Science.gov

Sample records for lens crystalline

  1. Lens Aging: Effects of Crystallins

    PubMed Central

    Sharma, K. Krishna; Santhoshkumar, Puttur

    2009-01-01

    The primary function of the eye lens is to focus light on the retina. The major proteins in the lens—a, b, and g-crystallins—are constantly subjected to age-related changes such as oxidation, deamidation, truncation, glycation, and methylation. Such age-related modifications are cumulative and affect crystallin structure and function. With time, the modified crystallins aggregate, causing the lens to increasingly scatter light on the retina instead of focusing light on it and causing the lens to lose its transparency gradually and become opaque. Age-related lens opacity, or cataract, is the major cause of blindness worldwide. We review deamidation, and glycation that occur in the lenses during aging keeping in mind the structural and functional changes that these modifications bring about in the proteins. In addition, we review proteolysis and discuss recent observations on how crystallin fragments generated in vivo, through their anti-chaperone activity may cause crystallin aggregation in aging lenses. We also review hyperbaric oxygen treatment induced guinea pig and ‘humanized’ ascorbate transporting mouse models as suitable options for studies on age-related changes in lens proteins. PMID:19463898

  2. Glycation precedes lens crystallin aggregation

    SciTech Connect

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-05-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both (/sup 3/H)NaBH/sub 4/ reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated.

  3. Binding of actin to lens alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Actin has been coupled to a cyanogen bromide-activated Sepharose 4B column, then tested for binding to alpha, beta, and gamma crystallin preparations from the bovine lens. Alpha, but not beta or gamma, crystallins bound to the actin affinity column in a time dependent and saturable manner. Subfractionation of the alpha crystallin preparation into the alpha-A and alpha-B species, followed by incubation with the affinity column, demonstrated that both species bound approximately the same. Together, these studies demonstrate a specific and saturable binding of lens alpha-A and alpha-B with actin.

  4. Optical density of the crystalline lens

    SciTech Connect

    Hemenger, R.P.

    1982-01-01

    The optical density for the noncataractous crystalline lens is written as a sum of two terms, each with a specific dependence on wavelength. The first term, proportional to 1/lambda 2, represents all light-scattering processes in the lens. The second term, assumed significant only for lambda less than or equal to 500 nm, accounts for absorption by lens pigments. By analyzing transmittance data on lenses of subjects aged 21 to 63 years, a spectrum for light absorption by lens pigment is derived and it is shown to be essentially the same for all of the lenses.

  5. Analysis of human crystalline lens accommodation.

    PubMed

    Chien, Chang-Hai M; Huang, Tseng; Schachar, Ronald A

    2006-01-01

    The behavior of the human crystalline lens during accommodation is analytically studied. The lens is modeled as a closed axisymmetrical membrane shell of varying thickness enclosing an incompressible liquid. To simulate zonular tension associated with lenticular accommodation, an axisymmetrical radial force or displacement is imposed around the shell equator. Two second-order, simultaneous, nonlinear governing differential equations are derived. Numerical results, obtained from the investigation of human lens profiles of three independently published MRI images and a drawing of a microphotograph, demonstrate that when zonular traction within the physiological force range of the ciliary muscle is exerted, both central lens thickness and central optical power increase. Qualitatively, these increases are independent of lens shape. However, the magnitude of these changes is dependent on the initial profile of the lens and is enhanced by the "natural" variation in capsular thickness. Only when a pulling force significantly exceeds the force capacity of the ciliary muscle does the lens flatten and its central thickness and optical power decrease. PMID:16023655

  6. Changes in zebrafish (Danio rerio) lens crystallin content during development

    PubMed Central

    Wages, Phillip; Horwitz, Joseph; Ding, Linlin; Corbin, Rebecca W.

    2013-01-01

    Purpose The roles that crystallin proteins play during lens development are not well understood. Similarities in the adult crystallin composition of mammalian and zebrafish lenses have made the latter a valuable model for examining lens function. In this study, we describe the changing zebrafish lens proteome during development to identify ontogenetic shifts in crystallin expression that may provide insights into age-specific functions. Methods Two-dimensional gel electrophoresis and size exclusion chromatography were used to characterize the lens crystallin content of 4.5-day to 27-month-old zebrafish. Protein spots were identified with mass spectrometry and comparisons with previously published proteomic maps, and quantified with densitometry. Constituents of size exclusion chromatography elution peaks were identified with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Results Zebrafish lens crystallins were expressed in three ontogenetic patterns, with some crystallins produced at relatively constant levels throughout development, others expressed primarily before 10 weeks of age (βB1-, βA1-, and γN2-crystallins), and a third group primarily after 10 weeks (α-, βB3-, and γS-crystallins). Alpha-crystallins comprised less than 1% of total lens protein in 4.5-day lenses and increased to less than 7% in adult lenses. The developmental period between 6 weeks and 4 months contained the most dramatic shifts in lens crystallin expression. Conclusions These data provide the first two-dimensional gel electrophoresis maps of the developing zebrafish lens, with quantification of changing crystallin abundance and visualization of post-translational modification. Results suggest that some crystallins may play stage specific roles during lens development. The low levels of zebrafish lens α-crystallin relative to mammals may be due to the high concentrations of γ-crystallins in this aquatic lens. Similarities with mammalian crystallin expression continue

  7. Management of iatrogenic crystalline lens injury occurred during intravitreal injection.

    PubMed

    Erdogan, Gurkan; Gunay, Betul Onal; Unlu, Cihan; Gunay, Murat; Ergin, Ahmet

    2016-08-01

    To evaluate the approach to management of iatrogenic crystalline lens injury occurred during intravitreal injection (IVI). The patients who were managed operatively or followed-up without intervention after the iatrogenic lens injury due to IVI were included in the study. Capsular breaks remained either quiescent or resulted in cataract formation in the patients with inadvertent crystalline lens capsule damage. Phacoemulsification surgery was performed in patients with cataract formation with lower fluidic settings. A total of 9 cases included in the study. Seven cases underwent phacoemulsification with intraocular lens implantation. Two cases remained as quiescent lens injury during the follow-up. In 2 cases, dislocation of lens fragments occurred during phacoemulsification where pars plana vitrectomy was performed at the same session. After iatrogenic crystalline lens injury, capsular damage could remain quiescent or progress to cataract formation. Although phacoemulsification surgery can be performed with appropriate parameters, lens fragment dislocation can be observed in cases with traumatic lens damage secondary to IVI. PMID:26631401

  8. Evaluation of equations for describing the human crystalline lens

    NASA Astrophysics Data System (ADS)

    Giovanzana, Stefano; Schachar, Ronald A.; Talu, Stefan; Kirby, Roger D.; Yan, Eric; Pierscionek, Barbara K.

    2013-03-01

    Accurate mathematical descriptions of the human crystalline lens surface shape are required to properly understand the nature of functional adaptations that occur when the lens shape alters to changes in refractive power. Using least squares method, the total mean normal distance, smoothness, rate of change of the transverse and sagittal radii of curvatures and continuity at the lens equator between eight mathematical functions: conic, figuring conicoid, generalized conic, Hermans conic patch, Urs polynomial, Urs 10th order Fourier series, Chien, and Giovanzana, and 17 human crystalline lenses were evaluated. The mean differences of the fits of all the equations to the whole lens and to the central 8 mm of the lens surfaces were >24 μm with comparable standard deviations. When considering fit smoothness and continuity at the equator, the Giovanzana and Chien functions are most representative of the lens surface.

  9. Mathematical models for the shape analysis of human crystalline lens

    NASA Astrophysics Data System (ADS)

    Giovanzana, Stefano; Talu, Stefan

    2012-01-01

    The objective of this paper is to present an analysis of mathematical models of the human crystalline lens. Seven existing models presented in the literature were investigated: conic, figuring conicoid, generalized conic, Hermans conic patch, Kasprzak hyperbolic cosine, Urs 10th-order Fourier series and Giovanzana parametric models. The analyzed models describe the shape for a data set of human crystalline lenses with ages from 6 to 82 years. The results highlight the difficulty and complexity of the task of choosing the most appropriate model for the crystalline lens shape.

  10. Diffraction enhanced X-ray imaging of mammals crystalline lens

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Hönnicke, M. G.; Safatle, A. M. V.; Cusatis, C.; Moraes Barros, P. S.; Morelhão, S. L.

    2005-08-01

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed.

  11. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  12. Corneal and Crystalline Lens Dimensions Before and After Myopia Onset

    PubMed Central

    Mutti, Donald O.; Mitchell, G. Lynn; Sinnott, Loraine T.; Jones-Jordan, Lisa A.; Moeschberger, Melvin L.; Cotter, Susan A.; Kleinstein, Robert N.; Manny, Ruth E.; Twelker, J. Daniel; Zadnik, Karla

    2011-01-01

    Purpose To describe corneal and crystalline lens dimensions before, during, and after myopia onset compared to age-matched emmetropic values. Methods Subjects were 732 children 6 to 14 years of age who became myopic and 596 emmetropic children participating between 1989 and 2007 in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error Study. Refractive error was measured using cycloplegic autorefraction, corneal power using a hand-held autokeratometer, crystalline lens parameters using video-based phakometry, and vitreous chamber depth (VCD) using A-scan ultrasonography. Corneal and crystalline lens parameters in children who became myopic were compared to age-, gender-, and ethnicity-matched model estimates of emmetrope values annually from 5 years before through 5 years after the onset of myopia. The comparison was made without, then with statistical adjustment of emmetrope component values to compensate for the effects of longer VCDs in children who became myopic. Results Before myopia onset, the crystalline lens thinned, flattened, and lost power at similar rates for emmetropes and children who became myopic. The crystalline lens stopped thinning, flattening, and losing power within ±1 year of onset in children who became myopic compared to emmetropes statistically adjusted to match the longer vitreous chamber depths of children who became myopic. In contrast, the cornea was only slightly steeper in children who became myopic compared to emmetropes (<0.25 D) and underwent little change across visits. Conclusions Myopia onset is characterized by an abrupt loss of compensatory changes in the crystalline lens that continue in emmetropes throughout childhood axial elongation. The mechanism responsible for this decoupling remains speculative, but might include restricted equatorial growth from internal mechanical factors. PMID:22227914

  13. Effect of multiphoton ionization on performance of crystalline lens.

    PubMed

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D; Campbell, M C W; Sharma, R P

    2014-12-15

    This Letter presents a model for propagation of a laser pulse in a human crystalline lens. The model contains a transverse beam diffraction effect, laser-induced optical breakdown for the creation of plasma via a multiphoton ionization process, and the gradient index (GRIN) structure. Plasma introduces the nonlinearity in the crystalline lens which affects the propagation of the beam. The multiphoton ionization process generates plasma that changes the refractive index and hence leads to the defocusing of the laser beam. The Letter also points out the relevance of the present investigation to cavitation bubble formation for restoring the elasticity of the eyes. PMID:25502994

  14. OCT-based crystalline lens topography in accommodating eyes

    PubMed Central

    Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Martinez-Enriquez, Eduardo; Marcos, Susana

    2015-01-01

    Custom Spectral Domain Optical Coherence Tomography (SD-OCT) provided with automatic quantification and distortion correction algorithms was used to measure anterior and posterior crystalline lens surface elevation in accommodating eyes and to evaluate relationships between anterior segment surfaces. Nine young eyes were measured at different accommodative demands. Anterior and posterior lens radii of curvature decreased at a rate of 0.78 ± 0.18 and 0.13 ± 0.07 mm/D, anterior chamber depth decreased at 0.04 ± 0.01 mm/D and lens thickness increased at 0.04 ± 0.01 mm/D with accommodation. Three-dimensional surface elevations were estimated by subtracting best fitting spheres. In the relaxed state, the spherical term accounted for most of the surface irregularity in the anterior lens (47%) and astigmatism (70%) in the posterior lens. However, in accommodated lenses astigmatism was the predominant surface irregularity (90%) in the anterior lens. The RMS of high-order irregularities of the posterior lens surface was statistically significantly higher than that of the anterior lens surface (x2.02, p<0.0001). There was significant negative correlation in vertical coma (Z3−1) and oblique trefoil (Z3−3) between lens surfaces. The astigmatic angle showed high degree of alignment between corneal surfaces, moderate between corneal and anterior lens surface (~27 deg), but differed by ~80 deg between the anterior and posterior lens surfaces (including relative anterior/posterior lens astigmatic angle shifts (10-20 deg). PMID:26713216

  15. OCT-based crystalline lens topography in accommodating eyes.

    PubMed

    Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Martinez-Enriquez, Eduardo; Marcos, Susana

    2015-12-01

    Custom Spectral Domain Optical Coherence Tomography (SD-OCT) provided with automatic quantification and distortion correction algorithms was used to measure anterior and posterior crystalline lens surface elevation in accommodating eyes and to evaluate relationships between anterior segment surfaces. Nine young eyes were measured at different accommodative demands. Anterior and posterior lens radii of curvature decreased at a rate of 0.78 ± 0.18 and 0.13 ± 0.07 mm/D, anterior chamber depth decreased at 0.04 ± 0.01 mm/D and lens thickness increased at 0.04 ± 0.01 mm/D with accommodation. Three-dimensional surface elevations were estimated by subtracting best fitting spheres. In the relaxed state, the spherical term accounted for most of the surface irregularity in the anterior lens (47%) and astigmatism (70%) in the posterior lens. However, in accommodated lenses astigmatism was the predominant surface irregularity (90%) in the anterior lens. The RMS of high-order irregularities of the posterior lens surface was statistically significantly higher than that of the anterior lens surface (x2.02, p<0.0001). There was significant negative correlation in vertical coma (Z3 (-1)) and oblique trefoil (Z3 (-3)) between lens surfaces. The astigmatic angle showed high degree of alignment between corneal surfaces, moderate between corneal and anterior lens surface (~27 deg), but differed by ~80 deg between the anterior and posterior lens surfaces (including relative anterior/posterior lens astigmatic angle shifts (10-20 deg). PMID:26713216

  16. Fs-laser induced flexibility increase in the crystalline lens

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Fromm, M.; Lakharia, R.; Schaefer, M.; Oberheide, U.; Ripken, T.; Breitenfeld, P.; Gerten, G.; Ertmer, W.; Lubatschowksi, H.

    2007-02-01

    Presbyopia is one age related effect every human is suffering beginning at the age of about 45 years. Reading glasses are the conventional treatment so far. According to the Helmholtz theory the loss of accommodation in age is due to the hardening and the resulting loss of elasticity of the crystalline lens. However the ciliary muscle and the lens capsule stay active, respectively. Therefore a possible treatment concept is to regain the flexibility by inducing gliding planes in form of microcuts inside the lens. The increase of flexibility in young porcine lenses by different cutting patterns was shown by Ripken et al. 1, 2 who verified the increase in flexibility by the spinning test introduced by Fisher. 3 We will present our first measurements of flexibility increase of human donor lenses. Furthermore the influence of the laser cuts into the lens on the accommodation amplitude will be shown in a three dimensional finite-element simulation.

  17. Automated analysis of OCT images of the crystalline lens

    NASA Astrophysics Data System (ADS)

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Parel, Jean-Marie

    2009-02-01

    Presbyopia is the age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional OCT images of crystalline lenses were obtained and analyzed to extract their physical and optical properties. The raw OCT images are distorted, as the probing beam passing through media of different refractive indices and refraction on curved surfaces. In a first step, various filters, edge detection and pattern matching methods are applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Robustness of these algorithms are tested by analyzing the images at various contrast levels. Gradient refractive index of the lens is determined and the physical shape is reconstructed. In a further refinement, the refraction on the curved anterior surface is compensated to obtain the actual shape of the posterior surface. Once the physical shape is fully reconstructed, the optical properties are determined by fitting conic sections to both surfaces and calculating the power profile across the lens. The relative contribution of each of these refinement steps is investigated by comparing their influence on the effective power of the lens.

  18. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.

    PubMed

    Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza

    2016-10-01

    The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span. PMID:27316765

  19. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Previous studies have demonstrated that alpha-crystallin binds specifically, in a saturable manner, to lens membrane. To determine the region of the alpha-crystallin molecule that might be involved in this binding, native alpha-crystallin from the bovine lens has been treated by limited digestion with trypsin, to produce alpha-A molecules with an intact C-terminal region, and a nicked N-terminal region. Compared to intact alpha-crystallin, trypsin-treated alpha-crystallin binds less avidly to lens membrane, suggesting that the N-terminal region of the alpha-A molecule may play a key role in the recognition between lens membrane and crystallin.

  20. Cataract-Linked γD-Crystallin Mutants Have Weak Affinity to Lens Chaperones α-Crystallins

    PubMed Central

    Mishra, Sanjay; Stein, Richard A.; Mchaourab, Hassane S.

    2012-01-01

    To test the hypothesis that α-crystallin chaperone activity plays a central role in maintenance of lens transparency, we investigated its interactions with γ-crystallin mutants that cause congenital cataract in mouse models. Although the two substitutions, I4F and V76D, stabilize a partially unfolded γD-crystallin intermediate, their affinities to α-crystallin are marginal even at relatively high concentrations. Detectable binding required further reduction of γD-crystallin stability which was achieved by combining the two mutations. Our results demonstrate that mutants and possibly age-damaged γ-crystallin can escape quality control by lens chaperones rationalizing the observation that they nucleate protein aggregation and lead to cataract. PMID:22289178

  1. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.

    PubMed

    Mohanty, Bimal Prasanna; Bhattacharjee, Soma; Das, Manas Kumar

    2011-02-01

    Crystallins are a diverse group of proteins that constitute nearly 90% of the total soluble proteins of the vertebrate eye lens and these tightly packed crystallins are responsible for transparency of the lens. These proteins have been studied in different model and non-model species for understanding the modifications they undergo with ageing that lead to cataract, a disease of protein aggregation. In the present investigation, we studied the lens crystallin profile of the tropical freshwater catfish Rita rita. Profiles of lens crystallins were analyzed and crystallin proteome maps of Rita rita were generated for the first time. alphaA-crystallins, member of the alpha-crystallin family, which are molecular chaperons and play crucial role in maintaining lens transparency were identified by 1- and 2-D immunoblot analysis with anti-alphaA-crystallin antibody. Two protein bands of 19-20 kDa were identified as alphaA-crystallins on 1-D immunoblots and these bands separated into 10 discrete spots on 2-D immunoblot. However, anti-alphaB-crystallin and antiphospho-alphaB-crystallin antibodies were not able to detect any immunoreactive bands on 1- and 2-D immunoblots, indicating alphaB-crystallin was either absent or present in extremely low concentration in Rita rita lens. Thus, Rita rita alpha-crystallins are more like that of the catfish Clarias batrachus and the mammal kangaroo in its alphaA- and alphaB-crystallin content (contain low amount from 5-9% of alphaB-crystallin) and unlike the dogfish, zebrafish, human, bovine and mouse alpha-crystallins (contain higher amount of alphaB-crystallin from 25% in mouse and bovine to 85% in dogfish). Results of the present study can be the baseline information for stimulating further investigation on Rita rita lens crystallins for comparative lens proteomics. Comparing and contrasting the alpha-crystallins of the dogfish and Rita rita may provide valuable information on the functional attributes of alphaA- and alphaB-isoforms, as

  2. Ultrasound visualization of internal crystalline lens deformation using laser-induced microbubbles

    NASA Astrophysics Data System (ADS)

    Karpiouk, Andrei B.; Aglyamov, Salavat R.; Glasser, Adrian; Emelianov, Stanislav Y.

    2014-02-01

    The progressive loss of accommodation of the eye, called presbyopia, affects people with age and can result in a complete loss of accommodation by about age 55 years. It is generally accepted that presbyopia is due to an increase in stiffness of the lens. With increasing age, the stiffness of the crystalline lens nucleus increases faster than that of the cortex. During accommodation, the deformation of different parts of the crystalline lens is different and likely changes with age. However, a direct observation of crystalline lens deformation and strain distribution is difficult because although imaging methods such as OCT or Scheimpflug imaging can distinguish cortex and nucleus, they cannot determine their regional deformation. Here, patterns of laser-induced microbubbles were created in gelatin phantoms and different parts of excised animal crystalline lenses and their displacements in response to external deformation were tracked by ultrasound imaging. In the animal lenses, the deformation of the lens cortex was greater than that of nucleus and this regional difference is greater for a 27-month-old bovine lens than for a 6-month-old porcine lens. This approach enables visualization of localized, regional deformation of crystalline lenses and, if applied to lenses from animal species that undergo accommodation, may help to understand the mechanisms of accommodation and presbyopia, improve diagnostics, and, potentially, aid in the development of new methods of lens modifying presbyopia treatments.

  3. βA3/A1-CRYSTALLIN: MORE THAN A LENS PROTEIN

    PubMed Central

    Zigler, J. Samuel; Sinha, Debasish

    2014-01-01

    Crystallins, the highly abundant proteins of the ocular lens, are essential determinants of the transparency and refractivity required for lens function. Initially thought to be lens-specific and to have evolved as lens proteins, it is now clear that crystallins were recruited to the lens from proteins that existed before lenses evolved. Crystallins are expressed outside of the lens and most have been shown to have cellular functions distinct from their roles as structural elements in the lens. For one major crystallin group, the β/γ-crystallin superfamily, no such functions have yet been established. We have explored possible functions for the polypeptides (βA3- and βA1-crystallins) encoded by Cryba1, one of the 6 β-crystallin genes, using a spontaneous rat mutant and genetically engineered mouse models. βA3- and βA1-crystallins are expressed in astrocytes and retinal pigment epithelial (RPE) cells. In both cell types, these proteins appear to be required for the proper acidification of the lysosomes. In RPE cells, elevated pH in the lysosomes is shown to impair the critical processes of phagocytosis and autophagy, leading to accumulation of undigested cargo in (auto) phagolysosomes. We postulate that this accumulation may cause pathological changes in the cells resembling some of those characteristic of age-related macular degeneration (AMD). Our studies also suggest an important regulatory function of βA3/A1-crystallin in astrocytes. We provide evidence that the cellular function of βA3/A1-crystallin involves its interaction with V-ATPase, the proton pump responsible for acidification of the endolysosomal system. PMID:25461968

  4. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging.

    PubMed

    Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice

    2016-04-01

    Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle. PMID:27446660

  5. Lens defects in Astyanax mexicanus Cavefish: evolution of crystallins and a role for alphaA-crystallin.

    PubMed

    Hinaux, Hélène; Blin, Maryline; Fumey, Julien; Legendre, Laurent; Heuzé, Aurélie; Casane, Didier; Rétaux, Sylvie

    2015-05-01

    The fish Astyanax mexicanus presents, within the same species, populations of river-dwelling surface fish (SF) and blind cave-living fish. In cavefish (CF), the eyes develop almost normally during embryogenesis. But 40 h after fertilization, the lens enters apoptosis, triggering the progressive degeneration of the entire eye. Before apoptosis, the CF lens expresses early differentiation factors correctly. Here, we searched for possible late differentiation defects that would be causal in CF lens degeneration. We reasoned that crystallins, the major lens structural proteins, could be defective or misregulated. We surveyed the CF and SF transcriptomes and uncovered 14 Astyanax crystallins from the beta, gamma, lambda, mu, and zeta families. These proteins are less polymorphic and accumulate more fixed mutations, some at highly conserved positions, in CF than in SF, suggesting relaxed selection at these loci in CF. In situ hybridizations and qPCR show that crybb1c, crybgx, crygm5 are expressed at much lower levels or are not expressed in the CF lens. For the best crystallin candidates, we tested a potential causal role in CF lens apoptosis. Crybgx, crybb1c (not expressed in CF from very early on), and cryaa (previously shown to be faintly expressed in CF) failed to induce any defect when knocked-down in zebrafish embryos. However, the anti-apoptotic cryaa protected lens cells from apoptosis when reexpressed by transgenesis in CF, suggesting a cell-autonomous effect of cryaa on lens cell survival. Altogether, these data suggest that crystallin sequence evolution and expression defects may contribute to the loss of eyes in CF. PMID:25348293

  6. Gradient parameter and axial and field rays in the gradient-index crystalline lens model

    NASA Astrophysics Data System (ADS)

    Pérez, M. V.; Bao, C.; Flores-Arias, M. T.; Rama, M. A.; Gómez-Reino, C.

    2003-09-01

    Gradient-index models of the human lens have received wide attention in optometry and vision sciences for considering how changes in the refractive index profile with age and accommodation may affect refractive power. This paper uses the continuous asymmetric bi-elliptical model to determine gradient parameter and axial and field rays of the human lens in order to study the paraxial propagation of light through the crystalline lens of the eye.

  7. Expression of transcription factors and crystallin proteins during rat lens regeneration

    PubMed Central

    Huang, Yusen

    2010-01-01

    Purpose To establish a model of lens regeneration in rats and to detect the expression of transcription factor and crystallin genes. Methods An extracapsular lens extraction (ECLE) was performed in Sprague-Dawley rats. Examinations with slit-lamp and histological analysis were performed at various time points after ECLE. Real-time PCR and/or immunofluorescence were performed to detect the expression of the lens transcription factors paired box 6 (Pax6), prospero homeobox 1 (Prox1), and forkhead box E3 (Foxe3) and α-, β-, and γ-crystallin (Cryaa, Cryab, Crybb1, Crybb2, Cryba2, and Crygd, respectively). Results Lens epithelial cells (LECs) were left behind under the anterior capsule immediately after ECLE. Lens fiber differentiation had occurred in the peripheral capsular bag in all rats 3 days after ECLE. One month after surgery, all capsular bags were filled with new semitransparent lenticular structures displaying an established equator with well differentiated bow regions. The mRNA-expression quantity of lens transcription factors and α-, β-, and γ- crystallin increased after ECLE. Pax6 was expressed in both LECs and the newly regenerated lens fiber cells, Prox1 was expressed both in LECs and differentiating lens fiber cells, and Foxe3 was confined to LECs. Conclusions Lens fiber differentiation during regeneration follows a process similar to embryological development, with proliferation of epithelial cells along the anterior and posterior capsule, elongation of the posterior epithelial cells, and differentiation of epithelial cells into lens fibers. The regenerated lens contains proteins and transcription factors similar to those found in normal lenses. Inductive interactions seen during lens development are not necessary for lens regeneration. PMID:20216939

  8. αA-crystallin and αB-crystallin reside in separate subcellular compartments in the developing ocular lens.

    PubMed

    Gangalum, Rajendra K; Horwitz, Joseph; Kohan, Sirus A; Bhat, Suraj P

    2012-12-01

    αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high expression of αA and αB in the lens and their co-fractionation from lens extracts as one multimeric entity, α-crystallin. To understand the biological function(s) of each of these two proteins, it is important to investigate the biological basis of this perceived dichotomy; in this report, we address the question whether αA and αB exist as independent proteins in the ocular lens. Discontinuous sucrose density gradient fractionation and immunoconfocal localization reveal that in early developing rat lens αA is a membrane-associated small heat shock protein similar to αB but with remarkable differences. Employing an established protocol, we demonstrate that αB predominantly sediments with rough endoplasmic reticulum, whereas αA fractionates with smooth membranes. These biochemical observations were corroborated with immunogold labeling and transmission electron microscopy. Importantly, in the rat heart also, which does not contain αA, αB fractionates with rough endoplasmic reticulum, suggesting that αA has no influence on the distribution of αB. These data demonstrate presence of αA and αB in two separate subcellular membrane compartments, pointing to their independent existence in the developing ocular lens. PMID:23071119

  9. Design and analysis of an adaptive lens that mimics the performance of the crystalline lens in the human eye

    NASA Astrophysics Data System (ADS)

    Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Iturbide-Jiménez, F.; Martínez-López, M.; Ramírez-Como, M.; Armengol-Cruz, V.; Vásquez-Báez, I.

    2014-09-01

    Tunable lenses are optical systems that have attracted much attention due to their potential applications in such areas like ophthalmology, machine vision, microscopy and laser processing. In recent years we have been working in the analysis and performance of a liquid-filled variable focal length lens, this is a lens that can modify its focal length by changing the amount of water within it. Nowadays we extend our study to a particular adaptive lens known as solid elastic lens (SEL) that it is formed by an elastic main body made of Polydimethylsiloxane (PDMS Sylgard 184). In this work, we present the design, simulation and analysis of an adaptive solid elastic lens that in principle imitates the accommodation process of the crystalline lens in the human eye. For this work, we have adopted the parameters of the schematic eye model developed in 1985 by Navarro et al.; this model represents the anatomy of the eye as close as possible to reality by predicting an acceptable and accurate quantity of spherical and chromatic aberrations without any shape fitting. An opto-mechanical analysis of the accommodation process of the adaptive lens is presented, by simulating a certain amount of radial force applied onto the SEL using the finite element method with the commercial software SolidWorks®. We also present ray-trace diagrams of the simulated compression process of the adaptive lens using the commercial software OSLO®.

  10. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    NASA Astrophysics Data System (ADS)

    Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

    2011-08-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

  11. Functions of crystallins in and out of lens: Roles in elongated and post-mitotic cells

    PubMed Central

    Slingsby, Christine; Wistow, Graeme J.

    2014-01-01

    The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging. PMID:24582830

  12. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells.

    PubMed

    Slingsby, Christine; Wistow, Graeme J

    2014-07-01

    The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging. PMID:24582830

  13. γ-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds.

    PubMed

    Chen, Yingwei; Sagar, Vatsala; Len, Hoay-Shuen; Peterson, Katherine; Fan, Jianguo; Mishra, Sanghamitra; McMurtry, John; Wilmarth, Phillip A; David, Larry L; Wistow, Graeme

    2016-04-01

    γ-Crystallins, abundant proteins of vertebrate lenses, were thought to be absent from birds. However, bird genomes contain well-conserved genes for γS- and γN-crystallins. Although expressed sequence tag analysis of chicken eye found no transcripts for these genes, RT-PCR detected spliced transcripts for both genes in chicken lens, with lower levels in cornea and retina/retinal pigment epithelium. The level of mRNA for γS in chicken lens was relatively very low even though the chicken crygs gene promoter had lens-preferred activity similar to that of mouse. Chicken γS was detected by a peptide antibody in lens, but not in other ocular tissues. Low levels of γS and γN proteins were detected in chicken lens by shotgun mass spectroscopy. Water-soluble and water-insoluble lens fractions were analyzed and 1934 proteins (< 1% false discovery rate) were detected, increasing the known chicken lens proteome 30-fold. Although chicken γS is well conserved in protein sequence, it has one notable difference in leucine 16, replacing a surface glutamine conserved in other γ-crystallins, possibly affecting solubility. However, L16 and engineered Q16 versions were both highly soluble and had indistinguishable circular dichroism, tryptophan fluorescence and heat stability (melting temperature Tm ~ 65 °C) profiles. L16 has been present in birds for over 100 million years and may have been adopted for a specific protein interaction in the bird lens. However, evolution has clearly reduced or eliminated expression of ancestral γ-crystallins in bird lenses. The conservation of genes for γS- and γN-crystallins suggests they may have been preserved for reasons unrelated to the bulk properties of the lens. PMID:26913478

  14. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman.

    PubMed

    Kiss, Andor J; Mirarefi, Amir Y; Ramakrishnan, Subramanian; Zukoski, Charles F; Devries, Arthur L; Cheng, Chi-Hing C

    2004-12-01

    The eye lenses of the Antarctic nototheniid fishes that inhabit the perennially freezing Antarctic seawater are transparent at -2 degrees C, whereas the cold-sensitive mammalian and tropical fish lenses display cold-induced cataract at 20 degrees C and 7 degrees C, respectively. No cold-cataract occurs in the giant Antarctic toothfish Dissostichus mawsoni lens when cooled to temperatures as low as -12 degrees C, indicating highly cold-stable lens proteins. To investigate this cold stability, we characterised the lens crystallin proteins of the Antarctic toothfish, in parallel with those of the sub-tropical bigeye tuna Thunnus obesus and the endothermic cow Bos taurus, representing three disparate thermal climes (-2 degrees C, 18 degrees C and 37 degrees C, respectively). Sizing chromatography resolved their lens crystallins into three groups, alpha/betaH, beta and gamma, with gamma crystallins being the most abundant (>40%) lens proteins in fish, in contrast to the cow lens where they comprise only 19%. The upper thermal stability of these crystallin components correlated with the body temperature of the species. In vitro chaperone assays showed that fish alpha crystallin can protect same-species gamma crystallins from heat denaturation, as well as lysozyme from DTT-induced unfolding, and therefore are small Heat Shock Proteins (sHSP) like their mammalian counterparts. Dynamic light scattering measured an increase in size of alphagamma crystallin mixtures upon heating, which supports formation of the alphagamma complex as an integral part of the chaperone process. Surprisingly, in cross-species chaperone assays, tuna alpha crystallins only partly protected toothfish gamma crystallins, while cow alpha crystallins completely failed to protect, indicating partial and no alphagamma interaction, respectively. Toothfish gamma was likely to be the component that failed to interact, as the supernatant from a cow alpha plus toothfish gamma incubation could chaperone cow

  15. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression

    PubMed Central

    Hawke, Molly; LaCava, Carrie; Prince, Courtney J.; Bellanco, Nicholas R.; Corbin, Rebecca W.

    2008-01-01

    Purpose To characterize the crystallin content of the zebrafish lens using two-dimensional gel electrophoresis (2-DE). These data will facilitate future investigations of vertebrate lens development, function, and disease. Methods Adult zebrafish lens proteins were separated by 2-DE, and the resulting spots were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The relative proportion of each crystallin was quantified by image analysis, and phosphospecific staining was used to identify phosphorylated α-crystallins. The proportion of each crystallin in the soluble and insoluble fraction of the lens was also determined by resolving these lens fractions separately by 2-DE. Results α-, β-, and γ-crystallins comprised 7.8, 36.0, and 47.2% of the zebrafish lens, respectively. While the α-crystallin content of the zebrafish lens is less than the amounts found in the human lens, the ratio of αA:αB crystallin is very similar. The phosphorylation pattern of zebrafish αA-crystallins was also similar to that of humans. The most abundant γ-crystallins were the diverse γMs, comprising 30.5% of the lens. Intact zebrafish crystallins were generally more common in the soluble fraction with truncated versions more common in the insoluble fraction. Conclusions While the total α- and γ-crystallin content of the zebrafish lens differs from that of humans, similarities in α-crystallin ratios and modifications and a link between crystallin truncation and insolubility suggest that the zebrafish is a suitable model for the vertebrate lens. The proteome map provided here will be of value to future studies of lens development, function, and disease. PMID:18449354

  16. Hypericin-mediated photooxidative damage of α-crystallin in human lens epithelial cells.

    PubMed

    Ehrenshaft, Marilyn; Roberts, Joan E; Mason, Ronald P

    2013-07-01

    St. John's wort (Hypericum perforatum), a perennial herb native to Europe, is widely used for and seems to be effective in treatment of mild to moderate depression. Hypericin, a singlet oxygen-generating photosensitizer that absorbs in both the visible and the UVA range, is considered to be one of the bioactive ingredients of St. John's wort, and commercial preparations are frequently calibrated to contain a standard concentration. Hypericin can accumulate in ocular tissues, including lenses, and can bind in vitro to α-crystallin, a major lens protein. α-crystallin is required for lens transparency and also acts as a chaperone to ensure its own integrity and the integrity of all lens proteins. Because there is no crystallin turnover, damage to α-crystallin is cumulative over the lifetime of the lens and can lead to cataracts, the principal cause of blindness worldwide. In this work we study hypericin photosensitization of α-crystallin and detect extensive polymerization of bovine α-crystallin exposed in vitro to hypericin and UVA. We use fluorescence confocal microscopy to visualize binding between hypericin and α-crystallin in a human lens epithelial (HLE) cell line. Further, we show that UVA irradiation of hypericin-treated HLE cells results in a dramatic decrease in α-crystallin detection concurrent with a dramatic accumulation of the tryptophan oxidation product N-formylkynurenine (NFK). Examination of actin in HLE cells indicates that this cytoskeleton protein accumulates NFK resulting from hypericin-mediated photosensitization. This work also shows that filtration of wavelengths <400nm provides incomplete protection against α-crystallin modification and NFK accumulation, suggesting that even by wearing UV-blocking sunglasses, routine users of St. John's wort cannot adequately shield their lenses from hypericin-mediated photosensitized damage. PMID:23453985

  17. Hypericin-Mediated Photooxidative Damage of α-crystallin in Human Lens Epithelial Cells

    PubMed Central

    Ehrenshaft, Marilyn; Roberts, Joan E.; Mason, Ronald P.

    2013-01-01

    St. John's wort (Hypericum perforatum), a perennial herb native to Europe, is widely used and appears to be effective in treatment of mild to moderate depression. Hypericin, a singlet oxygen-generating photosensitizer that absorbs in both the visible and UVA range, is considered to be one of the bioactive ingredients, and commercial preparations are frequently calibrated to contain a standard concentration. Hypericin can accumulate in ocular tissues, including lenses, and can bind in vitro to α-crystallin, a major lens protein. Alpha-crystallin is required for lens transparency and also acts as a chaperone to ensure its own integrity and the integrity of all lens proteins. Because there is no crystallin turnover, damage to α-crystallin is cumulative over the lifetime of the lens, and can lead to cataracts, the principal cause of blindness worldwide. In this work we study hypericin photosensitization of α-crystallin and detect extensive polymerization of bovine α-crystallin exposed in vitro to hypericin and UVA. We use fluorescent confocal microscopy to visualize binding between hypericin and α-crystallin in a human lens epithelial (HLE) cell line. Further, we show that UVA irradiation of hypericin-treated HLE cells results in a dramatic decrease in α-crystallin detection concurrent with a dramatic accumulation of the tryptophan oxidation product N-formylkynurenine (NFK). Examination of actin in HLE cells indicates that this cytoskeleton protein accumulates NFK resulting from hypericin-mediated photosensitization. This work also shows that filtration of wavelengths <400 nm provides incomplete protection against α-crystallin modifications and NFK accumulation, suggesting that even by wearing UV blocking sunglasses, routine users of St. John's wort cannot adequately shield their lenses from hypericin-mediated photosensitized damage. PMID:23453985

  18. The tumor suppressor, p53 regulates the γA-crystallin gene during mouse lens development.

    PubMed

    Hu, X-H; Nie, Q; Yi, M; Li, T-T; Wang, Z-F; Huang, Z-X; Gong, X-D; Zhou, L; Ji, W-K; Hu, W-F; Liu, J-F; Wang, L; Woodward, Z; Zhu, J; Liu, W-B; Nguyen, Q D; Li, D W-C

    2014-01-01

    The tumor suppressor, p53 regulates a large number of target genes to control cell proliferation and apoptosis. In addition, it is also implicated in the regulation of cell differentiation in muscle, the circulatory system and various carcinoma tissues. We have recently shown that p53 also controls lens differentiation. Regarding the mechanism, we reveal that p53 directly regulates several genes including c-Maf and Prox1, two important transcription factors for lens differentiation, and αA and βA3/A1, the lens differentiation markers. In the present study, we present evidence to show that the γA-crystallin gene distal promoter and the first intron also contain p53 binding sites and are capable of mediating p53 control during mouse lens development. First, gel mobility shifting assays revealed that the p53 protein in nuclear extracts from human lens epithelial cells (HLE) directly binds to the p53 binding sites present in the γA-crystallin gene. Second, the exogenous wild type p53 induces the dose-dependent expression of the luciferase reporter gene driven by the basic promoter containing the γA-crystallin gene p53 binding site. In contrast, the exogenous dominant negative mutant p53 causes a dose-dependent inhibition of the same promoter. Third, ChIP assays revealed that p53 binds to the γA-crystallin gene promoter in vivo. Finally, in the p53 knockout mouse lenses, the expression level of the γAcrystallin gene was found attenuated in comparison with that in the wild type mouse lenses. Together, our results reveal that p53 regulates γA-crystallin gene expression during mouse lens development. Thus, p53 directly regulates all 3 types of crystallin genes to control lens differentiation. PMID:25336329

  19. Crosslinking and photoreaction of ozone-oxidized calf-lens alpha-crystallin

    SciTech Connect

    Fujimori, E.

    1982-03-01

    Direct-photo-oxidation, singlet oxygen-oxidation, or photosensitized oxidation can modify lens crystallins, causing an increase in blue fluorescence and covalent crosslinking. A relationship between these changes has not been elucidated. We now report results from experiments with ozone oxidation. When calf-lens alpha-crystallin is treated with zone oxidation. When calf-lens alpha-crystallin is treated with ozone, new absorption, fluorescence, and phosphorescence, which are characteristic of the oxidized product of tryptophan (N-formylkynurenine), appear at 320, 435, and 445 nm, respectively. In addition, in this ozonization of alpha-crystallin, its polypeptides are crosslinked by nondisulfide bonds. Irradiation of ozone-treated alpha-crystallin with near-ultraviolet (365 nm) light increases crosslinking and reduces the 320 nm absorbance with a concomitant appearance of a new absorption at about 420 nm. This photoproduct exhibits an intense fluorescence around 450 nm and a weak phosphorescence at 510 nm, with excitation peaks at 400, 415, and 422 nm. These findings are essentially the same as those observed in photo-oxidized alpha-crystallin, suggesting the involvement of the same tryptophan oxidized product in the modification of the lens protein.

  20. Hydration properties of the molecular chaperone alpha-crystallin in the bovine lens.

    PubMed

    Babizhayev, M A; Nikolayev, G M; Goryachev, S N; Bours, J; Martin, R

    2003-10-01

    Topographic studies of crystalline fractions from different morphological layers of the young adult bovine lens were conducted. Crystallin profiles were obtained for each lens layer, using thin-layer isoelectric focusing in polyacrylamide gel (IEF). Water soluble (WS) crystallins from the lens equator revealed a separation into HM (high molecular weight) alpha(L)-, beta(H)-, beta(L)-, beta(S)-, and gamma-crystallins. The nature of the water insoluble (WI) protein fraction in the separated lens layers reflected the aggregated state of alpha(L)-, beta(L)-, beta(S)-, and gamma-crystallins in different regions of the lens, concealed in the central cavity of the alpha-crystallin chaperone model. The IEF data demonstrate a possible chaperone-like function for alpha-crystallin in the nucleus and inner cortex of the lens, but not in the outer cortex. The water binding properties of bovine lens alpha-crystallin, calf skin collagen, and bovine serum albumin (BSA) were investigated with various techniques. The water adsorptive capacity was obtained in high vacuum desorption experiments volumetrically, and also gravimetrically in controlled atmosphere experiments. The NMR spin-echo technique was used to study the hydration of protein samples and to determine the spin-spin relaxation times (T(2)) from the protons of water adsorbed on the proteins. Isolated bovine lenses were sectioned into 11-12 morphological layers (from anterior cortex through nucleus to posterior cortex). The water content in relation to dry weight of proteins was measured in individual morphological lens layers. During water vapor uptake at relative humidity P/P(0) = 0.75, alpha-crystallin did not adsorb water suggesting that hydrophobic regions of the protein are exposed to the aqueous solvent. At relative humidity P/P(0) = 1.0, the adsorption of water by alpha-crystallin was 17% with a single component decay character of spin echo (T(2) = 3 msec). Addition of water to alpha-crystallin to about 50% of its

  1. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher

    PubMed Central

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-01-01

    Purpose To determine if the lens volume changes during accommodation. Methods The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. Results The mean (±SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were −0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Conclusions Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule. PMID:26161985

  2. Chordate betagamma-crystallins and the evolutionary developmental biology of the vertebrate lens.

    PubMed

    Riyahi, Kumars; Shimeld, Sebastian M

    2007-07-01

    Several animal lineages, including the vertebrates, have evolved sophisticated eyes with lenses that refract light to generate an image. The nearest invertebrate relatives of the vertebrates, such as the ascidians (sea squirts) and amphioxus, have only basic light detecting organs, leading to the widely-held view that the vertebrate lens is an innovation that evolved in early vertebrates. From an embryological perspective the lens is different from the rest of the eye, in that the eye is primarily of neural origin while the lens derives from a non-neural ectodermal placode which invaginates into the developing eye. How such an organ could have evolved has attracted much speculation. Recently, however, molecular developmental studies of sea squirts have started to suggest a possible evolutionary origin for the lens. First, studies of the Pax, Six, Eya and other gene families have indicated that sea squirts have areas of non-neural ectoderm homologous to placodes, suggesting an origin for the embryological characteristics of the lens. Second, the evolution and regulation of the betagamma-crystallins has been studied. These form one of the key crystallin gene families responsible for the transparency of the lens, and regulatory conservation between the betagamma-crystallin gene in the sea squirt Ciona intestinalis and the vertebrate visual system has been experimentally demonstrated. These data, together with knowledge of the morphological, physiological and gene expression similarities between the C. intestinalis ocellus and vertebrate retina, have led us to propose a hypothesis for the evolution of the vertebrate lens and integrated vertebrate eye via the co-option and combination of ancient gene regulatory networks; one controlling morphogenetic aspects of lens development and one controlling the expression of a gene family responsible for the biophysical properties of the lens, with the components of the retina having evolved from an ancestral photoreceptive organ

  3. [Intraocular metallic crystalline lens for correction of aphakia].

    PubMed

    Aderikhin, I V; Golubchik, V L; Gorban', A I; Kolbin, M N

    1995-01-01

    Technological characteristics of a new in principle intraocular lens (IOL) consisting of a leukosaphire lens and elastic tantalum haptics are presented. The advantages of metallic crystal IOLs are validated: complete chemical and biological inertness, longevity, high transparency, and easy implantation in the capsular sac. Surgical recommendations are offered and highly positive results of clinical trials analyzed (more than 600 implantations followed up for up to 4 years). Metallic crystal IOLs for intracapsular correction of aphakia developed at the S. I. Vavilov All-Russian Research Center and St. Petersburg Division of the Moscow Research and Technological Complex "Ocular Microsurgery" and manufactured by the IOL Joint Stock Company are recommended for wide clinical use. PMID:7483205

  4. Distortion Correction of OCT Images of the Crystalline Lens: GRIN Approach

    PubMed Central

    Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie

    2012-01-01

    Purpose To propose a method to correct Optical Coherence Tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Methods 2-D images of 9 human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared to the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley and lens thickness shifts from the nominal data. Results Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface, in terms of RMS and peak values, with errors less than 6μm and 13μm respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8μm. Conclusions The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in 2-D, it is expected that 3-D imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger

  5. Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher

    PubMed Central

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-01-01

    Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492

  6. In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

    PubMed Central

    Andley, Usha P.; Malone, James P.; Townsend, R. Reid

    2014-01-01

    αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin. PMID:24760011

  7. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging

    PubMed Central

    Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M.; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H.; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice

    2016-01-01

    Abstract: Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle. PMID:27446660

  8. Alpha-A crystallin: quantitation of C-terminal modification during lens aging

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Gopalakrishnan, S.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Previous studies have demonstrated that the C-terminal region of alpha-A crystallin is susceptible to age-dependent, posttranslational modification. To quantitate the amount of modification, alpha-A crystallin was purified from total proteins of the aging bovine lens, then digested with lys-C endoproteinase. Reverse phase, high pressure liquid chromatography was used to resolve and quantitate the resulting peptides, to determine the amount of C-terminal peptide relative to peptides from other regions of the protein that have not been reported to undergo modification. The results indicate that relative to alpha-A crystallin from newborn lens, posttranslational modification has occurred in approximately 45-55% of the C-terminal region from mature lens. These results demonstrate extensive modification of the C-terminal region of alpha-A crystallin from the mature lens, indicating that during the aging process, posttranslational modifications in this region may make significant contributions to the aggregated state and/or molecular chaperone properties of the molecule.

  9. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation

    NASA Astrophysics Data System (ADS)

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Arrieta-Quintero, Esdras; Parel, Jean-Marie

    2011-05-01

    Presbyopia is an age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional optical coherence tomography images of crystalline lenses were obtained by using the Ex-Vivo Accommodation Simulator (EVAS II) instrument and analyzed to extract their physical and optical properties. Various filters and edge detection methods were applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of a high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Geometrical parameters of the lens were determined for the lens images captured at different accommodative states. Various curve fitting functions were developed to mathematically describe the anterior and posterior surfaces of the lens. Their differences were evaluated and their suitability for extracting optical performance of the lens was assessed. The robustness of these algorithms was tested by analyzing the same images repeated times.

  10. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived

  11. A medieval fallacy: the crystalline lens in the center of the eye

    PubMed Central

    Leffler, Christopher T; Hadi, Tamer M; Udupa, Akrithi; Schwartz, Stephen G; Schwartz, Daniel

    2016-01-01

    Objective To determine whether, as most modern historians have written, ancient Greco-Roman authors believed the crystalline lens is positioned in the center of the eye. Background Historians have written that statements about cataract couching by Celsus, or perhaps Galen of Pergamon, suggested a centrally located lens. Celsus specifically wrote that a couching needle placed intermediate between the corneal limbus and the lateral canthus enters an empty space, presumed to represent the posterior chamber. Methods Ancient ophthalmic literature was analyzed to understand where these authors believed the crystalline lens was positioned. In order to estimate where Celsus proposed entering the eye during couching, we prospectively measured the distance from the temporal corneal limbus to the lateral canthus in 30 healthy adults. Results Rufus of Ephesus and Galen wrote that the lens is anterior enough to contact the iris. Galen wrote that the lens equator joins other ocular structures at the corneoscleral junction. In 30 subjects, half the distance from the temporal corneal limbus to the lateral canthus was a mean of 4.5 mm (range: 3.3–5.3 mm). Descriptions of couching by Celsus and others are consistent with pars plana entry of the couching needle. Anterior angulation of the needle would permit contact of the needle with the lens. Conclusion Ancient descriptions of anatomy and couching do not establish the microanatomic relationships of the ciliary region with any modern degree of accuracy. Nonetheless, ancient authors, such as Galen and Rufus, clearly understood that the lens is located anteriorly. There is little reason to believe that Celsus or other ancient authors held a variant understanding of the anatomy of a healthy eye. The notion of the central location of the lens seems to have arisen with Arabic authors in 9th century Mesopotamia, and lasted for over 7 centuries. PMID:27114699

  12. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Alpha crystallin was prepared from newborn and aged bovine lenses. SDS-PAGE and tryptic peptide mapping demonstrated that both preparations contained only the alpha-A and alpha-B chains, with no significant contamination of other crystallins. Compared with alpha crystallin from the aged lens, alpha crystallin from the newborn lens was much more effective in the inhibition of beta L crystallin denaturation and precipitation induced in vitro by heat. Together, these results demonstrate that during the aging process, the alpha crystallins lose their ability to protect against protein denaturation, consistent with the hypothesis that the alpha crystallins play an important role in the maintenance of protein native structure in the intact lens.

  13. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina

    PubMed Central

    Mueller, Niklaus H.; Fogueri, Uma; Pedler, Michelle G.; Montana, Kameron; Petrash, J. Mark; Ammar, David A.

    2015-01-01

    Misfolded protein aggregation, including cataract, cause a significant amount of blindness worldwide. α-Crystallin is reported to bind misfolded proteins and prevent their aggregation. We hypothesize that supplementing retina and lens with α-crystallin may help to delay disease onset. The purpose of this study was to determine if αB-crystallin subunits containing a cell penetration peptide (gC-tagged αB-crystallin) facilitate the uptake of wild type αA-crystallin (WT-αA) in lens and retina. Recombinant human αB-crystallin was modified by the addition of a novel cell penetration peptide derived from the gC gene product of herpes simplex virus (gC-αB). Recombinant gC-αB and wild-type αA-crystallin (WT-αA) were purified from E. coli over-expression cultures. After Alexa-labeling of WT-αA, these proteins were mixed at ratios of 1:2, 1:5 and 1:10, respectively, and incubated at 37°C for 4 hours to allow for subunit exchange. Mixed oligomers were subsequently incubated with tissue culture cells or mouse organ cultures. Similarly, crystallin mixtures were injected into the vitreous of rat eyes. At various times after exposure, tissues were harvested and analyzed for protein uptake by confocal microscopy or flow cytometry. Chaperone-like activity assays were performed on α-crystallins ratios showing optimal uptake using chemically-induced or heat induced substrate aggregation assays. As determined by flow cytometry, a ratio of 1:5 for gC-αB to WT-αA was found to be optimal for uptake into retinal pigmented epithelial cells (ARPE-19). Chaperone-like activity assays demonstrated that hetero-oligomeric complex of gC-αB to WT-αA (in 1:5 ratio) retained protein aggregation protection. We observed a significant increase in protein uptake when optimized (gC-αB to WT-αA (1:5 ratio)) hetero-oligomers were used in mouse lens and retinal organ cultures. Increased levels of α-crystallin were found in lens and retina following intravitreal injection of homo- and

  14. cAMP-dependent phosphorylation of bovine lens alpha-crystallin

    SciTech Connect

    Spector, A.; Chiesa, R.; Sredy, J.; Garner, W.

    1985-07-01

    This communication reports that the A1 and B1 chains of bovine lens alpha-crystallin are phosphorylated. The conclusion is based on the following evidence: (i) When soluble preparations from lens cortex are incubated with (gamma-/sup 32/P)ATP, a cAMP-dependent labeling of a high molecular weight protein is obtained. (ii) After NaDodSO/sub 4//PAGE, the label is found in two bands with Mr 22,000 and 20,000, corresponding to the B and A chains of alpha-crystallin, respectively. (iii) Isoelectric focusing indicates that the radioactivity is almost exclusively in bands with pI values of 5.58 and 6.70, corresponding to the A1 and B1 chains, respectively. (iv) Similar results are obtained in experiments of (/sup 32/P)orthophosphate incorporation in lens organ culture. (v) Analyses of the digested protein indicate the label is exclusively in phosphoserine. (vi) /sup 31/P NMR analyses of native, proteolytically digested, and urea-treated alpha-crystallin gives a chemical shift of 4.6 ppm relative to 85% H/sub 3/PO/sub 4/ at pH 7.4, suggesting that the phosphate is covalently bound to a serine in the protein. An abundance of approximately one phosphate per four or five monomer units was found. (vii) Similar results were obtained by chemical analyses of independently prepared alpha-crystallin samples. The results are consistent with the view that the A1 and B1 chains arise as result of the phosphorylation of directly synthesized A2 and B2 polypeptides. It is suggested that this metabolically controlled phosphorylation may be associated with the terminal differentiation of the lens epithelial cell and the intracellular organization of the lens fiber cell.

  15. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  16. Assessing the changes in the biomechanical properties of the crystalline lens induced by cold cataract with air-pulse OCE

    NASA Astrophysics Data System (ADS)

    Wu, C.; Singh, M.; Liu, C.-H.; Han, Z.; Li, J.; Raghunathan, R.; Larin, K. V.

    2015-11-01

    A cataract is the increase in opacity of the crystalline lens that can pathologically degrade visual acuity. In this study, we utilized a phase-sensitive optical coherence elastography (OCE) system to study the effects of a cold cataract on the biomechanical properties of the porcine crystalline lens in vitro. The cold cataract was induced by placing the whole lens in a low temperature environment until the lens was obviously clouded. Air-pulse OCE measurements were conducted on 6 lenses before and after cold cataract induction. A low amplitude displacement (≤ 10 µm) was induced by a focused air-pulse and the temporal deformation profiles from the surface and within the lenses were analyzed. The results demonstrated that the stiffness of the porcine lens increased after induction of the cold cataract, and it demonstrated the feasibility of OCE to assess the biomechanical changes in the lens due to cataract.

  17. Regulatory effect of Bcl-2 in ultraviolet radiation-induced apoptosis of the mouse crystalline lens

    PubMed Central

    DONG, YUCHEN; ZHENG, YAJUAN; XIAO, JUN; ZHU, CHAO; ZHAO, MEISHENG

    2016-01-01

    The aim of the present study was to analyze the role of Bcl-2 during the process of apoptosis in the mouse crystalline lens. In total, 12 normal mice served as the control group and 12 Bcl-2 knockout (K.O) mice served as the experimental group. The mouse crystalline lens was sampled for the detection of Bcl-2 and caspase-3 expression following exposure to ultraviolet (UV) radiation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine Bcl-2 expression in the groups of normal mice receiving UV radiation or not receiving UV radiation. Samples of the murine crystalline lens were microscopically harvested and analyzed using western blotting. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, caspase 3 activity was examined using enzyme-linked immunosorbent assay kits, and RT-qPCR was used to analyze caspase-3 expression levels. The results of the present study demonstrated that there was no statistically significant difference in the level of Bcl-2 gene transcription between the two groups. In addition, UV radiation did not change the macrostructure of the crystalline lens in the group of normal mice or the group of Bcl-2 K.O mice. The results of the TUNEL assay indicated that the normal-UV group exhibited a more significant apoptosis level compared with the Bcl-2 K.O-UV group. Furthermore, the mRNA expression level of caspase-3 in the normal-UV group was significantly higher compared with the normal-nonUV group (P<0.05), while the levels in the Bcl-2 K.O-UV group were significantly higher compared with the Bcl-2 K.O and normal-nonUV groups (P<0.05). In addition, the mRNA expression level of caspase-3 was significantly higher in the normal-UV, as compared with the Bcl-2 K.O-UV group (P<0.05), and the variation trends in caspase-3 activity were consistent. In conclusion, the results of the present study demonstrated that Bcl-2 may have an important role in the

  18. Spontaneous dislocation of a crystalline lens to the anterior chamber with pupillary block glaucoma in Noonan Syndrome: a case report

    PubMed Central

    Mukhopadhyaya, Udayaditya; Chakraborti, Chandana; Mondal, Anindita; Pattyanayak, Ujjal; Agarwal, Rajesh Kumar; Tripathi, Partha

    2014-01-01

    We report a 13-year-old child with Noonan Syndrome who developed spontaneous dislocation of the crystalline lens in anterior chamber leading to pupillary block glaucoma in the left eye and subluxation of lens in right eye. Intracapsular extraction of the dislocated lens was done in the left eye. Prompt diagnosis and management is needed in such cases to avoid glaucoma and corneal endothelial cell damage. We could not find any such case after thorough Medline search. PMID:25374640

  19. Docking studies of Vitamin C, Vitamin E, Damnacanthal and Scopoletin with human lens gamma D-crystalline.

    PubMed

    Rentala, Satyanarayana; Konada, Sudhakar; Chintala, Ramakrishna; Mangamoori, Lakshmi Narasu; Upadhyayula, Suryanarayana Murthy; Dhurjeti, Sarva Mangala

    2013-01-01

    Vitamin C, Vitamin E, scopoletin and damnacanthal are the major constituents of Noni (Morinda citrifolia). These compounds are known to have good medicinal properties and they are known to act as antioxidants. Loss of vision in elderly is due to opaqueness of the lens proteins such as gamma-D-crystallin during oxidative stress conditions. Therefore, it is of importance to find the potential interaction of Vitamin C, Vitamin E, Scopoletin and Damnacanthal with the lens protein gamma-D-crystallin. Hence, their physical binding to gamma-D crystallin (PDB ID: 2G98) was evaluated using molecular and structural docking procedures. Results show the potential binding of all the above anti-oxidants to gamma-D-crystalline with equal affinity. Thus, the role of cumulative anti-oxidant effect in Noni fruit juice through their potential yet predicted interaction with the lens protein gamma-D-crystallin is implied for cataract treatment. PMID:23976828

  20. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens

    PubMed Central

    Won, Gah-Jone; Fudge, Douglas S.

    2015-01-01

    Purpose: Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. Methods: One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. Results: Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. Conclusions: Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice. PMID:25684975

  1. Hard sphere-like glass transition in eye lens α-crystallin solutions

    PubMed Central

    Savin, Gabriela; Bucciarelli, Saskia; Dorsaz, Nicolas; Thurston, George M.; Stradner, Anna; Schurtenberger, Peter

    2014-01-01

    We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus–Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis. PMID:25385638

  2. Refractive Index Measurement of the Isolated Crystalline Lens Using Optical Coherence Tomography

    PubMed Central

    Uhlhorn, Stephen R.; Borja, David; Manns, Fabrice; Parel, Jean-Marie

    2008-01-01

    An optical coherence tomography system has been developed that was designed specifically for imaging the isolated crystalline lens. Cross-sectional OCT images were recorded on 40 lenses from 32 human donors with an age range of 6 – 82 years. A method has been developed to measure the axial thickness and average refractive index of the lens from a single recorded image. The measured average group refractive index at the measurement wavelength of 825 nm was converted to the average phase refractive index at 589 nm using lens dispersion data from the literature. The average refractive index for all lenses measured was 1.408 ± 0.005 which agrees well with recent MRI measurements of the lens index gradient. A linear regression of the data resulted in a statistically significant decrease in the average refractive index with age, but a simple linear model was insufficient to explain the age dependence. The results presented here suggest that the peak refractive index in the nucleus is closer to 1.420, rather than the previously accepted value of 1.406. PMID:18824191

  3. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators

    PubMed Central

    Sun, Jian; Rockowitz, Shira; Chauss, Daniel; Wang, Ping; Kantorow, Marc; Zheng, Deyou

    2015-01-01

    Purpose Gene expression correlates with local chromatin structure. Our studies have mapped histone post-translational modifications, RNA polymerase II (pol II), and transcription factor Pax6 in lens chromatin. These data represent the first genome-wide insights into the relationship between lens chromatin structure and lens transcriptomes and serve as an excellent source for additional data analysis and refinement. The principal lens proteins, the crystallins, are encoded by predominantly expressed mRNAs; however, the regulatory mechanisms underlying their high expression in the lens remain poorly understood. Methods The formaldehyde-assisted identification of regulatory regions (FAIRE-Seq) was employed to analyze newborn lens chromatin. ChIP-seq and RNA-seq data published earlier (GSE66961) have been used to assist in FAIRE-seq data interpretation. RNA transcriptomes from murine lens epithelium, lens fibers, erythrocytes, forebrain, liver, neurons, and pancreas were compared to establish the gene expression levels of the most abundant mRNAs versus median gene expression across other differentiated cells. Results Normalized RNA expression data from multiple tissues show that crystallins rank among the most highly expressed genes in mammalian cells. These findings correlate with the extremely high abundance of pol II all across the crystallin loci, including crystallin genes clustered on chromosomes 1 and 5, as well as within regions of “open” chromatin, as identified by FAIRE-seq. The expression levels of mRNAs encoding DNA-binding transcription factors (e.g., Foxe3, Hsf4, Maf, Pax6, Prox1, Sox1, and Tfap2a) revealed that their transcripts form “clusters” of abundant mRNAs in either lens fibers or lens epithelium. The expression of three autophagy regulatory mRNAs, encoding Tfeb, FoxO1, and Hif1α, was found within a group of lens preferentially expressed transcription factors compared to the E12.5 forebrain. Conclusions This study reveals novel features of

  4. Validation of OCT-based Crystalline Lens Thickness Measurements in Children

    PubMed Central

    Lehman, Bret M.; Berntsen, David A.; Bailey, Melissa D.; Zadnik, Karla

    2010-01-01

    Purpose To evaluate the validity and repeatability of crystalline lens thickness measurements obtained by anterior segment optical coherence tomography. Methods Forty-seven normal children (mean age, 11.06 ± 2.30 years) had their crystalline lens thickness measured with the Visante anterior segment optical coherence tomography (OCT) (Carl Zeiss Meditec, Dublin, CA) and with conventional corneal touch A-scan ultransonography (ultrasound) (Humphrey 820). The subjects’ right corneas were anesthetized, and their right eyes were cyclopleged. Five ultrasound measurements were recorded per eye, and three Visante OCT measurements were recorded per eye. Thirty-eight subjects had measurements at a second visit where three additional Visante OCT measurements were recorded. Results The mean of the differences between the Visante OCT and ultrasound was −0.045 mm (p = 0.017) with 95% limits of agreement from −0.29 to 0.20 mm indicating that the measurement of crystalline lens thickness was slightly thinner with the Visante OCT. When validity was assessed using only Visante OCT images that contained the corneal reflex, the mean of the differences was 0.019 mm (p = 0.11) with 95% limits of agreement from −0.091 to 0.13 mm. For the repeatability of the Visante OCT, the mean of the differences between visit one and visit two was −0.008 mm (p = 0.25) with 95% limits of agreement from −0.088 to 0.072 mm. Repeatability improved when reassessed using only images that contain the corneal reflex; the mean of the differences was −0.0001 mm (p = 0.97) with 95% limits of agreement from −0.030 to 0.030 mm. Conclusion The Visante OCT is a non-contact instrument that is simple to use, and it provides valid crystalline lens thickness measurements with excellent repeatability. Validity and repeatability are optimized when the Visante OCT images contain the corneal reflex and a consistent corneal index refraction is applied to the entire image. PMID:19182701

  5. Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s.

    PubMed Central

    Liu, C; Asherie, N; Lomakin, A; Pande, J; Ogun, O; Benedek, G B

    1996-01-01

    We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens. PMID:8552642

  6. An unusually long non-coding region in rat lens alpha-crystallin messenger RNA.

    PubMed Central

    Moormann, R J; van der Velden, H M; Dodemont, H J; Andreoli, P M; Bloemendal, H; Schoenmakers, J G

    1981-01-01

    Most of the mRNA sequence coding for the alpha A2 chain of the ocular lens protein alpha-crystallin from rat, has been determined by sequencing cloned DNA copies of this mRNA. The 892-base pair cDNA sequence encompasses all but 52 N-terminal amino acids of the alpha A2 chain. It lacks the sequence characteristic for the 22 extra amino acids inserted in the alpha A2 -like chain, named alpha AIns. A stretch of 583 nuceotides, representing more than 50% of the entire mRNA sequence, is located 3' wards of the alpha A2 coding sequence. It contains the characteristic AAUAAA signal involved in poly(A) -addition and represents an unexpectedly long non-coding region. Examination of the total cytoplasmic poly(A) RNA of rat lens by filter-hybridization and subsequent translation of the electrophoretically separated mRNA fractions shows that the alpha A2 chain is encoded by mRNA species which are distinct from the alpha AIns encoding mRNA. No evidence is obtained for an extensive size heterogeneity in the 3' untranslated regions of these two different rat lens mRNAs. Images PMID:6171772

  7. NMR spin-echo studies of hydration properties of the molecular chaperone alpha-crystallin in the bovine lens.

    PubMed

    Babizhayev, Mark A; Nikolayev, Gennady N; Goryachev, Sergey N; Bours, Johan

    2002-07-29

    The water-binding properties of bovine lens alpha-crystallin, collagen from calf skin and bovine serum albumin (BSA), were investigated with various techniques. The water absorptive capacity was obtained in high vacuum desorption experiments volumetrically, and also gravimetrically in controlled atmosphere experiments. NMR spin-echo technique was used to study the hydration of protein samples and to determine the spin-spin relaxation times (T2) from the protons of water, absorbed on the proteins. Isolated bovine lenses were sectioned into 11-12 morphological layers (from anterior cortex through nucleus to posterior cortex). Crystallin profiles were obtained for each lens layer using thin-layer isoelectric focusing in polyacrylamide gel (IEF). The water content in relation to dry weight of proteins was measured in individual morphological lens layers. During the water vapor uptake P/P(0)=0.75, alpha-crystallin did not absorb water, suggesting that hydrophobic regions of the protein are exposed to the aqueous solvent. At P/P(0)=1.0, the absorption of water by alpha-crystallin was 17% with a single component decay character of spin-echo (T2=3 ms). Addition of water to alpha-crystallin to about 50% of its w/w in the protein sample showed T2=8 ms with only one single component decay of the spin-echo signal. The single component decay character of the spin-echo indicates at the tightly bound water by alpha-crystallin. Under a relative humidity P/P(0)=1.0, collagen and BSA absorbed correspondingly 19.3% and 28% of water and showed a two-component decay curve with T2 of about 5 and 40 ms. The findings demonstrate the presence of two water fractions in collagen and BSA which are separated in space. The IEF data suggest a tight binding of water with alpha-crystallin with similar distribution patterns in the lens layers. The IEF data demonstrate a possible chaperone-like function for alpha-crystallin in the nucleus and inner cortex of the lens, but not in the outer cortex. To

  8. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: A finite element study

    PubMed Central

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-01-01

    Background A nonlinear isotropic finite element (FE) model of a 29 year old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. Methods The model simulates dis-accommodation by stretching of the lens and predicts the change in the lens capsule, cortex and nucleus surface profiles at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the FE results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Results Aspects of lens shape change relative to stretch were evaluated including change in diameter (d), central thickness (T) and accommodation (A). Maximum accommodation achieved was 10.29 D. From the MRA, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5×10−3 µm, p<0.001). The results are compared with those from in vitro studies. Conclusions The FE and ray-tracing predictions are consistent with EVAS studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully-accommodated states. PMID:25727940

  9. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts.

    PubMed

    Zm, Sara Zafaranchi; Khoshaman, Kazem; Masoudi, Raheleh; Hemmateenejad, Bahram; Yousefi, Reza

    2017-01-01

    The imbalance of the calcium homeostasis in the lenticular tissues of diabetic patients is an important risk factor for development of cataract diseases. In the current study, the impact of elevated levels of calcium ions were investigated on structure and aggregation propensity of glycated lens crystallins using gel electrophoresis and spectroscopic assessments. The glycated proteins indicated significant resistance against calcium-induced structural insults and aggregation. While, glycated crystallins revealed an increased conformational stability; a slight instability was observed for these proteins upon interaction with calcium ions. Also, in the presence of calcium, the proteolytic pattern of native crystallins was altered and that of glycated protein counterparts remained almost unchanged. According to results of this study it is suggested that the structural alteration of lens crystallins upon glycation may significantly reduce their calcium buffering capacity in eye lenses. Therefore, under chronic hyperglycemia accumulation of this cataractogenic metal ion in the lenticular tissues may subsequently culminate in activation of different pathogenic pathways, leading to development of lens opacity and cataract diseases. PMID:27434877

  10. Lactate dehydrogenase A as a highly abundant eye lens protein in platypus (Ornithorhynchus anatinus): upsilon (upsilon)-crystallin.

    PubMed

    van Rheede, Teun; Amons, Reinout; Stewart, Niall; de Jong, Wilfried W

    2003-06-01

    Vertebrate eye lenses mostly contain two abundant types of proteins, the alpha-crystallins and the beta/gamma-crystallins. In addition, certain housekeeping enzymes are highly expressed as crystallins in various taxa. We now observed an unusual approximately 41-kd protein that makes up 16% to 18% of the total protein in the platypus eye lens. Its cDNA sequence was determined, which identified the protein as muscle-type lactate dehydrogenase A (LDH-A). It is the first observation of LDH-A as a crystallin, and we designate it upsilon (upsilon)-crystallin. Interestingly, the related heart-type LDH-B occurs as an abundant lens protein, known as epsilon-crystallin, in many birds and crocodiles. Thus, two members of the ldh gene family have independently been recruited as crystallins in different higher vertebrate lineages, suggesting that they are particularly suited for this purpose in terms of gene regulatory or protein structural properties. To establish whether platypus LDH-A/upsilon-crystallin has been under different selective constraints as compared with other vertebrate LDH-A sequences, we reconstructed the vertebrate ldh-a gene phylogeny. No conspicuous rate deviations or amino acid replacements were observed. PMID:12716980

  11. Tea Flavanols Block Advanced Glycation of Lens Crystallins Induced by Dehydroascorbic Acid.

    PubMed

    Zhu, Yingdong; Zhao, Yantao; Wang, Pei; Ahmedna, Mohamed; Ho, Chi-Tang; Sang, Shengmin

    2015-01-20

    Growing evidence has shown that ascorbic acid (ASA) can contribute to protein glycation and the formation of advanced glycation end products (AGEs), especially in the lens. The mechanism by which ascorbic acid can cause protein glycation probably originates from its oxidized form, dehydroascorbic acid (DASA), which is a reactive dicarbonyl species. In the present study, we demonstrated for the first time that four tea flavanols, (-)-epigallocatechin 3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-O-gallate (ECG), and (-)-epicatechin (EC), could significantly trap DASA and consequently form 6C- or 8C-ascorbyl conjugates. Among these four flavanols, EGCG exerted the strongest trapping efficacy by capturing approximate 80% of DASA within 60 min. We successfully purified and identified seven 6C- or 8C-ascorbyl conjugates of flavanols from the chemical reaction between tea flavanols and DASA under slightly basic conditions. Of which, five ascorbyl conjugates, EGCGDASA-2, EGCDASA-2, ECGDASA-1, ECGDASA-2 and ECDASA-1, were recognized as novel compounds. The NMR data showed that positions 6 and 8 of the ring A of flavanols were the major active sites for trapping DASA. We further demonstrated that tea flavanols could effectively inhibit the formation of DASA-induced AGEs via trapping DASA in the bovine lens crystallin-DASA assay. In this assay, 8C-ascorbyl conjugates of flavanols were detected as the major adducts using LC-MS. This study suggests that daily consumption of beverages containing tea flavanols may prevent protein glycation in the lens induced by ascorbic acid and its oxidized products. PMID:25437149

  12. Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model

    PubMed Central

    Fan, Xingjun; Reneker, Lixing W.; Obrenovich, Mark E.; Strauch, Christopher; Cheng, Rongzhu; Jarvis, Simon M.; Ortwerth, Beryl J.; Monnier, Vincent M.

    2006-01-01

    Senile cataracts are associated with progressive oxidation, fragmentation, cross-linking, insolubilization, and yellow pigmentation of lens crystallins. We hypothesized that the Maillard reaction, which leads browning and aroma development during the baking of foods, would occur between the lens proteins and the highly reactive oxidation products of vitamin C. To test this hypothesis, we engineered a mouse that selectively overexpresses the human vitamin C transporter SVCT2 in the lens. Consequently, lenticular levels of vitamin C and its oxidation products were 5- to 15-fold elevated, resulting in a highly compressed aging process and accelerated formation of several protein-bound advanced Maillard reaction products identical with those of aging human lens proteins. These data strongly implicate vitamin C in lens crystallin aging and may serve as a model for protein aging in other tissues particularly rich in vitamin C, such as the hippocampal neurons and the adrenal gland. The hSVCT2 mouse is expected to facilitate the search for drugs that inhibit damage by vitamin C oxidation products. PMID:17075057

  13. Human lens coloration and aging. Evidence for crystallin modification by the major ultraviolet filter, 3-hydroxy-kynurenine O-beta-D-glucoside.

    PubMed

    Hood, B D; Garner, B; Truscott, R J

    1999-11-12

    The human lens becomes increasingly yellow with age and thereby reduces our perception of blue light. This coloration is associated with lens proteins (crystallins), but its molecular basis was unknown. Here we show that the coloration occurs because of the interaction of crystallins with a UV filter compound, 3-hydroxykynurenine glucoside (3-OHKG). Crystallin modification results from deamination of the 3-OHKG amino acid side chain, yielding an unsaturated ketone that is susceptible to nucleophilic attack by cysteine, histidine, and lysine residues. This novel protein modification contributes to age-related lens coloration and may play a role in human nuclear cataractogenesis. PMID:10551806

  14. Identification of the in vivo truncation sites at the C-terminal region of alpha-A crystallin from aged bovine and human lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Total alpha-A crystallin was purified from young versus old lens, followed by digestion with cyanogen bromide. Laser desorption mass spectrometry of the C-terminal fragment demonstrated age-dependent loss of one and five amino acids from the C-terminus of alpha-A crystallin from both bovine and human lens. These results demonstrate specific peptide bonds of alpha-A crystallin are cleaved during the aging process of the normal lens. The C-terminal region is cleaved in two places between the two hydroxyl-containing amino acids present in the sequence -P-S(T)-S-.

  15. Calculation of crystalline lens power using a modification of the Bennett method

    PubMed Central

    Hernandez, Victor M.; Cabot, Florence; Ruggeri, Marco; de Freitas, Carolina; Ho, Arthur; Yoo, Sonia; Parel, Jean-Marie; Manns, Fabrice

    2015-01-01

    We present a method for measuring lens power from extended depth OCT biometry, corneal topography, and refraction using an improvement on the Bennett method. A reduced eye model was used to derive a formula for lens power in terms of ocular distances, corneal power, and objective spherical equivalent refraction. An error analysis shows that the formula predicts relaxed lens power with a theoretical accuracy of ± 0.5 D for refractive error ranging from −10 D to + 10 D. The formula was used to calculate lens power in 16 eyes of 8 human subjects. Mean lens power was 24.3 D ± 1.7 D. PMID:26601013

  16. Calculation of crystalline lens power using a modification of the Bennett method.

    PubMed

    Hernandez, Victor M; Cabot, Florence; Ruggeri, Marco; de Freitas, Carolina; Ho, Arthur; Yoo, Sonia; Parel, Jean-Marie; Manns, Fabrice

    2015-11-01

    We present a method for measuring lens power from extended depth OCT biometry, corneal topography, and refraction using an improvement on the Bennett method. A reduced eye model was used to derive a formula for lens power in terms of ocular distances, corneal power, and objective spherical equivalent refraction. An error analysis shows that the formula predicts relaxed lens power with a theoretical accuracy of ± 0.5 D for refractive error ranging from -10 D to + 10 D. The formula was used to calculate lens power in 16 eyes of 8 human subjects. Mean lens power was 24.3 D ± 1.7 D. PMID:26601013

  17. Inhibition of Unfolding and Aggregation of Lens Protein Human Gamma D Crystallin by Sodium Citrate

    PubMed Central

    Goulet, Daniel R.; Knee, Kelly M.; King, Jonathan A.

    2012-01-01

    Cataract affects 1 in 6 Americans over the age of 40, and is considered a global health problem. Cataract is caused by the aggregation of unfolded or damaged proteins in the lens, which accumulate as an individual ages. Currently, surgery is the only available treatment for cataract, however, small molecules have been suggested as potential preventative therapies. In this work, we study the effect of sodium citrate on the stability of Human γD Crystallin (HγD-Crys), a structural protein of the eye lens, and two cataract-related mutants, L5S HγD-Crys and I90F HγD-Crys. In equilibrium unfolding-refolding studies, the presence of 250 mM sodium citrate increased the transition midpoint of the N-td of WT HγD-Crys and L5S HγD-Crys by 0.3 M GuHCl, the C-td by 0.6M GuHCl, and the single transition of I90F HγD-Crys by 0.4M GuHCl. In kinetic unfolding reactions, sodium citrate demonstrates a measurable stabilization effect only for the mutant I90F HγD-Crys. In the presence of citrate, a kinetic unfolding intermediate of I90F HγD-Crys can be observed, which was not observed in the absence of citrate. Rate of aggregation was measured using solution turbidity, and sodium citrate demonstrates negligible effect on rate of aggregation of WT HγD-Crys, but considerably slows the rate of aggregation of both L5S HγD-Crys and I90F HγD-Crys. The presence of sodium citrate dramatically slows refolding of WT HγD-Crys and I90F HγD-Crys, but has a significantly smaller effect on the refolding of L5S HγD-Crys. The differential stabilizing effect of sodium citrate suggests that the ion is binding to a partially unfolded conformation of the C-td, but a solution-based Hofmeister effect cannot be eliminated as a possible explanation for the effects observed. These results suggest that sodium citrate may be a potential preventative agent for cataract. PMID:21600897

  18. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2.

    PubMed

    Chaudhury, Susmitnarayan; Ghosh, Ishita; Saha, Gautam; Dasgupta, Swagata

    2015-01-01

    Disruption of the short range order of proteins present in the ocular lens leads to cataract resulting in a loss of transparency. Human γ-crystallin (HGC), a water soluble protein present in the lens is known to aggregate with aging. A modified form of HGC (HGC(c)) was isolated from cataractous human ocular lens extract and the number of Trp residues that undergo oxidation was determined. The extent of oxidized Trp (N-formyl kynurenine) in HGC due to cataract formation was determined, primarily using fluorescence spectroscopy. The ability of (-)-epigallocatechin gallate (EGCG) to retain its antioxidant effect even in the presence of H2O2 was investigated. This was monitored by its ability to prevent the modification of intact Trp residues in HGC(c) isolated from cataractous human eye lens. Significant Trp fluorescence quenching occurs on interaction of the green tea component, EGCG with HGC(c) accompanied by a red shift. Docking studies were employed to substantiate the experimental results. As eye lens proteins are prone to oxidative stress it is essential that a clear understanding of the effects of the components generated in vivo vis-à-vis the antioxidant effects of natural polyphenols be obtained. PMID:25841365

  19. Results of intraocular lens implantation with capsular tension ring in subluxated crystalline or cataractous lenses in children

    PubMed Central

    Das, Pranab; Ram, Jagat; Brar, Gagandeep Singh; Dogra, Mangat R

    2009-01-01

    Purpose: To evaluate the outcome of intraocular lens (IOL) implantation using capsular tension ring (CTR) in subluxated crystalline or cataractous lenses in children. Setting: Tertiary care setting Materials and Methods: We prospectively studied 18 eyes of 15 children with subluxation of crystalline or cataractous lenses between 90° up to 210° after phacoemulsification, CTR and IOL implantation. Each child was examined for IOL centration, zonular dehiscence and posterior capsular opacification (PCO). Results: Age of the patient ranged between five to 15 years. Out of 18 eyes, seven had traumatic and 11 had spontaneous subluxation of crystalline or cataractous lens. Phacoemulsification was successfully performed with CTR implantation in the capsular bag. Intraoperative zonular dialysis occurred in two eyes. Anterior vitrectomy was performed in six eyes to manage vitreous prolapse. IOL implanted was polymethyl methacrylate (PMMA) in eight eyes, hydrophobic acrylic in seven and hydrophilic acrylic in three. Follow-up ranged from 24 months to 72 months. Sixteen eyes had a best corrected visual acuity of 20/40 or better. Nine eyes developed significant PCO and were managed with Neodymium Yttrium Aluminum Garnet (Nd:YAG) laser posterior capsulotomy. One eye with acrylic IOL in the capsular bag had IOL dislocation after two years which was managed with vitrectomy and secondary trans-scleral fixation of IOL. Conclusions: Phacoaspiration with CTR implantation makes capsular bag IOL fixation possible in most of the eyes with subluxated crystalline or cataractous lenses. PCO still remains a challenge in children with successful phacoaspiration with CTR implantation PMID:19861744

  20. Ultrashort-Pulse Lasers Treating the Crystalline Lens: Will They Cause Vision-Threatening Cataract? (An American Ophthalmological Society Thesis)

    PubMed Central

    Krueger, Ronald R.; Uy, Harvey; McDonald, Jared; Edwards, Keith

    2012-01-01

    Purpose: To demonstrate that ultrashort-pulse laser treatment in the crystalline lens does not form a focal, progressive, or vision-threatening cataract. Methods: An Nd:vanadate picosecond laser (10 ps) with prototype delivery system was used. Primates: 11 rhesus monkey eyes were prospectively treated at the University of Wisconsin (energy 25–45 μJ/pulse and 2.0–11.3M pulses per lens). Analysis of lens clarity and fundus imaging was assessed postoperatively for up to 4½ years (5 eyes). Humans: 80 presbyopic patients were prospectively treated in one eye at the Asian Eye Institute in the Philippines (energy 10 μJ/pulse and 0.45–1.45M pulses per lens). Analysis of lens clarity, best-corrected visual acuity, and subjective symptoms was performed at 1 month, prior to elective lens extraction. Results: Bubbles were immediately seen, with resolution within the first 24 to 48 hours. Afterwards, the laser pattern could be seen with faint, noncoalescing, pinpoint micro-opacities in both primate and human eyes. In primates, long-term follow-up at 4½ years showed no focal or progressive cataract, except in 2 eyes with preexisting cataract. In humans, <25% of patients with central sparing (0.75 and 1.0 mm radius) lost 2 or more lines of best spectacle-corrected visual acuity at 1 month, and >70% reported acceptable or better distance vision and no or mild symptoms. Meanwhile, >70% without sparing (0 and 0.5 mm radius) lost 2 or more lines, and most reported poor or severe vision and symptoms. Conclusions: Focal, progressive, and vision-threatening cataracts can be avoided by lowering the laser energy, avoiding prior cataract, and sparing the center of the lens. PMID:23818739

  1. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells.

    PubMed

    Ma, Zhiwei; Yao, Wenliang; Chan, Chi-Chao; Kannabiran, Chitra; Wawrousek, Eric; Hejtmancik, J Fielding

    2016-06-01

    βγ-Crystallins, having a uniquely stable two domain four Greek key structure, are crucial for transparency of the eye lens,. Mutations in lens crystallins have been proposed to cause cataract formation by a variety of mechanisms most of which involve destabilization of the protein fold. The underlying molecular mechanism for autosomal dominant zonular cataracts with sutural opacities in an Indian family caused by a c.215+1G>A splice mutation in the βA3/A1-crystallin gene CRYBA1 was elucidated using three transgenic mice models. This mutation causes a splice defect in which the mutant mRNA escapes nonsense mediated decay by skipping both exons 3 and 4. Skipping these exons results in an in-frame deletion of the mRNA and synthesis of an unstable p.Ile33_Ala119del mutant βA3/A1-crystallin protein. Transgenic expression of mutant βA3/A1-crystallin but not the wild type protein results in toxicity and abnormalities in the maturation and orientation of differentiating lens fibers in c.97_357del CRYBA1 transgenic mice, leading to a small spherical lens, cataract, and often lens capsule rupture. On a cellular level, the lenses accumulated p.Ile33_Ala119del βA3/A1-crystallin with resultant activation of the stress signaling pathway - unfolded protein response (UPR) and inhibition of normal protein synthesis, culminating in apoptosis. This highlights the mechanistic contrast between mild mutations that destabilize crystallins and other proteins, resulting in their being bound by the α-crystallins that buffer lens cells against damage by denatured proteins, and severely misfolded proteins that are not bound by α-crystallin but accumulate and have a direct toxic effect on lens cells, resulting in early onset cataracts. PMID:26851658

  2. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein.

    PubMed

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-01-01

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We've also identified four historical mutations that are able to produce a "GST-like" S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution. PMID:27499004

  3. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein

    PubMed Central

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-01-01

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We’ve also identified four historical mutations that are able to produce a “GST-like” S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution. PMID:27499004

  4. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens

    PubMed Central

    Sheil, Conor J.; Goncharov, Alexander V.

    2016-01-01

    The purpose of this manuscript is to introduce a new age-dependent model of the human lens with two GRIN power distributions (axial and radial) that allow decoupling of its refractive power and axial optical path length. The aspect ratio of the lens core can be held constant under accommodation, as well as the lens volume by varying the asphericity of the lens external surfaces. The spherical aberration calculated by exact raytracing is shown to be in line with experimental data. The proposed model is compared to previous GRIN models from the literature, and it is concluded that the features of the new model will be useful for GRIN reconstruction in future experimental studies; in particular, studies of the accommodation-dependent properties of the ageing human eye. A proposed logarithmic model of the lens core enables decoupling of three fundamental optical characteristics of the lens, namely axial optical path length, optical power and third-order spherical aberration, without changing the external shape of the lens. Conversely, the near-surface GRIN structure conforms to the external shape of the lens, which is necessary for accommodation modelling. PMID:27231637

  5. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.

    PubMed

    Sheil, Conor J; Goncharov, Alexander V

    2016-05-01

    The purpose of this manuscript is to introduce a new age-dependent model of the human lens with two GRIN power distributions (axial and radial) that allow decoupling of its refractive power and axial optical path length. The aspect ratio of the lens core can be held constant under accommodation, as well as the lens volume by varying the asphericity of the lens external surfaces. The spherical aberration calculated by exact raytracing is shown to be in line with experimental data. The proposed model is compared to previous GRIN models from the literature, and it is concluded that the features of the new model will be useful for GRIN reconstruction in future experimental studies; in particular, studies of the accommodation-dependent properties of the ageing human eye. A proposed logarithmic model of the lens core enables decoupling of three fundamental optical characteristics of the lens, namely axial optical path length, optical power and third-order spherical aberration, without changing the external shape of the lens. Conversely, the near-surface GRIN structure conforms to the external shape of the lens, which is necessary for accommodation modelling. PMID:27231637

  6. The Charles F. Prentice award lecture 2009: Crystalline lens research and serendipity in science.

    PubMed

    Sivak, Jacob Gershon

    2010-09-01

    Whether it is called serendipity or creativity, the process of scientific discovery is not one that lends itself to advance planning or programming, nor does it lend itself to an emphasis solely on applied research, research with industrial partners, or large teams of researchers because researchers must rely on intuition and the capacity to move quickly in new directions. Studies in my laboratory began with efforts to relate lens embryonic development to lens optical performance in a variety of vertebrate species. The initial direction concerned the optics of the fish eye, a system in which a spherical lens is essentially the only refractive component of the eye and one in which accommodation takes place by means of lens movement. This in turn led to an interest in how amphibious animals cope with the refractive transition that takes place when moving from air to water and vice versa. The development of a super accommodative ability in some diving birds is one adaptation that was explored. These curiosity-driven efforts led in turn to the development of a scanning laser system that provided a tool that can be used to evaluate the process of cataract development, either on the basis of in vivo exposure to chemicals or electromagnetic radiation and subsequent analysis of the excised lens or to the in vitro study of the lens in long-term whole lens culture experiments. The same approach has also been used as an in vitro ocular toxicology assay to develop sensitive in vitro methods to reduce regulatory dependence on the use of live animals. Finally, these applied directions in turn created new basic knowledge concerning the morphology and physiology of eye tissue organelles, particularly the morphology, distribution, and dynamic properties of the mitochondria found in the lens and in the retinal pigment epithelium. PMID:20581727

  7. Elasticity of the eye's crystalline lens: A Brillouin light scattering study.

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Gump, J.; Sooryakumar, R.; Jayaprakash, C.; Venkiteshwar, M. S.; Bullimore, M.; Twa, M.

    2009-03-01

    Focusing the eye on a near object results in an increase in its optical power brought about by contraction of the ciliary muscles and an increase in the lens surface curvature. Distant vision occurs when the muscular force flattens the lens. Central to the ability of the lens to alter shape are its mechanical properties. Thus, given that hardening of the lens would impede deformation and reduce its ability to undergo the changes required for accommodation, a noninvasive approach to measure the elastic properties of the lens is valuable. We present results of Brillouin scattering from bovine and human lenses (from the organ donor program at The Ohio State University) that measure their high frequency acoustic response. These measurements are conducted with a few milli-watts of laser power and, in the case of bovine lenses, from entire intact eye globes, allow the stiffness of the lens to be mapped across its cross-section. The results will be compared to values of the shear- and bulk-moduli determined from other techniques and the implications of differences in these moduli discussed.

  8. In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy

    PubMed Central

    Scarcelli, Giuliano; Kim, Pilhan; Yun, Seok Hyun

    2011-01-01

    Abtract The biophysical and biomechanical properties of the crystalline lens (e.g., viscoelasticity) have long been implicated in accommodation and vision problems, such as presbyopia and cataracts. However, it has been difficult to measure such parameters noninvasively. Here, we used in vivo Brillouin optical microscopy to characterize material acoustic properties at GHz frequency and measure the longitudinal elastic moduli of lenses. We obtained three-dimensional elasticity maps of the lenses in live mice, which showed biomechanical heterogeneity in the cortex and nucleus of the lens with high spatial resolution. An in vivo longitudinal study of mice over a period of 2 months revealed a marked age-related stiffening of the lens nucleus. We found remarkably good correlation (log-log linear) between the Brillouin elastic modulus and the Young's modulus measured by conventional mechanical techniques at low frequencies (∼1 Hz). Our results suggest that Brillouin microscopy is potentially useful for basic and animal research and clinical ophthalmology. PMID:21943436

  9. Image formation by the crystalline lens and eye of the rainbow trout.

    PubMed

    Jagger, W S

    1996-09-01

    The image of a distant unresolved point (point image or PI) and modulation transfer function (MTF) of the eye and lens of the trout were recorded with high spatial (0.3 micron) and dynamic (4096 grey levels) resolution for various entrance aperture sizes and focal positions in monochromatic light, and in broadband light simulating sunlight absorbed by a retinal cone pigment. The PI is irregular, with streaks, wisps and speckle, as a result of lens structural irregularity and diffraction of light scattered within the lens and cornea. Maximum diameter of a diffraction-limited aperture area of the eye is about 0.3 mm. Axially spaced multiple foci are caused by irregular and discontinuous zonal spherical aberration. Lens substance dispersion causes strong longitudinal chromatic aberration, resulting in a broadband PI with concentric coloured haloes. Incident linearly polarized light is slightly depolarized in the PI. The nature of the image is discussed relative to lens and cornea structure, optical modelling and vision. Human subjective entoptic phenomena analogous to those observed objectively in the trout are described. PMID:8917751

  10. Age-dependence of the average and equivalent refractive indices of the crystalline lens

    PubMed Central

    Charman, W. Neil; Atchison, David A.

    2013-01-01

    Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. PMID:24466474

  11. Age-dependence of the average and equivalent refractive indices of the crystalline lens.

    PubMed

    Charman, W Neil; Atchison, David A

    2013-12-01

    Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. PMID:24466474

  12. Expression of the murine alpha B-crystallin gene in lens and skeletal muscle: identification of a muscle-preferred enhancer.

    PubMed Central

    Dubin, R A; Gopal-Srivastava, R; Wawrousek, E F; Piatigorsky, J

    1991-01-01

    The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer. Images PMID:1875925

  13. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients.

    PubMed

    Yousefi, Reza; Javadi, Sajjad; Amirghofran, Sara; Oryan, Ahmad; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    Total soluble lens proteins (TSPs) and α-crystallin (α-Cry) were individually subjected to the long-term glycation in the presence of d-glucose. The glycated and non-glycated protein counterparts were incubated under different stress conditions and compared according to their structure, stability and aggregation propensity by various spectroscopic techniques and gel mobility shift analyses. Extensive glycation of the lens proteins was accompanied with structural alteration, reduction in their surface hydrophobicity and increment of their surface tension. Our results suggest that glycation causes lens crystallins to partially resist against structural alteration and aggregation/fibrillation under both thermal and thermochemical systems. The conformational stability of lens crystallins was increased upon glycation, showing the reason behind resistance of glycated proteins against stress-induced structural alteration and aggregation. Due to the resistance of glycated lens crystallins against aggregation, the role of this modification in development of senile cataract can be explained with the associated damaging consequences highlighted in this article. PMID:26478093

  14. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.

    PubMed

    Kim, Ingu; Saito, Takeshi; Fujii, Norihiko; Kanamoto, Takashi; Chatake, Toshiyuki; Fujii, Noriko

    2015-10-30

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. PMID:26385181

  15. Co-focused ultrasound and optical coherence elastography system for the study of age-related changes of biomechanical properties of crystalline lens in rabbit eyes

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Han, Zhaolong; Wang, Shang; Li, Jiasong; Singh, Manmohan; Liu, Chih-hao; Aglyamov, Salavat; Emelianov, Stanislav; Manns, Fabrice; Larin, Kirill V.

    2015-03-01

    In this study, we utilize a confocal ultrasound and phase-sensitive optical coherence elastography (OCE) system to assess age-related changes in biomechanical properties of the crystalline lens in intact rabbit eyes in situ. Lowamplitude elastic deformations, induced on the surface of the lens by localized acoustic radiation force, were measured using phase-sensitive OCT. The results demonstrate that the displacements induced in young rabbit lenses are significantly larger than those in the mature lenses. Temporal analyses of the elastic waves are also demonstrated significant difference between young and old lenses, indicating that the stiffness of lens increases with the age. These results demonstrate possibility of OCE for completely noninvasive analysis and quantification of lens biomechanical properties, which could be used in many clinical and basic science applications such as surgeries and studies on lens physiology and function.

  16. The Structural Alteration and Aggregation of Bovine Lens Gamma-Crystallin by Homocysteinylation; The Pathomechanism Underlying Cataract Development During Hyperhomocysteinimia.

    PubMed

    Hajjari, Shahrzad; Masoudi, Raheleh; Javadi, Sajjad; Hemmateenejad, Bahram; Yousefi, Reza

    2016-01-01

    A significant association between increased level of blood homocysteine (hyperhomocysteinimia) and various eye pathological disorders including cataract has been reported. This metabolic byproduct is converted into a highly reactive cyclic thioester compound, homocysteine thiolactone (HCTL), which can potentially react with free amino groups in protein. In the current study, as bovine lens γ-Crystallin (γ-Cry) was incubated with HCTL, various spectroscopic techniques, gel mobility shift assay, and microscopic analysis were applied to characterize structural variation and aggregation of this protein. According to the fluorescence results, HCTL-induced structural alteration was accompanied with the significant enhancement in surface hydrophobicity of γ-Cry. Also, this cyclic thioester was indicated to alter γ-Cry secondary structures and to induce aggregation of this protein. The results of gel mobility shift assay suggest the involvement of disulfide bond cross-linking in formation of the protein aggregates. In conjunction with Thioflavin T and Congo red assays, the microscopic analysis also suggests that HCTL can induce formation of ordered aggregate entities in bovine lens γ-Cry. The relationship between γ-Cry insolubilization/aggregation and growth of cataract disorders has been already reported. Therefore, the induction of structural alteration and aggregation of γ-Cry by HCTL can elucidate the pathomechanism underlying cataract disorders particularly in hyperhomocysteinimia. PMID:26548860

  17. Axial ultrasound B-scans of the entire eye with a 20-MHz linear array: correction of crystalline lens phase aberration by applying Fermat's principle.

    PubMed

    Mateo, Tony; Chang, Alexandre; Mofid, Yassine; Pisella, Pierre-Jean; Ossant, Frederic

    2014-11-01

    In ophthalmic ultrasonography the crystalline lens is known to be the main source of phase aberration, causing a significant decrease in resolution and distortion effects on axial B-scans. This paper proposes a computationally efficient method to correct the phase aberration arising from the crystalline lens, including refraction effects using a bending ray tracing approach based on Fermat's principle. This method is used as a basis to perform eye-adapted beamforming (BF), with appropriate focusing delays for a 128-element 20-MHz linear array in both emission and reception. Implementation was achieved on an in-house developed experimental ultrasound scanning device, the ECODERM. The proposed BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both extremes of accommodation shapes of the human crystalline lens were investigated. The performance of the developed BF was evaluated in relation to that in homogeneous medium and compared to a conventional delay-and-sum (DAS) BF and a second adapted BF which was simplified to ignore the lens refraction. Global expectations provided by our method with the transducer array are reviewed by an analysis quantifying both image quality and spatial fidelity, as well as the detrimental effects of a crystalline lens in conventional reconstruction. Compared to conventional array imaging, the results indicated a two-fold improvement in the lateral resolution, greater sensitivity and a considerable reduction of spatial distortions that were sufficient to envisage reliable biometry directly in B-mode, especially phakometry. PMID:24988589

  18. Modeling phase transitions in mixtures of β-γ lens crystallins.

    PubMed

    Kastelic, Miha; Kalyuzhnyi, Yurij V; Vlachy, Vojko

    2016-09-21

    We analyze the experimentally determined phase diagram of a γD-βB1 crystallin mixture. Proteins are described as dumbbells decorated with attractive sites to allow inter-particle interaction. We use thermodynamic perturbation theory to calculate the free energy of such mixtures and, by applying equilibrium conditions, also the compositions and concentrations of the co-existing phases. Initially we fit the Tcloudversus packing fraction η measurements for a pure (x2 = 0) γD solution in 0.1 M phosphate buffer at pH = 7.0. Another piece of experimental data, used to fix the model parameters, is the isotherm x2vs. η at T = 268.5 K, at the same pH and salt content. We use the conventional Lorentz-Berthelot mixing rules to describe cross interactions. This enables us to determine: (i) model parameters for pure βB1 crystallin protein and to calculate; (ii) complete equilibrium surface (Tcloud-x2-η) for the crystallin mixtures. (iii) We present the results for several isotherms, including the tie-lines, as also the temperature-packing fraction curves. Good agreement with the available experimental data is obtained. An interesting result of these calculations is evidence of the coexistence of three phases. This domain appears for the region of temperatures just out of the experimental range studied so far. The input parameters, leading good description of experimental data, revealed a large difference between the numbers of the attractive sites for γD and βB1 proteins. This interesting result may be related to the fact that γD has a more than nine times smaller quadrupole moment than its partner in the mixture. PMID:27526288

  19. Mechanism of Lysine Oxidation in Human Lens Crystallins during Aging and in Diabetes*

    PubMed Central

    Fan, Xingjun; Zhang, Jianye; Theves, Mathilde; Strauch, Christopher; Nemet, Ina; Liu, Xiaoqin; Qian, Juan; Giblin, Frank J.; Monnier, Vincent M.

    2009-01-01

    Oxidative mechanisms during nuclear sclerosis of the lens are poorly understood, in particular metal-catalyzed oxidation. The lysyl oxidation product adipic semialdehyde (allysine, ALL) and its oxidized end-product 2-aminoadipic acid (2-AAA) were determined as a function of age and presence of diabetes. Surprisingly, whereas both ALL and 2-AAA increased with age and strongly correlated with cataract grade and protein absorbance at 350 nm, only ALL formation but not 2-AAA was increased by diabetes. To clarify the mechanism of oxidation, rabbit lenses were treated with hyperbaric oxygen (HBO) for 48 h, and proteins were analyzed by gas and liquid chromatography mass spectrometry for ALL, 2-AAA, and multiple glycation products. Upon exposure to HBO, rabbit lenses were swollen, and nuclei were yellow. Protein-bound ALL increased 8-fold in the nuclear protein fractions versus controls. A dramatic increase in methyl-glyoxal hydroimidazolone and carboxyethyl-lysine but no increase of 2-AAA occurred, suggesting more drastic conditions are needed to oxidize ALL into 2-AAA. Indeed the latter formed only upon depletion of glutathione and was catalyzed by H2O2. Neither carboxymethyl-lysine nor glyoxal hydroimidazolone, two markers of glyco-/lipoxidation, nor markers of lenticular glycemia (fructose-lysine, glucospane) were elevated by HBO, excluding significant lipid peroxidation and glucose involvement. The findings strongly implicate dicarbonyl/metal catalyzed oxidation of lysine to allysine, whereby low GSH combined with ascorbate-derived H2O2 likely contributes toward 2-AAA formation, since virtually no 2-AAA formed in the presence of methylglyoxal instead of ascorbate. An important translational conclusion is that chelating agents might help delay nuclear sclerosis. PMID:19854833

  20. αB-crystallin is essential for the TGF-β2-mediated epithelial to mesenchymal transition of lens epithelial cells.

    PubMed

    Nahomi, Rooban B; Pantcheva, Mina B; Nagaraj, Ram H

    2016-05-15

    Transforming growth factor (TGF)-β2-mediated pathways play a major role in the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) during secondary cataract formation, which is also known as posterior capsule opacification (PCO). Although αB-crystallin is a major protein in LEC, its role in the EMT remains unknown. In a human LEC line (FHL124), TGF-β2 treatment resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was associated with nuclear localization of αB-crystallin, phosphorylated Smad2 (pSmad2) (S245/250/255), pSmad3 (S423/425), Smad4 and Snail and the binding of αB-crystallin to these transcription factors, all of which were reduced by the down-regulation of αB-crystallin. Expression of the functionally defective R120G mutant of αB-crystallin reduced TGF-β2-induced EMT in LECs of αB-crystallin knockout (KO) mice. Treatment of bovine lens epithelial explants and mouse LEC with TGF-β2 resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was accompanied by increase in phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) (T202/Y204), p38 MAPK (T180/Y182), protein kinase B (Akt) (S473) and Smad2 when compared with untreated cells. These changes were significantly reduced in αB-crystallin depleted or knocked out LEC. The removal of the fibre cell mass from the lens of wild-type (WT) mice resulted in the up-regulation of EMT-associated genes in the capsule-adherent epithelial cells, which was reduced in the αB-crystallin KO mice. Together, our data show that αB-crystallin plays a central role in the TGF-β2-induced EMT of LEC. αB-Crystallin could be targeted to prevent PCO and pathological fibrosis in other tissues. PMID:26987815

  1. αB-crystallin is essential for the TGF-β2-mediated epithelial to mesenchymal transition of lens epithelial cells

    PubMed Central

    Nahomi, Rooban B.; Pantcheva, Mina B.; Nagaraj, Ram H.

    2016-01-01

    Transforming growth factor (TGF)-β2-mediated pathways play a major role in the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) during secondary cataract formation, which is also known as posterior capsule opacification (PCO). Although αB-crystallin is a major protein in LEC, its role in the EMT remains unknown. In a human LEC line (FHL124), TGF-β2 treatment resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was associated with nuclear localization of αB-crystallin, phosphorylated Smad2 (pSmad2) (S245/250/255), pSmad3 (S423/425), Smad4 and Snail and the binding of αB-crystallin to these transcription factors, all of which were reduced by the down-regulation of αB-crystallin. Expression of the functionally defective R120G mutant of αB-crystallin reduced TGF-β2-induced EMT in LECs of αB-crystallin knockout (KO) mice. Treatment of bovine lens epithelial explants and mouse LEC with TGF-β2 resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was accompanied by increase in phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) (T202/Y204), p38 MAPK (T180/Y182), protein kinase B (Akt) (S473) and Smad2 when compared with untreated cells. These changes were significantly reduced in αB-crystallin depleted or knocked out LEC. The removal of the fibre cell mass from the lens of wild-type (WT) mice resulted in the up-regulation of EMT-associated genes in the capsule-adherent epithelial cells, which was reduced in the αB-crystallin KO mice. Together, our data show that αB-crystallin plays a central role in the TGF-β2-induced EMT of LEC. αB-Crystallin could be targeted to prevent PCO and pathological fibrosis in other tissues. PMID:26987815

  2. Gradient-index crystalline lens model: A new method for determining the paraxial properties by the axial and field rays

    NASA Astrophysics Data System (ADS)

    Rama, María. Angeles; Pérez, María. Victoria; Bao, Carmen; Flores-Arias, María. Teresa; Gómez-Reino, Carlos

    2005-05-01

    Gradient-index (GRIN) models of the human lens have received wide attention in optometry and vision sciences for considering the effect of inhomogeneity of the refractive index on the optical properties of the lens. This paper uses the continuous asymmetric bi-elliptical model to determine analytically cardinal elements, magnifications and refractive power of the lens by the axial and field rays in order to study the paraxial light propagation through the human lens from its GRIN nature.

  3. An Eye-adapted Beamforming for Axial B-scans Free from Crystalline Lens Aberration: In vitro and ex vivo Results with a 20 MHz Linear Array

    NASA Astrophysics Data System (ADS)

    Matéo, Tony; Mofid, Yassine; Grégoire, Jean-Marc; Ossant, Frédéric

    In ophtalmic ultrasonography, axial B-scans are seriously deteriorated owing to the presence of the crystalline lens. This strongly aberrating medium affects both spatial and contrast resolution and causes important distortions. To deal with this issue, an adapted beamforming (BF) has been developed and experimented with a 20 MHz linear array working with a custom US research scanner. The adapted BF computes focusing delays that compensate for crystalline phase aberration, including refraction effects. This BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens, shaped according to the unaccommodated state of an adult human crystalline lens, anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both image quality and fidelity from the adapted BF were assessed and compared with conventional delay-and-sum BF over the aberrating medium. Results showed 2-fold improvement of the lateral resolution, greater sensitivity and 90% reduction of the spatial error (from 758 μm to 76 μm) with adapted BF compared to conventional BF. Finally, promising first ex vivo axial B-scans of a human eye are presented.

  4. The role of a lens survival pathway including sox2 and αA-crystallin in the evolution of cavefish eye degeneration

    PubMed Central

    2014-01-01

    Background The teleost Astyanax mexicanus is a single species consisting of eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) morphs. Cavefish eyes are lost through apoptosis of the lens, which in turn promotes the degeneration of other optic tissues. The αA-crystallin (αA-crys) gene is strongly downregulated in the cavefish lens and is located in a genomic region (QTL) responsible for eye loss. Therefore, αA-crys has been proposed as a candidate for regulating cavefish eye degeneration. The purpose of this study was to determine the mechanism of αA-crys downregulation and its role in cavefish eye degeneration. Results The involvement of αA-crys in eye degeneration was confirmed by knocking down its expression in surface fish, which led to apoptosis of the lens. The underlying reason for αA-crys downregulation in cavefish was investigated by comparing genomic αA-crys DNA sequences in surface fish and cavefish, however, no obvious cis-regulatory factors were discovered. Furthermore, the cavefish αA-crys allele is expressed in surface fish x cavefish F1 hybrids, indicating that evolutionary changes in upstream genes are most likely responsible for αA-crys downregulation. In other species, Sox2 is one of the transcription factors that regulate lens crystallin genes during eye development. Determination of sox2 expression patterns during surface fish and cavefish development showed that sox2 is specifically downregulated in the cavefish lens. The upstream regulatory function of Sox2 was demonstrated by knockdown in surface fish, which abolished αA-crys expression and induced lens apoptosis. Conclusions The results suggest that αA-crys is required for normal eye development in cavefish via suppression of lens apoptosis. The regulatory changes involved in αA-crys downregulation in cavefish are in trans-acting factors rather than cis-acting mutations in the αA-crys gene. Therefore, αA-crys is unlikely to be the mutated gene

  5. Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human γC-Crystallin: Role of the Dipole Moment in Protein Solubility.

    PubMed

    Dixit, Karuna; Pande, Ajay; Pande, Jayanti; Sarma, Siddhartha P

    2016-06-01

    A hallmark of the crystallin proteins is their exceptionally high solubility, which is vital for maintaining the high refractive index of the eye lens. Human γC-crystallin is a major γ-crystallin whose mutant forms are associated with congenital cataracts but whose three-dimensional structure is not known. An earlier study of a homology model concluded that human γC-crystallin has low intrinsic solubility, mainly because of the atypical magnitude and fluctuations of its dipole moment. On the contrary, the high-resolution tertiary structure of human γC-crystallin determined here shows unequivocally that it is a highly soluble, monomeric molecule in solution. Notable differences between the orientations and interactions of several side chains are observed upon comparison to those in the model. No evidence of the pivotal role ascribed to the effect of dipole moment on protein solubility was found. The nuclear magnetic resonance structure should facilitate a comprehensive understanding of the deleterious effects of cataract-associated mutations in human γC-crystallin. PMID:27187112

  6. The impact of calcium ion on structure and aggregation propensity of peroxynitrite-modified lens crystallins: new insights into the pathogenesis of cataract disorders.

    PubMed

    Ghahramani, Maryam; Yousefi, Reza; Khoshaman, Kazem; Alavianmehr, Mohammad-Mehdi

    2015-01-01

    As a highly potent reactive oxygen and nitrogen species, peroxynitrite (PON) has been indicated in the pathogenesis of various ocular disorders. The PON induces mobilization of intra cellular calcium which plays an important function in structure and activity of lens proteins. Moreover, the amount of calcium increases to the pathogenic level in the cataractous lenses. The aim of this study was to assess the impact of calcium ion on structure and aggregation of PON-modified lens crystallins, using spectroscopic techniques and gel mobility shift assay. The PON modification of lens proteins was confirmed with detection of the significantly increased quantity of carbonyl group, dityrosine, nitrotyrosine and nitrotryptophan. Moreover, the modified proteins indicated high levels of solvent exposed hydrophobic surfaces and markedly elevated proteolytic instability which can be explained with their structural alteration upon this type of modification. The results of UV-vis absorption studies suggest that PON-modified lens crystallins are highly sensitive to aggregation in the presence of both physiological and pathological ranges of calcium ion. Also, the results of thioflavin T fluorescence study indicated absence of any ordered aggregate entity in the calcium-induced aggregate samples. The results of gel mobility shift assay demonstrated the importance of calcium ion in the induction of disulfide and dityrosine covalent cross-linking and formation of the oligomeric structure with relatively larger sizes in the PON-modified crystallins compared to the non-modified protein counterparts. Overall, this study may suggest that a simultaneous raise of calcium ion and PON in the eye ball is an important risk factor for development of cataract diseases. PMID:25486325

  7. Sticky-sphere model for phase separation of mixtures of the eye lens proteins gamma-B and alpha crystallin: non-monotonic dependence on mutual attraction

    NASA Astrophysics Data System (ADS)

    Thurston, George; Bautista, Maurino; Ross, David; Lindberg, Vern; Shahmohamad, Hossein

    2008-03-01

    We apply a multi-component extension of the Baxter sticky-sphere model to aqueous solutions of the eye lens proteins gamma-B crystallin and alpha crystallin. These mixtures show liquid-liquid phase separation influenced by gamma-B/gamma-B attraction, gamma-B/alpha size disparity and gamma-B/alpha attraction. We examine the dependence of the upper-consolute spinodal temperature surface on gamma-B/alpha attraction, previously found to influence stability. Gamma-B crystallin is modeled with a temperature-dependent stickiness parameter that reproduces both static light scattering and small-angle neutron scattering near its critical point. Alpha crystallin is modeled as a hard sphere. We find that the Barboy-Tenne model shows a non-monotonic dependence of the spinodal temperature surface on gamma-B/alpha attraction that is qualitatively consistent with recent molecular dynamics simulation results. Hard-sphere or very attractive gamma-B/alpha interactions lead to instability, and the spinodal surface shows a minimum in an intermediate range of gamma-B/alpha attraction strength. We examine the nature of the two types of instability.

  8. Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens

    PubMed Central

    Wang, Shang; Aglyamov, Salavat; Karpiouk, Andrei; Li, Jiasong; Emelianov, Stanislav; Manns, Fabrice; Larin, Kirill V.

    2013-01-01

    We demonstrate the feasibility of using the dominant frequency of the sample surface response to a mechanical stimulation as an effective indicator for sensing the depthwise distribution of elastic properties in transparent layered phantom samples simulating the cortex and nucleus of the crystalline lens. Focused ultrasound waves are used to noninvasively interrogate the sample surface. A phase-sensitive optical coherence tomography system is utilized to capture the surface dynamics over time with nanometer scale sensitivity. Spectral analysis is performed on the sample surface response to ultrasound stimulation and the dominant frequency is calculated under particular loading parameters. Pilot experiments were conducted on homogeneous and layered tissue-mimicking phantoms. Results indicate that the mechanical layers located at different depths introduce different frequencies to the sample surface response, which are correlated with the depth-dependent elasticity of the sample. The duration and the frequency of the ultrasound excitation are also investigated for their influences on this spectrum-based detection. This noninvasive method may be potentially applied for localized and rapid assessment of the depth dependence of the mechanical properties of the crystalline lens. PMID:24409379

  9. Reliable detection of deamidated peptides from lens crystallin proteins using changes in reversed-phase elution times and parent ion masses.

    PubMed

    Dasari, Surendra; Wilmarth, Phillip A; Rustvold, D Leif; Riviere, Michael A; Nagalla, Srinivasa R; David, Larry L

    2007-09-01

    Identifying deamidated peptides using low-resolution mass spectrometry is difficult because traditional database search programs cannot accurately detect modified peptides when the mass differences are only 0.984 Da. In this study, we utilized differential reversed-phase elution behavior of deamidated and corresponding unmodified peptide forms to significantly improve deamidation detection on a low-resolution LCQ ion trap instrument. We also improved the mass measurements of unmodified and deamidated peptide forms by averaging survey scans across each chromatogram peak. Tryptic digests of a series of normal (3-day old, 2-year old, 18-year old, 35-year old, and 70-year old) and cataractous (93-year old) human lens samples were used to produce large numbers of potentially deamidated peptides. The complex peptide mixtures were separated by strong cation exchange (SCX) chromatography followed by reversed-phase (RP) chromatography. Synthetic peptides were used to show that unmodified and deamidated peptides coeluted during the SCX separation and were completely resolved with the RP conditions used. Retention time shifts (RTS) and mass differences (DeltaM) of deamidated lens peptides and their corresponding unmodified forms were manually determined for the 70-year old lens sample. These values were used to assign correct or incorrect deamidation identifications from SEQUEST searches where deamidation was specified as a variable modification. Manual validation of SEQUEST identifications from synthetic peptides, 3-day old, and 70-year old samples had an overall 42% deamidation detection accuracy. Filtering SEQUEST identifications using RTS and DeltaM constraints resulted in >93% deamidation detection accuracy. An algorithm was developed to automate this method, and 72 Crystallin deamidation sites, 18 of which were not previously reported in human lens tissue, were detected. PMID:17696381

  10. Intermolecular protein interactions in solutions of calf lens alpha-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.

    PubMed Central

    Koenig, S H; Brown, R D; Spiller, M; Chakrabarti, B; Pande, A

    1992-01-01

    From analyses of the magnetic field dependence of 1/T1 (NMRD profiles) of water protons in solutions of calf lens alpha-crystallin at several concentrations, we find two regimes of solute behavior in both cortical and nuclear preparations. Below approximately 15% vol/vol protein concentration, the solute molecules appear as compact globular proteins of approximately 1,350 (cortical) and approximately 1,700 (nuclear) kD. At higher concentrations, the effective solute particle size increases, reversibly, as evidenced by the appearance of spectra-like 14N peaks in the NMRD profiles and a change in the field and temperature dependence of 1/T1. At these higher concentrations, the profiles are very similar to those of calf gamma II-crystallin, a crystallin that undergoes an analogous transition near approximately 15% protein (Koenig, S. H., C.F. Beaulieu, R. D. Brown III, and M. Spiller, 1990. Biophys. J. 57:461-469). By comparison with recent analyses of NMRD results for solutions of immobilized proteins as models for the transition from protein solutions to tissue (Koenig, S. H., and R. D. Brown III. 1991. Prog. NMR Spectr. 22:487-567), we argue that alpha-crystallin solute behaves as aggregates approximately greater than 50,000 kD as protein concentration is progressively increased above 15%. Finally, the concentration dependence of the NMRD profiles of alpha- and gamma II-crystallin can readily explain recent osmotic pressure data, in particular the intersection of the respective pressure curves at approximately 23% vol/vol (Vérétout, F., and A. Tardieu. 1989. Eur. Biophys. J. 17:61-68). Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 7 PMID:1504248

  11. Inhibitory Effect of Crocin(s) on Lens α-Crystallin Glycation and Aggregation, Results in the Decrease of the Risk of Diabetic Cataract.

    PubMed

    Bahmani, Fereshteh; Bathaie, Seyedeh Zahra; Aldavood, Seyed Javid; Ghahghaei, Arezou

    2016-01-01

    The current study investigates the inhibitory effect of crocin(s), also known as saffron apocarotenoids, on protein glycation and aggregation in diabetic rats, and α-crystallin glycation. Thus, crocin(s) were administered by intraperitoneal injection to normal and streptozotocin-induced diabetic rats. The cataract progression was recorded regularly every two weeks and was classified into four stages. After eight weeks, the animals were sacrificed and the parameters involved in the cataract formation were measured in the animal lenses. Some parameters were also determined in the serum and blood of the rats. In addition, the effect of crocin(s) on the structure and chaperone activity of α-crystallin in the presence of glucose was studied by different methods. Crocin(s) lowered serum glucose levels of diabetic rats and effectively maintained plasma total antioxidants, glutathione levels and catalase activity in the lens of the animals. In the in vitro study, crocin(s) inhibited α-crystallin glycation and aggregation. Advanced glycation end products fluorescence, hydrophobicity and protein cross-links were also decreased in the presence of crocin(s). In addition, the decreased chaperone activity of α-crystallin in the presence of glucose changed and became close to the native value by the addition of crocin(s) in the medium. Crocin(s) thus showed a powerful inhibitory effect on α-crystallin glycation and preserved the structure-function of this protein. Crocin(s) also showed the beneficial effects on prevention of diabetic cataract. PMID:26821002

  12. Study of molecular mechanisms of UV-induced aggregation of crystallins and possibility of maintaining eye lens transparency

    NASA Astrophysics Data System (ADS)

    Soustov, L. V.; Chelnokov, E. V.; Bityurin, N. M.; Kiselev, A. L.; Nemov, V. V.; Sergeev, Yu. V.; Ostrovsky, M. A.

    2006-03-01

    The effect of D-pantethine and L-carnosine on the rate of UV-induced (XeC1 laser λ = 308 nm) aggregation of a mixture of βL-crystallin and α-crystallin is studied. We also demonstrate that the suggested by us combination of short-chain peptides shows better protective properties with respect to UV-induced aggregation than known anti-cataract agents.

  13. Determination of the Geometrical and Optical Properties of the Human Crystalline Lens Leading to a Model of Human Accommodation

    NASA Astrophysics Data System (ADS)

    Cook, Christopher Andrew

    Of the methods that have been developed (e.g., phakometry, NMI, etc.) for non-invasive measurement of the geometry of the anterior segment of the human eye, at present Scheimpflug photography offers the best resolution, and the highest accuracy. The primary obstacle encountered with this or any other image based method has been in directly obtaining quantitative measurements from the images. Image enhancement (grey-scale gradient analysis) and pattern recognition methods (Hough transformation and recursive least squares algorithms) are developed so that parametric representations of lens surfaces and zone boundaries can be obtained directly from the images. Methods to correct for nonlinear Scheimpflug camera reproduction ratios, and provide error estimates for geometrical parameters are also developed. Combined, these techniques yield representations of lens geometry having sufficient accuracy, to which paraxial ray tracing can be applied to determine lens optical properties using well posed optical models with one unknown. Scheimpflug images taken of 100 emmetropic individuals have been processed using these methods, and the results are given. Positional data including anterior chamber depth, lens thickness, anterior segment length, nuclear thickness and anterior and posterior cortical thickness are given for the unaccommodated state, and as functions of accommodative amplitude. Curvature data for the lens surfaces, nuclear boundaries, and optical substructure (zones of discontinuity) are given as with the positional data. An explanation of the mechanical basis of presbyopia is developed from these results. Error estimates for all quantities are included. In combination with separate characterizations of each subjects globe using keratometry, A-scan ultrasonography, pachymetry, and Hartinger refractometry, these data form the basis for paraxial optical modeling. Three models of lens optical properties are developed and examined. The first is based on the simple

  14. Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient

    PubMed Central

    Borja, David; Siedlecki, Damian; de Castro, Alberto; Uhlhorn, Stephen; Ortiz, Sergio; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana; Manns, Fabrice

    2010-01-01

    We quantify the posterior surface distortions in optical coherence tomography (OCT) images of isolated crystalline lenses. The posterior radius of curvature and asphericity obtained from OCT images acquired with the beam incident first on the anterior, and then the posterior, surface were compared. The results were compared with predictions of a ray-tracing model which includes the index gradient. The results show that the error in the radius of curvature is within the measurement reproducibility and that it can be corrected by assuming a uniform refractive index. However, accurate asphericity values require a correction algorithm that takes into account the gradient. PMID:21258553

  15. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter.

    PubMed

    Somasundaram, T; Bhat, Suraj P

    2004-10-22

    The molecular cascade of stress response in higher eukaryotes commences in the cytoplasm with the trimerization of the heat shock factor 1 (HSF1), followed by its transport to the nucleus, where it binds to the heat shock element leading to the activation of transcription from the down-stream gene(s). This well-established paradigm has been mostly studied in cultured cells. The developmental and tissue-specific control of the heat shock transcription factors (HSFs) and their interactions with heat shock promoters remain unexplored. We report here that in the rat lens, among the three mammalian HSFs, expression of HSF1 and HSF2 is largely fetal, whereas the expression of HSF4 is predominantly postnatal. Similar pattern of expression of HSF1 and HSF4 is seen in fetal and adult human lenses. This stage-specific inverse relationship between the expression of HSF1/2 and HSF4 suggests tissue-specific management of stress depending on the presence or absence of specific HSF(s). In addition to real-time PCR and immunoblotting, gel mobility shift assays, coupled with specific antibodies and HSE probes, derived from three different heat shock promoters, establish that there is no HSF1 or HSF2 binding activity in the postnatal lens nuclear extracts. Using this unique, developmentally modulated in vivo system, we demonstrate 1) specific patterns of HSF4 binding to heat shock elements derived from alphaB-crystallin, Hsp70, and Hsp82 promoters and 2) that it is HSF4 and not HSF1 or HSF2 that interacts with the canonical heat shock element of the alphaB-crystallin gene. PMID:15308659

  16. Oligomerization and conformation change in solutions of calf lens gamma II-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.

    PubMed Central

    Koenig, S H; Beaulieu, C F; Brown, R D; Spiller, M

    1990-01-01

    From analyses of the magnetic field dependence of 1/T1 (nuclear magnetic relaxation dispersion [NMRD] profiles) of water protons in solutions of highly purified calf lens gamma II-crystallin, we find that monomers form oligomers at relatively low concentrations, which increase in size with increasing concentration and decreasing temperature. At approximately 16% by volume and -4 degrees C, the mean oligomeric molecular weight is approximately 120-fold greater than the monomeric value of 20 kD. Below this concentration, there is no indication of any substantive change in conformation of the monomeric subunits. At higher concentrations, the tertiary structure of the monomer appears to reconfigure rather abruptly, but reversibly, as evidenced by the appearance of spectra-like 14N peaks in the NMRD profiles. The magnitudes of these peaks, known to arise from cross-relaxation of water protons through access to amide (NH) moieties of the protein backbone, indicate that the high concentration conformation is not compact, but open and extended in a manner that allows enhanced interaction with solvent. The data are analogous to those found for homogenates of calf and chicken lens (Beaulieu, C. F., J. I. Clark, R. D. Brown III, M. Spiller, and S. H. Koenig. 1988. Magn. Reson. Med. 8:47-57; Beaulieu, C. F., R. D. Brown III, J. I. Clark, M. Spiller, and S. H. Koenig. 1989. Magn. Reson. Med. 10:62-72). This unusually large dependence of oligomeric size and conformation on concentration in the physiological range is suggested as the mechanism by which osmotic equilibrium is maintained, at minimal metabolic expense, in the presence of large gradients of protein concentration in the lens in vivo (cf Vérétout and Tardieu, 1989. Eur. Biophys. J. 17:61-68). Finally, the results of the NMRD data provide a ready explanation of the low temperature phase transition, and "cold-cataract" separation of phases, observed in gamma II-crystallin solutions; we suggest that the phases that

  17. Small-angle neutron scattering study of pH dependence of the liquid structure factor of concentrated solutions of eye lens gamma-B crystallin

    NASA Astrophysics Data System (ADS)

    Desmond, Kenneth; Thurston, George; Stradner, Anna; Schurtenberger, Peter

    2006-03-01

    We are evaluating the pH dependence of the liquid structure of aqueous solutions of the eye lens protein, gammaB crystallin, near its critical point for liquid-liquid phase separation, to help evaluate the influence of protein charge on the phase separation. We have obtained small-angle neutron scattering data from gammaB crystallin solutions at pH 6.4, 7.1 and 7.4 in a 0.1 M sodium phosphate buffer, and at pH 4.5 in a 0.020M sodium acetate buffer, all in D2O. Protein concentrations ranged from 6 to 260 mg protein/ml solution and the scattering vector magnitude (q) ranged from 0.004 to 0.45 inverse Angstroms. At pH 6.4 to 7.4 liquid structure factors vs. concentration and temperature near the cloud point for liquid-liquid phase separation are well represented, in general, by the Baxter sticky sphere model. In contrast, at pH 4.5, concentrated gammaB shows a very different liquid structure indicating highly repulsive interprotein interactions, consistent with both high net protein charge and reduced screening.

  18. Overview of the Lens.

    PubMed

    Hejtmancik, J Fielding; Shiels, Alan

    2015-01-01

    In order to accomplish its function of transmitting and focusing light, the crystalline lens of the vertebrate eye has evolved a unique cellular structure and protein complement. These distinct adaptations have provided a rich source of scientific discovery ranging from biochemistry and genetics to optics and physics. In addition, because of these adaptations, lens cells persist for the lifetime of an organism, providing an excellent model of the aging process. The chapters dealing with the lens will demonstrate how the different aspects of lens biology and biochemistry combine in this singular refractive organ to accomplish its critical role in the visual system. PMID:26310153

  19. Mapping of four mouse genes encoding eye lens-specific structural, gap junction, and integral membrane proteins: Cryba1 (crystallin{beta}A3/A1), Crybb2 (crystallin{beta}B2), Gja8 (MP70), and Lim2 (MP19)

    SciTech Connect

    Kerscher, S.; Boyd, Y.; Lyon, M.F.

    1995-09-20

    Four genes encoding eye lens-specific proteins, potential candidate genes for congenital cataract (CC) mutations, were mapped in the mouse genome using a panel of somatic cell hybrids and DNAs from the EUCIB (European Collaborative Interspecific Backcross). Two of them are lens fiber cell structural proteins: the Cryba1 locus encoding crystallin{beta}A3/A1 maps to chromosome 11, 2.5 {+-} 2.5 cM distal to D11Mit31, and the Crybb2 locus encoding crystallin{beta}B2 maps to chromosome 5, 9.1 {+-} 4.3 cM distal to D5Mit88. The other two genes encode lens-specific gap junction and integral membrane proteins, respectively: the Gja8 locus encoding gap junction membrane channel protein {alpha}8, also called connexin50 or MP70, maps to chromosome 3, 11.9 {+-} 5.0 cM distal to D3Mit22, and the Lim2 locus encoding lens intrinsic membrane protein 2, also call MP19, maps to chromosome 7, 2.5 {+-} 2.5 cM proximal to Ngfg. All four map positions, when compared with the corresponding positions in human, lie within known regions of conserved synteny between mouse and human chromosomes. 43 refs., 2 figs., 1 tab.

  20. [The comparative characteristics of crystalline lens and limb regeneration in newts operated on before and after the completion of an orbital space flight].

    PubMed

    Tuchkova, S Ia; Brushlinskaia, N V; Grigorian, E N; Mitashov, V I

    1994-01-01

    It has been already established that a tendency towards synchronization and acceleration of the forelimb and lens regeneration is observed in Pleurodeles waltlii under the effect of space flight factors. Here we present the results obtained after 16-day space flight of two groups of newts. In animals of group I forelimbs were amputated and lenses were removed 14 and 7 days before the space flight, respectively. Intact animals of group II were operated on the day of the sputnik landing. Regenerates of the flight and corresponding control animals were fixed at the same time after the operation. For evaluation of the regeneration rate morphological criteria were used: morphological stages of regeneration were compared in the experiment and the control. For quantitative assay of the regeneration rate we determined the index of nuclei labelled with 3H-thymidine in the blastema and lens rudiment cells and used morphometry of the lens regenerates. Acceleration of forelimb and lens regeneration was observed in both groups of animals. In group II more than two-fold increase of the index of labelled nuclei was found in the blastema cells at the comparable stages of development. The size of lens regenerates in flight groups I and II exceeded reliably those in the control animals. The results obtained suggest a prolonged effect of the space flight factors on forelimb and lens regeneration. Under the conditions of space flight the lens regenerates reached more advanced stages of regeneration, as compared with the control animals operated after the space flight. These results also suggest acceleration of regeneration in lower vertebrates. PMID:7858470

  1. Silica-based cerium (III) chloride nanoparticles prevent the fructose-induced glycation of α-crystallin and H₂O₂-induced oxidative stress in human lens epithelial cells.

    PubMed

    Yang, Jin; Cai, Lei; Zhang, Sen; Zhu, Xiangjia; Zhou, Peng; Lu, Yi

    2014-03-01

    This study aimed to investigate whether silica-cerium (III) chloride (CeCl3) nanoparticles could inhibit the formation of advanced glycation end-products (AGEs) and reduce oxidative stress. Silica-CeCl3 nanoparticles were synthesised by adsorption and embedment with micro-silica materials, forming uniform nanoparticles with a diameter of approximately 130 nm. Chaperone activity assays and AGEs formation assays, and intracellular reactive assays were adopted in this study to evaluate CeCl3 nanoparticles effect. UV-visible spectrometry showed that silica-CeCl3 nanoparticles at low concentrations rapidly formed tentatively stable conjugations with α-crystallin, greatly enhancing the chaperone activity of α-crystallin. Moreover, silica-CeCl3 nanoparticles markedly inhibited the fructose-induced glycation of α-crystallin, showing an advantage over the control drugs aminoguanidine and carnosine. Silica-CeCl3 nanoparticles also reduced intracellular reactive oxygen species production and restored glutathione levels in H2O2-treated human lens epithelial cells. These findings suggest that silica-CeCl3 may be used as a novel agent for the prevention of cataractogenesis. PMID:23828754

  2. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function

    SciTech Connect

    Laganowsky, Arthur; Benesch, Justin L.P.; Landau, Meytal; Ding, Linlin; Sawaya, Michael R.; Cascio, Duilio; Huang, Qingling; Robinson, Carol V.; Horwitz, Joseph; Eisenberg, David

    2010-08-23

    Small heat shock proteins alphaA and alphaB crystallin form highly polydisperse oligomers that frustrate protein aggregation, crystallization, and amyloid formation. Here, we present the crystal structures of truncated forms of bovine alphaA crystallin (AAC{sub 59-163}) and human alphaB crystallin (ABC{sub 68-162}), both containing the C-terminal extension that functions in chaperone action and oligomeric assembly. In both structures, the C-terminal extensions swap into neighboring molecules, creating runaway domain swaps. This interface, termed DS, enables crystallin polydispersity because the C-terminal extension is palindromic and thereby allows the formation of equivalent residue interactions in both directions. That is, we observe that the extension binds in opposite directions at the DS interfaces of AAC{sub 59-163} and ABC{sub 68-162}. A second dimeric interface, termed AP, also enables polydispersity by forming an antiparallel beta sheet with three distinct registration shifts. These two polymorphic interfaces enforce polydispersity of alpha crystallin. This evolved polydispersity suggests molecular mechanisms for chaperone action and for prevention of crystallization, both necessary for transparency of eye lenses.

  3. Objective lens

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  4. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  5. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  6. Compound lens

    DOEpatents

    Brixner, B.B.; Klein, M.M.; Winkler, M.A.

    1980-05-21

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  7. Compound lens

    DOEpatents

    Brixner, Berlyn B.; Klein, Morris M.; Winkler, Max A.

    1982-01-01

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  8. Sunglass Lens

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Foster Grant's Space Technology Lens, manufactured under license from NASA, combines NASA technology with Foster Grant's own technology. The NASA contribution was a highly abrasion-resistant coating developed at Ames Research Center as a means of protecting plastic surfaces of aerospace equipment from the sometimes harsh environments to which they are subjected. The Space Tech Lens, now manufactured by Fosta-Tek, surpasses glass in abrasion resistant properties and has five times better scratch resistance than the most popular corrective lenses.

  9. Assessing the elasticity change of cataract lens with OCE

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Liu, Chih-Hao; Raghunathan, Raksha; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Larin, Kirill V.

    2016-03-01

    Cataract is one of the most common degenerative diseases that causes blindness. Careful quantification of lens biomechanical properties can greatly assist in early detection of the disease as well as personalization of treatment procedures. In this study, we utilize a phase-sensitive optical coherence elastography (OCE) system to assess the effects of the cold cataract on the biomechanical properties of porcine crystalline lens in vitro. Relaxation rates of air puff induced elastic waves were measured on the same crystalline lens with and without cold cataract. Results demonstrate that the relaxation rate and, thus, associated elasticity of the porcine lens, increased due to the presence of cold cataract.

  10. The zebrafish lens proteome during development and aging

    PubMed Central

    Greiling, Teri M.S.; Houck, Scott A.

    2009-01-01

    Purpose Changes in lens protein expression during zebrafish development results in a smooth gradient of refractive index necessary for excellent optical function. Age-related changes in crystallin expression have been well documented in mammals but are poorly understood in the zebrafish. Methods In the zebrafish lens, a systematic analysis of protein content with age was performed using size exclusion chromatography (SEC) combined with linear trap quadrupole Fourier transform tandem mass spectrometry (LTQ-FT LC-MS/MS; rank-order shotgun) proteomics in lenses of larval, juvenile, and adult zebrafish. Results α-Crystallins, previously shown to have low abundance in the zebrafish lens, were found to increase dramatically with maturation and aging. SEC determined that β-crystallin was predominant at 4.5 days. With age, the α- and γ-crystallins increased, and a high molecular weight fraction appeared between six weeks and six months to become the dominant component by 2.5 years. Similarly, shotgun proteomics determined that β-crystallins were the predominant proteins in the young lens. With age, the proportion of α- and γ-crystallins increased dramatically. After crystallins, calpain 3, membrane, and cytoskeletal proteins were most abundant. Five new β-crystallins and 13 new γ-crystallins were identified. Conclusions As expected, SEC and proteomics demonstrated changing levels of protein expression with age, especially among the crystallins. The results also confirmed the existence of novel crystallins in the zebrafish genome. PMID:19936306

  11. Computer Lens Design Program

    NASA Astrophysics Data System (ADS)

    Shiue, S. G.; Chang, M. W.

    1986-02-01

    An interactive computer lens design program has been developed. It has capabilities for editing lens data, optimizing zoom lens, evaluating image qualities, etc.. A Tessar lens and an IR zoom telescope designed by using this program are discussed.

  12. Introduction to the development of intraocular lens

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Peng, Runling; Hu, Shuilan; Wei, Maowei; Chen, Jiabi

    2013-08-01

    In order to cure the cataract disease or injuries in eyes, intraocular lens(IOL) has been studied all the time to replace the crystalline lens in human eyes. Researches on IOL are started early from 19th century, and it develops greatly in the hundreds years after. This article introduces several main kinds of IOLs that appear in the development history of IOL, and raises the double-liquid zoom IOL based on electrowetting, which will be the trend of IOL study.

  13. Lens Biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lens genus includes the cultivated L. culinaris, and wild subspecies orientalis - the progenitor, tomentosus, and odemensis, are in the primary genepool, while L. ervoides, L. nigricans and L. lamottei are in the secondary – tertiary gene pool. The Middle East is the primary centre of diversity ...

  14. Factors influencing α-crystallin association with phospholipid vesicles

    PubMed Central

    Cobb, Brian A.; Petrash, J. Mark

    2010-01-01

    Purpose Lens lipids undergo a number of changes with age, including an overall increase in phospholipid acyl chain saturation and a decrease in length. In addition, the amount of membrane bound α-crystallin increases dramatically with age and with the onset of cataract. The aim of this study was to determine if a link exists between age and cataract associated changes in lens lipids and the changes in α-crystallin membrane association. Methods Protein-free lipid vesicles composed of a wide variety of synthetic and lens-derived lipid vesicles were formed by sonication. These vesicles were used with fluorescent native and recombinant α-crystallin conjugates in vesicle binding assays. Vesicles were collected by centrifugation and bound α-crystallin was quantified with fluorescence intensity measurements. Results α-Crystallin complexes showed remarkably similar binding profiles for all lipid vesicles tested, regardless of lipid origin, phospholipid head group, acyl chain length or saturation, and inclusion of cholesterol. In addition, recombinant α-crystallin complexes bind to these vesicles in a manner that is essentially indistinguishable from that of native human and bovine α-crystallins. Unlike α-crystallin binding to lens membranes containing intrinsic proteins, binding of α-crystallin to protein-free vesicles was very high capacity and unsaturable. Conclusions We conclude from these data that the binding of α-crystallin to lens membranes is not lipid-specific. Furthermore, protein post-translational changes, such as phosphorylation, do not appear to alter α-crystallin binding to these vesicles. Given the linearity of the binding curves, we propose that the only limiting factor for normal α-crystallin membrane binding is available surface area on the bilayer. Finally, the present data suggests that increased in vivo membrane association of α-crystallin is not a result of lipid changes, but more likely a result of non-lipid factors such as the

  15. Structural studies on bovine γ-crystallin

    PubMed Central

    Croft, L. R.; Waley, S. G.

    1971-01-01

    The amino acid sequences around the cysteine residues in the lens protein, γ-crystallin, were studied. Fraction II of the γ-crystallin from calf lens (Björk, 1964) was used. The protein was oxidized with performic acid and then hydrolysed with trypsin. Six peptides containing cysteic acid were isolated. One of the peptides contained three residues of cysteic acid and the others contained one residue of cysteic acid. We conclude that there are eight unique residues of cysteic acid in the oxidized protein. Amino acid analysis suggests that there are also eight residues of cysteic acid in the molecule, which thus contains only one polypeptide chain. PMID:5165918

  16. Collection Mode Lens System

    DOEpatents

    Fletcher, Daniel A.; Kino, Gordon S.

    2002-11-05

    A lens system including a collection lens and a microlens spaced from the collection lens adjacent the region to be observed. The diameter of the observablel region depends substantially on the radius of the microlens.

  17. Genetic and epigenetic mechanisms of gene regulation during lens development

    PubMed Central

    Cvekl, Ales; Duncan, Melinda K.

    2007-01-01

    Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed due to a complex exchange of extracellular signals between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2α, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling. PMID:17905638

  18. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  19. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  20. Contact lens in keratoconus

    PubMed Central

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  1. Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold.

    PubMed

    Rajini, B; Shridas, P; Sundari, C S; Muralidhar, D; Chandani, S; Thomas, F; Sharma, Y

    2001-10-19

    The beta- and gamma-crystallins are closely related lens proteins that are members of the betagamma-crystallin superfamily, which also include many non-lens members. Although beta-crystallin is known to be a calcium-binding protein, this property has not been reported in gamma-crystallin. We have studied the calcium binding properties of gamma-crystallin, and we show that it binds 4 mol eq of calcium with a dissociation constant of 90 microm. It also binds the calcium-mimic spectral probes, terbium and Stains-all. Calcium binding does not significantly influence protein secondary and tertiary structures. We present evidence that the Greek key crystallin fold is the site for calcium ion binding in gamma-crystallin. Peptides corresponding to Greek key motif of gamma-crystallin (42 residues) and their mutants were synthesized and studied for calcium binding. These peptides adopt beta-sheet conformation and form aggregates producing beta-sandwich. Our results with peptides show that, in Greek key motif, the amino acid adjacent to the conserved aromatic corner in the "a" strand and three amino acids of the "d" strand participate in calcium binding. We suggest that the betagamma superfamily represents a novel class of calcium-binding proteins with the Greek key betagamma-crystallin fold as potential calcium-binding sites. These results are of significance in understanding the mechanism of calcium homeostasis in the lens. PMID:11502736

  2. Contact Lens Care

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More ... 1088, www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative ...

  3. Contact Lens Solution Toxicity

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Contact Lens Solution Toxicity Information for adults A A A This image shows a reaction to contact lens solution. The prominent blood vessels and redness ...

  4. Lens coloboma treated with lens surgery.

    PubMed

    Wang, Jia-Kang; Ma, Sheng-Hsiang

    2015-01-01

    A 5-year-old boy was referred to our clinic due to an abnormal visual acuity test at school. His corrected visual acuity was counting fingers in the left eye. A nasal side deficiency of the lens substituted by a membrane was found. Lens coloboma was diagnosed. After making a 3 mm limbal incision, the colobomatous lens was removed by anterior continuous curvilinear capsulorhexis and lens aspiration. Posterior capsulorhexis and anterior vitrectomy on the side of the lens was performed to prevent posterior capsular or anterior hyaloid opacity. As the defect in the lens was very large, intracapsular placement of an intraocular lens was not feasible. A three-piece acrylic soft intraocular lens was placed in the ciliary sulcus. Since amblyopia was diagnosed by poor corrected visual acuity as 20/800 1 month after the operation, occlusion therapy with correcting eyeglasses was started at 6 h a day on the contralateral eye. The patient's corrected visual acuity improved to 20/125 7 months after the operation. PMID:26420693

  5. Effect of infrared radiation on the lens

    PubMed Central

    Aly, Eman Mohamed; Mohamed, Eman Saad

    2011-01-01

    Background: Infrared (IR) radiation is becoming more popular in industrial manufacturing processes and in many instruments used for diagnostic and therapeutic application to the human eye. Aim: The present study was designed to investigate the effect of IR radiation on rabbit’s crystalline lens and lens membrane. Materials and Methods: Fifteen New Zealand rabbits were used in the present work. The rabbits were classified into three groups; one of them served as control. The other two groups were exposed to IR radiation for 5 or 10 minutes. Animals from these two irradiated groups were subdivided into two subgroups; one of them was decapitated directly after IR exposure, while the other subgroup was decapitated 1 hour post exposure. IR was delivered from a General Electric Lamp model 250R 50/10, placed 20 cm from the rabbit and aimed at each eye. The activity of Na+-K+ ATPase was measured in the lens membrane. Soluble lens proteins were extracted and the following measurements were carried out: estimation of total soluble protein, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy. For comparison between multiple groups, analysis of variance was used with significance level set at P < 0.001. Results: The results indicated a change in the molecular weight of different lens crystalline accompanied with changes in protein backbone structure. These changes increased for the groups exposed to IR for 10 minutes. Moreover, the activity of Na+-K+ ATPase significantly decreased for all groups. Conclusions: The protein of eye lens is very sensitive to IR radiation which is hazardous and may lead to cataract. PMID:21350278

  6. Cellular and molecular features of lens differentiation: a review of recent advances.

    PubMed

    Wride, M A

    1996-12-01

    In this paper, the more recent literature pertaining to differentiation in the developing vertebrate lens is reviewed in relation to previous work. The literature reviewed reveals that the developing lens has been, and will continue to be, a useful model system for the examination of many fundamental processes occurring during embryonic development. Areas of lens development reviewed here include: the induction and early embryology of the lens; lens cell culture techniques; the role of growth factors and cytokines; the involvement of gap junctions in lens cell-cell communication; the role of cell adhesion molecules, integrins, and the extracellular matrix; the role of the cytoskeleton; the processes of programmed cell death (apoptosis) and lens fibre cell denucleation; the involvement of Pax and Homeobox genes; and crystallin gene regulation. Finally, some speculation is provided as to possible directions for further research in lens development. PMID:8983174

  7. Solution properties of γ-crystallins: Hydration of fish and mammal γ-crystallins

    PubMed Central

    Zhao, Huaying; Chen, Yingwei; Rezabkova, Lenka; Wu, Zhengrong; Wistow, Graeme; Schuck, Peter

    2014-01-01

    Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ-crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B1 could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species. PMID:24282025

  8. LENS: Prototyping Program

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek

    2013-04-01

    The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.

  9. Glycation by Ascorbic Acid Oxidation Products Leads to the Aggregation of Lens Proteins

    PubMed Central

    Linetsky, Mikhail; Shipova, Ekaterina; Cheng, Rongzhu; Ortwerth, Beryl J.

    2008-01-01

    Previous studies from this laboratory have shown that there are striking similarities between the yellow chromophores, fluorophores and modified amino acids released by proteolytic digestion from calf lens proteins ascorbylated in vitro and their counterparts isolated from aged and cataractous lens proteins. The studies reported in this communication were conducted to further investigate whether ascorbic acid-mediated modification of lens proteins could lead to the formation of lens protein aggregates capable of scattering visible light, similar to the high molecular aggregates found in aged human lenses. Ascorbic acid, but not glucose, fructose, ribose or erythrulose, caused the aggregation of calf lens proteins to proteins ranging from 2.2 × 106 up to 3.0 × 108 Da. This compared to proteins ranging from 1.8 × 106 up to 3.6 × 108 Da for the water-soluble (WS) proteins isolated from aged human lenses. This aggregation was likely due to the glycation of lens crystallins because [U-14C] ascorbate was incorporated into the aggregate fraction and because CNBH3, which reduces the initial Schiff base, prevented any protein aggregation. Reactions of ascorbate with purified crystallin fractions showed little or no aggregation of α-crystallin, significant aggregation of βH-crystallin, but rapid precipitation of purified βL- and γ-crystallin. The aggregation of lens proteins can be prevented by the binding of damaged crystallins to alpha-crystallin due to its chaperone activity. Depending upon the ratios between the components of the incubation mixtures, α-crystallin prevented the precipitation of the purified βL- and γ-crystallin fractions during ascorbylation. The addition of at least 20% of alpha-crystallin by weight into glycation mixtures with βL-, or γ-crystallins completely inhibited protein precipitation, and increased the amount of the high molecular weight aggregates in solution. Static and dynamic light scattering measurements of the supernatants from

  10. Characterization of α-Crystallin-Plasma Membrane Binding*

    PubMed Central

    Cobb, Brian A.; Petrash, J. Mark

    2010-01-01

    α-Crystallin, a large lenticular protein complex made up of two related subunits (αA- and αB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and recombinant human αA- and αB-crystallins conjugated to a small fluorescent tag (Alexa350®). Both αA and αB homopolymer complexes, as well as a reconstituted 3:1 heteromeric complex, bind to lens membranes in a specific, saturable, and partially irreversible manner that is sensitive to both time and temperature. The amount of α-crystallin that binds to the membrane increases under acidic pH conditions and upon removal of exposed intrinsic membrane protein domains but is not affected at high ionic strength, suggesting that α-crystallin binds to the fiber cell plasma membranes mainly through hydrophobic interactions. The binding capacity and affinity for the reconstituted 3:1 heteromeric complex were measured to be 3.45 ± 0.11 ng/μg of membrane and 4.57 ± 0.50 × 10−4 μg−1 of membrane, respectively. The present membrane binding data support the hypothesis that the physical properties of a mixed α-crystallin complex may hold particular relevance for the function of α-crystallin within the lens. PMID:10692476

  11. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  12. Tuneable bioinspired lens.

    PubMed

    Charmet, Jérôme; Barton, Rupert; Oyen, Michelle

    2015-08-01

    Bioinspired lenses that rely on changes of curvature to achieve focus are interesting candidates for miniaturized tuneable lenses as they require fewer mechanical moving parts compared to their conventional counter-parts. The lens described in this manuscript closely mimics the design and actuation principle of the vertebrate lens. It consists of a liquid lens encapsulated in a transparent polymer membrane. Application of a radial strain changes the curvature of the lens thereby changing its focal length. The unstrained lens has a focal length of 50 mm, which rises to a value of 100 mm at a maximum radial strain of 0.67%. This range compares favourably to both biological lenses and other published examples of biomimetic lenses. Finally we point out a few routes to improve the quality of the lens and expand its focal length range. PMID:26119537

  13. Accumulation and diffusion of crystallin inside single fiber cells in intact chicken embryo lenses.

    PubMed Central

    Peetermans, J A; Foy, B D; Tanaka, T

    1987-01-01

    The use of microscope laser light-scattering spectroscopy allows for the measurement of dynamic properties of intracellular particles inside single fiber cells at different locations in the intact chicken embryo lens. Profiles of the diffusive properties of the delta-crystallin proteins across the lens are reported for developing chickens from day 5 to day 37. A clear decrease of the diffusion is observed in the lens nucleus relative to the cortex beginning with day 10. Images PMID:3470754

  14. The lens equation revisited

    NASA Astrophysics Data System (ADS)

    Molesini, Giuseppe

    2005-02-01

    Problems in the general validity of the lens equations are reported, requiring an assessment of the conditions for correct use. A discussion is given on critical behaviour of the lens equation, and a sign and meaning scheme is provided so that apparent inconsistencies are avoided.

  15. Improved optical lens system

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1970-01-01

    Objective lens produces a backwardly curving image of a star field that matches the similarly curved surface of the photocathode of an image dissector tube. Lens eliminates the need for a fiber-optics translation between the flat plane image and curved photocathode.

  16. Aggregation of deamidated human βB2-crystallin and incomplete rescue by α-crystallin chaperone

    PubMed Central

    Michiel, Magalie; Duprat, Elodie; Skouri-Panet, Fériel; Finet, Stéphanie; Tardieu, Annette; Lampi, Kirsten J.

    2010-01-01

    Aging of the lens is accompanied by extensive deamidation of the lens specific proteins, the crystallins. Deamidated crystallins are increased in the insoluble proteins and may contribute to cataracts. Deamidation has been shown in vitro to alter the structure and decrease the stability of human lens βB1, βB2 and βA3-crystallin. Of particular interest, βB2 mutants were constructed to mimic the effect of in vivo deamidations at the interacting interface between domains, at Q70 in the N terminal domain and at Q162, its C terminal homologue. The double mutant was also constructed. We previously reported that deamidation at the critical interface sites decreased stability, while preserving the dimeric 3D structure. In the present study, dynamic light scattering, differential scanning calorimetry and small angle X-ray scattering were used to investigate the effect of deamidation on stability, thermal unfolding and aggregation. The bovine βLb fraction was used for comparative analysis. The chaperone requirements of the various samples were determined using bovine α-crystallins as the chaperone. Deamidation at both interface Gln residues or at Q70, but not Q162, significantly lowered the temperature for unfolding and aggregation, which was rapidly followed by precipitation. This deamidation-induced aggregation and precipitation was not completely prevented by α-crystallin chaperone. A potential mechanism for cataract formation in vivo involving accumulation of deamidated β-crystallin aggregates is discussed. PMID:20188088

  17. The oblique electron lens.

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    An oblique electron lens is described that is especially applicable to image converters and camera tubes employing flat opaque photocathodes. The use of optical lenses, corrector plates, and/or mirrors (often employed in other electron lenses designed for use with opaque photocathodes) are eliminated. The oblique electron lens is well suited to ultraviolet and vacuum ultraviolet image converters, and to image converters employing opaque negative electron affinity photocathodes. It is also possible to use this oblique electron lens for electronography. Measurements on an experimental tube show that a limiting resolution of 50 line pairs/mm is possible, but the intrinsic lens quality is believed to approach that of a conventional electromagnetic lens having uniform and colinear electric and magnetic fields.

  18. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins

    PubMed Central

    Tiwary, Ekta; Hegde, Shylaja; Purushotham, Sangeetha; Deivanayagam, Champion; Srivastava, Om

    2015-01-01

    Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin

  19. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.

    PubMed

    Tiwary, Ekta; Hegde, Shylaja; Purushotham, Sangeetha; Deivanayagam, Champion; Srivastava, Om

    2015-01-01

    Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA-crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable

  20. Anterior Chamber Iris Claw Lens for the Treatment of Aphakia in a Patient with Megalocornea

    PubMed Central

    Saffra, Norman; Rakhamimov, Aleksandr; Masini, Robert; Rosenthal, Kenneth J.

    2015-01-01

    Megalocornea in isolation is a rare congenital enlargement of the cornea greater than 13 mm in diameter. Patients with megalocornea are prone to cataract formation, crystalline lens subluxation, zonular deficiencies and dislocation of the posterior chamber intraocular lens (PCIOL) within the capsular bag. A 55-year-old male with megalocornea in isolation developed subluxation of the capsular bag and PCIOL. The PCIOL and capsular bag were explanted, and the patient was subsequently implanted with an anterior chamber iris claw lens. An anterior chamber iris claw lens is an effective option for the correction of aphakia in patients with megalocornea. PMID:26120314

  1. LENS: Light Transport

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary

    2013-04-01

    The LENS detector uses an optically segmented 3D lattice, a scintillation lattice (SL), that channels light via total internal reflection from a scintillation event down channels parallel to the 3 primary Cartesian axes to the edge of the detector. This unique design provides spatial and temporal resolution required to distinguish the internal background of ^115In from the neutrino signal. Optical segmentation is achieved with Teflon films. Currently a 400 liter prototype, miniLENS, is being developed to demonstrate the internal background rejection techniques needed for LENS. This requires that miniLENS be shielded from external backgrounds from the surrounding materials and the photomultiplier tubes (PMTs). This shielding is provided by a water tank that surrounds miniLENS. In order to retain the channel information and separate the PMTs from the detector the LENS collaboration has developed light guides (LGs) made from multilayer films. These LGs transport light both by total internal and specular reflection providing an efficient means of coupling the SL through the water shield to the PMTs outside the water tank. This talk will discuss light transport in the SL as well as the design and construction of the LGs in the context of miniLENS.

  2. Contact lens hygiene compliance and lens case contamination: A review.

    PubMed

    Wu, Yvonne Tzu-Ying; Willcox, Mark; Zhu, Hua; Stapleton, Fiona

    2015-10-01

    A contaminated contact lens case can act as a reservoir for microorganisms that could potentially compromise contact lens wear and lead to sight threatening adverse events. The rate, level and profile of microbial contamination in lens cases, compliance and other risk factors associated with lens case contamination, and the challenges currently faced in this field are discussed. The rate of lens case contamination is commonly over 50%. Coagulase-negative Staphylococcus, Bacillus spp., Pseudomonas aeruginosa and Serratia marcescens are frequently recovered from lens cases. In addition, we provide suggestions regarding how to clean contact lens cases and improve lens wearers' compliance as well as future lens case design for reducing lens case contamination. This review highlights the challenges in reducing the level of microbial contamination which require an industry wide approach. PMID:25980811

  3. Crystalline and Crystalline International Disposal Activities

    SciTech Connect

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  4. Gravitational lens observations

    NASA Astrophysics Data System (ADS)

    Burke, B. F.; Roberts, D. H.; Hewitt, J. N.; Greenfield, P. E.; Dupree, A. K.

    1983-06-01

    The structure of the gravitational lens 0957 + 561 provides strong constraints on allowable lens models. Here, the modeling constraints for the lens are summarized, and it is shown that, for the foreground cluster, mass-to-luminosity ratio with a well-defined locus can be given. Constraints on other images in the radio map are then discussed, and it is concluded that a third quasar image has not yet been identified convincingly, but perturbations of the B quasar image are consistent with the partial jet image predicted by Greenfield (1981). Finally, polarization studies of the A and B images are reported.

  5. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  6. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  7. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  8. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  9. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  10. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  11. Gene sharing by delta-crystallin and argininosuccinate lyase.

    PubMed Central

    Piatigorsky, J; O'Brien, W E; Norman, B L; Kalumuck, K; Wistow, G J; Borras, T; Nickerson, J M; Wawrousek, E F

    1988-01-01

    The lens structural protein delta-crystallin and the metabolic enzyme argininosuccinate lyase (ASL; L-argininosuccinate arginine-lyase, EC 4.3.2.1) have striking sequence similarity. We have demonstrated that duck delta-crystallin has enormously high ASL activity, while chicken delta-crystallin has lower but significant activity. The lenses of these birds had much greater ASL activity than other tissues, suggesting that ASL is being expressed at unusually high levels as a structural component. In Southern blots of human genomic DNA, chicken delta 1-crystallin cDNA hybridized only to the human ASL gene; moreover, the two chicken delta-crystallin genes accounted for all the sequences in the chicken genome able to cross-hybridize with a human ASL cDNA, with preferential hybridization to the delta 2 gene. Correlations of enzymatic activity and recent data on mRNA levels in the chicken lens suggest that ASL activity depends on expression of the delta 2-crystallin gene. The data indicate that the same gene, at least in ducks, encodes two different functions, an enzyme (ASL) and a structural protein (delta-crystallin), although in chickens specialization and separation of functions may have occurred. Images PMID:3368457

  12. Contact Lens Risks

    MedlinePlus

    ... Health and Consumer Devices Consumer Products Contact Lenses Contact Lens Risks Share Tweet Linkedin Pin it More ... redness blurred vision swelling pain Serious Hazards of Contact Lenses Symptoms of eye irritation can indicate a ...

  13. A Class I UV-Blocking (senofilcon A) Soft Contact Lens Prevents UVA-induced Yellow Fluorescence and NADH loss in the Rabbit Lens Nucleus in vivo

    PubMed Central

    Giblin, Frank J.; Lin, Li-Ren; Simpanya, Mukoma F.; Leverenz, Victor R.; Fick, Catherine E.

    2012-01-01

    It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm2 on the cornea) for 1 hour using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 hour. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear λ-crystallin

  14. Lens auto-centering

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève; Tremblay, Mathieu

    2015-09-01

    In a typical optical system, optical elements usually need to be precisely positioned and aligned to perform the correct optical function. This positioning and alignment involves securing the optical element in a holder or mount. Proper centering of an optical element with respect to the holder is a delicate operation that generally requires tight manufacturing tolerances or active alignment, resulting in costly optical assemblies. To optimize optical performance and minimize manufacturing cost, there is a need for a lens mounting method that could relax manufacturing tolerance, reduce assembly time and provide high centering accuracy. This paper presents a patent pending lens mounting method developed at INO that can be compared to the drop-in technique for its simplicity while providing the level of accuracy close to that achievable with techniques using a centering machine (usually < 5 μm). This innovative auto-centering method is based on the use of geometrical relationship between the lens diameter, the lens radius of curvature and the thread angle of the retaining ring. The autocentering principle and centering test results performed on real optical assemblies are presented. In addition to the low assembly time, high centering accuracy, and environmental robustness, the INO auto-centering method has the advantage of relaxing lens and barrel bore diameter tolerances as well as lens wedge tolerances. The use of this novel lens mounting method significantly reduces manufacturing and assembly costs for high performance optical systems. Large volume productions would especially benefit from this advancement in precision lens mounting, potentially providing a drastic cost reduction.

  15. An assay for intermolecular exchange of alpha crystallin

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    An affinity column of alpha crystallin linked to cyanogen bromide-activated Sepharose was developed to study the exchange of alpha subunits. Alpha crystallin bound to the Sepharose-alpha complex was dissociated with 8 mol/l urea, followed by quantitation using high-performance reverse-phase liquid chromatography. The time course of binding at 37 degrees C showed a hyperbolic binding pattern reaching equilibrium between 6-18 hr. Under these conditions, binding of beta and gamma crystallins to the same matrix was less than 10% of the alpha values, as was binding of alpha to glycine-coupled Sepharose. This assay was used to demonstrate changes in the subunit exchange of alpha crystallins present in high molecular weight versus lower molecular weight aggregates of the human lens. These results show that this binding procedure was a specific reproducible assay that might be used to study intermolecular interactions of the alpha crystallins.

  16. Human lens modeling and biometric measurement technique

    NASA Astrophysics Data System (ADS)

    Huang, Yanqiao

    This dissertation conducts theoretical and instrumental aspects of research aiming at extending knowledge and understanding of the optical design of the human eye. The first part of the thesis describes a newly constructed dynamic eye model that includes a gradient index (GRIN) lens to simulate eye accommodation. The GRIN profile of the crystalline lens is defined by a single continuous GRIN equation with optical power variability. In describing the lens accommodation process, different expansion coefficients are given to the lens nucleus and cortex to mimic lens dynamics. A relaxed state eye, a 4-D accommodated eye and a 10-D accommodated eye are simulated on a computer for studying and analyzing the first order and third order properties. This eye model can be further improved if giving accurate biometric measurement data on accommodating eyes. The second part of the thesis proposes an original interferometric technique that has potential for non-invasive ocular biometric measurements. This technique, termed spatial coherence interferometry, utilizes spatially incoherent monochromatic light as the illumination source, and employs the principle of low coherence interferometry to perform optical sectioning. Generalized coherence function for a multi-layer sample is derived and the theoretical axial longitudinal resolution is formulated. A spatial coherence interferometer with tunable coherence length is built, and detailed instrumental design and specifications are illustrated. Factors affecting system longitudinal resolution are examined. The instrument is first tested on plane mirrors for characterizing the longitudinal resolution. Various experiments are conducted including target searching, curved surface profiling and multi-layer sample sectioning. Finally en face surface profiling is performed on a pair of life size model eyes, and full field interferograms from various ocular surfaces are generated sequentially due to optical sectioning. In future research

  17. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  18. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  19. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  20. Characterization of the major cyanogen bromide fragment of alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Alpha crystallin from the bovine lens has been digested with cyanogen bromide, and the major fragment (CB-1) has been purified using reverse phase HPLC. Characterization of this fragment by Edman degradation and antisera to synthetic peptides indicates that it originates from alpha-A crystallin, but lacks the N-terminal methionine and the last 35 amino acids from the C-terminus of the molecule. The purified CB-1 fragment binds as well as native alpha crystallin to lens membrane, but is unable to self-assemble into the correct size of high molecular weight oligomeric complexes characteristic of the intact alpha-A chain. Together, these results demonstrate that the alpha-A chain is comprised of at least two functional domains, one of which is involved in binding of alpha-A crystallin to lens membrane, and another which is necessary for correct self-assembly of the molecule into high molecular weight oligomers.

  1. CRYSTALLINS IN RETINAL GANGLION CELL SURVIVAL AND REGENERATION

    PubMed Central

    Piri, Natik; Kwong, Jacky MK; Caprioli, Joseph

    2013-01-01

    Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized retinal ganglion cells (RGCs) in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta or gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells. PMID:23709342

  2. Spectral analysis and comparison of mineral deposits forming in opacified intraocular lens and senile cataractous lens

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Yang; Chen, Ko-Hwa; Lin, Chih-Cheng; Cheng, Wen-Ting; Li, Mei-Jane

    2010-10-01

    This preliminary report was attempted to compare the chemical components of mineral deposits on the surfaces of an opacified intraocular lens (IOL) and a calcified senile cataractous lens (SCL) by vibrational spectral diagnosis. An opacified intraocular lens (IOL) was obtained from a 65-year-old male patient who had a significant decrease in visual acuity 2-years after an ocular IOL implantation. Another SCL with grayish white calcified plaque on the subcapsular cortex was isolated from a 79-year-old male patient with complicated cataract after cataract surgery. Optical light microscope was used to observe both samples and gross pictures were taken. Fourier transform infrared (FT-IR) and Raman microspectroscopic techniques were employed to analyze the calcified deposits. The curve-fitting algorithm using the Gaussian function was also used to quantitatively estimate the chemical components in each deposit. The preliminary results of spectral diagnosis indicate that the opacified IOL mainly consisted of the poorly crystalline, immature non-stoichiometric hydroxyapatite (HA) with higher content of type B carbonated apatites. However, the calcified plaque deposited on the SCL was comprised of a mature crystalline stoichiometric HA having higher contents of type A and type B carbonate apatites. More case studies should be examined in future.

  3. Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone

    NASA Technical Reports Server (NTRS)

    Boyle, D.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Previous studies have demonstrated that in vitro, alpha-crystallin can protect other lens proteins against extensive denaturation and aggregation. The mechanism of this protection involves preferential binding of the partially denatured protein to a central region of the native alpha-crystallin complex. To test whether a similar phenomenon might occur in vivo, a high molecular weight aggregate (HMWA) fraction was isolated from the aged bovine lens. Negative staining of this preparation revealed the presence of particles of 13-14 nm diameter, characteristic of alpha-crystallin. Immunolocalization of the same particles using antiserum specific for gamma- and beta-crystallins demonstrated preferential binding of these crystallins to the central region of the alpha-crystallin complex. Together, these results provide evidence that in the intact lens, the alpha-crystallins are functionally important molecular chaperones.

  4. Measurements of Diffusion within Concentrated Bovine α-Crystallin Suspensions

    NASA Astrophysics Data System (ADS)

    Karunaratne, Nuwan; Berry, Justin; Lurio, Larence; Thurston, George; Debartolo, Janae; Narayanan, Suresh; Sandy, Alec; Weizeorick, John

    2012-02-01

    α-Crystallin is a major protein component of the vertebrate eye lens. The chaperone-like behavior of these water soluble proteins play a key role in maintaining lens transparency by preventing condensation of other lens proteins. We report photon correlation spectroscopy measurements, both X-ray Photon Correlation Spectroscopy (XPCS) and Dynamic Light Scattering (DLS), indicating protein diffusion within suspensions of α-Crystallin. Measurements were carried out at 2^oC, 10^oC and 35^oC, over a wide range of concentrations from the diluted limit to the regime close to the physiological lens concentration. In the diluted regime, DLS measurements can be modeled by a single exponential fit indicating a single relaxation mode and at higher concentrations two relaxation modes can be identified by fitting the data to a double exponential decay function, a clear indication of the ploydispersed nature of the concentrated samples. XPCS measurements show dynamics at the highest concentration but cannot resolve the faster dynamics (below 20ms) at lower concentration. We also provide estimates for the viscosity of α-Crystallin suspensions as a function of temperature and protein volume fraction using the falling ball method.

  5. Tunable optofluidic birefringent lens.

    PubMed

    Wee, D; Hwang, S H; Song, Y S; Youn, J R

    2016-05-01

    An optofluidic birefringent lens is demonstrated using hydrodynamic liquid-liquid (L(2)) interfaces in a microchannel. The L(2) lens comprises a nematic liquid crystal (NLC) phase and an optically isotropic phase for the main stream and the surrounding sub-stream, respectively. When the optofluidic device is subjected to a sufficiently strong electric field perpendicular to the flow direction, NLCs are allowed to orient along the external field rather than the flow direction overcoming fluidic viscous stress. The characteristics of the optofluidic birefringence lens are investigated by experimental and numerical analyses. The difference between the refractive indices of the main stream and the sub-stream changes according to the polarization direction of incident light, which determines the optical behaviour of the lens. The incidence of s-polarized light leads to a short focal point, while p-polarized light has a relatively long focal distance from the same L(2) interface. The curvatures and focal lengths of the lens are successfully evaluated by a hydrodynamic theory of NLCs and a simple ray-tracing model. PMID:27035877

  6. Excimer laser ablation of the lens.

    PubMed

    Nanevicz, T M; Prince, M R; Gawande, A A; Puliafito, C A

    1986-12-01

    Ablation of the bovine crystalline lens was studied using radiation from an excimer laser at four ultraviolet wave lengths as follows: 193 nm (argon fluoride), 248 nm (krypton fluoride), 308 nm (xenon chloride), and 351 nm (xenon fluoride). The ablation process was quantitated by measuring mass ablated with an electronic balance, and characterized by examining ablation craters with scanning electron microscopy. The highest ablation rate was observed at 248 nm with lower rates at 193 and 308 nm. No ablation was observed at 351 nm. Scanning electron microscopy revealed the smoothest craters at 193 nm while at 248 nm there was vacuolization in the crater walls and greater disruption of surrounding tissue. The craters made at 308 nm did not have as smooth a contour as the 193-nm lesions. The spectral absorbance of the bovine lens was calculated at the wavelengths used for ablation and correlated with ablation rates and thresholds. High peak-power, pulsed ultraviolet laser radiation may have a role in surgical removal of the lens. PMID:3789982

  7. 50. (no plate) Lens, lens pedestal, mercury float, drawing # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. (no plate) Lens, lens pedestal, mercury float, drawing # 3101, sheet 1 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  8. 51. (no plate) Lens, lens pedestal, mercury float, shade holder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. (no plate) Lens, lens pedestal, mercury float, shade holder installation, drawing # 3101, sheet 2 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  9. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan

    2016-02-01

    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  10. Metamaterial lens design

    NASA Astrophysics Data System (ADS)

    Shepard, Ralph Hamilton, III

    Developments in nanotechnology and material science have produced optical materials with astonishing properties. Theory and experimentation have demonstrated that, among other properties, the law of refraction is reversed at an interface between a naturally occurring material and these so-called metamaterials. As the technology advances metamaterials have the potential to vastly impact the field of optical science. In this study we provide a foundation for future work in the area of geometric optics and lens design with metamaterials. The concept of negative refraction is extended to derive a comprehensive set of first-order imaging principles as well as an exhaustive aberration theory to 4th order. Results demonstrate congruence with the classical theory; however, negative refraction introduces a host of novel properties. In terms of aberration theory, metamaterials present the lens designer with increased flexibility. A singlet can be bent to produce either positive or negative spherical aberration (regardless of its focal length), its contribution to coma can become independent of its conjugate factor, and its field curvature takes on the opposite sign of its focal power. This is shown to be advantageous in some designs such as a finite conjugate relay lens; however, in a wider field of view landscape lens we demonstrate a metamaterial's aberration properties may be detrimental. This study presents the first comprehensive investigation of metamaterial lenses using industry standard lens design software. A formal design study evaluates the performance of doublet and triplet lenses operating at F/5 with a 100 mm focal length, a 20° half field of view, and specific geometric constraints. Computer aided optimization and performance evaluation provide experimental controls to remove designer-induced bias from the results. Positive-index lenses provide benchmarks for comparison to metamaterial systems subjected to identical design constraints. We find that

  11. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  12. Lens window simplifies TDL housing

    NASA Technical Reports Server (NTRS)

    Robinson, D. M.; Rowland, C. W.

    1979-01-01

    Lens window seal in tunable-diode-laser housing replaces plan parallel window. Lens seals housing and acts as optical-output coupler, thus eliminating need for additional reimaging or collimating optics.

  13. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  14. Frs2α enhances fibroblast growth factor-mediated survival and differentiation in lens development

    PubMed Central

    Madakashira, Bhavani P.; Kobrinski, Daniel A.; Hancher, Andrew D.; Arneman, Elizabeth C.; Wagner, Brad D.; Wang, Fen; Shin, Hailey; Lovicu, Frank J.; Reneker, Lixing W.; Robinson, Michael L.

    2012-01-01

    Most growth factor receptor tyrosine kinases (RTKs) signal through similar intracellular pathways, but they often have divergent biological effects. Therefore, elucidating the mechanism of channeling the intracellular effect of RTK stimulation to facilitate specific biological responses represents a fundamental biological challenge. Lens epithelial cells express numerous RTKs with the ability to initiate the phosphorylation (activation) of Erk1/2 and PI3-K/Akt signaling. However, only Fgfr stimulation leads to lens fiber cell differentiation in the developing mammalian embryo. Additionally, within the lens, only Fgfrs activate the signal transduction molecule Frs2α. Loss of Frs2α in the lens significantly increases apoptosis and decreases phosphorylation of both Erk1/2 and Akt. Also, Frs2α deficiency decreases the expression of several proteins characteristic of lens fiber cell differentiation, including Prox1, p57KIP2, aquaporin 0 and β-crystallins. Although not normally expressed in the lens, the RTK TrkC phosphorylates Frs2α in response to binding the ligand NT3. Transgenic lens epithelial cells expressing both TrkC and NT3 exhibit several features characteristic of lens fiber cells. These include elongation, increased Erk1/2 and Akt phosphorylation, and the expression of β-crystallins. All these characteristics of NT3-TrkC transgenic lens epithelial cells depend on Frs2α. Therefore, tyrosine phosphorylation of Frs2α mediates Fgfr-dependent lens cell survival and provides a mechanistic basis for the unique fiber-differentiating capacity of Fgfs on mammalian lens epithelial cells. PMID:23136392

  15. A Tribute to Len Barton

    ERIC Educational Resources Information Center

    Tomlinson, Sally

    2010-01-01

    This article constitutes a short personal tribute to Len Barton in honour of his work and our collegial relationship going back over 30 years. It covers how Len saw his intellectual project of providing critical sociological and political perspectives on special education, disability and inclusion, and his own radical political perspectives. Len's…

  16. Wearable telescopic contact lens.

    PubMed

    Arianpour, Ashkan; Schuster, Glenn M; Tremblay, Eric J; Stamenov, Igor; Groisman, Alex; Legerton, Jerry; Meyers, William; Amigo, Goretty Alonso; Ford, Joseph E

    2015-08-20

    We describe the design, fabrication, and testing of a 1.6 mm thick scleral contact lens providing both 1× and 2.8× magnified vision paths, intended for use as a switchable eye-borne telescopic low-vision aid. The F/9.7 telescopic vision path uses an 8.2 mm diameter annular entrance pupil and 4 internal reflections in a polymethyl methacrylate precision optic. This gas-impermeable insert is contained inside a smooth outer casing of rigid gas-permeable polymer, which also provides achromatic correction for refraction at the curved lens face. The unmagnified F/4.1 vision path is through the central aperture of the lens, with additional transmission between the annular telescope rings to enable peripheral vision. We discuss potential solutions for providing oxygenation for an extended wear version of the lens. The prototype lenses were characterized using a scale-model human eye, and telescope functionality was confirmed in a small-scale clinical (nondispensed) demonstration. PMID:26368753

  17. Imperfect perfect lens.

    PubMed

    Larkin, Ivan A; Stockman, Mark I

    2005-02-01

    We have quantitatively established a fundamental limitation on the ultimate spatial resolution of the perfect lens (thin metal slab) in the near field. This limitation stems from the spatial dispersion of the dielectric response of the Fermi liquid of electrons with Coulomb interaction in the metal. We discuss possible applications in nanoimaging, nanophotolithography, and nanospectroscopy. PMID:15794622

  18. The Lens of Chemistry

    ERIC Educational Resources Information Center

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  19. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  20. Thermal Lens Microscope

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  1. Acetylation of Gly1 and Lys2 Promotes Aggregation of Human γD-Crystallin

    PubMed Central

    2015-01-01

    The human lens contains three major protein families: α-, β-, and γ-crystallin. Among the several variants of γ-crystallin in the human lens, γD-crystallin is a major form. γD-Crystallin is primarily present in the nuclear region of the lens and contains a single lysine residue at the second position (K2). In this study, we investigated the acetylation of K2 in γD-crystallin in aging and cataractous human lenses. Our results indicated that K2 is acetylated at an early age and that the amount of K2-acetylated γD-crystallin increased with age. Mass spectrometric analysis revealed that in addition to K2, glycine 1 (G1) was acetylated in γD-crystallin from human lenses and in γD-crystallin acetylated in vitro. The chaperone ability of α-crystallin for acetylated γD-crystallin was lower than that for the nonacetylated protein. The tertiary structure and the microenvironment of the cysteine residues were significantly altered by acetylation. The acetylated protein exhibited higher surface hydrophobicity, was unstable against thermal and chemical denaturation, and exhibited a higher propensity to aggregate at 80 °C in comparison to the nonacetylated protein. Acetylation enhanced the GdnHCl-induced unfolding and slowed the subsequent refolding of γD-crystallin. Theoretical analysis indicated that the acetylation of K2 and G1 reduced the structural stability of the protein and brought the distal cysteine residues (C18 and C78) into close proximity. Collectively, these results indicate that the acetylation of G1 and K2 residues in γD-crystallin likely induced a molten globule-like structure, predisposing it to aggregation, which may account for the high content of aggregated proteins in the nucleus of aged and cataractous human lenses. PMID:25393041

  2. Electrostatic origin of in vitro aggregation of human γ-crystallin

    PubMed Central

    Mohr, Benjamin G.; Dobson, Cassidy M.; Garman, Scott C.; Muthukumar, Murugappan

    2013-01-01

    The proteins α-, β-, and γ-crystallins are the major components of the lens in the human eye. Using dynamic light scattering method, we have performed in vitro investigations of protein-protein interactions in dilute solutions of human γ-crystallin and α-crystallin. We find that γ-crystallin spontaneously aggregates into finite-sized clusters in phosphate buffer solutions. There are two distinct populations of unaggregated and aggregated γ-crystallins in these solutions. On the other hand, α-crystallin molecules are not aggregated into large clusters in solutions of α-crystallin alone. When α-crystallin and γ-crystallin are mixed in phosphate buffer solutions, we demonstrate that the clusters of γ-crystallin are prevented. By further investigating the roles of temperature, protein concentration, pH, salt concentration, and a reducing agent, we show that the aggregation of γ-crystallin under our in vitro conditions arises from non-covalent electrostatic interactions. In addition, we show that aggregation of γ-crystallin occurs under the dilute in vitro conditions even in the absence of oxidizing agents that can induce disulfide cross-links, long considered to be responsible for human cataracts. Aggregation of γ-crystallin when maintained under reducing conditions suggests that oxidation does not contribute to the aggregation in dilute solutions. PMID:24089726

  3. Dominant inhibition of lens placode formation in mice

    PubMed Central

    Zhang, Yan; Burgess, Daniel; Overbeek, Paul A.; Govindarajan, Venkatesh

    2008-01-01

    The lens in the vertebrate eye has been shown to be critical for proper differentiation of the surrounding ocular tissues including the cornea, iris and ciliary body. In mice, previous investigators have assayed the consequences of molecular ablation of the lens. However, in these studies, lens ablation was initiated (and completed) after the cornea, retina, iris and ciliary body had initiated their differentiation programs thereby precluding analysis of the early role of the lens in fate determination of these tissues. In the present study, we have ablated the lens precursor cells of the surface ectoderm by generation of transgenic mice that express an attenuated version of diphtheria toxin (Tox176) linked to a modified Pax6 promoter that is active in the lens ectodermal precursors. In these mice, lens precursor cells fail to express Sox2, Prox1 and αA-crystallin and die before the formation of a lens placode. The Tox176 mice also showed profound alterations in the corneal differentiation program. The corneal epithelium displayed histological features of the skin, and expressed markers of skin differentiation such as Keratin 1 and 10 instead of Keratin 12, a marker of corneal epithelial differentiation. In the Tox176 mice, in the absence of the lens, extensive folding of the retina was seen. However, differentiation of the major cell types in the retina including the ganglion, amacrine, bipolar and horizontal cells was not affected. Unexpectedly, ectopic placement of the retinal pigmented epithelium was seen between the folds of the retina. Initial specification of the presumptive ciliary body and iris at the anterior margins of the retina was not altered in the Tox176 mice but their subsequent differentiation was blocked. Lacrimal and Harderian glands, which are derived from the Pax6-expressing surface ectodermal precursors, also failed to differentiate. These results suggest that, in mice, specification of the retina, ciliary body and iris occurs at the very

  4. Differential analysis of D-{beta}-Asp-containing proteins found in normal and infrared irradiated rabbit lens

    SciTech Connect

    Takata, Takumi; Shimo-Oka, Tadashi; Kojima, Masami; Miki, Kunio; Fujii, Noriko . E-mail: nfujii@HL.rri.kyoto-u.ac.jp

    2006-05-26

    Although proteins are generally composed of L-{alpha}-amino acids, D-{beta}-aspartic acid (Asp)-containing proteins have been reported in various elderly tissues. Our previous study detected several D-{beta}-Asp-containing proteins in a rabbit lens derived from epithelial cell line by Western blot analysis of a 2D-gel using a polyclonal antibody that is highly specific for D-{beta}-Asp-containing proteins. The identity of each spot was subsequently determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the Ms-Fit online database searching algorithm. In this study, we discovered novel D-{beta}-Asp-containing proteins from rabbit lens. The results indicate that {beta}-crystallin A3, {beta}-crystallin A4, {beta}-crystallin B1, {beta}-crystallin B2, {beta}-crystallin B3, {gamma}-crystallin C, {gamma}-crystallin D, and {lambda}-crystallin in rabbit lens contain D-{beta}-Asp residues. Furthermore, the occurrence of D-{beta}-Asp residues increases with infrared ray (IR) irradiation. Additionally, some D-{beta}-Asp-containing proteins only appear after IR irradiation. One such protein is the {alpha}-enolase, which shows homology to {tau}-crystallin.

  5. Foveated endoscopic lens

    PubMed Central

    Hagen, Nathan

    2012-01-01

    Abstract. We present a foveated miniature endoscopic lens implemented by amplifying the optical distortion of the lens. The resulting system provides a high-resolution region in the central field of view and low resolution in the outer fields, such that a standard imaging fiber bundle can provide both the high resolution needed to determine tissue health and the wide field of view needed to determine the location within the inspected organ. Our proof of concept device achieves 7∼8  μm resolution in the fovea and an overall field of view of 4.6 mm. Example images and videos show the foveated lens’ capabilities. PMID:22463022

  6. Interactions between Small Heat Shock Protein α-Crystallin and Galectin-Related Interfiber Protein (GRIFIN) in the Ocular Lens†

    PubMed Central

    Barton, Kelly A.; Hsu, Cheng-Da; Petrash, J. Mark

    2013-01-01

    As a member of the small heat shock protein superfamily, α-crystallin has a chaperone-like ability to recognize and bind denatured or unfolded proteins and prevent their aggregation. Recent studies suggest that α-crystallin may also interact with a variety of proteins under native conditions in vitro. To identify potential binding partners for α-crystallin in the intact ocular lens, we conducted cross-linking studies in transgenic mouse lenses designed for overexpression of His-tagged human αA-crystallin. Interacting proteins were copurified with the epitope-tagged crystallin complexes and were identified by tandem mass spectrometry. This approach identified GRIFIN (galectin-related interfiber protein) as a novel binding partner. Consistent with results from cross-linking, GRIFIN subunits copurified with α-crystallin complexes during size exclusion chromatography of nontransgenic mouse lens extracts prepared without chemical cross-linking. Equilibrium binding to GRIFIN was studied using native α-crystallin isolated from calf lenses as well as oligomeric complexes reconstituted from recombinant αA- and αB-crystallin subunits. Calf lens α-crystallin binds GRIFIN with relatively high affinity (Kd=6.5 ± 0.8 μM) at a stoichiometry of 0.25 ± 0.01 GRIFIN monomer/α-crystallin subunit. The binding interaction between α-crystallin and GRIFIN is enhanced up to 5-fold in the presence of 3 mM ATP. These binding data support the hypothesis that GRIFIN is a novel binding partner of α-crystallin in the lens. PMID:19296714

  7. Functional modular contact lens

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Cowan, Melissa; Lähdesmäki, Ilkka; Lingley, Andrew; Otis, Brian; Parviz, Babak A.

    2009-08-01

    Tear fluid offers a potential route for non-invasive sensing of physiological parameters. Utilization of this potential depends on the ability to manufacture sensors that can be placed on the surface of the eye. A contact lens makes a natural platform for such sensors, but contact lens polymers present a challenge for sensor fabrication. This paper describes a microfabrication process for constructing sensors that can be integrated into the structure of a functional contact lens in the future. To demonstrate the capabilities of the process, an amperometric glucose sensor was fabricated on a polymer substrate. The sensor consists of platinum working and counter electrodes, as well as a region of indium-tin oxide (ITO) for glucose oxidase immobilization. An external silver-silver chloride electrode was used as the reference electrode during the characterization experiments. Sensor operation was validated by hydrogen peroxide measurements in the 10- 20 μM range and glucose measurements in the 0.125-20 mM range.

  8. Triamterene crystalline nephropathy.

    PubMed

    Nasr, Samih H; Milliner, Dawn S; Wooldridge, Thomas D; Sethi, Sanjeev

    2014-01-01

    Medications can cause a tubulointerstitial insult leading to acute kidney injury through multiple mechanisms. Acute tubular injury, a dose-dependent process, occurs due to direct toxicity on tubular cells. Acute interstitial nephritis characterized by interstitial inflammation and tubulitis develops from drugs that incite an allergic reaction. Other less common mechanisms include osmotic nephrosis and crystalline nephropathy. The latter complication is rare but has been associated with several drugs, such as sulfadiazine, indinavir, methotrexate, and ciprofloxacin. Triamterene crystalline nephropathy has been reported only rarely, and its histologic characteristics are not well characterized. We report 2 cases of triamterene crystalline nephropathy, one of which initially was misdiagnosed as 2,8-dihydroxyadenine crystalline nephropathy. PMID:23958399

  9. Intraocular lens employed for cataract surgery

    NASA Astrophysics Data System (ADS)

    Roszkowska, A. M.; Torrisi, L.

    2014-04-01

    The aim of this paper is to illustrate the techniques of cataract surgery with implantation of intraocular lenses and some physical properties of the used materials. The new technology, coupled with extensive experience and the studied cases, permits to increase the standardization and accuracy of the engravings, by reducing the use and handling of surgical instruments inside the eye. At present it is possible to replace the cataract with crystalline lenses based on biopolymers such as PMMA, silicone, acrylic hydrophilic and hydrophobic acrylic. These materials are increasingly able to replace the natural lens and to ensure the fully functional of the eye. The role of femtosecond lasers in cataract surgery, to assist or replace several aspects of the manual cataract surgery, are discussed.

  10. Binary-liquid phase separation of lens protein solutions.

    PubMed Central

    Broide, M L; Berland, C R; Pande, J; Ogun, O O; Benedek, G B

    1991-01-01

    We have determined the coexistence curves (plots of phase-separation temperature T versus protein concentration C) for aqueous solutions of purified calf lens proteins. The proteins studied, calf gamma IIIa-, gamma IIIb-, and gamma IVa-crystallin, have very similar amino acid sequences and three-dimensional structures. Both ascending and descending limbs of the coexistence curves were measured. We find that the coexistence curves for each of these proteins and for gamma II-crystallin can be fit, near the critical point, to the function /(Cc-C)/Cc/ = A [(Tc - T)/Tc]beta, where beta = 0.325, Cc is the critical protein concentration in mg/ml, Tc is the critical temperature for phase separation in K, and A is a parameter that characterizes the width of the coexistence curve. We find that A and Cc are approximately the same for all four coexistence curves (A = 2.6 +/- 0.1, Cc = 289 +/- 20 mg/ml), but that Tc is not the same. For gamma II- and gamma IIIb-crystallin, Tc approximately 5 degrees C, whereas for gamma IIIa- and gamma IVa-crystallin, Tc approximately 38 degrees C. By comparing the published protein sequences for calf, rat, and human gamma-crystallins, we postulate that a few key amino acid residues account for the division of gamma-crystallins into low-Tc and high-Tc groups. Images PMID:2062844

  11. Crystalline Silica Primer

    USGS Publications Warehouse

    Staff- Branch of Industrial Minerals

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  12. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  13. The Optimal Gravitational Lens Telescope

    NASA Astrophysics Data System (ADS)

    Surdej, J.; Delacroix, C.; Coleman, P.; Dominik, M.; Habraken, S.; Hanot, C.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sadibekova, T.; Sluse, D.

    2010-05-01

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  14. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  15. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  16. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  17. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  18. Development of lens sutures.

    PubMed

    Kuszak, Jer R; Zoltoski, Rebecca K; Tiedemann, Clifford E

    2004-01-01

    Cylindrical map projections (CMPs) have been used for centuries as an effective means of plotting the features of a 3D spheroidal surfaces (e.g. the earth) on a 2D rectangular map. We have used CMPs to plot primate fiber cell organization from selected growth shells as a function of growth, development and aging. Lens structural parameters and features were derived from slit-lamp, light and transmission and scanning electron micrographs. This information was then used to create CMPs of lenses that were then correlated with azimuthal map projections (AMPs; projections that are radially symmetric around a central point [the poles]) to reveal different suture patterns during distinct time periods. In this manner, both lens fiber and suture branch locations are defined by degrees of longitude and latitude. CMPs and AMPs confirm that throughout defined periods of development, growth and ageing, increasingly complex suture patterns are formed by the precise ordering of straight and opposite end curvature fibers. However, the manner in which additional suture branches are formed anteriorly and posteriorly is not identical. Anteriorly, new branches are added between extant branches. Posteriorly, pairs of new branches are formed that progressively overlay extant branches. The advantage of using CMPs is that the shape and organization of every fiber in a growth shell can be observed in a single image. Thus, the use of CMPs to plot primate fiber cell organization has revealed more complex aspects of fiber formation that may explain, at least in part, changes in lens optical quality as a function of age and pathology. In addition, more accurate measurements of fiber length will be possible by incorporating the latitudinal and longitudinal locations of fibers. PMID:15558480

  19. Lens of Eye Dosimetry

    SciTech Connect

    Mallett, Michael Wesley

    2015-03-23

    An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.

  20. The 2014 IODC lens design problem: the Cinderella lens

    NASA Astrophysics Data System (ADS)

    Juergens, Richard C.

    2014-12-01

    The lens design problem for the 2014 IODC is to design a 100 mm focal length lens in which all the components of the lens can be manufactured from ten Schott N-BK7 lens blanks 100 mm in diameter x 30 mm thick. The lens is used monochromatically at 587.56 nm. The goal of the problem is to maximize the product of the entrance pupil diameter and the semi-field of view while holding the RMS wavefront error to <= 0.070 wave within the field of view. There were 45 entries from 13 different countries. Four different commercial lens design programs were used, along with six custom, in-house programs. The number of lens elements in the entries ranged from 10 to 52. The winning entry from Jon Ehrmann had 25 lens elements, and had an entrance pupil diameter of 33.9 mm and a semi-field of view of 62.5° for a merit function product of 2,119.

  1. Search for conserved amino acid residues of the [Formula: see text]-crystallin proteins of vertebrates.

    PubMed

    Shiliaev, Nikita G; Selivanova, Olga M; Galzitskaya, Oxana V

    2016-04-01

    [Formula: see text]-crystallin is the major eye lens protein and a member of the small heat-shock protein (sHsp) family. [Formula: see text]-crystallins have been shown to support lens clarity by preventing the aggregation of lens proteins. We performed the bioinformatics analysis of [Formula: see text]-crystallin sequences from vertebrates to find conserved amino acid residues as the three-dimensional (3D) structure of [Formula: see text]-crystallin is not identified yet. We are the first who demonstrated that the N-terminal region is conservative along with the central domain for vertebrate organisms. We have found that there is correlation between the conserved and structured regions. Moreover, amyloidogenic regions also correspond to the structured regions. We analyzed the amino acid composition of [Formula: see text]-crystallin A and B chains. Analyzing the occurrence of each individual amino acid residue, we have found that such amino acid residues as leucine, serine, lysine, proline, phenylalanine, histidine, isoleucine, glutamic acid, and valine change their content simultaneously in A and B chains in different classes of vertebrates. Aromatic amino acids occur more often in [Formula: see text]-crystallins from vertebrates than on the average in proteins among 17 animal proteomes. We obtained that the identity between A and B chains in the mammalian group is 0.35, which is lower than the published 0.60. PMID:26972563

  2. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  3. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  4. Lens Densitometry after Corneal Cross-linking in Patients with Keratoconus Using a Scheimpflug Camera

    PubMed Central

    Baradaran-Rafii, Alireza; Amiri, Mohammad Aghazazeh; Mohaghegh, Sahar; Zarei-Ghanavati, Mehran

    2015-01-01

    Purpose: To evaluate changes in crystalline lens densitometry following corneal cross-linking (CXL) in keratoconic patients. Methods: In a quasi-experimental study, three-dimensional lens densitometry was performed using the Pentacam Scheimpflug camera (Oculus Optikgerate GmbH, Wetzlar, Germany) at baseline and six months after CXL. Densitometry was performed in a fixed area of 2 inch × 1 inch of the anterior capsule and anterior lens cortex. The subject group included patients with progressive keratoconus who underwent CXL (n = 40) and the control group was comprised of aged-matched patients with non-progressive keratoconus (n = 36). Results: Mean age of the case and control groups was 25.8 ± 4.0 and 25.0 ± 4.1 years, respectively (P = 0.392). Mean lens density in the CXL group was 6.68% ± 0.58% at baseline and 6.77% ± 0.53% at the last visit (P = 0.352). Corresponding figures in the control group were 6.53% ± 0.27% and 6.39% ± 0.31%, respectively (P = 0.213). There was no significant difference between the study groups at baseline or six months later (P = 0.96). Conclusion: In this short term study with six months’ follow-up, we observed no significant impact on lens density following exposure of the crystalline lens to ultraviolet A and riboflavin free radicals in the CXL procedure. PMID:26425312

  5. Light scattering studies of human crystallin proteins and loss of transparency in cataracts

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin; Muthukumar, Murugappan

    2012-02-01

    The human lens derives its transparency and refractive index from the interactions between crystallin proteins (α-, β-, γ-crystallin). When the ordering of these crystallins is perturbed, insoluble macromolecular aggregates of crystalline proteins can occur resulting in cataracts. Using dynamic light scattering (DLS) and fast protein liquid chromatography (FPLC), we have conducted a detailed study of the formation of these aggregates. Our DLS results on γ-crystallin solutions exhibit the occurrence of slow and fast modes demonstrating the spontaneous formation of aggregates (hydrodynamic radius, Rh ˜ 200 nm) in equilibrium with monomeric proteins (Rh ˜ 3 nm). On the other hand, DLS results on α-crystallin solutions clearly demonstrate that α-crystallin molecules exist as a single population (Rh ˜ 18 nm). Our results on mixtures of α- and γ-crystallin solutions show that the α-crystallin tends to demolish the clumps of γ-crystallin. Our exploration of environmental effecs (temperature, pH, salt concentration) has revealed the macromolecular mechanism of dissolution of crystallin aggregates, providing a strategy for cataract prevention and insight into protein-protein interactions.

  6. Panoramic lens applications revisited

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2008-04-01

    During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope...), remote sensing (pipe inspection, crime scene investigation, archeology...), multimedia (hemispheric projector, panoramic image...). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360° hemispheric area.

  7. A Reconfigurable Plasmofluidic Lens

    PubMed Central

    Zhao, Chenglong; Liu, Yongmin; Zhao, Yanhui; Fang, Nicholas; Huang, Tony Jun

    2014-01-01

    Plasmonics provides an unparalleled method for manipulating light beyond the diffraction limit, making it a promising technology for the development of ultra-small, ultra-fast, power-efficient optical devices. To date, the majority of plasmonic devices are in the solid state and have limited tunability or configurability. Moreover, individual solid-state plasmonic devices lack the ability to deliver multiple functionalities. Here we utilize laser-induced surface bubbles on a metal film to demonstrate, for the first time, a plasmonic lens in a microfluidic environment. Our “plasmofluidic lens” device is dynamically tunable and reconfigurable. We record divergence, collimation, and focusing of surface plasmon polaritons using this device. The plasmofluidic lens requires no sophisticated nanofabrication and utilizes only a single low-cost diode laser. Our results show that the integration of plasmonics and microfluidics allows for new opportunities in developing complex plasmonic elements with multiple functionalities, high-sensitivity and high-throughput biomedical detection systems, as well as on-chip, all-optical information processing techniques. PMID:23929463

  8. CRYβA3/A1-Crystallin Knockout Develops Nuclear Cataract and Causes Impaired Lysosomal Cargo Clearance and Calpain Activation

    PubMed Central

    Hegde, Shylaja; Kesterson, Robert A.; Srivastava, Om P.

    2016-01-01

    βA3/A1-crystallin is an abundant structural protein of the lens that is very critical for lens function. Many different genetic mutations have been shown to associate with different types of cataracts in humans and in animal models. βA3/A1-crystallin has four Greek key-motifs that organize into two crystallin domains. It shown to bind calcium with moderate affinity and has putative calcium-binding site. Other than in the lens, βA3/A1 is also expressed in retinal astrocytes, retinal pigment epithelial (RPE) cells, and retinal ganglion cells. The function of βA3/A1-crystallin in the retinal cell types is well studied; however, a clear understanding of the function of this protein in the lens has not yet been established. In the current study, we generated the βA3/A1-crystallin knockout (KO) mouse and explored the function of βA3/A1-crystallin in lens development. Our results showed that βA3-KO mice develop congenital nuclear cataract and exhibit persistent fetal vasculature condition. At the cellular level KO lenses show defective lysosomal clearance and accumulation of nuclei, mitochondria, and autophagic cargo in the outer cortical region of the lens. In addition, the calcium level and the expression and activity of calpain-3 were increased in KO lenses. Taken together, these results suggest the lack of βA3-crystallin function in lenses, alters calcium homeostasis which in turn causes lysosomal defects and calpain activation. These defects are responsible for the development of nuclear cataract in KO lenses. PMID:26863613

  9. LENs: The Learning Exchange Networks.

    ERIC Educational Resources Information Center

    Hedley, Pat

    LENs (Learning Exchange Networks) modules and seminars are a series of self-directed learning resources that are written by and for faculty. The intent of the modules and seminars is to enhance faculty learning in the fundamentals of curriculum design and adult learning. The original LENs program was developed at Humber College, Toronto, Ontario,…

  10. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    NASA Astrophysics Data System (ADS)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  11. Characteristics of corneal lens chitin in dragonfly compound eyes.

    PubMed

    Kaya, Murat; Sargin, Idris; Al-Jaf, Ivan; Erdogan, Sevil; Arslan, Gulsin

    2016-08-01

    Chitin in the compound eyes of arthropods serves as a part of the visual system. The quality of chitin in such highly specialised body parts deserves more detailed examination. Chitin in the corneal (ommatidial) lenses of dragonfly (Sympetrum fonscolombii) compound eyes was isolated by using the classical chemical method. The chitin content of the corneal lenses was determined to be quite high (20.3±0.85%). The FT-IR analysis showed that corneal lens chitin was in the α-form as found in all arthropod species where mechanical strength is required. The surface morphology analysis by scanning electron microscopy revealed that the outer part of corneal lenses consisted of long chitin fibrils with regular arrays of papillary structures while the smoother inner part had concentric lamellated chitin formation with shorter chitin nanofibrils. Chitinase enzymatic digestion studies, elemental analysis results and the degree of acetylation value showed the purity of chitin samples from corneal lens. The maximum degradation temperature value of the corneal lens chitin was observed at 369.2°C. X-ray analysis revealed that corneal lens chitin has high crystallinity index; 96.4%. Identification of chitin found in ommaditia of insect compound eyes can provide insights into insect vision and chitin-based optical material design studies. PMID:27109757

  12. DNA methylation as a regulatory mechanism in rat gamma-crystallin gene expression.

    PubMed Central

    Peek, R; Niessen, R W; Schoenmakers, J G; Lubsen, N H

    1991-01-01

    We have investigated the methylation state of the rat gamma-crystallin genes in DNA from lens cells at different developmental stages as well as from kidney and heart cells. A clear correlation between the extent of demethylation of the promoter and 5' gene regions and the expression of these genes was observed. No change in the methylation state of the far upstream or 3' regions of the genes was seen. The demethylation of the promoter region was shown to occur during the differentiation from the lens epithelial to the lens fiber cell. The effect of cytosine methylation on gamma-crystallin promoter activity was tested by measuring gamma-crystallin promoter/chloramphenicol acetyltransferase fusion gene expression after in vitro primed repair synthesis of the promoter region in the presence of either dCTP or 5mdCTP. The hemimethylated promoter was no longer capable of promoting high CAT activity after introduction into lens-like cells. Taken together, our data suggest that DNA demethylation may be the determining step in the developmental stage-specific expression of the rat gamma-crystallin genes. Images PMID:2011513

  13. Spinodal surface of a free energy model for eye lens protein mixtures: Relevance for cataracts

    NASA Astrophysics Data System (ADS)

    Dorsaz, N.; Thurston, G.; Stradner, A.; Schurtenberger, P.; Foffi, G.

    2009-01-01

    We studied the phase behavior of a model binary mixture of eye lens crystallin proteins using first-order thermodynamic perturbation theory. The instability boundary, or spinodal surface, was found to be very sensitive to the strength of the attraction between the two proteins, and also to respond to this interprotein attraction strength in a non-monotonic fashion. In particular, in the case of either weak or strong attractions, these eye lens solutions become thermodynamicaily unstable. Interestingly, attraction strengths that correspond closely to those of proteins isolated from the living lens fall right within the stable region of the phase diagram. This non-monotonic stability suggests new molecular mechanisms for eye lens opacification in cataract.

  14. Refractive lens exchange in modern practice: when and when not to do it?

    PubMed

    Alió, Jorge L; Grzybowski, Andrzej; Romaniuk, Dorota

    2014-01-01

    Cataract surgery due to advances in small incision surgery evolved from a procedure concerned with the primary focus on the safe removal of cataractous lens to a procedure focused on the best possible postoperative refractive result. As the outcomes of cataract surgery became better, the use of lens surgery as a refractive modality in patients without cataracts has increased in interest and in popularity. Removal of the crystalline lens for refractive purposes or refractive lens exchange (RLE) presents several advantages over corneal refractive surgery. Patients with high degrees of myopia, hyperopia and astigmatism are still not good candidates for laser surgery. Moreover, presbyopia can currently only be corrected with monovision or reading spectacles. RLE supplemented with multifocal or accommodating intraocular lenses (IOLs) in combination with corneal astigmatic procedures might address all refractive errors including presbyopia, and eliminate the future need for cataract surgery. PMID:26605356

  15. Evaluation of intraocular lens implant location in the eyeball basing on the Purkinje images

    NASA Astrophysics Data System (ADS)

    Jóźwik, A.; Siedlecki, D.; Zajac, M.

    2012-01-01

    Intraocular lens (IOL) is an artificial implant substituting natural crystalline lens which is non-transparent due to cataract. Incorrect location of the IOL in the eyeball (e.g. its shift or tilt) causes significant deterioration of patient's vision. The analysis of Purkinje images (i.e. reflections from successive refracting surfaces in the eye) enables to determine the real IOL location and thus helps in evaluating the retinal image quality. The experimental setup for Purkinje images recording consists of illuminator, composed of a number of infrared LEDs, telecentric lens and detector (CCD camera). Analysis of mutual position of particular reflections enables to evaluate the lens location in respect to the corneal axis. The actual measurements are realized on artificial eye model, what allows to estimate the precision of the algorithm applied in the calculations. In the future the experimental set-up will be adapted to measure the eyes of real patients.

  16. A Crystallin Gene Network in the Mouse Retina

    PubMed Central

    Templeton, Justin P.; Wang, XiangDi; Freeman, Natalie E.; Ma, Zhiwei; Lu, Anna; Hejtmancik, Fielding; Geisert, Eldon E.

    2013-01-01

    The present study was designed to examine the regulation of crystallin genes and protein in the mouse retina using the BXD recombinant inbred (RI) strains. Illumina Sentrix BeadChip Arrays (MouseWG-6v2) were used to analyze mRNA levels in 75 BXD RI strains along with the parental strains (C57Bl/6J and DBA/2J), and the reciprocal crosses in the Hamilton Eye Institute (HEI) Retina Dataset (www.genenetwork.org). Protein levels were investigated using immunoblots to quantify levels of proteins and indirect immunohistochemistry to define the distribution of protein. Algorithms in the Genomatix program were used to identify transcription factor binding sites common to the regulatory sequences in the 5′ regions of co-regulated set of crystallin and other genes as compared to a set of control genes. As subset of genes, including many encoding lens crystallins is part of a tightly co-regulated network that is active in the retina. Expression of this crystallin network appears to be binary in nature, being expressed either at relatively low levels or being highly upregulated. Relative to a control set of genes, the 5′ regulatory sequences of the crystallin network genes show an increased frequency of a set of common transcription factor-binding sites, the most common being those of the Maf family. Chromatin immunoprecipitation of human lens epithelial cells (HLEC) and rat retinal ganglion cells (RGC) confirmed the functionality of these sites, showing that MafA binds the predicted sites of CRYGA and CRYGD in HLE and CRYAB, CRYGA, CRYBA1, and CRYBB3 in RGC cells. In the retina there is a highly correlated group of genes containing many members of the α- β- and γ-crystallin families. These genes can be dramatically upregulated in the retina. One transcription factor that appears to be involved in this coordinated expression is the MAF family transcription of factors associated with both lens and extralenticular expression of crystallin genes. PMID:23978599

  17. Shape optimization of an accommodative intra-ocular lens

    NASA Astrophysics Data System (ADS)

    Jouve, François; Hanna, Khalil

    2005-03-01

    Cataract surgery consists in replacing the clouded or opacified crystalline lens by an Intra-Ocular Lens (IOL) having the same mean dioptrical power. Clear vision is then achieved at a given distance and glasses are needed in many situations. A new kind of IOL, potentially accommodative, is proposed. Its design is based on the deep understanding of the accommodation mechanism and on the mathematical modeling and the numerical simulation of the IOL's comportment in vivo. A preliminary version of this IOL is now commercialized by the company HumanOptics under the name '1CU'. In a second phase, shape optimization techniques equipped with strong mechanical and physiological constraints, are used to enhance the IOL performance and build a new design. To cite this article: F. Jouve, K. Hanna, C. R. Mecanique 333 (2005).

  18. Identification of hydrogen peroxide oxidation sites of alpha A- and alpha B-crystallins.

    PubMed

    Smith, J B; Jiang, X; Abraham, E C

    1997-02-01

    The alpha-crystallins are the most abundant structural proteins of the lens and, because of their chaperone activity, contribute to the solubility of the other crystallins. With aging, the lens crystallins undergo a variety of modifications which correlate with a loss of solubility and the development of cataract. A recent study demonstrating that alpha-crystallins exposed in vitro to FeCl3 and H2O2 exhibit decreased chaperone activity, implicates metal catalyzed oxidations of alpha-crystallins in this loss of solubility. The present study has determined that alpha-crystallins incubated with FeCl3 and H2O2 are modified by the nearly complete oxidation of all methionine residues to methionine sulfoxide, with no other detectable reaction products. The modifications were identified from the molecular weights of peptides formed by enzymatic digestion of the alpha-crystallins and located by tandem mass spectrometric analysis of the fragmentation pattern of the mass spectra of the fragments from peptides with oxidized methionine is loss of 64 Da, which corresponds to loss of CH3SOH from the methionine sulfoxide. These fragments are useful in identifying peptides that include oxidized methionine residues. PMID:9257122

  19. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  20. Pediatric genetic disorders of lens

    PubMed Central

    Nihalani, Bharti R.

    2014-01-01

    Pediatric genetic disorders of lens include various cataractous and non-cataractous anomalies. The purpose of this review is to help determine the genetic cause based on the lens appearance, ocular and systemic associations. Children with bilateral cataracts require a comprehensive history, ophthalmic and systemic examination to guide further genetic evaluation. With advancements in genetics, it is possible to determine the genetic mutations and assess phenotype genotype correlation in different lens disorders. The genetic diagnosis helps the families to better understand the disorder and develop realistic expectations as to the course of their child's disorder.

  1. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation

    PubMed Central

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P.; Thiels, Cornelius A.; Bechtle, Chad A.; Garcia, Claudia M.; Zhang, Huiming; Yu, Kai; Ornitz, David M.; Beebe, David C.; Robinson, Michael L.

    2008-01-01

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27kip1 and p57kip2, increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and α-, β- and γ-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly. PMID:18455718

  2. Lens surface roughening for tears invariant contact lens performance

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Azogui, Jonathan; Limon, Ofer; Rudnitsky, Arkady

    2014-03-01

    In many extended depth of focus diffractive or interferometry based ophthalmic contact lenses the time varied tears layers affect the ophthalmic functionality of the lens. In this paper we present a new approach involving nano pillars realized inside the grooves of a contact lens aiming to implement any type of extended depth of focus or diffractive optical element for ophthalmic applications in order to solve the micro fluidics layer uncertainty within the micro sag features.

  3. Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro

    NASA Astrophysics Data System (ADS)

    Tsui, Po-Hsiang; Huang, Chih-Chung; Chang, Chien-Cheng; Wang, Shyh-Hau; Shung, K. Kirk

    2007-11-01

    A cataract is a clouding of the crystalline lens that reduces the amount of incoming light and impairs visual perception. Phacoemulsification is the most common surgical method for treating advanced cataracts, and determining the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the feasibility of using an ultrasonic parametric image based on the Nakagami distribution to quantify the lens hardness. Young's modulus was measured in porcine lenses in which cataracts had been artificially induced. High-frequency ultrasound at 35 MHz was used to obtain the B-mode and Nakagami images of the cataract lenses. The averaged integrated backscatter and Nakagami parameters were also estimated in the region of interest. The experimental results show that the conventional B-scan and integrated backscatter are inadequate for quantifying the lens hardness, whereas Nakagami imaging allows different degrees of lens hardening to be distinguished both globally and locally based on the concentration of fiber coemption therein.

  4. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  5. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  6. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  7. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  8. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  9. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  10. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...