Probability of lensing magnification by cosmologically distributed galaxies
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1993-01-01
We present the analytical formulae for computing the magnification probability caused by cosmologically distributed galaxies. The galaxies are assumed to be singular, truncated-isothermal spheres without both evolution and clustering in redshift. We find that, for a fixed total mass, extended galaxies produce a broader shape in the magnification probability distribution and hence are less efficient as gravitational lenses than compact galaxies. The high-magnification tail caused by large galaxies is well approximated by an A exp -3 form, while the tail by small galaxies is slightly shallower. The mean magnification as a function of redshift is, however, found to be independent of the size of the lensing galaxies. In terms of the flux conservation, our formulae for the isothermal galaxy model predict a mean magnification to within a few percent with the Dyer-Roeder model of a clumpy universe.
On the probability of magnification by cosmologically distributed gravitational lenses
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1993-01-01
An analytical method for calculating the statistical properties of source magnification caused by gravitational lenses randomly distributed throughout the universe is presented. Two lenses are considered at different redshifts to show that such an assumption is a statistically adequate approximation. The derived general formulas are applied to point-mass lenses with both point and extended sources. Analytical results of the magnification probability for point sources are accurate to within 10 percent in comparison with the available numerical simulations to moderate redshifts of less than about 2. In terms of the flux conservation, the results are accurate to within 18 percent at a redshift of 6 with respect to the Dyer-Roeder model of a clumpy universe. It is concluded that the present formulas are adequate for statistical studies of magnification by random gravitational lenses on cosmological scales.
PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION
Takahashi, Ryuichi; Oguri, Masamune; Sato, Masanori; Hamana, Takashi
2011-11-20
We perform high-resolution ray-tracing simulations to investigate probability distribution functions (PDFs) of lensing convergence, shear, and magnification on distant sources up to the redshift of z{sub s} = 20. We pay particular attention to the shot noise effect in N-body simulations by explicitly showing how it affects the variance of the convergence. We show that the convergence and magnification PDFs are closely related to each other via the approximate relation {mu} = (1 - {kappa}){sup -2}, which can reproduce the behavior of PDFs surprisingly well up to the high magnification tail. The mean convergence measured in the source plane is found to be systematically negative, rather than zero as often assumed, and is correlated with the convergence variance. We provide simple analytical formulae for the PDFs, which reproduce simulated PDFs reasonably well for a wide range of redshifts and smoothing sizes. As explicit applications of our ray-tracing simulations, we examine the strong-lensing probability and the magnification effects on the luminosity functions of distant galaxies and quasars.
Hirata, Christopher M.; Cutler, Curt
2010-06-15
Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2-3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.
The geometry of gravitational lensing magnification
NASA Astrophysics Data System (ADS)
Aazami, Amir Babak; Werner, Marcus C.
2016-02-01
We present a definition of unsigned magnification in gravitational lensing valid on arbitrary convex normal neighborhoods of time oriented Lorentzian manifolds. This definition is a function defined at any two points along a null geodesic that lie in a convex normal neighborhood, and foregoes the usual notions of lens and source planes in gravitational lensing. Rather, it makes essential use of the van Vleck determinant, which we present via the exponential map, and Etherington's definition of luminosity distance for arbitrary spacetimes. We then specialize our definition to spacetimes, like Schwarzschild's, in which the lens is compact and isolated, and show that our magnification function is monotonically increasing along any geodesic contained within a convex normal neighborhood.
Diagnosing Multiplicative Error with Lensing Magnification of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Zhang, Pengjie
2015-06-01
Weak lensing causes spatially coherent fluctuations in the flux of Type Ia supernovae (SNe Ia). This lensing magnification allows for weak lensing measurement independent of cosmic shear. It is free of the shape measurement errors associated with cosmic shear and can therefore be used to diagnose and calibrate multiplicative error. Although this lensing magnification is difficult to accurately measure in auto correlation, its cross correlation with cosmic shear and galaxy distribution in an overlapping area can be measured to a significantly higher accuracy. Therefore, these cross correlations can put useful constraints on multiplicative error, and the obtained constraint is free of cosmic variance in the weak lensing field. We present two methods implementing this idea and estimate their performances. We find that, with ˜1 million SNe Ia that can be achieved with the proposed D2k survey with the LSST telescope, a multiplicative error of ˜0.5% for source galaxies at {{z}s}˜ 1 can be detected and a larger multiplicative error can be corrected to the level of 0.5%. It is therefore a promising approach to control the multiplicative error to the sub-percent level required for stage IV projects. The combination of the two methods even has the potential to diagnose and calibrate galaxy intrinsic alignment, which is another major systematic error in cosmic shear cosmology.
BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION
Er Xinzhong; Ge Junqiang; Mao Shude
2013-06-20
We study the lensing magnification effect on background galaxies. Differential magnification due to different magnifications of different source regions of a galaxy will change the lensed composite spectra. The derived properties of the background galaxies are therefore biased. For simplicity, we model galaxies as a superposition of an axis-symmetric bulge and a face-on disk in order to study the differential magnification effect on the composite spectra. We find that some properties derived from the spectra (e.g., velocity dispersion, star formation rate, and metallicity) are modified. Depending on the relative positions of the source and the lens, the inferred results can be either over- or underestimates of the true values. In general, for an extended source at strong lensing regions with high magnifications, the inferred physical parameters (e.g., metallicity) can be strongly biased. Therefore, detailed lens modeling is necessary to obtain the true properties of the lensed galaxies.
Magnification bias corrections to galaxy-lensing cross-correlations
Ziour, Riad; Hui, Lam
2008-12-15
Galaxy-galaxy or galaxy-quasar lensing can provide important information on the mass distribution in the Universe. It consists of correlating the lensing signal (either shear or magnification) of a background galaxy/quasar sample with the number density of a foreground galaxy sample. However, the foreground galaxy density is inevitably altered by the magnification bias due to the mass between the foreground and the observer, leading to a correction to the observed galaxy-lensing signal. The aim of this paper is to quantify this correction. The single most important determining factor is the foreground redshift z{sub f}: the correction is small if the foreground galaxies are at low redshifts but can become non-negligible for sufficiently high redshifts. For instance, we find that for the multipole l=1000, the correction is above 1%x(5s{sub f}-2)/b{sub f} for z{sub f} > or approx. 0.37, and above 5%x(5s{sub f}-2)/b{sub f} for z{sub f} > or approx. 0.67, where s{sub f} is the number count slope of the foreground sample and b{sub f} its galaxy bias. These considerations are particularly important for geometrical measures, such as the Jain and Taylor ratio or its generalization by Zhang et al. Assuming (5s{sub f}-2)/b{sub f}=1, we find that the foreground redshift should be limited to z{sub f} < or approx. 0.45 in order to avoid biasing the inferred dark energy equation of state w by more than 5%, and that even for a low foreground redshift (<0.45), the background samples must be well separated from the foreground to avoid incurring a bias of similar magnitude. Lastly, we briefly comment on the possibility of obtaining these geometrical measures without using galaxy shapes, using instead magnification bias itself.
Flat liquid crystal diffractive lenses with variable focus and magnification
NASA Astrophysics Data System (ADS)
Valley, Pouria
Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera
MAGNIFICENT MAGNIFICATION: EXPLOITING THE OTHER HALF OF THE LENSING SIGNAL
Huff, Eric M.; Graves, Genevieve J.
2014-01-10
We describe a new method for measuring galaxy magnification due to weak gravitational lensing. Our method makes use of a tight scaling relation between galaxy properties that are modified by gravitational lensing, such as apparent size, and other properties that are not, such as surface brightness. In particular, we use a version of the well-known fundamental plane relation for early-type galaxies. This modified ''photometric fundamental plane'' uses only photometric galaxy properties, eliminating the need for spectroscopic data. We present the first detection of magnification using this method by applying it to photometric catalogs from the Sloan Digital Sky Survey. This analysis shows that the derived magnification signal is within a factor of three of that available from conventional methods using gravitational shear. We suppress the dominant sources of systematic error and discuss modest improvements that may further enhance the lensing signal-to-noise available with this method. Moreover, some of the dominant sources of systematic error are substantially different from those of shear-based techniques. With this new technique, magnification becomes a useful measurement tool for the coming era of large ground-based surveys intending to measure gravitational lensing.
Geometrical interpretation of dioptric blurring and magnification in ophthalmic lenses.
Barbero, Sergio; Portilla, Javier
2015-05-18
Blur and non-uniform magnification are two related undesired effects affecting vision when looking through eyeglasses. We propose a geometrical framework to study the relationship between both effects. Magnification and blur are locally characterized by dioptric and magnification matrices, respectively, which we compute here by using a novel two-ray numerical method. We propose a set of geometrical entities associated with the dioptric and magnification local matrices, which are analyzed in several examples. We prove that there is a strong correlation between such entities (e.g., astigmatism and anamorphic distortion), which, to a certain extent, is maintained even in highly asymmetric lenses. We also show the somewhat anti-intuitive result that the axis of maximal blurring is sometimes close to orthogonal to the axis of maximal distortion. The results provide useful clues for ophthalmic lens design. PMID:26074571
A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES
Schmidt, Fabian; Rhodes, Jason; Leauthaud, Alexie; Tanaka, Masayuki; Massey, Richard; George, Matthew R.; Koekemoer, Anton M.; Finoguenov, Alexis
2012-01-10
Weak lensing is commonly measured using shear through galaxy ellipticities or using the effect of magnification bias on galaxy number densities. Here, we report on the first detection of weak-lensing magnification with a new, independent technique using the distribution of galaxy sizes and magnitudes. These data come for free in galaxy surveys designed for measuring shear. We present the magnification estimator and apply it to an X-ray-selected sample of galaxy groups in the COSMOS Hubble Space Telescope survey. The measurement of the projected surface density {Sigma}(r) is consistent with the shear measurements within the uncertainties and has roughly 40% of the signal to noise of the latter. We discuss systematic issues and challenges to realizing the potential of this new probe of weak lensing.
Computation of Dioptric and Magnification Matrices in Ophthalmic Lenses
NASA Astrophysics Data System (ADS)
Barbero, S.
2014-06-01
The diopter power and magnification matrices characterize the first-order properties of ophthalmic lenses for different gaze directions. Therefore an efficient method to compute them is highly valuable in ophthalmic lens design and optical performance simulations. I present a novel method to numerically compute these matrices in ophthalmic lenses comprising any set of arbitrary surfaces. The method is based on computing one base ray, along the gaze direction, and two rays close to it. These two rays are obtained varying a small parameter that indicates their separation from the base ray. The method was validated comparing the results with a single refractive surface where exact solutions are directly obtained.
Investigations of the focal properties and magnification of multielement electrostatic lenses
NASA Astrophysics Data System (ADS)
Papadovassilakis, Nicolas
We developed a technique for measuring the focal properties and the magnification behaviour oi electrostatic lenses with cylindrical geometry. We applied the method to the study of three-element lenses of various proportions, and we found excellent agreement between our experimental results and a simple theoretical model of lenses with centre elements longer than 1.25 internal lens diameters. We extended our study to lenses with centre element 1 and 0.5 lens diameters where the simple theoretical model is inappropriate but there are detailed calculations on the focal properties and the magnification of such lenses. Again we found very good agreement. Having established a sound measuring technique we studied the properties of lenses with controlled magnification. We constructed a five-element lens whose linear magnification can be varied over a range of 9:1 at a given overall voltage ratio. The same lens can also be operated to give a constant magnification over an extremely wide range (10000:1) of overall voltage ratios. Such a lens can prove a powerful tool in electron spectroscopy for uses in electron guns and as the output lens of monochromators. The potential distribution required for a specific purpose can be obtained simply from design curves. By imposing certain constraints on the focusing voltages of the five-element lens we can form a system with a magnification that depends only on the overall voltage ratio as (Vs/V1)-0.2S and with the property of forming an image at a fixed distance from an object. We have made an experimental study of such a lens and found that a prediction of a simple scaling law for the potentials was valid. We developed two independent methods for measuring the spherical aberration of some of the above lenses. We have measured the third order coefficients Cs, Cso, Cs4 for two and three-element lenses of various proportions and the coefficient Cs for a five-element afocal lens. We have observed fifth order effects for large launching
Probability distributions for the magnification of quasars due to microlensing
NASA Technical Reports Server (NTRS)
Wambsganss, Joachim
1992-01-01
Gravitational microlensing can magnify the flux of a lensed quasar considerably and therefore possibly influence quasar source counts or the observed quasar luminosity function. A large number of distributions of magnification probabilities due to gravitational microlensing for finite sources are presented, with a reasonable coverage of microlensing parameter space (i.e., surface mass density, external shear, mass spectrum of lensing objects). These probability distributions were obtained from smoothing two-dimensional magnification patterns with Gaussian source profiles. Different source sizes ranging from 10 exp 14 cm to 5 x 10 exp 16 cm were explored. The probability distributions show a large variety of shapes. Coefficients of fitted slopes for large magnifications are presented.
Caustic-induced features in microlensing magnification probability distributions
NASA Technical Reports Server (NTRS)
Rauch, Kevin P.; Mao, Shude; Wambsganss, Joachim; Paczynski, Bohdan
1992-01-01
Numerical simulations have uncovered a previously unrecognized 'bump' in the macroimage magnification probabilities produced by a planar distribution of point masses. The result could be relevant to cases of microlensing by star fields in single galaxies, for which this lensing geometry is an excellent approximation. The bump is produced by bright pairs of microimages formed by sources lying near the caustics of the lens. The numerically calculated probabilities for the magnifications in the range between 3 and 30 are significantly higher than those given by the asymptotic relation derived by Schneider. The bump present in the two-dimensional lenses appears not to exist in the magnification probability distribution produced by a fully three-dimensional lens.
Magnification relations for Kerr lensing and testing cosmic censorship
Werner, M. C.; Petters, A. O.
2007-09-15
A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely, the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m>1 indicates a naked singularity, a most interesting application would be a test of the cosmic censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.
Gravitational lens equation for embedded lenses; magnification and ellipticity
Chen, B.; Kantowski, R.; Dai, X.
2011-10-15
We give the lens equation for light deflections caused by point mass condensations in an otherwise spatially homogeneous and flat universe. We assume the signal from a distant source is deflected by a single condensation before it reaches the observer. We call this deflector an embedded lens because the deflecting mass is part of the mean density. The embedded lens equation differs from the conventional lens equation because the deflector mass is not simply an addition to the cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to compare our results with standard linear lensing theory. We also compute analytic expressions for the lowest order corrections to image amplifications and distortions caused by incorporating the lensing mass into the mean. We use these results to estimate the effect of embedding on strong lensing magnifications and ellipticities and find only small effects, <1%, contrary to what we have found for time delays and for weak lensing, {approx}5%.
Virbhadra, K. S.; Keeton, C. R.
2008-06-15
We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.
NASA Astrophysics Data System (ADS)
Bauer, Anne H.; Seitz, Stella; Jerke, Jonathan; Scalzo, Richard; Rabinowitz, David; Ellman, Nancy; Baltay, Charles
2011-05-01
We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey (SDSS), due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUEST Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R 200) from the nearest cluster; our measurements are consistent with expectations assuming Navarro-Frenk-White cluster profiles, particularly after accounting for the known uncertainty in the clusters' centers. Variability-based lensing measurements are a valuable complement to shape-based techniques because their systematic errors are very different, and also because the variability measurements are amenable to photometric errors of a few percent and to depths seen in current wide-field surveys. Given the volume data of the expected from current and upcoming surveys, this new technique has the potential to be competitive with weak lensing shear measurements of large-scale structure.
Bauer, Anne H.; Jerke, Jonathan; Scalzo, Richard; Rabinowitz, David; Ellman, Nancy; Baltay, Charles
2011-05-10
We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey (SDSS), due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUEST Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R{sub 200}) from the nearest cluster; our measurements are consistent with expectations assuming Navarro-Frenk-White cluster profiles, particularly after accounting for the known uncertainty in the clusters' centers. Variability-based lensing measurements are a valuable complement to shape-based techniques because their systematic errors are very different, and also because the variability measurements are amenable to photometric errors of a few percent and to depths seen in current wide-field surveys. Given the volume data of the expected from current and upcoming surveys, this new technique has the potential to be competitive with weak lensing shear measurements of large-scale structure.
A PLANETARY LENSING FEATURE IN CAUSTIC-CROSSING HIGH-MAGNIFICATION MICROLENSING EVENTS
Chung, Sun-Ju; Hwang, Kyu-Ha; Ryu, Yoon-Hyun; Lee, Chung-Uk E-mail: kyuha@kasi.re.kr E-mail: leecu@kasi.re.kr
2012-05-20
Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this investigation, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.
High-magnification zoom lenses for 3- to 5-μm applications
NASA Astrophysics Data System (ADS)
Sinclair, R. Lawrence
1998-08-01
Over the past twenty years numerous papers and patents have reported on the design of infrared zoom lenses for a variety of civilian and military applications. The vast majority of these lenses have been afocal 8 - 12 micrometer zoom lenses with magnification ratios of five to twenty. With the advancement of 3 - 5 micrometer staring focal plane array technology a growing demand has emerged for a compact imaging 3 - 5 micrometer zoom lens. To meet this demand a variety of such zoom lenses have been designed which support image formats of over 10 mm diagonal. In this paper the preliminary design of a high magnification 3 - 5 micrometer zoom lens is described. Infrared system modeling, detailed lens performance and manufacturing issues are reviewed.
A generalized method for measuring weak lensing magnification with weighted number counts
NASA Astrophysics Data System (ADS)
Gillis, Bryan R.; Taylor, Andy N.
2016-03-01
We present a derivation of a generalized optimally weighted estimator for the weak lensing magnification signal, including a calculation of errors. With this estimator, we present a local method for optimally estimating the local effects of magnification from weak gravitational lensing, using a comparison of number counts in an arbitrary region of space to the expected unmagnified number counts. We show that when equivalent lens and source samples are used, this estimator is simply related to the optimally weighted correlation function estimator used in past work and vice-versa, but this method has the benefits that it can calculate errors with significantly less computational time, that it can handle overlapping lens and source samples, and that it can easily be extended to mass-mapping. We present a proof-of-principle test of this method on data from the Canada-France-Hawaii Telescope Lensing Survey, showing that its calculated magnification signals agree with predictions from model fits to shear data. Finally, we investigate how magnification data can be used to supplement shear data in determining the best-fitting model mass profiles for galaxy dark matter haloes. We find that at redshifts greater than z ˜ 0.6, the inclusion of magnification can often significantly improve the constraints on the components of the mass profile which relate to galaxies' local environments relative to shear alone, and in high-redshift low- and medium-mass bins, it can have a higher signal-to-noise than the shear signal.
Galactic Distribution of Planets From High-Magnification Microlensing Events
NASA Astrophysics Data System (ADS)
Gould, Andrew; Yee, Jennifer; Carey, Sean
2015-10-01
We will use Spitzer to measure microlens parallaxes for ~14 microlensing events that are high-magnification (as seen from Earth), in order to determine the Galactic distribution of planets. Simultaneous observations from Spitzer and Earth yield parallaxes because they are separated by ~1 AU, which is of order the size of the Einstein radius projected on the observer plane. Hence, Earth and Spitzer see substantially different lightcurves for the same event. These Spitzer parallaxes enable measurements of the distances to the lenses (and their masses), which is a crucial element for measuring the Galactic distribution of planets. High-mag events are exceptionally sensitive to planets: Gould+ (2010) detected 6 planets from 13 high-mag events. However, previously it was believed impossible to measure their parallaxes using Spitzer: scheduling constraints imply a 3-10 day delay from event recognition to first observation, while high-mag events are typically recognized only 1-2 days before peak. By combining aggressive observing protocols, a completely new photometry pipeline, and new mathematical techniques, we successfully measured parallaxes for 7 events with peak magnification A>100 and another ~7 with 50magnification). These ~4 planets represent significant progress toward the ~12 necessary to measure the Galactic distribution. All lightcurves will be reduced using our customized software and then made public (unrestricted use), within 2 months of the completion of observations (as we did for our 2015 observations).
Correcting the z ˜ 8 Galaxy Luminosity Function for Gravitational Lensing Magnification Bias
NASA Astrophysics Data System (ADS)
Mason, Charlotte A.; Treu, Tommaso; Schmidt, Kasper B.; Collett, Thomas E.; Trenti, Michele; Marshall, Philip J.; Barone-Nugent, Robert; Bradley, Larry D.; Stiavelli, Massimo; Wyithe, Stuart
2015-05-01
We present a Bayesian framework to account for the magnification bias from both strong and weak gravitational lensing in estimates of high-redshift galaxy luminosity functions (LFs). We illustrate our method by estimating the z ˜ 8 UV LF using a sample of 97 Y-band dropouts (Lyman break galaxies) found in the Brightest of Reionizing Galaxies (BoRG) survey and from the literature. We find the LF is well described by a Schechter function with characteristic magnitude of {{M}\\star }=-19.85-0.35+0.30, faint-end slope of α =-1.72-0.29+0.30, and number density of {{log }10}{{{\\Psi }}\\star }(Mp{{c}-3})=-3.00-0.31+0.23. These parameters are consistent within the uncertainties with those inferred from the same sample without accounting for the magnification bias, demonstrating that the effect is small for current surveys at z ˜ 8, and cannot account for the apparent overdensity of bright galaxies compared to a Schechter function found recently by Bowler et al. and Finkelstein et al. We estimate that the probability of finding a strongly lensed z ˜ 8 source in our sample is in the range ˜3-15% depending on limiting magnitude. We identify one strongly lensed candidate and three cases of intermediate lensing in BoRG (estimated magnification μ > 1.4) in addition to the previously known candidate group-scale strong lens. Using a range of theoretical LFs we conclude that magnification bias will dominate wide field surveys—such as those planned for the Euclid and WFIRST missions—especially at z > 10. Magnification bias will need to be accounted for in order to derive accurate estimates of high-redshift LFs in these surveys and to distinguish between galaxy formation models.
THE MASS-RICHNESS RELATION OF MaxBCG CLUSTERS FROM QUASAR LENSING MAGNIFICATION USING VARIABILITY
Bauer, Anne H.
2012-04-10
Accurate measurement of galaxy cluster masses is an essential component not only in studies of cluster physics but also for probes of cosmology. However, different mass measurement techniques frequently yield discrepant results. The Sloan Digital Sky Survey MaxBCG catalog's mass-richness relation has previously been constrained using weak lensing shear, Sunyaev-Zeldovich (SZ), and X-ray measurements. The mass normalization of the clusters as measured by weak lensing shear is {approx}>25% higher than that measured using SZ and X-ray methods, a difference much larger than the stated measurement errors in the analyses. We constrain the mass-richness relation of the MaxBCG galaxy cluster catalog by measuring the gravitational lensing magnification of type I quasars in the background of the clusters. The magnification is determined using the quasars' variability and the correlation between quasars' variability amplitude and intrinsic luminosity. The mass-richness relation determined through magnification is in agreement with that measured using shear, confirming that the lensing strength of the clusters implies a high mass normalization and that the discrepancy with other methods is not due to a shear-related systematic measurement error. We study the dependence of the measured mass normalization on the cluster halo orientation. As expected, line-of-sight clusters yield a higher normalization; however, this minority of haloes does not significantly bias the average mass-richness relation of the catalog.
NASA Astrophysics Data System (ADS)
Umeh, Obinna; Clarkson, Chris; Maartens, Roy
2014-10-01
The next generation of telescopes will usher in an era of precision cosmology, capable of determining the cosmological model to beyond the percent level. For this to be effective, the theoretical model must be understood to at least the same level of precision. A range of subtle relativistic effects remain to be explored theoretically, and offer the potential for probing general relativity in this new regime. We present the distance-redshift relation to second order in cosmological perturbation theory for a general dark energy model. This relation determines the magnification of sources at high precision, as well as redshift space distortions in the mildly non-linear regime. We identify a range of new lensing effects, including: double-integrated and nonlinear-integrated Sachs-Wolfe contributions, transverse Doppler effects, lensing from the induced vector mode and gravitational wave backgrounds, in addition to lensing from the second-order potential. Modifications to Doppler lensing from redshift space distortions are identified. Finally, we find a new double-coupling between the density fluctuations integrated along the line of sight, and gradients in the density fluctuations coupled to transverse velocities along the line of sight. These can be large and thus offer important new probes of gravitational lensing and general relativity. This paper accompanies paper II (Umeh, Clarkson and Maartens 2014 Class. Quantum Grav. 31 205001) , where a comprehensive derivation is given.
CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters
Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor; Lemze, Doron; Ford, Holland; Nonino, Mario; Balestra, Italo; Biviano, Andrea; Merten, Julian; Postman, Marc; Koekemoer, Anton; Meneghetti, Massimo; Donahue, Megan; Molino, Alberto; Benítez, Narciso; Seitz, Stella; Gruen, Daniel; Broadhurst, Tom; Grillo, Claudio; Melchior, Peter; and others
2014-11-10
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as
Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc
2016-04-01
We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19≲ z≲ 0.69 selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10″–16‧). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h‑1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of c{| }z=0.34=3.95+/- 0.35 at M200c ≃ 14 × 1014 M⊙ and an intrinsic scatter of σ ({ln}{c}200{{c}})=0.13+/- 0.06, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h‑1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models
The magnification of stars crossing a caustic. I - Lenses with smooth potentials
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The possibility is explored of observing highly magnified images of individual stars within the long arcs that have been observed in rich clusters of galaxies. These images appear when a star crosses a caustic of the cluster's potential. When the cluster mass is distributed smoothly, the maximum magnification reached is typically of the order of 10 to the 7th. The star's image appears suddenly and reaches the maximum magnification in a few hours; then the magnification decreases slowly as the inverse of the square root of the time. This can also occur in the reverse order in time. For typical arcs, stars with bolometric luminosities of around 300 solar luminosities reach a maximum visual apparent magnitude of about 25. If brighter events are detected, the rate of detection is of the order of one every five years, for every arc intersecting a caustic. If the source galaxy is forming stars with a Saltpeter IMF, the probability that a 30-solar-mass star is magnified to a magnitude of 28 at any time is of the order of 20 percent.
LENSING MAGNIFICATION: A NOVEL METHOD TO WEIGH HIGH-REDSHIFT CLUSTERS AND ITS APPLICATION TO SpARCS
Hildebrandt, H.; Van Waerbeke, L.; Muzzin, A.; Erben, T.; Hoekstra, H.; Kuijken, K.; Surace, J.; Wilson, G.; Yee, H. K. C.
2011-06-01
We introduce a novel method to measure the masses of galaxy clusters at high redshift selected from optical and IR Spitzer data via the red-sequence technique. Lyman-break galaxies are used as a well-understood, high-redshift background sample allowing mass measurements of lenses at unprecedented high redshifts using weak lensing magnification. By stacking a significant number of clusters at different redshifts with average masses of {approx}(1-3) x 10{sup 14} M{sub sun}, as estimated from their richness, we can calibrate the normalization of the mass-richness relation. With the current data set (area: 6 deg{sup 2}) we detect a magnification signal at the >3{sigma} level. There is good agreement between the masses estimated from the richness of the clusters and the average masses estimated from magnification, albeit with large uncertainties. We perform tests that suggest the absence of strong systematic effects and support the robustness of the measurement. This method-when applied to larger data sets in the future-will yield an accurate calibration of the mass-observable relations at z {approx}> 1 which will represent an invaluable input for cosmological studies using the galaxy cluster mass function and astrophysical studies of cluster formation. Furthermore, this method will probably be the least expensive way to measure masses of large numbers of z > 1 clusters detected in future IR-imaging surveys.
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others
2012-05-20
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
NASA Astrophysics Data System (ADS)
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Gaudi, B. S.; Henderson, C. B.; Hung, L.-W.; Jablonski, F.; Janczak, J.; Lee, C.-U.; Mallia, F.; Maury, A.; McCormick, J.; McGregor, D.; Monard, L. A. G.; Moorhouse, D.; Muñoz, J. A.; Natusch, T.; Nelson, C.; Park, B.-G.; Pogge, R. W.; "TG" Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Barnard, E.; Baudry, J.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hearnshaw, J. B.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Kobara, S.; Korpela, A.; Lin, W.; Ling, C. H.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Nishimoto, K.; Ohnishi, K.; Okumura, T.; Omori, K.; Perrott, Y. C.; Rattenbury, N.; Saito, To.; Skuljan, L.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Bennett, C. S.; Bowens-Rubin, R.; Brillant, S.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Menzies, J.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Clay, N.; Fraser, S.; Horne, K.; Kains, N.; Mottram, C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Finet, F.; Gerner, T.; Glitrup, M.; Grundahl, F.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Kerins, E.; Liebig, C.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Proft, S.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.; Southworth, J.; Zimmer, F.; MiNDSTEp Consortium
2012-05-01
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ~ 0.08 mas combined with the short timescale of t E ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M ⊙ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
CONSTRAINING SOURCE REDSHIFT DISTRIBUTIONS WITH GRAVITATIONAL LENSING
Wittman, D.; Dawson, W. A.
2012-09-10
We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that {approx}40 massive ({sigma}{sub v} = 1200 km s{sup -1}) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to {approx}11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N{sub lens}{sup -1/2}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.
MAGNIFICATION BY GALAXY GROUP DARK MATTER HALOS
Ford, Jes; Hildebrandt, Hendrik; Van Waerbeke, Ludovic; Leauthaud, Alexie; Tanaka, Masayuki; Capak, Peter; Finoguenov, Alexis; George, Matthew R.; Rhodes, Jason
2012-08-01
We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9{sigma}. Using X-ray-selected groups in the COSMOS 1.64 deg{sup 2} field, and high-redshift Lyman break galaxies as sources, we measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best-fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.
Observational biases in flux magnification measurements
NASA Astrophysics Data System (ADS)
Hildebrandt, H.
2016-02-01
Flux magnification is an interesting complement to shear-based lensing measurements, especially at high redshift where sources are harder to resolve. One measures either changes in the source density (magnification bias) or in the shape of the flux distribution (e.g. magnitude shift). The interpretation of these measurements relies on theoretical estimates of how the observables change under magnification. Here, we present simulations to create multiband photometric mock catalogues of Lyman-break galaxies in a CFHTLenS (Canada France Hawaii Telescope Lensing Survey)-like survey that include several observational effects that can change these relations, making simple theoretical estimates unusable. In particular, we show how the magnification bias can be affected by photometric noise, colour selection, and dust extinction. We find that a simple measurement of the slope of the number-counts is not sufficient for the precise interpretation of virtually all observations of magnification bias. We also explore how sensitive the shift in the mean magnitude of a source sample in different photometric bands is to magnification including the same observational effects. Again we find significant deviations from simple analytical estimates. We also discover a wavelength-dependence of the magnitude-shift effect when applied to a colour-selected noisy source sample. Such an effect can mimic the reddening by dust in the lens. It has to be disentangled from the dust extinction before the magnitude shift/colour-excess can be used to measure the distribution of either dark matter or extragalactic dust. Using simulations like the ones presented here these observational effects can be studied and eventually removed from observations making precise measurements of flux magnification possible.
Nusser, Adi; Feix, Martin; Branchini, Enzo E-mail: branchin@fis.uniroma3.it
2013-01-01
The cosmological peculiar velocity field (deviations from the pure Hubble flow) of matter carries significant information on dark energy, dark matter and the underlying theory of gravity on large scales. Peculiar motions of galaxies introduce systematic deviations between the observed galaxy redshifts z and the corresponding cosmological redshifts z{sub c{sub o{sub s}}}. A novel method for estimating the angular power spectrum of the peculiar velocity field based on observations of galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is presented. This method exploits the fact that a mean relation between z{sub c{sub o{sub s}}} and m of galaxies can be derived from all galaxies in a redshift-magnitude survey. Given a galaxy magnitude, it is shown that the z{sub c{sub o{sub s}}}(m) relation yields its cosmological redshift with a 1σ error of σ{sub z} ∼ 0.3 for a survey like Euclid ( ∼ 10{sup 9} galaxies at z∼<2), and can be used to constrain the angular power spectrum of z−z{sub c{sub o{sub s}}}(m) with a high signal-to-noise ratio. At large angular separations corresponding to l∼<15, we obtain significant constraints on the power spectrum of the peculiar velocity field. At 15∼
NASA Astrophysics Data System (ADS)
Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali
2012-01-01
We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.
MAGNIFICATION AS A PROBE OF DARK MATTER HALOS AT HIGH REDSHIFTS
Van Waerbeke, L.; Ford, J.; Milkeraitis, M.; Hildebrandt, H.
2010-11-01
We propose a new approach for measuring the mass profile of dark matter halos by stacking the lensing magnification of distant background galaxies behind groups and clusters of galaxies. The main advantage of lensing magnification is that, unlike lensing shear, it relies on accurate photometric redshifts only and not on galaxy shapes, thus enabling the study of the dark matter distribution with unresolved source galaxies. We present a feasibility study, using a real population of z {>=} 2.5 Lyman break galaxies as source galaxies, and where, similar to galaxy-galaxy lensing, foreground lenses are stacked in order to increase the signal-to-noise ratio. We find that there is an interesting new observational window for gravitational lensing as a probe of dark matter halos at high redshift, which does not require a measurement of galaxy shapes.
SimpLens: Interactive gravitational lensing simulator
NASA Astrophysics Data System (ADS)
Saha, Prasenjit; Williams, Liliya L. R.
2016-06-01
SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.
NASA Astrophysics Data System (ADS)
Chae, Kyu-Hyun
2002-04-01
Fourier series solutions to the deflection and magnification by a family of three-dimensional cusped two-power-law ellipsoidal mass distributions are presented. The cusped two-power-law ellipsoidal mass distributions are characterized by inner and outer power-law radial indices and a break (or transition) radius. The model family includes mass models mimicking Jaffe, Hernquist, and η models and dark matter halo profiles from numerical simulations. The Fourier series solutions for the cusped two-power-law mass distributions are relatively simple and allow a very fast calculation, even for a chosen small fractional calculational error (e.g., 10-5). These results will be particularly useful for studying lensed systems that provide a number of accurate lensing constraints and for systematic analyses of large numbers of lenses. Subroutines employing these results for the two-power-law model and the results by Chae, Khersonsky, & Turnshek for the generalized single-power-law mass model are made publicly available.
Magnification bias as a novel probe for primordial magnetic fields
Camera, S.; Fedeli, C.; Moscardini, L. E-mail: cosimo.fedeli@oabo.inaf.it
2014-03-01
In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup −4} nG for values of the PMF power spectral index n{sub B} ∼ 0.
Magnification bias as a novel probe for primordial magnetic fields
NASA Astrophysics Data System (ADS)
Camera, S.; Fedeli, C.; Moscardini, L.
2014-03-01
In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10-4 nG for values of the PMF power spectral index nB ~ 0.
Halo model predictions of the cosmic magnification statistics: the full non-linear contribution
NASA Astrophysics Data System (ADS)
Takada, Masahiro; Hamana, Takashi
2003-12-01
The lensing magnification effect due to large-scale structure is statistically measurable by the correlation of size fluctuations in distant galaxy images as well as by cross-correlation between foreground galaxies and background sources such as the QSO-galaxy cross-correlation. We use the halo model formulation of Takada & Jain to compute these magnification-induced correlations without employing the weak lensing approximation, μ~ 1 + 2κ. Our predictions thus include the full contribution from non-linear magnification, δμ>~ 1, that is due to lensing haloes. We compare the model prediction with ray-tracing simulations and find excellent agreement over the range of angular scales we consider (0.5 <~θ<~ 30 arcmin). In addition, we derive the dependence of the correlation amplitude on the maximum magnification cut-off μmax, which it is necessary to introduce in order to avoid the contributions from strong lensing events. For a general correlation function parametrized as <μpf> (f is any cosmic field correlated with the magnification field), the amplitude remains finite for p < 1 and diverges for p>= 1 as μmax->∞, independent of the details of the lensing mass distribution and of the separation angle. This consequence is verified by the halo model as well as by the simulations. Thus, the magnification correlation with p<= 1 has a practical advantage in that it is insensitive to a selection effect of how strong lensing events with μ>> 1 are observationally excluded from the sample. The non-linear magnification contribution enhances the amplitude of the magnification correlation relative to the weak lensing approximation, and the non-linear correction is more significant on smaller angular scales and for sources at higher redshifts. The enhancement amounts to 10-25 per cent on arcmin scales for the QSO-galaxy cross-correlation, even after the inclusion of a realistic model of galaxy clustering within the host halo. Therefore, it is necessary to account for the
Lens models and magnification maps of the six Hubble Frontier Fields clusters
Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.; Gladders, Michael D.; Coe, Dan; Ebeling, Harald
2014-12-10
We present strong-lensing models as well as mass and magnification maps for the cores of the six Hubble Space Telescope (HST) Frontier Fields galaxy clusters. Our parametric lens models are constrained by the locations and redshifts of multiple image systems of lensed background galaxies. We use a combination of photometric redshifts and spectroscopic redshifts of the lensed background sources obtained by us (for A2744 and AS1063), collected from the literature, or kindly provided by the lensing community. Using our results, we (1) compare the derived mass distribution of each cluster to its light distribution, (2) quantify the cumulative magnification power of the HST Frontier Fields clusters, (3) describe how our models can be used to estimate the magnification and image multiplicity of lensed background sources at all redshifts and at any position within the cluster cores, and (4) discuss systematic effects and caveats resulting from our modeling methods. We specifically investigate the effect of the use of spectroscopic and photometric redshift constraints on the uncertainties of the resulting models. We find that the photometric redshift estimates of lensed galaxies are generally in excellent agreement with spectroscopic redshifts, where available. However, the flexibility associated with relaxed redshift priors may cause the complexity of large-scale structure that is needed to account for the lensing signal to be underestimated. Our findings thus underline the importance of spectroscopic arc redshifts, or tight photometric redshift constraints, for high precision lens models. All products from our best-fit lens models (magnification, convergence, shear, deflection field) and model simulations for estimating errors are made available via the Mikulski Archive for Space Telescopes.
CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS
Umetsu, Keiichi; Koch, Patrick M.; Lin, Kai-Yang; Medezinski, Elinor; Nonino, Mario; Zitrin, Adi; Molino, Alberto; Grillo, Claudio; Carrasco, Mauricio; Donahue, Megan; Mahdavi, Andisheh; Coe, Dan; Postman, Marc; Koekemoer, Anton; Czakon, Nicole; Sayers, Jack; Golwala, Sunil; Molnar, Sandor M.; and others
2012-08-10
We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z = 0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVR{sub c} I{sub c} z' imaging and our recent 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble program. We find good agreement in the regions of overlap between several weak- and strong-lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large-scale structure with the major axis running approximately northwest-southeast (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a {approx}2: 1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dln {Sigma}/dln R {approx} -1 at cluster outskirts (R {approx}> 1 Mpc h{sup -1}), whereas the mass distribution excluding the NW-SE excess regions steepens farther out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M{sub vir} = (1.1 {+-} 0.2 {+-} 0.1) Multiplication-Sign 10{sup 15} M{sub Sun} h{sup -1} and a halo concentration c{sub vir} = 6.9 {+-} 1.0 {+-} 1.2 (c{sub vir} {approx} 5.7 when the central 50 kpc h{sup -1} is excluded), which falls in the range 4 {approx}< (c) {approx}< 7 of average c(M, z) predictions for relaxed clusters from recent {Lambda} cold dark matter simulations. Our full-lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, they yield a cumulative gas mass fraction of 13.7{sup +4.5}{sub -3.0}% at 0.7 Mpc h{sup -1}( Almost-Equal-To 1.7 r{sub 2500}), a typical value observed for high-mass clusters.
A spiral galaxy's mass distribution uncovered through lensing and dynamics
NASA Astrophysics Data System (ADS)
Trick, Wilma H.; van de Ven, Glenn; Dutton, Aaron A.
2016-09-01
We investigate the matter distribution of a spiral galaxy with a counter-rotating stellar core, SDSS J1331+3628 (J1331), independently with gravitational lensing and stellar dynamical modelling. By fitting a gravitational potential model to a quadruplet of lensing images around J1331's bulge, we tightly constrain the mass inside the Einstein radius Rein = (0.91 ± 0.02)″( ≃ 1.83 ± 0.04~kpc) to within 4%: Mein = (7.8 ± 0.3) × 1010M⊙. We model observed long-slit major axis stellar kinematics in J1331's central regions by finding Multi-Gaussian Expansion (MGE) models for the stellar and dark matter distribution that solve the axisymmetric Jeans equations. The lens and dynamical model are independently derived, but in very good agreement with each other around ˜Rein. We find that J1331's center requires a steep total mass-to-light ratio gradient. A dynamical model including a NFW halo (with virial velocity v200 ≃ 240 ± 40~kms-1 and concentration c200 ≃ 8 ± 2) and moderate tangential velocity anisotropy (βz ≃ -0.4 ± 0.1) can reproduce the signatures of J1331's counter-rotating core and predict the stellar and gas rotation curve at larger radii. However, our models do not agree with the observed velocity dispersion at large radii. We speculate that the reason could be a non-trivial change in structure and kinematics due to a possible merger event in J1331's recent past.
Low magnification EBSD mapping of texture distribution in a fine-grained matrix
NASA Astrophysics Data System (ADS)
Gardner, Joseph; Mariani, Elisabetta; Wheeler, John
2016-04-01
The study of texture (CPO) in rocks is often restricted to individual phases within a given sample or specific area of said sample. Large scale EBSD mapping of the matrix of a greenschist facies albite mylonite has shown that an overall significant CPO within albite grains is strongly domainal, and each domain has a unique CPO that is independent of both common slip systems in plagioclase and the specimen geometry (i.e. foliation and lineation). Observational evidence suggests the metamorphic breakdown of plagioclase to albite (Ab) plus a Ca-bearing phase (clinozoisite, Cz) has produced a two phase mixture in which each phase has a contrasting solubility. New grains of albite are thought to nucleate epitaxially from original plagioclase as a reaction front passes through parent grains. A pseudomorphic region of Ab plus Cz after an original plagioclase crystal, protected from intense deformation by enclosure in a cm-scale augite clast, gives insight into pre-deformation daughter grain distributions. The albite in the region inherits a strong CPO and 180° misorientation peak from a relict twin pattern due to epitaxial growth while clinozoisite is randomly distributed and oriented (despite some grains nucleating from the plagioclase parent twin boundary). In the deformed matrix, daughter Ab is seen to be the more mobile phase, having undergone obvious dissolution, transport and reprecipitation into fractures and pressure shadows, whereas Cz grains are relatively insoluble and rotate into parallelism with the foliation, forming bands that anastamose around Cpx porphyroclasts. Despite this modification, albite in the matrix retains significant CPOs that comprise distinct domains with sharp boundaries. A 180° misorientation peak thought to be a signature of twinning inherited from parent plagioclase is also observed in each domain. Why a CPO should be preserved under these conditions (contrary to our traditional understanding that CPOs are a signature of dislocation
De Putter, Roland; Doré, Olivier; Das, Sudeep
2014-01-10
Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).
Wardlow, Julie L.; Cooray, Asantha; De Bernardis, Francesco; Calanog, J.; Amblard, A.; Arumugam, V.; Aussel, H.; Bethermin, M.; Blundell, R.; Bussmann, R. S.; Bock, J.; Bridge, C.; Carpenter, J. M.; Boselli, A.; Buat, V.; Burgarella, D.; Cabrera-Lavers, A.; Castro-Rodriguez, N.; Casey, C. M.; and others
2013-01-01
We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 deg{sup 2} of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14 {+-} 0.04 deg{sup -2}. The selected sources have 500 {mu}m flux densities (S {sub 500}) greater than 100 mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31 {+-} 0.06 deg{sup -2}) gravitationally lensed SMG candidates with S {sub 500} = 80-100 mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32%-74% of our S {sub 500} {>=} 100 mJy candidates are strongly gravitationally lensed ({mu} {>=} 2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S {sub 500} = 100 mJy are magnified by factors of {approx}9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500 {mu}m flux densities less than 30 mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 {mu}m. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of {approx}0.''01 in the source plane.
NASA Astrophysics Data System (ADS)
Huang, J.; Kang, S.; Guo, J.; Zhang, Q.; Zhang, G.; Wang, K.; Tripathee, L.
2014-12-01
The Tibetan Plateau is one of the most extreme cold regions in the world and a source of fresh water to 1.4 billion people. In this study, between 2008 and 2010, surface snow samples were retrieved in replicate from four high-elevation glaciers with an average elevation of 5200 m above sea level from the Tibetan Plateau and were analyzed for total Hg (HgT). The spatial distribution of Hg for glaciers and magnification processes of Hg in snow with increasing altitude over the Tibetan Plateau are investigated. The total Hg concentrations in snow samples ranged from <1 to 15 ng/L, with the highest concentrations at Mt. Muztagata, and the lowest concentrations at Mt. Nyainqêntanglha. This may be explained by the high concentration and annual flux of particulate matter deposition at Mt. Muztagata, the maximum from which particulate matter loads decrease from northwest to southeast over the Tibetan Plateau. Because Hg deposited on the plateau is primarily associated with particulate matter, only 31% of Hg was lost (e.g., reemitted back to the atmosphere) during the transition of fresh snow to coarse-grained snow. This demonstrates that Hg in snow over the Tibetan Plateau may be less influenced by the effect of post-depositional processes such as reemission and photoreduction than that in the Arctic. Moreover, the increases of HgT with increasing altitude ("altitude effect") found on four high-elevation glaciers (e.g., 3-fold in Mt. Muztagata) suggests that atmospheric Hg is cold-trapped and magnified toward low temperature and/or high-elevation regions, implying that the glaciers over the Tibetan Plateau play an important sink role for global Hg cycling. In the context of a warming climate, the Tibetan Plateau may shift from a current sink to a source in the future, and the accumulated Hg released by accelerated glacier thinning and retreat may endanger ecosystems and human health in the glacier-fed downstream regions.
Huang, Feng; Jiang, Xiangqian; Yuan, Haiming; Yang, Hanning; Li, Siren; Sun, Xiudong
2016-04-01
A method to detect the full Stokes parameters utilizing a double-ring and Archimedes-curves distributed nanoslits plasmonic lenses is proposed. We demonstrate theoretically and numerically that both of these two plasmonic lenses can focus surface plasmon polaritons to centrally symmetric fields with subwavelength-sized focal spots under linear, elliptical, and circular polarization incidence. The intensity at the focal spots is modulated by the polarization state of incident light. Utilizing this intensity polarization sensitivity, the full Stokes parameters of incident light are detected by recoding only four intensities at the focal spots of these two plasmonic lenses. PMID:27192318
THE IMPORTANCE OF BINARY GRAVITATIONAL MICROLENSING EVENTS THROUGH HIGH-MAGNIFICATION CHANNEL
Han, Cheongho; Hwang, Kyu-Ha E-mail: kyuha@astroph.chungbuk.ac.k
2009-12-20
We estimate the detection efficiency of binary gravitational lensing events through the channel of high-magnification events. From this estimation, we find that binaries in the separation ranges of 0.1 approx< s approx< 10, 0.2 approx< s approx< 5, and 0.3 approx< s approx< 3 can be detected with approx100% efficiency for events with magnifications higher than A = 100, 50, and 10, respectively, where s represents the projected separation between the lens components normalized by the Einstein radius. We also find that the range of high efficiency covers nearly the whole mass-ratio range of stellar companions. Due to the high efficiency in wide ranges of parameter space, we point out that the majority of binary-lens events will be detected through the high-magnification channel in lensing surveys that focus on high-magnification events for efficient detections of microlensing planets. In addition to the high efficiency, the simplicity of the efficiency estimation makes the sample of these binaries useful in the statistical studies of the distributions of binary companions as functions of mass ratio and separation. We also discuss other implications of these events.
The Importance of Binary Gravitational Microlensing Events Through High-Magnification Channel
NASA Astrophysics Data System (ADS)
Han, Cheongho; Hwang, Kyu-Ha
2009-12-01
We estimate the detection efficiency of binary gravitational lensing events through the channel of high-magnification events. From this estimation, we find that binaries in the separation ranges of 0.1 lsim s lsim 10, 0.2 lsim s lsim 5, and 0.3 lsim s lsim 3 can be detected with ~100% efficiency for events with magnifications higher than A = 100, 50, and 10, respectively, where s represents the projected separation between the lens components normalized by the Einstein radius. We also find that the range of high efficiency covers nearly the whole mass-ratio range of stellar companions. Due to the high efficiency in wide ranges of parameter space, we point out that the majority of binary-lens events will be detected through the high-magnification channel in lensing surveys that focus on high-magnification events for efficient detections of microlensing planets. In addition to the high efficiency, the simplicity of the efficiency estimation makes the sample of these binaries useful in the statistical studies of the distributions of binary companions as functions of mass ratio and separation. We also discuss other implications of these events.
Magnification bias in galactic microlensing searches
NASA Technical Reports Server (NTRS)
Nemiroff, Robert J.
1994-01-01
It is shown that a significant amount of detectable gravitational microlensing events that could potentially be found by Massively Parallel Photometry (MAPP) project (such as the MACHO, EROS, and OGLE collaborations) will occur for stars too dim to be easily noticed individually by these projects. This is the result of a large magnification bias effect, a bias of including high-magnification events in any flux-limited sample. The probablility of detecting these events may be as high as 2.3 times the lensing probability of stars currently being monitored by MAPP collaborations.
Lens Models and Magnification Maps of the Six Hubble Frontier Fields Clusters
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.; Gladders, Michael D.; Coe, Dan; Ebeling, Harald
2014-12-01
We present strong-lensing models as well as mass and magnification maps for the cores of the six Hubble Space Telescope (HST) Frontier Fields galaxy clusters. Our parametric lens models are constrained by the locations and redshifts of multiple image systems of lensed background galaxies. We use a combination of photometric redshifts and spectroscopic redshifts of the lensed background sources obtained by us (for A2744 and AS1063), collected from the literature, or kindly provided by the lensing community. Using our results, we (1) compare the derived mass distribution of each cluster to its light distribution, (2) quantify the cumulative magnification power of the HST Frontier Fields clusters, (3) describe how our models can be used to estimate the magnification and image multiplicity of lensed background sources at all redshifts and at any position within the cluster cores, and (4) discuss systematic effects and caveats resulting from our modeling methods. We specifically investigate the effect of the use of spectroscopic and photometric redshift constraints on the uncertainties of the resulting models. We find that the photometric redshift estimates of lensed galaxies are generally in excellent agreement with spectroscopic redshifts, where available. However, the flexibility associated with relaxed redshift priors may cause the complexity of large-scale structure that is needed to account for the lensing signal to be underestimated. Our findings thus underline the importance of spectroscopic arc redshifts, or tight photometric redshift constraints, for high precision lens models. All products from our best-fit lens models (magnification, convergence, shear, deflection field) and model simulations for estimating errors are made available via the Mikulski Archive for Space Telescopes. Based on observations made with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile and the NASA/ESA Hubble Space Telescope, obtained through the Mikulski
NASA Astrophysics Data System (ADS)
Fort, B.; Mellier, Y.; Dantel-Fort, M.
1997-05-01
We analyse the surface density of very faint galaxies at the limit of the sky background noise in the field of the cluster of galaxies Cl 0024+1654. The radial variation of their number density in the magnitude bins B=26-28 and I=24-26.5 displays an (anti)bias magnification effect similar to the one observed in A1689 by Broadhurst (1995) for I<24. The study of this effect provides a determination of the radial distribution of critical lines of the gravitational lens from which we infer the redshift range of the populations seen in B and I. The surface density of B galaxies drops rapidly to a well-defined inner critical line near the large triple arc. The depletion extends from R_B_=30" to R_B_=53" and the shape of the curve can almost be reproduced with two redshift populations selected by the two filters. With our data 60%+/-10% of the B-selected galaxies are between z=0.9 and z=1.1 while most of the remaining 40% galaxies should be at a redshift close to z=3. The I selected population observed with the lens has a broader depletion with a minimum extending from the B inner critical line to R_I_=60". Whatever the cosmological model, the very faint I-selected galaxies spread up to a larger redshift with about 20% above z>4. The fact that many faint I selected galaxies are not detected in B also favour the existence of a more distant population with a redshift range between z=3 and z=4.5. Using a model for the gravitational potential derived from a study of the large triple arc seen around the cluster, the locations of the two extreme critical lines for the B and I selected galaxies seems to favour {OMEGA}LAMBDA_-dominated flat universes with a cosmological constant ranging from 0.6 to 0.9. The result is confirmed by a preliminary investigation of the Broadhurst's effect in A 370. However, ultra-deep detection of faint distant galaxies down to the noise level are technically very difficult. In this first paper we mainly discuss the method to search the so
The Effect of Weak Gravitational Lensing on the Angular Distribution of Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Williams, L. L. R.
1996-12-01
If gamma-ray bursts (GRBs) are cosmologically distributed standard candles and are associated with the luminous galaxies, then the observed angular distribution of all GRBs is altered as a result of weak gravitational lensing of bursts by density inhomogeneities. The amplitude of the effect is generally small. For example, if the current catalogs extend to z_max_ ~ 1 and we live in a flat {OMEGA} = 1 universe, the angular autocorrelation function of GRBs will be enhanced by ~8% as a result of lensing, on all angular scales. For an extreme case of z_max_ = 1.5 and ({OMEGA}, {LAMBDA}) = (0.2, 0.8), an enhancement of ~33% is predicted. If the observed distribution of GRBs is used in the future to derive power spectra of mass density fluctuations on large angular scales, the effect of weak lensing should probably be taken into account.
NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy
NASA Technical Reports Server (NTRS)
Gorenstein, M. V.; Shapiro, I. I.; Bonometti, R. J.; Cohen, N. L.; Rogers, A. E. E.
1988-01-01
Gravitationally lensed images of the quasar 0957+561 have been observed at 13 cm wavelength using a six-antenna VLBI array with nearly milliarcsecond resolution. Models of the observed surface brightness distribution of each of the A and B images provide support of the gravitational lens hypothesis. A value of the magnitude of the relative image magnification A/B of 0.64 + or - 0.03 is obtained.
Primordial star clusters at extreme magnification
NASA Astrophysics Data System (ADS)
Zackrisson, Erik; González, Juan; Eriksson, Simon; Asadi, Saghar; Safranek-Shrader, Chalence; Trenti, Michele; Inoue, Akio K.
2015-05-01
Gravitationally lensed galaxies with magnification μ ≈ 10-100 are routinely detected at high redshifts, but magnifications significantly higher than this are hampered by a combination of low probability and large source sizes. Magnifications of μ ˜ 1000 may none the less be relevant in the case of intrinsically small, high-redshift objects with very high number densities. Here, we explore the prospects of detecting compact (≲10 pc), high-redshift (z ≳ 7) Population III star clusters at such extreme magnifications in large-area surveys with planned telescopes like Euclid, Wide Field Infrared Survey Telescope and Wide-field Imaging Surveyor for High-redshift (WISH). We find that the planned WISH 100 deg2 ultradeep survey may be able to detect a small number of such objects, provided that the total stellar mass of these star clusters is ≳104 M⊙. If candidates for such lensed Population III star clusters are found, follow-up spectroscopy of the surrounding nebula with the James Webb Space Telescope or ground-based Extremely Large Telescopes should be able to confirm the Population III nature of these objects. Multiband photometry of these objects with the James Webb Space Telescope also has the potential to confirm that the stellar initial mass function in these Population III star clusters is top-heavy, as supported by current simulations.
NASA Astrophysics Data System (ADS)
Limousin, M.; Richard, J.; Jullo, E.; Jauzac, M.; Ebeling, H.; Bonamigo, M.; Alavi, A.; Clément, B.; Giocoli, C.; Kneib, J.-P.; Verdugo, T.; Natarajan, P.; Siana, B.; Atek, H.; Rexroth, M.
2016-04-01
We present a strong-lensing analysis of MACSJ0717.5+3745 (hereafter MACS J0717), based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which have been spectroscopically confirmed. The total number of images comprised in these systems rises to 165, compared to 48 images in 16 systems before the HFF observations. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, and the subset of the 132 most secure multiple images to constrain a mass distribution composed of four large-scale mass components (spatially aligned with the four main light concentrations) and a multitude of galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of "peaky" non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well, in the sense that both models give comparable total rms. Although the total (smooth dark matter component plus galaxy-scale perturbers) mass distributions of both models are consistent, as are the integrated two-dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, emphasizing the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification. We show that the amplification difference between the two models is larger
The mass distribution of CL0939+4713 obtained from a `weak' lensing analysis of a WFPC2 image.
NASA Astrophysics Data System (ADS)
Seitz, C.; Kneib, J.-P.; Schneider, P.; Seitz, S.
1996-10-01
The image distortions of high-redshift galaxies caused by gravitational light deflection of foreground clusters of galaxies can be used to reconstruct the two-dimensional surface mass density of these clusters. We apply an unbiased parameter-free reconstruction technique to the cluster CL0939+4713 (Abell 851), observed with the WFPC2 on board of the HST. We demonstrate that a single deep WFPC2 observation can be used for cluster mass reconstruction despite its small field of view and the irregular shape of the data field (especially for distant clusters). For CL0939, we find a strong correlation between the reconstructed mass distribution and the bright cluster galaxies indicating that mass follows light on average. The detected anti-correlation between the faint galaxies and the reconstructed mass is most likely an effect of the magnification (anti) bias, which was detected previously in the cluster A1689. Because of the high redshift of CL0939 (z_d_=0.41), the redshift distribution of the lensed, faint galaxies has to be accounted for in the reconstruction technique. We derive an approximate global transformation for the surface mass density which leaves the mean image ellipticities invariant, resulting in an uncertainty in the normalization of the mass. From the non-negativity of the surface mass density, we derive lower limits on the mass inside the observed field of 0.75(h^-1^_50_Mpc)^2^ ranging from M>3.6x10^14^h^-1^_50_Msun_ to M>6.3x10^14^h^-1^_50_Msun_ for a mean redshift of
ERIC Educational Resources Information Center
Graney, Christopher M.
2010-01-01
Is the phenomenon of magnification by a converging lens inconsistent and therefore unreliable? Can a lens magnify one part of an object but not another? Physics teachers and even students familiar with basic optics would answer "no," yet many answer "yes." Numerous telescope users believe that magnification is not a reliable phenomenon in that it…
A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses
NASA Astrophysics Data System (ADS)
Hristov, Dimitre; Maltz, Jonathan
2008-02-01
A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy.
Precision measurement of cosmic magnification from 21 cm emitting galaxies
Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.
2005-04-01
We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.
Quantifying the line-of-sight mass distributions for time-delay lenses with stellar masses
NASA Astrophysics Data System (ADS)
Rusu, Cristian; Fassnacht, Chris; Treu, Tommaso; Suyu, Sherry; Auger, Matt; Koopmans, Leon; Marshall, Phil; Wong, Kenneth; Collett, Thomas; Agnello, Adriano; Blandford, Roger; Courbin, Frederic; Hilbert, Stefan; Meylan, Georges; Sluse, Dominique
2014-12-01
Measuring cosmological parameters with a realistic account of systematic uncertainties is currently one of the principal challenges of physical cosmology. Building on our recent successes with two gravitationally lensed systems, we have started a program to achieve accurate cosmographic measurements from five gravitationally lensed quasars. We aim at measuring H_0 with an accuracy better than 4%, comparable to but independent from measurements by current BAO, SN or Cepheid programs. The largest current contributor to the error budget in our sample is uncertainty about the line-of-sight mass distribution and environment of the lens systems. In this proposal, we request wide-field u-band imaging of the only lens in our sample without already available Spitzer/IRCA observations, B1608+656. The proposed observations are critical for reducing these uncertainties by providing accurate redshifts and in particular stellar masses for galaxies in the light cones of the target lens system. This will establish lensing as a powerful and independent tool for determining cosmography, in preparation for the hundreds of time-delay lenses that will be discovered by future surveys.
The mass distribution of the strong lensing cluster SDSS J1531+3414
Sharon, Keren; Johnson, Traci L.; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Bayliss, Matthew B.; Florian, Michael K.; Dahle, Håkon
2014-11-01
We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z = 0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New Hubble Space Telescope observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the central region, and rule out that this emission is coming from a background source.
Distributed aperture effect in laser rods with negative lenses A discussion
NASA Astrophysics Data System (ADS)
Shie, C.-D.; Peng, K.-S.
1980-01-01
The difference between a ray transfer matrix in a lenslike medium and a section of lenslike medium immersed in vacuum is demonstrated. The distributed aperture and useful volume are calculated for a laser rod with negative lenses ground on the ends, using a multiplication of ray transfer matrices and the deductive method used by Barnes and Scalise. The results we obtained are different from their results.
MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL
Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Dominik, M.; Allen, W.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Hung, L.-W.; Janczak, J.; Kaspi, S.; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others
2012-02-20
Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.
Lateral Magnification-Angular Magnification Relationship for a Simple Magnifier.
ERIC Educational Resources Information Center
Keating, Michael P.
1980-01-01
Discusses the lateral magnification-angular magnification relationship in the case of a simple magnifying lens. This discussion intends to show how the relationship can be treated in undergraduate optics courses as well as in many general physics courses. (HM)
cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters
NASA Astrophysics Data System (ADS)
Ford, Jes
2016-05-01
The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.
THE DISTRIBUTION OF DARK MATTER OVER THREE DECADES IN RADIUS IN THE LENSING CLUSTER ABELL 611
Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Marshall, Philip J.; Sand, David J.; Richard, Johan; Capak, Peter; Miyazaki, Satoshi
2009-12-01
We present a detailed analysis of the baryonic and dark matter distribution in the lensing cluster Abell 611 (z = 0.288), with the goal of determining the dark matter profile over an unprecedented range of cluster-centric distance. By combining three complementary probes of the mass distribution, weak lensing from multi-color Subaru imaging, strong lensing constraints based on the identification of multiply imaged sources in Hubble Space Telescope images, and resolved stellar velocity dispersion measures for the brightest cluster galaxy secured using the Keck telescope, we extend the methodology for separating the dark and baryonic mass components introduced by Sand et al. Our resulting dark matter profile samples the cluster from approx3 kpc to 3.25 Mpc, thereby providing an excellent basis for comparisons with recent numerical models. We demonstrate that only by combining our three observational techniques can degeneracies in constraining the form of the dark matter profile be broken on scales crucial for detailed comparisons with numerical simulations. Our analysis reveals that a simple Navarro-Frenk-White (NFW) profile is an unacceptable fit to our data. We confirm earlier claims based on less extensive analyses of other clusters that the inner profile of the dark matter profile deviates significantly from the NFW form and find a inner logarithmic slope beta flatter than 0.3 (68%; where rho{sub DM} propor to r{sup -b}eta at small radii). In order to reconcile our data with cluster formation in a LAMBDACDM cosmology, we speculate that it may be necessary to revise our understanding of the nature of baryon-dark matter interactions in cluster cores. Comprehensive weak and strong lensing data, when coupled with kinematic information on the brightest cluster galaxy, can readily be applied to a larger sample of clusters to test the universality of these results.
Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters
NASA Technical Reports Server (NTRS)
Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei
2014-01-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
Elemental distribution in frozen-hydrated rat lenses with galactose cataract
Koyama-Ito, H. )
1990-01-01
The elemental distributions in frozen-hydrated rat lenses with galactose cataract were compared before and after the onset of the nuclear cataract to investigate the possible role of ion levels in the lens opacification due to the phase separation of the lens cytoplasm. The maps of the weight concentrations of the minor elements, S, Cl, K and Ca, on the basis of wet weight in the central plane of lens were obtained by X-ray analysis with the high energy ion microprobe at a resolution of 50 microns. Before the onset of the nuclear cataract, the distributions of Cl and K, were almost normal, except in the lens posterior periphery with high Cl and low K. In the lens with the nuclear opacity, sudden changes were observed. The Cl increased throughout the lens, and K decreased throughout the lens except at lens anterior thin layer. However, the totalized monovalent ion level changed only slightly. The Ca level increased throughout the lens after the onset of the nuclear cataract, suggesting a possible role of Ca in the nuclear opacification of galactose cataract of rats. The distributions of S were similar to the protein density distributions previously known both in the normal and in the cataractous lenses.
Electronic magnification for astronomical camera tubes
NASA Technical Reports Server (NTRS)
Vine, J.; Hansen, J. R.; Pietrzyk, J. P.
1974-01-01
Definitions, test schemes, and analyses used to provide variable magnification in the image section of the television sensor for large space telescopes are outlined. Experimental results show a definite form of magnetic field distribution is necessary to achieve magnification in the range 3X to 4X. Coil systems to establish the required field shapes were built, and both image intensifiers and camera tubes were operated at high magnification. The experiments confirm that such operation is practical and can provide satisfactory image quality. The main problem with such a system was identified as heating of the photocathode due to concentration of coil power dissipation in that vicinity. Suggestions for overcoming this disadvantage are included.
NASA Astrophysics Data System (ADS)
Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M. A.
2016-06-01
Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit.
Hosten, O; Krishnakumar, R; Engelsen, N J; Kasevich, M A
2016-06-24
Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit. PMID:27339982
Matter in the Beam: Weak Lensing, Substructures, and the Temperature of Dark Matter
NASA Astrophysics Data System (ADS)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5σ, while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.
NASA Astrophysics Data System (ADS)
Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.
2016-08-01
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10'- 40'(corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10'and 20', with a best-fit χ2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10'. Above 20'a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.
The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters
Li, Xue; Hjorth, Jens; Richard, Johan E-mail: jens@dark-cosmology.dk
2012-11-01
Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10{sup −4}Δt{sup β-tilde}/M{sub 250}{sup 2β-tilde}, with β-tilde = 0.77, where M{sub 250} is the projected cluster mass inside 250 kpc (in 10{sup 14}M{sub ☉}), and β-tilde is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M{sub 250} = 2 × 10{sup 14}M{sub ☉}, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ≥500kms{sup −1}, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of m{sub AB} = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to m{sub AB} ∼ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.
Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles.
Honma, Michinori; Nose, Toshiaki; Yanase, Satoshi; Yamaguchi, Rumiko; Sato, Susumu
2009-06-22
A pretilt angle controlling method by the density of rubbings using a tiny stylus is proposed. The control of the surface pretilt angle is achieved by rubbing a side-chain type polyimide film for a homeotropic alignment. Smooth liquid crystal (LC) director distribution in the bulk layer is successfully obtained even though the rough surface orientation. This approach is applied to LC cylindrical and rectangular lenses with a variable-focusing function. The distribution profile of the rubbing pitch (the reciprocal of the rubbing density) for small aberration is determined to be quadratic. The variable focusing function is successfully achieved in the LC rectangular lens, and the voltage dependence of the focal length is tried to be explained by the LC molecular reorientation behavior. PMID:19550499
Weak lensing effects on the galaxy three-point correlation function
Schmidt, Fabian; Vallinotto, Alberto; Sefusatti, Emiliano; Dodelson, Scott
2008-08-15
We study the corrections to the galaxy three-point correlation function induced by weak lensing magnification due to the matter distribution along the line of sight. We consistently derive all the correction terms arising up to second order in perturbation theory and provide analytic expressions as well as order-of-magnitude estimates for their relative importance. The magnification contributions depend on the geometry of the projected triangle on the sky plane and scale with different powers of the number count slope and redshift of the galaxy sample considered. We evaluate all terms numerically and show that, depending on the triangle configuration as well as the galaxy sample considered, weak lensing can in general significantly contribute to and alter the three-point correlation function observed through galaxy and quasar catalogs.
Bonnett, C.
2015-07-21
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ_{z} ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ_{8} of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ_{crit}, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.
Unfolding the matter distribution using three-dimensional weak gravitational lensing
NASA Astrophysics Data System (ADS)
Simon, P.; Taylor, A. N.; Hartlap, J.
2009-10-01
Combining redshift and galaxy shape information offers new exciting ways of exploiting the gravitational lensing effect for studying the large scales of the cosmos. One application is the three-dimensional (3D) reconstruction of the matter density distribution which is explored in this paper. We give a generalization of an already known minimum-variance estimator of the 3D matter density distribution that facilitates the combination of thin redshift slices of sources with samples of broad redshift distributions for an optimal reconstruction; sources can be given individual statistical weights. We show how, in principle, intrinsic alignments of source ellipticities or shear/intrinsic alignment correlations can be accommodated, albeit these effects are not the focus of this paper. We describe an efficient and fast way to implement the estimator on a contemporary desktop computer. Analytic estimates for the noise and biases in the reconstruction are given. Some regularization (Wiener filtering) of the estimator, adjustable by a tuning parameter, is necessary to increase the signal-to-noise ratio (S/N) to a sensible level and to suppress oscillations in radial direction. This, however, introduces as side effect a systematic shift and stretch of structures in radial direction. This bias can be expressed in terms of a radial point-spread function (PSF) comprising the limitations of the reconstruction due to given source shot noise and a lack of knowledge of the exact source redshifts. We conclude that a 3D mass-density reconstruction on galaxy cluster scales (~1Mpc) is feasible but, for foreseeable surveys, a map with a S/N >~ 3 threshold is limited to structures with M200 >~ 1 × 1014 or 7 × 1014Msolarh-1, at low to moderate redshifts (z = 0.1 or 0.6). However, we find that a heavily smoothed full-sky map of the very large-scale density field may also be possible as the S/N of reconstructed modes increases towards larger scales. Future improvements of the method may be
Image Formation in Lenses and Mirrors, a Complete Representation
ERIC Educational Resources Information Center
Bartlett, Albert A.
1976-01-01
Provides tables and graphs that give a complete and simple picture of the relationships of image distance, object distance, and magnification in all formations of images by simple lenses and mirrors. (CP)
NASA Astrophysics Data System (ADS)
Biernaux, J.; Magain, P.; Sluse, D.; Chantry, V.
2016-01-01
Context. The luminosity profiles of galaxies acting as strong gravitational lenses can be tricky to study. Indeed, strong gravitational lensing images display several lensed components, both point-like and diffuse, around the lensing galaxy. Those objects limit the study of the galaxy luminosity to its inner parts. Therefore, the usual fitting methods perform rather badly on such images. Previous studies of strong lenses luminosity profiles using software such as GALFIT or IMFITFITS and various PSF-determining methods have resulted in somewhat discrepant results. Aims: The present work aims at investigating the causes of those discrepancies, as well as at designing more robust techniques for studying the morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. Methods: We design a new method to independently measure each shape parameter, namely, the position angle, ellipticity, and half-light radius of the galaxy. Our half-light radius measurement method is based on an innovative scheme for computing isophotes that is well suited to measuring the morphological properties of gravititational lensing galaxies. Its robustness regarding various specific aspects of gravitational lensing image processing is analysed and tested against GALFIT. It is then applied to a sample of systems from the CASTLES database. Results: Simulations show that, when restricted to small, inner parts of the lensing galaxy, the technique presented here is more trustworthy than GALFIT. It gives more robust results than GALFIT, which shows instabilities regarding the fitting region, the value of the Sérsic index, and the signal-to-noise ratio. It is therefore better suited than GALFIT for gravitational lensing galaxies. It is also able to study lensing galaxies that are not much larger than the PSF. New values for the half-light radius of the objects in our sample are presented and compared to previous works. Table 6 is only available
Imaging properties of digital magnification radiography
Boyce, Sarah J.; Samei, Ehsan
2006-04-15
Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 {mu}m) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR{sup 2} efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ
Imaging properties of digital magnification radiography.
Boyce, Sarah J; Samei, Ehsan
2006-04-01
Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 microm) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR2 efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ
Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space
Hui, Lam; LoVerde, Marilena; Gaztanaga, Enrique
2007-11-15
It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separation of {approx}100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z{approx}0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the {approx}100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to {approx}3% in the LOS orientation, and up to {approx}0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in
Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space
Hui Lam; Gaztanaga, Enrique; LoVerde, Marilena
2008-03-15
In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e. impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.
DISCOVERY OF A MULTIPLY LENSED SUBMILLIMETER GALAXY IN EARLY HerMES HERSCHEL/SPIRE DATA
Conley, A.; Cooray, A.; Kim, S.; Amblard, A.; Vieira, J. D.; Blain, A.; Bock, J.; Bradford, C. M.; Bridge, C.; Carpenter, J. M.; Solares, E. A. Gonzalez; Aguirre, J. E.; Auld, R.; Baker, A. J.; Beelen, A.; Blundell, R.; Brisbin, D.; Burgarella, D.; Chanial, P.
2011-05-10
We report the discovery of a bright (f(250 {mu}m)>400 mJy), multiply lensed submillimeter galaxy HERMES J105751.1+573027 in Herschel/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880 {mu}m Submillimeter Array observations resolve at least four images with a large separation of {approx}9''. A high-resolution adaptive optics K{sub p} image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of z = 2.9575, and the lensing model gives a total magnification of {mu} {approx} 11 {+-} 1. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, 88 {+-} 3 K. We derive a lensing-corrected total IR luminosity of (1.43 {+-} 0.09) x 10{sup 13} L{sub sun}, implying a star formation rate of {approx}2500 M{sub sun} yr{sup -1}. However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early Herschel data, and many more are expected as additional data are collected.
NASA Astrophysics Data System (ADS)
Song, Xiao-lu; Li, Bing-bin; Guo, Zhen; Wang, Shi-yu; Cai, De-fang; Wen, Jian-guo
2009-12-01
A numerical investigation is made on the thermal lensing and spherical aberration effect in an LD end-pumped Nd:YAG laser. Based on the finite element method (FEM), the laser rod temperature distribution is calculated and the focal length of the thermal lens is deduced, the influences of pump beam on the thermal lensing spherical aberration are mainly studied. The results show the thermal lens which focal length varied with the radial coordinate r is not an ideal lens. Given the heat dissipation boundary conditions, the radial dependent focal length will be shortened when the pump power raised or the waist radius of the pump beam reduced, meanwhile the radial differences of the focal length will decrease when the pump power increased. For a Super-Gaussian profile pump beam, the higher the exponent number, the more similar to flat top the pump beam is, and the less the radial differences of the focal length are.
Hezaveh, Yashar D.; Holder, Gilbert P.; Marrone, Daniel P.
2012-12-10
We address two selection effects that operate on samples of gravitationally lensed dusty galaxies identified in millimeter- and submillimeter-wavelength surveys. First, we point out the existence of a ''size bias'' in such samples: due to finite source effects, sources with higher observed fluxes are increasingly biased toward more compact objects. Second, we examine the effect of differential lensing in individual lens systems by modeling each source as a compact core embedded in an extended diffuse halo. Considering the ratio of magnifications in these two components, we find that at high overall magnifications, the compact component is amplified by a much larger factor than the diffuse component, but at intermediate magnifications ({approx}10) the probability of a larger magnification for the extended region is higher. Lens models determined from multi-frequency resolved imaging data are crucial to correct for this effect.
Three gravitationally lensed supernovae behind clash galaxy clusters
Patel, Brandon; McCully, Curtis; Jha, Saurabh W.; Holoien, Thomas W.-S.; Rodney, Steven A.; Jones, David O.; Graur, Or; Riess, Adam G.; Merten, Julian; Zitrin, Adi; Matheson, Thomas; Sako, Masao; Postman, Marc; Coe, Dan; Bradley, Larry; Bartelmann, Matthias; Balestra, Italo; Benítez, Narciso; Bouwens, Rychard; Broadhurst, Tom; and others
2014-05-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
Experimental Demonstration of Longitudinal Magnification
ERIC Educational Resources Information Center
Razpet, Nada; Susman, Katarina; Cepic, Mojca
2009-01-01
We describe an experiment which enables the observation of longitudinal magnification for the real image of a three-dimensional (3D) object formed by a converging lens. The experiment also shows the absence of longitudinal inversion. Possible reasons for misconceptions with respect to real images and longitudinal inversions are discussed and a…
NASA Astrophysics Data System (ADS)
Shechterman, Mark S.
1991-04-01
A high performance IR zoom telescope with a 15:1 magnification ratio arid fully automatic compensation for changes in optical properties caused by changes in temperature has been developed. This novel IR zoom telescope is characterized by using of three moveable optical element groups, instead of two usually used. Magnification change in it is performed by moving these three optical groups in a predetermined manner with respect to two stationary lens elements. The positioning of the three movable lens groups is controlled by means of a computerized program. The required magnification and the measured system temperature comprise the inputs to the program. The main advantages of this new telescope design relative to existing IR zoom telescopes are: better MTF performance, reduced sensitivity of optical performance to temperature changes, small number of lenses, wider magnification range and high optical transmission.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
Gutierrez, Danielle B; Garland, Donita L; Schwacke, John H; Hachey, David L; Schey, Kevin L
2016-08-01
In the human ocular lens it is now realized that post-translational modifications can alter protein function and/or localization in fiber cells that no longer synthesize proteins. The specific sites of post-translational modification to the abundant ocular lens membrane proteins AQP0 and MP20 have been previously identified and their functional effects are emerging. To further understand how changes in protein function and/or localization induced by these modifications alter lens homeostasis, it is necessary to determine the spatial distributions of these modifications across the lens. In this study, a quantitative LC-MS approach was used to determine the spatial distributions of phosphorylated AQP0 and MP20 peptides from manually dissected, concentric layers of fiber cells from young and aged human lenses. The absolute amounts of phosphorylation were determined for AQP0 Ser235 and Ser229 and for MP20 Ser170 in fiber cells from the lens periphery to the lens center. Phosphorylation of AQP0 Ser229 represented a minor portion of the total phosphorylated AQP0. Changes in spatial distributions of phosphorylated APQ0 Ser235 and MP20 Ser170 correlated with regions of physiological interest in aged lenses, specifically, where barriers to water transport and extracellular diffusion form. PMID:27339748
The magnification of SN 1997ff, the farthest known supernova
Benitez, Narciso; Riess, Adam; Nugent, Peter; Dickinson, Mark; Chornock, Ryan; Filippenko, Alexei V.
2002-09-03
With a redshift of z {approx} 1.7, SN 1997ff is the most distant type Ia supernova discovered so far. This SN is close to several bright, z = 0.6-0.9 galaxies, and we consider the effects of lensing by those objects on the magnitude of SN 1997ff. We estimate their velocity dispersions using the Tully-Fisher and Faber-Jackson relations corrected for evolution effects, and calculate, applying the multiple-plane lensing formalism, that SN 1997ff is magnified by 0.34{+-}0.12 mag. Due to the spatial configuration of the foreground galaxies, the shear from individual lenses partially cancels out,and the total distortion induced on the host galaxy is considerably smaller than that produced by a single lens having the same magnification. After correction for lensing, the revised distance to SN 1997ff is m-M = 45.49 {+-} 0.34 mag, which improves the agreement with the {Omega}{sub M} = 0.35, {Omega}{Lambda} = 0.65 cosmology expected from lower-redshift SNe Ia, and is inconsistent at the {approx} 3 sigma confidence level with a uniform gray dust model or a simple evolution model.
EDITORIAL: Focus on Gravitational Lensing
NASA Astrophysics Data System (ADS)
Jain, Bhuvnesh
2007-11-01
Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies
OPTIMAL MASS CONFIGURATIONS FOR LENSING HIGH-REDSHIFT GALAXIES
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.
2012-06-20
We investigate the gravitational lensing properties of lines of sight containing multiple cluster-scale halos, motivated by their ability to lens very high redshift (z {approx} 10) sources into detectability. We control for the total mass along the line of sight, isolating the effects of distributing the mass among multiple halos and of varying the physical properties of the halos. Our results show that multiple-halo lines of sight can increase the magnified source-plane region compared to the single cluster lenses typically targeted for lensing studies and thus are generally better fields for detecting very high redshift sources. The configurations that result in optimal lensing cross sections benefit from interactions between the lens potentials of the halos when they overlap somewhat on the sky, creating regions of high magnification in the source plane not present when the halos are considered individually. The effect of these interactions on the lensing cross section can even be comparable to changing the total mass of the lens from 10{sup 15} M{sub Sun} to 3 Multiplication-Sign 10{sup 15} M{sub Sun }. The gain in lensing cross section increases as the mass is split into more halos, provided that the lens potentials are projected close enough to interact with each other. A nonzero projected halo angular separation, equal halo mass ratio, and high projected halo concentration are the best mass configurations, whereas projected halo ellipticity, halo triaxiality, and the relative orientations of the halos are less important. Such high-mass, multiple-halo lines of sight exist in the Sloan Digital Sky Survey.
Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey
Duncan, Christopher A. J.; Heymans, Catherine; Heavens, Alan F.; Joachimi, Benjamin
2016-01-01
We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements. PMID:27274702
Statistics of magnification perturbations by substructure in the cold dark matter cosmological model
Rozo, Eduardo; Zentner, Andrew R.; Bertone, Gianfranco; Chen, Jacqueline; /KICP, Chicago /Chicago U., Astron. Astrophys. Ctr.
2005-06-01
We study the statistical properties of magnification perturbations by substructures in strong lensed systems using linear perturbation theory and an analytical substructure model including tidal truncation and a continuous substructure mass spectrum. We demonstrate that magnification perturbations are dominated by perturbers found within a tidal radius of an image, and that sizable magnification perturbations may arise from small, coherent contributions from several substructures within the lens halo. We find that the root-mean-square (rms) fluctuation of the magnification perturbation is {approx}10% to {approx}20% and both the average and rms perturbations are sensitive to the mass spectrum and density profile of the perturbers. Interestingly,we find that relative to a smooth model of the same mass, the average magnification in clumpy models is lower (higher) than that in smooth models for positive (negative) parity images. This is opposite from what is observed if one assumes that the image magnification predicted by the best-fit smooth model of a lens is a good proxy for what the observed magnification would have been if substructures were absent. While it is possible for this discrepancy to be resolved via nonlinear perturbers, we argue that a more likely explanation is that the assumption that the best-fit lens model is a good proxy for the magnification in the absence of substructure is not correct. We conclude that a better theoretical understanding of the predicted statistical properties of magnification perturbations by CDM substructure is needed in order to affirm that CDM substructures have been unambiguously detected.
NASA Astrophysics Data System (ADS)
Kawamata, Ryota; Oguri, Masamune; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Ouchi, Masami
2016-03-01
We conduct precise strong lensing mass modeling of four Hubble Frontier Field (HFF) clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full-depth HFF images, and conduct mass modeling using the glafic software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed SN Ia HFF14Tom for Abell 2744 and positional constraints from the multiple images S1-S4 of the lensed supernova SN Refsdal for MACS J1149.6+2223. We find that our best-fitting mass models reproduce the observed image positions with rms errors of ˜0.″4, which are smaller than rms errors in previous mass modeling that adopted similar numbers of multiple images. Our model predicts a new image of SN Refsdal with a relative time delay and magnification that are fully consistent with a recent detection of reappearance. We then construct catalogs of z ˜ 6-9 dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains ˜120 galaxies at z ≳ 6, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of MUV ˜ -15 to -14. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the Space Telescope Science Institute website (https://archive.stsci.edu/prepds/frontier/lensmodels/).
Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements
LoVerde, Marilena; Hui, Lam; Gaztanaga, Enrique
2007-02-15
Integrated Sachs-Wolfe (ISW) measurements, which involve cross-correlating the microwave background anisotropies with the foreground large-scale structure (e.g. traced by galaxies/quasars), have proven to be an interesting probe of dark energy. We show that magnification bias, which is the inevitable modulation of the foreground number counts by gravitational lensing, alters both the scale dependence and amplitude of the observed ISW signal. This is true especially at high redshifts because (1) the intrinsic galaxy-temperature signal diminishes greatly back in the matter-dominated era, (2) the lensing efficiency increases with redshift and (3) the number count slope generally steepens with redshift in a magnitude limited sample. At z > or approx. 2, the magnification-temperature correlation dominates over the intrinsic galaxy-temperature correlation and causes the observed ISW signal to increase with redshift, despite dark energy subdominance--a result of the fact that magnification probes structures all the way from the observer to the sources. Ignoring magnification bias therefore can lead to (significantly) erroneous conclusions about dark energy. While the lensing modulation opens up an interesting high z window for ISW measurements, high redshift measurements are not expected to add much new information to low redshift ones if dark energy is indeed the cosmological constant. This is because lensing introduces significant covariance across redshifts. The most compelling reasons for pursuing high redshift ISW measurements are to look for potential surprises such as early dark energy domination or signatures of modified gravity. We conclude with a discussion of existing measurements, the highest redshift of which is at the margin of being sensitive to the magnification effect. We also develop a formalism which might be of more general interest: to predict biases in estimating parameters when certain physical effects are ignored in interpreting observations.
Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; et al
2016-02-18
We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy clusters with median redshift z≃0.42 selected from the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian≃0.9 (low-z background) and zmedian≃1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit NFW models simultaneously to all observedmore » magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We also use our best-fit η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. Our work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.« less
Chiu, I.
2015-10-06
We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy clusters with median redshift z≃0.42 selected from the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts z_{median}≃0.9 (low-z background) and z_{median}≃1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit NFW models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83±0.24(stat)±0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We also use our best-fit η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. Our work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.
NASA Astrophysics Data System (ADS)
Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; Desai, S.; Gangkofner, C.; Gonzalez, A. H.; Gupta, N.; Hennig, C.; Hoekstra, H.; von der Linden, A.; Liu, J.; McDonald, M.; Reichardt, C. L.; Saro, A.; Schrabback, T.; Strazzullo, V.; Stubbs, C. W.; Zenteno, A.
2016-04-01
We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z ≃ 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian ≃ 0.9 (low-z background) and zmedian ≃ 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.
NASA Astrophysics Data System (ADS)
Zhang, Tong-Jie; Pen, Ue-Li
2005-12-01
Weak-lensing measurements are starting to provide statistical maps of the distribution of matter in the universe that are increasingly precise and complementary to cosmic microwave background maps. The probability distribution function (PDF) provides a powerful tool to test non-Gaussian features in the convergence field and to discriminate the different cosmological models. In this paper, we present a new PDF space Wiener filter approach to reconstruct the probability density function of the convergence from the noisy convergence field. We find that for parameters comparable to the CFHT Legacy Survey, the averaged PDF of the convergence in a 3° field can be reconstructed with an uncertainty of about 10%, although the pointwise PDF is noise dominated.
Weak lensing corrections to tSZ-lensing cross correlation
NASA Astrophysics Data System (ADS)
Tröster, Tilman; Van Waerbeke, Ludovic
2014-11-01
The cross correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and gravitational lensing in wide field has recently been measured. It can be used to probe the distribution of the diffuse gas in large scale structure, as well as inform us about the missing baryons. As for any lensing-based quantity, higher order lensing effects can potentially affect the signal. Here, we extend previous higher order lensing calculations to the case of tSZ-lensing cross correlations. We derive terms analogous to corrections due to the Born approximation, lens-lens coupling, and reduced shear up to order l gtrsim 3000.
Image magnification using interval information.
Jurio, Aranzazu; Pagola, Miguel; Mesiar, Radko; Beliakov, Gleb; Bustince, Humberto
2011-11-01
In this paper, a simple and effective image-magnification algorithm based on intervals is proposed. A low-resolution image is magnified to form a high-resolution image using a block-expanding method. Our proposed method associates each pixel with an interval obtained by a weighted aggregation of the pixels in its neighborhood. From the interval and with a linear K(α) operator, we obtain the magnified image. Experimental results show that our algorithm provides a magnified image with better quality (peak signal-to-noise ratio) than several existing methods. PMID:21632304
Ion and water distribution in pig lenses incubated at 0 degree C to disable ion transport pumps.
Cameron, I L; Hardman, W E; Fullerton, G D; Kellermayer, M; Ludany, A; Miseta, A
1991-01-01
This study was designed to test how extended exposure of lenses to sera with different ionic strengths influences the distribution of ions and water in the lens. Pig lenses were incubated in cold sera (0 degree C), which were adjusted to variable concentrations of NaCl, and their K+, Na+, Cl-, and water contents were measured. Incubation at 0 degree C inhibits active transport processes and thereby allows equilibration of the mobile ions and water. The hypothesis was that lens water content (volume) would follow the ion-induced protein changes predicted by a model derived from previous osmotic studies on proteins. As expected, exposure of the lens to cold caused a gain of sodium and a partial loss of potassium. However, the potassium concentration in the lens remained several fold higher than that in the bathing solution (about 41 vs. 1.8-4.6 mM/kg H2O), indicating that a portion of the potassium within the cold-exposed lens was not free to diffuse. That the water content of the lens showed a negative rather than a positive relationship with the concentration of NaCl within the lens was explained by the idea that an increase in NaCl within the lens (up to at least 250 mM/kg H2O) causes a decrease in the osmotically unresponsive water volume associated with lens proteins. PMID:1799442
Large-scale imprint of relativistic effects in the cosmic magnification
NASA Astrophysics Data System (ADS)
Duniya, Didam G. A.
2016-05-01
Apart from the known weak gravitational lensing effect, the cosmic magnification acquires relativistic corrections owing to Doppler, integrated Sachs-Wolfe, time-delay and other (local) gravitational potential effects, respectively. These corrections grow on very large scales and high redshifts z , which will be the reach of forthcoming surveys. In this work, these relativistic corrections are investigated in the magnification angular power spectrum, using both (standard) noninteracting dark energy (DE), and interacting DE (IDE). It is found that for noninteracting DE, the relativistic corrections can boost the magnification large-scale power by ˜40 % at z =3 , and increases at lower z . It is also found that the IDE effect is sensitive to the relativistic corrections in the magnification power spectrum, particularly at low z —which will be crucial for constraints on IDE. Moreover, the results show that if relativistic corrections are not taken into account, this may lead to an incorrect estimate of the large-scale imprint of IDE in the cosmic magnification; including the relativistic corrections can enhance the true potential of the cosmic magnification as a cosmological probe.
Measuring the Mass Distribution in Z is Approximately 0.2 Cluster Lenses with XMM, HST and CFHT
NASA Technical Reports Server (NTRS)
2004-01-01
Being the most massive gravitationally bound objects in the Universe, clusters of galaxies are prime targets for studies of structure formation and evolution. Specifically the comoving space density of virialized clusters of a given mass (or X-ray temperature), but also the frequency and degree of substructure, as well as the shape of the cluster mass profile are quantities whose current values and evolution as a function of lookback time can provide important constraints on the cosmological and physical parameters of structure formation theories. The project funded by NASA grant NAG 5-10041 intended to take such studies to a new level by combining observations of a well-selected cluster sample by three state-of-the-art telescopes: HST, to accurately measure the mass distribution in the cluster core (approx. 0.5 h(sup -1)(sub 50) Mpc) via strong gravitational lensing; CFHT, to measure the large scale mass distribution out to approx. 3 Mpc via weak lensing; and XMM, to measure the gas density and temperature distribution accurately on intermediate scales < 1.5 Mpc. XMM plays a pivotal role in this context as the calibration of X-ray mass measurements through accurate, spatially resolved X-ray temperature measurements (particularly in the cosmologically most sensitive range of kT> 5 keV) is central to the questions outlined above. This set of observations promised to yield the best cluster mass measurements obtained so far for a representative sample, thus allowing us to: 1) Measure the high-mass end of the local cluster mass function; 2) Test predictions of a universal cluster mass profile; 3) calibrate the mass-temperature and temperature-luminosity relations for clusters and the scatter around these relations, which is vital for studies of cluster evolution using the X-ray temperature and X-ray luminosity functions.
NASA Astrophysics Data System (ADS)
Bandara, Kaushala; Crampton, D.; Peng, C. Y.; Simard, L.
2012-01-01
We take advantage of the magnification in size and flux of a galaxy, provided by gravitational lensing, to analyze the properties of 62 strongly lensed galaxies of the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies span a redshift range of 0.20 <= z <= 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes and Sersic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, "disk"-like population with the peaks of the size and Sersic index distributions corresponding to ˜1.50 kpc and n˜1 respectively. Comparison of the SLACS lensed galaxies to a non-lensing, broad-band imaging based survey shows that a lensing survey allows us to probe a galaxy population that is typically ˜ 2 magnitudes fainter. Our analysis allows us to compare the
Motion magnification for endoscopic surgery
NASA Astrophysics Data System (ADS)
McLeod, A. Jonathan; Baxter, John S. H.; de Ribaupierre, Sandrine; Peters, Terry M.
2014-03-01
Endoscopic and laparoscopic surgeries are used for many minimally invasive procedures but limit the visual and haptic feedback available to the surgeon. This can make vessel sparing procedures particularly challenging to perform. Previous approaches have focused on hardware intensive intraoperative imaging or augmented reality systems that are difficult to integrate into the operating room. This paper presents a simple approach in which motion is visually enhanced in the endoscopic video to reveal pulsating arteries. This is accomplished by amplifying subtle, periodic changes in intensity coinciding with the patient's pulse. This method is then applied to two procedures to illustrate its potential. The first, endoscopic third ventriculostomy, is a neurosurgical procedure where the floor of the third ventricle must be fenestrated without injury to the basilar artery. The second, nerve-sparing robotic prostatectomy, involves removing the prostate while limiting damage to the neurovascular bundles. In both procedures, motion magnification can enhance subtle pulsation in these structures to aid in identifying and avoiding them.
Constant magnification optical tracking system
NASA Technical Reports Server (NTRS)
Frazer, R. E. (Inventor)
1982-01-01
A constant magnification optical tracking system for continuously tracking of a moving object is described. In the tracking system, a traveling objective lens maintains a fixed relationship with an object to be optically tracked. The objective lens was chosen to provide a collimated light beam oriented in the direction of travel of the moving object. A reflective surface is attached to the traveling objective lens for reflecting an image of the moving object. The object to be tracked is a free-falling object which is located at the focal point of the objective lens for at least a portion of its free-fall path. A motor and control means is provided for mantaining the traveling objective lens in a fixed relationship relative to the free-falling object, thereby keeping the free-falling object at the focal point and centered on the axis of the traveling objective lens throughout its entire free-fall path.
Motion magnification using the Hermite transform
NASA Astrophysics Data System (ADS)
Brieva, Jorge; Moya-Albor, Ernesto; Gomez-Coronel, Sandra L.; Escalante-Ramírez, Boris; Ponce, Hiram; Mora Esquivel, Juan I.
2015-12-01
We present an Eulerian motion magnification technique with a spatial decomposition based on the Hermite Transform (HT). We compare our results to the approach presented in.1 We test our method in one sequence of the breathing of a newborn baby and on an MRI left ventricle sequence. Methods are compared using quantitative and qualitative metrics after the application of the motion magnification algorithm.
A Magnification Lens for Interactive Volume Visualization
LaMar, E; Hamann, B; Joy, K I
2001-07-19
Volume visualization of large data sets suffers from the same problem that many other visualization modalities suffer from: either one can visualize the entire data set and lose small details or visualize a small region and lose the context. In this paper, they present a magnification lens technique for volume visualization. While the notion of a magnification-lens is not new, and other techniques attempt to simulate the physical properties of a magnifying lens, their contribution is in developing a magnification lens that is fast, can be implemented using a fairly small software overhead, and has a natural, intuitive appearance. The issue with magnification lens is the border, or transition, region. The lens center and exterior have a constant zoom factor, and are simple to render. It is the border region that blends between the external and interior magnification, and has a non-constant magnification. They use the perspective-correct textures capability, available in most current graphics systems, to produce a lens with a tessellated border region that approximates linear compression with respect to the radius of the magnification lens. They discuss how a cubic border can mitigate the discontinuities resulting from the use of a linear function, without significant performance loss. They discuss various issues concerning development of a three-dimensional magnification lens.
Bradac, M.
2005-04-13
We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145, the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(< 360h{sup -1}kpc) = (1.2 {+-} 0.3) x 10{sup 15}M{circle_dot}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.
Bradač, M.; Erben, T.; Schneider, P.; Hildebrandt, H.; Lombardi, M.; Schirmer, M.; Miralles, J. -M.; Clowe, D.; Schindler, S.
2005-07-01
We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145 , the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(<360 h^{ -1} kpc)= (1.2± 0.3) x 10^{15} M_{⊙}. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.
THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS
Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi
2013-01-10
The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.
Cosmology with weak lensing surveys.
Munshi, Dipak; Valageas, Patrick
2005-12-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284
SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS
Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James
2010-07-01
We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.
Weak lensing by galaxy troughs
NASA Astrophysics Data System (ADS)
Gruen, Daniel
2016-06-01
Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.
Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc
2013-11-01
We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.
Mesh-free free-form lensing - I. Methodology and application to mass reconstruction
NASA Astrophysics Data System (ADS)
Merten, Julian
2016-09-01
Many applications and algorithms in the field of gravitational lensing make use of meshes with a finite number of nodes to analyse and manipulate data. Specific examples in lensing are astronomical CCD images in general, the reconstruction of density distributions from lensing data, lens-source plane mapping or the characterization and interpolation of a point spread function. We present a numerical framework to interpolate and differentiate in the mesh-free domain, defined by nodes with coordinates that follow no regular pattern. The framework is based on radial basis functions (RBFs) to smoothly represent data around the nodes. We demonstrate the performance of Gaussian RBF-based, mesh-free interpolation and differentiation, which reaches the sub-percent level in both cases. We use our newly developed framework to translate ideas of free-form mass reconstruction from lensing on to the mesh-free domain. By reconstructing a simulated mock lens we find that strong-lensing only reconstructions achieve <10 per cent accuracy in the areas where these constraints are available but provide poorer results when departing from these regions. Weak-lensing only reconstructions give <10 per cent accuracy outside the strong-lensing regime, but cannot resolve the inner core structure of the lens. Once both regimes are combined, accurate reconstructions can be achieved over the full field of view. The reconstruction of a simulated lens, using constraints that mimics real observations, yields accurate results in terms of surface-mass density, Navarro-Frenk-White profile (NFW) parameters, Einstein radius and magnification map recovery, encouraging the application of this method to real data.
... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...
NASA Astrophysics Data System (ADS)
Giraud, E.
2012-07-01
Context. An anomaly in the distribution of quasar magnitudes based on the Sloan Digital Sky survey, was reported by Longo. The angular size of this quasar anomaly is on the order of ±15° on the sky. A smooth low surface brightness structure detected in γ-rays and at 408 MHz, coincides with the sky location and extent of the anomaly, and is close to the northern component of a pair of γ-ray bubbles discovered in the Fermi Gamma-ray Space Telescope survey. Molecular clouds are thought to be illuminated by cosmic rays. Molecular gas in the Galaxy, in the form of cold H2, may be a significant component of dark matter as suggested by Pfenniger et al. Aims: I test the hypothesis that the magnitude anomaly in the quasar distribution, is due to lensing by a hypothetical supergiant molecular cloud (SGMC) either in or falling into the Galactic halo. Methods: A series of grid lens models are built by assuming that a SGMC is a fractal structure constructed with clumps of 10-3 M⊙, 10 AU in size, and considering various fractal dimensions. Local amplifications are computed by using the single-plane approximation. Results: A complex network of caustics due to the clumpy structure is present. Our best single plane lens model capable of explaining Longo's effect, at least in sparse regions, requires a mass (1.5-4.1) × 1010 M⊙ within 8.7 × 8.7 × (5-8.6) kpc3 at a lens plane distance of 20 kpc, and is constructed from a molecular-cloud building-block of 5 × 105 M⊙ within a scale of 30 pc expanded by fractal scaling with dimension D = 1.8-2 out to 5-8.6 kpc for the SGMC. The mass budget depends on the cloud depth and on the fractal dimension. Conclusions: If such a SGMC were found to exist, it may provide at least part of a lensing explanation for the luminous anomaly discovered in quasars and red galaxies.
Compound lensing: Einstein zig-zags and high-multiplicity lensed images
NASA Astrophysics Data System (ADS)
Collett, Thomas E.; Bacon, David J.
2016-02-01
Compound strong gravitational lensing is a rare phenomenon, but a handful of such lensed systems are likely to be discovered in forthcoming surveys. In this work, we use a double singular isothermal sphere lens model to analytically understand how the properties of the system impact image multiplicity for the final source. We find that up to six images of a background source can form, but only if the second lens is multiply imaged by the first and the Einstein radius of the second lens is comparable to, but does not exceed that of the first. We then build a model of compound lensing masses in the Universe, using singular isothermal ellipsoid (SIE) lenses, and assess how the optical depth for multiple imaging by a galaxy-galaxy compound lens varies with source redshift. For a source redshift of 4, we find optical depths of 6 × 10-6 for multiple imaging and 5 × 10-8 for multiplicity of 6 or greater. We find that extreme magnifications are possible, with magnifications of 100 or more for 6 × 10-9 of z = 10 sources with 0.1 kpc radii. We show some of the image configurations that can be generated by compound lenses, and demonstrate that they are qualitatively different to those generated by single-plane lenses; dedicated compound lens finders will be necessary if these systems are to be discovered in forthcoming surveys.
A BRIGHT, SPATIALLY EXTENDED LENSED GALAXY AT z = 1.7 BEHIND THE CLUSTER RCS2 032727-132623
Wuyts, Eva; Gladders, Michael D.; Bayliss, Matthew B.; Koester, Benjamin P.; Barrientos, L. Felipe; Carrasco, Mauricio; Sharon, Keren; Gilbank, David; Yee, H. K. C.; Munoz, Roberto
2010-12-01
We present the discovery of an extremely bright and extended lensed source from the second Red Sequence Cluster Survey (RCS2). RCSGA 032727-132609 is spectroscopically confirmed as a giant arc and counterimage of a background galaxy at z = 1.701, strongly lensed by the foreground galaxy cluster RCS2 032727-132623 at z = 0.564. The giant arc extends over {approx}38'' and has an integrated r-band magnitude of 19.1, making it {approx}20 times larger and {approx}3.5 times brighter than the prototypical lensed galaxy MS1512-cB58. This is the brightest distant lensed galaxy in the universe known to date. We have collected photometry in nine bands, ranging from u to K{sub s} , which densely sample the rest-frame UV and optical light, including the age-sensitive 4000 A break. A lens model is constructed for the system and results in a robust total magnification of 2.04 {+-} 0.16 for the counterimage; we estimate an average magnification of 17.2 {+-} 1.4 for the giant arc based on the relative physical scales of the arc and counterimage on the sky. Fits of single-component spectral energy distribution models to the photometry result in a moderately young age, t = 80 {+-} 40 Myr, small amounts of dust, E(B - V) {<=} 0.11, and an exponentially declining star formation history with e-folding time {tau} = 10 - 50 Myr. After correcting for the lensing magnification, we find a stellar mass of M{sub *} {approx} 10{sup 10} M{sub sun} and a current star formation rate (SFR) {<=}77 M{sub sun} yr{sup -1}. Allowing for episodic star formation, an underlying old burst could contain up to twice the mass inferred from single-component modeling. RCSGA 032727-132609 is typical of the known population of star-forming galaxies near this redshift in terms of its age and stellar mass. Its large magnification and spatial extent provide a unique opportunity to study the physical properties of an individual high-redshift star-forming galaxy in great detail, opening up a new window to the process
Modelling the impact of intrinsic size and luminosity correlations on magnification estimation
NASA Astrophysics Data System (ADS)
Ciarlariello, Sandro; Crittenden, Robert
2016-08-01
Spatial correlations of the observed sizes and luminosities of galaxies can be used to estimate the magnification that arises through weak gravitational lensing. However, the intrinsic properties of galaxies can be similarly correlated through local physical effects, and these present a possible contamination to the weak lensing estimation. In an earlier paper (Ciarlariello et al. 2015) we modelled the intrinsic size correlations using the halo model, assuming the galaxy sizes reflect the mass in the associated halo. Here we extend this work to consider galaxy magnitudes and show that these may be even more affected by intrinsic correlations than galaxy sizes, making this a bigger systematic for measurements of the weak lensing signal. We also quantify how these intrinsic correlations are affected by sample selection criteria based on sizes and magnitudes.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N_{spec} of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N_{spec} is ~10^{6} we find that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N_{spec} to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z_{s} – z_{p} distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.
CMB Lensing Cross Correlations
NASA Astrophysics Data System (ADS)
Bleem, Lindsey
2014-03-01
A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.
[Special intra-ocular lenses].
Jacobi, K W; Nowak, M R; Strobel, J
1990-01-01
Intraocular lens (IOL) implantation is the method established worldwide for visual rehabilitation following cataract surgery. IOL's with particular characteristics and/or for special purposes are available for clinical or experimental use. Bifocal and multifocal IOLs have two or more foci for simultaneous far and near vision. The first clinical results are promising. The theoretically expected disadvantages, i.e., reduced contrast sensitivity or reduced visual acuity under reduced contrast conditions, have not yet been found in clinical studies. In cases of age-related macular degeneration, IOLs with a high negative diopter power in the center can be implanted as part of a Galilei telescope. By using high-plus power spectacles, a 2.5x to 4x magnification and a wide field of view can be achieved. Clinical investigation has started recently. Intraocular lenses for the correction of high-grade myopia are being tested by some surgeons. These lenses are made to be implanted in phakic eyes with a clear crystalline lens. Angle-supported and iris-fixated types are under investigation. Longterm results will show the clinical efficacy and safety. Other special intraocular lenses are iris-color lenses and a polymethymethacrylate (PMMA) iris diaphragm. PMID:2083909
An accurate and practical method for inference of weak gravitational lensing from galaxy images
NASA Astrophysics Data System (ADS)
Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.
2016-07-01
We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.
An accurate and practical method for inference of weak gravitational lensing from galaxy images
NASA Astrophysics Data System (ADS)
Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.
2016-04-01
We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong (2014, BA14), extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded image of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies/second/core with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multi-band observations; and joint inference of photometric redshifts and lensing tomography.
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, R.; Dai, X.
2014-01-01
We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.
Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing
Yamamoto, Kazuhiro
2005-05-15
A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.
Two Lensed Lyman-α Emitting Galaxies at z~ 5
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.; Wuyts, Eva; Sharon, Keren; Gladders, Michael D.; Hennawi, Joseph F.; Koester, Benjamin P.; Dahle, Håkon
2010-09-01
We present observations of two strongly lensed z ~ 5 Lyman-α emitting galaxies that were discovered in the Sloan Giant Arcs Survey (SGAS). We identify the two sources as SGAS J091541+382655 at z = 5.200 and SGAS J134331+415455 at z = 4.994. We measure their AB magnitudes at (i, z) = (23.34 ± 0.09, 23.29 ± 0.13) mag and (i, z) = (23.78 ± 0.18, 24.24+0.18 -0.16) mag and the rest-frame equivalent widths of the Lyman-α emission at 25.3 ± 4.1 Å and 135.6 ± 20.3 Å for SGAS J091541+382655 and SGAS J134331+415455, respectively. Each source is strongly lensed by a massive galaxy cluster in the foreground, and the magnifications due to gravitational lensing are recovered from strong lens modeling of the foreground lensing potentials. We use the magnification to calculate the intrinsic, unlensed Lyman-α and UV continuum luminosities for both sources, as well as the implied star formation rates. We find SGAS J091541+382655 and SGAS J134341+415455 to be galaxies with (L Ly-α, L UV) <= (0.6 L* Ly-α, 2 L*UV) and (L Ly-α, L UV) = (0.5 L* Ly-α, 0.9 L*UV), respectively. Comparison of the spectral energy distributions of both sources against stellar population models produces estimates of the mass in young stars in each galaxy; we report an upper limit of M stars <= 7.9+3.7 -2.5 × 107 M sun h -1 0.7 for SGAS J091531+382655 and a range of viable masses for SGAS J134331+415455 of 2 × 108 M sun h -1 0.7< M stars < 6 × 109 M sun h -1 0.7. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovaci
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations
NASA Astrophysics Data System (ADS)
Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton
2016-09-01
Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimisation of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the SLACS lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.
Magnified Views of Relativistic Outflows in Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Vignali, C.; Dadina, M.; Giustini, M.; Saez, C.; Misawa, T.
2016-06-01
We presents results from X-ray observations of relativistic outflows in lensed quasars. The lensing magnification of the observed objects provides high signal-to-noise X-ray spectra of quasars showing the absorption signatures of relativistic outflows at redshifts near a crucial phase of black hole growth and the peak of cosmic AGN activity. We summarise the properties of the wide-angle relativistic outflow of the z = 1.51 NAL quasar HS 0810 detected in recent deep XMM-Newton and Chandra observations of this object. We also present preliminary results from a mini-survey of gravitationally lensed mini-BAL quasars performed with XMM-Newton.
Zoom microscope objective using electrowetting lenses.
Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua
2016-02-01
We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy. PMID:26906860
Chen, Bin; Dai, Xinyu; Baron, E.
2013-01-10
Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.
Direct magnification radiography of the newborn infant
Brasch, R.C.; Gould, R.G.
1982-03-01
Recent advances in technology have made direct radiographic magnification of the newborn infant clinically feasible. A microfocus radiographic tube and a rare-earth, high-speed recording system were combined to obtain more than 2,000 radiographs at magnifications of 2 to 2.5. Special positioning devices permitted imaging of even those infants confined to incubators and connected to life-supporting systems. When quantitatively compared with three conventional contact radiographic systems with respect to resolution, contrast, and noise, magnification radiography showed overall superiority of image characteristics. Definition of subtle abnormalities and anatomically small structures permitted diagnoses which could not be made from conventional images. Furthermore, infant radiation exposure was markedly less (15 mR (3.9 mC/kg) maximum skin exposure) as compared with conventional contact radiographic systems (24 mR(6.1 mC/kg) to 45 mR (11.6 mC/kg)).
Direct magnification radiography of the newborn infant
Brasch, R.C.; Gould, R.G.
1982-03-01
Recent advances in technology have made direct radiographic magnification of the newborn infant clinically feasible. A microfocus radiographic tube and a rare-earth, high-speed recording system were combined to obtain more than 2,000 radiographs at magnifications of 2-2.5. Special positioning devices permitted imaging of even those infants confined to incubators and connected to life-supporting systems. When quantitatively compared with three conventional contact radiographic systems with respect to resolution, contrast, and noise, magnification radiography showed overall superiority of image characteristics. Definition of subtle abnormalities and anatomically small structures permitted diagnoses which could not be made from conventional images. Furthermore, infant radiation exposure was markedly less (15 mR (3.9 mC/kg) maximum skin exposure) as compared with conventional contact radiographic systems (24 mR (6.1 mC/kg) to 45 mR (11.6 mC/kg)).
Effects of lens motion and uneven magnification on image spectra
NASA Astrophysics Data System (ADS)
Banik, Indranil; Zhao, Hongsheng
2015-07-01
Counter to intuition, the images of an extended galaxy lensed by a moving galaxy cluster should have slightly different spectra in any metric gravity theory. This is mainly for two reasons. One relies on the gravitational potential of a moving lens being time dependent (the moving cluster effect, MCE). The other is due to uneven magnification across the extended, rotating source (the differential magnification effect, DME). The time delay between the images can also cause their redshifts to differ because of cosmological expansion. This differential expansion effect is likely to be small. Using a simple model, we derive these effects from first principles. One application would be to the Bullet Cluster, whose large tangential velocity may be inconsistent with the Λ cold dark matter paradigm. This velocity can be estimated with complicated hydrodynamic models. Uncertainties with such models can be avoided using the MCE. We argue that the MCE should be observable with Atacama Large Millimetre Array. However, such measurements can be corrupted by the DME if typical spiral galaxies are used as sources. Fortunately, we find that if detailed spectral line profiles were available, then the DME and MCE could be distinguished. It might also be feasible to calculate how much the DME should affect the mean redshift of each image. Resolved observations of the source would be required to do this accurately. The DME is of order the source angular size divided by the Einstein radius times the redshift variation across the source. Thus, it mostly affects nearly edge-on spiral galaxies in certain orientations. This suggests that observers should reduce the DME by careful choice of target, a possibility we discuss in some detail.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Beach, Raymond J. , Benett
1994-01-01
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.
Galaxy density profiles and shapes - II. Selection biases in strong lensing surveys
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; van de Ven, Glenn; Keeton, Charles R.
2009-09-01
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.
NASA Astrophysics Data System (ADS)
Blanchard, Peter; Bayliss, M.; McDonald, M.
2013-01-01
Despite the growing number of galaxy clusters being discovered which exhibit strong gravitational lensing, the process by which the mass density profile of these clusters becomes centrally concentrated enough to produce high strong lensing cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. If this were the case, one would expect to observe signatures of strong ICM cooling (e.g., steep X-ray cores, optical emission line nebulae, star formation) in and around the central brightest cluster galaxy. In this work, we search for such evidence of ICM cooling in the first large, well-defined sample of strong lensing selected galaxy clusters in the redshift range 0.1 < z < 0.6. Based on the known correlations between cooling rate and both optical emission line luminosity and specific star formation, as traced by [OII]λλ3727 emission and the 4000 angstrom break strength, respectively, we measure the fraction of clusters that have cooling signatures in a new sample of hundreds of strong lensing clusters, and compare this result to that in a control sample of thousands of optically-selected galaxy clusters. Our results argue against the ability of baryonic cooling in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in strong lensing cross-sections. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.
The Evolution of Video Magnification Technology.
ERIC Educational Resources Information Center
Uslan, M. M.; And Others
1996-01-01
This article traces the development of closed-circuit television (CCTV) systems, examines types of CCTVs available today, discusses the influence of digital and computer technology in improving CCTVs, and speculates on video magnification technology of the future. (Author/CR)
Electronic magnification and perceived contrast of video
Haun, Andrew; Woods, Russell L; Peli, Eli
2012-01-01
Electronic magnification of an image results in a decrease in its perceived contrast. The decrease in perceived contrast could be due to a perceived blur or to limited sampling of the range of contrasts in the original image. We measured the effect on perceived contrast of magnification in two contexts: either a small video was enlarged to fill a larger area, or a portion of a larger video was enlarged to fill the same area as the original. Subjects attenuated the source video contrast to match the perceived contrast of the magnified videos, with the effect increasing with magnification and decreasing with viewing distance. These effects are consistent with expectations based on both the contrast statistics of natural images and the contrast sensitivity of the human visual system. We demonstrate that local regions within videos usually have lower physical contrast than the whole, and that this difference accounts for a minor part of the perceived differences. Instead, visibility of ‘missing content’ (blur) in a video is misinterpreted as a decrease in contrast. We detail how the effects of magnification on perceived contrast can be measured while avoiding confounding factors. PMID:23483111
Beyond concordance cosmology with magnification of gravitational-wave standard sirens.
Camera, Stefano; Nishizawa, Atsushi
2013-04-12
We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer. PMID:25167243
Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad
2015-05-01
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
Gonzalez-Garcia, Jorge; Vazquez-Montiel, Sergio; Santiago-Alvarado, Agustin; Cordero-Davila, Alberto; Castro-Gonzalez, Graciela
2009-12-15
The amount of energy contained in the solar aureole affects the performance of solar systems. Solar optical systems are, therefore, dependent on the characteristics of the shape of the sun in a specific geographical location. For this reason, the present study proposes the design of solid lenses and mirrors modelled from a set of concentric spherical rings that give a desired distribution of energy in the focal plane. One hundred spherical rings, whose optimum curvature radius values were calculated by Genetic Algorithms, were employed in the modelling process. The study also proposes a design of a petal tool to polish lens and mirror surfaces. (author)
Roulettes: a weak lensing formalism for strong lensing: I. Overview
NASA Astrophysics Data System (ADS)
Clarkson, Chris
2016-08-01
We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.
Lincoln, Don
2015-06-24
In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2
NASA Technical Reports Server (NTRS)
Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.
2011-01-01
We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies
NASA Astrophysics Data System (ADS)
Saha, P.; Murdin, P.
2000-11-01
Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...
Subselective magnification angiography of experimental pneumonia
Bookstein, J.J.; Alazraki, N.P.; Jassy, L.N.
1983-04-01
An experiment was designed to determine whether or not acute pneumococcal pneumonia in dogs is associated with intravascular thrombosis, or with angiographic features distinguishable from pulmonary embolism. In dogs with normal baseline chest radiographs and perfusion scans, pneumonia was produced by transbronchial instillation of type III pneumococcus. After 2 days, perfusion scans demonstrated discrete appropriate defects. In vivo magnification pulmonary arteriography, postmortem pulmonary arteriography, and histologic examination disclosed no evidence of thrombi.
... Implants and Prosthetics Phakic Intraocular Lenses Phakic Intraocular Lenses Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Phakic intraocular lenses are new devices used to correct nearsightedness. These ...
Vernardos, G.; Fluke, C. J.; Croton, D.; Bate, N. F.
2014-03-01
As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.
NASA Astrophysics Data System (ADS)
Egami, Eiichi; Ebeling, Harald; Rawle, Timothy; Clement, Benjamin; Walth, Gregory; Pereira, Maria; Richard, Johan; Kneib, Jean-Paul
2012-12-01
Over the last few years, discoveries of exceptionally bright (e.g., observed S_peak > 100 mJy in the Herschel/SPIRE bands) gravitationally lensed submillimeter galaxies (SMGs) have generated great excitement. This is because these gravitationally lensed SMGs are so bright that they enable us to perform a variety of follow-up observations using a suite of observing facilities in the submillimeter, millimeter, and radio now available on the ground. Using Herschel, our team has been conducting a survey of such bright lensed galaxies in the fields of massive galaxy clusters: ``The Herschel Lensing Survey (HLS)'' (PI: Egami; 419 hours). This large Herschel program targets a total of 581 X-ray/SZ-selected massive clusters, and is currently 80% complete. Cluster lenses are often more powerful than galaxy lenses, producing larger magnifications. For example, typical magnification factors for galaxy-lensed Herschel sources are x10 or less while cluster-lensed systems can often produce magnification factors of x20-30 and even above x100. Cluster lenses will therefore allow us to detect and study intrinsically less-luminous and/or more distant sources with the ability to provide a view of finer-scale (i.e., sub-kpc) structures. Here, we propose to conduct Spitzer/IRAC imaging of 56 bright lensed SMG candidates we have identified in the ~470 HLS cluster fields observed so far. The main scientific goal is twofold: (1) to locate the underlying stellar component, and (2) to study its properties (e.g., stellar mass, specific star-formation rate) by constraining the rest-frame near-infrared SED and comparing with the Herschel and other submillimeter/millimeter data (e.g., SMA, PdB, ALMA, etc.). These rare bright lensed SMGs will allow us to probe the population of heavily dust-obscured vigorously star-forming galaxies at high redshift (z>1), which is thought to play an important role in the cosmic star-formation history of the Universe and yet has been difficult to study due to the
Toor, P.M.
1998-11-01
The stress intensity solutions presented herein were obtained using an energy method in conjunction with a two-dimensional finite element program in order to explicitly account for curvature effect for fully circumferential cracks. The magnification factors for a specific crack depth were calculated by successively loading the crack surface by a uniform, linear, quadratic, and a cubic loading distribution. The magnification factors can be used to calculate the stress intensity factors by superposition method. The functions for each load condition in terms of radius to thickness ratio (R/t) and a fractional distance in terms of crack depth to thickness ratio (a/t) were developed. The validity of these functions is R/t = 1.5 to 10.0 and for 0.0125 {le} a/t {le} 0.8125. The functions agree to within 1% of the finite elements solutions for most magnification factors.
Turner, E.L.
1988-07-01
For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.
... Here's Help White House Lunch Recipes Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A Text Size What's ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...
GPU-based video motion magnification
NASA Astrophysics Data System (ADS)
DomŻał, Mariusz; Jedrasiak, Karol; Sobel, Dawid; Ryt, Artur; Nawrat, Aleksander
2016-06-01
Video motion magnification (VMM) allows people see otherwise not visible subtle changes in surrounding world. VMM is also capable of hiding them with a modified version of the algorithm. It is possible to magnify motion related to breathing of patients in hospital to observe it or extinguish it and extract other information from stabilized image sequence for example blood flow. In both cases we would like to perform calculations in real time. Unfortunately, the VMM algorithm requires a great amount of computing power. In the article we suggest that VMM algorithm can be parallelized (each thread processes one pixel) and in order to prove that we implemented the algorithm on GPU using CUDA technology. CPU is used only to grab, write, display frame and schedule work for GPU. Each GPU kernel performs spatial decomposition, reconstruction and motion amplification. In this work we presented approach that achieves a significant speedup over existing methods and allow to VMM process video in real-time. This solution can be used as preprocessing for other algorithms in more complex systems or can find application wherever real time motion magnification would be useful. It is worth to mention that the implementation runs on most modern desktops and laptops compatible with CUDA technology.
Variable magnification glancing incidence x ray telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.
Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at z ~ 2
NASA Astrophysics Data System (ADS)
Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.
2012-01-01
We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Hα and [O II] λ3727 emission lines, and the UV+IR bolometric luminosity where 24 μm photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z ~ 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) × 109 M ⊙, young ages ~100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 M ⊙ yr-1. Compared to typical values for the galaxy population at z ~ 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z ~ 2. Based in part on observations collected at the 3.5 m Apache Point Observatory telescope in New Mexico, which is owned and operated by the Astrophysical Research Consortium.
Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2
NASA Technical Reports Server (NTRS)
Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.
2012-01-01
We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.
Discovery of A Very Bright, Strongly-Lensed z=2 Galaxy in the SDSS DR5
Lin, Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H.Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa; /Wako, RIKEN
2008-09-30
We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG). This system was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.03{double_prime} or 14.8 {+-} 0.1h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12}h{sup -1}M{sub {circle_dot}}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find an (unlensed) star formation rate for the source galaxy of 32 h{sup -1} M{sub {circle_dot}} hr{sup -1}, adopting a fiducial constant star formation rate model with an age of 100 Myr and E(B-V) = 0.25. With an apparent magnitude of r = 19.9, this system is among the very brightest lensed z {ge} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.
DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5
Lin Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.; Oguri, Masamune; Inada, Naohisa
2009-07-10
We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG), SDSS J120602.09+514229.5. This system, nicknamed the 'Clone', was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2 m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of {theta}{sub Ein} = 3.82 {+-} 0.''03 or 14.8 {+-} 0.1 h{sup -1} kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 {+-} 0.03 x 10{sup 12} h {sup -1} M{sub sun}, and the magnification factor for the source galaxy is 27 {+-} 1. Combining the lens model with our gVriz photometry, we find a (unlensed) star formation rate (SFR) for the source galaxy of 32 h{sup -1} M {sub sun} yr{sup -1}, adopting a fiducial constant SFR model with an age of 100 Myr and E(B - V) = 0.25. With an apparent magnitude of r = 19.8, this system is among the very brightest lensed z {>=} 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.
Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Hakon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard
2013-07-20
The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.
Impact of Digital Panoramic Radiograph Magnification on Vertical Measurement Accuracy
El Hage, Marc; Bernard, Jean-Pierre; Combescure, Christophe; Vazquez, Lydia
2015-01-01
Objectives. The purpose of this panoramic radiography study was to assess the impact of image magnification on the accuracy of vertical measurements in the posterior mandible. Methods. Six dental implants, inserted in the posterior segments of a resin model, were used as reference objects. Two observers performed implant length measurements using a proprietary viewer with two preset image magnifications: the low (1.9 : 1) and the medium (3.4 : 1) image magnifications. They also measured the implant lengths in two Digital Imaging Communications in Medicine viewers set at low (1.9 : 1), medium (3.4 : 1), and high (10 : 1) image magnifications. Results. The error between the measured length and the real implant length was close to zero for all three viewers and image magnifications. The percentage of measurements equal to the real implant length was the highest (83.3%) for the high image magnification and below 30% for all viewers with the low image magnification. Conclusions. The high and medium image magnifications used in this study allowed accurate vertical measurements, with all three imaging programs, in the posterior segments of a mandibular model. This study suggests that a low image magnification should not be used for vertical measurements on digital panoramic radiographs when planning an implant in the posterior mandible. PMID:26557851
Gravitational lensing by rotating naked singularities
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2008-10-15
We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.
Surface morphology of contact lenses probed with microscopy techniques.
Guryca, Vilém; Hobzová, Radka; Prádný, Martin; Sirc, Jakub; Michálek, Jirí
2007-09-01
The present study is bringing a comparison of surface morphology for various types of contact lenses. A novel method--scanning electron microscopy under aqueous conditions (cryo-SEM)--was tested for visualization of lenses at magnifications up to 2000x. For imaging lens surface on nanometre scale, we employed atomic force microscopy (AFM) in aqueous media. Various materials of lenses, based on silicone hydrogels or conventional hydrogels, were investigated. Total, 10 types of contact lenses from five manufacturers were selected and probed. We found that different methods of lens manufacture (lathe-cutting, cast-moulding, and spin casting) led to different values of surface roughness. In the swollen state, roughness values of lens surfaces lie between 4 and 140 nm. Lenses manufactured by lathe-cutting exhibit notable higher values, so that they could be easily distinguished from others. In cast-moulded lenses, the surface roughness decreased with increasing water content. Moreover, additional treatments of lenses introduced unique structural motifs onto surface. For instance, porous structure was found on lens surface finalized with plasma oxidation. PMID:17507281
Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.
2015-05-03
In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.
NASA Technical Reports Server (NTRS)
Randle, R. J.; Roscoe, S. N.; Petitt, J. C.
1980-01-01
Twenty professional pilots observed a computer-generated airport scene during simulated autopilot-coupled night landing approaches and at two points (20 sec and 10 sec before touchdown) judged whether the airplane would undershoot or overshoot the aimpoint. Visual accommodation was continuously measured using an automatic infrared optometer. Experimental variables included approach slope angle, display magnification, visual focus demand (using ophthalmic lenses), and presentation of the display as either a real (direct view) or a virtual (collimated) image. Aimpoint judgments shifted predictably with actual approach slope and display magnification. Both pilot judgments and measured accommodation interacted with focus demand with real-image displays but not with virtual-image displays. With either type of display, measured accommodation lagged far behind focus demand and was reliably less responsive to the virtual images. Pilot judgments shifted dramatically from an overwhelming perceived-overshoot bias 20 sec before touchdown to a reliable undershoot bias 10 sec later.
Incomplete Y chromosomes promote magnification in male and female Drosophila.
Komma, D J; Endow, S A
1987-01-01
We have recently shown that magnification, an increase in the number of ribosomal RNA genes (rDNA) in gametes produced by rDNA-deficient flies, can occur in female Drosophila if they have a Y chromosome. We now have tested several X-Y translocation and recombinant chromosomes to determine which parts of the Y chromosome are necessary for magnification to occur in females. Our data indicate that the required region is the distal part of the long arm of the Y chromosome, YL. We have also used X-Y translocation chromosomes to study magnification of rDNA-deficient X chromosomes in males. Our data show that the region of the Y chromosome from the distal end of the nucleolus organizer through the centromere is not required for magnification in males. The frequency of magnification in males with rDNA-deficient Y fragments is comparable to that produced by Ybb-, a chromosome that has often been used to produce magnification in males. These results demonstrate that the Ybb-chromosome is not uniquely effective in causing magnification to occur in males. The results of these studies imply that sequences present on YL are required for magnification to occur in females; these sequences are probably also required for magnification in males. Since unequal sister chromatid exchange has been implicated as the major mechanism of ribosomal gene increase during magnification, the YL sequences required for magnification may be involved in encoding or regulating products needed for sister chromatid recombination in germ-line cells. PMID:3104913
Entanglement magnification induced by local manipulations
Romano, Raffaele
2007-10-15
We study the entanglement capability of the evolution of a pair of qubits subject to unitary dynamics, when the dynamical parameters are fixed, that is they cannot be modified during the time evolution via external control. Unlike the fast local control regime, we find that local and nonlocal contributions to the dynamics are strictly interconnected, and both relevant in determining the entangling capability of the channel. It turns out that it is possible to strongly increase this quantity by suitably initializing the characteristic energies of the two parties; a significative magnification is obtained when these energies are equal. Analytical results are obtained for a subclass of dynamics, and numerical results are presented for more general cases.
Cortical Magnification Plus Cortical Plasticity Equals Vision?
Born, Richard T.; Trott, Alexander; Hartmann, Till
2014-01-01
Most approaches to visual prostheses have focused on the retina, and for good reasons. The earlier that one introduces signals into the visual system, the more one can take advantage of its prodigious computational abilities. For methods that make use of microelectrodes to introduce electrical signals, however, the limited density and volume occupying nature of the electrodes place severe limits on the image resolution that can be provided to the brain. In this regard, non-retinal areas in general, and the primary visual cortex in particular, possess one large advantage: “magnification factor” (MF)—a value that represents the distance across a sheet of neurons that represents a given angle of the visual field. In the foveal representation of primate primary visual cortex, the MF is enormous—on the order of 15–20 mm/deg in monkeys and humans, whereas on the retina, the MF is limited by the optical design of the eye to around 0.3 mm/deg. This means that, for an electrode array of a given density, a much higher- resolution image can be introduced into V1 than onto the retina (or any other visual structure). In addition to this tremendous advantage in resolution, visual cortex is plastic at many different levels ranging from a very local ability to learn to better detect electrical stimulation to higher levels of learning that permit human observers to adapt to radical changes to their visual inputs. We argue that the combination of the large magnification factor and the impressive ability of the cerebral cortex to learn to recognize arbitrary patterns, might outweigh the disadvantages of bypassing earlier processing stages and makes V1 a viable option for the restoration of vision. PMID:25449335
Bayesian Inference of CMB Gravitational Lensing
NASA Astrophysics Data System (ADS)
Anderes, Ethan; Wandelt, Benjamin D.; Lavaux, Guilhem
2015-08-01
The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.
Weak lensing and cosmological investigation
NASA Astrophysics Data System (ADS)
Acquaviva, Viviana
2005-03-01
In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.
Dynamic Magnification Factor in a Box-Shape Steel Girder
NASA Astrophysics Data System (ADS)
Rahbar-Ranji, A.
2014-01-01
The dynamic effect of moving loads on structures is treated as a dynamic magnification factor when resonant is not imminent. Studies have shown that the calculated magnification factors from field measurements could be higher than the values specified in design codes. It is the main aim of present paper to investigate the applicability and accuracy of a rule-based expression for calculation of dynamic magnification factor for lifting appliances used in marine industry. A steel box shape girder of a crane is considered and transient dynamic analysis using computer code ANSYS is implemented. Dynamic magnification factor is calculated for different loading conditions and compared with rule-based equation. The effects of lifting speeds, acceleration, damping ratio and position of cargo are examined. It is found that rule-based expression underestimate dynamic magnification factor.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-01-01
Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID
MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES
Umetsu, Keiichi
2013-05-20
Lens magnification by galaxy clusters induces characteristic spatial variations in the number counts of background sources, amplifying their observed fluxes and expanding the area of sky, the net effect of which, known as magnification bias, depends on the intrinsic faint-end slope of the source luminosity function. The bias is strongly negative for red galaxies, dominated by the geometric area distortion, whereas it is mildly positive for blue galaxies, enhancing the blue counts toward the cluster center. We generalize the Bayesian approach of Umetsu et al. for reconstructing projected cluster mass profiles, by incorporating multiple populations of background sources for magnification-bias measurements and combining them with complementary lens-distortion measurements, effectively breaking the mass-sheet degeneracy and improving the statistical precision of cluster mass measurements. The approach can be further extended to include strong-lensing projected mass estimates, thus allowing for non-parametric absolute mass determinations in both the weak and strong regimes. We apply this method to our recent CLASH lensing measurements of MACS J1206.2-0847, and demonstrate how combining multi-probe lensing constraints can improve the reconstruction of cluster mass profiles. This method will also be useful for a stacked lensing analysis, combining all lensing-related effects in the cluster regime, for a definitive determination of the averaged mass profile.
NASA Astrophysics Data System (ADS)
Jee, M. James; Dawson, William A.; Stroe, Andra; Wittman, David; van Weeren, Reinout J.; Brüggen, Marcus; Bradač, Maruša; Röttgering, Huub
2016-02-01
The galaxy cluster RX J0603.3+4214 at z = 0.225 is one of the rarest clusters boasting an extremely large (˜2 Mpc) radio relic. Because of the remarkable morphology of the relic, the cluster is nicknamed the “Toothbrush Cluster.” Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio relic morphology, its proximity to the Galactic plane b ˜ 10° has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is composed of complicated dark matter substructures closely tracing the galaxy distribution, in contrast, however, with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a ˜3:1 mass ratio ({M}200={6.29}-1.62+2.24× {10}14 {M}⊙ and {1.98}-0.74+1.24× {10}14 {M}⊙ for the northern and southern clumps, respectively). The southern mass peak is ˜2‧ offset toward the south with respect to the corresponding X-ray peak, which has a “bullet”-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional subclusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.
Resolving high energy emission of jets using strong gravitational lensing
NASA Astrophysics Data System (ADS)
Barnacka, Anna
2014-11-01
Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.
Wink-controlled polarization-switched telescopic contact lenses.
Schuster, Glenn M; Arianpour, Ashkan; Cookson, Scott; Zhang, Arthur; Hendrik, Lee; O'Brien, Tyrone; Alvarez, Agusto; Ford, Joseph E
2015-11-10
We describe a wink-controlled hands-free switching system for eye-borne telescopic vision, based on a previously tested fixed-magnification telescope embedded within scleral contact lenses. Here we integrate orthogonal polarizers into the contact lens covering the F/9.1 refractive 1× and F/9.6 catadioptric 2.8× vision paths, to allow switching via external liquid crystal shutters. We provide hands-free control by an infrared wink/blink monitor, using passive retroreflectors embedded within the contact lenses. We demonstrate system operation of the self-contained switching eyewear and the modified contact lenses with a life-size human eye model with mechanical "eyelids." PMID:26560792
TOPICAL REVIEW Gravitational lensing
NASA Astrophysics Data System (ADS)
Bartelmann, Matthias
2010-12-01
Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarizes the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarized.
Gradient Refractive Index Lenses.
ERIC Educational Resources Information Center
Morton, N.
1984-01-01
Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)
SDSS J094604.90+183541.8: A GRAVITATIONALLY LENSED QUASAR AT z = 4.8
McGreer, Ian D.; Fan Xiaohui; Bian Fuyan; Farnsworth, Kara; Hall, Patrick B.; Inada, Naohisa; Oguri, Masamune; Strauss, Michael A.; Schneider, Donald P.
2010-08-15
We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.
Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe
NASA Technical Reports Server (NTRS)
Isaacson, Jeffrey A.; Canizares, Claude R.
1989-01-01
Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux.
Optical versus radiographic magnification for fine-detail skeletal radiography.
Genant, H K; Doi, K; Mall, J C
1975-01-01
Fine-detail radiographic techniques for peripheral skeletal imaging have gained wide clinical acceptance. In this study, the imaging properties and clinical applications of the optical magnification technique, which employs fine-grain industrial film and a large focal spot, are compared quantitatively and qualitatively with those of three slow screen-film techniques, namely, contact exposure with a large focal spot, 2 times radiographic magnification with a 0.3 mm focal spot, and 4 times radiographic magnification with a 50 mu focal spot. The modulation transfer functions (MTF's) of the recording systems and focal spots are obtained and film sensitometry performed. Clinical comparisons are made for patients with metabolic, arthritic, and neoplastic skeletal disorders. The results illustrate the superiority of the optical magnification technique over contact or 2 times magnification techniques using slow screen-film systems. If a microfocus tube is used, however, direct radiographic magnification may provide images comparable in resolution, noise and contrast to those made with the optical magnification technique, and at lower radiation exposure to the patient. PMID:46857
Visual acuity and magnification devices in dentistry.
Perrin, Philippe; Eichenberger, Martina; Neuhaus, Klaus W; Lussi, Adrian
2016-01-01
This review discusses visual acuity in dentistry and the influence of optical aids. Studies based on objective visual tests at a dental working distance were included. These studies show dramatic individual variation independent of the dentists age. The limitations due to presbyopia begin at an age of 40 years. Dental professionals should have their near vision tested regularly. Visual deficiencies can be compensated with magnification aids. It is important to differentiate between Galilean and Keplerian loupes. The lightweight Galilean loupes allow an almost straight posture and offer improved ergonomics. Younger dentists profit more from the ergonomic aspects, while dentists over the age of 40 can compensate their age-related visual deficiencies when using this type of loupe. Keplerian loupes, with their superior optical construction, improve the visual performance for dentists of all age groups. The optical advantages come at the cost of ergonomic constraints due to the weight of these loupes. The microscope is highly superior visually and ergonomically, and it is indispensable for the visual control of endodontic treatments. PMID:27023468
NASA Astrophysics Data System (ADS)
Terlevich, Roberto; Melnick, Jorge; Terlevich, Elena; Chávez, Ricardo; Telles, Eduardo; Bresolin, Fabio; Plionis, Manolis; Basilakos, Spyros; Fernández Arenas, David; González Morán, Ana Luisa; Díaz, Ángeles I.; Aretxaga, Itziar
2016-08-01
ID11 is an actively star-forming, extremely compact galaxy and Lyα emitter at z = 3.117 that is gravitationally magnified by a factor of ~17 by the cluster of galaxies Hubble Frontier Fields AS1063. The observed properties of this galaxy resemble those of low luminosity HII galaxies or giant HII regions such as 30 Doradus in the Large Magellanic Cloud. Using the tight correlation correlation between the Balmer-line luminosities and the width of the emission lines (typically L(Hβ) - σ(Hβ)), which are valid for HII galaxies and giant HII regions to estimate their total luminosity, we are able to measure the lensing amplification of ID11. We obtain an amplification of 23 ± 11 that is similar within errors to the value of ~17 estimated or predicted by the best lensing models of the massive cluster Abell S1063. We also compiled, from the literature, luminosities and velocity dispersions for a set of lensed compact star-forming regions. There is more scatter in the L-σ correlation for these lensed systems, but on the whole the results tend to support the lensing model estimates of the magnification. Our result indicates that the amplification can be independently measured using the L - σ relation in lensed giant HII regions or HII galaxies. It also supports the suggestion, even if lensing is model dependent, that the L - σ relation is valid for low luminosity high-z objects. Ad hoc observations of lensed star-forming systems are required to determine the lensing amplification accurately.
Tabiryan, Nelson V; Serak, Svetlana V; Nersisyan, Sarik R; Roberts, David E; Zeldovich, Boris Ya; Steeves, Diane M; Kimball, Brian R
2016-04-01
We report on lenses that operate over the visible wavelength band from 450 nm to beyond 700 nm, and other lenses that operate over a wide region in the near-infrared from 650 nm to beyond 1000 nm. Lenses were recorded in liquid crystal polymer layers only a few micrometers thick, using laser-based photoalignment and UV photopolymerization. Waveplate lenses allowed focusing and defocusing laser beams depending on the sign of the circularity of laser beam polarization. Diffraction efficiency of recorded waveplate lenses was up to 90% and contrast ratio was up to 500:1. PMID:27137003
Spectral slicing X-ray telescope with variable magnification
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Hildner, E. (Inventor)
1985-01-01
A telescope for viewing high frequency radiation (soft X-ray, extreme ultraviolet) is described. This telescope has a long focal length with a selection of magnifications despite a short housing. Light enters the telescope and is reflected by the telescope's primary optical system to one of several secondary mirrors at different locations on a movable frame. The secondary mirrors have varying degrees of magnification and select narrow spectral slices of the incident radiation. Thus, both the magnification and effective focal length field of view and wavelength can be altered by repositioning the moving frame. Configurations for spaceborne applications are discussed.
Tomography and weak lensing statistics
Munshi, Dipak; Coles, Peter; Kilbinger, Martin E-mail: peter.coles@astro.cf.ac.uk
2014-04-01
We provide generic predictions for the lower order cumulants of weak lensing maps, and their correlators for tomographic bins as well as in three dimensions (3D). Using small-angle approximation, we derive the corresponding one- and two-point probability distribution function for the tomographic maps from different bins and for 3D convergence maps. The modelling of weak lensing statistics is obtained by adopting a detailed prescription for the underlying density contrast that involves hierarchal ansatz and lognormal distribution. We study the dependence of our results on cosmological parameters and source distributions corresponding to the realistic surveys such as LSST and DES. We briefly outline how photometric redshift information can be incorporated in our results. We also show how topological properties of convergence maps can be quantified using our results.
Gavazzi, Raphaël; Marshall, Philip J.; Treu, Tommaso; Sonnenfeld, Alessandro
2014-04-20
We present RINGFINDER, a tool for finding galaxy-scale strong gravitational lenses in multi-band imaging data. By construction, the method is sensitive to configurations involving a massive foreground ETG and a faint, background, blue source. RINGFINDER detects the presence of blue residuals embedded in an otherwise smooth red light distribution by difference imaging in two bands. The method is automated for efficient application to current and future surveys, having originally been designed for the 150 deg{sup 2} Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We describe each of the steps of RINGFINDER. We then carry out extensive simulations to assess completeness and purity. For sources with magnification μ > 4, RINGFINDER reaches 42% (25%) completeness and 29% (86%) purity before (after) visual inspection. The completeness of RINGFINDER is substantially improved in the particular range of Einstein radii 0.''8 ≤ R {sub Ein} ≤ 2.''0 and lensed images brighter than g = 22.5, where it can be as high as ∼70%. RINGFINDER does not introduce any significant bias in the source or deflector population. We conclude by presenting the final catalog of RINGFINDER CFHTLS galaxy-scale strong lens candidates. Additional information obtained with Hubble Space Telescope and Keck adaptive optics high-resolution imaging, and with Keck and Very Large Telescope spectroscopy, is used to assess the validity of our classification and measure the redshift of the foreground and the background objects. From an initial sample of 640,000 ETGs, RINGFINDER returns 2500 candidates, which we further reduce by visual inspection to 330 candidates. We confirm 33 new gravitational lenses from the main sample of candidates, plus an additional 16 systems taken from earlier versions of RINGFINDER. First applications are presented in the Strong Lensing Legacy Survey galaxy-scale lens sample paper series.
Mediated-reality magnification for macular degeneration rehabilitation
NASA Astrophysics Data System (ADS)
Martin-Gonzalez, Anabel; Kotliar, Konstantin; Rios-Martinez, Jorge; Lanzl, Ines; Navab, Nassir
2014-10-01
Age-related macular degeneration (AMD) is a gradually progressive eye condition, which is one of the leading causes of blindness and low vision in the Western world. Prevailing optical visual aids compensate part of the lost visual function, but omitting helpful complementary information. This paper proposes an efficient magnification technique, which can be implemented on a head-mounted display, for improving vision of patients with AMD, by preserving global information of the scene. Performance of the magnification approach is evaluated by simulating central vision loss in normally sighted subjects. Visual perception was measured as a function of text reading speed and map route following speed. Statistical analysis of experimental results suggests that our magnification method improves reading speed 1.2 times and spatial orientation to find routes on a map 1.5 times compared to a conventional magnification approach, being capable to enhance peripheral vision of AMD subjects along with their life quality.
Cooking with Strong Lenses and Other Ingredients
NASA Astrophysics Data System (ADS)
Bolton, Adam; SLACS; BELLS; SDSS-III
2013-07-01
Strong lensing offers the most direct method for constraining the distribution of mass in galaxies at cosmological distances. The combination of strong lensing with other observables increases its power, but often in ways that are model-dependent and resistant to intuition. In this talk, I will unpack the information content of spectroscopic, photometric, kinematic, and strong-lensing observables as they translate into constraints on the macroscopic distribution of luminous and dark matter in massive elliptical galaxies. I will also highlight how the choice of priors and analysis methods affects the conclusions drawn from a given set of observations. Finally, in this context I will present the latest results from observational efforts to extend strong-lensing analyses to lower mass galaxies in the Sloan Lens ACS Survey (SLACS) and to earlier cosmic times in the BOSS Emission-Line Lens Survey (BELLS).
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.
Fabricating low cost and high performance elastomer lenses using hanging droplets
Lee, W. M.; Upadhya, A.; Reece, P. J.; Phan, Tri Giang
2014-01-01
Existing methods for low cost lenses using parallel mold stamping and high temperature reflow requires complex engineering controls to produce high quality lenses. These manufacturing techniques rely on expensive equipment. In this paper, we propose a low cost (< $ 0.01 per pc) flexible moldless lens fabrication method based on curing a hanging transparent polydimethylsiloxane (PDMS) elastomer droplet on a curved substrate. Additional deposition of hanging droplets in the same manner led to a substantial increase in the lens curvature and concomitant decrease in the focal length of the PDMS lenses down to ~2 mm. The shortest focal length lenses were shown to collimate light from a bare light emitting diode (LED) and image microscopic structures down to around 4 µm with 160x magnification. Our hanging droplet lens fabrication technique heralds a new paradigm in the manufacture of low cost, high performance optical lenses for the masses. Using these lenses, we were able to transform an ordinary commercial smartphone camera into a low-cost digital dermascope (60x magnification) that can readily visualize microscopic structures on skin such as sweat pores. PMID:24877020
The homogeneity of the retinal illumination is restricted by some ERG lenses.
Kooijman, A C
1986-03-01
Are all types of available electroretinographic contact lenses suited for Ganzfeld stimulation? To answer this question, calculations have been made of the retinal light distribution with several types of ERG lenses placed on a theoretical eye. The results make possible a division of the ERG lenses into three categories. Category 1: Lenses with which the homogeneity of the retinal illumination is nearly perfect and independent of pupil size. These lenses are especially well designed for Ganzfeld electroretinography. Category 2: Lenses which illuminate a large retinal area but with which the light distribution depends on the size of the pupil. The suitability of these lenses is questionable, because Ganzfeld electroretinography is used in order to obtain a homogeneous retinal light distribution under most conditions. Category 3: Lenses with which the size of the illuminated retinal area changes strongly with the size of the pupil. These lenses are unsuitable for Ganzfeld electroretinography. PMID:3949465
Measuring neutrino masses with weak lensing
Wong, Yvonne Y. Y.
2006-11-17
Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.
The general theory of secondary weak gravitational lensing
NASA Astrophysics Data System (ADS)
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a `Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Intermediate Strength Gravitational Lensing
Irwin, John
2005-03-17
Weak lensing is found in the correlations of shear in {approx}10{sup 4} galaxy images, strong lensing is detected by the obvious distortion of a single galaxy image, whereas intermediate lensing requires detection of less obvious curvature in several neighboring galaxies. Small impact-parameter lensing causes a sextupole distortion whose orientation is correlated with the quadrupole distortion (shear). By looking within a field for the spatial correlation of this sextupole-quadrupole correlation, an intermediate lensing regime is observed. This technique requires correction for the sextupole as well as the quadrupole content of the PSF. We remove the HST PSF and uncover intermediate lensing in the Hubble deep fields. Correlations of the type expected are found.
Investigations of Galaxy Clusters Using Gravitational Lensing
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
CHEAP SPACE-BASED MICROLENS PARALLAXES FOR HIGH-MAGNIFICATION EVENTS
Gould, Andrew; Yee, Jennifer C. E-mail: jyee@astronomy.ohio-state.edu
2012-08-10
We show that for high-magnification (A{sub max} {approx}> 100) microlensing events, accurate microlens parallaxes can be obtained from three or fewer photometric measurements from a small telescope on a satellite in solar orbit at O(AU) from Earth. This is 1-2 orders of magnitude less observing resources than are required for standard space-based parallaxes. Such microlens parallax measurements would yield accurate mass and distance measurements to the lens for all cases in which finite-source effects were observed from the ground over peak. This would include virtually all high-magnification events with detected planets and a substantial fraction of those without. Hence, it would permit accurate estimates of the Galactic distribution of planets.
First measurement of the cross-correlation of CMB lensing and galaxy lensing
NASA Astrophysics Data System (ADS)
Hand, Nick; Leauthaud, Alexie; Das, Sudeep; Sherwin, Blake D.; Addison, Graeme E.; Bond, J. Richard; Calabrese, Erminia; Charbonnier, Aldée; Devlin, Mark J.; Dunkley, Joanna; Erben, Thomas; Hajian, Amir; Halpern, Mark; Harnois-Déraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hincks, Adam D.; Kneib, Jean-Paul; Kosowsky, Arthur; Makler, Martin; Miller, Lance; Moodley, Kavilan; Moraes, Bruno; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Sehgal, Neelima; Shan, Huanyuan; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; Switzer, Eric R.; Taylor, James E.; Van Waerbeke, Ludovic; Welker, Charlotte; Wollack, Edward J.
2015-03-01
We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 σ , which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ˜0.9 . With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.
Thermal lensing of laser materials
NASA Astrophysics Data System (ADS)
Davis, Mark J.; Hayden, Joseph S.
2014-10-01
This paper focuses on the three main effects that can induce wave-front distortion due to thermal lensing in laser gain media: 1) thermo-optic (dn/dT); 2) stress-optic; and 3) surface deformation (e.g., "end-bulging" of a laser rod). Considering the simple case of a side-pumped cylindrical rod which is air- or water-cooled along its length, the internal temperature distribution has long been known to assume a simple parabolic profile. Resulting from this are two induced refractive index variations due to thermo-optic and stress-optic effects that also assume a parabolic profile, but generally not of the same magnitude, nor even of the same sign. Finally, a small deformation on the rod ends can induce a small additional lensing contribution. We had two goals in this study: a) use finite-element simulations to verify the existing analytical expressions due to Koechner1 and Foster and Osterink; and b) apply them to glasses from the SCHOTT laser glass portfolio. The first goal was a reaction to more recent work by Chenais et al. who claimed Koechner made an error in his analysis with regard to thermal stress, throwing into doubt conclusions within studies since 1970 which made use of his equations. However, our re-analysis of their derivations, coupled with our FE modeling, confirmed that the Koechner and Foster and Osterink treatments are correct, and that Chenais et al. made mistakes in their derivation of the thermally-induced strain. Finally, for a nominal laser rod geometry, we compared the thermally-induced optical distortions in LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2. While LG-750, -760, and -770 undergo considerable thermo-optic lensing, their stress-optic lensing is nearly of the same magnitude but of opposite sign, leading to a small total thermal lensing signature.
The HST Frontier Fields: Gravitational Lensing Models Release
NASA Astrophysics Data System (ADS)
Coe, Dan A.; Lotz, J.; Natarajan, P.; Richard, J.; Zitrin, A.; Kneib, J.; Ebeling, H.; Sharon, K.; Johnson, T.; Limousin, M.; Bradac, M.; Hoag, A.; Cain, B.; Merten, J.; Williams, L. L.; Sebesta, K.; Meneghetti, M.; Koekemoer, A. M.; Barker, E. A.
2014-01-01
The Hubble Frontier Fields (HFF) is a Director's Discretionary Time (DDT) program to deeply observe up to six massive strong-lensing galaxy clusters and six "blank" fields in parallel. These complementary observations will yield magnified and direct images of some of the most distant galaxies yet observed. The strongly lensed images will be our deepest views of our universe to date. Interpretation of some (but not all) observed properties of the strongly lensed galaxies requires gravitational lens modeling. In order to maximize the value of this public dataset to the extragalactic community, STScI commissioned five teams funded by NASA to derive the best possible lens models from existing data. After coordinating to share observational constraints, including measured redshifts of strongly lensed galaxies, the teams independently derived lens models using robust, established methodologies. STScI released these models to the community in October before HFF observations of the first cluster, Abell 2744. Here we describe these models as well as a web tool which allows users to extract magnification estimates with uncertainties from all models for any galaxy strongly lensed by a HFF cluster. Inputs are the galaxy's coordinates (RA and Dec), redshift, and (optionally) observed radius. We also discuss ongoing work to study lens model uncertainties by modeling simulated clusters.
Astrophysical uses of CMB lensing
NASA Astrophysics Data System (ADS)
Das, Sudeep
The future of Cosmic Microwave Background (CMB) research lies in exploiting the arcminute scale secondary anisotropies which encode information about the late time interaction of the CMB photons with the structure in the Universe. A specific form of such interaction is the gravitational lensing of the CMB photons by intervening matter--the main topic of this thesis. Upcoming experiments like the Atacama Cosmology Telescope (ACT) and PLANCK will measure these anisotropies with unprecedented resolution and sensitivity. In four separate papers, laid out as four chapters in this thesis, we present new techniques to model and analyze such high resolution data and explore the implications of such measurements on Cosmology, mainly in the context of CMB lensing. The first chapter describes a novel and accurate method for simulating high resolution lensed CMB maps by ray-tracing through a large scale structure simulation. This method does not adopt the flat sky approximation and retains information from large angular scales in the dark matter distribution. Maps simulated through this method will be instrumental in developing the detection and analysis techniques for CMB lensing in high resolution CMB experiments like ACT. In the second chapter, we describe a new and efficient method for measuring the power spectrum of arcminute resolution CMB maps. At these resolutions, the CMB power spectrum is extremely red and is prone to aliasing of power due to hard edges and point source masks. By combining two new techniques, namely, prewhitening and the adaptive multitaper method, we show that these problems can be efficiently remedied and the uncertainties in the final power spectrum estimate can be reduced by several factors over those obtainable by the now standard methods. These techniques will be also useful for estimating higher order statistics from the maps, like the ones related to the detection of CMB lensing and its cross-correlation with large scale structure tracers. In
Gravitational lensing in the supernova legacy survey (SNLS)
NASA Astrophysics Data System (ADS)
Kronborg, T.; Hardin, D.; Guy, J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Jönsson, J.; Pain, R.; Pedersen, K.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.
2010-05-01
Aims: The observed brightness of type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. Methods: We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. Results: We find evidence of a lensing signal with a 2.3σ significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing the scatter in the mass luminosity relations have little effect. We show that for the full SuperNova Legacy Survey sample (~400 spectroscopically confirmed type Ia SNe and ~200 photometrically identified type Ia SNe), there is an 80% probability of detecting the lensing signal with a 3σ significance. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on
Contact Lenses for Vision Correction
... Contact Lenses Colored Contact Lenses Contact Lenses for Vision Correction Written by: Kierstan Boyd Reviewed by: Brenda ... on the surface of the eye. They correct vision like eyeglasses do and are safe when used ...
ERIC Educational Resources Information Center
Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc
2013-01-01
A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…
Learning through Different Lenses
ERIC Educational Resources Information Center
Jeweler, Sue; Barnes-Robinson, Linda
2015-01-01
When parents and teachers help gifted kids use the metaphor "learning through different lenses," amazing things happen: Horizons open up. Ideas are focused. Thoughts are magnified and clarified. They see the big picture. Metaphoric thinking offers new and exciting ways to see the world. Viewing the world through different lenses provides…
ERIC Educational Resources Information Center
Lovie-Kitchen, Jan; Whittaker, Steve
1998-01-01
This Australian study compared effects of relative-size magnification and relative-distance magnification on the reading rates of 24 adults with normal vision and 22 adults with low vision. For the subjects with low vision, the magnification method did not affect their reading rates, although subjects with normal vision showed slower reading at…
Belli, Sirio; Ellis, Richard S.; Jones, Tucker; Richard, Johan
2013-08-01
We present rest-frame optical spectra for a sample of nine low-mass star-forming galaxies in the redshift range 1.5 < z < 3 which are gravitationally lensed by foreground clusters. We used Triplespec, an echelle spectrograph at the Palomar 200 inch telescope that is very effective for this purpose as it samples the entire near-infrared spectrum simultaneously. By measuring the flux of nebular emission lines, we derive gas-phase metallicities and star formation rates, and by fitting the optical to infrared spectral energy distributions we obtain stellar masses. Taking advantage of the high magnification due to strong lensing, we are able to probe the physical properties of galaxies with stellar masses in the range 7.8 < log M/M{sub Sun} < 9.4 whose star formation rates are similar to those of typical star-forming galaxies in the local universe. We compare our results with the locally determined relation between stellar mass, gas metallicity, and star formation rate. Our data are in excellent agreement with this relation, with an average offset ({Delta}log (O/H)) = 0.01 {+-} 0.08, suggesting a universal relationship. Remarkably, the scatter around the fundamental metallicity relation is only 0.24 dex, smaller than that observed locally at the same stellar masses, which may provide an important additional constraint for galaxy evolution models.
Electrically-tunable optical zoom system by using liquid crystal lenses
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Hung-Chun
2012-03-01
An electrically-tunable optical zoom system using liquid crystal (LC) lenses is demonstrated. The mechanism of the optical zoom system is to use two lenses and a camera system to achieve focusing and zooming function. In this paper, we analyzed the imaging conditions and the magnification of the optical zoom system. The relation between the focusing properties of LC lenses and zoom ratio of the optical zoom system is also discussed. The electrically-tunable optical zoom system using two LC lenses has high zoom ratio (~7.9:1 to ~5.5:1), short system length (<10 cm) and the object can be zoomed in or zoomed out continuously at the objective distance of infinity to 10 cm. The potential applications are cell phones, cameras, telescopes and pico projectors.
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaš, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; Falco, E. E.
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 1046 erg s-1. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
Developments and trends in infrared zoom lenses from 2000 to 2010
NASA Astrophysics Data System (ADS)
Mann, Allen
2013-01-01
A review paper was previously published on infrared zoom lenses in the 1980s. Subsequently, a paper was published on infrared zoom lenses in the 1990s. It is timely then to prepare a paper on developments and trends in infrared zoom lenses in the decade since the year 2000. These trends include the shift from scanning systems to charge-coupled device and focal plane arrays, dual-band systems, advances in simulators for target detection, high zoom magnification ratio, off-axis as well as on-axis reflective zoom systems, athermalization, and developments and trends in infrared materials. Examples are presented to illustrate each of these trends. These examples are predominantly mechanically compensated zoom lenses, although one optically compensated zoom lens is also included.
Developments and trends in IR zoom lenses from 2000 to 2010
NASA Astrophysics Data System (ADS)
Mann, Allen
2012-10-01
A review paper has been previously published on infrared zoom lenses in the 1980s1. Subsequently, a paper was published on infrared zoom lenses in the 1990s2. It is timely to prepare a paper on developments and trends in infrared zoom lenses in the decade since the year 2000. These trends include the shift from scanning systems to CCD and focal plane arrays, dual band systems, advances in simulators for target detection, high zoom magnification ratio, reflective zoom systems, and developments and trends in infrared materials and detectors. Examples are presented to illustrate each of these trends. These examples are predominently mechanically compensated zoom lenses, although one optically compensated zoom lens is also included.
Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Brownstein, J.; Fadely, R.; Fassnacht, C. D.; Gavazzi, R.; Goodsall, T.; Griffith, R. L.; Keeton, C. R.; Kneib, J. P.; Koekemoer, A.; Koopmans, L. V. E.; Marshall, P. J.; Merten, J.; Metcalf, R. B.; Oguri, M.; Papovich, C.; Rein, H.; Ryan, R.; Stewart, K. R.; Treu, T.
2012-01-01
Strong gravitational lenses are uniquely suited for the study of dark matter structure and substructure within massive halos of many scales, act as gravitational telescopes for distant faint objects, and can give powerful and competitive cosmological constraints. Some 300 lenses have been identified in the literature in one form or another; many others have been found, but perhaps have not warranted dedicated publications. The Orphan Lenses project aims to be a master compilation of all strong gravitational lenses that are known, and a community repository for candidate lenses. A clear and uniform database of basic properties and gravitational lens models is being developed, which will be available online and through a smartphone interactive application. I will present the project, and scientific highlights with this dataset.
Weak Gravitational Lensing from Regular Bardeen Black Holes
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; niad, Hassan
2016-03-01
In this article we study weak gravitational lensing of regular Bardeen black hole which has scalar charge g and mass m. We investigate the angular position and magnification of non-relativistic images in two cases depending on the presence or absence of photon sphere. Defining dimensionless charge parameter q= {g}/{2m} we seek to disappear photon sphere in the case of |q|>{24√5}/{125} for which the space time metric encounters strongly with naked singularities. We specify the basic parameters of lensing in terms of scalar charge by using the perturbative method and found that the parity of images is different in two cases: (a) The strongly naked singularities is present in the space time. (b) singularity of space time is weak or is eliminated (the black hole lens).
Strong gravitational lensing in a noncommutative black-hole spacetime
NASA Astrophysics Data System (ADS)
Ding, Chikun; Kang, Shuai; Chen, Chang-Yong; Chen, Songbai; Jing, Jiliang
2011-04-01
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norström black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norström black hole, and may permit us to probe the spacetime noncommutative constant ϑ by the astronomical instruments in the future.
Temporal lenses for attosecond and femtosecond electron pulses
Hilbert, Shawn A.; Uiterwaal, Cornelis; Barwick, Brett; Batelaan, Herman; Zewail, Ahmed H.
2009-01-01
Here, we describe the “temporal lens” concept that can be used for the focus and magnification of ultrashort electron packets in the time domain. The temporal lenses are created by appropriately synthesizing optical pulses that interact with electrons through the ponderomotive force. With such an arrangement, a temporal lens equation with a form identical to that of conventional light optics is derived. The analog of ray diagrams, but for electrons, are constructed to help the visualization of the process of compressing electron packets. It is shown that such temporal lenses not only compensate for electron pulse broadening due to velocity dispersion but also allow compression of the packets to durations much shorter than their initial widths. With these capabilities, ultrafast electron diffraction and microscopy can be extended to new domains,and, just as importantly, electron pulses can be delivered directly on an ultrafast techniques target specimen. PMID:19541639
Visualization of high-dimensional clusters using nonlinear magnification
Keahey, T.A.
1998-12-31
This paper describes a cluster visualization system used for data-mining fraud detection. The system can simultaneously show 6 dimensions of data, and a unique technique of 3D nonlinear magnification allows individual clusters of data points to be magnified while still maintaining a view of the global context. The author first describes the fraud detection problem, along with the data which is to be visualized. Then he describes general characteristics of the visualization system, and shows how nonlinear magnification can be used in this system. Finally he concludes and describes options for further work.
Redshift detection of the most distant lensed starbursts
NASA Astrophysics Data System (ADS)
Dunne, Loretta; van der Werf, Paul; Massardi, Marcella; White, Glenn; Serjeant, Stephen; Michalowski, Michal; Thompson, Mark; Birkinshaw, Mark; Andreani, Paola; Stevens, Jamie; Omont, Alain; Smith, Matthew; Ivison, Rob; Thomson, Alasdair; Eales, Steve; Ibar, Edo; Benford, Dominic; Dannerbauer, Helmut; Leeuw, Lerothodi; Temi, Pasquale; Negrello, Mattia; Clements, Dave; Bussmann, Shane; Maddox, Steve; De Vis, Pieter; Vlahakis, Catherine; Verma, Aprajita; Dye, Simon; Riechers, Dominik
2013-10-01
We propose to obtain redshifts for the four most distant (z_est > 3.8) and luminous galaxies in 90 sq deg of the Herschel-ATLAS southern field. The bright 500 micron fluxes of these sources means they are either gravitationally lensed or are among the rarest, most luminous starbursts in the universe. Creating large and unbiased samples of strong lenses is a key goal for H-ATLAS, allowing us to constrain cosmological parameters and the evolution of dark matter haloes, as well as providing an unprecedented sample of the most actively star forming galaxies in the early universe, able to be studied in exquisite detail thanks to the lensing magnification. The submm photo-z of these objects are 3.8
Gravitational lensing in plasmic medium
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.
2015-07-01
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational lensing in plasmic medium
Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational Lensing: Einstein's unfinished symphony
NASA Astrophysics Data System (ADS)
Treu, Tommaso; Ellis, Richard S.
2015-01-01
Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.
NASA Technical Reports Server (NTRS)
1996-01-01
An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.
Gavazzi, R.; Cooray, A.; Conley, A.; Aguirre, J. E.; Amblard, A.; Auld, R.; Beelen, A.; Blain, A.; Bock, J.; Bradford, C. M.; Bridge, C.; Djorgovski, S. G.; Blundell, R.; Brisbin, D.; Burgarella, D.; Chanial, P.; Christopher, N.; Clements, D. L.; Cox, P.
2011-09-10
We present the results of a gravitational lensing analysis of the bright z{sub s} = 2.957 submillimeter galaxy (SMG) HERMES found in the Herschel/SPIRE science demonstration phase data from the Herschel Multi-tiered Extragalactic Survey (HerMES) project. The high-resolution imaging available in optical and near-IR channels, along with CO emission obtained with the Plateau de Bure Interferometer, allows us to precisely estimate the intrinsic source extension and hence estimate the total lensing magnification to be {mu} = 10.9 {+-} 0.7. We measure the half-light radius R{sub eff} of the source in the rest-frame near-UV and V bands that characterize the unobscured light coming from stars and find R{sub eff,*} = [2.0 {+-} 0.1] kpc, in good agreement with recent studies on the SMG population. This lens model is also used to estimate the size of the gas distribution (R{sub eff,gas} = [1.1 {+-} 0.5] kpc) by mapping back in the source plane the CO (J = 5 {yields} 4) transition line emission. The lens modeling yields a relatively large Einstein radius R{sub Ein} = 4.''10 {+-} 0.''02, corresponding to a deflector velocity dispersion of [483 {+-} 16] km s{sup -1}. This shows that HERMES is lensed by a galaxy group-size dark matter halo at redshift z{sub l} {approx} 0.6. The projected dark matter contribution largely dominates the mass budget within the Einstein radius with f{sub dm}(< R{sub Ein}) {approx} 80%. This fraction reduces to f{sub dm}(< R{sub eff,G1} {approx_equal} 4.5 kpc) {approx} 47% within the effective radius of the main deflecting galaxy of stellar mass M{sub *,G1} = [8.5 {+-} 1.6] x 10{sup 11} M{sub sun}. At this smaller scale the dark matter fraction is consistent with results already found for massive lensing ellipticals at z {approx} 0.2 from the Sloan Lens ACS Survey.
Chan, Heang-Ping; Goodsitt, Mitchell M; Hadjiiski, Lubomir M; Bailey, Janet E; Klein, Katherine; Darner, Katie L; Sahiner, Berkman
2003-11-21
over 90% accuracy on magnification images. This study indicates that stereoscopic imaging, especially with magnification, may be useful for visualizing the spatial distribution of microcalcifications in a cluster and for differentiating overlapping tissues from masses on mammograms. PMID:14680269
CONSTRAINTS ON THE LOW-MASS END OF THE MASS-METALLICITY RELATION AT z = 1-2 FROM LENSED GALAXIES
Wuyts, Eva; Gladders, Michael D.; Rigby, Jane R.; Sharon, Keren
2012-08-10
We present multi-wavelength imaging and near-IR spectroscopy for 10 gravitationally lensed galaxies at 0.9 < z < 2.5 selected from a new, large sample of strong lens systems in the Sloan Digital Sky Survey Data Release 7. We derive stellar masses from the rest-frame UV to near-IR spectral energy distributions, star formation rates (SFRs) from the dust-corrected H{alpha} flux, and metallicities from the [N II]/H{alpha} flux ratio. We combine the lensed galaxies with a sample of 60 star-forming galaxies from the literature in the same redshift range for which measurements of [N II]/H{alpha} have been published. Due to the lensing magnification, the lensed galaxies probe intrinsic stellar masses that are on average a factor of 11 lower than have been studied so far at these redshifts. They have specific SFRs that are an order of magnitude higher than seen for main-sequence star-forming galaxies at z {approx} 2. We measure an evolution of 0.16 {+-} 0.06 dex in the mass-metallicity relation between z {approx} 1.4 and z {approx} 2.2. In contrast to previous claims, the redshift evolution is smaller at low stellar masses. We do not see a correlation between metallicity and SFR at fixed stellar mass. The combined sample is in general agreement with the local fundamental relation between metallicity, stellar mass, and SFR from Mannucci et al. Using the Kennicutt-Schmidt law to infer gas fractions, we investigate the importance of gas inflows and outflows on the shape of the mass-metallicity relation using simple analytical models. This suggests that the Maiolino et al. calibration of the [N II]/H{alpha} flux ratio is biased high.
Comparison of objective lenses for multiphoton microscopy in turbid samples.
Singh, Avtar; McMullen, Jesse D; Doris, Eli A; Zipfel, Warren R
2015-08-01
Optimization of illumination and detection optics is pivotal for multiphoton imaging in highly scattering tissue and the objective lens is the central component in both of these pathways. To better understand how basic lens parameters (NA, magnification, field number) affect fluorescence collection and image quality, a two-detector setup was used with a specialized sample cell to separate measurement of total excitation from epifluorescence collection. Our data corroborate earlier findings that low-mag lenses can be superior at collecting scattered photons, and we compare a set of commonly used multiphoton objective lenses in terms of their ability to collect scattered fluorescence, providing guidance for the design of multiphoton imaging systems. For example, our measurements of epi-fluorescence beam divergence in the presence of scattering reveal minimal beam broadening, indicating that often-advocated over-sized collection optics are not as advantageous as previously thought. These experiments also provide a framework for choosing objective lenses for multiphoton imaging by relating the results of our measurements to various design parameters of the objectives lenses used. PMID:26309771
Statistical determination of space shuttle component dynamic magnification factors
NASA Technical Reports Server (NTRS)
Lehner, F.
1973-01-01
A method is presented of obtaining vibration design loads for components and brackets. Dynamic Magnification Factors from applicable Saturn/Apollo qualification, reliability, and vibroacoustic tests have been statistically formulated into design nomographs. These design nomographs have been developed for different component and bracket types, mounted on backup structure or rigidly mounted and excited by sinusoidal or random inputs. Typical nomographs are shown.
The Jordy Electronic Magnification Device: Opinions, Observations, and Commentary
ERIC Educational Resources Information Center
Francis, Barry
2005-01-01
The Jordy electronic magnification device is one of a small number of electronic headborne devices designed to provide people with low vision the capability to perform near-range, intermediate-range, and distance viewing tasks. This report seeks to define the benefits of using the Jordy as a low vision device by people who are legally blind. The…
Kohnen, T; Shajari, M
2016-06-01
Refractive surgical procedures are generally divided into additive procedures with, e. g. implantation of an artificial lens and subtractive procedures with ablation of corneal tissue. In this article the current status of phakic intraocular lens (IOL) implantation for correction of refractive errors is reviewed. Phakic IOLs are constructed as angle-supported or iris-fixated anterior chamber lenses and sulcus-fixated posterior chamber lenses. The implantation of phakic IOLs has been demonstrated to be an effective, safe, predictable and stable procedure to correct higher refractive errors. Complications are rare and depend to a large extent on the location. For anterior chamber lenses the main concern is critical endothelial cell loss and for posterior chamber lenses early cataract formation. PMID:27277751
A phase-shifting in-line digital holography of pre-magnification on imaging research
NASA Astrophysics Data System (ADS)
Lin, Qiaowen; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie; Panezai, Spozmai
2013-12-01
A phase shifting digital holography with pre-magnification is designed. In order to fully utilize the bandwidth of the camera, a four-step phase-shifting digital holography is adopted to retrieve the complex distribution of the object. To further enhance the resolution of the reconstructed image without phase aberration, two microscope objectives (MOs) are placed in front of the object and the reference mirror. The MO in the reference arm provides parallel beam at the PZT plane thus improve the precision of the phase shifting. A 1951 USAF negative resolution target is used as the sample. Experiment result demonstrates the feasibility of the proposed method.
Ultra high magnification endoscopy: Is seeing really believing?
Arya, Aman V; Yan, Brian M
2012-10-16
Endoscopy is an indispensible diagnostic and therapeutic instrument for gastrointestinal diseases. Endocytoscopy and confocal endomicroscopy are two types of ultra high magnification endoscopy techniques. Standard endoscopy allows for 50 × magnification, whereas endocytoscopy can magnify up to 1400 × and confocal endomicroscopy can magnify up to 1000 ×. These methods open the realm of real time microscopic evaluation of the GI tract, including cellular and subcellular structures. Confocal endomicroscopy has the additional advantage of being able to visualize subsurface structures. The use of high magnification endoscopy in conjunction with standard endoscopy allows for a real-time microscopic assessment of areas with macroscopic abnormalities, providing "virtual biopsies" with valuable information about cellular and subcellular changes. This can minimize the number of biopsies taken at the time of endoscopy. The use of this technology may assist in detecting pre-malignant or malignant changes at an earlier state, allowing for earlier intervention and treatment. High magnification endoscopy has shown promising results in clinical trials for Barrett's esophagus, esophageal adenocarcinoma, esophageal squamous cell cancer, gastric cancer, celiac disease, colorectal cancer, and inflammatory bowel disease. As the use of high magnification endoscopy techniques increases, the clinical applications will increase as well. Of the two systems, only confocal endomicroscopy is currently commercially available. Like all new technologies there will be an initial learning curve before operators become proficient in obtaining high quality images and discerning abnormal from normal pathology. Validated criteria for the diagnosis of the various gastrointestinal diseases will need to be developed for each method. In this review, the basic principles of both modalities are discussed, along with their clinical applicability and limitations. PMID:23189217
WEAK-LENSING PEAK FINDING: ESTIMATORS, FILTERS, AND BIASES
Schmidt, Fabian
2011-07-10
Large catalogs of shear-selected peaks have recently become a reality. In order to properly interpret the abundance and properties of these peaks, it is necessary to take into account the effects of the clustering of source galaxies, among themselves and with the lens. In addition, the preferred selection of magnified galaxies in a flux- and size-limited sample leads to fluctuations in the apparent source density that correlate with the lensing field. In this paper, we investigate these issues for two different choices of shear estimators that are commonly in use today: globally normalized and locally normalized estimators. While in principle equivalent, in practice these estimators respond differently to systematic effects such as magnification and cluster member dilution. Furthermore, we find that the answer to the question of which estimator is statistically superior depends on the specific shape of the filter employed for peak finding; suboptimal choices of the estimator+filter combination can result in a suppression of the number of high peaks by orders of magnitude. Magnification and size bias generally act to increase the signal-to-noise {nu} of shear peaks; for high peaks the boost can be as large as {Delta}{nu} {approx} 1-2. Due to the steepness of the peak abundance function, these boosts can result in a significant increase in the observed abundance of shear peaks. A companion paper investigates these same issues within the context of stacked weak-lensing mass estimates.