizobia and were responsible for N2 fixation in leguminous crops. However, with the recent discovery of nodule endophytes from a variety of legumes, as also observed here, it can be assumed that symbiotic rhizobia are not all alone and that these invasive endophytes belonging to various bacterial genera are more than just opportunistic colonizers of specialized nodule niche. PMID:25619106

  18. Novel players in the AP2-miR172 regulatory network for common bean nodulation

    PubMed Central

    Íñiguez, Luis P; Nova-Franco, Bárbara; Hernández, Georgina

    2015-01-01

    The intricate regulatory network for floral organogenesis in plants that includes AP2/ERF, SPL and AGL transcription factors, miR172 and miR156 along with other components is well documented, though its complexity and size keep increasing. The miR172/AP2 node was recently proposed as essential regulator in the legume-rhizobia nitrogen-fixing symbiosis. Research from our group contributed to demonstrate the control of common bean (Phaseolus vulgaris) nodulation by miR172c/AP2-1, however no other components of such regulatory network have been reported. Here we propose AGLs as new protagonists in the regulation of common bean nodulation and discuss the relevance of future deeper analysis of the complex AP2 regulatory network for nodule organogenesis in legumes. PMID:26211831

  19. Increasing Nitrogen Fixation and Seed Development in Soybean Requires Complex Adjustments of Nodule Nitrogen Metabolism and Partitioning Processes.

    PubMed

    Carter, Amanda M; Tegeder, Mechthild

    2016-08-01

    Legumes are able to access atmospheric di-nitrogen (N2) through a symbiotic relationship with rhizobia that reside within root nodules. In soybean, following N2 fixation by the bacteroids, ammonia is finally reduced in uninfected cells to allantoin and allantoic acid [1]. These ureides present the primary long-distance transport forms of nitrogen (N), and are exported from nodules via the xylem for shoot N supply. Transport of allantoin and allantoic acid out of nodules requires the function of ureide permeases (UPS1) located in cells adjacent to the vasculature [2, 3]. We expressed a common bean UPS1 transporter in cortex and endodermis cells of soybean nodules and found that delivery of N from nodules to shoot, as well as seed set, was significantly increased. In addition, the number of transgenic nodules was increased and symbiotic N2 fixation per nodule was elevated, indicating that transporter function in nodule N export is a limiting step in bacterial N acquisition. Further, the transgenic nodules showed considerable increases in nodule N assimilation, ureide synthesis, and metabolite levels. This suggests complex adjustments of nodule N metabolism and partitioning processes in support of symbiotic N2 fixation. We propose that the transgenic UPS1 plants display metabolic and allocation plasticity to overcome N2 fixation and seed yield limitations. Overall, it is demonstrated that transporter function in N export from nodules is a key step for enhancing atmospheric N2 fixation and nodule function and for improving shoot N nutrition and seed development in legumes. PMID:27451897

  20. Penile Epithelioid Angiomatoid Nodule.

    PubMed

    Pirpiris, Athina; Gilbourd, Daniel; Ranasinghe, Anudini; Dill, Tony; Lynnhtun, Kyaw; Rindani, Rahul

    2015-10-01

    Cutaneous epithelioid angiomatoid nodule is a rare clinical entity that is common on the trunk and limbs. This is the first report of penile cutaneous epithelioid angiomatoid nodule. Although it is a benign entity, it must be differentiated from vascular neoplasms, as it can bear similar clinical and pathologic features. PMID:26171823

  1. A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia.

    PubMed

    Chou, Minxia; Xia, Congcong; Feng, Zhao; Sun, Yali; Zhang, Dehui; Zhang, Mingzhe; Wang, Li; Wei, Gehong

    2016-03-01

    Translationally controlled tumor protein (TCTP) is fundamental for the regulation of development and general growth in eukaryotes. Its multiple functions have been deduced from its involvement in several cell pathways, but its potential involvement in symbiotic nodulation of legumes cannot be suggested a priori. In the present work, we identified and characterized from the woody leguminous tree Robinia pseudoacacia a homolog of TCTP, Rpf41, which was up-regulated in the infected roots at 15 days post-inoculation but decreased in the matured nodules. Subcellular location assay showed that Rpf41 protein was located in the plasma membrane, cytoplasm, nucleus, and also maybe in cytoskeleton. Knockdown of Rpf41 via RNA interference (RNAi) resulted in the impaired development of both nodule and root hair. Compared with wild plants, the root and stem length, fresh weight and nodule number per plant was decreased dramatically in Rpf41 RNAi plants. The number of ITs or nodule primordia was also significantly reduced in the Rpf41 RNAi roots. The analyses of nodule ultrastructure showed that the infected cell development in Rpf41 RNAi nodules remained in zone II, which had fewer infected cells. Furthermore, the symbiosomes displayed noticeable shrinkage of bacteroid and peribacteroid space enlargement in the infected cells of Rpf41 RNAi nodules. In the deeper cell layers, a more remarkable aberration of the infected cell ultrastructure was observed, and electron-transparent lesions in the bacteroid cytoplasm were detected. These results identify TCTP as an important regulator of symbiotic nodulation in legume for the first time, and it may be involved in symbiotic cell differentiation and preventing premature aging of the young nodules in R. pseudoacacia. PMID:26711634

  2. [Pulmonary nodules and arachnophobia].

    PubMed

    Colinet, B; Dargent, J-L; Fremault, A

    2014-01-01

    Pulmonary nodules are a common reason for consultation and their investigation must always exclude a possible neoplastic cause. This means that, in addition to a thorough history, investigations may be necessary which are sometimes invasive and therefore potentially a cause of iatrogenic harm. The toxic aetiologies for pulmonary nodules are rare. We report a case of a patient with pulmonary nodules occurring predominantly in the right lung, about 1cm in diameter, non-cavitating without calcification, and sometimes surrounded by a peripheral halo. The nodules were a chance finding during preoperative evaluation. After a comprehensive review, a reaction to an inhaled irritant was the preferred hypothesis, specifically overuse of a compound insecticide containing, in addition to the propellant gas and solvent type hydrocarbon - a mixture of piperonyl butoxide, of esbiothrine and permethrin. Removal of this led to the complete disappearance of nodules. Pathological examination identified bronchiolitis obliterans with organising pneumonia accompanied by non-necrotizing granulomas and lipid vacuoles. PMID:24461445

  3. Human selection and the relaxation of legume defences against ineffective rhizobia.

    PubMed

    Kiers, E Toby; Hutton, Mark G; Denison, R Ford

    2007-12-22

    Enforcement mechanisms are thought to be important in maintaining mutualistic cooperation between species. A clear example of an enforcement mechanism is how legumes impose sanctions on rhizobial symbionts that fail to provide sufficient fixed N2. However, with domestication and breeding in high-soil-N environments, humans may have altered these natural legume defences and reduced the agricultural benefits of the symbiosis. Using six genotypes of soya beans, representing 60 years of breeding, we show that, as a group, older cultivars were better able to maintain fitness than newer cultivars (seed production) when infected with a mixture of effective and ineffective rhizobial strains. Additionally, we found small differences among cultivars in the ratio of effective:ineffective rhizobia released from their nodules, an indicator of future rhizobial strain fitness. When infected by symbionts varying in quality, legume defences against poor-quality partners have apparently worsened under decades of artificial selection. PMID:17939985

  4. Bradyrhizobium sp. Strains That Nodulate the Leguminous Tree Acacia albida Produce Fucosylated and Partially Sulfated Nod Factors

    PubMed Central

    Ferro, Myriam; Lorquin, Jean; Ba, Salif; Sanon, Kadidia; Promé, Jean-Claude; Boivin, Catherine

    2000-01-01

    We determined the structures of Nod factors produced by six different Bradyrhizobium sp. strains nodulating the legume tree Acacia albida (syn. Faidherbia albida). Compounds from all strains were found to be similar, i.e., O-carbamoylated and substituted by an often sulfated methyl fucose and different from compounds produced by Rhizobium-Mesorhizobium-Sinorhizobium strains nodulating other species of the Acaciae tribe. PMID:11055966

  5. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development.

    PubMed

    Nizampatnam, Narasimha Rao; Schreier, Spencer John; Damodaran, Suresh; Adhikari, Sajag; Subramanian, Senthil

    2015-10-01

    Legume nodules result from coordinated interactions between the plant and nitrogen-fixing rhizobia. The phytohormone cytokinin promotes nodule formation, and recent findings suggest that the phytohormone auxin inhibits nodule formation. Here we show that microRNA160 (miR160) is a key signaling element that determines the auxin/cytokinin balance during nodule development in soybean (Glycine max). miR160 appears to promote auxin activity by suppressing the levels of the ARF10/16/17 family of repressor ARF transcription factors. Using quantitative PCR assays and a fluorescence miRNA sensor, we show that miR160 levels are relatively low early during nodule formation and high in mature nodules. We had previously shown that ectopic expression of miR160 in soybean roots led to a severe reduction in nodule formation, coupled with enhanced sensitivity to auxin and reduced sensitivity to cytokinin. Here we show that exogenous cytokinin restores nodule formation in miR160 over-expressing roots. Therefore, low miR160 levels early during nodule development favor cytokinin activity required for nodule formation. Suppression of miR160 levels using a short tandem target mimic (STTM160) resulted in reduced sensitivity to auxin and enhanced sensitivity to cytokinin. In contrast to miR160 over-expressing roots, STTM160 roots had increased nodule formation, but nodule maturation was significantly delayed. Exogenous auxin partially restored proper nodule formation and maturation in STTM160 roots, suggesting that high miR160 activity later during nodule development favors auxin activity and promotes nodule maturation. Therefore, miR160 dictates developmental stage-specific sensitivities to auxin and cytokinin to direct proper nodule formation and maturation in soybean. PMID:26287653

  6. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with LMW RNA group II Sinorhizobium meliloti of Medicago, Melilotus and Trigonella from soils of mainland Spain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several isolates from nodules of Phaseolus vulgaris grown in soil of Lanzarote, an island of the Canaries, had electrophoretic LMW RNA patterns identical with a less common pattern within S. meliloti (assigned as group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northe...

  7. EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula[W

    PubMed Central

    Vernié, Tatiana; Moreau, Sandra; de Billy, Françoise; Plet, Julie; Combier, Jean-Philippe; Rogers, Christian; Oldroyd, Giles; Frugier, Florian; Niebel, Andreas; Gamas, Pascal

    2008-01-01

    Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development. PMID:18978033

  8. A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus.

    PubMed

    Takanashi, Kojiro; Sasaki, Takayuki; Kan, Tomohiro; Saida, Yuka; Sugiyama, Akifumi; Yamamoto, Yoko; Yazaki, Kazufumi

    2016-07-01

    Legume plants can establish symbiosis with soil bacteria called rhizobia to obtain nitrogen as a nutrient directly from atmospheric N2 via symbiotic nitrogen fixation. Legumes and rhizobia form nodules, symbiotic organs in which fixed-nitrogen and photosynthetic products are exchanged between rhizobia and plant cells. The photosynthetic products supplied to rhizobia are thought to be dicarboxylates but little is known about the movement of dicarboxylates in the nodules. In terms of dicarboxylate transporters, an aluminum-activated malate transporter (ALMT) family is a strong candidate responsible for the membrane transport of carboxylates in nodules. Among the seven ALMT genes in the Lotus japonicus genome, only one, LjALMT4, shows a high expression in the nodules. LjALMT4 showed transport activity in a Xenopus oocyte system, with LjALMT4 mediating the efflux of dicarboxylates including malate, succinate, and fumarate, but not tricarboxylates such as citrate. LjALMT4 also mediated the influx of several inorganic anions. Organ-specific gene expression analysis showed LjALMT4 mRNA mainly in the parenchyma cells of nodule vascular bundles. These results suggest that LjALMT4 may not be involved in the direct supply of dicarboxylates to rhizobia in infected cells but is responsible for supplying malate as well as several anions necessary for symbiotic nitrogen fixation, via nodule vasculatures. PMID:27183039

  9. Legume genomics: understanding biology through DNA and RNA sequencing

    PubMed Central

    O'Rourke, Jamie A.; Bolon, Yung-Tsi; Bucciarelli, Bruna; Vance, Carroll P.

    2014-01-01

    Background The legume family (Leguminosae) consists of approx. 17 000 species. A few of these species, including, but not limited to, Phaseolus vulgaris, Cicer arietinum and Cajanus cajan, are important dietary components, providing protein for approx. 300 million people worldwide. Additional species, including soybean (Glycine max) and alfalfa (Medicago sativa), are important crops utilized mainly in animal feed. In addition, legumes are important contributors to biological nitrogen, forming symbiotic relationships with rhizobia to fix atmospheric N2 and providing up to 30 % of available nitrogen for the next season of crops. The application of high-throughput genomic technologies including genome sequencing projects, genome re-sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) by the legume research community has provided major insights into genome evolution, genomic architecture and domestication. Scope and Conclusions This review presents an overview of the current state of legume genomics and explores the role that next-generation sequencing technologies play in advancing legume genomics. The adoption of next-generation sequencing and implementation of associated bioinformatic tools has allowed researchers to turn each species of interest into their own model organism. To illustrate the power of next-generation sequencing, an in-depth overview of the transcriptomes of both soybean and white lupin (Lupinus albus) is provided. The soybean transcriptome focuses on analysing seed development in two near-isogenic lines, examining the role of transporters, oil biosynthesis and nitrogen utilization. The white lupin transcriptome analysis examines how phosphate deficiency alters gene expression patterns, inducing the formation of cluster roots. Such studies illustrate the power of next-generation sequencing and bioinformatic analyses in elucidating the gene networks underlying biological processes. PMID:24769535

  10. [Therapy of thyroid nodules].

    PubMed

    Schott, Matthias

    2015-04-01

    Thyroid nodules are frequent in Germany. In about every fourth person thyroid nodules can be detected. Most of them are benign. Signs for malignancy are hypoechogenicity, microcalcifications, an unregular margin and increased blood perfusion. There is no strict indication for the treatment of benign nodules. In most cases iodine supplementation is sufficient. A combination therapy with levothyroxine and iodine is more efficient for the treatment of larger nodules. Subclinical hyperthyroidism caused by an adenoma does not necessarily need to be treated, whereas manifest hyperthyroidism needs to treated in most cases with antithyroid drug therapy. Radioiodine therapy is the classical indication for the treatment of unifocal autonomous adenomas. A largely increased thyroid gland with and without uni- / multifocal adenomas are often operated. PMID:25831118

  11. MicroRNA166 controls root and nodule development in Medicago truncatula.

    PubMed

    Boualem, Adnane; Laporte, Philippe; Jovanovic, Mariana; Laffont, Carole; Plet, Julie; Combier, Jean-Philippe; Niebel, Andreas; Crespi, Martin; Frugier, Florian

    2008-06-01

    Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture. PMID:18298674

  12. Legumes as a Model Plant Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human population derives the majority of its nutrition either directly or indirectly (via animal protein) from two plant families: the grasses and the legumes. Grain legumes alone supply approximately 33% of human protein nutrition. Thus, it is critical for genetic improvement of legume crop spe...

  13. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    PubMed

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships. PMID:26041807

  14. Monophyly of nodA and nifH Genes across Texan and Costa Rican Populations of Cupriavidus Nodule Symbionts▿

    PubMed Central

    Andam, Cheryl P.; Mondo, Stephen J.; Parker, Matthew A.

    2007-01-01

    nodA and nifH phylogenies for Cupriavidus nodule bacteria from native legumes in Texas and Costa Rica grouped all strains into a single clade nested among neotropical Burkholderia strains. Thus, Cupriavidus symbiotic genes were not acquired independently in different regions and are derived from other Betaproteobacteria rather than from α-rhizobial donors. PMID:17526782

  15. Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata.

    PubMed

    Rubio, Maria C; Becana, Manuel; Kanematsu, Sumio; Ushimaru, Takashi; James, Euan K

    2009-01-01

    The activities and localizations of superoxide dismutases (SODs) were compared in root and stem nodules of the semi-aquatic legume Sesbania rostrata using gel-activity assays and immunogold labelling, respectively. Nodules were fixed by high-pressure freezing and dehydrated by freeze substitution. Stem nodules showed more total and specific SOD activities than root nodules because of the presence of chloroplastic CuZnSOD. Most of the total SOD activity of stem and root nodules resulted from 'cytosolic' CuZnSOD, localized in the cytoplasm and chromatin, and from MnSOD in the bacteroids and in the mitochondria of vascular tissue. FeSOD was present in nodule plastids and in leaf chloroplasts, and was found to be associated with chromatin. Superoxide production was detected histochemically in the vascular bundles and in the infected tissue of stem and root nodules, whereas peroxide accumulation was observed in the cortical cell walls and intercellular spaces, as well as within the infection threads of both nodule types. These data suggest a role of CuZnSOD and FeSOD in protecting nuclear DNA from reactive oxygen species and/or in modulating gene activity. The enhanced levels of CuZnSOD, MnSOD and superoxide production in vascular bundle cells are consistent with a role of CuZnSOD and superoxide in the lignification of xylem vessels, but also suggest additional functions in coping with superoxide production by the high respiratory activity of parenchyma cells. PMID:19594703

  16. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula.

    PubMed

    Wang, Chao; Yu, Haixiang; Luo, Li; Duan, Liujian; Cai, Liuyang; He, Xinxing; Wen, Jiangqi; Mysore, Kirankumar S; Li, Guoliang; Xiao, Aifang; Duanmu, Deqiang; Cao, Yangrong; Hong, Zonglie; Zhang, Zhongming

    2016-10-01

    The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation. PMID:27245091

  17. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus1[OPEN

    PubMed Central

    Heckmann, Anne B.; Kelly, Simon

    2016-01-01

    Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development. PMID:26644503

  18. Effect of Co-Inoculation with Mycorrhiza and Rhizobia on the Nodule Trehalose Content of Different Bean Genotypes

    PubMed Central

    Ballesteros-Almanza, L; Altamirano-Hernandez, J; Peña-Cabriales, J.J; Santoyo, G; Sanchez-Yañez, J.M; Valencia-Cantero, E; Macias-Rodriguez, L; Lopez-Bucio, J; Cardenas-Navarro, R; Farias-Rodriguez, R

    2010-01-01

    Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose dynamics in the Mycorrhiza-Rhizobium-Legume tripartite symbiosis is unknown. The present study explores the role of this tripartite symbiosis in the trehalose content of nodules grown under contrasting moisture conditions. Three wild genotypes (P. filiformis, P. acutifolis and P. vulgaris) and two commercial genotypes of Phaseolus vulgaris (Pinto villa and Flor de Mayo) were used. Co-inoculation treatments were conducted with Glomus intraradices and a mixture of seven native rhizobial strains, and trehalose content was determined by GC/MS. The results showed a negative effect of mycorrhizal inoculation on nodule development, as mycorrhized plants showed fewer nodules and lower nodule dry weight compared to plants inoculated only with Rhizobium. Mycorrhizal colonization was also higher in plants inoculated only with Glomus as compared to plants co-inoculated with both microsymbionts. In regard to trehalose, co-inoculation negatively affects its accumulation in the nodules of each genotype tested. However, the correlation analysis showed a significantly positive correlation between mycorrhizal colonization and nodule trehalose content. PMID:21253462

  19. RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules

    PubMed Central

    Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; von Stieglitz, Ilsabe; Neumann, Janice; Salinas-Riester, Gabriela; Pommerenke, Claudia; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legume nodules are plant tissues with an exceptionally high concentration of phosphorus (P), which, when there is scarcity of P, is preferentially maintained there rather than being allocated to other plant organs. The hypothesis of this study was that nodules are affected before the P concentration in the organ declines during whole-plant P depletion. Nitrogen (N2) fixation and P concentration in various organs were monitored during a whole-plant P-depletion process in Medicago truncatula. Nodule gene expression was profiled through RNA-seq at day 5 of P depletion. Until that point in time P concentration in leaves reached a lower threshold but was maintained in nodules. N2-fixation activity per plant diverged from that of fully nourished plants beginning at day 5 of the P-depletion process, primarily because fewer nodules were being formed, while the activity of the existing nodules was maintained for as long as two weeks into P depletion. RNA-seq revealed nodule acclimation on a molecular level with a total of 1140 differentially expressed genes. Numerous genes for P remobilization from organic structures were increasingly expressed. Various genes involved in nodule malate formation were upregulated, while genes involved in fermentation were downregulated. The fact that nodule formation was strongly repressed with the onset of P deficiency is reflected in the differential expression of various genes involved in nodulation. It is concluded that plants follow a strategy to maintain N2 fixation and viable leaf tissue as long as possible during whole-plant P depletion to maintain their ability to react to emerging new P sources (e.g. through active P acquisition by roots). PMID:25151618

  20. Small RNA pathways and diversity in model legumes: lessons from genomics.

    PubMed

    Bustos-Sanmamed, Pilar; Bazin, Jérémie; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-01-01

    Small non-coding RNAs (smRNA) participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA) and short-interfering RNAs (siRNA) are generated from long double stranded RNA (dsRNA) that are cleaved into 20-24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL). One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO) proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in three legumes: Medicago truncatula, soybean (Glycine max) and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179, and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes, like AGO10 or DCL4, could not yet be detected in M. truncatula available genomic and expressed sequence (EST) databases. In contrast to Arabidopsis, an important gene diversification was observed in the three legume models (for DCL2, AGO4, AGO2, and AGO10) or

  1. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey.

    PubMed

    Irigoyen, J J; Goicoechea, N; Antolín, M C; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Morales, F

    2014-09-01

    Continued emissions of CO2, derived from human activities, increase atmospheric CO2 concentration. The CO2 rise stimulates plant growth and affects yield quality. Effects of elevated CO2 on legume quality depend on interactions with N2-fixing bacteria and mycorrhizal fungi. Growth at elevated CO2 increases photosynthesis under short-term exposures in C3 species. Under long-term exposures, however, plants generally acclimate to elevated CO2 decreasing their photosynthetic capacity. An updated survey of the literature indicates that a key factor, perhaps the most important, that characteristically influences this phenomenon, its occurrence and extent, is the plant source-sink balance. In legumes, the ability of exchanging C for N at nodule level with the N2-fixing symbionts creates an extra C sink that avoids the occurrence of photosynthetic acclimation. Arbuscular mycorrhizal fungi colonizing roots may also result in increased C sink, preventing photosynthetic acclimation. Defoliation (Anthyllis vulneraria, simulated grazing) or shoot cutting (alfalfa, usual management as forage) largely increases root/shoot ratio. During re-growth at elevated CO2, new shoots growth and nodule respiration function as strong C sinks that counteracts photosynthetic acclimation. In the presence of some limiting factor, the legumes response to elevated CO2 is weakened showing photosynthetic acclimation. This survey has identified limiting factors that include an insufficient N supply from bacterial strains, nutrient-poor soils, low P supply, excess temperature affecting photosynthesis and/or nodule activity, a genetically determined low nodulation capacity, an inability of species or varieties to increase growth (and therefore C sink) at elevated CO2 and a plant phenological state or season when plant growth is stopped. PMID:25113447

  2. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules

    PubMed Central

    Zhao, Long Fei; Xu, Ya Jun; Ma, Zhan Qiang; Deng, Zhen Shan; Shan, Chang Juan; Wei, Ge Hong

    2013-01-01

    The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4–60 ºC for 15 min, had a wide range pH tolerance of 6.0–11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (μg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1–0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent. PMID:24294262

  3. Determinants of nodulation competitiveness in Rhizobium etli. Final report for period September 30, 1996--September 29, 1999

    SciTech Connect

    Handelsman, Jo

    2000-01-04

    Nitrogen is a major limiting nutrient in crop production. Chemical fertilizers, which are used extensively to meet crop nitrogen requirements, contribute to the high energy inputs of modern agriculture and cause human health and environmental problems. Legumes and their bacterial associates have long been used in crop rotations to replenish soil nitrogen, but effective and reliable biological nitrogen fixation for beans is prevented by the lack of nodulation competitiveness of many Rhizobium strains used as inoculants. The result is that the inoculant strains will not occupy the host's nodules and no benefit will be derived from inoculation. Many indigenous soil strains of Rhizobium etli bv. phaseoli, the symbiont of bean, nodulate but fix little or no nitrogen, and therefore the nodulation competitiveness problem is significant for achieving maximum nitrogen benefit from bean crops. This project was directed toward developing an understanding of the basis of nodulation competitiveness.

  4. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa

    PubMed Central

    Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.

    2015-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  5. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa.

    PubMed

    Khalifa, Ashraf Y Z; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A; Saleh, Farag A

    2016-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  6. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation

    PubMed Central

    Veliz-Vallejos, Debora F.; van Noorden, Giel E.; Yuan, Mengqi; Mathesius, Ulrike

    2014-01-01

    N-acyl homoserine lactones (AHLs) act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4). However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa) and Trifolium repens (white clover) showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation-independent mechanism. PMID

  7. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  8. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.

    PubMed Central

    Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G

    1995-01-01

    We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala. PMID:7618891

  9. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    PubMed

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. PMID:27373538

  10. Diversifying selection by Desmodiinae legume species on Bradyrhizobium symbionts.

    PubMed

    Parker, Matthew A; Jankowiak, Jennifer G; Landrigan, Grace K

    2015-07-01

    Desmodium and Hylodesmum (Papilionoideae Subtribe Desmodiinae) are among the most common herbaceous perennial legumes native to eastern North America. To analyze the population structure of their Bradyrhizobium sp. root-nodule bacteria, 159 isolates were sampled from ten host species across a 1000 km region. Phylogenetic analysis of four housekeeping loci (2164 bp) and two loci in the symbiosis island (SI) chromosomal region (1374 bp) indicated extensive overlap in symbiont utilization, with each common bacterial clade found on 2-7 species of these legume genera. However, host species differed considerably in the relative proportion of symbionts belonging to different Bradyrhizobium clades. High phylogenetic incongruence between trees for housekeeping loci and SI loci suggested that diversification of these Bradyrhizobium lineages involved substantial horizontal gene transfer. Plant inoculation with strains from six Bradyrhizobium clades revealed marked disparity in relative bacterial reproductive success across four Desmodium species. Estimated yield of Bradyrhizobium progeny cells per plant ranged from zero to >10(9), and strains with high fitness on one host sometimes reproduced poorly on other host species. Diversifying selection on bacteria, arising from differential success in habitats with different Desmodium and Hylodesmum taxa, is therefore likely to affect Bradyrhizobium diversity patterns at the landscape level. PMID:26130822

  11. Genome sequence of Ensifer medicae strain WSM1369; an effective microsymbiont of the annual legume Medicago sphaerocarpos

    PubMed Central

    Terpolilli, Jason; Garau, Giovanni; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Ensifer medicae WSM1369 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1369 was isolated in 1993 from a nodule recovered from the roots of Medicago sphaerocarpos growing at San Pietro di Rudas, near Aggius in Sardinia (Italy). WSM1369 is an effective microsymbiont of the annual forage legumes M. polymorpha and M. sphaerocarpos. Here we describe the features of E. medicae WSM1369, together with genome sequence information and its annotation. The 6,402,557 bp standard draft genome is arranged into 307 scaffolds of 307 contigs containing 6,656 protein-coding genes and 79 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:24976897

  12. Solitary liver nodules.

    PubMed

    Fisher, A W; Curry, B; Jacques, J

    1975-05-17

    There has been confusion in the literature over the nomenclature of solitary liver nodules. Several such lesions have recently been reported in patients taking oral contraceptives. Similarities exist between these cases that suggest they may be examples of focal nodular hyperplasia. Here three further cases are presented. The criteria for making the diagnosis and its importance are discussed. PMID:165001

  13. Solitary pulmonary nodule

    MedlinePlus

    ... chest x-ray Pulmonary nodule, solitary - CT scan Respiratory system References Gotway MB, Panse PM, Gruden JF, Elicker BM. Thoracic radiology. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  14. Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior

    PubMed Central

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; Galardini, Marco; Lagomarsino, Alessandra; Mancuso, Stefano; Marti, Lucia; Marzano, Maria C.; Mocali, Stefano; Squartini, Andrea; Zanardo, Marina; Mengoni, Alessio

    2016-01-01

    In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti–Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti–M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis. PMID:27379128

  15. New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation

    PubMed Central

    Irmer, Simon; Podzun, Nora; Langel, Dorothee; Heidemann, Franziska; Kaltenegger, Elisabeth; Schemmerling, Brigitte; Geilfus, Christoph-Martin; Zörb, Christian; Ober, Dietrich

    2015-01-01

    Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant’s chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant’s chemical defense. PMID:25775562

  16. Mixed Nodule Infection in Sinorhizobium meliloti-Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior.

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; Galardini, Marco; Lagomarsino, Alessandra; Mancuso, Stefano; Marti, Lucia; Marzano, Maria C; Mocali, Stefano; Squartini, Andrea; Zanardo, Marina; Mengoni, Alessio

    2016-01-01

    In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti-Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti-M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis. PMID:27379128

  17. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey

    PubMed Central

    2015-01-01

    Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts. PMID:25685260

  18. A Novel Ankyrin-Repeat Membrane Protein, IGN1, Is Required for Persistence of Nitrogen-Fixing Symbiosis in Root Nodules of Lotus japonicus1[OA

    PubMed Central

    Kumagai, Hirotaka; Hakoyama, Tsuneo; Umehara, Yosuke; Sato, Shusei; Kaneko, Takakazu; Tabata, Satoshi; Kouchi, Hiroshi

    2007-01-01

    Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix− mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8–9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis. PMID:17277093

  19. Importance of rhizobia in Agriculture: potential of the commercial inoculants and native strains for improving legume yields in different land-use systems

    NASA Astrophysics Data System (ADS)

    Lesueur, D.; Atieno, M.; Mathu, S.; Herrmann, L.

    2012-04-01

    Legumes play an important role in the traditional diets of many regions throughout the world because they provide a multitude of benefits to both the soil and other crops grown in combination with them or following them in several cropping systems. The ability of legumes to fix atmospheric nitrogen in association with rhizobia gives them the capacity to grow in very degraded soils. But do we have to systematically inoculate legumes? For example our results suggested that the systematic inoculation of both cowpea and green gram in Kenya with commercial inoculants to improve yields is not really justified, native strains performing better than inoculated strains. But when native rhizobia nodulating legumes are not naturally present, application of rhizobial inoculants is very commonly used. Our results showed that the utilization of effective good-quality rhizobial inoculants by farmers have a real potential to improve legume yields in unfertile soils requesting high applications of mineral fertilizers. For example an effective soybean commercial inoculants was tested in different locations in Kenya (in about 150 farms in 3 mandate areas presenting different soil characteristics and environmental conditions). Application of the rhizobial inoculant significantly increased the soybean yields in all mandate areas (about 75% of the farms). Nodule occupancy analysis showed that a high number of nodules occupied by the inoculated strain did not obviously lead to an increase of soybean production. Soil factors (pH, P, C, N…) seemed to affect the inoculant efficiency whether the strain is occupying the nodules or not. Our statistic analysis showed that soil pH significantly affected nodulation and yield, though the effect was variable depending on the region. We concluded that the competitiveness of rhizobial strains might not be the main factor explaining the effect (or lack of) of legumes inoculation in the field. Another study was aiming to assess if several factors

  20. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution.

    PubMed

    Hewitt, D K L; Mills, G; Hayes, F; Norris, D; Coyle, M; Wilkinson, S; Davies, W

    2016-01-01

    The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation. PMID:26385644

  1. Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots

    PubMed Central

    Robledo, M.; Jiménez-Zurdo, J. I.; Velázquez, E.; Trujillo, M. E.; Zurdo-Piñeiro, J. L.; Ramírez-Bahena, M. H.; Ramos, B.; Díaz-Mínguez, J. M.; Dazzo, F.; Martínez-Molina, E.; Mateos, P. F.

    2008-01-01

    The rhizobia–legume, root-nodule symbiosis provides the most efficient source of biologically fixed ammonia fertilizer for agricultural crops. Its development involves pathways of specificity, infectivity, and effectivity resulting from expressed traits of the bacterium and host plant. A key event of the infection process required for development of this root-nodule symbiosis is a highly localized, complete erosion of the plant cell wall through which the bacterial symbiont penetrates to establish a nitrogen-fixing, intracellular endosymbiotic state within the host. This process of wall degradation must be delicately balanced to avoid lysis and destruction of the host cell. Here, we describe the purification, biochemical characterization, molecular genetic analysis, biological activity, and symbiotic function of a cell-bound bacterial cellulase (CelC2) enzyme from Rhizobium leguminosarum bv. trifolii, the clover-nodulating endosymbiont. The purified enzyme can erode the noncrystalline tip of the white clover host root hair wall, making a localized hole of sufficient size to allow wild-type microsymbiont penetration. This CelC2 enzyme is not active on root hairs of the nonhost legume alfalfa. Microscopy analysis of the symbiotic phenotypes of the ANU843 wild type and CelC2 knockout mutant derivative revealed that this enzyme fulfils an essential role in the primary infection process required for development of the canonical nitrogen-fixing R. leguminosarum bv. trifolii-white clover symbiosis. PMID:18458328

  2. A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis.

    PubMed

    Gully, Djamel; Gargani, Daniel; Bonaldi, Katia; Grangeteau, Cédric; Chaintreuil, Clémence; Fardoux, Joël; Nguyen, Phuong; Marchetti, Roberta; Nouwen, Nico; Molinaro, Antonio; Mergaert, Peter; Giraud, Eric

    2016-06-01

    In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer. PMID:26959836

  3. Controlling the reproductive fate of rhizobia: how universal are legume sanctions?

    PubMed

    Oono, Ryoko; Denison, R Ford; Kiers, E Toby

    2009-01-01

    When a single host plant is infected by more than one strain of rhizobia, they face a tragedy of the commons. Although these rhizobia benefit collectively from nitrogen fixation, which increases host-plant photosynthesis, each strain might nonetheless increase its own reproduction, relative to competing strains, by diverting resources away from nitrogen fixation. Host sanctions can limit the evolutionary success of such rhizobial cheaters (strains that would otherwise benefit by fixing less nitrogen). Host sanctions have been shown in soybean (Glycine max) nodules, where the next generation of symbiotic rhizobia is descended from bacteroids (the differentiated cells that can fix nitrogen). Evidence for sanctions is less clear in legume species that induce rhizobial dimorphism inside their nodules. There, bacteroids are swollen and cannot reproduce regardless of how much nitrogen they fix, but sanctions could reduce reproduction of their undifferentiated clonemates within the same nodule. This rhizobial dimorphism can affect rhizobial evolution, including cheating options, in ways that may affect future generations of legumes. Both the importance of sanctions to hosts and possible physiological mechanisms for sanctions may depend on whether bacteroids are potentially reproductive. PMID:19594691

  4. Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation.

    PubMed

    Osipova, Maria A; Mortier, Virginie; Demchenko, Kirill N; Tsyganov, Victor E; Tikhonovich, Igor A; Lutova, Ludmila A; Dolgikh, Elena A; Goormachtig, Sofie

    2012-03-01

    In legumes, the symbiotic nodules are formed as a result of dedifferentiation and reactivation of cortical root cells. A shoot-acting receptor complex, similar to the Arabidopsis (Arabidopsis thaliana) CLAVATA1 (CLV1)/CLV2 receptor, regulating development of the shoot apical meristem, is involved in autoregulation of nodulation (AON), a mechanism that systemically controls nodule number. The targets of CLV1/CLV2 in the shoot apical meristem, the WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family transcription factors, have been proposed to be important regulators of apical meristem maintenance and to be expressed in apical meristem "organizers." Here, we focus on the role of the WOX5 transcription factor upon nodulation in Medicago truncatula and pea (Pisum sativum) that form indeterminate nodules. Analysis of temporal WOX5 expression during nodulation with quantitative reverse transcription-polymerase chain reaction and promoter-reporter fusion revealed that the WOX5 gene was expressed during nodule organogenesis, suggesting that WOX genes are common regulators of cell proliferation in different systems. Furthermore, in nodules of supernodulating mutants, defective in AON, WOX5 expression was higher than that in wild-type nodules. Hence, a conserved WUS/WOX-CLV regulatory system might control cell proliferation and differentiation not only in the root and shoot apical meristems but also in nodule meristems. In addition, the link between nodule-derived CLE peptides activating AON in different legumes and components of the AON system was investigated. We demonstrate that the identified AON component, NODULATION3 of pea, might act downstream from or beside the CLE peptides during AON. PMID:22232385

  5. nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response1

    PubMed Central

    Veereshlingam, Harita; Haynes, Janine G.; Penmetsa, R. Varma; Cook, Douglas R.; Sherrier, D. Janine; Dickstein, Rebecca

    2004-01-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  6. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus.

    PubMed

    Li, Xiaolin; Lei, Mingjuan; Yan, Zhongyuan; Wang, Qi; Chen, Aimin; Sun, Jie; Luo, Da; Wang, Yanzhang

    2014-01-01

    The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling. PMID:24164597

  7. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems.

    PubMed

    Azarias Guimarães, Amanda; Florentino, Ligiane Aparecida; Alves Almeida, Kize; Lebbe, Liesbeth; Barroso Silva, Karina; Willems, Anne; de Souza Moreira, Fatima Maria

    2015-09-01

    The genus Bradyrhizobium stands out among nitrogen-fixing legume-nodulating bacteria because it predominates among the efficient microsymbionts of forest, forage, and green manure legume species, as well as important species of grain legumes, such as soybean, cowpea, and peanut. Therefore, the diversity of Bradyrhizobium strains is a relevant resource from environmental and economic perspectives, and strains isolated from diverse legume species and land uses in Brazilian tropical ecosystems were assessed in this study. To accomplish this, sequences of four housekeeping genes (atpD, dnaK, gyrB, and recA) were individually analysed, with the first three also being considered using multilocus sequence analysis (MLSA). The sensitivity of the strains to different antibiotics, their tolerance to different levels of salinity, and their ability to nodulate soybean plants were also measured. The phylogenetic trees based on each individual gene, and on the concatenated housekeeping genes, revealed several strain clusters separated from any currently described species. The Bradyrhizobium strains studied were generally resistant to antibiotics. All strains were able to grow at salinity levels of up to 0.5% NaCl, whereas only strains UFLA03-142, UFLA03-143, UFLA03-145, and UFLA03-146 grew in the presence of 1% NaCl. Together, the results indicated that some of the strains studied were potential novel species, indicating that the various soils and ecosystems in Brazil may harbour an as yet unknown diversity of rhizobia. PMID:26234199

  8. Inoculation of Woody Legumes with Selected Arbuscular Mycorrhizal Fungi and Rhizobia To Recover Desertified Mediterranean Ecosystems

    PubMed Central

    Herrera, M. A.; Salamanca, C. P.; Barea, J. M.

    1993-01-01

    Revegetation strategies, either for reclamation or for rehabilitation, are being used to recover desertified ecosystems. Woody legumes are recognized as species that are useful for revegetation of water-deficient, low-nutrient environments because of their ability to form symbiotic associations with rhizobial bacteria and mycorrhizal fungi, which improve nutrient acquisition and help plants to become established and cope with stress situations. A range of woody legumes used in revegetation programs, particularly in Mediterranean regions, were assayed. These legumes included both exotic and native species and were used in a test of a desertified semiarid ecosystem in southeast Spain. Screening for the appropriate plant species-microsymbiont combinations was performed previously, and a simple procedure to produce plantlets with optimized mycorrhizal and nodulated status was developed. The results of a 4-year trial showed that (i) only the native shrub legumes were able to become established under the local environmental conditions (hence, a reclamation strategy is recommended) and (ii) biotechnological manipulation of the seedlings to be used for revegetation (by inoculation with selected rhizobia and mycorrhizal fungi) improved outplanting performance, plant survival, and biomass development. PMID:16348838

  9. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields

    PubMed Central

    2010-01-01

    Background Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. Results The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the β-1,2-cyclic glucan from R. tropici CIAT 899 was co

  10. Legume Information System (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working o...

  11. Effect of dietary legumes on bone-specific gene expression in ovariectomized rats

    PubMed Central

    Moon, Hyoun-Jung; Paik, Doo-Jin; Kim, Deog-Yoon

    2013-01-01

    In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor κB ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-α and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency. PMID:23766879

  12. Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees.

    PubMed

    Stepkowski, Tomasz; Hughes, Colin E; Law, Ian J; Markiewicz, Łukasz; Gurda, Dorota; Chlebicka, Agnieszka; Moulin, Lionel

    2007-05-01

    Bradyrhizobium strains isolated in Europe from Genisteae and serradella legumes form a distinct lineage, designated clade II, on nodulation gene trees. Clade II bradyrhizobia appear to prevail also in the soils of Western Australia and South Africa following probably accidental introduction with seeds of their lupine and serradella hosts. Given this potential for dispersal, we investigated Bradyrhizobium isolates originating from a range of native New World lupines, based on phylogenetic analyses of nodulation (nodA, nodZ, noeI) and housekeeping (atpD, dnaK, glnII, recA) genes. The housekeeping gene trees revealed considerable diversity among lupine bradyrhizobia, with most isolates placed in the Bradyrhizobium japonicum lineage, while some European strains were closely related to Bradyrhizobium canariense. The nodA gene tree resolved seven strongly supported groups (clades I to VII) that correlated with strain geographical origins and to some extent with major Lupinus clades. All European strains were placed in clade II, whereas only a minority of New World strains was placed in this clade. This work, as well as our previous studies, suggests that clade II diversified predominately in the Old World, possibly in the Mediterranean. Most New World isolates formed subclade III.2, nested in a large "pantropical" clade III, which appears to be New World in origin, although it also includes strains originating from nonlupine legumes. Trees generated using nodZ and noeI gene sequences accorded well with the nodA tree, but evidence is presented that the noeI gene may not be required for nodulation of lupine and that loss of this gene is occurring. PMID:17400786

  13. Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules.

    PubMed

    Bianco, C; Senatore, B; Arbucci, S; Pieraccini, G; Defez, R

    2014-07-01

    To evaluate the dose-response effects of endogenous indole-3-acetic acid (IAA) on Medicago plant growth and dry weight production, we increased the synthesis of IAA in both free-living and symbiosis-stage rhizobial bacteroids during Rhizobium-legume symbiosis. For this purpose, site-directed mutagenesis was applied to modify an 85-bp promoter sequence, driving the expression of iaaM and tms2 genes for IAA biosynthesis. A positive correlation was found between the higher expression of IAA biosynthetic genes in free-living bacteria and the increased production of IAA under both free-living and symbiotic conditions. Plants nodulated by RD65 and RD66 strains, synthetizing the highest IAA concentration, showed a significant (up to 73%) increase in the shoot fresh weight and upregulation of nitrogenase gene, nifH, compared to plants nodulated by the wild-type strain. When these plants were analyzed by confocal microscopy, using an anti-IAA antibody, the strongest signal was observed in bacteroids of Medicago sativa RD66 (Ms-RD66) plants, even when they were located in the senescent nodule zone. We show here a simple system to modulate endogenous IAA biosynthesis in bacteria nodulating legumes suitable to investigate which is the maximum level of IAA biosynthesis, resulting in the maximal increase of plant growth. PMID:24814784

  14. Cotton production in rotation with summer legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunn hemp (Crotolaria juncea) is a fast growing tropical legume that can accumulate large amounts of biomass and N in a relatively short period of time during the summer in the southeastern US. This study was conducted to evaluate the potential of using this legume as an N source for cotton (Gossypi...

  15. A sustainable legume biomass energy farming system

    SciTech Connect

    Neathery, J.; Rubel, A.; Stencel, J.; Collins, M.

    1996-12-31

    Before environmentally sensitive areas are converted to biomass energy production, the production, the potential for sustainability of such systems must be assessed. The focus has been on woody or grass crops because of their high potential yields; however, yield sustainability is dependent on the application of fertilizer and lining materials, which in turn contribute to large costs. Growing legumes or mixtures of legumes with grasses could lower or alleviate the need for nitrate fertilizers. The incorporation of legumes into energy cropping systems could: (1) add soil organic matter; (2) introduce biologically fixed N; (3) improve soil structure and texture; (4) reduce soil erosion; (5) reduce production costs; and (6) decrease nitrate run-off in surface waters. Through the {open_quotes}rotation effect{close_quotes}, legumes cause increases in yield of subsequent non-legume crops beyond that accounted for by biologically-fixed N alone. In this paper, we describe a biomass energy system combining legume and grass biomass energy with fertilizer production from these same materials. Preliminary agronomic and engineering assessments for this type of biomass system are presented. The technologies needed to integrate nitrate production with legume energy farming and energy production through legume energy conversion are identified.

  16. Utilization of summer legumes as bioenergy feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume—cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield and subsequent energy yield. S...

  17. Legume proteomics: Progress, prospects, and challenges.

    PubMed

    Rathi, Divya; Gayen, Dipak; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Legumes are the major sources of food and fodder with strong commercial relevance, and are essential components of agricultural ecosystems owing to their ability to carry out endosymbiotic nitrogen fixation. In recent years, legumes have become one of the major choices of plant research. The legume proteomics is currently represented by more than 100 reference maps and an equal number of stress-responsive proteomes. Among the 48 legumes in the protein databases, most proteomic studies have been accomplished in two model legumes, soybean, and barrel medic. This review highlights recent contributions in the field of legume proteomics to comprehend the defence and regulatory mechanisms during development and adaptation to climatic changes. Here, we attempted to provide a concise overview of the progress in legume proteomics and discuss future developments in three broad perspectives: (i) proteome of organs/tissues; (ii) subcellular compartments; and (iii) spatiotemporal changes in response to stress. Such data mining may aid in discovering potential biomarkers for plant growth, in general, apart from essential components involved in stress tolerance. The prospect of integrating proteome data with genome information from legumes will provide exciting opportunities for plant biologists to achieve long-term goals of crop improvement and sustainable agriculture. PMID:26563903

  18. The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene.

    PubMed

    Chaintreuil, Clémence; Gully, Djamel; Hervouet, Catherine; Tittabutr, Panlada; Randriambanona, Herizo; Brown, Spencer C; Lewis, Gwilym P; Bourge, Mickaël; Cartieaux, Fabienne; Boursot, Marc; Ramanankierana, Heriniaina; D'Hont, Angélique; Teaumroong, Neung; Giraud, Eric; Arrighi, Jean-François

    2016-08-01

    The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation. PMID:27061605

  19. Heart of Endosymbioses: Transcriptomics Reveals a Conserved Genetic Program among Arbuscular Mycorrhizal, Actinorhizal and Legume-Rhizobial Symbioses

    PubMed Central

    Tromas, Alexandre; Parizot, Boris; Diagne, Nathalie; Champion, Antony; Hocher, Valérie; Cissoko, Maïmouna; Crabos, Amandine; Prodjinoto, Hermann; Lahouze, Benoit; Bogusz, Didier; Laplaze, Laurent; Svistoonoff, Sergio

    2012-01-01

    To improve their nutrition, most plants associate with soil microorganisms, particularly fungi, to form mycorrhizae. A few lineages, including actinorhizal plants and legumes are also able to interact with nitrogen-fixing bacteria hosted intracellularly inside root nodules. Fossil and molecular data suggest that the molecular mechanisms involved in these root nodule symbioses (RNS) have been partially recycled from more ancient and widespread arbuscular mycorrhizal (AM) symbiosis. We used a comparative transcriptomics approach to identify genes involved in establishing these 3 endosymbioses and their functioning. We analysed global changes in gene expression in AM in the actinorhizal tree C. glauca. A comparison with genes induced in AM in Medicago truncatula and Oryza sativa revealed a common set of genes induced in AM. A comparison with genes induced in nitrogen-fixing nodules of C. glauca and M. truncatula also made it possible to define a common set of genes induced in these three endosymbioses. The existence of this core set of genes is in accordance with the proposed recycling of ancient AM genes for new functions related to nodulation in legumes and actinorhizal plants. PMID:22970303

  20. Terminal Bacteroid Differentiation Is Associated With Variable Morphological Changes in Legume Species Belonging to the Inverted Repeat-Lacking Clade.

    PubMed

    Montiel, Jesús; Szűcs, Attila; Boboescu, Iulian Z; Gherman, Vasile D; Kondorosi, Éva; Kereszt, Attila

    2016-03-01

    Medicago and closely related legume species from the inverted repeat-lacking clade (IRLC) impose terminal differentiation onto their bacterial endosymbionts, manifested in genome endoreduplication, cell enlargement, and loss of cell-division capacity. Nodule-specific cysteine-rich (NCR) secreted host peptides are plant effectors of this process. As bacteroids in other IRLC legumes, such as Cicer arietinum and Glycyrrhiza lepidota, were reported not to display features of terminal differentiation, we investigated the fate of bacteroids in species from these genera as well as in four other species representing distinct genera of the phylogenetic tree for this clade. Bacteroids in all tested legumes proved to be larger in size and DNA content than cultured cells; however, the degree of cell elongation was rather variable in the different species. In addition, the reproductive ability of the bacteroids isolated from these legumes was remarkably reduced. In all IRLC species with available sequence data, the existence of NCR genes was found. These results indicate that IRLC legumes provoke terminal differentiation of their endosymbionts with different morphotypes, probably with the help of NCR peptides. PMID:26713350

  1. Scent glands in legume flowers.

    PubMed

    Marinho, C R; Souza, C D; Barros, T C; Teixeira, S P

    2014-01-01

    Scent glands, or osmophores, are predominantly floral secretory structures that secrete volatile substances during anthesis, and therefore act in interactions with pollinators. The Leguminosae family, despite being the third largest angiosperm family, with a wide geographical distribution and diversity of habits, morphology and pollinators, has been ignored with respect to these glands. Thus, we localised and characterised the sites of fragrance production and release in flowers of legumes, in which scent plays an important role in pollination, and also tested whether there are relationships between the structure of the scent gland and the pollinator habit: diurnal or nocturnal. Flowers in pre-anthesis and anthesis of 12 legume species were collected and analysed using immersion in neutral red, olfactory tests and anatomical studies (light and scanning electron microscopy). The main production site of floral scent is the perianth, especially the petals. The scent glands are distributed in a restricted way in Caesalpinia pulcherrima, Anadenanthera peregrina, Inga edulis and Parkia pendula, constituting mesophilic osmophores, and in a diffuse way in Bauhinia rufa, Hymenaea courbaril, Erythrostemon gilliesii, Poincianella pluviosa, Pterodon pubescens, Platycyamus regnellii, Mucuna urens and Tipuana tipu. The glands are comprised of cells of the epidermis and mesophyll that secrete mainly terpenes, nitrogen compounds and phenols. Relationships between the presence of osmophores and type of anthesis (diurnal and nocturnal) and the pollinator were not found. Our data on scent glands in Leguminosae are original and detail the type of diffuse release, which has been very poorly studied. PMID:23574349

  2. Immunolocalization of PsNLEC-1, a lectin-like glycoprotein expressed in developing pea nodules.

    PubMed Central

    Dahiya, P; Kardailsky, I V; Brewin, N J

    1997-01-01

    The pea (Pisum sativum) nodule lectin gene PsNlec1 is a member of the legume lectin gene family that is strongly expressed in infected pea nodule tissue. A full-length cDNA sequence of PsNlec1 was expressed in Escherichia coli and a specific antiserum was generated from the purified protein. Immunoblotting of material from isolated symbiosomes revealed that the glycoprotein was present in two antigenic isoforms, PsNLEC-1A and PsNLEC-1B. The N-terminal sequence of isoform A showed homology to an eight-amino acid propeptide sequence previously identified from the cDNA sequence of isoform B. In nodule homogenates the antiserum recognized an additional fast-migrating band, PsNLEC-1C. Fractionation studies indicated that PsNLEC-1C was associated with a 100,000 g nodule membrane fraction, suggesting an association with cytoplasmic membrane or vesicles. Immunogold localization in pea nodule tissue sections demonstrated that the PsNLEC-1 antigen was present in the symbiosome compartment and also in the vacuole but revealed differences in distribution between infected host cells in different parts of the nodule. These data suggest that PsNLEC-1 is subject to posttranslational modification and that the various antigenic isoforms can be used to monitor membrane and vesicle targeting during symbiosome development. PMID:9414555

  3. Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria.

    PubMed Central

    Martínez-Hidalgo, Pilar; Galindo-Villardón, Purificación; Igual, José M.; Martínez-Molina, Eustoquio

    2014-01-01

    Biotic interactions can improve agricultural productivity without costly and environmentally challenging inputs. Micromonospora strains have recently been reported as natural endophytes of legume nodules but their significance for plant development and productivity has not yet been established. The aim of this study was to determine the diversity and function of Micromonospora isolated from Medicago sativa root nodules. Micromonospora-like strains from field alfalfa nodules were characterized by BOX-PCR fingerprinting and 16S rRNA gene sequencing. The ecological role of the interaction of the 15 selected representative Micromonospora strains was tested in M. sativa. Nodulation, plant growth and nutrition parameters were analyzed. Alfalfa nodules naturally contain abundant and highly diverse populations of Micromonospora, both at the intra- and at interspecific level. Selected Micromonospora isolates significantly increase the nodulation of alfalfa by Ensifer meliloti 1021 and also the efficiency of the plant for nitrogen nutrition. Moreover, they promote aerial growth, the shoot-to-root ratio, and raise the level of essential nutrients. Our results indicate that Micromonospora acts as a Rhizobia Helper Bacteria (RHB) agent and has probiotic effects, promoting plant growth and increasing nutrition efficiency. Its ecological role, biotechnological potential and advantages as a plant probiotic bacterium (PPB) are also discussed. PMID:25227415

  4. Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp.

    PubMed

    Garg, Neera; Bhandari, Purnima

    2012-01-01

    Cadmium (Cd) causes oxidative damage and affects nodulation and nitrogen fixation process of legumes. Arbuscular mycorrhizal (AM) fungi have been demonstrated to alleviate heavy metal stress of plants. The present study was conducted to assess role of AM in alleviating negative effects of Cd on nodule senescence in Cajanus cajan genotypes differing in their metal tolerance. Fifteen day-old plants were subjected to Cd treatments--25 mg and 50 mg Cd per kg dry soil and were grown with and without Glomus mosseae. Cd treatments led to a decline in mycorrhizal infection (MI), nodule number and dry weights which was accompanied by reductions in leghemoglobin content, nitrogenase activity, organic acid contents. Cd supply caused a marked decrease in nitrogen (N), phosphorus (P), and iron (Fe) contents. Conversely, Cd increased membrane permeability, thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and Cd contents in nodules. AM inoculations were beneficial in reducing the above mentioned harmful effects of Cd and significantly improved nodule functioning. Activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased markedly in nodules of mycorrhizal-stressed plants. The negative effects of Cd were genotype and concentration dependent. PMID:22567695

  5. Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism

    PubMed Central

    Flemetakis, Emmanouil

    2013-01-01

    Symbiotic nitrogen fixation (SNF) involves global changes in gene expression and metabolite accumulation in both rhizobia and the host plant. In order to study the metabolic changes mediated by leaf–root interaction, photosynthesis was limited in leaves by exposure of plants to darkness, and subsequently gene expression was profiled by real-time reverse transcription–PCR (RT–PCR) and metabolite levels by gas chromatography–mass spectrometry in the nodules of the model legume Lotus japonicus. Photosynthetic carbon deficiency caused by prolonged darkness affected many metabolic processes in L. japonicus nodules. Most of the metabolic genes analysed were down-regulated during the extended dark period. In addition to that, the levels of most metabolites decreased or remained unaltered, although accumulation of amino acids was observed. Reduced glycolysis and carbon fixation resulted in lower organic acid levels, especially of malate, the primary source of carbon for bacteroid metabolism and SNF. The high amino acid concentrations together with a reduction in total protein concentration indicate possible protein degradation in nodules under these conditions. Interestingly, comparisons between amino acid and protein content in various organs indicated systemic changes in response to prolonged darkness between nodulated and non-nodulated plants, rendering the nodule a source organ for both C and N under these conditions. PMID:23404899

  6. A mechanistic molecular test of the plant-sanction hypothesis in legume-rhizobia mutualism

    NASA Astrophysics Data System (ADS)

    Marco, Diana E.; Pérez-Arnedo, Rebeca; Hidalgo-Perea, Ángeles; Olivares, José; Ruiz-Sainz, José E.; Sanjuán, Juan

    2009-09-01

    The origin and persistence of mutualism is difficult to explain because of the widespread occurrence of exploitative, 'cheating' partners. As a policing strategy stabilising intraspecific cooperation, host sanctions against non-N 2 fixing, cheating symbionts have been proposed to stabilise mutualism in legume-rhizobium symbiosis. Mechanism of penalisations would include decreased nodular rhizobial viability and/or early nodule senescence. We tested these potential mechanisms of penalisations in split-root experiments using two soybean varieties and two rhizobial strains, a cooperative, normal N 2-fixing strain and an isogenic non-fixing derivative. We found no differences in the number of viable rhizobia recovered from nodules and no differential expression of a nodular senescence molecular marker. Thus, our results do not support the hypothesis of plant sanctions acting against cheating rhizobia in our experimental conditions.

  7. [The defense and regulatory mechanisms during development of legume-Rhizobium symbiosis].

    PubMed

    Glian'ko, A K; Akimova, G P; Sokolova, M G; Makarova, L E; Vasil'eva, G G

    2007-01-01

    The roles of indolylacetic acid, the peroxidase system, catalase, active oxygen species, and phenolic compounds in the physiological and biochemical mechanisms involved in the autoregulation of nodulation in the developing legume-Rhizobium symbiosis were studied. It was inferred that the concentration of indolylacetic acid in the roots of inoculated plants, controlled by the enzymes of the peroxidase complex, is the signal permitting or limiting nodulation at the initial stages of symbiotic interaction. Presumably, the change in the level of active oxygen species is determined by an antioxidant activity of phenolic compounds. During the development of symbiosis, phytohormones, antioxidant enzymes, and active oxygen species may be involved in the regulation of infection via both a direct antibacterial action and regulation of functional activity of the host plant defense systems. PMID:17619575

  8. Nitrogen assimilation in alfalfa: isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves.

    PubMed Central

    Shi, L; Twary, S N; Yoshioka, H; Gregerson, R G; Miller, S S; Samac, D A; Gantt, J S; Unkefer, P J; Vance, C P

    1997-01-01

    Asparagine, the primary assimilation product from N2 fixation in temperate legumes and the predominant nitrogen transport product in many plant species, is synthesized via asparagine synthetase (AS; EC 6.3.5.4). Here, we report the isolation and characterization of a cDNA and a gene encoding the nodule-enhanced form of AS from alfalfa. The AS gene is comprised of 13 exons separated by 12 introns. The 5' flanking region of the AS gene confers nodule-enhanced reporter gene activity in transformed alfalfa. This region also confers enhanced reporter gene activity in dark-treated leaves. These results indicate that the 5' upstream region of the AS gene contains elements that affect expression in root nodules and leaves. Both AS mRNA and enzyme activity increased approximately 10- to 20-fold during the development of effective nodules. Ineffective nodules have strikingly reduced amounts of AS transcript. Alfalfa leaves have quite low levels of AS mRNA and protein; however, exposure to darkness resulted in a considerable increase in both. In situ hybridization with effective nodules and beta-glucuronidase staining of nodules from transgenic plants showed that AS is expressed in both infected and uninfected cells of the nodule symbiotic zone and in the nodule parenchyma. RNA gel blot analysis and in situ hybridization results are consistent with the hypothesis that initial AS expression in nodules is independent of nitrogenase activity. PMID:9286111

  9. Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a Threatened Species Native to the Brazilian Cerrado

    PubMed Central

    Fonseca, Márcia Bacelar; Peix, Alvaro; de Faria, Sergio Miana; Mateos, Pedro F.; Rivera, Lina P.; Simões-Araujo, Jean L.; França, Marcel Giovanni Costa; dos Santos Isaias, Rosy Mary; Cruz, Cristina; Velázquez, Encarna; Scotti, Maria Rita; Sprent, Janet I.; James, Euan K.

    2012-01-01

    The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N2-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N2 fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N2-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii. PMID:23185349

  10. Lignification of cell walls of infected cells in Casuarina glauca nodules that depend on symplastic sugar supply is accompanied by reduction of plasmodesmata number and narrowing of plasmodesmata.

    PubMed

    Schubert, Maria; Koteyeva, Nouria K; Zdyb, Anna; Santos, Patricia; Voitsekhovskaja, Olga V; Demchenko, Kirill N; Pawlowski, Katharina

    2013-04-01

    The oxygen protection system for the bacterial nitrogen-fixing enzyme complex nitrogenase in actinorhizal nodules of Casuarina glauca resembles that of legume nodules: infected cells contain large amounts of the oxygen-binding protein hemoglobin and are surrounded by an oxygen diffusion barrier. However, while in legume nodules infected cells are located in the central tissue, actinorhizal nodules are composed of modified lateral roots with infected cells in the expanded cortex. Since an oxygen diffusion barrier around the entire cortex would also block oxygen access to the central vascular system where it is required to provide energy for transport processes, here each individual infected cell is surrounded with an oxygen diffusion barrier. In order to assess the effect of these oxygen diffusion barriers on oxygen supply for energy production for transport processes, apoplastic and symplastic sugar transport pathways in C. glauca nodules were examined. The results support the idea that sugar transport to and within the nodule cortex relies to a large extent on the less energy-demanding symplastic mechanism. This is in line with the assumption that oxygen access to the nodule vascular system is substantially restricted. In spite of this dependence on symplastic transport processes to supply sugars to infected cells, plasmodesmal connections between infected cells, and to a lesser degree with uninfected cells, were reduced during the differentiation of infected cells. PMID:22924772

  11. Genotype Delimitation in the Nod-Independent Model Legume Aeschynomene evenia

    PubMed Central

    Arrighi, Jean-François; Cartieaux, Fabienne; Chaintreuil, Clémence; Brown, Spencer; Boursot, Marc; Giraud, Eric

    2013-01-01

    Research on the nitrogen-fixing symbiosis has been so far focused on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some semi-aquatic Aeschynomene species present the distinctive feature to form nitrogen-fixing nodules on both roots and stems following elicitation by photosynthetic bradyrhizobia that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the molecular mechanisms of this unique Nod-independent nitrogen-fixing symbiosis, we previously identified A. evenia C. Wright as an appropriate model legume, because it displays all the requisites for molecular and genetic approaches. To advance the use of this new model legume species, here we characterized the intraspecific diversity found in A. evenia. For this, the accessions available in germplasm banks were collected and subjected to morphological investigations, genotyping with RAPD and SSR markers, molecular phylogenies using ITS and single nuclear gene sequences, and cross-compatibility tests. These combined analyses revealed an important intraspecific differentiation that led us to propose a new taxonomic classification for A. evenia comprising two subspecies and four varieties. The A. evenia ssp. evenia contains var. evenia and var. pauciciliata whereas A. evenia ssp. serrulata comprises var. serrulata and var. major. This study provides information to exploit efficiently the diversity encountered in A. evenia and proposes subsp. evenia as the most appropriate subspecies for future projects aimed at identifying plant determinants of the Nod-independent symbiotic process. PMID:23717496

  12. Potential of summer legumes for thermochemical conversion to synthetic fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summer legumes are commonly used worldwide in crop rotations as a nitrogen source. One particular legume, sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding, tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer...

  13. Genetics and biochemistry of the Rhizobium meliloti acidic extracellular heteropolysaccharide and its role in nodulation: Annual report for the period 1 June 1987-31 May 1988

    SciTech Connect

    Leigh, J.A.

    1988-01-01

    The symbiotic association of Rhizobium with legumes results in a vital supply of inexpensive nitrogen for the growth of crops such as soybean and alfalfa. In a complex series of events, the bacterial symbiont, Rhizobium, induces the formation of a specialilzed root structure, the nodule. Rhizobium then enters the cells of the nodule and fixes nitrogen. We are interested in an extracellular polysaccharide, produced by Rhizobium, which is required for nodule entry. We have found that R. meliloti mutants which produce the polysaccharide but fail to enter nodules, actually produce an abnormal form of the polysacchardie which lacks succinate. Recently we have discovered a second polysaccharide which can be produced in place of the first polysacchaaride and also satisfy the requirement for nodule entry. We are studying the gentic regulation of the production of the two polysaccharides.

  14. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules.

    PubMed Central

    Lopez-Lara, I M; Orgambide, G; Dazzo, F B; Olivares, J; Toro, N

    1993-01-01

    Rhizobium sp. wild-type strain GRH2 was originally isolated from root nodules of the leguminous tree Acacia cyanophylla and has a broad host range which includes herbaceous legumes, e.g., Trifolium spp. We examined the extracellular exopolysaccharides (EPSs) produced by strain GRH2 and found three independent glycosidic structures: a high-molecular-weight acidic heteropolysaccharide which is very similar to the acidic EPS produced by Rhizobium leguminosarum biovar trifolii ANU843, a low-molecular-weight native heterooligosaccharide resembling a dimer of the repeat unit of the high-molecular-weight EPS, and low-molecular-weight neutral beta (1,2)-glucans. A Tn5 insertion mutant derivative of GRH2 (exo-57) that fails to form acidic heteropolysaccharides was obtained. This Exo- mutant formed nitrogen-fixing nodules on Acacia plants but infected a smaller proportion of cells in the central zone of the nodules than did wild-type GRH2. In addition, the exo-57 mutant failed to nodulate several herbaceous legume hosts that are nodulated by wild-type strain GRH2. Images PMID:8491702

  15. [Benign solitary thyroid nodule (BSTN)].

    PubMed

    Pencea, V; Tiron, V; Zbranca, E; Dudeanu, I; Baran, T; Dobrescu, G; Lazăr, C; Dolinescu, C; Strat, V

    1982-01-01

    Out of a series of 210 patients (193 women and 17 men) with BSTN, 62% presented an warm nodule, 25.2% a hot nodule and 11.9% a cold nodule. The highest incidence of the nodule was noticed round the age of 40-50 years. The most common site was the middle and lower area of the right thyroid lobe. The thyroid scintigram provided orientative data regarding the nature of BSTN, the treatment indication being the surgical intervention. Histopathologically, polymorphic aspects ranging from anizofollicular adenoma, adenomatous proliferations areas and hyperfunctional aspect to degenerative sclerous alterations and lymphoplasmocitary infiltrations were noticed. The current hypotheses regarding the etiopathogeny of nodule forming process are discussed. Based on some data in the literature, we consider the nodularization of the thyroid gland as a reactional zone functional desynchronization in the conditions of some great variations of the iodate intaxe. PMID:25588244

  16. Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family.

    PubMed

    Dash, Sudhansu; Campbell, Jacqueline D; Cannon, Ethalinda K S; Cleary, Alan M; Huang, Wei; Kalberer, Scott R; Karingula, Vijay; Rice, Alex G; Singh, Jugpreet; Umale, Pooja E; Weeks, Nathan T; Wilkey, Andrew P; Farmer, Andrew D; Cannon, Steven B

    2016-01-01

    Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the 'Legume Federation' project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs. PMID:26546515

  17. Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    PubMed Central

    Dash, Sudhansu; Campbell, Jacqueline D.; Cannon, Ethalinda K.S.; Cleary, Alan M.; Huang, Wei; Kalberer, Scott R.; Karingula, Vijay; Rice, Alex G.; Singh, Jugpreet; Umale, Pooja E.; Weeks, Nathan T.; Wilkey, Andrew P.; Farmer, Andrew D.; Cannon, Steven B.

    2016-01-01

    Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the ‘Legume Federation’ project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs. PMID:26546515

  18. Effects of nano-TiO₂ on the agronomically-relevant Rhizobium-legume symbiosis.

    PubMed

    Fan, Ruimei; Huang, Yu Chu; Grusak, Michael A; Huang, C P; Sherrier, D Janine

    2014-01-01

    The impact of nano-TiO₂ on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO₂ did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-TiO₂ exposure did impact plant development by decreasing the number of secondary lateral roots. Cultured R. leguminosarum bv. viciae 3841 was also impacted by exposure to nano-TiO₂, resulting in morphological changes to the bacterial cells. Moreover, the interaction between these two organisms was disrupted by nano-TiO₂ exposure, such that root nodule development and the subsequent onset of nitrogen fixation were delayed. Further, the polysaccharide composition of the walls of infected cells of nodules was altered, suggesting that the exposure induced a systemic response in host plants. Therefore, nano-TiO₂ contamination in the environment is potentially hazardous to the Rhizobium-legume symbiosis system. PMID:23933452

  19. Direct and interactive effects of light and nutrients on the legume-rhizobia mutualism

    NASA Astrophysics Data System (ADS)

    Lau, Jennifer A.; Bowling, Evan James; Gentry, Lowell E.; Glasser, Paul A.; Monarch, Elizabeth A.; Olesen, Whitney M.; Waxmonsky, Jillian; Young, Ryan Thomas

    2012-02-01

    The relative abundance of traded resources can alter the outcomes of symbioses, potentially shifting mutually-beneficial interactions into interactions that are detrimental to one or both partners. We manipulated the legume-rhizobia symbiosis and light and nutrient levels to investigate how the net growth benefits to both partners shift across environments differing in the availability of both traded resources. In low nutrient, high light environments, rhizobia increased mean plant biomass by 62%. In contrast, when plants were light-limited, rhizobia did not increase above-ground biomass and reduced mean below-ground biomass by 46%. Similarly, rhizobia only increased plant biomass under low nutrient conditions. Resource availability also affected nodule traits correlated with rhizobia fitness, with light-limited plants producing fewer and smaller nodules. Our results suggest that the growth benefits to both partners in the legume-rhizobia symbiosis depend on the availability of both traded resources. We also detected evidence, however, that plants may reduce investment in symbionts as the net benefits of association decrease, potentially limiting how far this interaction shifts toward parasitism in low-light, high nutrient environments.

  20. Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation.

    PubMed

    Abdel-Lateif, Khalid; Vaissayre, Virginie; Gherbi, Hassen; Verries, Clotilde; Meudec, Emmanuelle; Perrine-Walker, Francine; Cheynier, Véronique; Svistoonoff, Sergio; Franche, Claudine; Bogusz, Didier; Hocher, Valérie

    2013-09-01

    Nitrogen-fixing root nodulation is confined to four plant orders, including > 14,000 Leguminosae, one nonlegume genus Parasponia and c. 200 actinorhizal species that form symbioses with rhizobia and Frankia bacterial species, respectively. Flavonoids have been identified as plant signals and developmental regulators for nodulation in legumes and have long been hypothesized to play a critical role during actinorhizal nodulation. However, direct evidence of their involvement in actinorhizal symbiosis is lacking. Here, we used RNA interference to silence chalcone synthase, which is involved in the first committed step of the flavonoid biosynthetic pathway, in the actinorhizal tropical tree Casuarina glauca. Transformed flavonoid-deficient hairy roots were generated and used to study flavonoid accumulation and further nodulation. Knockdown of chalcone synthase expression reduced the level of specific flavonoids and resulted in severely impaired nodulation. Nodule formation was rescued by supplementing the plants with naringenin, which is an upstream intermediate in flavonoid biosynthesis. Our results provide, for the first time, direct evidence of an important role for flavonoids during the early stages of actinorhizal nodulation. PMID:23692063

  1. Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s.l.

    PubMed Central

    Ardley, Julie K.; Reeve, Wayne G.; O'Hara, Graham W.; Yates, Ron J.; Dilworth, Michael J.; Howieson, John G.

    2013-01-01

    Background and Aims The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of rhizobial strains isolated from species of Lotononis s.l. to nodulate Listia, Leobordea and Lotononis s.s. hosts and by examining the morphology and structure of the resulting nodules. Methods Rhizobia were characterized by sequencing their 16S rRNA and nodA genes. Nodulation and N2 fixation on eight taxonomically diverse Lotononis s.l. species were determined in glasshouse trials. Nodules of all hosts, and the process of infection and nodule initiation in Listia angolensis and Listia bainesii, were examined by light microscopy. Key Results Rhizobia associated with Lotononis s.l. were phylogenetically diverse. Leobordea and Lotononis s.s. isolates were most closely related to Bradyrhizobium spp., Ensifer meliloti, Mesorhizobium tianshanense and Methylobacterium nodulans. Listia angolensis formed effective nodules only with species of Microvirga. Listia bainesii nodulated only with pigmented Methylobacterium. Five lineages of nodA were found. Listia angolensis and L. bainesii formed lupinoid nodules, whereas nodules of Leobordea and Lotononis s.s. species were indeterminate. All effective nodules contained uniformly infected central tissue. Listia angolensis and L. bainesii nodule initials occurred on the border of the hypocotyl and along the tap root, and nodule primordia developed in the outer cortical layer. Neither root hair curling nor infection threads were seen. Conclusions Two specificity groups occur within Lotononis s.l.: Listia species are symbiotically specific, while species of Leobordea and Lotononis s.s. are generally promiscuous and interact with rhizobia of

  2. The application of ascorbate or its immediate precursor, galactono-1,4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress.

    PubMed

    Zabalza, Ana; Gálvez, Loli; Marino, Daniel; Royuela, Mercedes; Arrese-Igor, Cesar; González, Esther M

    2008-05-26

    Nitrogen fixation in legumes is dramatically inhibited by abiotic stresses, and this reduction is often associated with oxidative damage. Although ascorbate (ASC) has been firmly associated with antioxidant defence, recent studies have suggested that the functions of ASC are related primarily to developmental processes. This study examines the hypothesis that ASC is involved in alleviating the oxidative damage to nodules caused by an increase in reactive oxygen species (ROS) under water stress. The hypothesis was tested by supplying 5mM ASC to pea plants (Pisum sativum L.) experiencing moderate water stress (ca. -1 MPa) and monitoring plant responses in relation to those experiencing the same water stress without ASC. A supply of exogenous ASC increased the nodule ASC+dehydroascorbate (DHA) pool compared to water-stressed nodules without ASC, and significantly modulated the response to water stress of the unspecific guaiacol peroxidase (EC 1.11.1.7) in leaves and nodules. However, ASC supply did not produce recovery from water stress in other nodule antioxidant enzymes, nodule carbon and nitrogen enzymes, or nitrogen fixation. The supply of the immediate ASC precursor, galactono-1,4-lactone (GL), increased the nodule ASC+DHA pool, but also failed to prevent the decline of nitrogen fixation and the reduction of carbon flux in nodules. These results suggest that ASC has a limited role in preventing the negative effects of water stress on nodule metabolism and nitrogen fixation. PMID:17931744

  3. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  4. [Analysis of Symbiotic Genes of Leguminous Plants Nodule Bacteria Grown in the Southern Urals].

    PubMed

    Baymiev, An Kh; Ivanova, E S; Gumenko, R S; Chubukova, O V; Baymiev, Al Kh

    2015-12-01

    Bacterial strains isolated from the nodules, tissues, and root surface of wild legumes growing in the Southern Urals related to the tribes Galegeae, Hedysareae, Genisteae, Trifolieae, and Loteae were examined for the presence in their genomes of symbiotic (sym) genes. It was found that the sym-genes are present in microorganisms isolated only from the nodules of the analyzed plants (sym+ -strains). Phylogenetic analysis of sym+ -strains on the basis of a comparative analysis of 16S rRNA gene sequences showed that sym+ -strains belong to five families of nodule bacteria: Mesorhizobium, Bradyrhizobium, Sinorhizobium, Rhizobium, and Phyllobacterium. A study the phylogeny of the sym-genes showed that the nodule bacteria of leguminous plants of the Southern Urals at the genus level are mainly characterized by a parallel evolution of symbiotic genes and the 16S rRNA gene. Thus, cases of horizontal transfer of sym genes, which sometimes leads to the formation of certain types of atypical rhizobial strains ofleguminous plants, are detected in nodule bacteria populations. PMID:27055295

  5. Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula

    PubMed Central

    van Noorden, Giel E.; Verbeek, Rob; Dinh, Quy Dung; Jin, Jian; Green, Alexandra; Ng, Jason Liang Pin; Mathesius, Ulrike

    2016-01-01

    The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes. PMID:27384556

  6. Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula.

    PubMed

    van Noorden, Giel E; Verbeek, Rob; Dinh, Quy Dung; Jin, Jian; Green, Alexandra; Ng, Jason Liang Pin; Mathesius, Ulrike

    2016-01-01

    The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes. PMID:27384556

  7. MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula.

    PubMed

    Kryvoruchko, Igor S; Sinharoy, Senjuti; Torres-Jerez, Ivone; Sosso, Davide; Pislariu, Catalina I; Guan, Dian; Murray, Jeremy; Benedito, Vagner A; Frommer, Wolf B; Udvardi, Michael K

    2016-05-01

    Optimization of nitrogen fixation by rhizobia in legumes is a key area of research for sustainable agriculture. Symbiotic nitrogen fixation (SNF) occurs in specialized organs called nodules and depends on a steady supply of carbon to both plant and bacterial cells. Here we report the functional characterization of a nodule-specific Suc transporter, MtSWEET11 from Medicago truncatula MtSWEET11 belongs to a clade of plant SWEET proteins that are capable of transporting Suc and play critical roles in pathogen susceptibility. When expressed in mammalian cells, MtSWEET11 transported sucrose (Suc) but not glucose (Glc). The MtSWEET11 gene was found to be expressed in infected root hair cells, and in the meristem, invasion zone, and vasculature of nodules. Expression of an MtSWEET11-GFP fusion protein in nodules resulted in green fluorescence associated with the plasma membrane of uninfected cells and infection thread and symbiosome membranes of infected cells. Two independent Tnt1-insertion sweet11 mutants were uncompromised in SNF Therefore, although MtSWEET11 appears to be involved in Suc distribution within nodules, it is not crucial for SNF, probably because other Suc transporters can fulfill its role(s). PMID:27021190

  8. MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula1[OPEN

    PubMed Central

    Torres-Jerez, Ivone; Sosso, Davide; Guan, Dian; Frommer, Wolf B.

    2016-01-01

    Optimization of nitrogen fixation by rhizobia in legumes is a key area of research for sustainable agriculture. Symbiotic nitrogen fixation (SNF) occurs in specialized organs called nodules and depends on a steady supply of carbon to both plant and bacterial cells. Here we report the functional characterization of a nodule-specific Suc transporter, MtSWEET11 from Medicago truncatula. MtSWEET11 belongs to a clade of plant SWEET proteins that are capable of transporting Suc and play critical roles in pathogen susceptibility. When expressed in mammalian cells, MtSWEET11 transported sucrose (Suc) but not glucose (Glc). The MtSWEET11 gene was found to be expressed in infected root hair cells, and in the meristem, invasion zone, and vasculature of nodules. Expression of an MtSWEET11-GFP fusion protein in nodules resulted in green fluorescence associated with the plasma membrane of uninfected cells and infection thread and symbiosome membranes of infected cells. Two independent Tnt1-insertion sweet11 mutants were uncompromised in SNF. Therefore, although MtSWEET11 appears to be involved in Suc distribution within nodules, it is not crucial for SNF, probably because other Suc transporters can fulfill its role(s). PMID:27021190

  9. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules.

    PubMed

    Martínez-Hidalgo, Pilar; García, Juan M; Pozo, María J

    2015-01-01

    Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation. In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity. PMID:26388861

  10. Lignin Modification Leads to Increased Nodule Numbers in Alfalfa1[C][W][OPEN

    PubMed Central

    Gallego-Giraldo, Lina; Bhattarai, Kishor; Pislariu, Catalina I.; Nakashima, Jin; Jikumaru, Yusuke; Kamiya, Yuji; Udvardi, Michael K.; Monteros, Maria J.; Dixon, Richard A.

    2014-01-01

    Reduction of lignin levels in the forage legume alfalfa (Medicago sativa) by down-regulation of the monolignol biosynthetic enzyme hydroxycinnamoyl coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) results in strongly increased digestibility and processing ability of lignocellulose. However, these modifications are often also associated with dwarfing and other changes in plant growth. Given the importance of nitrogen fixation for legume growth, we evaluated the impact of constitutively targeted lignin modification on the belowground organs (roots and nodules) of alfalfa plants. HCT down-regulated alfalfa plants exhibit a striking reduction in root growth accompanied by an unexpected increase in nodule numbers when grown in the greenhouse or in the field. This phenotype is associated with increased levels of gibberellins and certain flavonoid compounds in roots. Although HCT down-regulation reduced biomass yields in both the greenhouse and field experiments, the impact on the allocation of nitrogen to shoots or roots was minimal. It is unlikely, therefore, that the altered growth phenotype of reduced-lignin alfalfa is a direct result of changes in nodulation or nitrogen fixation efficiency. Furthermore, HCT down-regulation has no measurable effect on carbon allocation to roots in either greenhouse or 3-year field trials. PMID:24406794

  11. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules

    PubMed Central

    Martínez-Hidalgo, Pilar; García, Juan M.; Pozo, María J.

    2015-01-01

    Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation. In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity. PMID:26388861

  12. Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation

    PubMed Central

    González-Guerrero, Manuel; Matthiadis, Anna; Sáez, Áez;ngela; Long, Terri A.

    2014-01-01

    Symbiotic nitrogen fixation is one of the most promising and immediate alternatives to the overuse of polluting nitrogen fertilizers for improving plant nutrition. At the core of this process are a number of metalloproteins that catalyze and provide energy for the conversion of atmospheric nitrogen to ammonia, eliminate free radicals produced by this process, and create the microaerobic conditions required by these reactions. In legumes, metal cofactors are provided to endosymbiotic rhizobia within root nodule cortical cells. However, low metal bioavailability is prevalent in most soils types, resulting in widespread plant metal deficiency and decreased nitrogen fixation capabilities. As a result, renewed efforts have been undertaken to identify the mechanisms governing metal delivery from soil to the rhizobia, and to determine how metals are used in the nodule and how they are recycled once the nodule is no longer functional. This effort is being aided by improved legume molecular biology tools (genome projects, mutant collections, and transformation methods), in addition to state-of-the-art metal visualization systems. PMID:24592271

  13. Identification of a new pea gene, PsNlec1, encoding a lectin-like glycoprotein isolated from the symbiosomes of root nodules.

    PubMed Central

    Kardailsky, I V; Sherrier, D J; Brewin, N J

    1996-01-01

    A 27-kD glycoprotein antigen recognized by monoclonal antibody MAC266 was purified from isolated symbiosomes derived from pea (Pisum sativum) root nodules containing Rhizobium. The N-terminal amino acid sequence was obtained, and the corresponding cDNA clone was isolated by a polymerase chain reaction-based strategy. The clone contained a single open reading frame, and the gene was termed PsNlec1. Phylogenetic analysis of 31 legume sequences showed that the PsNlec1 protein is related to the legume lectin family but belongs to a subgroup that is very different from pea seed lectin. Expression of the PsNlec1 transcript was much stronger in nodules than in other parts of the plant. It was found in both infected and uninfected cells in the central tissue of the nodule and in the stele of the root near the attachment point of the nodule. When uninfected pea seedlings were grown on medium containing nitrate, weak transcription of PsNlec1 was observed in the root system. The identification of PsNlec1 inside the symbiosome is consistent with the observation that legume lectins are generally vacuolar proteins that may serve as transient storage components. PMID:8685275

  14. Impact of the energy crop Jatropha curcas L. on the composition of rhizobial populations nodulating cowpea (Vigna unguiculata L.) and acacia (Acacia seyal L.).

    PubMed

    Dieng, Amadou; Duponnois, Robin; Floury, Antoine; Laguerre, Gisèle; Ndoye, Ibrahima; Baudoin, Ezékiel

    2015-03-01

    Jatropha curcas, a Euphorbiaceae species that produces many toxicants, is increasingly planted as an agrofuel plant in Senegal. The purpose of this study was to determine whether soil priming induced by J. curcas monoculture could alter the rhizobial populations that nodulate cowpea and acacia, two locally widespread legumes. Soil samples were transferred into a greenhouse from three fields previously cultivated with Jatropha for 1, 2, and 15 years, and the two trap legumes were grown in them. Control soil samples were also taken from adjacent Jatropha-fallow plots. Both legumes tended to develop fewer but larger nodules when grown in Jatropha soils. Nearly all the nifH sequences amplified from nodule DNA were affiliated to the Bradyrhizobium genus. Only sequences from Acacia seyal nodules grown in the most recent Jatropha plantation were related to the Mesorhizobium genus, which was much a more conventional finding on A. seyal than the unexpected Bradyrhizobium genus. Apart from this particular case, only minor differences were found in the respective compositions of Jatropha soil versus control soil rhizobial populations. Lastly, the structure of these rhizobial populations was systematically imbalanced owing to the overwhelming dominance of a very small number of nifH genotypes, some of which were identical across soil types or even sites. Despite these weak and sparse effects on rhizobial diversity, future investigations should focus on the characterization of the nitrogen-fixing abilities of the predominant rhizobial strains. PMID:25466917

  15. Allograft pancreas: pale acinar nodules.

    PubMed

    Troxell, Megan L; Drachenberg, Cinthia

    2016-08-01

    Microscopic pale-staining acinar nodules were characterized in native pancreas in the 1980s under a variety of names but have been infrequently reported since. We retrospectively studied the frequency and characteristics of pale acinar nodules in allograft pancreas biopsies, as compared to a sampling of native pancreas specimens at our center. Pale acinar nodules were present in 13% (9/69) of allograft biopsies from 22% (7/32) of transplant patients, and 23% (5/22) of native pancreas surgical specimens, although more nodules per pancreas area were present in allograft needle biopsies. Acinar nodules had size of 100 to 700 μm, were periodic acid-Schiff pale, were synaptophysin negative, stained more weakly with keratin CAM 5.2 compared to surrounding parenchyma, and had a low proliferative rate. Ultrastructural evaluation revealed paucity of zymogen granules with dilated cistern-like structures. In our experience, pale acinar nodules have similar features in allograft and native pancreas specimens, yet remain of uncertain etiology and significance. PMID:27063474

  16. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  17. Role of Oxygen in the Limitation and Inhibition of Nitrogenase Activity and Respiration Rate in Individual Soybean Nodules.

    PubMed Central

    Kuzma, M. M.; Hunt, S.; Layzell, D. B.

    1993-01-01

    Although infected cell O2 concentration (Oi) is known to limit respiration and nitrogenase activity in legume nodules, techniques have not been available to measure both processes simultaneously in an individual legume nodule. Consequently, details of the relationship between nitrogenase activity and Oi are not fully appreciated. For the present study, a probe was designed that allowed open circuit measurements of H2 evolution (nitrogenase activity) and CO2 evolution (respiration rate) in a single attached soybean nodule while simultaneously monitoring fractional oxygenation of leghemoglobin (and thereby Oi) with a nodule oximeter. Compared to measurements of whole nodulated roots, use of the probe led to inhibition of nitrogenase activity in the single nodules. During oximetry measurements, total nitrogenase activity (TNA; peak H2 evolution in Ar/O2) in the single nodules was 16% of that in whole nodulated roots and 48% of nodulated root activity when Oi was not being measured simultaneously. This inhibition did not affect the nodules' ability to regulate Oi, because exposure to Ar/O2 (80:20, v/v) caused nitrogenase activity and respiration rate to decline, and this decline was linearly correlated with a concurrent decrease in Oi. When the nodules were subsequently exposed to a linear increase in external pO2 from 20 to 100% O2 at 2.7% O2/min, fractional leghemoglobin oxygenation first increased gradually and then more rapidly, reaching saturation at a pO2 between 76 and 100% O2. Plots of nitrogenase activity and respiration rate against Oi showed that rates increased with Oi up to a value of 57 nM, with half-maximal rates being attained at Oi values between 10 and 14 nM O2. The maximum nitrogenase activity achieved during the increase in pO2 (potential nitrogenase activity) was 30 to 57% of that measured in intact nodulated roots, showing that O2 limitation of nitrogenase activity could account for a significant proportion of the inhibition of TNA associated with

  18. Geochemical characteristics of phosphorite and carbonate nodules from the Miocene Funakawa Formation, western margin of the Yokote Basin, northeast Japan

    NASA Astrophysics Data System (ADS)

    Ogihara, Shigenori

    1999-04-01

    Phosphorite nodules were discovered in diatomite and diatomaceous mudstones of the Late Miocene Funakawa Formation in Dewa Height, on the western margin of the Yokote Basin, northeast Japan. They occur as small nodules, cemented burrows, and small trace fossils in diatom-rich sediment that was deposited just above the contact between underlying siliceous shales. The underlying shales are essentially devoid of fossils and the overlying bioturbated, diatomaceous mudstones are fossil-rich. The underlying shale is rich in manganese (Mn) calcite nodules, and the overlying mudstone is rich in magnesian (Mg) calcite nodules. Some phosphorite nodules exhibit a zonal structure caused by two phases of Mg-calcite cementation with or without Mn-calcite within the pore space of the nodule. The phosphorus (P) content of these nodules exceeded 25 wt% in P 2O 5. The principle phosphate mineral composing the nodules is fluor(F)-carbonate-apatite crystals, which are a few μm in length and cocoon-shaped. Their aggregate includes a small amount of silica, aluminum, and water (Si, Al and H 2O, respectively). The rare earth element (REE) composition of the phosphorite nodules is characterized by a positive europium (Eu) anomaly and no cerium (Ce) anomaly. The biomarker distribution of the phosphorite nodules is characterized by low (CPI), low carbon number n-alkane, and high hopenes, ββ-type hopane and isoprenoid ketone. Phosphorite nodules originate from the phosphate contained in diatoms. The mineralization occurs in the bacterial sulphate-reduction zone, and bacteria appear to have played an important role in the concentration of P and precipitation of apatite.

  19. Production and Excretion of Nod Metabolites by Rhizobium leguminosarum bv. trifolii Are Disrupted by the Same Environmental Factors That Reduce Nodulation in the Field

    PubMed Central

    McKay, Ian A.; Djordjevic, Michael A.

    1993-01-01

    Lipooligosaccharides (Nod metabolites) have been shown to be essential for the successful nodulation of legumes. In strains of Rhizobium leguminosarum bv. trifolii, Nod metabolites were detected predominantly within the cell and to a lesser extent in the periplasmic space and the growth medium. The production, and in particular the excretion, of Nod metabolites was restricted by a range of environmental conditions which are associated with poor nodulation in the field. Lowering the medium pH from 7.0 to 5.0, reducing the phosphate concentration from 1 mM to 5 μM KH2PO4, and lowering the incubation temperature from 28 to 18°C affected the number and relative concentrations of the Nod metabolites made. The form and concentration of the nitrogen source affected the relative concentrations of the Nod metabolites produced and excreted. KNO3 concentrations of >10 mM did not affect cell growth rate but substantially reduced the number of Nod metabolites released. Environmental stresses differentially altered Nod metabolite production and excretion in the same strain carrying different introduced nod regions. Strain ANU845(pWLH1) produced and excreted comparatively fewer Nod metabolites at pH 5.0 and at 18°C than strain ANU845(pRI4003). The excretion but not the production of Nod metabolites by strain ANU845(pRtO32) was dependent on the presence of both nodI and nodJ. Tn5-induced nodI and nodJ mutants did not accumulate any metabolites either outside the cell or within the outer membrane or periplasmic space. Recognition that Nod metabolite accumulation is a complex system of production and excretion, with each component responding differently to changes in environmental conditions, has many consequences, both at the molecular level and in the field. The ability of different strains to produce and release Nod metabolites is likely to be a major determinant of nodule occupancy and should be considered when screening strains suitable for adverse environments. Images PMID

  20. Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing

    PubMed Central

    Dong, Zhanghui; Shi, Lei; Wang, Yanwei; Chen, Liang; Cai, Zhaoming; Wang, Youning; Jin, Jingbo; Li, Xia

    2013-01-01

    Both symbiosis between legumes and rhizobia and nitrogen fixation in functional nodules are dramatically affected by salt stress. Better understanding of the molecular mechanisms that regulate the salt tolerance of functional nodules is essential for genetic improvement of nitrogen fixation efficiency. microRNAs (miRNAs) have been implicated in stress responses in many plants and in symbiotic nitrogen fixation (SNF) in soybean. However, the dynamic regulation of miRNAs in functioning nodules during salt stress response remains unknown. We performed deep sequencing of miRNAs to understand the miRNA expression profile in normal or salt stressed-soybean mature nodules. We identified 110 known miRNAs belonging to 61 miRNA families and 128 novel miRNAs belonging to 64 miRNA families. Among them, 104 miRNAs were dramatically differentially expressed (>2-fold or detected only in one library) during salt stress. qRT-PCR analysis of eight miRNAs confirmed that these miRNAs were dynamically regulated in response to salt stress in functional soybean nodules. These data significantly increase the number of miRNAs known to be expressed in soybean nodules, and revealed for the first time a dynamic regulation of miRNAs during salt stress in functional nodules. The findings suggest great potential for miRNAs in functional soybean nodules during salt stress. PMID:23358256

  1. Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum

    PubMed Central

    Rincón-Rosales, Reiner; Lloret, Lourdes; Ponce, Edith; Martínez-Romero, Esperanza

    2009-01-01

    Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum. A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima (Rhizobium, Sinorhizobium and Mesorhizobium) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella. PMID:19120461

  2. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect

    Siddique, A.M.; Bal, A.K. )

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  3. Gatekeeper Tyrosine Phosphorylation of SYMRK Is Essential for Synchronizing the Epidermal and Cortical Responses in Root Nodule Symbiosis.

    PubMed

    Saha, Sudip; Paul, Anindita; Herring, Laura; Dutta, Ayan; Bhattacharya, Avisek; Samaddar, Sandip; Goshe, Michael B; DasGupta, Maitrayee

    2016-05-01

    Symbiosis receptor kinase (SYMRK) is indispensable for activation of root nodule symbiosis (RNS) at both epidermal and cortical levels and is functionally conserved in legumes. Previously, we reported SYMRK to be phosphorylated on "gatekeeper" Tyr both in vitro as well as in planta. Since gatekeeper phosphorylation was not necessary for activity, the significance remained elusive. Herein, we show that substituting gatekeeper with nonphosphorylatable residues like Phe or Ala significantly affected autophosphorylation on selected targets on activation segment/αEF and β3-αC loop of SYMRK. In addition, the same gatekeeper mutants failed to restore proper symbiotic features in a symrk null mutant where rhizobial invasion of the epidermis and nodule organogenesis was unaffected but rhizobia remain restricted to the epidermis in infection threads migrating parallel to the longitudinal axis of the root, resulting in extensive infection patches at the nodule apex. Thus, gatekeeper phosphorylation is critical for synchronizing epidermal/cortical responses in RNS. PMID:26960732

  4. Phosphate salts

    MedlinePlus

    ... as a laxative to clean the bowels before surgery or intestinal tests. Healthcare providers sometimes give potassium phosphate intravenously (by IV) for treating low phosphate and high calcium levels in the blood, and for preventing low phosphate in patients who are being tube-fed.

  5. The activity of nodules of the supernodulating mutant Mtsunn is not limited by photosynthesis under optimal growth conditions.

    PubMed

    Cabeza, Ricardo A; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  6. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    PubMed Central

    Cabeza, Ricardo A.; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  7. Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule-specific genes.

    PubMed Central

    Szczyglowski, K; Hamburger, D; Kapranov, P; de Bruijn, F J

    1997-01-01

    A range of novel expressed sequence tags (ESTs) associated with late developmental events during nodule organogenesis in the legume Lotus japonicus were identified using mRNA differential display; 110 differentially displayed polymerase chain reaction products were cloned and analyzed. Of 88 unique cDNAs obtained, 22 shared significant homology to DNA/protein sequences in the respective databases. This group comprises, among others, a nodule-specific homolog of protein phosphatase 2C, a peptide transporter protein, and a nodule-specific form of cytochrome P450. RNA gel-blot analysis of 16 differentially displayed ESTs confirmed their nodule-specific expression pattern. The kinetics of mRNA accumulation of the majority of the ESTs analyzed were found to resemble the expression pattern observed for the L. japonicus leghemoglobin gene. These results indicate that the newly isolated molecular markers correspond to genes induced during late developmental stages of L. japonicus nodule organogenesis and provide important, novel tools for the study of nodulation. PMID:9276951

  8. Enzymatic Activity of the Soybean Ecto-Apyrase GS52 Is Essential for Stimulation of Nodulation1[W][OA

    PubMed Central

    Tanaka, Kiwamu; Nguyen, Cuong T.; Libault, Marc; Cheng, Jianlin; Stacey, Gary

    2011-01-01

    Nitrogen is an essential nutrient for plant growth. In the Rhizobium-legume symbiosis, root nodules are the sites of bacterial nitrogen fixation, in which atmospheric nitrogen is converted into a form that plants can utilize. While recent studies suggested an important role for the soybean (Glycine max) ecto-apyrase GS52 in rhizobial root hair infection and root nodule formation, precisely how this protein impacts the nodulation process remains undetermined. In this study, the biochemical characteristics of the GS52 enzyme were investigated. Computer modeling of the GS52 apyrase structure identified key amino acid residues important for catalytic activity, which were subsequently mutagenized. Although the GS52 enzyme exhibited broad substrate specificity, its activity on pyrimidine nucleotides and diphosphate nucleotides was significantly higher than on ATP. This result was corroborated by structural modeling of GS52, which predicted a low specificity for the adenine base within the substrate-binding pocket of the enzyme. The wild-type enzyme and its inactive mutant forms were expressed in soybean roots in order to evaluate the importance of GS52 enzymatic activity for nodulation. The results indicated a clear correlation between GS52 enzymatic activity and nodule number. Altogether, our study indicates that the catalytic activity of the GS52 apyrase, likely acting on extracellular nucleotides, is critical for rhizobial infection and nodulation. PMID:21346172

  9. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1

    PubMed Central

    Ng, Jason Liang Pin; Hassan, Samira; Truong, Thy T.; Hocart, Charles H.; Laffont, Carole; Frugier, Florian; Mathesius, Ulrike

    2015-01-01

    Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation. PMID:26253705

  10. Legume crops phylogeny and genetic diversity for science and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  11. Legume genomics: where we have been, where are we going?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the recognition in 2000 that several multi-institutional projects focusing on legume genomics were becoming a reality, the legume research community advocated for organization of an international meeting to address fundamental and applied aspects of legume genetic research. The purposes delinea...

  12. Developmental specialisations in the legume family.

    PubMed

    Hofer, Julie M I; Noel Ellis, T H

    2014-02-01

    The legume family is astonishingly diverse; inventiveness in the form of novel organs, modified organs and additional meristems, is rife. Evolutionary changes can be inferred from the phylogenetic pattern of this diversity, but a full understanding of the origin of these 'hopeful monsters' of meristematic potential requires clear phylogenetic reconstructions and extensive, species-rich, sequence data. The task is large, but rapid progress is being made in both these areas. Here we review specialisations that have been characterised in a subset of intensively studied papilionoid legume taxa at the vanguard of developmental genetic studies. PMID:24507507

  13. New Nodule-Newer Etiology

    PubMed Central

    Mehta, Atul C; Wang, Juan; Abuqayyas, Sami; Garcha, Puneet; Lane, Charles Randy; Tsuang, Wayne; Budev, Marie; Akindipe, Olufemi

    2016-01-01

    AIM: To evaluate frequency and temporal relationship between pulmonary nodules (PNs) and transbronchial biopsy (TBBx) among lung transplant recipients (LTR). METHODS: We retrospectively reviewed 100 records of LTR who underwent flexible bronchoscopy (FB) with TBBx, looking for the appearance of peripheral pulmonary nodule (PPN). If these patients had chest radiographs within 50 d of FB, they were included in the study. Data was compared with 30 procedures performed among non-transplant patients. Information on patient’s demographics, antirejection medications, anticoagulation, indication and type of lung transplantation, timing of the FB and the appearance and disappearance of the nodules and its characteristics were gathered. RESULTS: Nineteen new PN were found in 13 procedures performed on LTR and none among non-transplant patients. Nodules were detected between 4-47 d from the procedure and disappeared within 84 d after appearance without intervention. CONCLUSION: FB in LTR is associated with development of new, transient PPN at the site of TBBx in 13% of procedures. We hypothesize that these nodules are related to local hematoma and impaired lymphatic drainage. Close observation is a reasonable management approach. PMID:27011920

  14. Autecology in Rhizospheres and Nodulating Behavior of Indigenous Rhizobium trifolii†

    PubMed Central

    Demezas, David H.; Bottomley, Peter J.

    1986-01-01

    Indigenous serotype 1-01 of Rhizobium trifolii occupied significantly fewer nodules (6%) on plants of soil-grown noninoculated subterranean clover (Trifolium subterraneum L.) cv. Woogenellup than on cv. Mt. Barker (36%) sampled at the flowering stage of growth. Occupancy by indigenous serotype 2-01, was not significantly different on the two cultivars (16 and 26%). Serotype-specific, fluorescent-antibody conjugates were synthesized and used to enumerate the indigenous serotypes in host (clovers) and nonhost (annual rye-grass, Lolium multiflorum L.) rhizospheres and in nonplanted soil. The form and concentration of Ca2+ in the flocculating mixture and the presence of phosphate anions in the extracting solution were both critical for enumerating R. trifolii in Whobrey soil. The two serotypes were present in similar numbers in nonplanted soil (ca. 106 per g of soil) and each represented ca. 10% of the total R. trifolii population. Although host rhizospheres did not preferentially stimulate either serotype, the mean population densities of serotype 2-01 were significantly greater (P = 0.05) than those of serotype 1-01 in clover rhizospheres on 8 of 14 samplings made between the time of seeding and the appearance of nodules (day 12). In this experiment, and in contrast to our earlier findings, serotype 1-01 occupied significantly fewer (P ≤ 0.05) of the nodules (7 to 16%) on both cultivars than serotype 2-01 (51%) when sampled at 4 weeks. Differences between cultivars became apparent as the plants matured. There was a threefold increase (7 to 21%) in nodules occupied by serotype 1-01 on cv. Mt. Barker between 4 and 16 weeks. This was accompanied by increases in nodules coinhabited by both nonidentifiable occupants and either serotype 1-01 (0 to 20%) or 2-01 (11 to 51%). No increases in either of these parameters were observed on cv. Woogenellup. PMID:16347198

  15. Modeling a cortical auxin maximum for nodulation: different signatures of potential strategies.

    PubMed

    Deinum, Eva Elisabeth; Geurts, René; Bisseling, Ton; Mulder, Bela M

    2012-01-01

    Lateral organ formation from plant roots typically requires the de novo creation of a meristem, initiated at the location of a localized auxin maximum. Legume roots can form both root nodules and lateral roots. From the basic principles of auxin transport and metabolism only a few mechanisms can be inferred for increasing the local auxin concentration: increased influx, decreased efflux, and (increased) local production. Using computer simulations we investigate the different spatio-temporal patterns resulting from each of these mechanisms in the context of a root model of a generalized legume. We apply all mechanisms to the same group of preselected cells, dubbed the controlled area. We find that each mechanism leaves its own characteristic signature. Local production by itself can not create a strong auxin maximum. An increase of influx, as is observed in lateral root formation, can result in an auxin maximum that is spatially more confined than the controlled area. A decrease of efflux on the other hand leads to a broad maximum, which is more similar to what is observed for nodule primordia. With our prime interest in nodulation, we further investigate the dynamics following a decrease of efflux. We find that with a homogeneous change in the whole cortex, the first auxin accumulation is observed in the inner cortex. The steady state lateral location of this efflux reduced auxin maximum can be shifted by slight changes in the ratio of central to peripheral efflux carriers. We discuss the implications of this finding in the context of determinate and indeterminate nodules, which originate from different cortical positions. The patterns we have found are robust under disruption of the (artificial) tissue layout. The same patterns are therefore likely to occur in many other contexts. PMID:22654886

  16. Expression and Functional Analysis of a Novel Group of Legume-specific WRKY and Exo70 Protein Variants from Soybean.

    PubMed

    Wang, Ze; Li, Panfeng; Yang, Yan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Legumes fix atmospheric nitrogen through symbiosis with microorganisms and contain special traits in nitrogen assimilation and associated processes. Recently, we have reported a novel WRKY-related protein (GmWRP1) and a new clade of Exo70 proteins (GmExo70J) from soybean with homologs found only in legumes. GmWRP1 and some of the GmExo70J proteins are localized to Golgi apparatus through a novel N-terminal transmembrane domain. Here, we report further analysis of expression and functions of the novel GmWRP1 and GmExo70J genes. Promoter-GUS analysis in Arabidopsis revealed distinct tissue-specific expression patterns of the GmExo70J genes not only in vegetative but also in reproductive organs including mature tissues, where expression of previously characterized Exo70 genes is usually absent. Furthermore, expression of some GmExo70J genes including GmExo70J1, GmExo70J6 and GmExo70J7 increases greatly in floral organ-supporting receptacles during the development and maturation of siliques, indicating a possible role in seed development. More importantly, suppression of GmWRP1, GmExo70J7, GmExo70J8 and GmExo70J9 expression in soybean using virus- or artificial microRNA-mediated gene silencing resulted in accelerated leaf senescence and reduced nodule formation. These results strongly suggest that legume-specific GmWRP1 and GmExo70J proteins play important roles not only in legume symbiosis but also in other processes critical for legume growth and development. PMID:27572297

  17. Expression and Functional Analysis of a Novel Group of Legume-specific WRKY and Exo70 Protein Variants from Soybean

    PubMed Central

    Wang, Ze; Li, Panfeng; Yang, Yan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Legumes fix atmospheric nitrogen through symbiosis with microorganisms and contain special traits in nitrogen assimilation and associated processes. Recently, we have reported a novel WRKY-related protein (GmWRP1) and a new clade of Exo70 proteins (GmExo70J) from soybean with homologs found only in legumes. GmWRP1 and some of the GmExo70J proteins are localized to Golgi apparatus through a novel N-terminal transmembrane domain. Here, we report further analysis of expression and functions of the novel GmWRP1 and GmExo70J genes. Promoter-GUS analysis in Arabidopsis revealed distinct tissue-specific expression patterns of the GmExo70J genes not only in vegetative but also in reproductive organs including mature tissues, where expression of previously characterized Exo70 genes is usually absent. Furthermore, expression of some GmExo70J genes including GmExo70J1, GmExo70J6 and GmExo70J7 increases greatly in floral organ-supporting receptacles during the development and maturation of siliques, indicating a possible role in seed development. More importantly, suppression of GmWRP1, GmExo70J7, GmExo70J8 and GmExo70J9 expression in soybean using virus- or artificial microRNA-mediated gene silencing resulted in accelerated leaf senescence and reduced nodule formation. These results strongly suggest that legume-specific GmWRP1 and GmExo70J proteins play important roles not only in legume symbiosis but also in other processes critical for legume growth and development. PMID:27572297

  18. Case of localized recombination in 23S rRNA genes from divergent bradyrhizobium lineages associated with neotropical legumes.

    PubMed

    Parker, M A

    2001-05-01

    Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5' portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5' 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii. PMID:11319084

  19. Study of the basis for the competitiveness of Rhizobium japonicum in the nodulation of soybean

    SciTech Connect

    Bauer, W.

    1990-06-01

    The overall goal of our studies was to identify cellular and molecular characteristics of rhizobia that are important to root colonization and symbiotic infection in competition with indigenous soil microbes. Rhizobia were found to respond to specific host flavonoids as chemoattractants as well as nodulation gene inducers. Motility and chemotaxis contributed significantly to the efficiency of symbiotic interactions, but not to colonization of root tips, where bacterial dispersal depended primarily on passive movement by root cell elongation. Co-inoculation of Rhizobium nod gene mutants with each other and with the wild-type showed that the mutants could help the wild-type, but not each other, to initiate nodules. Mutants with defective host specificity genes were the only ones capable of helping the wild-type in an additive or synergistic manner. Alfalfa was shown to have rapid, systemic feedback regulation suppressing nodule formation in younger parts of the root system in response to initiation of the first nodules. Root mucilage and exudate components were found to affect attachment of rhizobia to root surfaces. Methods for optimal surface sterilization of legume seeds were examined. 5 refs.

  20. Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains.

    PubMed Central

    Vázquez, M; Dávalos, A; de las Peñas, A; Sánchez, F; Quinto, C

    1991-01-01

    Nodulation by Rhizobium, Bradyrhizobium, and Azorhizobium species in the roots of legumes and nonlegumes requires the proper expression of plant genes and of both common and specific bacterial nodulation genes. The common nodABC genes form an operon or are physically mapped together in all species studied thus far. Rhizobium leguminosarum bv. phaseoli strains are classified in two groups. The type I group has reiterated nifHDK genes and a narrow host range of nodulation. The type II group has a single copy of the nifHDK genes and a wide host range of nodulation. We have found by genetic and nucleotide sequence analysis that in type I strain CE-3, the functional common nodA gene is separated from the nodBC genes by 20 kb and thus is transcriptionally separated from the latter genes. This novel organization could be the result of a complex rearrangement, as we found zones of identity between the two separated nodA and nodBC regions. Moreover, this novel organization of the common nodABC genes seems to be a general characteristic of R. leguminosarum bv. phaseoli type I strains. Despite the separation, the coordination of the expression of these genes seems not to be altered. PMID:1991718

  1. Phylogenetic diversity of rhizobial species and symbiovars nodulating Phaseolus vulgaris in Iran.

    PubMed

    Rouhrazi, Kiomars; Khodakaramian, Gholam; Velázquez, Encarna

    2016-03-01

    The phylogenetic diversity of 29 rhizobial strains nodulating Phaseolus vulgaris in Iran was analysed on the basis of their core and symbiotic genes. These strains displayed five 16S rRNA-RFLP patterns and belong to eight ERIC-PCR clusters. The phylogenetic analyses of 16S rRNA, recA and atpD core genes allowed the identification of several strains as Rhizobium sophoriradicis, R. leguminosarum, R. tropici and Pararhizobium giardinii, whereas other strains represented a new phylogenetic lineage related to R. vallis. These strains and those identified as R. sophoriradicis and R. leguminosarum belong to the symbiovar phaseoli carrying the γ nodC allele distributed in P. vulgaris endosymbionts in America, Europe, Africa and Asia. The strain identified as R. tropici belongs to the symbiovar tropici carried by strains of R. tropici, R. leucaenae, R. lusitanum and R. freirei nodulating P. vulgaris in America, Africa and Asia. The strain identified as P. giardinii belongs to the symbiovar giardinii together with the type strain of this species nodulating P. vulgaris in France. It is remarkable that the recently described species R. sophoriradicis is worldwide distributed in P. vulgaris nodules carrying the γ nodC allele of symbiovar phaseoli harboured by rhizobia isolated in the American distribution centers of this legume. PMID:26832644

  2. Grasses and Legumes: Genetics and Plant Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans have been breeding forage and turf species for over 100 years. This chapter explores the progress that has been made in improving grasses and legumes for human benefit and the evolution of breeding and selection systems that have brought about those changes....

  3. Grain legume genetic resources for allele mining

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequencing capacities for higher throughput at significantly lower costs have enabled larger scale genotyping of plant genetic resources. One challenge to sequencing the USDA grain legume collections of pea, chickpea and lentil core accessions is the amount of heterogeneity in the landrace accessio...

  4. Extrusion processing of main commercial legume pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. The rise in consumer demand f...

  5. Research Investment in "Other" Forage Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes are unique among forages in that they generally have two major advantages compared to grasses: 1) they can fix significant amounts of atmospheric N, thereby precluding the need for fossil-fuel-energy consuming synthetic N fertilizers; and 2) they allow more efficient animal production throug...

  6. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  7. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula.

    PubMed

    Gargantini, Pablo R; Gonzalez-Rizzo, Silvina; Chinchilla, Delphine; Raices, Marcela; Giammaria, Verónica; Ulloa, Rita M; Frugier, Florian; Crespi, Martin D

    2006-12-01

    Medicago spp. are able to develop root nodules via symbiotic interaction with Sinorhizobium meliloti. Calcium-dependent protein kinases (CDPKs) are involved in various signalling pathways in plants, and we found that expression of MtCPK3, a CDPK isoform present in roots of the model legume Medicago truncatula, is regulated during the nodulation process. Early inductions were detected 15 min and 3-4 days post-inoculation (dpi). The very early induction of CPK3 messengers was also present in inoculated M. truncatula dmi mutants and in wild-type roots subjected to salt stress, indicating that this rapid response is probably stress-related. In contrast, the later response was concomitant with cortical cell division and the formation of nodule primordia, and was not observed in wild-type roots inoculated with nod (-) strains. This late induction correlated with a change in the subcellular distribution of CDPK activities. Accordingly, an anti-MtCPK3 antibody detected two bands in soluble root extracts and one in the particulate fraction. CPK3::GFP fusions are targeted to the plasma membrane in epidermal onion cells, a localization that depends on myristoylation and palmitoylation sites of the protein, suggesting a dual subcellular localization. MtCPK3 mRNA and protein were also up-regulated by cytokinin treatment, a hormone linked to the regulation of cortical cell division and other nodulation-related responses. An RNAi-CDPK construction was used to silence CPK3 in Agrobacterium rhizogenes-transformed roots. Although no major phenotype was detected in these roots, when infected with rhizobia, the total number of nodules was, on average, twofold higher than in controls. This correlates with the lack of MtCPK3 induction in the inoculated super-nodulator sunn mutant. Our results suggest that CPK3 participates in the regulation of the symbiotic interaction. PMID:17132148

  8. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L.) at different initial stages of ecosystem development

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Engel, M.; Fischer, D.; Buegger, F.; Elmer, M.; Welzl, G.; Schloter, M.

    2013-02-01

    Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.). Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a) and 5 (5a) yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany) where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2-5 mm) contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (<2 mm) consisted of a diverse community including clones with non-Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  9. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L.) at different initial stages of ecosystem development

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Engel, M.; Fischer, D.; Buegger, F.; Elmer, M.; Welzl, G.; Schloter, M.

    2012-09-01

    Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.). Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a) and 5 (5a) yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany) where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2-5 mm) contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (< 2 mm) consisted of a diverse community including clones with non-Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  10. Isolated Rheumatoid Nodule of the Achilles.

    PubMed

    Spicer, Paul J; Broussard, Gerald; Beaman, Francesca

    2016-06-01

    Approximately 20% to 25% of patients with rheumatoid arthritis have rheumatoid nodules. These nodules most commonly involve the soft tissues of the upper extremity, particularly adjacent to the olecranon. We present an uncommon case of a solitary rheumatoid nodule arising from the paratenon of the Achilles tendon with ultrasound and magnetic resonance images. PMID:26086458

  11. Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula

    PubMed Central

    Nallu, Sumitha; Silverstein, Kevin A T; Zhou, Peng; Young, Nevin D; VandenBosch, Kathryn A

    2014-01-01

    The nodule cysteine-rich (NCR) groups of defensin-like (DEFL) genes are one of the largest gene families expressed in the nodules of some legume plants. They have only been observed in the inverted repeat loss clade (IRLC) of legumes, which includes the model legume Medicago truncatula. NCRs are reported to play an important role in plant–microbe interactions. To understand their diversity we analyzed their expression and sequence polymorphisms among four accessions of M. truncatula. A significant expression and nucleotide variation was observed among the genes. We then used 26 accessions to estimate the selection pressures shaping evolution among the accessions by calculating the nucleotide diversity at non-synonymous and synonymous sites in the coding region. The mature peptides of the orthologous NCRs had signatures of both purifying and diversifying selection pressures, unlike the seed DEFLs, which predominantly exhibited purifying selection. The expression, sequence variation and apparent diversifying selection in NCRs within the Medicago species indicates rapid and recent evolution, and suggests that this family of genes is actively evolving to adapt to different environments and is acquiring new functions. PMID:24635121

  12. Evaluation of the thyroid nodule

    SciTech Connect

    Cannon, C.R.

    1986-05-01

    Evaluation of thyroid nodules challenges the most astute clinician. The history and the physical examination often identify those patients who require immediate surgical management. In other patients, time-honored thyroid function studies and thyroid scanning are helpful. Fine needle aspiration and computed tomography are also valuable in the diagnostic work-up.

  13. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes.

    PubMed

    Jung, W; Yu, O; Lau, S M; O'Keefe, D P; Odell, J; Fader, G; McGonigle, B

    2000-02-01

    Isoflavones have drawn much attention because of their benefits to human health. These compounds, which are produced almost exclusively in legumes, have natural roles in plant defense and root nodulation. Isoflavone synthase catalyzes the first committed step of isoflavone biosynthesis, a branch of the phenylpropanoid pathway. To identify the gene encoding this enzyme, we used a yeast expression assay to screen soybean ESTs encoding cytochrome P450 proteins. We identified two soybean genes encoding isoflavone synthase, and used them to isolate homologous genes from other leguminous species including red clover, white clover, hairy vetch, mung bean, alfalfa, lentil, snow pea, and lupine, as well as from the nonleguminous sugarbeet. We expressed soybean isoflavone synthase in Arabidopsis thaliana, which led to production of the isoflavone genistein in this nonlegume plant. Identification of the isoflavone synthase gene should allow manipulation of the phenylpropanoid pathway for agronomic and nutritional purposes. PMID:10657130

  14. Nitrogen fixation (Acetylene Reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for nitrogen fixing capacity on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi rye, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation were also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the south. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi rye in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greehouse experiments did not inhibit nitrogen fixation. 7 tables.

  15. Nitrogen fixation (acetylene reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for their ability to fix nitrogen on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi ryegrass, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation was also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the South. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi ryegrass in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greenhouse experiments did not inhibit nitrogen fixation. 11 references, 7 tables.

  16. EFFECTS OF PHOSPHATED TITANIUM AND ENAMEL MATRIX DERIVATIVES ON OSTEOBLAST BEHAVIOR IN VITRO

    PubMed Central

    Dacy, J. Anthony; Spears, Robert; Hallmon, William W.; Kerns, David; Rivera-Hidalgo, Francisco; Minevski, Zoran S.; Nelson, Carl J.; Opperman, Lynne A.

    2011-01-01

    Purpose The purpose of this study was to evaluate the effects of phosphated titanium and EMD on osteoblast function. Materials and Methods Primary rat osteoblasts were cultured on discs of either phosphated or non-phosphated titanium and in half of the samples 180μg of EMD was immediately added. Media was changed every 2 days for 28 days, and then analyzed by TGF-β1 and IL-1β ELISAs. Scanning electron microscopy (SEM) and light microscopy (LM) was used to evaluate nodule formation and mineralization. Results Microscopic evaluation revealed no differences in osteoblast attachment on all discs, regardless of treatment. Osteoblast nodule formation was observed in all groups. In the absence of mineralizing media, nodules on the non-phosphated titanium samples showed no evidence of mineralization. All nodules on the phosphated titanium had evidence of mineralization. ELISA analysis revealed no significant differences in IL-1β production between any of the groups. The EMD treated osteoblasts produced significantly more TGF-β1 than non-EMD treated cells for up to 8 days, and osteoblasts on phosphated titanium produced significantly more Tgf-ß1 at 8 days. Discussion and Conclusion Osteoblast attachment appeared unaffected by surface treatment. EMD initiated early TGF-β1 production, but production decreased to control levels within 10 days. Phosphated titanium increased Tgf-ß1 production at 8 days, and induced nodule mineralization even in the absence of mineralizing medium. PMID:17974103

  17. Proteome Analysis. Novel Proteins Identified at the Peribacteroid Membrane from Lotus japonicus Root Nodules1

    PubMed Central

    Wienkoop, Stefanie; Saalbach, Gerhard

    2003-01-01

    The peribacteroid membrane (PBM) forms the structural and functional interface between the legume plant and the rhizobia. The model legume Lotus japonicus was chosen to study the proteins present at the PBM by proteome analysis. PBM was purified from root nodules by an aqueous polymer two-phase system. Extracted proteins were subjected to a global trypsin digest. The peptides were separated by nanoscale liquid chromatography and analyzed by tandem mass spectrometry. Searching the nonredundant protein database and the green plant expressed sequence tag database using the tandem mass spectrometry data identified approximately 94 proteins, a number far exceeding the number of proteins reported for the PBM hitherto. In particular, a number of membrane proteins like transporters for sugars and sulfate; endomembrane-associated proteins such as GTP-binding proteins and vesicle receptors; and proteins involved in signaling, for example, receptor kinases, calmodulin, 14-3-3 proteins, and pathogen response-related proteins, including a so-called HIR protein, were detected. Several ATPases and aquaporins were present, indicating a more complex situation than previously thought. In addition, the unexpected presence of a number of proteins known to be located in other compartments was observed. Two characteristic protein complexes obtained from native gel electrophoresis of total PBM proteins were also analyzed. Together, the results identified specific proteins at the PBM involved in important physiological processes and localized proteins known from nodule-specific expressed sequence tag databases to the PBM. PMID:12644660

  18. Characterization of the papilionoid-Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae).

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Verstraete, Brecht; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Sprent, Janet; James, Euan K; Muasya, A Muthama

    2016-02-01

    The South African Fynbos soils are renowned for nitrogen-fixing Burkholderia associated with diverse papilionoid legumes of the tribes Crotalarieae, Hypocalypteae, Indigofereae, Phaseoleae and Podalyrieae. However, despite numerous rhizobial studies in the region, the symbiotic diversity of Burkholderia has not been investigated in relation to a specific host legume and its geographical provenance. This study analyzed the diversity of nodulating strains of Burkholderia from the legume species Podalyria calyptrata. Diverse lineages were detected that proved to be closely related to Burkholderia taxa, originating from hosts in other legume tribes. By analyzing the genetic variation of chromosomal (recA) and nodulation (nodA) sequence data in relation to the sampling sites we assessed the geographical distribution patterns of the P. calyptrata symbionts. Although we found a degree of genetically differentiated rhizobial populations, a correlation between genetic (recA and nodA) and geographic distances among populations was not observed, suggesting high rates of dispersal and rhizobial colonization within Fynbos soils. PMID:26689612

  19. Both Plant and Bacterial Nitrate Reductases Contribute to Nitric Oxide Production in Medicago truncatula Nitrogen-Fixing Nodules1[W][OA

    PubMed Central

    Horchani, Faouzi; Prévot, Marianne; Boscari, Alexandre; Evangelisti, Edouard; Meilhoc, Eliane; Bruand, Claude; Raymond, Philippe; Boncompagni, Eric; Aschi-Smiti, Samira; Puppo, Alain; Brouquisse, Renaud

    2011-01-01

    Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions. PMID:21139086

  20. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update.

    PubMed

    Liu, Cheng-Wu; Murray, Jeremy D

    2016-01-01

    Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key "infection" flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role. PMID:27529286

  1. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations

    PubMed Central

    Tian, Chang Fu; Zhou, Yuan Jie; Zhang, Yan Ming; Li, Qin Qin; Zhang, Yun Zeng; Li, Dong Fang; Wang, Shuang; Wang, Jun; Gilbert, Luz B.; Li, Ying Rui; Chen, Wen Xin

    2012-01-01

    The rhizobium–legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium–legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process. PMID:22586130

  2. The Independent Acquisition of Plant Root Nitrogen-Fixing Symbiosis in Fabids Recruited the Same Genetic Pathway for Nodule Organogenesis

    PubMed Central

    Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen

    2013-01-01

    Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336

  3. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.

    PubMed

    Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen

    2013-01-01

    Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336

  4. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans.

    PubMed

    Zhao, Yue; Nickels, Logan M; Wang, Hui; Ling, Jun; Zhong, Zengtao; Zhu, Jun

    2016-07-01

    The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts. PMID:27190162

  5. Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L. , Pisum sativum L. , and Vigna unguiculata (L. ) Walp

    SciTech Connect

    Becana, M.; Paris, F.J.; Sandalio, L.M.; Del Rio, L.A. Unidad de Bioquimica Vegetal, Granada )

    1989-08-01

    The activity and isozymic composition of superoxide dismutase were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all three legume species had a single Mn-SOD with similar relative mobility, whereas the cytosol contained several CuZn-SODs: two in Phaseolus and Pisum, and four in Vigna. In the cytoplasm of V. unguiculata nodules, a Fe-containing SOD was also present, with an electrophoretic mobility between those of CuZn- and Mn-SODs, and an estimated molecular weight of 57,000. Total SOD activity of the soluble fraction of host cells, expressed on a nodule fresh weight basis, exceeded markedly that of bacteroids. Likewise, specific SOD activities of free-living bacteria were superior or equal to those of their symbiotic forms. Soluble extracts of bacteria and bacteroids did not show peroxidase activity, but the nodule cell cytoplasm contained diverse peroxidase isozymes which were readily distinguishable from leghemoglobin components by electrophoresis. Data indicated that peroxidases and leghemoglobins did not significantly interfere with SOD localization on gels. Treatment with chloroform-ethanol scarcely affected the isozymic pattern of SODs and peroxidases, and had limited success in the removal of leghemoglobin.

  6. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state.

    PubMed

    Marino, Daniel; Hohnjec, Natalija; Küster, Helge; Moran, Jose F; González, Esther M; Arrese-Igor, Cesar

    2008-05-01

    Nitrogen fixation (NF) in legume nodules is very sensitive to environmental constraints. Nodule sucrose synthase (SS; EC 2.4.1.13) has been suggested to play a crucial role in those circumstances because its downregulation leads to an impaired glycolytic carbon flux and, therefore, a depletion of carbon substrates for bacteroids. In the present study, the likelihood of SS being regulated by oxidative signaling has been addressed by the in vivo supply of paraquat (PQ) to nodulated pea plants and the in vitro effects of oxidizing and reducing agents on nodule SS. PQ produced cellular redox imbalance leading to an inhibition of NF. This was preceded by the downregulation of SS gene expression, protein content, and activity. In vitro, oxidizing agents were able to inhibit SS activity and this inhibition was completely reversed by the addition of dithiothreitol. The overall results are consistent with a regulation model of nodule SS exerted by the cellular redox state at both the transcriptional and post-translational levels. The importance of such mechanisms for the regulation of NF in response to environmental stresses are discussed. PMID:18393622

  7. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia.

    PubMed

    Wasson, Anton P; Pellerone, Flavia I; Mathesius, Ulrike

    2006-07-01

    Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step of the flavonoid pathway, in Medicago truncatula. Agrobacterium rhizogenes transformation was used to create hairy roots that showed strongly reduced CHS transcript levels and reduced levels of flavonoids in silenced roots. Flavonoid-deficient roots were unable to initiate nodules, even though normal root hair curling was observed. Nodule formation and flavonoid accumulation could be rescued by supplementation of plants with the precursor flavonoids naringenin and liquiritigenin. The flavonoid-deficient roots showed increased auxin transport compared with control roots. Inoculation with rhizobia reduced auxin transport in control roots after 24 h, similar to the action of the auxin transport inhibitor N-(1-naphthyl)phthalamic acid (NPA). Rhizobia were unable to reduce auxin transport in flavonoid-deficient roots, even though NPA inhibited auxin transport. Our results present genetic evidence that root flavonoids are necessary for nodule initiation in M. truncatula and suggest that they act as auxin transport regulators. PMID:16751348

  8. The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root[OPEN

    PubMed Central

    Kim, Jiyoung; Frances, Lisa; Ding, Yiliang; Sun, Jongho; Guan, Dian; de Carvalho-Niebel, Fernanda; Oldroyd, Giles E.D.

    2015-01-01

    Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis. PMID:26672071

  9. Rhizobial gibberellin negatively regulates host nodule number

    PubMed Central

    Tatsukami, Yohei; Ueda, Mitsuyoshi

    2016-01-01

    In legume–rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia. PMID:27307029

  10. Determinants of quaternary association in legume lectins

    PubMed Central

    Brinda, K.V.; Mitra, Nivedita; Surolia, Avadhesha; Vishveshwara, Saraswathi

    2004-01-01

    It is well known that the sequence of amino acids in proteins code for its tertiary structure. It is also known that there exists a relationship between sequence and the quaternary structure of proteins. The question addressed here is whether the nature of quaternary association can be predicted from the sequence, similar to the three-dimensional structure prediction from the sequence. The class of proteins called legume lectins is an interesting model system to investigate this problem, because they have very high sequence and tertiary structure homology, with diverse forms of quaternary association. Hence, we have used legume lectins as a probe in this paper to (1) gain novel insights about the relationship between sequence and quaternary structure; (2) identify the sequence motifs that are characteristic of a given type of quaternary association; and (3) predict the quaternary association from the sequence motif. PMID:15215518

  11. Increase of Natural 15N Enrichment of Soybean Nodules with Mean Nodule Mass 1

    PubMed Central

    Shearer, Georgia; Bryan, Barbara A.; Kohl, Daniel H.

    1984-01-01

    The 15N abundance of soybean (Glycine max L. Merrill var Harosoy) nodules is usually greater than it is for other tissues or for atmospheric N2. Results of experiments in which nodules were separated by size show that the magnitude of the 15N enrichment is correlated with nodule mass. The results support the hypothesis that 15N enrichment of nodules results from differential N isotopic fractionation for synthesis of nodule tissue versus synthesis of compounds for export from the nodule. The physiological significance of this hypothesis is that it requires that a substantial fraction of the N for nodule tissue synthesis in 15N-enriched nodules be N recently fixed within the same nodule. PMID:16663917

  12. Genetic engineering for high methionine grain legumes.

    PubMed

    Müntz, K; Christov, V; Saalbach, G; Saalbach, I; Waddell, D; Pickardt, T; Schieder, O; Wüstenhagen, T

    1998-08-01

    Methionine (Met) is the primary limiting essential amino acid in grain legumes. The imbalance in amino acid composition restricts their biological value (BV) to 55 to 75% of that of animal protein. So far improvement of the BV could not be achieved by conventional breeding. Therefore, genetic engineering was employed by several laboratories to resolve the problem. Three strategies have been followed. A) Engineering for increased free Met levels; B) engineering of endogenous storage proteins with increased numbers of Met residues; C) transfer of foreign genes encoding Met-rich proteins, e.g. the Brazil nut 2S albumin (BNA) and its homologue from sunflower, into grain legumes. The latter strategy turned out to be most promising. In all cases the gene was put under the control of a developmentally regulated seed specific promoter and transferred into grain legumes using the bacterial Agrobacterium tumefaciens-system. Integration into and copy numbers in the plant genome as well as Mendelian inheritance and gene dosage effects were verified. After correct precursor processing the mature 2S albumin was intracellularly deposited in protein bodies which are part of the vacuolar compartment. The foreign protein amounted to 5 to 10% of the total seed protein in the best transgenic lines of narbon bean (Vicia narbonensis L., used in the authors' laboratories), lupins (Lupinus angustifolius L., used in CSIRO, Australia), and soybean (Glycine max (L.) Merr., used by Pioneer Hi-Bred, Inc., USA). In the narbon bean the increase of Met was directly related to the amount of 2S albumin in the transgenic seeds, but in soybean it remained below the theoretically expected value. Nevertheless, trangenic soybean reached 100%, whereas narbon bean and lupins reached approximately 80% of the FAO-standard for nutritionally balanced food proteins. These results document that the Met problem of grain legumes can be resolved by genetic engineering. PMID:9739551

  13. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  14. Genome Structure of the Legume, Lotus japonicus

    PubMed Central

    Sato, Shusei; Nakamura, Yasukazu; Kaneko, Takakazu; Asamizu, Erika; Kato, Tomohiko; Nakao, Mitsuteru; Sasamoto, Shigemi; Watanabe, Akiko; Ono, Akiko; Kawashima, Kumiko; Fujishiro, Tsunakazu; Katoh, Midori; Kohara, Mitsuyo; Kishida, Yoshie; Minami, Chiharu; Nakayama, Shinobu; Nakazaki, Naomi; Shimizu, Yoshimi; Shinpo, Sayaka; Takahashi, Chika; Wada, Tsuyuko; Yamada, Manabu; Ohmido, Nobuko; Hayashi, Makoto; Fukui, Kiichi; Baba, Tomoya; Nakamichi, Tomoko; Mori, Hirotada; Tabata, Satoshi

    2008-01-01

    The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes. PMID:18511435

  15. Late Embryogenesis Abundant (LEA) proteins in legumes.

    PubMed

    Battaglia, Marina; Covarrubias, Alejandra A

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  16. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    NASA Astrophysics Data System (ADS)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  17. Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean1[W][OA

    PubMed Central

    Choudhury, Swarup Roy; Pandey, Sona

    2013-01-01

    Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling. PMID:23569109

  18. Automatic lung nodule classification with radiomics approach

    NASA Astrophysics Data System (ADS)

    Ma, Jingchen; Wang, Qian; Ren, Yacheng; Hu, Haibo; Zhao, Jun

    2016-03-01

    Lung cancer is the first killer among the cancer deaths. Malignant lung nodules have extremely high mortality while some of the benign nodules don't need any treatment .Thus, the accuracy of diagnosis between benign or malignant nodules diagnosis is necessary. Notably, although currently additional invasive biopsy or second CT scan in 3 months later may help radiologists to make judgments, easier diagnosis approaches are imminently needed. In this paper, we propose a novel CAD method to distinguish the benign and malignant lung cancer from CT images directly, which can not only improve the efficiency of rumor diagnosis but also greatly decrease the pain and risk of patients in biopsy collecting process. Briefly, according to the state-of-the-art radiomics approach, 583 features were used at the first step for measurement of nodules' intensity, shape, heterogeneity and information in multi-frequencies. Further, with Random Forest method, we distinguish the benign nodules from malignant nodules by analyzing all these features. Notably, our proposed scheme was tested on all 79 CT scans with diagnosis data available in The Cancer Imaging Archive (TCIA) which contain 127 nodules and each nodule is annotated by at least one of four radiologists participating in the project. Satisfactorily, this method achieved 82.7% accuracy in classification of malignant primary lung nodules and benign nodules. We believe it would bring much value for routine lung cancer diagnosis in CT imaging and provide improvement in decision-support with much lower cost.

  19. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. PMID:25617765

  20. Rhizobia from Lanzarote, the Canary Islands, That Nodulate Phaseolus vulgaris Have Characteristics in Common with Sinorhizobium meliloti Isolates from Mainland Spain▿

    PubMed Central

    Zurdo-Piñeiro, José Luis; García-Fraile, Paula; Rivas, Raúl; Peix, Alvaro; León-Barrios, Milagros; Willems, Anne; Mateos, Pedro Francisco; Martínez-Molina, Eustoquio; Velázquez, Encarna; van Berkum, Peter

    2009-01-01

    The stable, low-molecular-weight (LMW) RNA fractions of several rhizobial isolates of Phaseolus vulgaris grown in the soil of Lanzarote, an island of the Canary Islands, were identical to a less-common pattern found within Sinorhizobium meliloti (assigned to group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northern Spain. The P. vulgaris isolates and the group II LMW RNA S. meliloti isolates also were distinguishable in that both had two conserved inserts of 20 and 46 bp in the 16S-23S internal transcribed spacer region that were not present in other strains of S. meliloti. The isolates from P. vulgaris nodulated bean but not Medicago sativa, while those recovered from Medicago, Melilotus, and Trigonella spp. nodulated both host legumes. The bean isolates also were distinguished from those of Medicago, Melilotus, and Trigonella spp. by nodC sequence analysis. The nodC sequences of the bean isolates were most similar to those reported for S. meliloti bv. mediterranense and Sinorhizobium fredii bv. mediterranense (GenBank accession numbers DQ333891 and AF217267, respectively). None of the evidence placed the bean isolates from Lanzarote in the genus Rhizobium, which perhaps is inconsistent with seed-borne transmission of Rhizobium etli from the Americas to the Canaries as an explanation for the presence of bean-nodulating rhizobia in soils of Lanzarote. PMID:19218416

  1. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction.

    PubMed

    Damiani, Isabelle; Pauly, Nicolas; Puppo, Alain; Brouquisse, Renaud; Boscari, Alexandre

    2016-01-01

    The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process. PMID:27092165

  2. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume – Rhizobium Symbiotic Interaction

    PubMed Central

    Damiani, Isabelle; Pauly, Nicolas; Puppo, Alain; Brouquisse, Renaud; Boscari, Alexandre

    2016-01-01

    The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process. PMID:27092165

  3. Solitary thyroid nodule. 1. Clinical characteristics

    SciTech Connect

    Mazzaferri, E.L.

    1981-07-01

    The approach to management of an isolated thyroid nodule requires some understanding of the natural history of thyroid cancer and other forms of nodular thyroid disease. The histologic classification of thyroid cancer is an important determinant of survival, as are the size of the primary tumor, presence of thyroid capsule invasion, and presence of distant metastases. Therapeutic radiation and radioactive fallout increase the risk that a thyroid nodule is malignant. Autonomously functioning thyroid nodules are usually benign follicular adenomas and may cause thyrotoxicosis.

  4. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS.

    PubMed

    Ziegler, Dominik; Pothier, Joël F; Ardley, Julie; Fossou, Romain Kouakou; Pflüger, Valentin; de Meyer, Sofie; Vogel, Guido; Tonolla, Mauro; Howieson, John; Reeve, Wayne; Perret, Xavier

    2015-07-01

    Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS. PMID:25776061

  5. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration.

    PubMed

    Rogato, Alessandra; Valkov, Vladimir Totev; Alves, Ludovico Martins; Apone, Fabio; Colucci, Gabriella; Chiurazzi, Maurizio

    2016-06-01

    G Protein Coupled Receptor (GPCRs) are integral membrane proteins involved in various signalling pathways by perceiving many extracellular signals and transducing them to heterotrimeric G proteins, which further transduce these signals to intracellular downstream effectors. GCR1 is the only reliable plant candidate as a member of the GPCRs superfamily. In the legume/rhizobia symbiotic interaction, G proteins are involved in signalling pathways controlling different steps of the nodulation program. In order to investigate the putative hierarchic role played by GCR1 in these symbiotic pathways we identified and characterized the Lotus japonicus gene encoding the seven transmembrane GCR1 protein. The detailed molecular and topological analyses of LjGCR1 expression patterns that are presented suggest a possible involvement in the early steps of nodule organogenesis. Furthermore, phenotypic analyses of independent transgenic RNAi lines, showing a significant LjGCR1 expression down regulation, suggest an epistatic action in the control of molecular markers of nodulation pathways, although no macroscopic symbiotic phenotypes could be revealed. PMID:27095401

  6. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils.

    PubMed

    Zhang, Jun Jie; Yu, Tao; Lou, Kai; Mao, Pei Hong; Wang, En Tao; Chen, Wen Feng; Chen, Wen Xin

    2014-10-01

    Mesorhizobium muleiense, Mesorhizobium mediterraneum and Mesorhizobium ciceri are chickpea (Cicer arietinum L.) rhizobia that share a high similarity of the symbiotic genes nodC and nifH, but they have different geographic distributions. M. muleiense has been isolated and found only in alkaline soils of Xinjiang, China, whereas the other two strains have been found in the Mediterranean and India. To investigate the species stability of M. muleiense during natural evolution and its capability of competitive nodulation against the other two exotic species, re-sampling of nodules in the field and competition experiments between the three species were conducted. The results showed that the predominant microsymbiont associated with chickpea grown in Xinjiang was still M. muleiense, but the predominant genotypes of M. muleiense had changed significantly during the four years since a previous survey. The data also showed that M. mediterraneum and M. ciceri were more competitive than the residential strain of M. muleiense CCBAU 83963(T) in sterilized vermiculite or soils from Xinjiang. However, in non-sterilized soils, M. muleiense was the predominant nodule occupier. These results indicated that natural or adapting evolution of M. muleiense was occurring in fields subjected to changing environmental factors. In addition, the biogeography and symbiotic associations of rhizobia with their host legumes were also influenced by biological factors in the soil, such as indigenous rhizobia and other organisms. PMID:25123757

  7. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus?1

    PubMed Central

    Harrison, Judith; Pou de Crescenzo, Marie-Anne; Sené, Olivier; Hirel, Bertrand

    2003-01-01

    A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T1 progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated. PMID:12970491

  8. Spatial arrangement, population density and legume species effect of yield of forage sorghum-legume intercropping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum (Sorghum bicolor) is a stress tolerant forage crop grown extensively in the Southern High Plains. However, sorghum forage quality is lower than that of corn. Intercropping sorghum with legumes can improve quality and productivity of forage. However, tall statured sorghum limits the resources...

  9. The Legume Information System (LIS): an integrated information resource for comparative legume biology.

    PubMed

    Gonzales, Michael D; Archuleta, Eric; Farmer, Andrew; Gajendran, Kamal; Grant, David; Shoemaker, Randy; Beavis, William D; Waugh, Mark E

    2005-01-01

    The Legume Information System (LIS) (http://www.comparative-legumes.org), developed by the National Center for Genome Resources in cooperation with the USDA Agricultural Research Service (ARS), is a comparative legume resource that integrates genetic and molecular data from multiple legume species enabling cross-species genomic and transcript comparisons. The LIS virtual plant interface allows simplified and intuitive navigation of transcript data from Medicago truncatula, Lotus japonicus, Glycine max and Arabidopsis thaliana. Transcript libraries are represented as images of plant organs in different developmental stages, which are selected to query the analyzed and annotated data. Complex queries can be accomplished by adding modifiers, keywords and sequence names. The LIS also contains annotated genomic data featuring transcript alignments to validate gene predictions as well as motif and similarity analyses. The genomic browser supports comparative analysis via novel dynamic functional annotation comparisons. CMap, developed as part of the GMOD project (http://www.gmod.org/cmap/index.shtml), has been incorporated to support comparative analyses of community linkage and physical map data. LIS is being expanded to incorporate gene expression and biochemical pathways which will be seamlessly integrated forming a knowledge discovery framework. PMID:15608283

  10. Legume-rhizobia signal exchange: promiscuity and environmental effects

    PubMed Central

    Lira, Mario A.; Nascimento, Luciana R. S.; Fracetto, Giselle G. M.

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge. PMID:26441880

  11. Nitrogen fertilizer response of cotton in rotation with summer legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of using summer legumes as N sources in corn and vegetable rotations has recently been documented. The objective of this study was to evaluate the potential of using summer legumes [Crotolaria juncea and cowpeas (Vigna unguiculata)] as an N source for cotton (Gossypium hirsutum L.) pro...

  12. Developing Postharvest Disinfestation Treatments of Legumes Using Radio Frequency Energy.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an urgent need to develop technically effective and environmentally sound phytosanitary and quarantine treatments for the legume industry to replace chemical fumigation. The goal of this study was to develop practical non-chemical treatments for postharvest disinfestation of legumes using r...

  13. Developing Postharvest Disinfestation Treatments for Legumes Using Radio Frequency Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an urgent need to develop technically effective and environmentally sound phytosanitary and quarantine treatments for the legume industry to replace chemical fumigation. The goal of this study was to develop practical non-chemical treatments for postharvest disinfestations of legumes using ...

  14. Legume-rhizobia signal exchange: promiscuity and environmental effects.

    PubMed

    Lira, Mario A; Nascimento, Luciana R S; Fracetto, Giselle G M

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge. PMID:26441880

  15. CAN WE IMPROVE THE NUTRITIONAL QUALITY OF LEGUME SEEDS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The FAO statistics for 2001 show that 274 million metric tonnes (Mt) of grain legumes were produced across the World, of which 177 million were soybeans (half of which were produced in the USA) compared with 2 trillion Mt of cereals. Legume seeds are put to a myriad of uses, both nutritional and in...

  16. Treatment protocol development for disinfesting legumes using radio frequency energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an urgent need to develop technically effective and environmentally sound phytosanitary and quarantine treatments for the legume industry to replace chemical fumigation. The goal of this study was to develop practical non-chemical treatments for postharvest disinfestations of legumes using ...

  17. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development.

    PubMed

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Liu, Haipei; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J; Gresshoff, Peter M; Li, Xia

    2015-07-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean. PMID:25941314

  18. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci.

    PubMed

    Beukes, Chrizelle W; Stępkowski, Tomasz; Venter, Stephanus N; Cłapa, Tomasz; Phalane, Francina L; le Roux, Marianne M; Steenkamp, Emma T

    2016-07-01

    The genus Bradyrhizobium contains predominantly nitrogen-fixing legume symbionts. Phylogenetic analysis of the genes responsible for their symbiotic abilities (i.e., those encoded on the nodulation [nod] and nitrogen-fixation [nif] loci) has facilitated the development of an extensive phylogeographic framework for the genus. This framework however contains only a few nodulating isolates from Africa. Here we focused on nodulating Bradyrhizobium isolates associated with native southern African legumes in the tribes Genisteae and Crotalarieae found along the Great Escarpment in the Mpumalanga Province of South Africa. The aims of this study were to: (1) obtain rhizobial isolates from legumes in the Genisteae and Crotalarieae; (2) verify their nodulation ability; (3) characterize them to species level based on phylogenetic analyses of several protein coding gene regions (atpD, dnaK, glnII, recA, rpoB and gyrB) and (4) determine their placement in the phylogeographic framework inferred from the sequences of the symbiotic loci nodA and nifD. Twenty of the 21 Bradyrhizobium isolates belonged to six novel species, while one was conspecific with the recently described B. arachidis. Among these isolates, the nodA phylogeny revealed several new clades, with 18 of our isolates found in Clades XIV and XV, and only three forming part of the cosmopolitan Clade III. These strains formed predominantly the same groups in the nifD phylogeny although with slight differences; indicating that both vertical and horizontal inheritance of the symbiotic loci occurred. These findings suggest that the largely unexplored diversity of indigenous African rhizobia are characterized by unique ancestries that might mirror the distribution of their hosts and the environmental factors driving their evolution. PMID:27068839

  19. Global Synthesis of Drought Effects on Food Legume Production.

    PubMed

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  20. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  1. LegumeIP 2.0--a platform for the study of gene function and genome evolution in legumes.

    PubMed

    Li, Jun; Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick X

    2016-01-01

    The LegumeIP 2.0 database hosts large-scale genomics and transcriptomics data and provides integrative bioinformatics tools for the study of gene function and evolution in legumes. Our recent updates in LegumeIP 2.0 include gene and protein sequences, gene models and annotations, syntenic regions, protein families and phylogenetic trees for six legume species: Medicago truncatula, Glycine max (soybean), Lotus japonicus, Phaseolus vulgaris (common bean), Cicer arietinum (chickpea) and Cajanus cajan (pigeon pea) and two outgroup reference species: Arabidopsis thaliana and Poplar trichocarpa. Moreover, the LegumeIP 2.0 features the following new data resources and bioinformatics tools: (i) an integrative gene expression atlas for four model legumes that include 550 array hybridizations from M. truncatula, 962 gene expression profiles of G. max, 276 array hybridizations from L. japonicas and 56 RNA-Seq-based gene expression profiles for C. arietinum. These datasets were manually curated and hierarchically organized based on Experimental Ontology and Plant Ontology so that users can browse, search, and retrieve data for their selected experiments. (ii) New functions/analytical tools to query, mine and visualize large-scale gene sequences, annotations and transcriptome profiles. Users may select a subset of expression experiments and visualize and compare expression profiles for multiple genes. The LegumeIP 2.0 database is freely available to the public at http://plantgrn.noble.org/LegumeIP/. PMID:26578557

  2. Organogenic Nodule Formation in Hop: A Tool to Study Morphogenesis in Plants with Biotechnological and Medicinal Applications

    PubMed Central

    Fortes, Ana M.; Santos, Filipa; Pais, Maria S.

    2010-01-01

    The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites. Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications. PMID:20811599

  3. Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase

    PubMed Central

    Huault, Emeline; Laffont, Carole; Wen, Jiangqi; Mysore, Kirankumar S.; Ratet, Pascal; Duc, Gérard; Frugier, Florian

    2014-01-01

    In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions. PMID:25521478

  4. Sulphasalazine and regression of rheumatoid nodules.

    PubMed

    Englert, H J; Hughes, G R; Walport, M J

    1987-03-01

    The regression of small rheumatoid nodules was noted in four patients after starting sulphasalazine therapy. This coincided with an improvement in synovitis and also falls in erythrocyte sedimentation rate (ESR) and C reactive protein (CRP). The relation between the nodule regression and the sulphasalazine therapy is discussed. PMID:2883940

  5. Rhizobial strains isolated from nodules of Medicago marina in southwest Spain are abiotic-stress tolerant and symbiotically diverse.

    PubMed

    Alías-Villegas, Cynthia; Cubo, M Teresa; Lara-Dampier, Victoria; Bellogín, Ramón A; Camacho, María; Temprano, Francisco; Espuny, M Rosario

    2015-10-01

    The isolation and characterisation of nitrogen-fixing root nodule bacteria from Medicago marina, a tolerant legume species, were studied in two areas from southwest Spain. A total of 30 out of 82 isolates with distinct ERIC-PCR fingerprints were analysed on the basis of molecular (PCR-RFLP of the 16S-23S rDNA intergenic spacer region (IGS) with two endonucleases, analysis of the 16S rDNA and symbiotic nodC gene sequences, plasmid profiles and SDS-PAGE of LPS, including the partial sequence of the housekeeping gene glnII and the symbiotic gene nodA of some representatives), physiological (utilisation of sole carbon sources, tolerance to antibiotics, NaCl, heavy metals, temperature and pH) and symbiotic parameters (efficacy on M. marina, M. minima, M. murex, M. orbicularis, M. polymorpha, M. sativa and M. truncatula). All the bacteria isolated from M. marina nodules belonged to Ensifer meliloti, except for one strain that belonged to E. medicae. To determine the nodulation range of M. marina, 10 different Ensifer species were tested for their ability to nodulate on this plant. E. kummerowiae CCBAU 71714 and the E. medicae control strain M19.1 were the only Ensifer species tested that developed nitrogen-fixing nodules on this plant. Most of the M. marina-nodulating strains showed tolerance to stress factors and all of them shared the presence of a gene similar to cadA, a gene that encodes for a PIB-type ATPase, which is a transporter belonging to the large superfamily of ATP-driven pumps involved in the transport of metals across cell membranes. PMID:26299372

  6. Simulating nodules in chest radiographs with real nodules from multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Schilham, Arnold; van Ginneken, Bram

    2006-03-01

    To improve the detection of nodules in chest radiographs, large databases of chest radiographs with annotated, proven nodules are needed for training of both radiologists and computer-aided detection systems. The construction of such databases is a laborious and time-consuming task. This study presents a novel technique to produce large amounts of chest x-rays with annotated, simulated nodules. Realistic nodules in radiographs are generated using real nodules segmented from CT images. Results from an observer study indicate that the simulated nodules can not be distinguished from real nodules. This method has great potential to aid the development of automated detection systems and to generate teaching files for human observers.

  7. Rheumatoid nodule presenting as Morton's neuroma.

    PubMed

    Chaganti, S; Joshy, S; Hariharan, K; Rashid, M

    2013-09-01

    Among 101 feet that presented with symptoms and signs similar to Morton's neuroma, intermetatarsal rheumatoid nodules were found in five feet (three patients). Two patients had bilateral involvement. Histology of the excised tissue showed the presence of a rheumatoid nodule and Morton's neuroma in four feet and a rheumatoid nodule with unremarkable nerve bundles in one. A rheumatoid nodule can coexist with Morton's neuroma, as seen in our patients, and the presentation is often similar to that of a Morton's neuroma. Our patients were rendered asymptomatic with surgical treatment and went on to have appropriate management of rheumatoid arthritis. Rheumatoid nodule should be considered in the differential diagnosis of Morton's neuroma in not only rheumatoid arthritis patients but also asymptomatic patients who have never been tested for rheumatoid antibodies. PMID:23135058

  8. [Thyroid nodules – how to proceed?].

    PubMed

    Murer, Karin; Müller, Werner

    2016-01-01

    Asymptomatic thyroid nodules are very common and detected with increasing frequency by radiological investigations of the neck as so-called “incidentalomas”. If a thyroid nodule is found, the question arises how to proceed with this case. The goal is to recognize the very rare malignant nodules and to perform an adequate therapy. Every work-up of a thyroid nodule includes functional evaluation by determination of thyroid stimulating hormone (TSH). Is the level of the hormone suppressed, a scintigraphy is indicated to rule out a hot thyroid nodule implying a benign finding. Ultrasound is the imaging of choice for the thyroid gland and provides information with respect to size, number and configuration of the nodes. Depending on sonographic evaluation and other possible risk factors, a fine-needle aspiration biopsy of the node is performed. Based on the cytologic findings further therapeutic procedures are determined. PMID:27132640

  9. Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs

    PubMed Central

    Mendoza-Soto, Ana B.; Naya, Loreto; Leija, Alfonso; Hernández, Georgina

    2015-01-01

    Aluminum (Al) toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43–50% reduction in nitrogenase activity indicates that Al toxicity (Alt) highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Alt. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs) along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated) Alt nodule-responsive miRNAs. We validated (quantitative reverse transcriptase-PCR) the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control) was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt-responsive miRNAs identified has also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 (NAM/ATAF/CUC transcription factor) and miR393/TIR1 (TRANSPORT INHIBITOR RESPONSE 1-like protein) in auxin and of miR170/SCL (SCARECROW-like protein transcription factor) in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a

  10. Distribution of ferromanganese nodules in the Pacific Ocean.

    USGS Publications Warehouse

    Piper, D.Z.; Swint-Iki, T.R.; McCoy, F.W.

    1987-01-01

    The occurrence and distribution of deep-ocean ferromanganese nodules are related to the lithology of pelagic surface-sediment, sediment accumulation rates, sea-floor bathymetry, and benthic circulation. Nodules often occur in association with both biosiliceous and pelagic clay, and less often with calcareous sediment. Factors which influence the rather complex patterns of sediment lithology and accumulation rates include the supply of material to the sea-floor and secondary processes in the deep ocean which alter or redistribute that supply. The supply is largely controlled by: 1) proximity to a source of alumino-silicate material and 2) primary biological productivity in the photic zone of the ocean. Primary productivity controls the 'rain' to the sea-floor of biogenic detritus, which consists mostly of siliceous and calcareous tests of planktonic organisms but also contains smaller proportions of phosphatic material and organic matter. The high accumulation rate (5 mm/1000 yr) of sediment along the equator is a direct result of high productivity in this region of the Pacific. Secondary processes include the dissolution of particulate organic matter at depth in the ocean, notably CaCO3, and the redistribution of sedimentary particles by deep-ocean currents. -J.M.H.

  11. [Aflatoxins produced by Aspergillus flavus in soya and other legumes].

    PubMed

    Topsy, K

    1977-01-01

    There is no doubt that our programme of applied nutrition must include soya on account of the high nutritive value of the legume. This underlines research undertaken here regarding the risks of contamination by A. flavus and the subsequent formation of aflatoxins on and in soya beans. We have studied on parallel lines soya beans and other legumes important in the local dietary habits. These legumes are either obtained locally or imported. On every specimen of legume we have tried to confirm, or otherwise, the presence of A. flavus and the aflatoxins. This was followed by experimenting on the conditions for growth and formation of aflatoxins on every one of the legumes. During subsequent experiments we have studied mixtures of legumes containing soya. Research on these lines has shown the inhibitory effects of legumes such as lentils, dried garden peas, Bengal gram, green peas, red peas, and broad beans on the growth of A. flavus and the formation of aflatoxins. Groundnut, on the other hand, seems to encourage such growth and such formation. The results of the experiments carried out, as above, lead us to conclude that soya must form part of our national food monitoring programme. PMID:418721

  12. Cytopathology of Follicular Cell Nodules.

    PubMed

    Damiani, Domenico; Suciu, Voichita; Vielh, Philippe

    2015-12-01

    This article corresponds to a lecture delivered during the Endocrine Pathology Society symposium held in Boston on 21 March 2015 (104th USCAP meeting, March 21-27). It focuses on the importance of cytopathology in endocrine thyroid pathology and the limits and pitfalls of diagnosis in follicular cell lesions. Lights and shadows are present in each diagnostic technique: Fine needle aspiration has imposed itself as a gold standard in thyroid nodules thanks to its easiness of execution and high cost-effectiveness ratio. A milestone in this field is represented by the National Cancer Institute (NCI) Thyroid Fine Needle Aspiration (FNA) State of the State of the Science Conference hosted in October 22-23, 2007 by the NCI, followed by a series of documents published in Diagnostic Cytopathology and Cytojournal (2008) as well as in an atlas entitled: The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC): terminology and criteria (2010, Springer). "Gray" zones still remain, causing difficulties and anxiety to the cytopathologist when facing challenging cases. Each diagnostic category of TBSRTC is analyzed and discussed in a concise fashion with special emphasis on challenging cases such as atypia of undetermined significance (AUS), suspicion for follicular neoplasms (SFNs), diagnoses of papillary thyroid carcinoma (PTC) in Hashimoto thyroiditis and follicular variant of papillary carcinoma (FVPTC). Our aim was to better define and clarify the spectrum of follicular cell lesions in thyroid nodule samplings and to underline the diagnostic limits in order to avoid pitfalls. New emerging molecular biology techniques may represent useful tools in selected morphological challenging cases and lead to new therapeutic approaches in line with drug-tailored therapy and personalized medicine. PMID:26227345

  13. Genome sequence of the Ornithopus/Lupinus-nodulating Bradyrhizobium sp. strain WSM471

    PubMed Central

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Tian, Rui; Tiwari, Ravi; Howieson, John; Yates, Ronald; O’Hara, Graham; Ninawi, Mohamed; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen- (N2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976882

  14. Influence of Nodule Detection Software on Radiologists’ Confidence in Identifying Pulmonary Nodules With Computed Tomography

    PubMed Central

    Nietert, Paul J.; Ravenel, James G.; Taylor, Katherine K.; Silvestri, Gerard A.

    2011-01-01

    Purpose With advances in technology, detection of small pulmonary nodules is increasing. Nodule detection software (NDS) has been developed to assist radiologists with pulmonary nodule diagnosis. Although it may increase sensitivity for small nodules, often there is an accompanying increase in false-positive findings. We designed a study to examine the extent to which computed tomography (CT) NDS influences the confidence of radiologists in identifying small pulmonary nodules. Materials and Methods Eight radiologists (readers) with different levels of experience examined thoracic CT scans of 131 cases and identified all the clinically relevant pulmonary nodules. The reference standard was established by an expert, dedicated thoracic radiologist. For each nodule, the readers recorded nodule size, density, location, and confidence level. Two weeks (or more) later, the readers reinterpreted the same scans; however, this time they were provided marks, when present, as indicated by NDS and asked to reassess their level of confidence. The effect of NDS on changes in reader confidence was assessed using multivariable generalized linear regression models. Results A total of 327 unique nodules were identified. Declines in confidence were significantly (P<0.05) associated with the absence of an NDS mark and smaller nodules (odds ratio=71.0, 95% confidence interval =14.8–339.7). Among nodules with pre-NDS confidence less than 100%, increases in confidence were significantly (P<0.05) associated with the presence of an NDS mark (odds ratio=6.0, 95% confidence interval =2.7–13.6) and larger nodules. Secondary findings showed that NDS did not improve reader diagnostic accuracy. Conclusion Although in this study NDS does not seem to enhance reader accuracy, the confidence of the radiologists in identifying small pulmonary nodules with CT is greatly influenced by NDS. PMID:20498624

  15. Biological Potential of Sixteen Legumes in China

    PubMed Central

    Yao, Yang; Cheng, Xuzhen; Wang, Lixia; Wang, Suhua; Ren, Guixing

    2011-01-01

    Phenolic acids have been identified in a variety of legumes including lima bean, broad bean, common bean, pea, jack bean, goa bean, adzuki bean, hyacinth bean, chicking vetch, garbanzo bean, dral, cow bean, rice bean, mung bean and soybean. The present study was carried out with the following aims: (1) to identify and quantify the individual phenolic acid and determine the total phenolic content (TPC); (2) to assess their antioxidant activity, inhibition activities of α-glucosidase, tyrosinase, and formation of advanced glycation endproducts; and (3) to investigate correlations among the phytochemicals and biological activity. Common bean possesses the highest antioxidant activity and advanced glycation endproducts formation inhibition activity. Adzuki bean has the highest α-glucosidase inhibition activity, and mung bean has the highest tyrosinase inhibition activity. There are significant differences in phytochemical content and functional activities among the bean species investigated. Selecting beans can help treat diseases such as dermatological hyperpigmentation illness, type 2 diabetes and associated cardiovascular diseases. PMID:22072935

  16. [How I got to study legumes].

    PubMed

    Jaffé, W G

    1996-12-01

    In this paper the author presents a brief account of his involvement in the study of legume seeds form a nutritional and toxicological perspective. After observing that the Venezuelan peasants ate diets which often included cooked black beans and a form of corn bread called arepas, he performed nutritional trials which led him to recognize that raw beans contained thermolabile antinutritional factors and that their proteins were complementary to those of corn. Among the antinutritional factors, he isolated a hemagglutinating fraction which later was further characterized. Based on their properties he recognized the existence of four different types of Phaseolus vulgaris cultivars. Research on the nutritive value of bean diets also got him involved in the identification of a growth factor later called vitamin B12. PMID:9221715

  17. Functional properties of thermally treated legume flours.

    PubMed

    Nagmani, B; Prakash, J

    1997-05-01

    Functional properties of four thermally treated decorticated legume flours namely, bengal gram (Cicer arietinum), black gram (Phaseolus f1p4o Roxb.), green gram (Phaseolus aureus Roxb.) and lentils (Lens esculenta) were studied. Samples with moisture levels of 3.2, 3.3, 1.3 and 5.0% for all four were subjected to dry heat treatment in a covered vessel in pressure cooker. (Untreated flours served as controls. Thermal treatment lowered nitrogen solubility profiles of all flours and increased water absorption capacities in bengal gram (146) black gram (451) and lentil (206) over control values of 138, 441 and 180 ml/100 g of flour respectively. Fat absorption capacities decreased in thermally treated bengal gram and black gram (242 and 292) as against 298 and 303 ml/100 g for untreated samples respectively. Foaming capacity also showed a decrease in thermally treated bengal gram and black gram by 28 and 53% respectively over controls. Two deep fat fried Indian products namely, 'Seviya' and 'Chakli' were prepared using two of the legumes. Proximate compositional analysis revealed that products prepared with thermally treated flours absorbed less fat. The sensory scores for appearance, texture, flavour and overall quality obtained by Seviya were 6.04, 6.20, 5.98 and 6.40 for products prepared with untreated flour and 5.74, 5.78, 5.70 and 5.68 for product prepared with treated flour respectively. Chakli prepared with thermally treated flour obtained significantly lower scores of 6.08, 5.2, 5.42, and 5.88 as against 6.78, 6.68, 6.68 and 6.88 obtained by products prepared with untreated flour for similar attributes. PMID:9205596

  18. A JAZ Protein in Astragalus sinicus Interacts with a Leghemoglobin through the TIFY Domain and Is Involved in Nodule Development and Nitrogen Fixation.

    PubMed

    Li, Yixing; Xu, Meng; Wang, Ning; Li, Youguo

    2015-01-01

    Leghemoglobins (Lbs) play an important role in legumes-rhizobia symbiosis. Lbs bind O2 and protect nitrogenase activity from damage by O2 in nodules, therefore, they are regarded as a marker of active nitrogen fixation in nodules. Additionally, Lbs are involved in the nitric oxide (NO) signaling pathway, acting as a NO scavenger during nodule development and nitrogen fixation. However, regulators responsible for Lb expression and modulation of Lb activity have not been characterized. In our previous work, a Jasmonate-Zim-domain (JAZ) protein interacting with a Lb (AsB2510) in Astragalus sinicus was identified and designated AsJAZ1. In this study, the interaction between AsJAZ1 and AsB2510 was verified using a yeast two-hybrid system and in vitro Glutathione S-transferase (GST) pull-down assays, resulting in identification of the interaction domain as a TIFY (previously known as zinc-finger protein expressed in inflorescence meristem, ZIM) domain. TIFY domain is named after the most conserved amino acids within the domain. Bimolecular fluorescence complementation (BiFC) was used to confirm the interaction between AsJAZ1 and AsB2510 in tobacco cells, demonstrating that AsJAZ1-AsB2510 interaction was localized to the cell membrane and cytoplasm. Furthermore, the expression patterns and the symbiotic phenotypes of AsJAZ1 were investigated. Knockdown of AsJAZ1 expression via RNA interference led to decreased number of nodules, abnormal development of bacteroids, accumulation of poly-x-hydroxybutyrate (PHB) and loss of nitrogenase activity. Taken together, our results suggest that AsJAZ1 interacts with AsB2510 and participates in nodule development and nitrogen fixation. Our results provide novel insights into the functions of Lbs or JAZ proteins during legume-rhizobia symbiosis. PMID:26460857

  19. A JAZ Protein in Astragalus sinicus Interacts with a Leghemoglobin through the TIFY Domain and Is Involved in Nodule Development and Nitrogen Fixation

    PubMed Central

    Li, Yixing; Xu, Meng; Wang, Ning; Li, Youguo

    2015-01-01

    Leghemoglobins (Lbs) play an important role in legumes-rhizobia symbiosis. Lbs bind O2 and protect nitrogenase activity from damage by O2 in nodules, therefore, they are regarded as a marker of active nitrogen fixation in nodules. Additionally, Lbs are involved in the nitric oxide (NO) signaling pathway, acting as a NO scavenger during nodule development and nitrogen fixation. However, regulators responsible for Lb expression and modulation of Lb activity have not been characterized. In our previous work, a Jasmonate-Zim-domain (JAZ) protein interacting with a Lb (AsB2510) in Astragalus sinicus was identified and designated AsJAZ1. In this study, the interaction between AsJAZ1 and AsB2510 was verified using a yeast two-hybrid system and in vitro Glutathione S-transferase (GST) pull-down assays, resulting in identification of the interaction domain as a TIFY (previously known as zinc-finger protein expressed in inflorescence meristem, ZIM) domain. TIFY domain is named after the most conserved amino acids within the domain. Bimolecular fluorescence complementation (BiFC) was used to confirm the interaction between AsJAZ1 and AsB2510 in tobacco cells, demonstrating that AsJAZ1-AsB2510 interaction was localized to the cell membrane and cytoplasm. Furthermore, the expression patterns and the symbiotic phenotypes of AsJAZ1 were investigated. Knockdown of AsJAZ1 expression via RNA interference led to decreased number of nodules, abnormal development of bacteroids, accumulation of poly-x-hydroxybutyrate (PHB) and loss of nitrogenase activity. Taken together, our results suggest that AsJAZ1 interacts with AsB2510 and participates in nodule development and nitrogen fixation. Our results provide novel insights into the functions of Lbs or JAZ proteins during legume-rhizobia symbiosis. PMID:26460857

  20. The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK.

    PubMed

    Ferguson, Brett J; Li, Dongxue; Hastwell, April H; Reid, Dugald E; Li, Yupeng; Jackson, Scott A; Gresshoff, Peter M

    2014-10-01

    Legume plants regulate the number of nitrogen-fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative- and functional-genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot-controlled and nitrate-tolerant supernodulation phenotype. Homeologous over-expression of the nodulation-suppressive CLE peptide-encoding soybean gene, GmRIC1, abolished nodulation in wild-type bean, but had no discernible effect on PvNARK-mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK-dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation-suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean. PMID:25040127

  1. Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China.

    PubMed

    Mousavi, Seyed Abdollah; Li, Li; Wei, Gehong; Räsänen, Leena; Lindström, Kristina

    2016-06-01

    Previously, 159 bacterial strains were isolated from the root nodules of wild perennial Glycyrrhiza legume species grown on 40 sites in central and north-western China, in which 57 strains were classified as "true symbionts" belonging to the genus Mesorhizobium based on amplified fragment length polymorphism (AFLP) genomic fingerprinting and partial sequences of the 16S rRNA gene [20]. In the present work, the phylogeny of Glycyrrhiza nodulating mesorhizobia was further examined by multilocus sequence analysis (MLSA). The concatenated gene tree of three housekeeping genes (16S rRNA, recA, and rpoB) of 59 strains including the 29 mesorhizobial test strains and 30 type mesorhizobial species, was constructed applying the maximum likelihood method and Bayesian inference. In the concatenated gene tree, the 29 test strains were distributed in seven separate clades. Seventeen test strains clustered with Mesorhizobium tianshanense, Mesorhizobium temperatum, Mesorhizobium muleiense, and Mesorhizobium alhagi with high bootstrap support (BS>85%). Eight test strains did not cluster with any of the described Mesorhizobium species. Based on the results, we proposed these eight test strains might belong to a putative new species of the genus Mesorhizobium. The sequences of three accessory genes (nodA, nodC, and nifH) of the test strains were also analyzed and were compared with those of representatives of the 30 described mesorhizobial species. The results showed that mesorhizobia involved in symbiosis with Glycyrrhiza plants probably have acquired some genetic material from other rhizobia in co-evolution with Glycyrrhiza and other legume species. PMID:27105685

  2. Digestion rate of legume carbohydrates and glycemic index of legume-based meals.

    PubMed

    Araya, Héctor; Pak, Nelly; Vera, Gloria; Alviña, Marcela

    2003-03-01

    A study was performed to examine the rate of digestion of available carbohydrate in legumes and its mixtures with cereals, prepared as commonly eaten. The legumes and cereals studied were lentil (Lens sculenta), pea (Pisum sativum), bean (Phaseolus vulgaris, var tortola), rice (Oryza sativa) and spaghetti. Foods were purchased at the city market. Total starch content and the carbohydrate digestion rates were determined using the enzymatic method proposed by Englyst et al. Total starch levels ranged from 7.78 g/100 g in cooked flour bean to 20.6 g/100 g in a bean-spaghetti dish, and dietary fiber contents ranged from 2.4 g/100 g in a cooked 70:30 lentil-rice mixture to 5.26 g/100 g in a cooked whole bean. The rapid digestion rate carbohydrates showed values from 4.8 in the bean soup to 8.9 in the bean-spaghetti combination. The same results show, expressed as rapid available glucose (RAG), the amount of rapid carbohydrate/100 g food or meal as eaten, and as the starch digestion index (SDI), the percentage of rapid carbohydrate digestion rate in relation to the total amount of carbohydrate. The RAG values ranged between 5.0 for cooked beans and 10 for cooked beans and spaghetti, and the SDI ranged between 40 for cooked pea flour and 62 for cooked bean flour. Legumes prepared as soup showed a higher rapid digestion rate than legumes prepared as whole grain. The bean-spaghetti based-meal and the lentil-based meal showed glycemic index mean and standard deviation values of 76.8 +/- 43.4 and 49.3 +/- 29.5, RAG values of 7.0 and 6.0, and SDI values of 57 and 54, respectively. The knowledge of the importance of the carbohydrate digestion rates in human health in increasing, and probably will soon be used in the development of the food pyramid. The foods with a moderate fraction of rapid digestion rate, such as legumes, should be included in the base of the pyramid. PMID:12701368

  3. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    NASA Astrophysics Data System (ADS)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were

  4. Oxidation state of marine manganese nodules

    USGS Publications Warehouse

    Piper, D.Z.; Basler, J.R.; Bischoff, J.L.

    1984-01-01

    Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.

  5. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules.

    PubMed

    Lelandais-Brière, Christine; Naya, Loreto; Sallet, Erika; Calenge, Fanny; Frugier, Florian; Hartmann, Caroline; Gouzy, Jérome; Crespi, Martin

    2009-09-01

    Posttranscriptional regulation of a variety of mRNAs by small 21- to 24-nucleotide RNAs, notably the microRNAs (miRNAs), is emerging as a novel developmental mechanism. In legumes like the model Medicago truncatula, roots are able to develop a de novo meristem through the symbiotic interaction with nitrogen-fixing rhizobia. We used deep sequencing of small RNAs from root apexes and nodules of M. truncatula to identify 100 novel candidate miRNAs encoded by 265 hairpin precursors. New atypical precursor classes producing only specific 21- and 24-nucleotide small RNAs were found. Statistical analysis on sequencing reads abundance revealed specific miRNA isoforms in a same family showing contrasting expression patterns between nodules and root apexes. The differentially expressed conserved and nonconserved miRNAs may target a large variety of mRNAs. In root nodules, which show diverse cell types ranging from a persistent meristem to a fully differentiated central region, we discovered miRNAs spatially enriched in nodule meristematic tissues, vascular bundles, and bacterial infection zones using in situ hybridization. Spatial regulation of miRNAs may determine specialization of regulatory RNA networks in plant differentiation processes, such as root nodule formation. PMID:19767456

  6. Nitrogen cycling: water use efficiency interactions in semi-arid ecosystems in relation to management of tree legumes (Prosopis)

    SciTech Connect

    Felker, P.; Clark, P.R.; Osborn, J.; Cannell, G.H.

    1980-04-01

    Plant productivity in semi-arid ecosystems is often limited by soil fertility as much as it is by moisture availability. A quantitative assessment of nitrogen limitations on water use efficiency has been made after careful review of plant water use efficiency data at high and low soil fertilities and after careful review of nitrogen inputs to semi arid ecosystems in the form of: blue-green algae-lichen crusts; non-symbiotic nitrogen fixers; rainfall; and tree legumes. This analysis indicates that plant productivity in semi-arid regions may be 10 fold more limited by nitrogen than moisture availability. Forage yields of non-nitrogen fixing trees and shrubs could be greatly increased by interplanting with drought adapted nitrogen fixers such as Prosopis and Acacia. Calculations based on water use efficiencies of annual legumes and nitrogen fixation values of tree legumes predict that well managed, spaced, and cared for orchards of specially selected Prosopis could produce 4000 Kgha/sup -1/ yr/sup -1/ of 13% protein pods at 500 mm annual rainfall with only light fertilization with phosphate, potassium and sulfur. Field measurements of pod yields for 25 selections of 3 year old Prosopis grown under managed orchard conditions in southern California are presented. Spacing regimes and harvesting techniques for Prosopis are proposed to facilitate pod production.

  7. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis

    PubMed Central

    Fukudome, Mitsutaka; Calvo-Begueria, Laura; Kado, Tomohiro; Osuki, Ken-ichi; Rubio, Maria Carmen; Murakami, Ei-ichi; Nagata, Maki; Kucho, Ken-ichi; Sandal, Niels; Stougaard, Jens; Becana, Manuel; Uchiumi, Toshiki

    2016-01-01

    Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia–legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5′-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo. The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels. PMID:27443280

  8. Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes1[W

    PubMed Central

    Grimsrud, Paul A.; den Os, Désirée; Wenger, Craig D.; Swaney, Danielle L.; Schwartz, Daniel; Sussman, Michael R.; Ané, Jean-Michel; Coon, Joshua J.

    2010-01-01

    Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data. PMID:19923235

  9. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes.

    PubMed

    Grimsrud, Paul A; den Os, Désirée; Wenger, Craig D; Swaney, Danielle L; Schwartz, Daniel; Sussman, Michael R; Ané, Jean-Michel; Coon, Joshua J

    2010-01-01

    Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data. PMID:19923235

  10. [Benign thyroid nodules: diagnostic and therapeutic approach].

    PubMed

    Durante, Cosimo; Cava, Francesco; Paciaroni, Alessandra; Filetti, Sebastiano

    2008-05-01

    In the last years an increase in thyroid nodules detection has been reported from several epidemiological studies. This trend is largely due to the routine use of diagnostic sonography procedures in clinical practice. Thyroid nodules, both palpable or not palpable, rarely turn out to be malignant. Fine-needle aspiration cytology (FNAc) plays a central role in establishing the nature of the nodule. Excluded the presence of malignant lesions, which are generally treated with surgery, physicians are faced with a variety of therapeutic options, and choosing the optimal approach can be a difficult task. These include a periodic follow-up alone without treatment, the iodine supplementation, the thyroid-hormone suppressive therapy, the radioiodine administration, the percutaneous ethanol injections, and the new technique of laser photocoagulation. In all cases, decisions on the management of benign thyroid nodules should always be based on clinical target and a careful analysis of benefits and risks to the patient. PMID:18581970

  11. Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb

    PubMed Central

    Ridge, R. W.; Rolfe, B. G.

    1986-01-01

    Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum. Images PMID:16346989

  12. Legumes Can Increase Cadmium Contamination in Neighboring Crops

    PubMed Central

    Tang, Jianjun; Xu, Ligen; Yang, Xiantian; Yong, Jean W. H.; Chen, Xin

    2012-01-01

    Legumes are widely used in many cropping systems because they share their nitrogen fixation products and phosphorus mobilization activities with their neighbors. In the current study, however, we showed that co-cultivation with legumes increased cadmium (Cd) contamination in the adjacent crops. Both field and mesocosm experiments indicated that legumes increased Cd levels in edible parts and shoots of four neighboring crops and five maize varieties tested, regardless of the Cd levels in the soil. This enhanced Cd accumulation in crops was attributed to root interactions that alter the rhizosphere environment. Co-cultivation with legumes reduced soil pH, which somewhat increased the exchangeable forms of Cd. Our results have demonstrated the inevitable increases in Cd levels of crops as a direct result of co-cultivation with legumes even under situations when these levels are below the permissible threshold. With this new revelation, we need to consider carefully the current cropping systems involving legumes and perhaps to re-design the current and future cropping systems in view of avoiding food contamination by Cd. PMID:22905189

  13. Pleiotropic effect of fluoranthene on anthocyanin synthesis and nodulation of Medicago sativa is reversed by the plant flavone luteolin

    SciTech Connect

    Wetzel, A.; Parniske, M.; Werner, D.

    1995-05-01

    The symbiosis between leguminous plants and soil bacteria of the genus Rhizobium is of considerable agronominal importance. Recently it has been found, that polycyclic aromatic hydrocarbons (PAHs; e.g. anthracene, phenanthrene, fluoranthene), occurring as ubiquitous environmental contaminants can inhibit nodulation of Medicago sativa. Fluoranthene is one of the dominant PAHs found in urban particulate matter, sewage sludge or beside motorways. Several organisms have been shown to be able to metabolize and mineralize fluoranthene but the uptake of fluoranthene is limited due to low solubility of fluoranthene in water and strong adsorption to humic substances in soil. Rhizobium meliloti cannot degrade fluoranthene. Toxic effects of fluoranthene on bacterial growth have never been observed. In contrast to their rhizobial symbiotic partners, alfalfa plants grown on a solidified fluoranthene-containing medium, exhibited symptoms of toxicity. They showed a dose-responsive decrease in shoot length and, if inoculated with R. meliloti, inhibition of nodule formation. Growth retardation is accompanied by a decrease in anthocyanin pigmentation of shoots, and an atypical accumulation of anthocyanins in roots. Plant flavonoids are known to play a central role in the signal exchange of the Legume-Rhizobium symbiosis. Phenylpropane derived compounds and flavonoids have been implicated in nodule development. Since fluoranthene impairs nodulation and induces the production of anthocyanins, it is possible that these events are causally linked via phenylpropanoid metabolism. These experiments attempt to overcome the inhibitory effects of fluoranthene by exogeneous application of the flavonoid luteolin. This paper demonstrates that luteolin antagonizes the fluoranthene mediated inhibition of nodule formation and prevents the accumulation of anthocyanins in roots. 29 refs., 4 figs., 1 tab.

  14. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.

    PubMed

    de Zélicourt, Axel; Diet, Anouck; Marion, Jessica; Laffont, Carole; Ariel, Federico; Moison, Michaël; Zahaf, Ons; Crespi, Martin; Gruber, Véronique; Frugier, Florian

    2012-04-01

    Legume crops related to the model plant Medicago truncatula can adapt their root architecture to environmental conditions, both by branching and by establishing a symbiosis with rhizobial bacteria to form nitrogen-fixing nodules. Soil salinity is a major abiotic stress affecting plant yield and root growth. Previous transcriptomic analyses identified several transcription factors linked to the M. truncatula response to salt stress in roots, including NAC (NAM/ATAF/CUC)-encoding genes. Over-expression of one of these transcription factors, MtNAC969, induced formation of a shorter and less-branched root system, whereas RNAi-mediated MtNAC969 inactivation promoted lateral root formation. The altered root system of over-expressing plants was able to maintain its growth under high salinity, and roots in which MtNAC969 was down-regulated showed improved growth under salt stress. Accordingly, expression of salt stress markers was decreased or induced in MtNAC969 over-expressing or RNAi roots, respectively, suggesting a repressive function for this transcription factor in the salt-stress response. Expression of MtNAC969 in central symbiotic nodule tissues was induced by nitrate treatment, and antagonistically affected by salt in roots and nodules, similarly to senescence markers. MtNAC969 RNAi nodules accumulated amyloplasts in the nitrogen-fixing zone, and were prematurely senescent. Therefore, the MtNAC969 transcription factor, which is differentially affected by environmental cues in root and nodules, participates in several pathways controlling adaptation of the M. truncatula root system to the environment. PMID:22098255

  15. Nodule parenchyma-specific expression of the sesbania rostrata early nodulin gene SrEnod2 is mediated by its 3' untranslated region

    PubMed Central

    Chen, R; Silver, DL; de Bruijn FJ

    1998-01-01

    The early nodulin Enod2 gene encodes a putative hydroxyproline-rich cell wall protein and is expressed exclusively in the nodule parenchyma cell layer. The latter finding suggests that the Enod2 protein may contribute to the special morphological features of the nodule parenchyma and to the creation of an oxygen diffusion barrier. The Enod2 gene of the stem-nodulating legume Sesbania rostrata (SrEnod2) is induced specifically in roots by the plant hormone cytokinin, and this induction occurs at a post-transcriptional level. Here, we characterize the cis determinant(s) in the SrEnod2 locus responsible for nodule parenchyma-specific expression and show that the 3' untranslated region (UTR) of the SrEnod2 gene is both required and sufficient for directing chimeric reporter gene expression in the nodule parenchyma of transgenic Lotus corniculatus plants. Moreover, we show that the SrEnod2 3' UTR does not act as a tissue-specific enhancer element. By conducting a detailed deletion analysis of the 5' and 3' SrEnod2 regions, we delimited the minimal promoter of the SrEnod2 gene, and it appears that the 5' flanking sequences are not essential for nodule parenchyma-specific expression. This finding is in contrast with the report that the 5' upstream region of the soybean Enod2 gene directs nodule parenchyma-specific expression, indicating that different mechanisms may be involved in regulating the expression of these two genes. We definitively demonstrate that the cis element(s) for tissue-specific expression is located within the 3' UTR of a plant nuclear gene. PMID:9761788

  16. Incidentally diagnosed pulmonary nodule: a diagnostic algorithm

    PubMed Central

    Rzyman, Witold

    2014-01-01

    Asymptomatic solitary pulmonary nodules incidentally revealed by computed tomography has become a serious medical problem. Depending on their diameter, solid, part-solid, or pure ground-glass pulmonary nodules may be observed, diagnosed radiologically/invasively, or resected in accordance with international guidelines. Pure ground-glass nodules, semi-solid lesions, or solid lesions smaller than 8 mm should be monitored by serial low-dose computed tomography. In the case of solid nodules greater than 8 mm, the assessment of the risk of malignancy is recommended. Patients at high risk of lung cancer with pulmonary lesions should undergo diagnostic investigation, or the nodule should be resected. If the risk of lung cancer is low, the patients may be monitored. Needle aspiration biopsy is the most important invasive method of tumor diagnosis. Cytological or histopathological diagnosis is helpful in appropriate clinical decision making that reduces the risk of unnecessary surgery, decreasing the rate of benign nodule resections and thus reducing the costs of medical treatment. PMID:26336456

  17. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions.

    PubMed

    Suter, Matthias; Connolly, John; Finn, John A; Loges, Ralf; Kirwan, Laura; Sebastià, Maria-Teresa; Lüscher, Andreas

    2015-06-01

    Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self-sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental-scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot ) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix ) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 -fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one-third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one-third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix /Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix /Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a

  18. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  19. Estimating variability in grain legume yields across Europe and the Americas

    PubMed Central

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-01-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961–2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains. PMID:26054055

  20. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    DOE PAGESBeta

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogeneticmore » distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.« less

  1. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    SciTech Connect

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.

  2. Extra-slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed.

    PubMed

    Safronova, Vera I; Kuznetsova, Irina G; Sazanova, Anna L; Kimeklis, Anastasiia K; Belimov, Andrey A; Andronov, Evgeny E; Pinaev, Alexander G; Pukhaev, Andrey R; Popov, Konstantin P; Akopian, Janna A; Willems, Anne; Tikhonovich, Igor A

    2015-09-01

    Eleven extra-slow-growing strains were isolated from nodules of the relict legume Vavilovia formosa growing in North Ossetia (Caucasus) and Armenia. All isolates formed a single rrs cluster together with the type strain Tardiphaga robiniae LMG 26467(T), while the sequencing of the 16S-23S rDNA intergenic region (ITS) and housekeeping genes glnII, atpD, dnaK, gyrB, recA and rpoB divided them into three groups. North Ossetian isolates (in contrast to the Armenian ones) were clustered separately from the type strain LMG 26467(T). However, all isolates were classified as T. robiniae because the DNA-DNA relatedness between them and the type strain LMG 26467(T) was 69.6% minimum. Two symbiosis-related genes (nodM and nodT) were amplified in all isolated Tardiphaga strains. It was shown that the nodM gene phylogeny is similar to that of ITS and housekeeping genes. The presence of the other symbiosis-related genes in described Tardiphaga strains, which is recently described genus of rhizobia, as well as their ability to form nodules on any plants are under investigation. PMID:26013968

  3. Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria

    PubMed Central

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-01-01

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbiotic- and host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. These analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability. PMID:26584898

  4. Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?

    PubMed Central

    Maróti, Gergely; Kondorosi, Éva

    2014-01-01

    The symbiosis between rhizobia soil bacteria and legumes is facultative and initiated by nitrogen starvation of the host plant. Exchange of signal molecules between the partners leads to the formation of root nodules where bacteria are converted to nitrogen-fixing bacteroids. In this mutualistic symbiosis, the bacteria provide nitrogen sources for plant growth in return for photosynthates from the host. Depending on the host plant the symbiotic fate of bacteria can either be reversible or irreversible. In Medicago plants the bacteria undergo a host-directed multistep differentiation process culminating in the formation of elongated and branched polyploid bacteria with definitive loss of cell division ability. The plant factors are nodule-specific symbiotic peptides. About 500 of them are cysteine-rich NCR peptides produced in the infected plant cells. NCRs are targeted to the endosymbionts and the concerted action of different sets of peptides governs different stages of endosymbiont maturation. This review focuses on symbiotic plant cell development and terminal bacteroid differentiation and demonstrates the crucial roles of symbiotic peptides by showing an example of multi-target mechanism exerted by one of these symbiotic peptides. PMID:25071739

  5. Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Burman, Uday; Santra, P.

    2015-07-01

    Experiments were carried out to study the effect of zinc oxide nanoparticles (nano-ZnO) on nitrogenase activity in legumes. In the first experiment, nodulated roots of cluster bean, moth bean, green gram and cowpea were dipped in Hoagland solution containing 1.5 and 10 μg mL-1 of nano-ZnO for 24 h. Nitrogenase activity in cluster bean, green gram and cowpea roots increased after dipping in solution containing 1.5 μg mL-1 nano-ZnO, but decreased in roots dipped in solution containing 10 μg mL-1 nano-ZnO. However, in moth bean roots, nitrogenase activity decreased after dipping in solution containing either concentration of nano-ZnO. In the second experiment, nodulated roots of green gram were dipped in Hoagland solution containing 1, 4, 6, 8 and 10 μg mL-1 nano-ZnO for 6-30 h before estimating nitrogenase activity. Results showed that an interactive effect of nano-ZnO concentration and exposure time influenced nitrogenase activity. The possible reasons behind this effect have been discussed. A model [ A = 3.44 + 0.46 t - 0.01 t 2 - 0.002 tc 2 ( R 2 = 0.81)] involving linear and power components was developed to simulate the response of nitrogenase activity in green gram roots to the concentration and exposure time of nano-ZnO.

  6. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis.

    PubMed Central

    Laguerre, G; van Berkum, P; Amarger, N; Prévost, D

    1997-01-01

    The genetic diversity of 44 rhizobial isolates from Astragalus, Oxytropis, and Onobrychis spp. originating from different geographic locations was evaluated by mapped restriction site polymorphism (MRSP) analysis of 16S rRNA genes and by PCR DNA fingerprinting with repetitive sequences (REP-PCR). A comparison of tree topologies of reference strains constructed with data obtained by MRSP and by 16S rRNA gene sequence analyses showed that the topologies were in good agreement, indicating that the MSRP approach results in reasonable estimates of rhizobial phylogeny. The isolates were distributed into 14 distinct 16S rRNA gene types clustering into three major groups which corresponded with three of the genera within the legume symbionts. Most of the isolates were within the genus Mesorhizobium. Five were identified with different genomic species nodulating Lotus spp. and Cicer arietinum. Three Astragalus isolates were classified as Bradyrhizobium, one being similar to Bradyrhizobium elkanii and another being similar to Bradyrhizobium japonicum. Six of the isolates were related to species within the genus Rhizobium. Two were similar to Rhizobium leguminosarum, and the remainder were identified as Rhizobium gallicum. DNA fingerprinting by REP-PCR revealed a high level of diversity within single 16S ribosomal DNA types. The 44 isolates were distributed into 34 REP groups. Rhizobial classification at the genus and probably also the species levels was independent of geographic origin and host plant affinity. PMID:9406393

  7. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes.

    PubMed

    Ramos, Gustavo; de Lima, Haroldo Cavalcante; Prenner, Gerhard; de Queiroz, Luciano Paganucci; Zartman, Charles E; Cardoso, Domingos

    2016-04-01

    Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology. PMID:26748266

  8. Mapping the Genetic Basis of Symbiotic Variation in Legume-Rhizobium Interactions in Medicago truncatula

    PubMed Central

    Gorton, Amanda J.; Heath, Katy D.; Pilet-Nayel, Marie-Laure; Baranger, Alain

    2012-01-01

    Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies. PMID:23173081

  9. Automatic two-step detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Dolejší, Martin; Kybic, Jan

    2007-03-01

    We present a computer-aided diagnosis (CAD) system to detect small-size (from 2mm to around 10mm) pulmonary nodules from helical CT scans. A pulmonary nodule is a small, round (parenchymal nodule) or worm (juxta-pleural) shaped lesion in the lungs. Both have greater radio density than lungs parenchyma. Lung nodules may indicate a lung cancer and its detection in early stage improves survival rate of patients. CT is considered to be the most accurate imaging modality for detection of nodules. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. CAD system presented is designed to help lower the number of omissions. Our system uses two different schemes to locate juxtapleural nodules and parenchymal nodules. For juxtapleural nodules, morphological closing and thresholding is used to find nodule candidates. To locate non-pleural nodule candidates, 3D blob detector uses multiscale filtration. Ellipsoid model is fitted on nodules. To define which of the nodule candidates are in fact nodules, an additional classification step is applied. Linear and multi-threshold classifiers are used. System was tested on 18 cases (4853 slices) with total sensitivity of 96%, with about 12 false positives/slice. The classification step reduces number of false positives to 9 per slice without significantly decreasing sensitivity (89,6%).

  10. Medicago truncatula natural resistance-associated macrophage Protein1 is required for iron uptake by rhizobia-infected nodule cells.

    PubMed

    Tejada-Jiménez, Manuel; Castro-Rodríguez, Rosario; Kryvoruchko, Igor; Lucas, M Mercedes; Udvardi, Michael; Imperial, Juan; González-Guerrero, Manuel

    2015-05-01

    Iron is critical for symbiotic nitrogen fixation (SNF) as a key component of multiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II. PMID:25818701

  11. Adaptation of Nitrogen Fixation by Intact Soybean Nodules to Altered Rhizosphere pO21

    PubMed Central

    Criswell, Jerome G.; Havelka, Ulysses D.; Quebedeaux, Bruno; Hardy, Ralph W. F.

    1976-01-01

    The N2-fixing legume nodule requires O2 for ATP production; however, the O2 sensitivity of nitrogenase dictates a requirement for a low pO2 inside the nodule. The effects of long term exposures to various pO2s on N2[C2H2] fixation were evaluated with intact soybean (Glycine max [L.] Merr., var. Wye) plants. Continuous exposure of their rhizosphere to a pO2 of 0.06 atmospheres initially reduced nitrogenase activity by 37 to 45% with restoration of original activity in 4 to 24 hours and with no further change in tests up to 95 hours; continuous exposure to 0.02 atmosphere of O2 initially reduced nitrogenase activity 72%, with only partial recovery by 95 hours. Similar exposures to a pO2 of 0.32 atmospheres had little effect on N2[C2H2] fixation; a pO2 of 0.89 atmospheres initially reduced nitrogenase activity by 98% with restoration to only 14 to 24% of that of the ambient O2 controls by 95 hours. Re-exposure to ambient pO2 of plants adapted to nonambient pO2s reduced N2[C2H2] fixation to similar magnitudes as the reductions which occurred upon initial exposure to variant pO2 conditions, and a time period was required to readapt to ambient O2. It is concluded that the N2[C2H2]-fixing system of intact soybean plants is able to adapt to a wide range of external pO2s as probably occur in soil. We postulate that this occurs through an undefined mechanism which enables the nodule to maintain an internal pO2 optimal for nitrogenase activity. PMID:16659731

  12. Evaluation of pulmonary nodules in Asian population

    PubMed Central

    Phua, Chee K.; Sim, Wen Y.; Sen Tee, Kuan; Lew, Sennen J. W.; Lim, Albert Y. H.; Tai, Dessmon Y. H.; Goh, Soon Keng; Kor, Ai Ching; Ng, Alan W. K.; Abisheganaden, John

    2016-01-01

    Background American College of Chest Physicians (ACCP) provides guidelines to manage pulmonary nodules. Pulmonary nodules however can be malignant or benign. Similar incidence of tuberculosis (TB) and lung cancer in Asian countries raises concern over the relevance of suggested guidelines in Asian population. There is little data on the pattern of clinical practice in the management of pulmonary nodules in Asian country (Singapore). Our study describes the current pattern of clinical practice in this area highlighting the variation in practice and discussing the potential reasons. Methods Retrospective review of the medical records of patients diagnosed with lung cancer in 2010. Results Sixty nodules were identified in 32 patients. Nodules were detected incidentally on routine imaging in 7 (21.9%) patients. TB contact tracing and pre-employment screening were common ways by which nodules were detected incidentally. Over one third (37.5%) were non-smokers. Majority of nodules were located in the upper lobes of right and left lung followed by right lower lobe (RLL). Only few patients 8 (25%) had positron emission tomography (PET) scan for staging purposes. There were no difference in survival between patients who presented with single, 747 (range, 25–1,840) days vs. multiple nodules 928 (range, 30–2,572) days, P=0.26. In a retrospective analysis of malignancy risk with the probability calculator, 62.5% patients were at low-moderate risk whilst 32.5% were at high risk. Conclusions The clinical practice of managing pulmonary nodules in Asian population differs from ACCP guidelines. None of the patient had pre-test probability calculated, and few had PET scan. This is because upper lobe predominance of lung cancer is identical to TB, non-smoking history does not have any weight in discounting malignancy risk where many of the Asian lung cancer patients are non-smokers, and the local endemicity of TB and its confounding effect on radiological findings of CT scan and

  13. CT features of pleural masses and nodules.

    PubMed

    Reetz, Jennifer A; Buza, Elizabeth L; Krick, Erika L

    2012-01-01

    Pleural space masses and nodules are rarely described on computed tomography (CT) in veterinary medicine and have only been described in patients with neoplasia. Our purpose was to describe the CT findings and diagnoses in seven patients with pleural masses and nodules. Two patients had broad-based, plaque-like pleural masses, both of which were due to neoplasia (primary pleural carcinoma, metastatic thymoma). Two patients had well-defined pleural nodules and nodular pleural thickening, one of which had mesothelial hypertrophy, and another of which had metastatic hemangiosarcoma. Three patients had ill-defined pleural nodules to nodular pleural thickening, one of which had metastatic pulmonary carcinoma, while the other two had bacterial infection with mesothelial proliferation (n = 2), fibrinous pleuritis (n = 1), and severe mediastinal pleuritis/mediastinitis (n = 2). Five of the seven patients had focal, multifocal or diffuse smooth, and/or irregular pleural thickening. Five of seven patients had pleural effusion, and postcontrast CT was useful in several patients for delineating the pleural lesions from the effusion. All patients except one had additional lesions identified on CT besides those in the pleural space. CT is useful in identifying and characterizing pleural space lesions and could be used to guide further diagnostic procedures such as thoracoscopy or exploratory thoracotomy. Both neoplastic and nonneoplastic diseases should be considered in the differential diagnoses for pleural space masses and nodules found on CT. PMID:22092656

  14. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens.

    PubMed

    Jiao, Yin Shan; Yan, Hui; Ji, Zhao Jun; Liu, Yuan Hui; Sui, Xin Hua; Wang, En Tao; Guo, Bao Lin; Chen, Wen Xin; Chen, Wen Feng

    2015-02-01

    Five bacterial strains representing 45 isolates originated from root nodules of the medicinal legume Sophora flavescens were defined as two novel groups in the genus Rhizobium based on their phylogenetic relationships estimated from 16S rRNA genes and the housekeeping genes recA, glnII and atpD. These groups were distantly related to Rhizobium leguminosarum USDA 2370(T) (95.6 % similarity for group I) and Rhizobium phaseoli ATCC 14482(T) (93.4 % similarity for group II) in multilocus sequence analysis. In DNA-DNA hybridization experiments, the reference strains CCBAU 03386(T) (group I) and CCBAU 03470(T) (group II) showed levels of relatedness of 17.9-57.8 and 11.0-42.9 %, respectively, with the type strains of related species. Both strains CCBAU 03386(T) and CCBAU 03470(T) contained ubiquinone 10 (Q-10) as the major respiratory quinone and possessed 16 : 0, 18 : 0, 19 : 0 cyclo ω8c, summed feature 8 and summed feature 2 as major fatty acids, but did not contain 20 : 3 ω6,8,12c. Phenotypic features distinguishing both groups from all closely related species of the genus Rhizobium were found. Therefore, two novel species, Rhizobium sophorae sp. nov. for group I (type strain CCBAU 03386(T) = E5(T) = LMG 27901(T) = HAMBI 3615(T)) and Rhizobium sophoriradicis sp. nov. for group II (type strain CCBAU 03470(T) = C-5-1(T) = LMG 27898(T) = HAMBI 3510(T)), are proposed. Both groups were able to nodulate Phaseolus vulgaris and their hosts of origin (Sophora flavescens) effectively and their nodulation gene nodC was phylogenetically located in the symbiovar phaseoli. PMID:25385989

  15. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  16. Priority regions for research on dryland cereals and legumes.

    PubMed

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  17. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2013-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  18. Diagnosis and management of pulmonary nodules.

    PubMed

    Krochmal, Rebecca; Arias, Sixto; Yarmus, Lonny; Feller-Kopman, David; Lee, Hans

    2014-12-01

    There are an increased number of pulmonary nodules discovered on CT scan images in part due to those performed for lung cancer screening. Risk stratification and patient involvement is critical in determining management ranging from interval imaging to invasive biopsy or surgery. A definitive diagnosis requires tissue biopsy. The choice of a particular biopsy technique depends on the risks/benefits of the procedure, the diagnostic yield and local expertise. This review will focus on the evaluation and management of pulmonary nodules based on the Fleischner Society and American College of Chest Physician guidelines. There have been recent changes to both societies' recommendations for incidental detection of solid and subsolid nodules, risk stratification, imaging, minimally invasive diagnostic techniques and definitive surgical options. PMID:25152306

  19. Multiple cutaneous, oropharyngeal and pulmonary nodules.

    PubMed

    Veraitch, O; Bhargava, K; Moriarty, B; Calonje, E; Mallipeddi, R; Whittaker, S

    2015-08-01

    Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis defined by heterogeneous multiorgan involvement. Due to the rarity of this disease strong evidence-based therapies have yet to be established and prognosis has previously been considered to be poor, with more than half of patients dying within 3 years of initial presentation. We describe an 86-year-old woman with a 34-year history of extensive cutaneous and internal nodules with typical pathological and immunophenotypical (CD68(+) /CD1a(-) ) features of ECD without evidence of the BRAF V600E mutation. The cosmetic appearance of cutaneous nodules and hoarse voice caused by vocal cord nodules has been managed surgically. More aggressive therapies reported for ECD were trialled for this patient, such as radiotherapy and interferon-α, with no response. This case demonstrates a relatively good prognosis in ECD that has been managed conservatively. PMID:25639756

  20. Endometrial Stromal Nodule: Report of a Case

    PubMed Central

    Fdili Alaoui, F. Z.; Chaara, H.; Bouguern, H.; Melhouf, M. A.; Fatemi, H.; Belmlih, A.; Amarti, A.

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  1. Endometrial stromal nodule: report of a case.

    PubMed

    Fdili Alaoui, F Z; Chaara, H; Bouguern, H; Melhouf, M A; Fatemi, H; Belmlih, A; Amarti, A

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  2. Nodules Initiated by Rhizobium meliloti Exopolysaccharide Mutants Lack a Discrete, Persistent Nodule Meristem 1

    PubMed Central

    Yang, Cheng; Signer, Ethan R.; Hirsch, Ann M.

    1992-01-01

    Infection of alfalfa with Rhizobium meliloti exo mutants deficient in exopolysaccharide results in abnormal root nodules that are devoid of bacteria and fail to fix nitrogen. Here we report further characterization of these abnormal nodules. Tightly curled root hairs or shepherd's crooks were found after inoculation with Rm 1021-derived exo mutants, but curling was delayed compared with wild-type Rm 1021. Infection threads were initiated in curled root hairs by mutants as well as by wild-type R. meliloti, but the exo mutant-induced threads aborted within the peripheral cells of the developing nodule. Also, nodules elicited by Rm 1021-derived exo mutants were more likely to develop on secondary roots than on the primary root. In contrast with wild-type R. meliloti-induced nodules, the exo mutant-induced nodules lacked a well defined apical meristem, presumably due to the abortion of the infection threads. The relationship of these findings to the physiology of nodule development is discussed. ImagesFigure 3Figure 1Figure 2Figure 4 PMID:16668605

  3. NodD1 and NodD2 Are Not Required for the Symbiotic Interaction of Bradyrhizobium ORS285 with Nod-Factor-Independent Aeschynomene Legumes

    PubMed Central

    Fardoux, Joel; Giraud, Eric

    2016-01-01

    Photosynthetic Bradyrhizobium strain ORS285 forms nitrogen-fixing nodules on the roots and stems of tropical aquatic legumes of the Aeschynomene genus. Depending on the Aeschynomene species, this symbiotic interaction does or does not rely on the synthesis of Nod-factors (NFs). However, whether during the interaction of Bradyrhizobium ORS285 with NF-independent Aeschynomene species the nod genes are expressed and if the general regulator NodD plays a symbiotic role is unknown. Expression studies showed that in contrast to the interaction with the NF-dependent Aeschynomene species, A. afraspera, the Bradyrhizobium ORS285 nod genes are not induced upon contact with the NF-independent host plant A. indica. Mutational analysis of the two nodD genes present in ORS285, showed that deletion of nodD1 and nodD2 did not affect the symbiotic interaction between Bradyrhizobium ORS285 and A. indica whereas the deletions had an effect on the symbiotic interaction with A. afraspera plants. In addition, when the expression of nod genes was artificially induced by adding naringenin to the plant growth medium, the nodulation of A. indica by Bradyrhizobium ORS285 is delayed and resulted in lower nodule numbers. PMID:27315080

  4. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes.

    PubMed

    Xu, B J; Yuan, S H; Chang, S K C

    2007-03-01

    The objective of this study was to characterize the phenolic compounds and antioxidant activities of U.S.-produced cool season legumes. A total of 33 cool season legume samples were selected. Some common beans and soybeans were included for comparisons. Total phenolic content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) were analyzed. Ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and oxygen radical absorbance capacity (ORAC) were used for analyzing antioxidant properties. Color of the legume flour and the seed coat was also analyzed. TPC, TFC, CTC, FRAP, DPPH, and ORAC values of legumes were significantly different not only between classes but also among samples within each class. Among cool season legume classes, lentils possessed the highest concentrations of the phenolic compounds and antioxidant activities. Colored common beans and black soybeans exhibited higher TPC, TFC, CTC, FRAP, DPPH, and ORAC values than those of yellow peas, green peas, and chickpeas. Antioxidant activities (FRAP, DPPH, and ORAC) were strongly correlated (r= 0.96, 0.94, and 0.89, respectively, P < 0.01) with TPC. TPC and ORAC were moderately correlated (P < 0.01) with either the seed hull surface color or the flour color. PMID:17995859

  5. Linking Biomarker and Comparative Omics to Pathogens in Legumes.

    PubMed

    Diapari, Marwan

    2016-01-01

    It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind. In this paper I provide an overview of genomics and proteomics and their use in legume crops, including the use of comparative genomics to identify homologous markers within legume crops. PMID:26364313

  6. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant

    PubMed Central

    Horváth, Beatrix; Domonkos, Ágota; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D.; Udvardi, Michael K.; Kondorosi, Éva; Kaló, Péter

    2015-01-01

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula. PMID:26401023

  7. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.

    PubMed

    Horváth, Beatrix; Domonkos, Ágota; Kereszt, Attila; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D; Udvardi, Michael K; Kondorosi, Éva; Kaló, Péter

    2015-12-01

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula. PMID:26401023

  8. Development of functional symbiotic white clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2.

    PubMed

    Robledo, Marta; Jiménez-Zurdo, José I; Soto, M José; Velázquez, Encarnación; Dazzo, Frank; Martínez-Molina, Eustoquio; Mateos, Pedro F

    2011-07-01

    The establishment of rhizobia as nitrogen-fixing endosymbionts within legume root nodules requires the disruption of the plant cell wall to breach the host barrier at strategic infection sites in the root hair tip and at points of bacterial release from infection threads (IT) within the root cortex. We previously found that Rhizobium leguminosarum bv. trifolii uses its chromosomally encoded CelC2 cellulase to erode the noncrystalline wall at the apex of root hairs, thereby creating the primary portal of its entry into white clover roots. Here, we show that a recombinant derivative of R. leguminosarum bv. trifolii ANU843 that constitutively overproduces the CelC2 enzyme has increased competitiveness in occupying aberrant nodule-like root structures on clover that are inefficient in nitrogen fixation. This aberrant symbiotic phenotype involves an extensive uncontrolled degradation of the host cell walls restricted to the expected infection sites at tips of deformed root hairs and significantly enlarged infection droplets at termini of wider IT within the nodule infection zone. Furthermore, signs of elevated plant host defense as indicated by reactive oxygen species production in root tissues were more evident during infection by the recombinant strain than its wild-type parent. Our data further support the role of the rhizobial CelC2 cell wall-degrading enzyme in primary infection, and show evidence of its importance in secondary symbiotic infection and tight regulation of its production to establish an effective nitrogen-fixing root nodule symbiosis. PMID:21405987

  9. Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation.

    PubMed

    Diabate, Moussa; Munive, Antonio; de Faria, Sérgio Miana; Ba, Amadou; Dreyfus, Bernard; Galiana, Antoine

    2005-04-01

    Despite the abundance and diversity of timber tree legumes in the West African rainforest, their ability to form nitrogen-fixing nodules in symbiosis with rhizobia, and their response to rhizobial inoculation, remain poorly documented. In the first part of this study the occurrence of nodulation was determined in 156 leguminous species growing in six natural forest areas in Guinea, mostly mature trees. In the second part, an in situ experiment of rhizobial inoculation was performed on eight selected tree species belonging to three genera: Albizia, Erythrophleum and Millettia. Of the 97 plant species and 14 genera that had never been examined before this study, 31 species and four genera were reported to be nodulated. After 4 months of growing in a nursery and a further 11 months after transplantation of plants to the field, we observed a highly significant (P < 0.001) and positive effect of inoculation with Bradyrhizobium sp. strains on the growth of the eight tree species tested. The importance of determining the nodulation ability of unexplored local trees and subsequently using this information for inoculation in reforestation programmes was demonstrated. PMID:15760366

  10. Penile nodule in a young adult.

    PubMed

    Choudhury, S R; Maji, B P

    1990-06-01

    A 20 year old male presented with a nodule, 1.25 cm x 1 cm, on the ventral aspect of the foreskin of his penis. The nodule was excised by circumcision. On histology it was found to be a multiloculated cyst located in the dermis of the prepuce. It contained eosinophilic material and was lined by pseudostratified columnar epithelium. There was no evidence of inflammation or malignancy in any of the sections of this median raphe cyst. The aetiology of such cysts is discussed in addition to a review of the literature. PMID:2346443

  11. Radiofrequency ablation for benign thyroid nodules.

    PubMed

    Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B

    2016-09-01

    Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature. PMID:27098804

  12. Pulmonary carcinoid presenting as multiple subcutaneous nodules.

    PubMed

    Oleksowicz, L; Morris, J C; Phelps, R G; Bruckner, H W

    1990-02-28

    A 60-year-old female presented with a one-year history of multiple enlarging tender subcutaneous nodules. Initial biopsy demonstrated a poorly differentiated adenocarcinoma. Mammography showed multiple nodular breast lesions. After the patient failed to respond to tamoxifen, a second biopsy demonstrated a metastatic carcinoid tumor. Further search revealed a single small pulmonary nodule, which on aspiration biopsy proved to be a carcinoid tumor. The patient failed to respond to treatment with streptozotocin and 5'-fluorouracil. Therapy with leucovorin calcium and 5'-fluorouracil then produced a partial response. PMID:2321273

  13. Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean.

    PubMed

    Reid, Dugald E; Li, Dongxue; Ferguson, Brett J; Gresshoff, Peter M

    2013-04-01

    Legumes control the nitrogen-fixing root nodule symbiosis in response to external and internal stimuli, such as nitrate, and via systemic autoregulation of nodulation (AON). Overexpression of the CLV3/ESR-related (CLE) pre-propeptide-encoding genes GmNIC1 (nitrate-induced and acting locally) and GmRIC1 (Bradyrhizobium-induced and acting systemically) suppresses soybean nodulation dependent on the activity of the nodulation autoregulation receptor kinase (GmNARK). This nodule inhibition response was used to assess the relative importance of key structural components within and around the CLE domain sequences of these genes. Using a site-directed mutagenesis approach, mutants were produced at each amino acid within the CLE domain (RLAPEGPDPHHN) of GmRIC1. This approach identified the Arg1, Ala3, Pro4, Gly6, Pro7, Asp8, His11, and Asn12 residues as critical to GmRIC1 nodulation suppression activity (NSA). In contrast, none of the mutations in conserved residues outside of the CLE domain showed compromised NSA. Chimeric genes derived from combinations of GmRIC1 and GmNIC1 domains were used to determine the role of each pre-propeptide domain in NSA differences that exist between the two peptides. It was found that the transit peptide and CLE peptide regions of GmRIC1 significantly enhanced activity of GmNIC1. In contrast, the comparable GmNIC1 domains reduced the NSA of GmRIC1. Identification of these critical residues and domains provides a better understanding of how these hormone-like peptides function in plant development and regulation. PMID:23386683

  14. AhDMT1, a Fe(2+) transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils.

    PubMed

    Shen, Hongyun; Xiong, Hongchun; Guo, Xiaotong; Wang, Pengfei; Duan, Penggen; Zhang, Lixia; Zhang, Fusuo; Zuo, Yuanmei

    2014-05-01

    Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe(2+) transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach. PMID:24519544

  15. LEGUME GREEN FALLOW EFFECT ON SOIL WATER AT WHEAT PLANTING AND WHEAT YIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing a legume cover crop in place of fallow in a winter wheat-fallow system can provide protection against erosion while adding nitrogen to the soil. However, the water used by the legume may reduce the following wheat yield. This study was conducted to quantify the effect of varying legume termi...

  16. Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans.

    PubMed

    Lamrabet, Y; Bellogín, R A; Cubo, T; Espuny, R; Gil, A; Krishnan, H B; Megias, M; Ollero, F J; Pueppke, S G; Ruiz-Sainz, J E; Spaink, H P; Tejero-Mateo, P; Thomas-Oates, J; Vinardell, J M

    1999-03-01

    We mutagenized Sinorhizobium fredii HH103-1 with Tn5-B20 and screened about 2,000 colonies for increased beta-galactosidase activity in the presence of the flavonoid naringenin. One mutant, designated SVQ287, produces lipochitooligosaccharide Nod factors (LCOs) that differ from those of the parental strain. The nonreducing N-acetylglucosamine residues of all of the LCOs of mutant SVQ287 lack fucose and 2-O-methylfucose substituents. In addition, SVQ287 synthesizes an LCO with an unusually long, C20:1 fatty acyl side chain. The transposon insertion of mutant SVQ287 lies within a 1.1-kb HindIII fragment. This and an adjacent 2.4-kb HindIII fragment were sequenced. The sequence contains the 3' end of noeK, nodZ, and noeL (the gene interrupted by Tn5-B20), and the 5' end of nolK, all in the same orientation. Although each of these genes has a similarly oriented counterpart on the symbiosis plasmid of the broad-host-range Rhizobium sp. strain NGR234, there are significant differences in the noeK/nodZ intergenic region. Based on amino acid sequence homology, noeL encodes GDP-D-mannose dehydratase, an enzyme involved in the synthesis of GDP-L-fucose, and nolK encodes a NAD-dependent nucleotide sugar epimerase/dehydrogenase. We show that expression of the noeL gene is under the control of NodD1 in S. fredii and is most probably mediated by the nod box that precedes nodZ. Transposon insertion into neoL has two impacts on symbiosis with Williams soybean: nodulation rate is reduced slightly and competitiveness for nodulation is decreased significantly. Mutant SVQ287 retains its ability to form nitrogen-fixing nodules on other legumes, but final nodule number is attenuated on Cajanus cajan. PMID:10065558

  17. Infection and nodulation of clover by nonmotile Rhizobium trifolii

    SciTech Connect

    Napoli, C.; Albersheim, P.

    1980-02-01

    Nonmotile mutants of Rhizobium trifolii were isolated to determine whether bacterial motility is required for the infection and nodulation of clover. The nonmotile mutants were screened for their ability to infect and nodulate clover seedlings in Fahraeus glass slide assemblies, plastic growth pouches, and vermiculite-sand-filled clay pots. In each system, the nonmotile mutants were able to infect and nodulate clover.

  18. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide. PMID:17778807

  19. Vocal Nodules: Their Cause and Treatment

    ERIC Educational Resources Information Center

    Teter, Darrel L.

    1977-01-01

    Provides knowledge about the workings of the vocal apparatus, the scientific basis of certain vocal problems, and what to do to overcome those problems. Specifically discusses the occurrence of nodules on the vocal cords and how to treat them, a subject of interest to both singers and nonsingers. (Editor/RK)

  20. Milker’s nodule - Case report*

    PubMed Central

    Adriano, André Ricardo; Quiroz, Carlos Daniel; Acosta, Martha Liliana; Jeunon, Thiago; Bonini, Flávia

    2015-01-01

    Milker's nodule is an occupational viral skin disease of universal distribution, caused by the Paravaccinia virus and that occurs in individuals who deal with dairy cattle herds. We describe a case acquired due to lack of use of PPE (Personal Protective Equipment) and perform a literature review. PMID:26131876

  1. Computerized interpretation of solitary pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideo; Takabatake, Hirotsugu; Mori, Masaki; Mitani, Masanobu; Natori, Hiroshi

    1998-04-01

    In physicians' interpretation, morphologic characteristics of pulmonary nodules are not only important signs for the discrimination, but also important features for the diagnosis with a reasonable degree of confidence. This paper describes about the computerized interpretation system which is developed to analyze the relation between the measuring values and the morphologic characteristics, and to make clear the logic of physicians' diagnosis. We think that the four basic morphologic characteristics of the discriminative diagnosis between benign and malignant nodules exist which are: (1) the density; (2) the homogeneity; (3) the definition; and (4) the convergence. To obtain each grade of the parameters, we developed an interpretation system. On the other hand, to obtain digital feature values, we used our computer aided diagnosis system. Interpretation experiments were performed by using 15 benign and 19 malignant cases of chest x-ray CT images. As the result of a statistical analysis, some digital features have the significant differences between benign and malignant nodules, and the morphological characteristics have also differences. Therefore the computerized system is feasible to help physicians' interpretation to distinct between malignant and benign nodules by showing digital feature values as some references.

  2. The transcriptome of common bean: more than nodulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phaseolus vulgaris (common bean) is one of the most important grain legumes for direct human consumption. It comprises 50% of the grain legumes consumed worldwide and is important as a primary source of dietary protein in developing countries. We performed next generation sequencing (RNAseq) on five...

  3. The transcriptome of common bean: nodules to beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phaseolus vulgaris (common bean) is one of the most important grain legumes for direct human consumption. It comprises 50% of the grain legumes consumed worldwide and is important as a primary source of dietary protein in developing countries. We performed next generation sequencing (RNAseq) on five...

  4. Nitrate Effects on Nodule Oxygen Permeability and Leghemoglobin (Nodule Oximetry and Computer Modeling).

    PubMed Central

    Denison, R. F.; Harter, B. L.

    1995-01-01

    Two current hypotheses to explain nitrate inhibition of nodule function both involve decreased O2 supply for respiration in support of N2 fixation. This decrease could result from either (a) decreased O2 permeability (PO) of the nodule cortex, or (b) conversion of leghemoglobin (Lb) to an inactive, nitrosyl form. These hypotheses were tested using alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus) plants grown in growth pouches under controlled conditions. Nodulated roots were exposed to 10 mM KNO3 or KCI. Fractional oxygenation of Lb under air (FOLair), relative concentration of functional Lb, apparent PO, and O2-saturated central zone respiration rate were all monitored by nodule oximetry. Apparent PO and FOLair in nitrate-treated nodules decreased to <50% of values for KCI controls within 24 h, but there was no decrease in functional Lb concentration during the first 72 h. In nitrate-treated alfalfa, but not in birdsfoot trefoil, FOLair, apparent PO, and O2-saturated central zone respiration rate decreased during each light period and recovered somewhat during the subsequent dark period. This species difference could be explained by greater reliance on photoreduction of nitrate in alfalfa than in birdsfoot trefoil. Computer simulations extended the experimental results, showing that previously reported decreases in apparent PO of Glycine max nodules with nitrate exposure cannot be explained by hypothetical decreases in the concentration or O2 affinity of Lb. PMID:12228439

  5. Factors functioning in nodule melanization of insects and their mechanisms of accumulation in nodules.

    PubMed

    Tokura, Ai; Fu, Gege Sun; Sakamoto, Maki; Endo, Haruka; Tanaka, Shiho; Kikuta, Shingo; Tabunoki, Hiroko; Sato, Ryoichi

    2014-01-01

    Nodules consisting of hemocytes and trapped microorganisms are important targets for melanization, which is best known in the insect immune system. We investigated factors functioning in nodule melanization and the mechanism by which these factors congregate in the nodule. BmHP21, BmSPH1 and BmSPH2, Bombyx mori orthologs of Manduca sexta serine protease HP21, serine protease homologs (SPH1 and SPH2), and a prophenoloxidase, BmPO1 were observed as inactive forms in the plasma, but as putatively active forms in the nodule. Production of prophenoloxidase-activating proteinases, BmPAP1 and BmPAP3/PPAE and BmPO1 were confirmed in hemocytes. BmSPH1 and BmSPH2 were observed on trapped bacterial cells in the nodule and were isolated from the surface of bacterial cells incubated with plasma. BmSPH1 and BmSPH2 were found in plasma in complex with a pattern recognition receptor, BmLBP. These data suggest that melanization-regulating factors congregate in nodules through a combination of microorganism-dependent and hemocyte-dependent routes. PMID:24262307

  6. Management of Pulmonary Nodules by Community Pulmonologists

    PubMed Central

    Aggarwal, Jyoti; Gould, Michael K.; Kearney, Paul; Diette, Gregory; Vachani, Anil; Fang, Kenneth C.; Silvestri, Gerard A.

    2015-01-01

    BACKGROUND: Pulmonary nodules (PNs) are a common reason for referral to pulmonologists. The majority of data for the evaluation and management of PNs is derived from studies performed in academic medical centers. Little is known about the prevalence and diagnosis of PNs, the use of diagnostic testing, or the management of PNs by community pulmonologists. METHODS: This multicenter observational record review evaluated 377 patients aged 40 to 89 years referred to 18 geographically diverse community pulmonary practices for intermediate PNs (8-20 mm). Study measures included the prevalence of malignancy, procedure/test use, and nodule pretest probability of malignancy as calculated by two previously validated models. The relationship between calculated pretest probability and management decisions was evaluated. RESULTS: The prevalence of malignancy was 25% (n = 94). Nearly one-half of the patients (46%, n = 175) had surveillance alone. Biopsy was performed on 125 patients (33.2%). A total of 77 patients (20.4%) underwent surgery, of whom 35% (n = 27) had benign disease. PET scan was used in 141 patients (37%). The false-positive rate for PET scan was 39% (95% CI, 27.1%-52.1%). Pretest probability of malignancy calculations showed that 9.5% (n = 36) were at a low risk, 79.6% (n = 300) were at a moderate risk, and 10.8% (n = 41) were at a high risk of malignancy. The rate of surgical resection was similar among the three groups (17%, 21%, 17%, respectively; P = .69). CONCLUSIONS: A substantial fraction of intermediate-sized nodules referred to pulmonologists ultimately prove to be lung cancer. Despite advances in imaging and nonsurgical biopsy techniques, invasive sampling of low-risk nodules and surgical resection of benign nodules remain common, suggesting a lack of adherence to guidelines for the management of PNs. PMID:26087071

  7. Fine needle aspiration cytology of epididymal nodules

    PubMed Central

    Shah, Vinaya B; Shet, Tanuja M; Lad, Shilpa K

    2011-01-01

    Background: The incidence of non neoplastic lesions are much more common in epididymis. Clinically, epididymal nodules are easily accessible to fine needle aspiration cytology (FNAC) procedure. There are very few literature reports documenting the role of cytology in evaluation of epididymal nodules. Thus, we studied patients presenting with palpable epididymis nodules in the out patient department (OPD) from a tertiary care general hospital. Aim: This study is aimed to put forth the diagnostic utility of FNAC in palpable lesions of epididymis. Materials and Methods: A total of 40 palpable epididymal nodules were aspirated as a routine OPD procedure as part of this study. Smears were fixed in isopropyl alcohol and air dried. In all the cases, wet fixed papanicoloau stained and air dried giemsa stained smears were studied. Zeihl Neelsen stain was performed in cases which yielded caseous aspirate. Results: Except for two cases of adenomatoid tumor of epididymis all other lesions were nonneoplastic and included 14 cases (35%) of tuberculous granulomatous inflammation, 10 (25%) cystic nodules (9 spermatoceles and 1 encysted hydrocele), 5 (12.5%) of nonspecific inflammations, 3 (7.5%) filarial infection, 3 (7.5%) sperm granulomas and 3 (7.5%) adenomatous hyperplasia of rete testes. Except for the two tumors, one adenomatous hyperplasia and one tuberculous lesion, no other lesion was excised. Follow up and response to therapy was available in 78% patients and resolution indicated appropriateness of the diagnosis Conclusions: Thus, as most of the lesions in epididymis are non neoplastic responding to medical line of treatment and FNAC served to aid diagnosis of non specific inflammation and avoid surgical excision in most cases. PMID:21897542

  8. Forage legumes: diagnosis and correction of molybdenum and manganese problems. Southern Cooperative Series Bulletin 278

    SciTech Connect

    Mortvedt, J.J.; Anderson, O.E.

    1982-12-01

    Eleven experiments were conducted in five states of the southern region to determine the response of alfalfa, arrowleaf clover, crimson clover, ladino clover, red clover, and subterranean clover to lime and molybdenum applications. Liming generally resulted in increased forage yields if the initial soil pH level was sufficiently low, generally < 5.5. Alfalfa yields generally increased with soil pH level, but clover yields were less influenced by soil pH level. Yield responses to Mo applications were infrequent, but Mo responses by alfalfa occurred on unlimed soils of pH < 5.5, suggesting that this was the critical soil pH for obtaining response to Mo applications. Maximum yields usually were obtained with Mo rates of 50 to 100 g/ha. Yield decreases were noted with Mo applications along with the high-lime rate in some locations. Concentrations of plant Mo ranged from 0.01 to 5.28 ..mu..g/g in alfalfa and from 0.12 to 9.44 ..mu..g/g in clover, and generally increased with Mo rate and/or soil pH level. Five experiments were conducted in two states to determine response of alfalfa and clover to lime and manganese applications. Alfalfa yields were not increased by Mn applications, even at the high-lime rates where Mn availability and plant uptake were lowest. Ladino clover was not as sensitive as alfalfa to low soil pH; stands were established and maintained at pH 5.2. As with alfalfa, clover yields were not affected by Mn applications. Plant Mn ranged from 44 to 609 ..mu..g/g, suggesting that the critical level from Mn deficiency in clover would be < 44 ..mu..g/g. Results of these studies suggest that under most southern soil conditions, production of forage legumes may be limited on soils with pH levels < 5.5 due to low levels of available Mo which affect nodulation of legumes.

  9. RAPD-inferred genetic variability of some indigenous Rhizobium leguminosarum isolates from red clover (Trifolium pratense L.) nodules.

    PubMed

    Stefan, Andrei; Rosu, Craita M; Stedel, Catalina; Gorgan, Lucian D; Efrose, Rodica C

    2015-09-01

    The application of commercial rhizobial inoculants to legume crops is proving to be an alternative to synthetic fertilizer use. The challenge for sustainable agriculture resides in the compatibility between crop, inoculants and environmental conditions. The evaluation of symbiotic efficiency and genetic diversity of indigenous rhizobial strains could lead to the development of better inoculants and increased crop production. The genetic variability of 32 wild indigenous rhizobial isolates was assessed by RAPD (Random Amplified Polymorphic DNA). The strains were isolated from red clover (Trifolium pratense L.) nodules from two distinct geographical regions of Northern and Eastern Romania. Three decamer primers were used to resolve the phylogenetic relationships between the investigated isolates. Cluster analysis revealed a high diversity; most strains clustered together based on their geographical location. PMID:26344027

  10. Virulence of Agrobacterium tumefaciens strain A281 on legumes

    SciTech Connect

    Hood, E.E.; Fraley, R.T.; Chilton, M.D.

    1987-03-01

    This study addresses the basis of host range on legumes of Agrobacterium tumefaciens strain A281, an L,L-succinamopine strain. The authors tested virulence of T-DNA and vir region constructs from this tumor-inducing (Ti) plasmid with complementary Ti plasmid regions from heterologous nopaline and octopine strains.

  11. Resistance to ascochyta blights of cool season food legumes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascochyta blight is the most important disease problem of the cool season food legumes (peas, lentils, chickpeas, and faba beans) and is found in nearly all production regions around the world. Despite of the same common disease name, the pathogen species differ for each of the crops. These disease...

  12. Uses of tree legumes in semi-arid regions

    SciTech Connect

    Felker, P.

    1980-01-01

    Uses of tree legumes in semi-arid and arid regions are reviewed. This review is divided into sections according to the following general use categories: fuels; human food; livestock food; to increase yields of crops grown beneath their canopies;and control of desertification. (MHR)

  13. NUTRITIONAL PHYSIOLOGY AND GENOMICS OF DEVELOPING LEGUME SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume seeds are an important source of dietary nutrients for humans throughout the world. They provide basic energy in the form of starches and lipids, they are a source of amino acids for protein, and also provide essential minerals, fatty acids, vitamins, and various health-promoting phytochemic...

  14. New legume hosts of Phakopsora pachyrhizi based on greenhouse evaluations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phakopsora pachyrhizi, the causal organism of soybean rust, was first found on Glycine max in the continental U.S. in 2004, and subsequently on Pueraria lobata, Desmodium tortuosum, and three Phaseolus species in the field. The pathogen has been reported to occur on over 150 legume species worldwid...

  15. Differential Soil Acidity Tolerance of Tropical Legume Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical regions, soil acidity and low soil fertility are the most important yield limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also ameliorating soil fertility. Information is limit...

  16. Legume genomics: Understanding biology through DNA and RNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. The legume family (Leguminosae) consists of approximately 17,000 species. A few of these species including, but not limited to; Phaseolus vulgaris, Cicer arietinum, and Cajanus cajan, are important dietary components, providing the dietary protein for approximately 300 million people wor...

  17. Insect Pest Management in Food Legumes: Future Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food legumes such as chickpea, pigeonpea, cowpea, field pea, lentil, faba bean, blackgram, greengram, grasspea, and Phaseolus beans play an important role in the daily diets of people worldwide. A large number of insect pests attack these crops and cause extensive losses, namely Helicoverpa pod bo...

  18. Energy content of tropical grasses and legumes grown for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass samples of the tropical grasses Brachiaria brizantha (Hochst. ex A. Rich.) Staph, Brachiaria humidicola (Rendle) Schweick, Brachiaria decumbens Staph, Panicum maximum Jacq., Pennistetum alopecuroides (L.) Spreng and three species of the tropical legume Stylosanthes grown in Mato Grosso do Su...

  19. Grasses and Legumes for Bio-Based Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasses and legumes are the foundation of ruminant animal agriculture, but over the last 50 years the use of forages has declined in the developed world, largely due to their displacement by high-energy grain feedstuffs. Keeping forages on the landscape to take advantage of their many environmental ...

  20. Converting perennial legumes to organic cropland without tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers are interested in developing a no-till system for crop production. In this study, we examined management tactics to convert perennial legumes to annual crops without tillage. Our hypothesis was that reducing carbohydrate production in the fall by mowing would favor winterkill. M...

  1. A rheumatoid nodule in an unusual location: mediastinal lymph node

    PubMed Central

    Yachoui, Ralph; Ward, Celine; Kreidy, Mazen

    2013-01-01

    Rheumatoid arthritis (RA) is a multisystem inflammatory disease characterised by destructive synovitis and varied extra-articular involvement. Rheumatoid lung nodules are the most common pulmonary manifestations of RA. Rheumatoid nodules in mediastinal lymph nodes are extremely uncommon. We describe a male patient with long-standing RA and subcutaneous rheumatoid nodules presenting with multiple lung nodules and mediastinal lymphadenopathies. Definite histopathology of a lymph node was consistent with necrobiotic granuloma due to RA. Clinicians should be aware of rheumatoid nodules as a potential cause of mediastinal lymphadenopathies, mainly in advanced rheumatoid arthritis. PMID:23645652

  2. [Evolution of Root Nodule Bacteria: Reconstruction of the Speciation Processes Resulting from Genomic Rearrangements in a Symbiotic System].

    PubMed

    Provorov, N A; Andronov, E E

    2016-01-01

    The processes of speciation and macroevolution of root nodule bacteria (rhizobia), based on deep rearrangements of their genomes and occurring in the N₂-fixing symbiotic system, are reconstructed. At the first stage of rhizobial evolution, transformation of free-living diazotrophs (related to Rhodopseudomonas) to symbiotic N₂-fixers (Bradyrhizobium) occurred due to the acquisition of the fix gene system, which is responsible for providing nitrogenase with electrons and reducing equivalents, as well as for oxygen-dependent regulation of nitrogenase synthesis in planta, and then of the nod genes responsible for the synthesis of the lipo- chito-oligosaccharide Nod factors, which induce root nodule development. The subsequent rearrangements of bacterial genomes included: (1) increased volume of hereditary information supported by species, genera (pan-genome), and individual strains; (2) transition from the unitary genome to a multicomponent one; and (3) enhanced levels of bacterial genetic plasticity and horizontal gene transfer, resulting in formation of new genera, of which Mesorhizobium, Rhizobium, and Sinorhizobium are the largest, and of over 100 species. Rhizobial evolution caused by development and diversification of the Nod factor synthesizing systems may result in both increased host specificity range (transition of Bradyrhizobium from autotrophic to symbiotrophic carbon metabolism in interaction with a broad spectrum of legumes) and to its contraction (transition of Rhizobium and Sinorhizobium to "altruistic" interaction with legumes of the galegoid clade). Reconstruction of the evolutionary pathway from symbiotic N₂-fixers to their free-living ancestors makes it possible to initiate the studies based on up-to-date genome screening technologies and aimed at the issues of genetic integration of organisms into supracpecies complexes, ratios of the macro- and microevolutionary mechanisms, and developmetn of cooperative adaptations based on altruistic

  3. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  4. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  5. Diagnosis of liver nodules within and outside screening programs.

    PubMed

    Colombo, Massimo

    2015-01-01

    Evaluation of a liver nodule detected with ultrasound includes the recovery of a detailed medical history, a physical exam, appropriate contrast imaging examinations and, in selected cases, histopathology. In this setting, identification of liver disease accompanying a liver nodule helps distinction between benign nodules and metastatic malignant nodules from primary liver cancer, as recommended by scientific liver societies. Diagnostic algorithms for a liver nodule in patients with liver disease involve contrast CT scan, magnetic resonance imaging or contrast enhanced ultrasounds to show the typical neoplastic pattern of early arterial hyperenhancement wash-in followed by hypoenhancement in the late portal phase wash out. The flow charts developed by western societies utilize the discriminant criterion of tumor size i.e. the radiological diagnosis being endorsed in a nodule equal or greater than 1 cm whereas eastern societies rely on the recognition of a typical vascular pattern of the node, independently of size. Differential diagnosis should be obtained to differentiate liver related nodules like regenerative macronodules (more than 20% of the cases) and the less frequent intrahepatic cholangiocarcinoma (~2% of the cases) from liver disease unrelated nodules like hemangioma (~4%), neuroendocrine metastatic nodules (~1%) and focal nodular hyperplasia. In patients without liver disease, the most common liver nodules in the liver are hemangioma (~1.5%), focal nodular hyperplasia (0.03%) and hepatocellular adenoma (up to 0.004% in long term users of oral contraceptives). Optimization of management of patients with a liver nodule requires establishment of a multidisciplinary clinic. PMID:25864209

  6. Dual Genetic Pathways Controlling Nodule Number in Medicago truncatula1

    PubMed Central

    Penmetsa, R. Varma; Frugoli, Julia A.; Smith, Lucinda S.; Long, Sharon R.; Cook, Douglas R.

    2003-01-01

    We report the isolation and characterization of a new Medicago truncatula hyper-nodulation mutant, designated sunn (super numeric nodules). Similar to the previously described ethylene-insensitive mutant sickle, sunn exhibits a 10-fold increase in the number of nodules within the primary nodulation zone. Despite this general similarity, these two mutants are readily distinguished based on anatomical, genetic, physiological, and molecular criteria. In contrast to sickle, where insensitivity to ethylene is thought to be causal to the hyper-nodulation phenotype (R.V. Penmetsa, D.R. Cook [1997] Science 275: 527–530), nodulation in sunn is normally sensitive to ethylene. Nevertheless, sunn exhibits seedling root growth that is insensitive to ethylene, although other aspects of the ethylene triple response are normal; these observations suggest that hormonal responses might condition the sunn phenotype in a manner distinct from sickle. The two mutants also differ in the anatomy of the nodulation zone: Successful infection and nodule development in sunn occur predominantly opposite xylem poles, similar to wild type. In sickle, however, both infection and nodulation occur randomly throughout the circumference of the developing root. Genetic analysis indicates that sunn and sickle correspond to separate and unlinked loci, whereas the sunn/skl double mutant exhibits a novel and additive super-nodulation phenotype. Taken together, these results suggest a working hypothesis wherein sunn and sickle define distinct genetic pathways, with skl regulating the number and distribution of successful infection events, and sunn regulating nodule organogenesis. PMID:12644652

  7. Contribution of legumes to the soil N pool.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Malagoli, Philippe; Mahieu, Stéphanie

    2010-05-01

    Grain legumes can be used for nitrogen acquisition in different ways in sustainable agriculture (Fustec et al., 2009). They are seen as a tool to reduce mineral N fertilizers in cropping systems. However, estimates of biological N fixation, N balance and N benefit either for the following crop or in mixed crops, remain unclear. The contribution of legumes to the soil N pool is difficult to measure, especially N rhizodeposition, since it is a critical point for assessing N benefits for other crops and for soil biological activity, and for reducing water pollution (Mayer et al., 2003). We adapted and refined the cotton-wick 15N stem labeling method for measuring the amount of soil N derived from rhizodeposition by field peas (Mahieu et al., 2007, 2009). The method was tested in different conditions in the field and in the greenhouse with various pea varieties and isolines. In addition, we used the cotton-wick method for assessing N transfers from pea to neighbouring durum wheat. In the greenhouse, a positive relationship was found between the amount of N rhizodeposits and the legume N content. N rhizodeposition was about 15% of the plant N and 30% in the field. In field pea / durum wheat intercrops, plant-plant N transfers were quantified and found to be bidirectional. Such results should be taken into account when estimating N benefits from biological N fixation by a grain legume crop and for the prediction of N economies in legume-based cropping systems. More studies dealing with rhizodeposit compounds and soil biological activity would now be necessary. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu et al. 2007. Plant Soil 295, 193-205. Mahieu et al. 2009. Soil Biol. Biochem. 41, 2236-2243. Mayer et al. 2003. Soil Biol. Biochem. 35, 21-28.

  8. Tissue Cultures Derived from Ineffective Root Nodules of Alfalfa 1

    PubMed Central

    Vance, Carroll P.; Johnson, Lois E. B.; Boylan, Kristin L. M.

    1984-01-01

    Callus tissue cultures were developed from apical meristem regions of tumor-like ineffective root nodules of alfalfa. Callus growth was a function of tissue source and hormone composition and concentration. Callus derived from ineffective nodules also were shown not to contain Rhizobium meliloti. Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase and phosphoenolpyruvate carboxylase activities were present in callus cultures and in the respective nodule source used for callus induction. The mean specific activity of all enzymes evaluated was higher in callus cultures than in ineffective nodules. Quantitative but not qualitative differences in enzyme activities were evident between ineffective nodules and callus derived from these nodules. Tissue cultures derived from ineffective nodules may provide a model system to evaluate host plant-Rhizobium interactions. Images Fig. 1 PMID:16663985

  9. SoyBase and the legume information system: accessing information about the soybean and other legume genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review describes two websites relevant for soybean research: SoyBase, and the Legume Information System (LIS). SoyBase and LIS have different objectives and areas of emphasis. SoyBase holds a wide range of specialized data in support of soybean breeding and research activities, with the primary...

  10. Structure-Function Analysis of Nod Factor-Induced Root Hair Calcium Spiking in Rhizobium-Legume Symbiosis1

    PubMed Central

    Wais, Rebecca J.; Keating, David H.; Long, Sharon R.

    2002-01-01

    In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesized and defines the range of legume hosts by which the bacterium is recognized. Purified NF can induce early host responses even in the absence of live Rhizobium One of the earliest known host responses to NF is an oscillatory behavior of cytoplasmic calcium, or calcium spiking, in root hair cells, initially observed in Medicago spp. and subsequently characterized in four other genera (D.W. Ehrhardt, R. Wais, S.R. Long [1996] Cell 85: 673–681; S.A. Walker, V. Viprey, J.A. Downie [2000] Proc Natl Acad Sci USA 97: 13413–13418; D.W. Ehrhardt, J.A. Downie, J. Harris, R.J. Wais, and S.R. Long, unpublished data). We sought to determine whether live Rhizobium trigger a rapid calcium spiking response and whether this response is NF dependent. We show that, in the Sinorhizobium meliloti-Medicago truncatula interaction, bacteria elicit a calcium spiking response that is indistinguishable from the response to purified NF. We determine that calcium spiking is a nod gene-dependent host response. Studies of calcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of differences in early NF signal transduction. We further demonstrate the sufficiency of the nod genes for inducing calcium spiking by using Escherichia coli BL21 (DE3) engineered to express 11 S. meliloti nod genes. PMID:12011352

  11. Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation.

    PubMed

    Verdier, Jerome; Torres-Jerez, Ivone; Wang, Mingyi; Andriankaja, Andry; Allen, Stacy N; He, Ji; Tang, Yuhong; Murray, Jeremy D; Udvardi, Michael K

    2013-04-01

    Lotus japonicus is a model species for legume genomics. To accelerate legume functional genomics, we developed a Lotus japonicus Gene Expression Atlas (LjGEA), which provides a global view of gene expression in all organ systems of this species, including roots, nodules, stems, petioles, leaves, flowers, pods and seeds. Time-series data covering multiple stages of developing pod and seed are included in the LjGEA. In addition, previously published L. japonicus Affymetrix data are included in the database, making it a 'one-stop shop' for transcriptome analysis of this species. The LjGEA web server (http://ljgea.noble.org/) enables flexible, multi-faceted analyses of the transcriptome. Transcript data may be accessed using the Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, and GO and KEGG annotation terms. Genes may be discovered through co-expression or differential expression analysis. Users may select a subset of experiments and visualize and compare expression profiles of multiple genes simultaneously. Data may be downloaded in a tabular form compatible with common analytical and visualization software. To illustrate the power of LjGEA, we explored the transcriptome of developing seeds. Genes represented by 36 474 probe sets were expressed at some stage during seed development, and almost half of these genes displayed differential expression during development. Among the latter were 624 transcription factor genes, some of which are orthologs of transcription factor genes that are known to regulate seed development in other species, while most are novel and represent attractive targets for reverse genetics approaches to determine their roles in this important organ. PMID:23452239

  12. Effects of a rock phosphate on indigenous rhizobia associated with Sesbania sesban.

    PubMed

    Sacko, Ousmane; Yattara, Inamoud Ibny; Lahbib, Messaoud; Neyra, Marc

    2012-03-01

    Tilemsi rock phosphate (TRP) of Mali is one of the most promising rock phosphate in West Africa for soil fertilization, but it is little used because of its insoluble form. The main objective of this study is to investigate TRP effects on rhizobia associated with the multipurpose leguminous tree Sesbania sesban grown on a sandy soil, poor in phosphorus and not sterilised. The experiment included treatments with and without TRP and was conducted during 105 days. At the end, 114 nodules have been collected and analysed by PCR/RFLP of 16S-23S intergenic spacer. Sixteen different RFLP profiles corresponding to different genomic groups of rhizobia have been detected. Five were dominant and present in both treatments. Five groups appear only in treatments without TRP whereas the six others are only in nodules of plants with TRP, suggesting a different capacity of natural phosphates solubilization by these strains. PMID:21168950

  13. Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula

    PubMed Central

    Maeda, Junko; Barrett-Wilt, Gregory A.; Sussman, Michael R.

    2016-01-01

    Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn. PMID:27203723

  14. Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula.

    PubMed

    Van Ness, Lori K; Jayaraman, Dhileepkumar; Maeda, Junko; Barrett-Wilt, Gregory A; Sussman, Michael R; Ané, Jean-Michel

    2016-01-01

    Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn. PMID:27203723

  15. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  16. Chloroquine Phosphate Oral

    MedlinePlus

    ... allergic to chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), hydroxychloroquine (Plaquenil), or any other drugs.tell your doctor ... taking chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), or hydroxychloroquine (Plaquenil).tell your doctor if you are pregnant ...

  17. Chloroquine Phosphate Oral

    MedlinePlus

    ... allergic to chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), hydroxychloroquine (Plaquenil), or any other drugs.tell your doctor and ... taking chloroquine phosphate, chloroquine hydrochloride (Aralen HCl), or hydroxychloroquine (Plaquenil).tell your doctor if you are pregnant ...

  18. Uranium from phosphate ores

    SciTech Connect

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

  19. Predicting Malignancy in Thyroid Nodules: Molecular Advances

    PubMed Central

    Melck, Adrienne L.; Yip, Linwah

    2016-01-01

    Over the last several years, a clearer understanding of the genetic alterations underlying thyroid carcinogenesis has developed. This knowledge can be utilized to tackle one of the greatest challenges facing thyroidologists: management of the indeterminate thyroid nodule. Despite the accuracy of fine needle aspiration cytology, many patients undergo invasive surgery in order to determine if a follicular or Hurthle cell neoplasm is malignant, and better diagnostic tools are required. A number of biomarkers have recently been studied and show promise in this setting. In particular, BRAF, RAS, PAX8-PPARγ, microRNAs and loss of heterozygosity have each been demonstrated as useful molecular tools for predicting malignancy and can thereby guide decisions regarding surgical management of nodular thyroid disease. This review summarizes the current literature surrounding each of these markers and highlights our institution’s prospective analysis of these markers and their subsequent incorporation into our management algorithms for thyroid nodules. PMID:21818817

  20. Isolated Rheumatoid Nodules: A Diagnostic Dilemma

    PubMed Central

    Gale, Michael; Gilbert, Erin; Blumenthal, David

    2015-01-01

    We present a 27-year-old male with multiple nonpainful soft tissue masses over several metacarpals, bilateral elbows, the left wrist, and both knees since the age of 4. Physical exam was significant for firm, nonmobile, nodular growths over the extensor surfaces of bilateral elbows and knees and on the 2nd and 5th metacarpal phalangeal joints. Laboratory studies revealed an unremarkable rheumatoid factor, negative ANA screening and normal joint radiographs. Differential diagnosis included subcutaneous granuloma annulare (SGA), seronegative rheumatoid nodule, and calcinosis cutis. Biopsy is the only method to distinguish benign rheumatoid nodules from SGA. This case illustrates the importance of biopsy in diagnosis, an awareness of the potential complications, and the need for good follow-up. PMID:25802526

  1. Detection of pulmonary nodule growth with dose reduced chest tomosynthesis: a human observer study using simulated nodules

    NASA Astrophysics Data System (ADS)

    Söderman, Christina; Johnsson, Ã. se; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Mirzai, Maral; Svalkvist, Angelica; Mânsson, Lars Gunnar; Bâth, Magnus

    2016-03-01

    Chest tomosynthesis may be a suitable alternative to computed tomography for the clinical task of follow up of pulmonary nodules. The aim of the present study was to investigate the detection of pulmonary nodule growth suggestive of malignancy using chest tomosynthesis. Previous studies have indicated remained levels of detection of pulmonary nodules at dose levels corresponding to that of a conventional lateral radiograph, approximately 0.04 mSv, which motivated to perform the present study this dose level. Pairs of chest tomosynthesis image sets, where the image sets in each pair were acquired of the same patient at two separate occasions, were included in the study. Simulated nodules with original diameters of approximately 8 mm were inserted in the pairs of image sets, simulating situations where the nodule had remained stable in size or increased isotropically in size between the two different imaging occasions. Four different categories of nodule growth were included, corresponding to a volume increase of approximately 21 %, 68 %, 108 % and 250 %. All nodules were centered in the depth direction in the tomosynthesis images. All images were subjected to a simulated dose reduction, resulting in images corresponding to an effective dose of 0.04 mSv. Four observers were given the task of rating their confidence that the nodule was stable in size or not on a five-level rating scale. This was done both before any size measurements were made of the nodule as well as after measurements were performed. Using Receiver operating characteristic analysis, the rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size. Statistically significant differences between the rating distributions for the stable nodules and all of the four nodule growth categories were found. For the three largest nodule growths, nearly perfect detection of nodule growth was seen. In conclusion, the present study

  2. Divergence and isolation of cryptic sympatric taxa within the annual legume Amphicarpaea bracteata.

    PubMed

    Kartzinel, Rebecca Y; Spalink, Daniel; Waller, Donald M; Givnish, Thomas J

    2016-05-01

    The amphicarpic annual legume Amphicarpaea bracteata is unusual in producing aerial and subterranean cleistogamous flowers that always self-fertilize and, less commonly, aerial chasmogamous flowers that outcross. Although both morphologic and genetic variants are known in this highly selfing species, debate continues over whether this variation is continuous, reflecting the segregation of standing genetic variation, or discontinuous, reflecting distinct taxa that rarely intercross. We characterized SNP variation in 128 individuals in southern Wisconsin to assess within- and among-population variation at 3928 SNPs. We also assessed genotype and leaf morphology in an additional 76 individuals to connect phenotypic variation with genetic variation. Genetic variation maps onto three strongly divergent and highly inbred genetic groups showing little relation to site location. Each group has a distinct phenotype, but the divergence of these groups differs from the varietal divisions previously identified based on morphological characters. Like previous authors, we argue that the taxonomy of this species should be revised. Despite extensive sympatry, estimates of among-group migration rates are low, and hybrid individuals were at low frequency (<2%) in our dataset. Restricted gene flow likely results from high selfing rates and partial reproductive incompatibility as evidenced by the U-shaped distribution of pairwise F ST values reflecting "islands" of genomic divergence. These islands may be associated with hybrid incompatibility loci that arose in allopatry. The coexistence of lineages within sites may reflect density-dependent attack by species-specific strains of pathogenic fungi and/or root-nodulating bacteria specializing on distinct genotypes. PMID:27103991

  3. Subungual nodule of the great toe.

    PubMed

    Morais, Paulo

    2013-04-01

    An otherwise healthy male, 17 years of age, presented with a 2 year history of an enlarging lump under the right great toenail. There was no history of trauma. Examination revealed an exophytic, non-tender, fixed, firm flesh-coloured subungal nodule on the dorsal aspect of the right great toe. The lesion was about 10 mm in diameter and was associated with nail plate deformity and onycholysis. PMID:23550247

  4. Spontaneous rupture of a splenotic nodule.

    PubMed Central

    Lanigan, D. J.

    1990-01-01

    A case is presented of spontaneous rupture of splenic tissue occurring 14 years after a splenectomy was carried out for trauma. Spontaneous rupture of a splenotic nodule has not previously been described and it may be added to the list of causes of spontaneous haemoperitoneum. The incidence and function of residual splenic tissue are briefly discussed and other causes of splenic rupture are outlined. PMID:2267217

  5. Early diagnosis of solitary pulmonary nodules

    PubMed Central

    Xu, Chunhua; Hao, Keke; Song, Yong; Hou, Zhibo; Zhan, Ping

    2013-01-01

    Early detection of solitary pulmonary nodules (SPNs) and early treatment are of great importance. However, patients with early SPNs always do not present with any symptoms or signs, only to demonstrate SPNs in radiology findings. So it is very critical to improve the ability to identify the SPNs, and with the development of sorts of diagnostic modalities, the accuracy in the evaluation of the SPNs has improved greatly. In this paper, the diagnostic methods and techniques of SPNs are reviewed. PMID:24409362

  6. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae).

    PubMed

    Mikić, Aleksandar M

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350-1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl(-1) of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide. PMID:26635833

  7. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae)

    PubMed Central

    Mikić, Aleksandar M.

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350–1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl-1 of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide. PMID:26635833

  8. Hepatic regenerating nodules in hereditary tyrosinemia

    SciTech Connect

    Day, D.L.; Letourneau, J.G.; Allan, B.T.; Sharp, H.L.; Ascher, N.; Dehner, L.P.; Thompson, W.M.

    1987-08-01

    Hereditary tyrosinemia is an autosomal recessive, enzymatic disorder that results in micro- and macronodular cirrhosis in early childhood. Hepatocellular carcinoma occurs in approximately one-third of affected children. We evaluated the imaging studies performed in five children with this disorder. Pathologic examination of all five of the livers revealed cirrhosis and multiple regenerating nodules; hepatocellular carcinoma was present in two of the five livers. All five patients had high-attenuation or high- and low-attenuation foci within the liver. These high-attenuation foci were not apparent as focal lesions in three of four hepatic sonograms or in one of two hepatic nuclear scans. Angiography showed tumor vascularity in one patient with a focal hepatocellular carcinoma, but was indeterminate in a second patient with severe cirrhosis and multifocal hepatocellular carcinoma. Children with cirrhosis due to tyrosinemia may develop regenerating nodules that appear as high-attenuation hepatic foci on CT scans. It is difficult to differentiate regenerating nodules from multifocal hepatocellular carcinoma in these patients.

  9. Pemphigus vulgaris with solitary toxic thyroid nodule.

    PubMed

    Alfishawy, Mostafa; Anwar, Karim; Elbendary, Amira; Daoud, Ahmed

    2014-01-01

    Background. Pemphigus vulgaris is an autoimmune vesiculobullous disease, affecting the skin and mucous membranes. It is reported to be associated with other autoimmune diseases including autoimmune thyroid diseases. However we report herein a case of pemphigus vulgaris associated with autonomous toxic nodule. Case Presentation. A 51-year-old woman was evaluated for blisters and erosions that develop on her trunk, face, and extremities, with a five-year history of progressively enlarging neck mass, and a past medical history of pemphigus vulgaris seven years ago. The condition was associated with palpitation, dyspnea, and heat intolerance. Thyroid function tests and thyroid scan were compatible with the diagnosis of thyrotoxicosis due to autonomous toxic nodule. Exacerbation of pemphigus vulgaris was proved by skin biopsy from the patient which revealed histologic picture of pemphigus vulgaris. Conclusion. Autoimmune thyroid diseases are reported to associate pemphigus vulgaris. To our knowledge, this case is the first in the English literature to report association between pemphigus vulgaris and autonomous toxic nodule and highlights the possibility of occurrence of pemphigus vulgaris with a nonautoimmune thyroid disease raising the question: is it just a coincidence or is there an explanation for the occurrence of both conditions together? PMID:25309761

  10. Mesorhizobium acaciae sp. nov., isolated from root nodules of Acacia melanoxylon R. Br.

    PubMed Central

    Zhu, Ya Jie; Lu, Jun Kun; Chen, Ying Long; Wang, Sheng Kun; Sui, Xin Hua

    2015-01-01

    Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T. Phylogenetic analyses of housekeeping genes recA, atpD and glnII revealed that these strains represented a distinct evolutionary lineage within the genus Mesorhizobium. Strain RITF741T showed >73 % DNA–DNA relatedness with strains RITF1220 and RITF909, but < 60 % DNA–DNA relatedness with the closest type strains of recognized species of the genus Mesorhizobium. They differed from each other and from their closest phylogenetic neighbours by presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon sources based on API 50CH and API 20NE tests. The three strains were able to form nodules with the original host Acacia melanoxylon and other woody legumes such as Acacia aneura, Albizia falcataria and Leucaena leucocephala. In conclusion, these strains represent a novel species belonging to the genus Mesorhizobium based on the data obtained in the present and previous studies, for which the name Mesorhizobium acaciae sp. nov. is proposed. The type strain is RITF741T ( = CCBAU 101090T = JCM 30534T), the DNA G+C content of which is 64.1 mol% (Tm). PMID:26296667

  11. Mesorhizobium acaciae sp. nov., isolated from root nodules of Acacia melanoxylon R. Br.

    PubMed

    Zhu, Ya Jie; Kun, Jun; Chen, Ying Long; Wang, Sheng Kun; Sui, Xin Hua; Kang, Li Hua

    2015-10-01

    Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T. Phylogenetic analyses of housekeeping genes recA, atpD and glnII revealed that these strains represented a distinct evolutionary lineage within the genus Mesorhizobium. Strain RITF741T showed >73 % DNA–DNA relatedness with strains RITF1220 and RITF909, but < 60 % DNA–DNA relatedness with the closest type strains of recognized species of the genus Mesorhizobium. They differed from each other and from their closest phylogenetic neighbours by presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon sources based on API 50CH and API 20NE tests. The three strains were able to form nodules with the original host Acacia melanoxylon and other woody legumes such as Acacia aneura, Albizia falcataria and Leucaena leucocephala. In conclusion, these strains represent a novel species belonging to the genus Mesorhizobium based on the data obtained in the present and previous studies, for which the name Mesorhizobium acaciae sp. nov. is proposed. The type strain is RITF741T ( = CCBAU 101090T = JCM 30534T), the DNA G+C content of which is 64.1 mol% (T m). PMID:26296667

  12. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus.

    PubMed

    Ramírez-Bahena, Martha Helena; Peix, Alvaro; Rivas, Raúl; Camacho, María; Rodríguez-Navarro, Dulce N; Mateos, Pedro F; Martínez-Molina, Eustoquio; Willems, Anne; Velázquez, Encarna

    2009-08-01

    Several strains isolated from the legume Pachyrhizus erosus were characterized on the basis of diverse genetic, phenotypic and symbiotic approaches. These novel strains formed two groups closely related to Bradyrhizobium elkanii according to their 16S rRNA gene sequences. Strains PAC48T and PAC68T, designated as the type strains of these two groups, presented 99.8 and 99.1% similarity, respectively, in their 16S rRNA gene sequences with respect to B. elkanii USDA 76T. In spite of these high similarity values, the analysis of additional phylogenetic markers such as atpD and glnII genes and the 16S-23S intergenic spacer (ITS) showed that strains PAC48T and PAC68T represented two separate novel species of the genus Bradyrhizobium with B. elkanii as their closest relative. Phenotypic differences among the novel strains isolated from Pachyrhizus and B. elkanii were found regarding the assimilation of carbon sources and antibiotic resistance. All these differences were congruent with DNA-DNA hybridization analysis which revealed 21% genetic relatedness between strains PAC48T and PAC68T and 46% and 25%, respectively, between these strains and B. elkanii LMG 6134T. The nodD and nifH genes of strains PAC48T and PAC68T were phylogenetically divergent from those of bradyrhizobia species that nodulate soybean. Soybean was not nodulated by the novel Pachyrhizus isolates. Based on the genotypic and phenotypic data obtained in this study, the new strains represent two novel species for which the names Bradyrhizobium pachyrhizi sp. nov. (type strain PAC48T=LMG 24246T=CECT 7396T) and Bradyrhizobium jicamae sp. nov. (type strain PAC68T=LMG 24556T=CECT 7395T) are proposed. PMID:19567584

  13. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.

    PubMed

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  14. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    PubMed Central

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  15. LegumeIP 2.0—a platform for the study of gene function and genome evolution in legumes

    PubMed Central

    Li, Jun; Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick X.

    2016-01-01

    The LegumeIP 2.0 database hosts large-scale genomics and transcriptomics data and provides integrative bioinformatics tools for the study of gene function and evolution in legumes. Our recent updates in LegumeIP 2.0 include gene and protein sequences, gene models and annotations, syntenic regions, protein families and phylogenetic trees for six legume species: Medicago truncatula, Glycine max (soybean), Lotus japonicus, Phaseolus vulgaris (common bean), Cicer arietinum (chickpea) and Cajanus cajan (pigeon pea) and two outgroup reference species: Arabidopsis thaliana and Poplar trichocarpa. Moreover, the LegumeIP 2.0 features the following new data resources and bioinformatics tools: (i) an integrative gene expression atlas for four model legumes that include 550 array hybridizations from M. truncatula, 962 gene expression profiles of G. max, 276 array hybridizations from L. japonicas and 56 RNA-Seq-based gene expression profiles for C. arietinum. These datasets were manually curated and hierarchically organized based on Experimental Ontology and Plant Ontology so that users can browse, search, and retrieve data for their selected experiments. (ii) New functions/analytical tools to query, mine and visualize large-scale gene sequences, annotations and transcriptome profiles. Users may select a subset of expression experiments and visualize and compare expression profiles for multiple genes. The LegumeIP 2.0 database is freely available to the public at http://plantgrn.noble.org/LegumeIP/. PMID:26578557

  16. Remodeling of the Infection Chamber before Infection Thread Formation Reveals a Two-Step Mechanism for Rhizobial Entry into the Host Legume Root Hair1

    PubMed Central

    Teillet, Alice; Chabaud, Mireille; Ivanov, Sergey; Genre, Andrea; Limpens, Erik; de Carvalho-Niebel, Fernanda; Barker, David G.

    2015-01-01

    In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs. PMID:25659382

  17. Characterization of rhizobia from legumes of agronomic interest grown in semi-arid areas of Central Spain relates genetic differences to soil properties.

    PubMed

    Ruiz-Díez, Beatriz; Fajardo, Susana; Felipe, María del Rosario de; Fernández-Pascual, Mercedes

    2012-02-01

    A study of symbiotic bacteria from traditional agricultural legumes from Central Spain was performed to create a collection of rhizobia from soils differing in physicochemical, analytical and/or agroecological properties which could be well-adapted to the environmental conditions of this region, and be used for sustainable agricultural practices. Thirty-six isolates were obtained from root-nodules of fifteen legume species (including Cicer arietinum, Lathyrus sativus, Lens culinaris, Lupinus spp., Medicago sativa, Phaseolus vulgaris, Pisum sativum, and Vicia spp.) from three agriculture areas with soils of different pHs and from a forest area with undisturbed soils. Phenotypical characterization revealed uniformity across the thirty-six isolates, with important exceptions in terms of environmental tolerance (three isolates survived at high temperatures, three at high salinity and three at acid pH). The molecular analysis of 16S rRNA gene showed a close relationship of twenty-nine isolates to Rhizobium leguminosarum, one to Rhizobium gallicum, one to Mesorhizobium ciceri, two to Sinorhizobium (Ensifer) meliloti and three to Bradyrhizobium canariense. The sequence analysis of a symbiosis-specific gene, nod C, showed a correlation with the plant host and grouped twenty-six isolates with Rhizobium leguminosarum bv. viciae, establishing the diversity in relation to legume-host. The 16S-23S rRNA intergenic spacer (IGS) region allowed for intraspecific differentiation, so that strains with equal 16S rRNA were grouped by means of their soil origin. These results indicated that phenotypical and genetically related strains may be widely distributed in this region and that soil abiotic characteristics could have a substantial bearing on the selection of the strains living in each environment. PMID:21953333

  18. Automated detection of pulmonary nodules from whole lung helical CT scans: performance comparison for isolated and attached nodules

    NASA Astrophysics Data System (ADS)

    Enquobahrie, Andinet A.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.

    2004-05-01

    The objective of this research is to evaluate and compare the performance of our automated detection algorithm on isolated and attached nodules in whole lung CT scans. Isolated nodules are surrounded by the lung parenchyma with no attachment to large solid structures such as the chest wall or mediastinum surface, while attached nodules are adjacent to these structures. The detection algorithm involves three major stages. First, the region of the image space where pulmonary nodules are to be found is identified. This involves segmenting the lung region and generating the pleural surface. In the second stage, which is the hypothesis generation stage, nodule candidate locations are identified and their sizes are estimated. The nodule candidates are successively refined in the third stage a sequence of filters of increasing complexity. The algorithm was tested on a dataset containing 250 low-dose whole lung CT scans with 2.5mm slice thickness. A scan is composed of images covering the whole lung region for a single person. The dataset was partitioned into 200 and 50 scans for training and testing the algorithm. Only solid nodules were considered in this study. Experienced chest radiologists identified a total of 447 solid nodules. 345 and 102 of the nodules were from the training and testing datasets respectively. 126(28.2%) of the nodules in the dataset were attached nodules. The detection performance was then evaluated separately for isolated and attached nodule types considering different size ranges. For nodules 3mm and larger, the algorithm achieved a sensitivity of 97.8% with 2.0 false positives (FPs) per scan and 95.7% with 19.3 FPs per scan for isolated and attached nodules respectively. For nodules 4mm and larger, a sensitivity of 96.6% with 1.5 FP per scan and a 100% sensitivity with 13 FPs per scan were obtained for isolated and attached nodule types respectively. The results show that our algorithm detects isolated and attached nodules with comparable

  19. The Sinorhizobium meliloti ntrX Gene Is Involved in Succinoglycan Production, Motility, and Symbiotic Nodulation on Alfalfa

    PubMed Central

    Wang, Dong; Xue, Haiying; Wang, Yiwen; Yin, Ruochun; Xie, Fang

    2013-01-01

    Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY. PMID:24038694

  20. Production of resistant starch by enzymatic debranching in legume flours.

    PubMed

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. PMID:24299889

  1. UAV-based high-throughput phenotyping in legume crops

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  2. Mineral transfer in a legume/grass association

    SciTech Connect

    Habben, J.E.; Blevins, D.G.

    1986-04-01

    Previous pasture research has indicated that in a legume/grass association the grass has a higher concentration of specific minerals than grass grown alone. The purpose of this study was to determine if a deeply rooted legume could transfer minerals to an associated shallow rooted grass plant via their root systems. A greenhouse study was conducted using alfalfa and maize plants grown in a double tube design. Plants were established such that the top tube contained both alfalfa and maize roots while the bottom tube contained only the alfalfa roots. Alfalfa roots in the lower tube were exposed to 1 mCi of one of three different isotopes (/sup 32/P, /sup 86/Rb and /sup 45/Ca) over a 40 day period. Under these conditions, radioactive analysis of maize tissue showed a significant transfer of /sup 86/Rb and /sup 32/P.

  3. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    PubMed

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. PMID:26612499

  4. Nutritional significance of lectins and enzyme inhibitors from legumes.

    PubMed

    Lajolo, Franco M; Genovese, Maria Inés

    2002-10-23

    Legumes have natural components, such as lectins, amylase, and trypsin inhibitors, that may adversely affect their nutritional properties. Much information has already been obtained on their antinutritional significance and how to inactivate them by proper processing. Chronic ingestion of residual levels is unlikely to pose risks to human health. On the other hand, the ability of these molecules to inhibit some enzymes such as trypsin, chymotrypsin, disaccharidases, and alpha-amylases, to selectively bind to glycoconjugates, and to enter the circulatory system may be a useful tool in nutrition and pharmacology. Trypsin inhibitors have also been studied as cancer risk reducing factors. These components seem to act as plant defense substances. However, increased contents may represent an impairment of the nutritional quality of legumes because these glycoproteins and the sulfur-rich protease inhibitors have been shown to be poorly digested and to participate in chemical reactions during processing reducing protein digestibility, a still unsolved question. PMID:12381157

  5. Computerized lung nodule detection on screening CT scans: performance on juxta-pleural and internal nodules

    NASA Astrophysics Data System (ADS)