Science.gov

Sample records for lensless digital holography

  1. On-chip differential interference contrast microscopy using lensless digital holography

    PubMed Central

    Oh, Chulwoo; Isikman, Serhan O.; Khademhosseinieh, Bahar; Ozcan, Aydogan

    2010-01-01

    We introduce the use of a birefringent crystal with lensless digital holography to create an on-chip differential interference contrast (DIC) microscope. Using an incoherent source with a large aperture, in-line holograms of micro-objects are created, which interact with a uniaxial crystal and an absorbing polarizer, encoding differential interference contrast information of the objects on the chip. Despite the fact that a unit fringe magnification and an incoherent source with a large aperture have been used, holographic digital processing of such holograms rapidly recovers the differential phase contrast image of the specimen over a large field-of-view of ~24 mm2. PMID:20389485

  2. Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhuo; Situ, Guohai; Pedrini, Giancarlo; Wang, Dayong; Javidi, Bahram; Osten, Wolfgang

    2013-01-01

    We propose a short-coherence lensless Fourier-transform digital holography for imaging through scattering media. The technique utilizes a low-power cw diode laser with short temporal coherence and enables the selection of the early-arriving photons through a diffusive medium by interfering with a spherical reference beam from the same source. An averaging technique is introduced to extract the weak signal from strong background noise. The proposed technique is verified using both theoretical analysis and experimental demonstration by imaging an object through a 3-mm-thick chicken breast tissue.

  3. Multi-angle lensless digital holography for depth resolved imaging on a chip

    PubMed Central

    Su, Ting-Wei; Isikman, Serhan O.; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems. PMID:20588819

  4. Superresolution imaging method using phase-shifting digital lensless Fourier holography.

    PubMed

    Granero, Luis; Micó, Vicente; Zalevsky, Zeev; García, Javier

    2009-08-17

    A method which is useful for obtaining superresolved imaging in a digital lensless Fourier holographic configuration is presented. By placing a diffraction grating between the input object and the CCD recording device, additional high-order spatial-frequency content of the object spectrum is directed towards the CCD. Unlike other similar methods, the recovery of the different band pass images is performed by inserting a reference beam in on-axis mode and using phase-shifting method. This strategy provides advantages concerning the usage of the whole frequency plane as imaging plane. Thus, the method is no longer limited by the zero order term and the twin image. Finally, the whole process results in a synthetic aperture generation that expands up the system cutoff frequency and yields a superresolution effect. Experimental results validate our concepts for a resolution improvement factor of 3. PMID:19687979

  5. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information.

    PubMed

    Granero, Luis; Micó, Vicente; Zalevsky, Zeev; García, Javier

    2010-02-10

    The resolving power of an imaging system in digital lensless Fourier holographic configuration is mainly limited by the numerical aperture of the experimental setup that is defined by both the restricted CCD size and the presence of a beam splitter cube in front of the CCD. We present a method capable of improving the resolution in such a system configuration based on synthetic aperture (SA) generation by using time-multiplexing tilted illumination onto the input object. Moreover, a priori knowledge about the imaged object allows customized SA shaping by the addition of elementary apertures only in the directions of interest. Experimental results are provided, showing agreement with theoretical predictions and demonstrating a resolution limit corresponding with a synthetic numerical aperture value of 0.45. PMID:20154752

  6. High-resolution lensless Fourier transform holography for microstructure imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Wang, Dayong; Wang, Huaying; Xie, Jianjun

    2007-12-01

    Digital holography combines the advantages of the optical holography and the computers. It can implement an all-digital processing and has the quasi real-time property. With lensless Fourier transform recording architecture, the limited bandwidth of CCD camera can be utilized sufficiently, and the sampling theorem is satisfied easily. Therefore, high-resolution can be achieved. So it is preferred in the microstructure imaging. In the paper, based on the Fresnel diffraction theory and the off-axis lensless Fourier transform recording architecture, the experimental optimization and correspondingly the digital reconstruction was investigated. Also, the lateral resolution of the reconstructed image was analyzed and improved by the proposed techniques. When the USAF test target was imaged without any pre-magnification, the lateral resolution of 3.1μm was achieved, which matched the theoretical prediction very well. The key points to achieve high resolution image are to use the smaller object and to arrange the distance between the object and the CCD plane as short as possible. Meanwhile, properly overlapping the reconstructed image with the DC term was helpful to improve the resolution. The noise in the reconstructed image could be reduced greatly by choosing the optical elements precisely and adjusting the beam path finely. The experimental results demonstrated that it is possible for the digital holographic microscopy to produce the high resolution image without the objective pre-magnification. The results also showed that, with a high quality hologram, the special image processing during the reconstruction may be unnecessary to obtain a high quality image.

  7. RGB digital lensless holographic microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, Jorge

    2013-11-01

    The recent introduction of color digital lensless holographic microscopy (CDLHM) has shown the possibility of imaging microscopic specimens at full color without the need of lenses. Owing to the simplicity, robustness, and compactness of the digital lensless holographic microscopes (DLHM), they have been presented as the ideal candidates to being developed into portable holographic microscopes. However, in the case of CDLHM the utilization of three independent lasers hinders the portability option for this microscope. In this contribution an alternative to reduce the complexity of CDLHM aimed to recover the portability of this microscopy technology is presented. A super-bright white-light light-emitting diode (LED) is spectrally and spatially filtered to produce the needed illumination by CDLHM to work. CDLHM with LED illumination is used to image at full color a section of the head of a drosophila melanogaster fly (fruit fly). The LED-CDLHM method shows the capability of imaging objects of 2μm size in comparison with the micrometer resolution reported for LASER-CDLHM.

  8. Extreme-ultraviolet lensless Fourier-transform holography.

    PubMed

    Lee, S H; Naulleau, P; Goldberg, K A; Cho, C H; Jeong, S; Bokor, J

    2001-06-01

    We demonstrate 100-nm-resolution holographic aerial image monitoring based on lensless Fourier-transform holography at extreme-UV (EUV) wavelengths, using synchrotron-based illumination. This method can be used to monitor the coherent imaging performance of EUV lithographic optical systems. The system has been implemented in the EUV phase-shifting point-diffraction interferometer recently developed at Lawrence Berkeley National Laboratory. Here we introduce the idea of the holographic aerial image-recording technique and present imaging performance characterization results for a 10x Schwarzschild objective, a prototype EUV lithographic optic. The results are compared with simulations, and good agreement is obtained. Various object patterns, including phase-shift-enhanced patterns, have been studied. Finally, the application of the holographic aerial image-recording technique to EUV multilayer mask-blank defect characterization is discussed. PMID:18357280

  9. Field-portable reflection and transmission microscopy based on lensless holography.

    PubMed

    Lee, Myungjun; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-09-01

    We demonstrate a lensfree dual-mode holographic microscope that can image specimens in both transmission and reflection geometries using in-line transmission and off-axis reflection holography, respectively. This field-portable dual-mode holographic microscope has a weight of ~200 g with dimensions of 15 x 5.5 x 5cm, where a laser source is powered by two batteries. Based on digital in-line holography, our transmission microscope achieves a sub-pixel lateral resolution of ≤2 µm over a wide field-of-view (FOV) of ~24 mm(2) due to its unit fringe magnification geometry. Despite its simplicity and ease of operation, in-line transmission geometry is not suitable to image dense or connected objects such as tissue slides since the reference beam gets distorted causing severe aberrations in reconstruction of such objects. To mitigate this challenge, on the same cost-effective and field-portable assembly we built a lensless reflection mode microscope based on digital off-axis holography where a beam-splitter is used to interfere a tilted reference wave with the reflected light from the object surface, creating an off-axis hologram of the specimens on a CMOS sensor-chip. As a result of the reduced space-bandwidth product of the off-axis geometry compared to its in-line counterpart, the imaging FOV of our reflection mode is reduced to ~9 mm(2), while still achieving a similar sub-pixel resolution of ≤2 µm. We tested the performance of this compact dual-mode microscopy unit by imaging a US-air force resolution test target, various micro-particles as well as a histopathology slide corresponding to skin tissue. Due to its compact, cost-effective, and lightweight design, this dual-mode lensless holographic microscope might especially be useful for field-use or for conducting microscopic analysis in resource-poor settings. PMID:21991559

  10. Field-portable reflection and transmission microscopy based on lensless holography

    PubMed Central

    Lee, Myungjun; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-01-01

    We demonstrate a lensfree dual-mode holographic microscope that can image specimens in both transmission and reflection geometries using in-line transmission and off-axis reflection holography, respectively. This field-portable dual-mode holographic microscope has a weight of ~200 g with dimensions of 15 x 5.5 x 5cm, where a laser source is powered by two batteries. Based on digital in-line holography, our transmission microscope achieves a sub-pixel lateral resolution of ≤2 µm over a wide field-of-view (FOV) of ~24 mm2 due to its unit fringe magnification geometry. Despite its simplicity and ease of operation, in-line transmission geometry is not suitable to image dense or connected objects such as tissue slides since the reference beam gets distorted causing severe aberrations in reconstruction of such objects. To mitigate this challenge, on the same cost-effective and field-portable assembly we built a lensless reflection mode microscope based on digital off-axis holography where a beam-splitter is used to interfere a tilted reference wave with the reflected light from the object surface, creating an off-axis hologram of the specimens on a CMOS sensor-chip. As a result of the reduced space-bandwidth product of the off-axis geometry compared to its in-line counterpart, the imaging FOV of our reflection mode is reduced to ~9 mm2, while still achieving a similar sub-pixel resolution of ≤2 µm. We tested the performance of this compact dual-mode microscopy unit by imaging a US-air force resolution test target, various micro-particles as well as a histopathology slide corresponding to skin tissue. Due to its compact, cost-effective, and lightweight design, this dual-mode lensless holographic microscope might especially be useful for field-use or for conducting microscopic analysis in resource-poor settings. PMID:21991559

  11. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  12. Photon counting digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  13. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    PubMed

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-01

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings. PMID:20401422

  14. Compact, Light-weight and Cost-effective Microscope based on Lensless Incoherent Holography for Telemedicine Applications

    PubMed Central

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O.; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-01-01

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing ~46 grams with dimensions smaller than 4.2cm × 4.2cm × 5.8cm that achieves sub-cellular resolution over a large field of view of ~24 mm2. This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings. PMID:20401422

  15. Digital holography display (3)

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Zheng, Huadong; Chia, Yong Poo; Cheng, Chee Yuen; Yu, Yang; Yu, Yingjie; Asundi, Anand

    2013-06-01

    This paper is to describe a color digital holographic projector and this system is comprised of RGB lasers, 3 units of Digital Micro-Mirror Device (DMD) and high speed rotating diffuser. In this research, we focused on colorings Digital holograms and synchronized RGB digital holograms versus rotated diffuser. To achieve this phenomenon, three of the holograms optical path need to be aligned to pass through a same beam splitter and eventually combined as one colored holograms output While, this colored hologram will be reconstructed on volumetric screen (rotated diffuser) at the floating manner in free space. To obtain these result 3 key factors is investigated: 1. To configured 1 master and 2 slaves digital micro mirror illumination time 2. To reconstructed holograms orientation angle diffuser versus rotating speed. 3. To synchronize rotating diffuser speed versus DMD frame-rate Last but not least, the team built a prototype Color Digital Holography Display but more developments are required to follow up such as, enhance system's reliability, robustness, compactness and 3D realistic images floating in the free air space.

  16. Measurement of hygroscopic strain in deodar wood during convective drying using lensless Fourier transform digial holography

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Shakher, Chandra

    2016-04-01

    In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.

  17. Lensless coherent imaging by sampling of the optical field with digital micromirror device

    NASA Astrophysics Data System (ADS)

    Vdovin, G.; Gong, H.; Soloviev, O.; Pozzi, P.; Verhaegen, M.

    2015-12-01

    We have experimentally demonstrated a lensless coherent microscope based on direct registration of the complex optical field by sampling the pupil with a sequence of two-point interferometers formed by a digital micromirror device. Complete registration of the complex amplitude in the pupil of the imaging system, without any reference beam, provides a convenient link between the experimental and computational optics. Unlike other approaches to digital holography, our method does not require any external reference beam, resulting in a simple and robust registration setup. Computer analysis of the experimentally registered field allows for focusing the image in the whole range from zero to infinity, and for virtual correction of the aberrations present in the real optical system, by applying the adaptive wavefront corrections to its virtual model.

  18. Digital Holography Display (2)

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Asundi, A.; Yu, Yang; Xiao, Zhen Zhong

    This paper describes the extension work from the last Digital Holography Projector System. From the developed works shows that, some unforeseen factors have created the difficulties for the system alignment. Such factors are the DMD frame rate, light source and diffractive zero order. It is really the challenging development works to achieve the virtual 3D model display on the high speed rotation screen. The three most key factors are emphasizing: 1) The display device's frame rate; 2) The light source orientation angle; and 3) The zero order filtering optic. 1) This device's is the digital micro mirror, in short is DMD. It is the high speed switching device has developed by the most recent technology. The switching frame rate can go up as high as 291fps. At first, the 8 bits depth file must be digitalized and stored for DMD onboard Ram. The digitalized data are transmitting from the PC USB to DMD onboard Ram. Instead of the data are downloading directly from the PC to DVI or VGA during display, this downloading method cause slower down the display speed, which is the common frame rate of 30 Hz. Next, the onboard Ram data then transfer to the DMD mirror's for display, at the 8 bits 291 fps speed. At this frame rate, the display 2D image can almost cover for 10 of out of the 360 0 in 1 revolution. 2) This laser light source must be installed such that free for orientated in any arbitrary angle from 220 to 450. Which is normalized to the DMD mirrors and the brief sketch show on figure (a). The purpose of orientated the light source is ensure that multi diffractive order would be reflected straight from the mirrors. (This multi diffractive order is the phenomenon of the digital micro mirror's characteristic). This mean, the reconstruct images would be followed the DMD normalized direction reflected up to fibre conduit. Moreover, this orientated method install of the laser light source is making space for other optical lenses or device driver/controller. Because, all

  19. Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization.

    PubMed

    Bourgade, Thomas; Jianfei, Sun; Wang, Zhaomin; Elsa, Rosmin; Asundi, Anand

    2016-01-01

    A micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive. However, effective inspection and characterization metrology systems are needed to ensure the functional reliability of MEMS. This study presents a system based on digital holography as a tool for MEMS metrology. Digital holography has gained increasing attention in the past 20 years. With the fast development and decreasing cost of sensor arrays, resolution of such systems has increased broadening potential applications. Thus, it has attracted attention from both research and industry sides as a potential reliable tool for industrial metrology. Indeed, by recording the interference pattern between an object beam (which contains sample height information) and a reference beam on a CCD camera, one can retrieve the quantitative phase information of an object. However, most of digital holographic systems are bulky and thus not easy to implement on industry production lines. The novelty of the system presented is that it is lens-less and thus very compact. In this study, it is shown that the Compact Digital Holographic Microscope (CDHM) can be used to evaluate several characteristics typically consider as criteria in MEMS inspections. The surface profiles of MEMS in both static and dynamic conditions are presented. Comparison with AFM is investigated to validate the accuracy of the CDHM. PMID:27404277

  20. Imaging live humans through smoke and flames using far-infrared digital holography.

    PubMed

    Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P

    2013-03-11

    The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm. PMID:23482109

  1. Twin image removal in digital in-line holography based on iterative inter-projections

    NASA Astrophysics Data System (ADS)

    Chen, Bing Kuan; Chen, Tai-Yu; Hung, Shau Gang; Huang, Sheng-Lung; Lin, Jiunn-Yuan

    2016-06-01

    A simple and efficient phase retrieval method based on the iterative inter-projections of the recorded Fourier modulus between two effective holographic planes is developed to eliminate the twin image in digital in-line holography. The proposed algorithm converges stably in phase extraction procedures without requiring any prior knowledge or sophisticated support of the object and is applicable to lensless Gabor and Fourier holography as well as holographic microscopy with imaging lenses. Numerical and experimental results suggest that the spatial resolution enhancement on the reconstructed image can be achieved with this technique due to the capability of recovering the diffraction phases of low-intensity signals.

  2. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters. PMID:27556985

  3. DYI digital holography

    NASA Astrophysics Data System (ADS)

    Zacharovas, Stanislovas; Nikolskij, Andrej; Kuchin, Jevgenij

    2011-02-01

    We have created a programming tool which uses image data provided by webcam connected to personal computer and gives user an ability to see the future digital hologram preview on his computer screen, before sending video data to holographic printing companies. In order to print digital hologram, one needs to have a sequence of images of the same scene taken from different angles and nowadays web cameras - stand-alone or incorporated into mobile computer, can be an acceptable source of such image sequences. In this article we are describing this DIY holographic imaging process in details.

  4. Lensless Imaging and Sensing.

    PubMed

    Ozcan, Aydogan; McLeod, Euan

    2016-07-11

    High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future. PMID:27420569

  5. Direct to Digital Holography

    SciTech Connect

    Bingham, P.R.; Tobin, K.W.

    2007-09-30

    In this Cooperative Research and Development Agreement (CRADA), Oak Ridge National Laboratory (ORNL) assisted nLine Corporation of Austin, TX in the development of prototype semiconductor wafer inspection tools based on the direct-to-digital holographic (DDH) techniques invented at ORNL. Key components of this work included, testing of DDH for detection of defects in High Aspect Ratio (HAR) structures, development of image processing techniques to enhance detection capabilities through the use of both phase and intensity, and development of methods for autofocus on the DDH tools.

  6. Visualizing Breath using Digital Holography

    NASA Astrophysics Data System (ADS)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  7. Digital holography-based steganography.

    PubMed

    Hamam, Habib

    2010-12-15

    A steganographic method offering a high hiding capacity is presented in which the techniques of digital holography are used to distribute information from a small secret image across the larger pixel field of a cover image. An iterative algorithm is used to design a phase-only or complex hologram from a padded version of the secret image, quantizing this data according to the carrier data bits that are available within the intended cover image. By introducing the hologram data only into low-order bits of larger amplitude cover pixels, the change in the cover image remains imperceptible to the casual observer, with a peak signal-to-noise ratio of >40 dB. PMID:21165128

  8. Microstructure measurement of digital holography

    NASA Astrophysics Data System (ADS)

    Li, Jicheng; Tian, Ailing; Wang, Hongjun; Zhu, Xueliang; Wang, Chunhui; Liu, Bingcai; Asundi, Anand

    2015-02-01

    Miniaturization is a development trend of electronics, machinery and information systems, while micro structure brought a large amount of new development for industrial and research applications, whereas, slow measuring speed and two-dimensional results of traditional micro measurement could not meet our needs, it's urgent to find a matching testing techniques with more sensitivity, more effectiveness and better to have a real-time three-dimensional display. Digital holography applied to the measurement of micro structure, it made up for the lacking of traditional micro structure measure systems of too much time consuming, poor immunity, easily damaging samples with its simple structure, high accuracy, non contact features and three-dimensional reproduction. This paper analyzed the key factors of digital holographic recording and reproducing process.In order to solve the low quality of holograms captured by traditional recording system, holograms and pre-processing algorithm was combined for real-time, by observing the holograms and delicate adjusting the system, to ensure that the collected holograms with full use of CCD width while convenient for subsequent processing. In the processing of reproduction,the influence of spectrum choice, reconstruction wavelength and algorithms and unwrapping algorithm was been studied, and finally obtained an accurate three-dimensional topography of the object. The improved rerecording system and reconstruction algorithm mentioned above solved the low holography quality, much noise and not clear shortcomings of the reconstructed image. Experiment on a raster, compared with traditional system and algorithm results, results showed that the recording system and determine algorithms can reproduce the three-dimensional topography of the object with high precision and has a broader applicability.

  9. Digital holography to light field

    NASA Astrophysics Data System (ADS)

    Asundi, Anand; Zuo, Chao

    2014-05-01

    Holography uses wave (physical) optical principles of interference and diffraction to record and display images. Interference allows us to record the amplitude and phase of the optical wave emanating from an object on a film or recording medium and diffraction enables us to see this wave-field, i.e. the amplitude and phase of the object. Visually this corresponds to both perspective and depth information being reconstructed as in the original scene. Digital Holography has enabled quantification of phase which in some applications provides meaningful engineering parameters. There is growing interest in reconstructing this wavefield without interference. Thus the non-interferometric Transport of Intensity Equation (TIE) method is gaining increased research, which uses two or more defocused images to reconstruct the phase. Due to its non-interferometric nature, TIE relaxes the stringent beam-coherence requirements for interferometry, extending its applications to various optical fields with arbitrary spatial and temporal coherence. The alternate school of thought emerges from the computer science community primarily deals with ray optics. In a normal imaging system all rays emerging from an object point into are focused to a conjugate image point. Information of ray direction is lost and thus the perspective and depth information. A light field image is one that has information of both amplitude and direction of rays fanning from any object point and thus provides perspective (or what could be termed as phase) of the object wave as well. It would thus be possible to extract phase as we know it from this albeit for a coherent illumination case.

  10. Recent advances in digital holography [invited].

    PubMed

    Osten, Wolfgang; Faridian, Ahmad; Gao, Peng; Körner, Klaus; Naik, Dinesh; Pedrini, Giancarlo; Singh, Alok Kumar; Takeda, Mitsuo; Wilke, Marc

    2014-09-20

    This article presents an overview of recent advances in the field of digital holography, ranging from holographic techniques designed to increase the resolution of microscopic images, holographic imaging using incoherent illumination, phase retrieval with incoherent illumination, imaging of occluded objects, and the holographic recording of depth-extended objects using a frequency-comb laser, to the design of an infrastructure for remote laboratories for digital-holographic microscopy and metrology. The paper refers to current trends in digital holography and explains them using new results that were recently achieved at the Institute for Applied Optics of the University Stuttgart. PMID:25322137

  11. Refocusing criterion via sparsity measurements in digital holography.

    PubMed

    Memmolo, Pasquale; Paturzo, Melania; Javidi, Bahram; Netti, Paolo A; Ferraro, Pietro

    2014-08-15

    Several automatic approaches have been proposed in the past to compute the refocus distance in digital holography (DH). However most of them are based on a maximization or minimization of a suitable amplitude image contrast measure, regarded as a function of the reconstruction distance parameter. Here we show that, by using the sparsity measure coefficient regarded as a refocusing criterion in the holographic reconstruction, it is possible to recover the focus plane and, at the same time, establish the degree of sparsity of digital holograms, when samples of the diffraction Fresnel propagation integral are used as a sparse signal representation. We employ a sparsity measurement coefficient known as Gini's index thus showing for the first time, to the best of our knowledge, its application in DH, as an effective refocusing criterion. Demonstration is provided for different holographic configurations (i.e., lens and lensless apparatus) and for completely different objects (i.e., a thin pure phase microscopic object as an in vitro cell, and macroscopic puppets) preparation. PMID:25121857

  12. GPU-based calculations in digital holography

    NASA Astrophysics Data System (ADS)

    Madrigal, R.; Acebal, P.; Blaya, S.; Carretero, L.; Fimia, A.; Serrano, F.

    2013-05-01

    In this work we are going to apply GPU (Graphical Processing Units) with CUDA environment for scientific calculations, concretely high cost computations on the field of digital holography. For this, we have studied three typical problems in digital holography such as Fourier transforms, Fresnel reconstruction of the hologram and the calculation of vectorial diffraction integral. In all cases the runtime at different image size and the corresponding accuracy were compared to the obtained by traditional calculation systems. The programs have been carried out on a computer with a graphic card of last generation, Nvidia GTX 680, which is optimized for integer calculations. As a result a large reduction of runtime has been obtained which allows a significant improvement. Concretely, 15 fold shorter times for Fresnel approximation calculations and 600 times for the vectorial diffraction integral. These initial results, open the possibility for applying such kind of calculations in real time digital holography.

  13. EDITORIAL: Optical tomography and digital holography

    NASA Astrophysics Data System (ADS)

    Coupland, Jeremy; Lobera, Julia

    2008-07-01

    The articles in this special feature in Measurement Science and Technology concern exciting new developments in the field of digital holography—the process of electronically recording and numerically reconstructing an optical field [1]. Making use of the enormous advances in digital imaging and computer technology, digital holography is presented in a range of applications from fluid flow measurement and structural analysis to medical imaging. The science of digital holography rests on the foundations of optical holography, on the work of Gabor in the late 1940s, and on the development of laser sources in the 1960s, which made his vision a practical reality [2]. Optical holography, however, uses a photosensitive material, both to record a latent image and subsequently to behave as a diffractive optical element with which to reconstruct the incident field. In this way display holograms, using silver halide materials for example, can produce life-size images that are virtually indistinguishable from the object itself [3]. Digital holography, in contrast, separates the steps of recording and reconstruction, and the final image is most often in the form of a 3D computer model. Of course, television cameras have been used from the beginnings of holography to record interferometric images. However, the huge disparity between the resolution of holographic recording materials (more than 3000 cycles/mm) and television cameras (around 50 cycles/mm) was raised as a major concern by early researchers. TV holography, as it was sometimes called, generally recorded low numerical aperture (NA) holograms producing images with characteristically large speckle and was therefore more often referred to as electronic speckle pattern interferomery (ESPI) [4]. It is possible, however, to record large NA holograms on a sensor with restricted resolution by using an objective lens or a diverging reference wave [5]. This is generally referred to as digital holographic microscopy (DHM) since

  14. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  15. Seeing through smoke and flames: a challenge for imaging capabilities, met thanks to digital holography at far infrared

    NASA Astrophysics Data System (ADS)

    Locatelli, Massimiliano; Pugliese, Eugenio; Paturzo, Melania; Bianco, Vittorio; Finizio, Andrea; Pelagotti, Anna; Poggi, Pasquale; Miccio, Lisa; Meucci, Riccardo; Ferraro, Pietro

    2013-04-01

    We show that imaging alive people through smoke and flames is possible by Digital Holography at far infrared. This capability is of crucial importance in the security field to provide a new tool for firefighters and first responders in fire accidents. So far, the existing thermographic infrared cameras allows to see people through dense smoke, sensing the radiation emitted by human body. However, these devices are often blinded due to the flame emission, which is collected by the zoom lenses employed for the scope, and the information of the targets beyond the flames is unavoidably lost. On the contrary, lensless Digital Holography at far infrared avoids the typical saturation of the camera detectors returning clear images of targets seen behind veils of smoke and curtains of flames. Moreover, we demonstrate that human-size holograms can be recorded, allowing to move this promising technology outside the lab for safety applications.

  16. Simple optical setup implementation for digital Fourier transform holography

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. N.; Rodrigues, D. M. C.; dos Santos, P. A. M.

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  17. Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation

    NASA Astrophysics Data System (ADS)

    Conkey, Donald B.; Stasio, Nicolino; Morales-Delgado, Edgar E.; Romito, Marilisa; Moser, Christophe; Psaltis, Demetri

    2016-04-01

    We performed near-diffraction limited two-photon fluorescence (TPF) imaging through a lensless, multicore-fiber (MCF) endoscope utilizing digital phase conjugation. The phase conjugation technique is compatible with commercially available MCFs with high core density. We demonstrate focusing of ultrashort pulses through an MCF and show that the method allows for resolution that is not limited by the MCF core spacing. We constructed TPF images of fluorescent beads and cells by digital scanning of the phase-conjugated focus on the target object and collection of the emitted fluorescence through the MCF.

  18. Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation.

    PubMed

    Conkey, Donald B; Stasio, Nicolino; Morales-Delgado, Edgar E; Romito, Marilisa; Moser, Christophe; Psaltis, Demetri

    2016-04-30

    We performed near-diffraction limited two-photon fluorescence (TPF) imaging through a lensless, multicore-fiber (MCF) endoscope utilizing digital phase conjugation. The phase conjugation technique is compatible with commercially available MCFs with high core density. We demonstrate focusing of ultrashort pulses through an MCF and show that the method allows for resolution that is not limited by the MCF core spacing. We constructed TPF images of fluorescent beads and cells by digital scanning of the phase-conjugated focus on the target object and collection of the emitted fluorescence through the MCF. PMID:27086688

  19. Digital holography system for topography measurement

    NASA Astrophysics Data System (ADS)

    Amezquita, R.; Rincon, O. J.; Torres, Y. M.; Amezquita, S.

    2011-08-01

    The optical characteristics of Diffractive Optical Elements are determined by the properties of the photosensitive film on which they are produced. When working with photoresist plates, the most important property is the change in the plate's topography for different exposures. In this case, the required characterization involves a topographic measurement that can be made using digital holography. This work presents a digital holography system in which a hologram's phase map is obtained from a single recorded image. The phase map is calculated by applying a phase-shifting algorithm to a set of images that are created using a digital phase-shifting/tilteliminating procedure. Also, the curvatures, introduced by the imaging elements used in the experimental setup, are digitally compensated for using a polynomial fitting-method. The object's topography is then obtained from this modified phase map. To demonstrate the proposed procedure, the topography of patches exposed on a Shipley 1818 photoresist plate by microlithography equipment-which is currently under construction-is shown.

  20. Application of multiple exposure digital in-line holography to particle tracking in a Bénard von Kármán vortex flow

    NASA Astrophysics Data System (ADS)

    Salah, N.; Godard, G.; Lebrun, D.; Paranthoën, P.; Allano, D.; Coëtmellec, S.

    2008-07-01

    Digital in-line holography is applied to studying the trajectories of individual water droplets in airflow. In order to track the particles, multiple exposure holography is performed using a modulated laser diode emitting at the wavelength of 635 nm and a lens-less CCD camera. This method leads to an accuracy better than 100 µm on the axial location. A study of the signal-to-noise ratio of such holograms shows that the number of exposures must be limited. Preliminary tests of this method are carried out in a Bénard-von Kármán street first characterized by laser Doppler velocimetry and hot wire anemometry. An example of a trajectory of a water droplet obtained in this flow at Reynolds number Re = 63 and Strouhal number St = 0.13 shows that digital holography is a promising method to extract the trajectories of droplets in laminar or turbulent flows.

  1. Digital spatially incoherent Fresnel holography

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Brooker, Gary

    2007-04-01

    We present a new method for recording digital holograms under incoherent illumination. Light is reflected from a 3D object, propagates through a diffractive optical element (DOE), and is recorded by a digital camera. Three holograms are recorded sequentially, each for a different phase factor of the DOE. The three holograms are superposed in the computer, such that the result is a complex-valued Fresnel hologram. When this hologram is reconstructed in the computer, the 3D properties of the object are revealed.

  2. Direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Hanson, Gregory R.; Rasmussen, David A.; Voelkl, Edgar; Castracane, James; Simkulet, Michelle; Clow, Lawrence

    2000-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  3. Digital holography applied to microscopy

    NASA Astrophysics Data System (ADS)

    Depeursinge, Christian D.; Cuche, Etienne; Marquet, Pierre; Colomb, Tristan; Dahlgren, Pia; Marian, Anca A.; Montfort, Frederic; Magistretti, Pierre J.

    2002-06-01

    We report on new developments of a technique called Digital Holographic Microscopy (DHM), for the numerical reconstruction of digital holograms taken in microscopy, which allows simultaneous amplitude and quantitative phase contrast imaging. The reconstruction method computes the propagation of the complex optical wavefront diffracted by the object and is used to determine the refractive index and/or shape of the object with accuracies in the nanometer range along the optical axis.. The method requires the acquisition of a single hologram. The technique comprises the recording of a digital hologram of the specimen by means of a standard CCD camera at the exit of a Mach-Zehnder or Michelson type interferometer. The quantitative nature of the reconstructed phase distribution has been demonstrated by an application to surface profilometry where step height differences of a few nanometers have been measured. Another application takes place in biology for transmission phase- contrast imaging of living cells in culture. The resolution for thickness measurements depends on the refractive index of the specimen and a resolution of approximately 30 nanometers in height, and about half of a micro in width, has been achieved for living neural cells in cultures by using a high numerical aperture.

  4. Geometric phase shifting digital holography.

    PubMed

    Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko

    2016-06-01

    A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method. PMID:27244436

  5. Remote metrology by comparative digital holography

    SciTech Connect

    Baumbach, Torsten; Osten, Wolfgang; Kopylow, Christoph von; Jueptner, Werner

    2006-02-10

    A method for the remote comparison of objects with regard to their shape or response to a load is presented. The method allows interferometric sensitivity for comparing objects with different microstructure. In contrast to the well-known incoherent techniques based on inverse fringe projection this new approach uses the coherent optical wave field of the master object as a mask for the illumination of the sample object. The coherent mask is created by digital holography to allow instant access to the complete optical information of the master object at any place desired. The mask is reconstructed by a spatial light modulator (SLM). The optical reconstruction of digital holograms with SLM technology allows modification of reconstructed wavefronts with respect to improvement of image quality, the skilled introduction of additional information about the object (augmented reality), and the alignment of the master and test object.

  6. Wavelet image processing applied to optical and digital holography: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2005-08-01

    The link between wavelets and optics goes back to the work of Dennis Gabor who both invented holography and developed Gabor decompositions. Holography involves 3-D images. Gabor decompositions involves 1-D signals. Gabor decompositions are the predecessors of wavelets. Wavelet image processing of holography, both optical holography and digital holography, will be examined with respect to past achievements and future challenges.

  7. Study of clarinet reeds using digital holography

    NASA Astrophysics Data System (ADS)

    Stetson, Karl A.

    2014-11-01

    A study of clarinet reeds demonstrates the capabilities of digital holography for identification and measurement of vibration modes, measurement of static displacement and creep, and measurement of shape profile. Three types of synthetic reeds were examined together with a number of cane reeds both wet and dry. It is shown that the synthetic reeds have fundamental vibration mode frequencies that are lower than those of natural cane reeds. The fundamental modes of cane reeds all lie above the range of notes played by the instrument whereas those of synthetic reeds do not. Examination of static displacements due to steady air flow showed creep effects due to inelasticity. Finally, projected fringes were used to measure the reed profile.

  8. Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures

    NASA Astrophysics Data System (ADS)

    Ryle, James P.; Molony, Karen M.; McDonnell, Susan; Naughton, Thomas J.; Sheridan, John T.

    2009-08-01

    Digital holography is the process where an object's phase and amplitude information is retrieved from intensity images obtained using a digital camera (e.g. CCD or CMOS sensor). In-line digital holographic techniques offer full use of the recording device's sampling bandwidth, unlike off-axis holography where object information is not modulated onto carrier fringes. Reconstructed images are obscured by the linear superposition of the unwanted, out of focus, twin images. In addition to this, speckle noise degrades overall quality of the reconstructed images. The speckle effect is a phenomenon of laser sources used in digital holographic systems. Minimizing the effects due to speckle noise, removal of the twin image and using the full sampling bandwidth of the capture device aids overall reconstructed image quality. Such improvements applied to digital holography can benefit applications such as holographic microscopy where the reconstructed images are obscured with twin image information. Overcoming such problems allows greater flexibility in current image processing techniques, which can be applied to segmenting biological cells (e.g. MCF-7 and MDA-MB- 231) to determine their overall cell density and viability. This could potentially be used to distinguish between apoptotic and necrotic cells in large scale mammalian cell processes, currently the system of choice, within the biopharmaceutical industry.

  9. Second-harmonic illumination to enhance multispectral digital lensless holographic microscopy.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Lancis, Jesús; Garcia-Sucerquia, Jorge

    2016-03-01

    Multispectral digital lensless holographic microscopy (MDLHM) operating with second-harmonic illumination is shown. Added to the improvement of the spatial resolution of the previously reported MDLHM operating with near-infrared illumination, this second-harmonic MDLHM shows promise as a tool to study the behavior of biological samples under a broad spectral illumination. This illumination is generated by focusing a highly spatially coherent ultrashort pulsed radiation into an uncoated Type 1 β-BaB2O4 (BBO) nonlinear crystal. The second-harmonic MDLHM allows achieving multispectral images of biological samples with enhanced micrometer spatial resolution. The illumination wavelength of the second-harmonic MDLHM can be tuned by displacing a focusing optics with respect to a pinhole; spatially resolved information at different wavelengths of the sample can then be retrieved. PMID:26974116

  10. Compact lensless digital holographic microscopy using a curved mirror for an enlarged working distance.

    PubMed

    Shi, Ervin Cheng; Ng, Joshua Jeremiah; Lim, Choo Min; Qu, Weijuan

    2016-05-10

    Digital holographic microscopy (DHM) has a wide range of applications from the analysis of microelectronic mechanical systems (MEMS) to the measurement of cells. We intend on making the system more compact to improve the portability of the device. A concave mirror has been presented to be used in a lensless DHM system to effectively enlarge the working distance and at the same time maintain the compact size of the whole system. A theoretical analysis of the phase compensation between the object wave and the wave reflected from curved reference mirrors is given. Experimental demonstrations of the curved reference mirrors used in the DHM system have been obtained to support our idea. This would change the overall size and adaptability of the DHM system and provide a better understanding of the effects of phase reflected off a curved mirror. PMID:27168290

  11. Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view

    PubMed Central

    Isikman, Serhan O.; Sencan, Ikbal; Mudanyali, Onur; Bishara, Waheb; Oztoprak, Cetin; Ozcan, Aydogan

    2010-01-01

    We demonstrate color and monochrome on-chip imaging of Caenorhabditis elegans samples over a wide field-of-view using incoherent lensless in-line holography. Digital reconstruction of the recorded lensless holograms rapidly creates the C. elegans images within <1 s over a field-of-view of >24 mm2. By digitally combining the reconstructed images at three different wavelengths (red, green and blue), color images of dyed samples are also acquired. This wide field-of-view and compact on-chip imaging modality also permits straightforward integration with microfluidic systems. PMID:20390127

  12. Digital holography system for undergraduate student laboratory

    NASA Astrophysics Data System (ADS)

    Buranasiri, P.; Plaipichit, S.; Yindeesuk, W.; Yoshimori, K.

    2015-07-01

    In this paper, we discuss the digital holography (DH) experiment in our optical and communication laboratory course for undergraduate students at Physics department, KMITL. The purposes of DH experiment are presenting our students the meaning and advantage of DH and its applications. The Gabor configurations of in-line DH has been set up for recording a number of samples, which were placed on different distances, simultaneously. Then, the images of all objects have been numerical reconstructed by using computer. The students have been learned that all of reconstructed images have been got from only one time recording, while using the conventional recording technique, sharp images of different objects have been gotten from different recording time. The students also have been learned how to use DH technique for investigation some different kinds of samples on their own of interested such as a human hair or a fingerprint. In our future work, our DH system will be developed to be a portable apparatus for easily showing to children in different areas.

  13. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality. PMID:21479012

  14. Shape and 3D acoustically induced vibrations of the human eardrum characterized by digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.

    2014-07-01

    The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.

  15. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures. PMID:23842235

  16. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  17. Terahertz digital holography image processing based on MAP algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hao; Li, Qi

    2015-04-01

    Terahertz digital holography combines the terahertz technology and digital holography technology at present, fully exploits the advantages in both of them. Unfortunately, the quality of terahertz digital holography reconstruction images is gravely harmed by speckle noise which hinders the popularization of this technology. In this paper, the maximum a posterior estimation (MAP) filter is harnessed for the restoration of the digital reconstruction images. The filtering results are compared with images filtered by Wiener Filter and conventional frequency-domain filters from both subjective and objective perspectives. As for objective assessment, we adopted speckle index (SPKI) and edge preserving index (EPI) to quantitate the quality of images. In this paper, Canny edge detector is also used to outline the target in original and reconstruction images, which then act as an important role in the evaluation of filter performance. All the analysis indicate that maximum a posterior estimation filtering algorithm performs superiorly compared with the other two competitors in this paper and has enhanced the terahertz digital holography reconstruction images to a certain degree, allowing for a more accurate boundary identification.

  18. A digital holography set-up for 3D vortex flow dynamics

    NASA Astrophysics Data System (ADS)

    Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme

    2016-06-01

    In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

  19. Quantitative phase imaging by three-wavelength digital holography

    SciTech Connect

    Mann, Christopher J; Bingham, Philip R; Tobin Jr, Kenneth William; Paquit, Vincent C

    2008-01-01

    Three-wavelength digital holography is applied to obtain surface height measurements over several microns of range, while simultaneously maintaining the low noise precision of the single wavelength phase measurement. The precision is preserved by the use of intermediate synthetic wavelength steps generated from the three wavelengths and the use of hierarchical optical phase unwrapping. As the complex wave-front of each wavelength can be captured simultaneously in one digital image, real-time performance is achievable.

  20. Synthetic aperture in terahertz in-line digital holography for resolution enhancement.

    PubMed

    Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong

    2016-01-20

    Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography. PMID:26835956

  1. Resolution enhancement phase-contrast imaging by microsphere digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  2. A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Miyazawa, Kazuya; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-01-01

    A CMOS image sensor with stacked photodiodes was fabricated using 0.18 µm mixed signal CMOS process technology. Two photodiodes were stacked at the same position of each pixel of the CMOS image sensor. The stacked photodiodes consist of shallow high-concentration N-type layer (N+), P-type well (PW), deep N-type well (DNW), and P-type substrate (P-sub). PW and P-sub were shorted to ground. By monitoring the voltage of N+ and DNW individually, we can observe two monochromatic colors simultaneously without using any color filters. The CMOS image sensor is suitable for fluorescence imaging, especially contact imaging such as a lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). Since the fluorescence increases with time in digital ELISA, it is possible to observe fluorescence accurately by calculating the difference from the initial relation between the pixel values for both photodiodes.

  3. The use of digital/electronic holography for biological applications

    NASA Astrophysics Data System (ADS)

    Sun, Hongyue; Player, Michael A.; Watson, John; Hendry, David C.; Perkins, Rupert G.; Gust, Giselher; Paterson, David M.

    2005-06-01

    This paper presents the performance of electronic holography for imaging applications of biological and medical interest involving turbid media. It demonstrates that digital holography is useful for biological studies in the areas of estuary sediment erosion and imaging unstained living cells. In particular, we demonstrate the recording geometries of classical 'in-line' back illumination using a collimated beam for measuring micro-particles eroded in a cylindrical observation chamber; we also demonstrate a phase contrast set-up using a magnifying lens for observing biomedical micro-objects of unstained living cells in physiological saline. Practical results are presented for the studies of sediment erosion and transport, which provide information about how polymeric substances produced by the organisms in sediment and erosion shear velocity affect the sediment particle size when erosive stresses are applied to sediment beds.

  4. Holography.

    ERIC Educational Resources Information Center

    Klein, H. Arthur

    Holography is a process which numbers among its many applications the creation of holograms--unique three dimensional photographs that show spatial relations and shifts just as they exist in reality. This book recounts the history of holography, tracing its development from Euclid's theory of light rays through Huygens' theory of wave motion to…

  5. In-line digital holography with double knife edge

    NASA Astrophysics Data System (ADS)

    Ramirez, Claudio; Iemmi, Claudio; Campos, Juan

    2015-06-01

    We study and test a new technique for in-line digital holography which avoids the formation of the conjugate images. Inline digital holography is based in a common path configuration. In this case, the hologram is produced by the interference between the reference wave front and the diffracted wave front by an almost transparent object. Twin images are obtained with obscured rings that difficult the determination of the best focusing plane. To avoid the conjugated image, the information of the magnitude and phase of the wave front are needed. In a recent work a new in-line digital holography technique was proposed. In this method the object is illuminated with a collimated wave front. A plane, close to the particles distribution is imaged onto a CCD by means of a convergent lens and at the same time, a knife edge is placed in the focal plane of the lens in order to block half of spatial frequency spectrum. In this way, by means of a numerical processing performed on the Fourier plane, it is possible to eliminate one of the components (real or conjugate) of the reconstructed images nevertheless it is observed a tiny deformation of the resulting hologram image. To compensate this effect, we propose a new configuration in which we implement the knife edge technique on both parts of the spectrum at the same time. Finally in the computer, we process the holograms to build one complete without deformation. This hologram is used to recover the wave front at different planes without the influence of the conjugate image.

  6. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  7. Experimental characterization of solid propellants combustion by digital holography

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Powell, Michael; Gao, Jian; Gunduz, Ibrahim; Guildenbecher, Daniel; Son, Steve

    2014-11-01

    Aluminum and other additions are widely used in solid propellants to improve performance. In this study, we apply digital holography as a three-dimensional diagnostic tool to characterize the burning of composite solid propellants with addition of different composite particles. Structures around the burning surfaces and reaction zones are identified, whereas the drop morphologies and their size/velocity distributions are quantified. The nano-second exposure of this imaging technique enables time-freezing measurements of the highly dynamic combustion process. The results are compared with discoveries from high-speed imaging. This technique is also applied to study the combustions of solid propellants under high-pressure environment.

  8. Image/video encryption using single shot digital holography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Tang, Chen; Zhu, Xinjun; Li, Biyuan; Wang, Linlin; Yan, Xiusheng

    2015-05-01

    We propose a method for image/video encryption that combines double random-phase encoding in the Fresnel domain with a single shot digital holography. In this method, a complex object field can be reconstructed with only single frame hologram based on a constrained optimization method. The system without multiple shots and Fourier lens is simple, and allows to dynamically encrypt information. We test the proposed method on a computer simulated image, a grayscale image and a video in AVI format. Also we investigate the quality of the decryption process and the performance against noise attacks. The experimental results demonstrate the performance of the method.

  9. Digital holography applications in ophthalmology, biometry, and optical trapping characterization

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana Camelia

    This dissertation combines various holographic techniques with application on the two- and three-dimensional imaging of ophthalmic tissue, fingerprints, and microsphere samples with micrometer resolution. Digital interference holography (DIH) uses scanned wavelengths to synthesize short-coherence interference tomographic images. We used DIH for in vitro imaging of human optic nerve head and retina. Tomographic images were produced by superposition of holograms. Holograms were obtained with a signal-to-noise ratio of approximately 50 dB. Optic nerve head characteristics (shape, diameter, cup depth, and cup width) were quantified with a few micron resolution (4.06--4.8mum). Multiple layers were distinguishable in cross-sectional images of the macula. To our knowledge, this is the first report of DIH use to image human macular and optic nerve tissue. Holographic phase microscopy is used to produce images of thin film patterns left by latent fingerprints. Two or more holographic phase images with different wavelengths are combined for optical phase unwrapping of images of patent prints. We demonstrated digital interference holography images of a plastic print, and latent prints. These demonstrations point to significant contributions to biometry by using digital interference holography to identify and quantify Level 1 (pattern), Level 2 (minutia points), and Level 3 (pores and ridge contours). Quantitative studies of physical and biological processes and precise non-contact manipulation of nanometer/micrometer trapped objects can be effectuated with nanometer accuracy due to the development of optical tweezers. A three-dimensional gradient trap is produced at the focus position of a high NA microscope objective. Particles are trapped axially and laterally due to the gradient force. The particle is confined in a potential well and the trap acts as a harmonic spring. The elastic constant or the stiffness along any axis is determined from the particle displacements in

  10. Analysis of clarinet reed oscillations with digital Fresnel holography

    NASA Astrophysics Data System (ADS)

    Picart, P.; Leval, J.; Piquet, F.; Boileau, J.-P.; Dalmont, J.-P.

    2009-07-01

    This paper describes optical instrumentation devoted to vibration analysis. Two strategies based on digital Fresnel holography are presented. The first, called time-averaging consists in the numerical reconstruction of the hologram after recording with an exposure time much greater than the vibration period. Thus, the holograms are amplitude modulated by a Bessel function. The last strategy, using a pulsed regime, allows the reconstruction of the full movement of the vibration, even if it exhibits very high amplitude. Experimental results presented in this paper concern the study of the vibrations of a clarinet reed under free and forced oscillation regimes.

  11. Full-field vibrometry with digital Fresnel holography

    SciTech Connect

    Leval, Julien; Picart, Pascal; Boileau, Jean Pierre; Pascal, Jean Claude

    2005-09-20

    A setup that permits full-field vibration amplitude and phase retrieval with digital Fresnel holography is presented. Full reconstruction of the vibration is achieved with a three-step stroboscopic holographic recording, and an extraction algorithm is proposed. The finite temporal width of the illuminating light is considered in an investigation of the distortion of the measured amplitude and phase. In particular, a theoretical analysis is proposed and compared with numerical simulations that show good agreement. Experimental results are presented for a loudspeaker under sinusoidal excitation; the mean quadratic velocity extracted from amplitude evaluation under two different measuring conditions is presented. Comparison with time averaging validates the full-field vibrometer.

  12. Alignment of master and sample in comparative digital holography

    NASA Astrophysics Data System (ADS)

    Schwab, Xavier; Meister, Eugen; Pedrini, Giancarlo; Osten, Wolfgang

    2006-08-01

    A comparative digital holography system suitable for shape and deformation comparisons between master and sample objects with rough surfaces is described. The innovative aspect of comparative digital holography is the illumination of the sample by the conjugated wavefront of the master, as a type of coherent mask, using a liquid crystal display (LCD). The resulting interferogram indicates directly the shape or the deformation differences between the master and sample. As it is not necessary that both objects to be compared are located at the same place for this technique, remote shape or deformation comparison between a master and a sample is possible. A current research topic is the precise alignment of the sample and the reconstructed master wavefront so that the resulting phase map only contains information of the differences in shape or deformation. The reconstructed master wavefront can be adjusted digitally to correctly illuminate the sample object, by introducing an artificial phase-shift. This phase-shift is induced by the LCD, and offers also the possibility of calibrating precisely the set-up. The value for the phase-shift is obtained by a comparison of the resulting interferogram with a database containing fringes from simulations of misalignments between master and sample objects. Using the iterative algorithm described here, the correction of the sample position can be controlled by an automatic adaptation of the coherent mask.

  13. All-fibre pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Schedin, Staffan; Pedrini, Giancarlo; Tiziani, Hans J.; Santoyo, Fernando Mendoza

    1999-07-01

    An all-fibre optic system was used to record pulsed digital holograms of objects undergoing static and dynamic deformations. Light from a pulsed ruby laser was divided in two beams, each launched through different optical fibres. One fibre carried the object beam illumination and the other conveyed the reference beam towards the detector of a CCD camera. Laser light scattered from the object surface was collected with a lens-optical fibre endoscope arrangement and combined at the CCD detector with the reference beam. The holograms thus formed were digitally recorded for static and dynamic conditions. For data evaluation the Fourier transform method was used. Results show phase maps that may be evaluated for static and dynamic object deformation. With the use of a pulsed laser, the all-fibre system presented here may find a number of useful applications outside the laboratory in areas such as micromechanics, microelectronics and medical endoscopy, where access to objects of interest is otherwise difficult.

  14. Reconstruction of off-axis lensless Fourier transform digital holograms based on angular spectrum theory

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wang, Huaying; Wang, Dayong; Xie, Jianjun; Zhao, Jie

    2007-12-01

    A simple holographic high-resolution imaging system without pre-magnification, which is based on off-axis lensless Fourier transform configuration, has been developed. Experimental investigations are performed on USAF resolution test target. The method based on angular spectrum theory for reconstructing lensless Fourier hologram is given. The reconstructed results of the same hologram at different reconstructing distances are presented for what is to our knowledge the first time. Approximate diffraction limited lateral resolution is achieved. The results show that the angular spectrum method has several advantages over more commonly used Fresnel transform method. Lossless reconstruction can be achieved for any numerical aperture holograms as long as the wave field is calculated at a special reconstructing distance, which is determined by the light wavelength and the chip size and the pixel size of the CCD sensor. This is very important for reconstructing an extremely large numerical aperture hologram. Frequency-domain spectrum filtering can be applied conveniently to remove the disturbance of zero-order. The reconstructed image wave field is accurate so long as the sampling theorem is not violated. The experimental results also demonstrate that for a high quality hologram, special image processing is unnecessary to obtain a high quality image.

  15. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography.

    PubMed

    Khaleghi, Morteza; Furlong, Cosme; Ravicz, Mike; Cheng, Jeffrey Tao; Rosowski, John J

    2015-05-01

    The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM. The shape of the TM is measured with dual-wavelength holographic contouring using a tunable near IR laser source with a central wavelength of 780 nm. 3-D components of sound-induced displacements of the TM are measured with the method of multiple sensitivity vectors using stroboscopic holographic interferometry. To accurately obtain sensitivity vectors, a new technique is developed and used in which the sensitivity vectors are obtained from the images of a specular sphere that is being illuminated from different directions. Shape and 3-D acoustically induced displacement components of cadaveric human TMs at several excitation frequencies are measured at more than one million points on its surface. A numerical rotation matrix is used to rotate the original Euclidean coordinate of the measuring system in order to obtain in-plane and out-of-plane motion components. Results show that in-plane components of motion are much smaller (<20%) than the out-of-plane motions’ components. PMID:25652791

  16. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Ravicz, Mike; Cheng, Jeffrey Tao; Rosowski, John J.

    2015-05-01

    The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM. The shape of the TM is measured with dual-wavelength holographic contouring using a tunable near IR laser source with a central wavelength of 780 nm. 3-D components of sound-induced displacements of the TM are measured with the method of multiple sensitivity vectors using stroboscopic holographic interferometry. To accurately obtain sensitivity vectors, a new technique is developed and used in which the sensitivity vectors are obtained from the images of a specular sphere that is being illuminated from different directions. Shape and 3-D acoustically induced displacement components of cadaveric human TMs at several excitation frequencies are measured at more than one million points on its surface. A numerical rotation matrix is used to rotate the original Euclidean coordinate of the measuring system in order to obtain in-plane and out-of-plane motion components. Results show that in-plane components of motion are much smaller (<20%) than the out-of-plane motions' components.

  17. Underwater digital holography for studies of marine plankton.

    PubMed

    Sun, H; Benzie, P W; Burns, N; Hendry, D C; Player, M A; Watson, J

    2008-05-28

    Conventional and digital holographies are proving to be increasingly important for studies of marine zooplankton and other underwater biological applications. This paper reports on the use of a subsea digital holographic camera (eHoloCam) for the analysis and identification of marine organisms and other subsea particles. Unlike recording on a photographic film, a digital hologram (e-hologram) is recorded on an electronic sensor and reconstructed numerically in a computer by simulating the propagation of the optical field in space. By comparison with other imaging techniques, an e-hologram has several advantages such as three-dimensional spatial reconstruction, non-intrusive and non-destructive interrogation of the recording sampling volume and the ability to record holographic videos. The basis of much work in optics lies in Maxwell's electromagnetic theory and holography is no exception: we report here on two of the numerical reconstruction algorithms we have used to reconstruct holograms obtained using eHoloCam and how their starting point lies in Maxwell's equations. Derivation of the angular spectrum algorithm for plane waves is provided as an exact method for the in-line numerical reconstruction of digital holograms. The Fresnel numerical reconstruction algorithm is derived from the angular spectrum method. In-line holograms are numerically processed before and after reconstruction to remove periodic noise from captured images and to increase image contrast. The ability of the Fresnel integration reconstruction algorithm to extend the reconstructed volume beyond the recording sensor dimensions is also shown with a 50% extension of the reconstruction area. Finally, we present some images obtained from recent deployments of eHoloCam in the North Sea and Faeroes Channel. PMID:18222904

  18. Stimulated LIF studied using pulsed digital holography and modelling

    NASA Astrophysics Data System (ADS)

    Amer, Eynas; Stenvall, Jonas; Gren, Per; Sjödahl, Mikael

    2013-04-01

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. The laser induced fluorescence (LIF) spectrum has been recorded using a spectrometer at different dye concentrations. The frequency doubled 532 nm beam from the same laser is used as a probe beam to pass through the excited volume of the dye. Because of stimulated emission an increase of the probe (532 nm) beam energy is recorded and a reduction of the spontaneous fluorescence spectrum intensity is observed. A model was developed that approaches the trend of the gain as a function of the probe beam energy at low dye concentrations (less than 0.08 g/L). The stimulated LIF is further recorded using digital holography. Digital holograms were recorded for different dye concentrations using collimated laser light (532 nm) passed through the dye volume. Two holograms without and with the UV laser beam were recorded. Intensity maps were calculated from the recorded digital holograms and are used to calculate the gain of the green laser beam due to the stimulated fluorescence emission which is coupled to the dye concentration. The gain of the coherent 532 nm beam is seen in the intensity maps and its value is about 40% for a dye concentration of 0.32 g/L and decreases with the decrease of the dye concentration. The results show that pulsed digital holography can be coupled to the stimulated LIF effect for imaging fluorescent species.

  19. Digital holography for second harmonic microscopy

    NASA Astrophysics Data System (ADS)

    Shaffer, E.; Depeursinge, C.

    2010-02-01

    Quantitative phase images make digital holographic microscopy (DHM) an excellent instrument for metrological, but also for biological applications, where it can reveal deformations and morphological details at ultrahigh resolution in the order of a few nanometers only, while also precisely determining the refractive index across a sample (e.g. cell or neuron). On the other hand, non-linear light-matter interactions have also proved very useful in microscopy. For instance, second harmonic generation (SHG) allows marker-free identification of cell structures, tubulin or membranes and, because of its coherent nature, SHG is very sensitive to the local sample structure and to the direction of the laser polarization. In addition, since SHG does not result from light absorption and subsequent re-emission, in opposition to fluorescence, photo-bleaching of the studied material can be avoided by a judicious selection of the laser wavelength. These characteristics make SHG very interesting for biomedical imaging. We have designed and built a microscope that combines the fast and precise DHM imaging with tagging capabilities of non-linear light-matter interactions. Here, we present the technique and look into its possible applications to biological and life sciences. Among promising applications is the 3D tracking of colloidal gold nanoparticles.

  20. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  1. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-01

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed. PMID:27505793

  2. Off-axis illumination direct-to-digital holography

    DOEpatents

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  3. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2011-11-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  4. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  5. Time-averaged photon-counting digital holography.

    PubMed

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario

    2015-09-15

    Time-averaged holography has been using photo-emulsions (early stage) and digital photo-sensitive arrays (later) to record holograms. We extend the recording possibilities by utilizing a photon-counting camera, and we further investigate the possibility of obtaining accurate hologram reconstructions in rather severe experimental conditions. To achieve this, we derived an expression for fringe function comprising the main parameters affecting the hologram recording. Influence of the main parameters, namely the exposure time and the number of averaged holograms, is analyzed by simulations and experiments. It is demonstrated that taking long exposure times can be avoided by averaging over many holograms with the exposure times much shorter than the vibration cycle. Conditions in which signal-to-noise ratio in reconstructed holograms can be substantially increased are provided. PMID:26371907

  6. Coherence experiments in single-pixel digital holography.

    PubMed

    Liu, Jung-Ping; Guo, Chia-Hao; Hsiao, Wei-Jen; Poon, Ting-Chung; Tsang, Peter

    2015-05-15

    In optical scanning holography (OSH), the coherence properties of the acquired holograms depend on the single-pixel size, i.e., the active area of the photodetector. For the first time, to the best of our knowledge, we have demonstrated coherent, partial coherent, and incoherent three-dimensional (3D) imaging by experiment in such a single-pixel digital holographic recording system. We have found, for the incoherent mode of OSH, in which the detector of the largest active area is applied, the 3D location of a diffusely reflecting object can be successfully retrieved without speckle noise. For the partial coherent mode employing a smaller pixel size of the detector, significant speckles and randomly distributed bright spots appear among the reconstructed images. For the coherent mode of OSH when the size of the pixel is vanishingly small, the bright spots disappear. However, the speckle remains and the signal-to-noise ratio is low. PMID:26393741

  7. Objective shearing digital holography for removing aberration from optical system.

    PubMed

    Pan, Weiqing; Tian, Kehan; Zhang, Chuhang

    2015-09-01

    We propose a new digital holography based on the lateral shearing interference concept to remove the total aberrations from the reference wave, illumination wave, and the optical elements. It uses three mutually shifted image holograms of the object that are divided from each other to obtain phase differences. The phase aberration can be removed and the original sample phase can be reconstructed by the phase differences. Then, the influence of the stage moving imprecision on the reconstruction quality is analyzed. Optical experiments verified that the proposed method can totally remove the phase aberrations. As a result, the proposed method could be used for ultra-precise optical measurement through eliminating optical phase aberration to increase the measurement accuracy. PMID:26368865

  8. Fresnelets: new multiresolution wavelet bases for digital holography.

    PubMed

    Liebling, Michael; Blu, Thierry; Unser, Michael

    2003-01-01

    We propose a construction of new wavelet-like bases that are well suited for the reconstruction and processing of optically generated Fresnel holograms recorded on CCD-arrays. The starting point is a wavelet basis of L2 to which we apply a unitary Fresnel transform. The transformed basis functions are shift-invariant on a level-by-level basis but their multiresolution properties are governed by the special form that the dilation operator takes in the Fresnel domain. We derive a Heisenberg-like uncertainty relation that relates the localization of Fresnelets with that of their associated wavelet basis. According to this criterion, the optimal functions for digital hologram processing turn out to be Gabor functions, bringing together two separate aspects of the holography inventor's work. We give the explicit expression of orthogonal and semi-orthogonal Fresnelet bases corresponding to polynomial spline wavelets. This special choice of Fresnelets is motivated by their near-optimal localization properties and their approximation characteristics. We then present an efficient multiresolution Fresnel transform algorithm, the Fresnelet transform. This algorithm allows for the reconstruction (backpropagation) of complex scalar waves at several user-defined, wavelength-independent resolutions. Furthermore, when reconstructing numerical holograms, the subband decomposition of the Fresnelet transform naturally separates the image to reconstruct from the unwanted zero-order and twin image terms. This greatly facilitates their suppression. We show results of experiments carried out on both synthetic (simulated) data sets as well as on digitally acquired holograms. PMID:18237877

  9. Digital Holography of Intracellular Dynamics to Probe Tissue Physiology

    PubMed Central

    Merrill, Daniel; An, Ran; Turek, John; Nolte, David D.

    2015-01-01

    Digital holography provides improved capabilities for imaging through dense tissue. Using a short-coherence source, the digital hologram recorded from backscattered light performs laser ranging that maintains fidelity of information acquired from depths much greater than possible by traditional imaging techniques. Biodynamic Imaging (BDI) is a developing technology for live-tissue imaging of up to a millimeter in depth that uses the hologram intensity fluctuations as label-free image contrast and can study tissue behavior in native microenvironments. In this paper BDI is used investigate the change in adhesion-dependent tissue response in 3D cultures. The results show that increasing density of cellular adhesions slows motion inside tissue and alters the response to cytoskeletal drugs. A clear signature of membrane fluctuations was observed in mid frequencies (0.1 – 1 Hz) that was enhanced by the application of cytochalasin-D that degrades the actin cortex inside the cell membrane. This enhancement feature is only observed in tissues that have formed adhesions, because cell pellets initially do not show this signature, but develop this signature only after incubation enables adhesions to form. PMID:25967027

  10. Results from the LTX High-Speed Digital Holography System

    NASA Astrophysics Data System (ADS)

    Thomas, C. E. (Tommy), Jr.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.; Granstedt, E. M.; Lundberg, D. P.; Jacobson, C. M.; Majeski, R.; Kaita, R.

    2011-10-01

    A high-speed CO2 laser digital holography system (500 frames per second (FPS) at 256 x 256 pixels, 1500 FPS at 128 x 128 pixels, etc., to a maximum of 43,000 FPS at 64 x 4 pixels) has been built for high-resolution imaging of electron density on the Lithium Tokamak Experiment (LTX). The laser operates at 9.1 microns by using an Oxygen-18 isotope, and has a power output up to 20 W. A FLIR SC4000 IR camera is used to capture the digital holograms. An acousto-optic modulator (AOM) is used to ``shutter'' the laser so that effective camera integration times down to less than one microsecond are possible. The system will be used for examining profile modifications on LTX with molecular cluster injection (MCI), supersonic gas injection (SGI), and external gas puffing. Results of measurements will be presented along with a discussion of system design, including noise-reduction techniques developed during system testing and initial operation. Partial Support from USDOE Contract DE-AC02-09CH11466 and USDOE Grant DE-FG02-07ER84724 is gratefully acknowledged.

  11. In vitro imaging of ophthalmic tissue by digital interference holography

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kay, Christine N.; Kim, Myung K.; Richards, David W.

    2010-01-01

    We used digital interference holography (DIH) for in vitro imaging of human optic nerve head and retina. Samples of peripheral retina, macula, and optic nerve head from two formaldehyde-preserved human eyes were dissected and mounted onto slides. Holograms were captured by a monochrome CCD camera (Sony XC-ST50, with 780 × 640 pixels and pixel size of ∼9 µm). Light source was a solid-state pumped dye laser with tunable wavelength range of 560-605 nm. Using about 50 wavelengths in this band, holograms were obtained and numerically reconstructed using custom software based on NI LabView. Tomographic images were produced by superposition of holograms. Holograms of all tissue samples were obtained with a signal-to-noise ratio of approximately 50 dB. Optic nerve head characteristics (shape, diameter, cup depth, and cup width) were quantified with a few micron resolution (4.06-4.8 µm). Multiple layers were distinguishable in cross-sectional images of the macula. To our knowledge, this is the first report of DIH use to image human macular and optic nerve tissue. DIH has the potential to become a useful tool for researchers and clinicians in the diagnosis and treatment of many ocular diseases, including glaucoma and a variety of macular diseases.

  12. Vibratory strain field measurement by transverse digital holography.

    PubMed

    Stetson, Karl A

    2015-09-20

    A method is presented for measuring vibratory strain fields using phase-stepped, image-plane digital holography. An object surface is observed along its normal vector while illuminated at equal and opposite angles by two mutually coherent laser beams. One beam is phase stepped by quarter-wavelength increments between TV frames, and the resulting images are processed to yield holographic images. Object vibrations result in zero-order Bessel function fringes in the display. The second beam is modulated at the same frequency of the object vibration and is used to shift the fringes in a manner analogous to phase step interferometry. The resulting images are processed to yield a wrapped phase map, which is unwrapped and corrected for the error associated with using zero-order Bessel functions in place of cosine functions. The unwrapped images are processed to obtain the average slopes for image segments, and these slopes are multiplied by a scale factor to convert them to strain. The analysis program used here divides the field of view into five horizontal by four vertical segments, which provide a map of the vibratory strain field. PMID:26406526

  13. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    SciTech Connect

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  14. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-01

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  15. Image authentication via sparsity-based phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-03-01

    Digital holography has been widely studied in recent years, and a number of applications have been demonstrated. In this paper, we demonstrate that sparsity-based phase-shifting digital holography can be applied for image authentication. In phase-shifting digital holography, the holograms are sequentially recorded. Only small parts of each hologram are available for numerical reconstruction. It is found that nonlinear correlation algorithm can be applied to simply authenticate the reconstructed object. The results illustrate that the recovered image can be correctly verified. In the developed system, the recorded holograms are highly compressed which can facilitate data storage or transmission, and one simple authentication strategy has been established instead of applying relatively complex algorithms (such as compressive sensing) to recover the object.

  16. Suppression of image autocorrelation artefacts in spectral domain optical coherence tomography and multiwave digital holography

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Gelikonov, G. V.; Terpelov, D. A.; Shabanov, D. V.; Shilyagin, P. A.

    2012-05-01

    An improved method for suppressing image artefacts in spectral domain optical coherence tomography (SD OCT) and multiwave digital holography, caused by the influence of coherent noise in the course of successive registration of an autocorrelation component and informative signal is reported. The method allows complete suppression of all types of coherent noises, provided that the sample of values used to record the autocorrelation component satisfies the conditions of Kotelnikov's theorem: in SD OCT — for the transverse structure of the studied medium, in multiwave digital holography — for the envelop function of the radiation source frequency tuning spectrum.

  17. Super-Resolved Digital Holography Based on the Coherent Diffraction Imaging Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Sheng; Pan, Xing-Chen; Wang, Hai-Yan; Cheng, Jun; Gao, Shu-Mei; Liu, Cheng; Zhu, Jian-Qiang

    2013-05-01

    An algorithm is proposed to enhance the resolution of digital holography by retrieving the frequency components lost in common holograms. A pinhole is placed directly behind the specimen to record the hologram, and an iterative scheme commonly used in coherent diffraction imaging is adopted for the reconstruction. Since some of the frequency components lost in common digital holography can be properly retrieved, the resolution of the reconstructed image is remarkably improved. Theoretical analysis and computer simulations are presented to demonstrate the feasibility of this proposed technique.

  18. A phase-shifting in-line digital holography of pre-magnification on imaging research

    NASA Astrophysics Data System (ADS)

    Lin, Qiaowen; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie; Panezai, Spozmai

    2013-12-01

    A phase shifting digital holography with pre-magnification is designed. In order to fully utilize the bandwidth of the camera, a four-step phase-shifting digital holography is adopted to retrieve the complex distribution of the object. To further enhance the resolution of the reconstructed image without phase aberration, two microscope objectives (MOs) are placed in front of the object and the reference mirror. The MO in the reference arm provides parallel beam at the PZT plane thus improve the precision of the phase shifting. A 1951 USAF negative resolution target is used as the sample. Experiment result demonstrates the feasibility of the proposed method.

  19. Suppression of image autocorrelation artefacts in spectral domain optical coherence tomography and multiwave digital holography

    SciTech Connect

    Gelikonov, V M; Gelikonov, G V; Terpelov, D A; Shabanov, D V; Shilyagin, P A

    2012-05-31

    An improved method for suppressing image artefacts in spectral domain optical coherence tomography (SD OCT) and multiwave digital holography, caused by the influence of coherent noise in the course of successive registration of an autocorrelation component and informative signal is reported. The method allows complete suppression of all types of coherent noises, provided that the sample of values used to record the autocorrelation component satisfies the conditions of Kotelnikov's theorem: in SD OCT - for the transverse structure of the studied medium, in multiwave digital holography - for the envelop function of the radiation source frequency tuning spectrum.

  20. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry.

    PubMed

    Kumar, Varun; Shakher, Chandra

    2015-02-20

    This paper presents the results of experimental investigations about the heat dissipation process of plate fin heat sink using digital holographic interferometry. Visual inspection of reconstructed phase difference maps of the air field around the heat sink with and without electric power in the load resistor provides qualitative information about the variation of temperature and the heat dissipation process. Quantitative information about the temperature distribution is obtained from the relationship between the digitally reconstructed phase difference map of ambient air and heated air. Experimental results are presented for different current and voltage in the load resistor to investigate the heat dissipation process. The effect of fin spacing on the heat dissipation performance of the heat sink is also investigated in the case of natural heat convection. From experimental data, heat transfer parameters, such as local heat flux and convective heat transfer coefficients, are also calculated. PMID:25968185

  1. Digital holography with electron wave: measuring into the nanoworld

    NASA Astrophysics Data System (ADS)

    Mendoza Santoyo, Fernando; Voelkl, Edgar

    2016-04-01

    Dennis Gabor invented Holography in 1949. His main concern at the time was centered on the spherical aberration correction in the recently created electron microscopes, especially after O. Scherzer had shown mathematically that round electron optical lenses always have a positive spherical aberration coefficient and the mechanical requirements for minimizing the spherical aberration were too high to allow for atomic resolution. At the time the lack of coherent electron sources meant that in-line holography was developed using quasi-coherent light sources. As such Holography did not produce scientific good enough results to be considered a must use tool. In 1956, G. Moellenstedt invented a device called a wire-biprism that allowed the object and reference beams to be combined in an off-axis configuration. The invention of the laser at the end of the 1950s gave a great leap to Holography since this light source was highly coherent and hence led to the invention of Holographic Interferometry during the first lustrum of the 1960s. This new discipline in the Optics field has successfully evolved to become a trusted tool in a wide variety of areas. Coherent electron sources were made available only by the late 1970s, a fact that gave an outstanding impulse to electron holography so that today nanomaterials and structures belonging to a wide variety of subjects can be characterized in regards to their physical and mechanical parameters. This invited paper will present and discuss electron holography's state of the art applications to study the shape of nanoparticles and bacteria, and the qualitative and quantitative study of magnetic and electric fields produced by novel nano-structures.

  2. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber.

    PubMed

    Papadopoulos, Ioannis N; Farahi, Salma; Moser, Christophe; Psaltis, Demetri

    2013-02-01

    We propose and experimentally demonstrate an ultra-thin rigid endoscope (450 μm diameter) based on a passive multimode optical fiber. We use digital phase conjugation to overcome the modal scrambling of the fiber to tightly focus and scan the laser light at its distal end. By exploiting the maximum number of modes available, sub-micron resolution, high quality fluorescence images of neuronal cells were acquired. The imaging system is evaluated in terms of fluorescence collection efficiency, resolution and field of view. The small diameter of the proposed endoscope, along with its high quality images offer an opportunity for minimally invasive medical endoscopic imaging and diagnosis based on cellular phenotype via direct tissue penetration. PMID:23411747

  3. Trajectory and velocity measurement of a particle in spray by digital holography

    SciTech Connect

    Lue Qieni; Chen Yiliang; Yuan Rui; Ge Baozhen; Gao Yan; Zhang Yimo

    2009-12-20

    We present a method for the trajectory and the velocity measurement of a particle in spray by digital holography. Based on multiple exposure digital in-line holography, a sequence of digital holograms of a dynamic spray particle field at different times are recorded with a CW laser and a high-speed CCD. The time evolution of the serial positions of particles, i.e., the motion trajectories of the particles, is obtained by numerically reconstructing the synthetic hologram of a sequence of digital holograms. The center coordinate (x,y) of each particle image can be extracted using a Hough transform and subpixel precision computing, and the velocity of an individual particle can also be obtained, which is then applied to measuring the velocity of diesel spray and alcohol spray. The research shows that the method presented in this paper for measuring spray field is feasible.

  4. Coded aperture correlation holography-a new type of incoherent digital holograms.

    PubMed

    Vijayakumar, A; Kashter, Yuval; Kelner, Roy; Rosen, Joseph

    2016-05-30

    We propose and demonstrate a new concept of incoherent digital holography termed coded aperture correlation holography (COACH). In COACH, the hologram of an object is formed by the interference of light diffracted from the object, with light diffracted from the same object, but that passes through a coded phase mask (CPM). Another hologram is recorded for a point object, under identical conditions and with the same CPM. This hologram is called the point spread function (PSF) hologram. The reconstructed image is obtained by correlating the object hologram with the PSF hologram. The image reconstruction of multiplane object using COACH was compared with that of other equivalent imaging systems, and has been found to possess a higher axial resolution compared to Fresnel incoherent correlation holography. PMID:27410157

  5. A novel method for identifying the order of interference using phase-shifting digital holography.

    PubMed

    Sokkar, T Z N; El-Farahaty, K A; Ramadan, W A; Wahba, H H; Raslan, M I; Hamza, A A

    2016-04-01

    In this paper, we introduced a mathematical method for measuring the optical path length differences (OPDs), which is suitable for large OPD values where the fringes connections are difficult to detect. The proposed method is based on varying the width of the fringes, without changing the wavelength of the used coherent source. Also, in this work, we discussed the need for such method in off-axis phase-shifting digital holography. Low-resolution off-axis holograms failed to detect the correct interference order. In general, off-axis phase-shifting digital holography is limited by the resolution of the captured holograms. The results obtained using our proposed technique were compared to the results obtained using off-axis phase-shifting digital holograms and conventional two-beam interferometry. Holograms were given for illustration. PMID:26588671

  6. Security enhanced optical one-time password authentication method by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jeong, Jong Rae

    2015-03-01

    We propose a new optical one-time password(OTP) authentication method by using digital holography, which enhances security strength in the cryptosystem compared to the conventional electronic OTP method. In this paper, a challenge-response optical OTP authentication based on two-factor authentication is presented by 2-step quadrature phase-shifting digital holography using orthogonal polarization, and two-way authentication is also performed using the challenge-response handshake in both directions. The ID (identification), PW (password) and OTP information are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted information are verified each other by the shared key. Because the encrypted digital holograms which are transmitted to the other party are expressed as random distribution, it guards against a replay attack and results in higher security level. Optically, encrypted digital hologram in our method is Fourier transform hologram and is recorded on CCD with 256 gray-level quantized intensities. The proposed method has an advantage that it does not need a time-synchronized OTP and can be applied to various security services. Computer experiments show that the proposed method is suitable for high secure OTP authentication.

  7. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  8. Experimental imaging research on continuous-wave terahertz in-line digital holography

    NASA Astrophysics Data System (ADS)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Wang, Yunxin

    2014-09-01

    The terahertz (THz) imaging is an advanced technique on the basis of the unique characteristics of terahertz radiation. Due to its noncontact, non-invasive and high-resolution capabilities, it has already shown great application prospects in biomedical observation, sample measurement, and quality control. The continuous-wave terahertz in-line digital holography is a combination of terahertz technology and in-line digital holography of which the source is a continuous-wave terahertz laser. Over the past decade, many researchers used different terahertz sources and detectors to undertake experiments. In this paper, the pre-process of the hologram is accomplished after the holograms' recording process because of the negative pixels in the pyroelectric detector and the air vibration caused by the chopper inside the camera. To improve the quality of images, the phase retrieval algorithm is applied to eliminate the twin images. In the experiment, the pin which terahertz wave can't penetrate and the TPX slice carved letters "THz" are chosen for the samples. The amplitude and phase images of samples are obtained and the twin image and noise in the reconstructed images are suppressed. The results validate the feasibility of the terahertz in-line digital holographic imaging technique. This work also shows the terahertz in-line digital holography technique's prospects in materials science and biological samples' detection.

  9. Direct inversion of digital 3D Fraunhofer holography maps.

    PubMed

    Podorov, Sergei G; Förster, Eckhart

    2016-01-20

    Differential Fourier holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [Opt. Express15, 9954 (2007)], DFH was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional images. In this paper, we demonstrate numerically the possibility to apply DFH also for investigation of unknown three-dimensional objects. The first simulation is made for a double-spiral structure plus a line as a reference object. PMID:26835947

  10. Three-dimensional displacement measurement based on the combination of digital holography and digital image correlation.

    PubMed

    Yan, Hao; Pan, Bing

    2014-09-01

    A new simultaneous three-dimensional (3D) displacement measurement technique based on the combination of digital holography (DH) and digital imaging correlation (DIC) is proposed. The current DH-based 3D displacement measurement technique needs three sets of DH setups, and only the phase images are utilized in measurements, with all the intensity images discarded. In contrast, the proposed new technique only adopts a single off-axis DH setup. In the proposed technique, the phase images are used to extract out-of-plane displacements, but the intensity images (instead of being discarded) are processed by an intensity correlation algorithm to retrieve in-plane displacement components. Because the proposed technique fully takes advantage of all the information obtained by an off-axis DH without additional optical arrangements, it is simpler and more practical than the existing DH-based 3D displacement measurement technique. Experiments performed on a United States Air Force (USAF) target demonstrate that both the in-plane and out-of-plane displacements can be accurately determined by the proposed technique. PMID:25166100

  11. Three dimensional measurement of micro-optical components using digital holography and pattern recognition

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyung; Jeon, Sungbin; Cho, Janghyun; Lim, Geon; Park, No-Cheol; Park, Young-Pil

    2015-09-01

    This paper proposes a method for inspecting transparent micro-optical components that combines digital holography and pattern recognition. As many micro-optical components have array structures with numerous elements, the uniformity of each element is important. Consequently, an effective inspection requires simultaneous measurement of these elements. Pattern recognition is used to solve this issue and can be adopted effectively using the unique characteristics of digital holography to obtain both amplitude and phase information on the object. To verify this approach, an experimental demonstration was performed with a micro-lens array using a circle-detection algorithm based on the Hough Transform. As an experimental results 30 micro-lenses are detected and measured simultaneously by using proposed inspection method.

  12. Three-dimensional shape measurement based on dual-refractive-index digital holography

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-ou; Hu, Feng-jun; Wang, Hui

    2015-09-01

    A novel phase-imaging method based on dual-refractive-index digital holography has been presented, which in principle can be arbitrarily large compared to the wavelength and does not involve the usual phase unwrapping by detection of phase discontinuity. The method consists of the generation and combination of two phase maps in a digital holography system by use of two separate refractive indexes which varies with the air density in an air chamber where a recorded 3D object is in. For example, we have reconstructed the surface of a remote control keypad of size 5 mm×5 mm and maximum axial depth 0.631 mm, and the experimental result shows that the proposed approach is feasible and effective.

  13. Improvement of color reproduction in color digital holography by using spectral estimation technique.

    PubMed

    Xia, Peng; Shimozato, Yuki; Ito, Yasunori; Tahara, Tatsuki; Kakue, Takashi; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2011-12-01

    We propose a color digital holography by using spectral estimation technique to improve the color reproduction of objects. In conventional color digital holography, there is insufficient spectral information in holograms, and the color of the reconstructed images depend on only reflectances at three discrete wavelengths used in the recording of holograms. Therefore the color-composite image of the three reconstructed images is not accurate in color reproduction. However, in our proposed method, the spectral estimation technique was applied, which has been reported in multispectral imaging. According to the spectral estimation technique, the continuous spectrum of object can be estimated and the color reproduction is improved. The effectiveness of the proposed method was confirmed by a numerical simulation and an experiment, and, in the results, the average color differences are decreased from 35.81 to 7.88 and from 43.60 to 25.28, respectively. PMID:22193005

  14. Continuous-wave terahertz digital holography by use of a pyroelectric array camera.

    PubMed

    Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi

    2011-06-01

    Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 pyroelectric array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. PMID:21633426

  15. Preliminary Design of a Digital Holography PFC Erosion Diagnostic for MPEX

    NASA Astrophysics Data System (ADS)

    Thomas, C. E. (Tommy), Jr.; Biewer, T. M.; Shaw, G. C.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rapp, J.; Hillis, D. L.; Granstedt, E. M.; Majeski, R.; Kaita, R.

    2015-11-01

    Preliminary design of a Digital Holography (DH) in-situ Plasma Facing Component (PFC) erosion diagnostic to be used on the proto-MPEX/MPEX experiment is presented. Design trade-offs are discussed including the selection of CO2 laser frequencies and whether/where to use reflective or refractive optical components. The costs and benefits of using a high-speed (expensive) infrared (IR) camera or a lower speed (inexpensive) IR camera, and whether to use simultaneous or sequential acquisition of DH exposures for the dual wavelength system are also described. Expected layout, resolution, and noise figures will be discussed, along with resolution and noise data from previous work at ORNL and PPPL. Partial Support from USDOE Contract DE-AC02-09CH11466 and USDOE Grant DE-FG02-07ER84724 for previous Digital Holography work done at ORNL and PPPL is gratefully acknowledged.

  16. Speckle noise reduction in digital holography due to angular diversity by spatial light modulator

    NASA Astrophysics Data System (ADS)

    Meng, Pu-hui; Wang, Da-yong; Rong, Lu; Wang, Yun-xin

    2012-11-01

    The reconstructed amplitude distribution of digital holography suffers from the contamination of speckle noise. We introduced and demonstrated an approach using phase SLM (spatial light modulator) to reduce speckle noise in digital holography. Multiple holograms were recorded through different illumination angle via SLM modulation. The speckle noise in the reconstructed image is suppressed by averaging these fields. The modulation interval of SLM exceeds the minimum angle of uncorrelated speckle pattern. Both reflective and transmissive experiments were conducted using USAF test target as the sample. The results show that the speckle noise was obviously suppressed and the contrast dropped to 36% of the initial value using 25 different angles. With the help of SLM modulation of illumination angle, the operation speed, accuracy and stability of the experiment has been greatly improved.

  17. Digital holography for recovering 3D shape of red blood cells

    NASA Astrophysics Data System (ADS)

    Memmolo, P.; Miccio, L.; Merola, F.; Gennari, O.; Netti, P.; Ferraro, Pietro

    2015-07-01

    Full morphometric data analysis and 3D rendering of Red Blood Cells (RBCs) is provided by means of Digital Holography (DH) in combination with Optical Tweezers (OT). The proposed method is compared with a geometrical model of RBC in order to evaluate its accuracy and tested for many kinds of RBCs, from healthy ones with double-concavity to that with abnormal shapes. Applications in diagnostics are foreseen.

  18. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    SciTech Connect

    ThomasJr., C. E.; Granstedt, E. M.; Biewer, Theodore M; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Hillis, Donald Lee; Majeski, R.; Kaita, R.

    2014-01-01

    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  19. Effect of changing speckles in digital holography on measurements of static and vibratory displacements.

    PubMed

    Stetson, Karl A

    2016-06-01

    This paper presents a study of speckle effects in measurements of static and vibratory displacements by digital holography. Such effects are shown to arise from changes in speckle fields that often occur between holographic recordings. These may be between recording holograms before and after static deformations or changes in sets of holograms recorded for vibration measurement. If the images do not change between such recordings, the effects appear to be limited mainly to round-off errors. PMID:27411207

  20. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  1. Lensless x-ray imaging in reflection geometry

    SciTech Connect

    Roy, S.; Parks, D.H.; Seu, K.A.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D.; Su, R.

    2011-02-03

    Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.

  2. Digital Stroboscopic Holography Setup for Deformation Measurement at Both Quasi-Static and Acoustic Frequencies

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Soons, Joris; Dirckx, Joris J. J.

    2014-10-01

    A setup for digital stroboscopic holography that combines the advantages of full-field digital holographic interferometry with a high temporal resolution is presented. The setup can be used to identify and visualize complicated vibrational patterns with nanometer amplitudes, ranging from quasi-static to high frequency vibrations. By using a high-energy pulsed laser, single-shot holograms can be recorded and stability issues are avoided. Results are presented for an acoustically stimulated rubber membrane and the technique is evaluated by means of an accuracy and a repeatability test. The presented technique offers wide application possibilities in areas such as biomechanics and industrial testing.

  3. Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-09-01

    A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system. PMID:27607703

  4. Measurement of curvature and twist of a deformed object using digital holography

    SciTech Connect

    Chen Wen; Quan Chenggen; Cho Jui Tay

    2008-05-20

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method.

  5. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  6. High-speed parallel phase-shifting digital holography system using special-purpose computer for image reconstruction

    NASA Astrophysics Data System (ADS)

    Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-05-01

    We report a high-speed parallel phase-shifting digital holography system using a special-purpose computer for image reconstruction. Parallel phase-shifting digital holography is a technique capable of single-shot phase-shifting interferometry. This technique records information of multiple phase-shifted holograms required for calculation of phase-shifting interferometry with a single shot by using space-division multiplexing. This technique needs image-reconstruction process for a huge amount of recorded holograms. In particular, it takes a long time to calculate light propagation based on fast Fourier transform in the process and to obtain a motion picture of a dynamically and fast moving object. Then we designed a special-purpose computer for accelerating the image-reconstruction process of parallel phase-shifting digital holography. We developed a special-purpose computer consisting of VC707 evaluation kit (Xilinx Inc.) which is a field programmable gate array board. We also recorded holograms consisting of 128 × 128 pixels at a frame rate of 180,000 frames per second by the constructed parallel phase-shifting digital holography system. By applying the developed computer to the recorded holograms, we confirmed that the designed computer can accelerate the calculation of image-reconstruction process of parallel phase-shifting digital holography ~50 times faster than a CPU.

  7. Digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming

    NASA Astrophysics Data System (ADS)

    Spencer, Mark F.; Dragulin, Ivan V.; Cargill, Daniel S.; Steinbock, Michael J.

    2015-09-01

    Digital holography wave-front sensing in the off-axis image plane recording geometry shows distinct potential for directed-energy and remote-sensing applications. For instance, digital holographic detection provides access to the amplitude and wrapped phase associated with an optical field. From the wrapped phase, one can estimate the atmospheric aberrations present and perform adaptive-optics compensation and high-resolution imaging. This paper develops wave-optics simulations which explore the estimation accuracy of digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming. Specifically, this paper models spherical-wave propagation through varying atmospheric conditions along a horizontal propagation path and formulates the field-estimated Strehl ratio as a function of the image-plane sampling, the coherence diameter, the log-amplitude variance, and the distortion number. Such results will allow one to assess the number of pixels needed in a detector array when using digital holographic detection in the presence of strong atmospheric turbulence and thermal blooming.

  8. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  9. Three-wavelength digital holography using spatial frequency-division multiplexing and dual reference arms

    NASA Astrophysics Data System (ADS)

    Tahara, Tatsuki; Takeshita, Shingo; Morimoto, Kenta; Kaku, Toru; Arai, Yasuhiko

    2016-03-01

    We propose single-shot multiwavelength digital holography using a monochromatic image sensor and dual reference arms. Multiple wavelength information is multiplexed on the monochromatic image sensor plane in the space domain and is separated in the spatial frequency domain by utilizing the difference between the spatial frequencies of interference fringes at respective wavelengths. The recordable spatial bandwidth that is utilized for object waves is extended by using dual reference arms in comparison with that using a single reference arm. Both the three-dimensional and three-wavelength information of an object were recorded and reconstructed without the crosstalk between object waves with multiple wavelengths.

  10. Digital off-axis holography with angular multiplexing and synthetic aperture

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomin; Qu, Weijuan; Yang, Fang; Wen, Yongfu; Anand, Asundi

    2015-07-01

    This paper discusses conventional synthetic-aperture method combined angular multiplexing in digital holography to increase the resolution and to enlarge the field of view at the same time. A structured illumination is used to realize angular multiplexing. A camera is moved by a motorized x-y stage, and scanning is performed at imaging plane. In this way we extend the band-pass for single hologram recording as well as obtain a greater sensor area resulting in a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction combined with a smaller depth of field. Moreover, a phase map of the object is experimentally presented.

  11. One-exposure phase-shifting digital holography based on the self-imaging effect

    NASA Astrophysics Data System (ADS)

    Siemion, Agnieszka; Sypek, Maciej; Makowski, Michał; Suszek, Jaroslaw; Siemion, Andrzej; Wojnowski, Dariusz; Kolodziejczyk, Andrzej

    2010-05-01

    A diffractive optical element with self-imaging capabilities is used to make a phase-shifting digital holography optical system simpler and cheaper. Sequential phase-shifting requires multiple exposures, and parallel phase-shifting demands a more complicated optical system. As opposed to typical phase-shifting methods, using the self-imaging diffractive optical element requires only one exposure on a low-cost CMOS matrix, and due to the small number of needed elements, the optical system is very compact. Instead of the approximation and interpolation methods, the properties of the self-imaging effect are utilized in the recording process and in the numerical reconstruction process.

  12. Simultaneous depth determination of multiple objects by focus analysis in digital holography

    SciTech Connect

    Tachiki, Mark L.; Itoh, Masahide; Yatagai, Toyohiko

    2008-07-01

    Focus analysis techniques from computer vision are applied to digital holography to determine the depth (range) of multiple objects and their surfaces from a single hologram capture. With this method the depths of objects can be determined from a single hologram capture without the need for manual focusing and without prior information on object location. Variance and the Laplacian of Gaussian are analyzed as focus measures, and techniques are proposed for focus plane determination from the focus measure curves. The algorithm is described in detail and demonstrated through simulation and optical experiment.

  13. Wavelength scanning digital interference holography for high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, M. K.; Kay, Christine N.

    2009-02-01

    An improved digital interference holography (DIH) technique suitable for fundus images is proposed. This technique incorporates a dispersion compensation algorithm to compensate for the unknown axial length of the eye. Using this instrument we acquired successfully tomographic fundus images in human eye with narrow axial resolution less than 5μm. The optic nerve head together with the surrounding retinal vasculature were constructed. We were able to quantify a depth of 84μm between the retinal fiber and the retinal pigmented epithelium layers. DIH provides high resolution 3D information which could potentially aid in guiding glaucoma diagnosis and treatment.

  14. Monitoring and evaluation of drying of paint by using phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Yokota, Masayuki

    2010-01-01

    We propose a novel method for monitoring the drying process of a painted surface by using phase-shifting digital holography. In comparison with previous methods using speckle patterns, the proposed method can afford an intensity image for directly monitoring and local variations of drying without an imaging lens. It can also be used for surfaces of complex shapes. In addition, quantitative analysis utilizing a cross-correlation function and phase change derived from the reconstructed complex amplitude is performed and the drying time of paint for different areas and temperature is evaluated. The technique is also applied to monitoring the drying process of a complex surface of a lightbulb.

  15. Latest Results from the LTX High-Speed Digital Holography System

    NASA Astrophysics Data System (ADS)

    Thomas, C. E., Jr.; Granstedt, E. M.; Jacobson, C. M.; Lundberg, D. P.; Majeski, R.; Kaita, R.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.

    2012-10-01

    During the last year research efforts for the LTX Digital Holography system have been concentrated on reducing noise and producing sample images. A high-speed CO2 laser digital holography system (500 frames per second (FPS) at 256 x 256 pixels, 1500 FPS at 128 x 128 pixels, etc., to a maximum of 43,000 FPS at 64 x 4 pixels) has been built for high-resolution imaging of electron density on the Lithium Tokamak Experiment (LTX). The laser operates at 9.1 microns by using an Oxygen-18 isotope, and has a power output up to 20 W. A FLIR SC4000 IR camera is used to capture the digital holograms. An acousto-optic modulator (AOM) is used to ``shutter'' the laser so that effective camera integration times down to less than one microsecond are possible. The system will be used for imaging measurements on LTX during molecular cluster injection (MCI), supersonic gas injection (SGI), and external gas injection. Results of noise reduction efforts along with sample images and any LTX results will be presented.

  16. Latest Results from the LTX High-Speed Digital Holography System

    NASA Astrophysics Data System (ADS)

    Thomas, C. E. (Tommy), Jr.; Granstedt, E. M.; Jacobson, C. M.; Majeski, R.; Kaita, R.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.

    2013-10-01

    During the last year research efforts for the LTX Digital Holography system have been concentrated on reducing noise and diagnosing the flow pattern of the LTX Supersonic Gas Injector. A high-speed CO2 laser digital holography system (500 frames per second (FPS) at 256 × 256 pixels, 1500 FPS at 128 × 128 pixels, etc., to a maximum of 43,000 FPS at 64 × 4 pixels) has been built for high-resolution imaging of electron density on the Lithium Tokamak Experiment (LTX). The laser operates at 9.1 microns by using an Oxygen-18 isotope, and has a power output up to 20 W. A FLIR SC4000 IR camera is used to capture the digital holograms. An acousto-optic modulator (AOM) is used to ``shutter'' the laser so that effective camera integration times down to less than one microsecond are possible. The system will be used for imaging measurements on LTX during molecular cluster injection (MCI), supersonic gas injection (SGI), and injection from edge gas puffers. Results of noise reduction efforts along with ultra low noise flow-pattern images from the SGI will be presented. Partial Support from USDOE Contract DE-AC02-09CH11466 and USDOE Grant DE-FG02-07ER84724 is gratefully acknowledged.

  17. Content-based fused off-axis object illumination direct-to-digital holography

    DOEpatents

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  18. Compressive Holography

    NASA Astrophysics Data System (ADS)

    Lim, Se Hoon

    Compressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography: estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field

  19. Particle Imaging, Characterization and Extinction Measurement with Digital Holography

    NASA Astrophysics Data System (ADS)

    Subedi, Nava; Berg, Matthew

    2015-03-01

    Digital holographic microcopy (DHM) can be a ground breaking technique in the field of particle diagnostic because of its capability for imaging, characterization and extinction measurement in situ. The beauty of this technique is that a single experimental set up is able to do all these works at the same time. In this sense DHM can be used to establish a new kind of instrumentation having the properties of cost-effective, light-weight and portable. Besides this, this technique also has lots of useful applications in the field of aerosol research, climate modeling, life science, polymer crystallization, and defense. We are using DHM for sub-micron sized particle imaging, characterization and extinction. In this work, a particle is illuminated by a pulsed laser and the interference pattern produced by superposition of particle's forward-scattered wave with the incident wave is recorded by a digital camera. The recorded pattern constitutes a digital hologram which can be numerically processed to get image, composition information and extinction cross-section of the particle. These information of the particle are the basic requirements for the characterization of respirable-sized (1-10 μm) aerosols particles.

  20. Iterative and noniterative nonuniform quantisation techniques in digital holography

    NASA Astrophysics Data System (ADS)

    Shortt, Alison E.; Naughton, Thomas J.; Javidi, Bahram

    2006-04-01

    Compression is essential for efficient storage and transmission of three-dimensional (3D) digital holograms. The inherent speckle content in holographic data causes lossless compression techniques, such as Huffman and Burrows-Wheeler (BW), to perform poorly. Therefore, the combination of lossy quantisation followed by lossless compression is essential for effective compression of digital holograms. Our complex-valued digital holograms of 3D real-world objects were captured using phase-shift interferometry (PSI). Quantisation reduces the number of different real and imaginary values required to describe each hologram. Traditional data compression techniques can then be applied to the hologram to actually reduce its size. Since our data has a nonuniform distribution, the uniform quantisation technique does not perform optimally. We require nonuniform quantisation, since in a histogram representation our data is denser around the origin (low amplitudes), thus requiring more cluster centres, and sparser away from the origin (high amplitudes). By nonuniformly positioning the cluster centres to match the fact that there is a higher probability that the pixel will have a low amplitude value, the cluster centres can be used more efficiently. Nonuniform quantisation results in cluster centres that are adapted to the exact statistics of the input data. We analyse a number of iterative (k-means clustering, Kohonen competitive neural network, SOM, and annealed Hopfield neural network), and non-iterative (companding, histogram, and optimal) nonuniform quantisation techniques. We discuss the strengths and weaknesses of each technique and highlight important factors that must be considered when choosing between iterative and non-iterative nonuniform quantisation. We measure the degradation due to lossy quantisation in the reconstruction domain, using the normalised rms (NRMS) metric.

  1. Perspectives of multimode fibers and digital holography for optogenetics

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen W.; Haufe, Daniel; Koukourakis, Nektarios; Büttner, Lars

    2016-04-01

    Optogenetic approaches allow the activation or inhibition of genetically prescribed populations of neurons by light. In principle, optogenetics offers not only the ability to elucidate the functions of neural circuitry, but also new approaches to a treatment of neurodegenerative diseases and recovery of vision and auditory perception. Optogenetics already has revolutionized research in neuroscience. However, new methods for delivering light to three-dimensionally distributed structures e.g. in the brain are necessary. A major hurdle for focusing light through biological tissue is the occurring scattering and scrambling of the light. We demonstrate the correction of the scrambling in a multimode fiber by digital optical phase conjugation with a perspective for optogenetics.

  2. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  3. Superresolved imaging in digital holography by superposition of tilted wavefronts.

    PubMed

    Mico, Vicente; Zalevsky, Zeev; García-Martínez, Pascuala; García, Javier

    2006-02-10

    A technique based on superresolution by digital holographic microscopic imaging is presented. We used a two dimensional (2-D) vertical-cavity self-emitting laser (VCSEL) array as spherical-wave illumination sources. The method is defined in terms of an incoherent superposition of tilted wavefronts. The tilted spherical wave originating from the 2-D VCSEL elements illuminates the target in transmission mode to obtain a hologram in a Mach-Zehnder interferometer configuration. Superresolved images of the input object above the common lens diffraction limit are generated by sequential recording of the individual holograms and numerical reconstruction of the image with the extended spatial frequency range. We have experimentally tested the approach for a microscope objective with an exact 2-D reconstruction image of the input object. The proposed approach has implementation advantages for applications in biological imaging or the microelectronic industry in which structured targets are being inspected. PMID:16512523

  4. Investigating the Swimming of Microbial Pathogens Using Digital Holography.

    PubMed

    Thornton, K L; Findlay, R C; Walrad, P B; Wilson, L G

    2016-01-01

    To understand much of the behaviour of microbial pathogens, it is necessary to image living cells, their interactions with each other and with host cells. Species such as Escherichia coli are difficult subjects to image: they are typically microscopic, colourless and transparent. Traditional cell visualisation techniques such as fluorescent tagging or phase-contrast microscopy give excellent information on cell behaviour in two dimensions, but no information about cells moving in three dimensions. We review the use of digital holographic microscopy for three-dimensional imaging at high speeds, and demonstrate its use for capturing the shape and swimming behaviour of three important model pathogens: E. coli, Plasmodium spp. and Leishmania spp. PMID:27193535

  5. Fast particle characterization using digital holography and neural networks.

    PubMed

    Schneider, B; Dambre, J; Bienstman, P

    2016-01-01

    We propose using a neural network approach in conjunction with digital holographic microscopy in order to rapidly determine relevant parameters such as the core and shell diameter of coated, non-absorbing spheres. We do so without requiring a time-consuming reconstruction of the cell image. In contrast to previous approaches, we are able to obtain a continuous value for parameters such as size, as opposed to binning into a discrete number of categories. Also, we are able to separately determine both core and shell diameter. For simulated particle sizes ranging between 7 and 20 μm, we obtain accuracies of (4.4±0.2)% and (0.74±0.01)% for the core and shell diameter, respectively. PMID:26835632

  6. High Speed Digital Holography for Density and Fluctuation Measurements

    SciTech Connect

    ThomasJr., C. E.; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Rasmussen, David A; Granstedt, E. M.; Majeski, R.; Kaita, R.

    2010-01-01

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras up to 40 000 fps at 644 pixels with resolutions up to 640512 pixels suitable for use with a CO2 laser are readily available, if expensive.

  7. High speed digital holography for density and fluctuation measurements (invited)

    SciTech Connect

    Thomas, C. E. Jr.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.; Granstedt, E. M.; Majeski, R. P.; Kaita, R.

    2010-10-15

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to {approx}40 000 fps at {approx}64x4 pixels) with resolutions up to 640x512 pixels suitable for use with a CO{sub 2} laser are readily available, if expensive.

  8. Toward soft-tissue elastography using digital holography to monitor surface acoustic waves.

    PubMed

    Li, Shiguang; Mohan, Karan D; Sanders, William W; Oldenburg, Amy L

    2011-11-01

    Measuring the elasticity distribution inside the human body is of great interest because elastic abnormalities can serve as indicators of several diseases. We present a method for mapping elasticity inside soft tissues by imaging surface acoustic waves (SAWs) with digital holographic interferometry. With this method, we show that SAWs are consistent with Rayleigh waves, with velocities proportional to the square root of the elastic modulus greater than 2-40 kPa in homogeneous tissue phantoms. In two-layer phantoms, the SAW velocity transitions approximately from that of the lower layer to that of the upper layer as frequency is increased in agreement with the theoretical relationship between SAW dispersion and the depth-dependent stiffness profile. We also observed deformation in the propagation direction of SAWs above a stiff inclusion placed 8 mm below the surface. These findings demonstrate the potential for quantitative digital holography-based elastography of soft tissues as a noninvasive method for disease detection. PMID:22112110

  9. Multiwavelength digital holography for polishing tool shape measurement

    NASA Astrophysics Data System (ADS)

    Lédl, Vít.; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr

    2013-09-01

    Classical mechano-chemical polishing is still a valuable technique, which gives unbeatable results for some types of optical surfaces. For example, optics for high power lasers requires minimized subsurface damage, very high cosmetic quality, and low mid spatial frequency error. One can hardly achieve this with use of subaperture polishing. The shape of the polishing tool plays a crucial role in achieving the required form of the optical surface. Often the shape of the polishing tool or pad is not known precisely enough during the manufacturing process. The tool shape is usually premachined and later is changed during the polishing procedure. An experienced worker could estimate the shape of the tool indirectly from the shape of the polished element, and that is why he can achieve the required shape in few reasonably long iterative steps. Therefore the lack of the exact tool shape knowledge is tolerated. Sometimes, this indirect method is not feasible even if small parts are considered. Moreover, if processes on machines like planetary (continuous) polishers are considered, the incorrect shape of the polishing pad could extend the polishing times extremely. Every iteration step takes hours. Even worse, polished piece could be wasted if the pad has a poor shape. The ability of the tool shape determination would be very valuable in those types of lengthy processes. It was our primary motivation to develop a contactless measurement method for large diffusive surfaces and demonstrate its usability. The proposed method is based on application of multiwavelength digital holographic interferometry with phase shift.

  10. Estimation of objects transverse parameters in off-axis and in-line Fresnel digital holography

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-05-01

    In this report transverse parameters of objects registered with inline and off-axis Fresnel digital holography schemes were estimated: maximum transverse dimensions of objects, size and quantity of object resolution elements. By determining allowed locations of diffraction orders under reconstruction, new expressions for estimation of objects transverse parameters were obtained. In case of off-axis holography it is desirable that object should not overlap with zero-order and twin images. If object and twin images are located on opposite sides relative to zero-order under reconstruction, this is case of preventing of cyclic shift of twin image (PCS). If twin image is located on both sides relative to zero-order under reconstruction but don't overlap with object image, this is case of assumption of cyclic shift of twin image (ACS). ACS case allows to register digital holograms of larger objects compared to PCS case. However, for example, for automatic image processing, separate display of object and twin images relative to zero-order is often required. It was found that ACS case allows to register holograms with distance between the object and hologram 1.5 times lesser than in PCS case. And maximum transverse dimension of object in ACS case is always greater than in PCS case by the half of hologram size. For verification of obtained estimates, off-axis digital Fresnel holograms with 2048x2048 pixels were optically registered. Contour images located behind static scatter were used as objects. Confirmations on transverse object parameters estimates, satisfying ACS and PCS cases, were derived. These results demonstrate correctness of obtained quantitative estimates.

  11. Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography.

    PubMed

    Poggi, Pasquale; Locatelli, Massimiliano; Pugliese, Eugenio; Delle Donne, Dario; Lacanna, Giorgio; Meucci, Riccardo; Ripepe, Maurizio

    2016-01-01

    Non-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal parameters vital for all the correct prevention strategies when the functionality and the health status of the structures have to be evaluated. The existing experimental techniques used to evaluate the fundamental modes of a structure are based either on seismometric sensors or on Ground-based Synthetic Aperture Radar (GbSAR). Such devices have both serious drawbacks, which prevent their application at a large scale or in the short term. We here demonstrate that the MIR DH based technique can fully overcome these limitations and has the potential to represent a breakthrough advance in the field of dynamic characterization of large structures. PMID:27032810

  12. Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography

    NASA Astrophysics Data System (ADS)

    Poggi, Pasquale; Locatelli, Massimiliano; Pugliese, Eugenio; Delle Donne, Dario; Lacanna, Giorgio; Meucci, Riccardo; Ripepe, Maurizio

    2016-04-01

    Non-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal parameters vital for all the correct prevention strategies when the functionality and the health status of the structures have to be evaluated. The existing experimental techniques used to evaluate the fundamental modes of a structure are based either on seismometric sensors or on Ground-based Synthetic Aperture Radar (GbSAR). Such devices have both serious drawbacks, which prevent their application at a large scale or in the short term. We here demonstrate that the MIR DH based technique can fully overcome these limitations and has the potential to represent a breakthrough advance in the field of dynamic characterization of large structures.

  13. Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography

    PubMed Central

    Poggi, Pasquale; Locatelli, Massimiliano; Pugliese, Eugenio; Delle Donne, Dario; Lacanna, Giorgio; Meucci, Riccardo; Ripepe, Maurizio

    2016-01-01

    Non-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal parameters vital for all the correct prevention strategies when the functionality and the health status of the structures have to be evaluated. The existing experimental techniques used to evaluate the fundamental modes of a structure are based either on seismometric sensors or on Ground-based Synthetic Aperture Radar (GbSAR). Such devices have both serious drawbacks, which prevent their application at a large scale or in the short term. We here demonstrate that the MIR DH based technique can fully overcome these limitations and has the potential to represent a breakthrough advance in the field of dynamic characterization of large structures. PMID:27032810

  14. Hologram encoding strategies for non-Bayesian noise suppression in digital holography reconstructions and optical display

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Memmolo, P.; Finizio, A.; Paturzo, M.; Ferraro, P.

    2016-03-01

    Here we first propose a fast, one-shot, non-Bayesian method which performs a numerical synthesis of a moving aperture in order to reduce the noise in Digital Holography without prior information on its statistics. Starting from one single hologram capture, multiple uncorrelated reconstructions are provided by random sparse resampling masks, which can be incoherently averaged. Thus, the problem of the setup complexity introduced by multiple recordings gets solved. Besides, at the scope of performing DH display using a SLM, it is highly required to operate directly on the hologram, in order to obtain its denoised version without losing the coherence between amplitude and phase information. We then move a step forward, showing a novel encoding formula allowing us to directly synthesize denoised holograms to be optically displayed by SLMs.

  15. Optical image encryption based on joint fractional transform correlator architecture and digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Qu; Guo, Qing; Lei, Liang; Zhou, Jinyun

    2013-04-01

    We present a hybrid configuration of joint transform correlator (JTC) and joint fractional transform correlator (JFTC) for encryption purpose. The original input is encoded in the joint fractional power spectrum distribution of JFTC. In our experimental arrangement, an additional random phase mask (master key) is holographically generated beforehand by a Mach-Zehnder interferometer with a JTC as the object arm. The fractional order of JFTC, together with the master key, can remarkably strengthen the safety level of encryption. Different from many previous digital-holography-based encryption schemes, the stability and alignment requirement for our system is not high, since the interferometric operation is only performed in the generation procedure of the master key. The advantages and feasibility of the proposed scheme have been verified by the experimental results. By combining with a multiplex technique, an application for multiple images encryption using the system is also given a detailed description.

  16. Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography

    NASA Astrophysics Data System (ADS)

    Man, Tianlong; Wan, Yuhong; Wu, Fan; Wang, Dayong

    2015-11-01

    We present a new method for the four-dimensional tracking of a spatially incoherent illuminated object. Self-interference digital holography is utilized for recording the hologram of the spatially incoherent illuminated object. Three-dimensional spatial coordinates encoded in the hologram are extracted by holographic reconstruction procedure and tracking algorithms, while the time information is reserved by the single-shot configuration. Applications of the holographic tracking methods are expanded to the incoherent imaging areas. Speckles and potential damage to the samples of the coherent illuminated tracking methods are overcome. Results on the quantitative tracking of three-dimensional spatial position over time are reported. In practical, living zebra fish larva is used to demonstrate one of the applications of the method.

  17. Single-shot dual-wavelength phase unwrapping in parallel phase-shifting digital holography.

    PubMed

    Lee, Yonghee; Ito, Yasunori; Tahara, Tatsuki; Inoue, Junichi; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Matoba, Osamu

    2014-04-15

    We propose a single-shot phase-unwrapping method using two wavelengths in parallel phase-shifting digital holography (PPSDH). The proposed method enables one to solve the phase ambiguity problem in PPSDH. We conducted an experiment of the proposed method using two lasers whose wavelengths are 473 and 532 nm. An object having about 1.9 μm step, which is 7.1 times larger than the half wavelength of one of the lasers (266 nm), was fabricated by using vapor deposition of aluminum. Single-shot measurement of the height of the object was successfully demonstrated, and the validity of the proposed method was verified. PMID:24978996

  18. Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography.

    PubMed

    Jaedicke, Volker; Goebel, Sebastian; Koukourakis, Nektarios; Gerhardt, Nils C; Welp, Hubert; Hofmann, Martin R

    2014-07-15

    In this Letter, we present a new approach to processing data from a standard spectral domain optical coherence tomography (OCT) system using depth filtered digital holography (DFDH). Intensity-based OCT processing has an axial resolution of the order of a few micrometers. When the phase information is used to obtain optical path length differences, subwavelength accuracy can be achieved, but this limits the resolvable step heights to half of the wavelength of the system. Thus there is a metrology gap between phase- and intensity-based methods. Our concept addresses this metrology gap by combining DFHD with multiwavelength phase unwrapping. Additionally, the measurements are corrected for aberrations. Here, we present proof of concept measurements of a structured semiconductor sample. PMID:25121676

  19. Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography

    NASA Astrophysics Data System (ADS)

    Merola, F.; Paturzo, M.; Coppola, S.; Vespini, V.; Ferraro, P.

    2009-12-01

    Microlens arrays are realized through a self-arrangement process of thin liquid polymeric polydimethylsiloxane (PDMS) film on a functionalized polar dielectric crystal substrate. The self-arrangement process is named the pyro-electro-wetting mechanism. The substrate, a LiNbO3 (LN) z-cut wafer, has been micro-engineered with periodically poled ferroelectric domains, with the aim to provide an appropriate wettability patterning induced by a thermal stimulus. Different experimental procedures have been explored demonstrating that arrays of thousands of microlenses, having a diameter size of 100 µm and focal lengths ranging between 300 and 1100 µm, can be fabricated. Furthermore, a microscope interference method based on digital holography is adopted for microlens characterization.

  20. Large object investigation by digital holography with effective spectrum multiplexing under single-exposure approach

    SciTech Connect

    Liu, Ning Zhang, Yingying; Xie, Jun

    2014-10-13

    We present a method to investigate large object by digital holography with effective spectrum multiplexing under single-exposure approach. This method splits the original reference beam and redirects one of its branches as a second object beam. Through the modified Mach-Zehnder interferometer, the two object beams can illuminate different parts of the large object and create a spectrum multiplexed hologram onto the focal plane array of the charge-coupled device/complementary metal oxide semiconductor camera. After correct spectrum extraction and image reconstruction, the large object can be fully observed within only one single snap-shot. The flexibility and great performance make our method a very attractive and promising technique for large object investigation under common 632.8 nm illumination.

  1. Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography

    NASA Astrophysics Data System (ADS)

    Song, Jun; Leon Swisher, Christine; Im, Hyungsoon; Jeong, Sangmoo; Pathania, Divya; Iwamoto, Yoshiko; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2016-04-01

    Lens-free digital in-line holography (LDIH) is a promising technology for portable, wide field-of-view imaging. Its resolution, however, is limited by the inherent pixel size of an imaging device. Here we present a new computational approach to achieve sub-pixel resolution for LDIH. The developed method is a sparsity-based reconstruction with the capability to handle the non-linear nature of LDIH. We systematically characterized the algorithm through simulation and LDIH imaging studies. The method achieved the spatial resolution down to one-third of the pixel size, while requiring only single-frame imaging without any hardware modifications. This new approach can be used as a general framework to enhance the resolution in nonlinear holographic systems.

  2. Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography

    PubMed Central

    Song, Jun; Leon Swisher, Christine; Im, Hyungsoon; Jeong, Sangmoo; Pathania, Divya; Iwamoto, Yoshiko; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2016-01-01

    Lens-free digital in-line holography (LDIH) is a promising technology for portable, wide field-of-view imaging. Its resolution, however, is limited by the inherent pixel size of an imaging device. Here we present a new computational approach to achieve sub-pixel resolution for LDIH. The developed method is a sparsity-based reconstruction with the capability to handle the non-linear nature of LDIH. We systematically characterized the algorithm through simulation and LDIH imaging studies. The method achieved the spatial resolution down to one-third of the pixel size, while requiring only single-frame imaging without any hardware modifications. This new approach can be used as a general framework to enhance the resolution in nonlinear holographic systems. PMID:27098438

  3. Digital in-line X-ray holography with zone plates.

    PubMed

    Heine, R; Gorniak, T; Nisius, T; Christophis, C; Pettitt, M E; Staier, F; Wilhein, T; Rehbein, S; Grunze, M; Rosenhahn, A

    2011-07-01

    Single pulse imaging with radiation provided by free-electron laser sources is a promising approach towards X-ray microscopy, which is expected to provide high resolution images of biological samples unaffected by radiation damage. One fully coherent imaging technique for this purpose is digital in-line holography. Key to its successful application is the creation of X-ray point sources with high photon flux. In this study we applied zone plates to create such point sources with synchrotron radiation provided by the storage ring BESSY II. The obtained, divergent light cone is applied to holographic microscopy of biological objects such as critical point dried Navicula perminuta diatoms and human cells using photons with an energy of 250 eV. Compared to conventional experiments employing pinholes, exposure times are reduced by two orders of magnitude. PMID:21740876

  4. Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography.

    PubMed

    Song, Jun; Leon Swisher, Christine; Im, Hyungsoon; Jeong, Sangmoo; Pathania, Divya; Iwamoto, Yoshiko; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2016-01-01

    Lens-free digital in-line holography (LDIH) is a promising technology for portable, wide field-of-view imaging. Its resolution, however, is limited by the inherent pixel size of an imaging device. Here we present a new computational approach to achieve sub-pixel resolution for LDIH. The developed method is a sparsity-based reconstruction with the capability to handle the non-linear nature of LDIH. We systematically characterized the algorithm through simulation and LDIH imaging studies. The method achieved the spatial resolution down to one-third of the pixel size, while requiring only single-frame imaging without any hardware modifications. This new approach can be used as a general framework to enhance the resolution in nonlinear holographic systems. PMID:27098438

  5. Multi-point vibrometer based on high-speed digital in-line holography.

    PubMed

    Poittevin, Julien; Picart, Pascal; Faure, Charly; Gautier, François; Pézerat, Charles

    2015-04-10

    This paper describes a digital holographic setup based on in-line holography and a high-speed recording to get a multipoint vibrometer. The use of a high-speed sensor leads to specificities that enable the in-line configuration to be used. The case of transient vibrations is investigated through a full simulation of the holographic process. The simulation shows that the first instants are critical since distortion may occur, resulting in errors in the phase measurement. Experimental results are provided by exciting an aluminum beam with a transient signal. A comparison with the velocity measured by a pointwise vibrometer is provided. Frequency response functions are extracted and the experimental results confirm the ability of the method to provide full-field contactless measurements at the high-speed time scale evolution of the vibration. PMID:25967302

  6. Particle tracking by full-field complex wavefront subtraction in digital holography microscopy.

    PubMed

    Miccio, L; Memmolo, P; Merola, F; Fusco, S; Embrione, V; Paciello, A; Ventre, M; Netti, P A; Ferraro, P

    2014-03-21

    The 3D tracking of micro-objects, based on digital holography, is proposed through the analysis of the complex wavefront of the light scattered by the micro-samples. Exploiting the advantages of the off-axis full-field holographic interferometry, the tracking of multiple objects is achieved by a direct wavefront analysis at the focal plane overcoming the limitation of the conventional back focal plane interferometry in which only one object at a time can be tracked. Furthermore, the method proposed and demonstrated here is a step forward with respect to other holographic tracking tools. The approach is tested in two experiments, the first investigates the Brownian motion of particles trapped by holographic optical tweezers, while the second relates to the cell motility in a 3D collagen matrix, thus showing its usefulness for lab-on-chip systems in typical bioassay testing. PMID:24463986

  7. Dual-wavelength digital holography with a single low-coherence light source.

    PubMed

    Jeon, Sungbin; Cho, Janghyun; Jin, Ji-Nan; Park, No-Cheol; Park, Young-Pil

    2016-08-01

    We propose a measurement system using dual-wavelength digital holography and low-coherence interferometry to measure micro- and nanostructure surface heights. To achieve an extended axial step-measurement range and better image quality, a single light-emitting diode generates two distinct light sources by filtering different center wavelengths and narrower bandwidths. The system can measure surface profile with higher step heights and lower speckle noise in a large field-of-view. Using single-source lighting and a simple configuration, the method supports compactly configured and lower-cost surface-topography measurement systems applicable in various fields. Experimental results for a standard step sample verify the system's performance. PMID:27505804

  8. Acquisition and replay systems for direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2003-02-25

    Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.

  9. Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Nagasaki, Mizuki; Sasagawa, Kiyotaka; Takehara, Hiroaki; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2016-03-01

    Digital enzyme-linked immunosorbent assay (ELISA) is used for detecting various biomarkers with hypersensitivity. We have been developing compact systems by replacing the fluorescence microscope with a CMOS image sensor. Here, we propose a micro-light-pipe array structure made of metal filled with dye-doped resin, which can be used as a fabrication substrate of the micro-reaction-chamber array of digital ELISA. The possibility that this structure enhances the coupling efficiency for fluorescence was simulated using a simple model. To realize the structure, we fabricated a 30-µm-thick micropipe array by copper electroplating around a thick photoresist pattern. The typical diameter of each fabricated micropipe was 10 µm. The pipes were filled with yellow-dye-doped epoxy resin. The transmittance ratio of fluorescence and excitation light could be controlled by adjusting the doping concentration. We confirmed that an angled excitation light incidence suppressed the leakage of excitation light.

  10. Fused off-axis object illumination direct-to-digital holography with a plurality of illumination sources

    DOEpatents

    Price, Jeffery R.; Bingham, Philip R.

    2005-11-08

    Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  11. The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-ou; Wang, Hui

    2008-01-01

    Based on the whole process of the recording and reconstruction of digital holography, we study the formation cause of speckle noise in its reconstructed image and acquire the conclusion that the small size of hologram aperture diffraction aggravates the speckle noise of reconstructed image and the speckle noise has been one of primary noise sources in the reconstruction process. In order to reduce the speckle noise resulting from little hologram aperture diffraction, we set an appropriate aperture function matching the recording parameter and aperture size of hologram and deconvolve the reconstructed image with it. The validity has been proved in theory and experiment. Therefore, it offers a brand-new thought and practical way to reduce the speckle noise in the reconstructed image of digital holography.

  12. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography

    PubMed Central

    Li, Shiping; Zhong, Jingang

    2012-01-01

    The surface plasmon resonance imaging technique provides a tool that allows high-throughput analysis and real-time kinetic measurement. A simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging method is presented. The amplitude-contrast and phase-contrast images are simultaneously obtained by use of digital holography. The detection sensitivity of amplitude-contrast imaging and phase-contrast imaging can compensate for each other. Thus, the detectable sample components may cover a wider range of refractive index values for the simultaneous amplitude-contrast and phase-contrast imaging method than for the phase-contrast imaging method or amplitude-contrast imaging method. A detailed description of the theory and an experiment of monitoring the evaporation process of a drop of NaCl injection in real time are presented. In addition, the amplitude-contrast image has less coherent noise by digital holography. PMID:23243569

  13. Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object.

    PubMed

    Hu, Jiaqi; Li, Qi; Zhou, Yi

    2016-01-10

    Phase retrieval algorithms applied to in-line digital holography reconstruction can weaken interference from the region outside the study target and an unstable light source, etc., by adopting the object-plane support domain constraint. Based on threshold segmentation and morphological filtering, a method to directly calculate the object-plane support domain is proposed in this paper. Combined with the above method, an improved support-domain constrained phase retrieval algorithm is presented. Then, imaging simulations and experiments on terahertz in-line digital holography reconstruction of nonisolated objects are conducted. The simulations study the influence of transmittance of the background plate, structural element of morphological filtering, etc., on the reconstruction effect of the improved algorithm without noise interference. Simulation and experiment results suggest that good reconstructed images can be obtained by this algorithm when transmittance of the background plate is greater than 0.90. PMID:26835775

  14. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    USGS Publications Warehouse

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  15. Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography

    NASA Astrophysics Data System (ADS)

    Qiu, Peizhen; Deng, Lijun; Lu, Wenhui

    2015-12-01

    A method to detect the focal image plane from a single off-axis digital particle hologram is proposed. This method utilizes the central coordinate point spectral value of the reconstructed particle image as focusing criterion to detect the focal image plane. It is found that the central coordinate point spectral values come into maximum when the reconstruction distance is equal to the actual distance that was used in experiment of hologram acquisition. Numerical simulations are given to validate the feasibility and effectiveness of the proposed method. The proposed method is a potential and better option for studying three dimensional particles by using digital holography.

  16. Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography.

    PubMed

    Hall, Elise M; Thurow, Brian S; Guildenbecher, Daniel R

    2016-08-10

    Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. PMID:27534487

  17. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  18. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  19. Calibration of particle position on digital holography using transparent resin block with dispersed particles

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yoshino, T.; Harada, D.; Murata, S.

    2009-11-01

    This paper describes the use of a Calibration Block (CB) for evaluating the accuracy of digital holography in particle position measurement. CB made of acrylic has three layers and the gap between the layers is filled with transparent resin. The refractive index of the resin and the layers is almost the same (1.49). Fin Block (FB), which is not filled with resin, is introduced in order to evaluate effects of the resin. The fringe edges of several holographic patterns are observed by using three kinds of CB and FB. Each layer is coated with spherical particles (diameter: 16.36 ± 0.42 μ m). The influence of multiple scattering on the detected depth of the particles is evaluated by changing the number density of particles. Three kinds of CB and FB are prepared (averaged particle density in the holographic pattern; 83.2, 166.5 and 249.7). The fringe edges of the holographic patterns generated in CB and FB are observed, respectively. It is found that the fringe edges of CB are clearer than FB. Also, Multiple scattering acts as a source of background noise with high spatial frequency, which has almost the same frequency as that of the particle diffraction on the fringe patterns, and reduces the effective signal-to-noise ratio of the holographic pattern. CB can be used to evaluate the influence of multiple scattering on the detected particle depth.

  20. Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical absorbing particles

    NASA Astrophysics Data System (ADS)

    Guildenbecher, Daniel R.; Gao, Jian; Reu, Phillip L.; Chen, Jun

    2012-09-01

    In digital holography an object wave is numerically reconstructed from a recorded hologram. Using this technique it is possible to detect the position and size of particles in a 3D domain. In this work, particular focus is placed on quantification of particles with non-spherical morphologies. The in-line configuration is chosen due to the simplicity of the optical setup and minimal distortions of in-plane morphologies. However, this geometry is also characterized by a large depth-of-focus and high uncertainty in the detected depth. To quantify these uncertainties, this work begins with the definition of a non-dimensional model of hologram recording and reconstruction applied to single spherical and nonspherical particles. Typical CCD noise sources are included. Application of this model to two particle detection methods reveals the relevant merits and limitations of each particle detection method. From the lessons learned, a new hybrid particle detection method is proposed. Simulations indicate the hybrid method significantly improves upon the accuracy of the measured depth and particle morphologies. Furthermore, the proposed method automatically determines the optimum threshold for each particle, and, therefore, requires minimal user inputs. Finally, initial experimental results for spherical particles confirm the accuracy of the proposed hybrid method.

  1. Real-time terahertz digital holography with a quantum cascade laser

    PubMed Central

    Locatelli, Massimiliano; Ravaro, Marco; Bartalini, Saverio; Consolino, Luigi; Vitiello, Miriam S.; Cicchi, Riccardo; Pavone, Francesco; De Natale, Paolo

    2015-01-01

    Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes. PMID:26315647

  2. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOEpatents

    Voelkl, Edgar

    2006-06-27

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  3. Digital In-Line Holography System for 3D-3C Particle Tracking Velocimetry

    NASA Astrophysics Data System (ADS)

    Malek, Mokrane; Lebrun, Denis; Allano, Daniel

    Digital in-line holography is a suitable method for measuring three dimensional (3D) velocity fields. Such a system records directly on a charge-coupled device (CCD) camera a couple of diffraction patterns produced by small particles illuminated by a modulated laser diode. The numerical reconstruction is based on the wavelet transformation method. A 3D particle field is reconstructed by computing the wavelet components for different scale parameters. The scale parameter is directly related to the axial distance between a given particle and the CCD camera. The particle images are identified and localized by analyzing the maximum of the wavelet transform modulus (WTMM) and the equivalent diameter of the particle image (Deq). Afterwards, a 3D point-matching (PM) algorithm is applied to the pair of sets containing the 3D particle locations. In the PM algorithm, the displacement of the particles is modeled by an affine transformation. This affine transformation is based on the use of the dual number quaternions. Afterwards, the velocity-field extraction is performed. This system is tested with simulated particle field displacements and the feasibility is checked with an experimental displacement.

  4. Calculation reduction method for color digital holography and computer-generated hologram using color space conversion

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi

    2014-02-01

    A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.

  5. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Wang, Dien; Chen, Shih-Chi

    2016-04-01

    In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180  μm, and scanning resolution (minimum step size) of ∼270  nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution. PMID:27192259

  6. Overview of Techniques Applicable to Self-Interference Incoherent Digital Holography

    NASA Astrophysics Data System (ADS)

    Hong, J.; Kim, M. K.

    2013-12-01

    Self-interference incoherent digital holography (SIDH) retrieves the complex hologram from the object illuminated by the incoherent light. Supported by the adaptive optic feature, SIDH is readily applicable to the ocular imaging to investigate the human retinal cells. Considering the practical issues, issues related to resolution, phase-shifting, and contrast should be addressed to implement the viable SIDH system which is capable of recording the holographic information of human retinal cells under the incoherent illumination. Super resolution image reconstruction technique can be directly applied to SIDH to enhance the resolution of the system without any change of configuration. We present the improved way to incorporate the phase-shifting itself into the lateral shift required by the super resolution technique. To deal with the phase-shifting issue, we present an arbitrary phase shift retrieval algorithm which can reduce the number of phase-shift and accept the blind phase-shift. The single-shot imaging is also possible by adopting the off-axis configuration of SIDH. We will provide the detailed procedures to retrieve the complex hologram using the proposed arbitrary phase shifting algorithm and the off-axis configuration.

  7. Real-time terahertz digital holography with a quantum cascade laser.

    PubMed

    Locatelli, Massimiliano; Ravaro, Marco; Bartalini, Saverio; Consolino, Luigi; Vitiello, Miriam S; Cicchi, Riccardo; Pavone, Francesco; De Natale, Paolo

    2015-01-01

    Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes. PMID:26315647

  8. Real-time terahertz digital holography with a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Locatelli, Massimiliano; Ravaro, Marco; Bartalini, Saverio; Consolino, Luigi; Vitiello, Miriam S.; Cicchi, Riccardo; Pavone, Francesco; de Natale, Paolo

    2015-08-01

    Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes.

  9. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  10. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  11. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells.

    PubMed

    Merola, F; Miccio, L; Memmolo, P; Di Caprio, G; Galli, A; Puglisi, R; Balduzzi, D; Coppola, G; Netti, P; Ferraro, P

    2013-12-01

    Sperm morphology is regarded as a significant prognostic factor for fertilization, as abnormal sperm structure is one of the most common factors in male infertility. Furthermore, obtaining accurate morphological information is an important issue with strong implications in zoo-technical industries, for example to perform sorting of species X from species Y. A challenging step forward would be the availability of a fast, high-throughput and label-free system for the measurement of physical parameters and visualization of the 3D shape of such biological specimens. Here we show a quantitative imaging approach to estimate simply and quickly the biovolume of sperm cells, combining the optical tweezers technique with digital holography, in a single and integrated set-up for a biotechnology assay process on the lab-on-a-chip scale. This approach can open the way for fast and high-throughput analysis in label-free microfluidic based "cytofluorimeters" and prognostic examination based on sperm morphology, thus allowing advancements in reproductive science. PMID:24129638

  12. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc. PMID:26512472

  13. Three-dimensional microscopy by laser scanning and multi-wavelength digital holography

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander

    This dissertation presents techniques of three-dimensional microscopy. First, an economical method of microscopic image formation that employs a raster-scanning laser beam focused on a sample, while non-imaging detector receives the scattered light is presented. The images produced by this method are analogous to the scanning electron microscopy with visible effects of shadowing and reflection. Compared to a conventional wide-field imaging system, the system allows for a greater flexibility, as the variety of optical detectors, such as PMT and position-sensitive quadrant photodiode can be used to acquire images. The system demonstrates a simple, low-cost method of achieving the resolution on the order of a micron. A further gain in terms of resolution and the depth of focus by using Bessel rather than Gaussian beams is discussed. Then, a phase-imaging technique to quantitatively study the three-dimensional structure of reflective and transmissive microscopic samples is presented. The method, based on the simultaneous dual-wavelength digital holography, allows for higher axial range at which the unambiguous phase imaging can be performed. The technique is capable of nanometer axial resolution. The noise level, which increases as a result of using two wavelengths, is then reduced to the level of a single wavelength. The method compares favorably to software unwrapping, as the technique does not produce nonexistent phase steps. Curvature mismatch between the reference and object beams is numerically compensated. The 3D images of porous coal samples and SKOV-3 ovarian cancer cells are presented.

  14. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    PubMed

    Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984

  15. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework

    PubMed Central

    Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984

  16. Lensless reflective point diffraction interferometer.

    PubMed

    Zhu, Wenhua; Chen, Lei; Zheng, Donghui; Yang, Ying; Han, Zhigang; Li, Jinpeng

    2016-07-01

    A lensless reflective point diffraction interferometer (LRPDI) is proposed for dynamic wavefront measurement. The point diffraction interferometer is integrated on a small substrate with properly designed thin film, which is used for generating the interferogram with high carrier frequency at a CCD target. By lensless imaging, the complex amplitude at the CCD target can be propagated to the conjugated plane of the exit pupil of an incident wavefront, which not only avoids the edge diffraction in the interferogram, but also eliminates systematic error. The accuracy of LRPDI is demonstrated by simulation and experiment, and a precision better than 1/150 wavelength is achieved. The new design with lensless imaging processing is suitable for dynamic wavefront measurement. PMID:27409204

  17. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.

    PubMed

    Zhang, Yuchao; Xie, Changqing

    2015-11-01

    Both digital in-line holography (DIH) and zone plate-based microscopy have received considerable interest as powerful imaging tools. However, the former suffers from a twin-image noise problem. The latter suffers from low efficiency and difficulty in fabrication. Here, we present an effective and efficient phase-contrast imaging approach, named differential-interference-contrast digital in-line holography (DIC-DIH), by using a single optical element to split the incident light into a plane wave and a converging spherical wave and generate a two-dimensional (2D) DIC effect simultaneously. Specifically, to improve image contrast, we present a new single optical element, termed 2D DIC compound photon sieves, by combining two overlaid binary gratings and a compound photon sieve through two logical XOR operations. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem and improve image contrast with high efficiency. Additionally, we present an example of the phase-contrast imaging nonuniform thick photoresist development process. PMID:26512507

  18. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  19. Hard X-ray Fourier Transform Holography Using a Reference Scatterer Fabricated by Electron-Beam-Assisted Chemical-Vapor Deposition

    SciTech Connect

    Suzuki, M.; Isogami, S.; Tsunoda, M.; Takahashi, S.; Ishio, S.

    2011-09-09

    We present a fabrication method for a reference source that is efficient when used for lensless Fourier transform holography. This method produces a reference source that yields high spatial resolution and enhanced signal-to-noise ratio in a Fourier-transformed real-space image, and is particularly useful for Fourier transform holography experiments in the hard x-ray region.

  20. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array

    PubMed Central

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Ting-Wei, Su; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-01-01

    We report a portable lensless on-chip microscope that can achieve <1 μm resolution over a wide field-of-view of ~24 mm2 without the use of any mechanical scanning. This compact on-chip microscope weighs ~95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites. PMID:21365087

  1. Co-design of an in-line holographic microscope with enhanced axial resolution: selective filtering digital holography.

    PubMed

    Verrier, Nicolas; Fournier, Corinne; Cazier, Anthony; Fournel, Thierry

    2016-01-01

    Common-path digital in-line holography is considered as a valuable 3D diagnostic technique for a wide range of applications. This configuration is cost effective and relatively immune to variation in the experimental environment. Nevertheless, due to its common-path geometry, the signal-to-noise ratio of the acquired hologram is weak as most of the detector (i.e., CCD/CMOS sensor) dynamics are occupied by the reference field signal, whose energy is orders of magnitude higher than the field scattered by the imaged object. As it is intrinsically impossible to modify the ratio of energy of reference to the object field, we propose a co-design approach (optics/data processing) to tackle this issue. The reference to the object field ratio is adjusted by adding a 4-f device to a conventional in-line holographic setup, making it possible to reduce the weight of the reference field while keeping the object field almost constant. Theoretical analysis of the Crámer-Rao lower bounds of the corresponding imaging model illustrates the advantages of this approach. These lower bounds can be asymptotically reached using a parametric inverse problem reconstruction. This implementation results in a 60% gain in axial localization accuracy (for 100 μm diameter spherical objects) compared to a classical in-line holography setup. PMID:26831591

  2. Investigations of As-S-Se thin films for use as inorganic photoresist for digital image-matrix holography

    NASA Astrophysics Data System (ADS)

    Bulanovs, Andrejs; Gerbreders, Vjacheslavs; Kirilovs, George; Teteris, Janis

    2011-10-01

    As-S-Se chalcogenide thin films are successfully employed in classical and dot-matrix holography as inorganic photoresists for obtaining a relief-phase hologram. However using these films for image-matrix hologram recording has not been studied due to some features of image-matrix technology. For the applied research of the optical properties of As-S-Se films an experimental device of digital image-matrix holographic recording based on 100 mW 405 nm semi-conductor laser and Spatial Light Modulator (SLM) has been created. The device has the following main parameters: 140 × 105 µm frame size; laser intensity during exposure 10 W/cm2. With the help of this device diffraction grating and security holograms were recorded on As-S-Se thin films. The work reported herein presents results of an experimental study of how diffraction efficiency (DE) of the received relief-phase holographic gratings depends on an exposure and period. Diffraction grating profiles and speed of etching corresponding to different exposure doses are shown. Hologram samples with DE = 65% have been received which allows for using chalcogenide film as alternative to organic photoresists in applied dot-matrix and image-matrix holography.

  3. Improvement of the size estimation of 3D tracked droplets using digital in-line holography with joint estimation reconstruction

    NASA Astrophysics Data System (ADS)

    Verrier, N.; Grosjean, N.; Dib, E.; Méès, L.; Fournier, C.; Marié, J.-L.

    2016-04-01

    Digital holography is a valuable tool for three-dimensional information extraction. Among existing configurations, the originally proposed set-up (i.e. Gabor, or in-line holography), is reasonably immune to variations in the experimental environment making it a method of choice for studies of fluid dynamics. Nevertheless, standard hologram reconstruction techniques, based on numerical light back-propagation are prone to artifacts such as twin images or aliases that limit both the quality and quantity of information extracted from the acquired holograms. To get round this issue, the hologram reconstruction as a parametric inverse problem has been shown to accurately estimate 3D positions and the size of seeding particles directly from the hologram. To push the bounds of accuracy on size estimation still further, we propose to fully exploit the information redundancy of a hologram video sequence using joint estimation reconstruction. Applying this approach in a bench-top experiment, we show that it led to a relative precision of 0.13% (for a 60 μm diameter droplet) for droplet size estimation, and a tracking precision of {σx}× {σy}× {σz}=0.15× 0.15× 1~\\text{pixels} .

  4. Multi-illumination Gabor holography recorded in a single camera snap-shot for high-resolution phase retrieval in digital in-line holographic microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martin; Picazo-Bueno, Jose A.; Garcia, Javier; Micó, Vicente

    2015-05-01

    In this contribution we introduce MISHELF microscopy, a new concept and design of a lensless holographic microscope based on wavelength multiplexing, single hologram acquisition and digital image processing. The technique which name comes from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel microscopy, is based on the simultaneous illumination and recording of three diffraction patterns in the Fresnel domain. In combination with a novel and fast iterative phase retrieval algorithm, MISHELF microscopy is capable of high-resolution (micron range) phase-retrieved (twin image elimination) biological imaging of dynamic events (video rate recording speed) since it avoids the time multiplexing needed for the in-line hologram sequence recording when using conventional phase-shifting or phase retrieval algorithms. MISHELF microscopy is validated using two different experimental layouts: one using RGB illumination and detection schemes and another using IRRB as illumination while keeping the RGB color camera as detection device. Preliminary experimental results are provided for both experimental layouts using a synthetic object (USAF resolution test target).

  5. Single-shot dual-wavelength phase reconstruction in off-axis digital holography with polarization-multiplexing transmission.

    PubMed

    Wang, Zhe; Jiang, Zhuqing; Chen, Yifei

    2016-08-01

    A new system for single-shot dual-wavelength digital holographic microscopy with polarization-multiplexing path-shared transmission is presented. The key feature of the optical configuration is that the interference waves of two wavelengths having orthogonal polarization can transmit in the same interferometer paths at the same time, and two polarizers orthogonal to each other are placed in front of the CCD to realize single-shot recording of two holograms. The correlative filtering algorithm of the spatial-frequency spectrum for dual-wavelength digital holograms is reliable and efficient in the dual-wavelength path-shared configuration. The phase reconstruction in dual-wavelength digital holographic imaging is achieved by using this filtering algorithm. The experiment results of phase reconstruction of a groove grating demonstrate the reliability and validity of this optical configuration and the correlative filtering algorithm. This polarization-multiplexing configuration for dual-wavelength digital holography is compact and has more flexibility for the replacement of different-wavelength lasers. PMID:27505390

  6. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin

    2014-07-01

    We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 {\\mu}m width cross veins.

  7. Detection and correction of wavefront errors caused by slight reference tilt in two-step phase-shifting digital holography.

    PubMed

    Xu, Xianfeng; Cai, Luzhong; Gao, Fei; Jia, Yulei; Zhang, Hui

    2015-11-10

    A simple and convenient method, without the need for any additional optical devices and measurements, is suggested to improve the quality of the reconstructed object wavefront in two-step phase-shifting digital holography by decreasing the errors caused by reference beam tilt, which often occurs in practice and subsequently introduces phase distortion in the reconstructed wave. The effects of reference beam tilt in two-step generalized interferometry is analyzed theoretically, showing that this tilt incurs no error either on the extracted phase shift or on the retrieved real object wave amplitude on the recording plane, but causes great deformation of the recovered object wavefront. A corresponding error detection and correction approach is proposed, and the formulas to calculate the tilt angle and correct the wavefront are deduced. A series of computer simulations to find and remove the wavefront errors caused by reference beam tilt demonstrate the effectiveness of this method. PMID:26560791

  8. Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography.

    PubMed

    Guildenbecher, Daniel R; Cooper, Marcia A; Gill, Walter; Stauffacher, Howard Lee; Oliver, Michael S; Grasser, Thomas W

    2014-09-01

    Burning aluminized propellants eject reacting molten aluminum drops with a broad size distribution. Prior to this work, in situ measurement of the drop size statistics and other quantitative flow properties was complicated by the narrow depth-of-focus of microscopic videography. Here, digital in-line holography (DIH) is demonstrated for quantitative volumetric imaging of the propellant plume. For the first time, to the best of our knowledge, in-focus features, including burning surfaces, drop morphologies, and reaction zones, are automatically measured through a depth spanning many millimeters. By quantifying all drops within the line of sight, DIH provides an order of magnitude increase in the effective data rate compared to traditional imaging. This enables rapid quantification of the drop size distribution with limited experimental repetition. PMID:25166090

  9. Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems.

    PubMed

    Brunel, Marc; Shen, Huanhuan; Coetmellec, Sebastien; Lebrun, Denis

    2012-03-10

    We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required. PMID:22410994

  10. Wavefront holoscopy: application of digital in-line holography for the inspection of engraved marks in progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Perucho, Beatriz; Micó, Vicente

    2014-01-01

    Progressive addition lenses (PALs) are engraved with permanent marks at standardized locations in order to guarantee correct centering and alignment throughout the manufacturing and mounting processes. Out of the production line, engraved marks provide useful information about the PAL as well as act as locator marks to re-ink again the removable marks. Even though those marks should be visible by simple visual inspection with the naked eye, engraving marks are often faint and weak, obscured by scratches, and partially occluded and difficult to recognize on tinted or antireflection-coated lenses. Here, we present an extremely simple optical device (named as wavefront holoscope) for visualization and characterization of permanent marks in PAL based on digital in-line holography. Essentially, a point source of coherent light illuminates the engraved mark placed just before a CCD camera that records a classical Gabor in-line hologram. The recorded hologram is then digitally processed to provide a set of high-contrast images of the engraved marks. Experimental results are presented showing the applicability of the proposed method as a new ophthalmic instrument for visualization and characterization of engraved marks in PALs.

  11. Vibration of low amplitude imaged in amplitude and phase by sideband versus carrier correlation digital holography.

    PubMed

    Verrier, N; Alloul, L; Gross, M

    2015-02-01

    Sideband holography can be used to get field images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. Here we propose to record E0 and E1 sequentially and to image the product E1E0* or the correlation 〈E1E0*〉. We show that these quantities are insensitive to the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging E1E0* over a neighbor pixel, yielding 〈E1E0*〉. Experimental validation is made with a vibrating cube of wood and a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected. PMID:25680060

  12. Real and virtual image separation in digital in-line holography microscopy by recording two parallel holograms

    NASA Astrophysics Data System (ADS)

    Ling, Hangjian; Katz, Joseph

    2013-11-01

    Maintaining high magnification and micron resolution in applications of digital in-line holography microscopy for 3D velocity measurements requires a hologram plane located very close or even within the sample volume. Separation between overlapping real and virtual images becomes a challenge in such cases. Here, we introduced a simple method based on recording two holograms through the same microscope objective that are separated by a short distance from each other. When the same particle fields are reconstructed from the two holograms, the real images overlap, whereas virtual images are separated by twice the distance between hologram planes. Thus, real and virtual images can be easily distinguished. Due to the elongation of the reconstructed particle in the axial direction, the distance between hologram planes is selected to exceed the elongated traces. This technique has been applied to record 3D traces of thousands of 2 um particles in a 0 . 5 × 0 . 5 × 0 . 5 mm sample volume using hologram planes separated by 27 um. Experimental setup, alignment and data analysis procedures, including reconstruction, calibration, particles segmentation and precision particles positioning will be discussed. Sponsored by ONR.

  13. Study of transparent particles in the volume of optical medium using digital holography and singular-optics approach

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Tatiana Y.; Petrov, Nikolay V.

    2015-05-01

    The study of particles that are transparent to the probing radiation but introduce a phase delay appears to be relevant especially in the fields of biology and medicine. In this paper, we propose an approach to the study of the distribution of transparent particles suspended in a volume of optical medium, which combines the method of digital holography and the concept of singular optics. For the numerical study of the particles, we use a method, based on the obtainment and analysis of zerograms that correspond to the spatial distributions of amplitude zeros of the complex amplitude of the field. We explore the features of the application of analysis of the amplitude zero distributions in solving the problem of studying transparent particles suspended in a volume of the optical medium. We investigate the effect of various particle parameters on the recorded hologram and the structure and distribution of the amplitude zeros of the electromagnetic field. We demonstrate the use of histograms of distributions of local densities of amplitude zeros for the characterization of a higher number of transparent particles in volume. Numerical experiments on the use of analysis of the amplitude zeros of the field have shown that there are a number of particular qualities in the distribution of the zeros of amplitude, which can be subsequently used to develop more accurate and efficient method of characterization of transparent particles.

  14. Digital in-line holography: 4-D imaging and tracking of micro-structures and organisms in microfluidics and biology

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Tamblyn, I.; Kreuzer, H. J.

    2006-01-01

    In recent years, in-line holography as originally proposed by Gabor, supplemented with numerical reconstruction, has been perfected to the point at which wavelength resolution both laterally and in depth is routinely achieved with light by using digital in-line holographic microscopy (DIHM). The advantages of DIHM are: (1) simplicity of the hardware (laser- pinhole-CCD camera), (2) magnification is obtained in the numerical reconstruction, (3) maximum information of the 3-D structure with a depth of field of millimeters, (4) changes in the specimen and the simultaneous motion of many species, can be followed in 4-D at the camera frame rate. We present results obtained with DIHM in biological and microfluidic applications. By taking advantage of the large depth of field and the plane-to-plane reconstruction capability of DIHM, we can produce 3D representations of the paths followed by micron-sized objects such as suspensions of microspheres and biological samples (cells, algae, protozoa, bacteria). Examples from biology include a study of the motion of bacteria in a diatom and the track of algae and paramecium. In microfluidic applications we observe micro-channel flow, motion of bubbles in water and evolution in electrolysis. The paper finishes with new results from an underwater version of DIHM.

  15. Phase correction method for least-squares wavefront calculation in statistical generalized phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Nobukazu; Kajihara, Kazuki

    2015-09-01

    When phase-shifting digital holography with a continuous fringe-scanning scheme is implemented using a PC-based measurement system without any synchronous circuit, nonuniform phase-shifted interference fringes are captured because of the fluctuation in the image-capturing interval. To cope with the nonuniform phase shifts, a statistical generalized phase-shifting approach is employed. Because the algorithm is designed to use an arbitrary phase shift, the nonuniform phase shifts do not obstruct object-wave retrieval. Moreover, multiple interference fringes can be obtained in a short time owing to the continuous fringe-scanning scheme. However, the wavefront calculation method is not designed for sequentially recorded interference fringes. To use multiple interference fringes appropriately, we develop a least-squares wavefront calculation method combined with corrections for the initial phase and the direction of phase rotation. We verify the proposed method by numerical simulations and optical experiments. The results show that the object wave with the same initial phase can be correctly reconstructed by using both phase correction methods simultaneously.

  16. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  17. Dual-wavelength digital holography: single-shot shape evaluation using speckle displacements and regularization.

    PubMed

    Bergström, Per; Khodadad, Davood; Hällstig, Emil; Sjödahl, Mikael

    2014-01-01

    This paper discusses the possibility of evaluating the shape of a free-form object in comparison with its shape prescribed by a CAD model. Measurements are made based on a single-shot recording using dual-wavelength holography with a synthetic wavelength of 1.4 mm. Each hologram is numerically propagated to different focus planes and correlated. The result is a vector field of speckle displacements that is linearly dependent on the local distance between the measured surface and the focus plane. From these speckle displacements, a gradient field of the measured surface is extracted through a proportional relationship. The gradient field obtained from the measurement is then aligned to the shape of the CAD model using the iterative closest point (ICP) algorithm and regularization. Deviations between the measured shape and the CAD model are found from the phase difference field, giving a high precision shape evaluation. The phase differences and the CAD model are also used to find a representation of the measured shape. The standard deviation of the measured shape relative the CAD model varies between 7 and 19 μm, depending on the slope. PMID:24513998

  18. Visualized measurement of the acoustic levitation field based on digital holography with phase multiplication

    NASA Astrophysics Data System (ADS)

    Zheng, Puchao; Li, Enpu; Zhao, Jianlin; Di, Jianglei; Zhou, Wangmin; Wang, Hao; Zhang, Ruifeng

    2009-11-01

    By using digital holographic interferometory with phase multiplication, the visualized measurement of the acoustic levitation field (ALF) with single axis is carried out. The digital holograms of the ALF under different conditions are recorded by use of CCD. The corresponding digital holographic interferograms reflecting the sound pressure distribution and the interference phase distribution are obtained by numerical reconstruction and phase subtraction, which are consistent with the theoretical results. It indicates that the proposed digital holographic interferometory with phase multiplication can successfully double the fringe number of the interference phase patterns of the ALF and improve the measurement precision. Compared with the conventional optical holographic interferometory, digital holographic interferometory has the merits of quasi real-time, more exactitude and convenient operation, and it provides an effective way for studying the sound pressure distribution of the ALF.

  19. Lens-less surface second harmonic imaging.

    PubMed

    Sly, Krystal L; Nguyen, Trang T; Conboy, John C

    2012-09-24

    Lens-less surface second harmonic generation imaging (SSHGI) is used to image an SHG active molecule, (S)-(+)-1,1'-bi-2-naphthol (SBN), incorporated into a lipid bilayer patterned with the 1951 United States Air Force resolution test target. Data show the coherent plane-wave nature of SHG allows direct imaging without the aid of a lens system. Lens-less SSHGI readily resolves line-widths as small as 223 μm at an object-image distance of 7.6 cm and line-widths of 397 μm at distances as far as 30 cm. Lens-less SSHGI simplifies the detection method, raises photon collection efficiency, and expands the field-of-view. These advantages allow greater throughput and make lens-less SSHGI a potentially valuable detection method for biosensors and medical diagnostics. PMID:23037346

  20. Holography reinvented

    NASA Astrophysics Data System (ADS)

    Benton, Stephen A.

    2002-07-01

    This paper is entitled Holography Reinvented, because its theme is simply that each of the three best-known names in holography made their discoveries and inventions without knowing about the work of any the others; that is, each of them invented or reinvented holography, as it were. This is largely a presentation of anecdotal remarks drawn from conversations, observations drawn from historical documents, including some from the Museum of Holography files now at the MIT Museum, and observations drawn from the author's own experiences as holography has evolved. As such, any errors of fact or interpretation are entirely the author's own, as is the slant toward imaging or display holography that will be conspicuous. The three main players are Professors Denis Gabor, Emmett Leith, and Juri Denisyuk. A few other names will come into the story as well, notably: Pieter van Heerden (my former colleague at the Polaroid Research Labs) and Hussein M.A. El-Sum, among others.

  1. Ultra-fast digital holography of the femto-second order

    NASA Astrophysics Data System (ADS)

    Zhai, Hongchen; Wang, Xiaolei; Mu, Guoguang

    2007-01-01

    We report on pulsed digital micro holographic systems recording ultra-fast process of the femto-second order, by spatially angular division multiplexing (SADM) and wavelength division multiplexing (WDM), respectively. Both intensity and phase images of the digitally reconstructed images are obtained through Fourier transformation and digital filtering, which show clearly the plasma forming and propagating dynamic process of laser induced ionization of ambient air at the wavelength of 800 nm, with a time resolution of 50 fs and frame intervals of 300 to 550 fs.

  2. Pulsed digital holography system recording ultrafast process of the femtosecond order

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhai, Hongchen; Mu, Guoguang

    2006-06-01

    We report, for the first time to our knowledge, a pulsed digital microholographic system with spatial angular multiplexing for recording the ultrafast process of the femtosecond order. The optimized design of the two sets of subpulse-train generators in this system makes it possible to implement a digital holographic recording with spatial angular multiplexing of a frame interval of the femtosecond order, while keeping the incident angle of the object beams unchanged. Three pairs of amplitude and phase images from the same view angle digitally reconstructed by the system demonstrated the ultrafast dynamic process of laser-induced ionization of ambient air at a wavelength of 800 nm, with a time resolution of 50 fs and a frame interval of 300 fs.

  3. Self-imaging phase mask used in digital holography with phase-shifting

    NASA Astrophysics Data System (ADS)

    Fajst, Agnieszka; Sypek, Maciej; Makowski, Michal; Suszek, Jaroslaw; Kolodziejczyk, Andrzej

    2008-12-01

    The digital reconstruction of an optically recorded hologram has become a fast developing method and has found a vast practical application in many branches of science and industry. An especially invented diffractive optical element with self imaging properties is placed in the reference beam. In the recording process this element forms its self-image in the hologram plane. Self-imaging properties of the diffractive optical element provide the possibility of recording a digital hologram by means of the phase-shifting without any additional imaging components. The innovation of the proposed method lies in using a self-imaging diffractive optical element which enables a significant simplification of a spatial phase shifting optical setup used to record the digital hologram with only a small decrease of the quality of the reconstructed image.

  4. Parameter estimation of single cloud particle based on in-line digital holography

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Ma, Fei; Huang, Meng

    2015-11-01

    In terms of weather modification, detection of cloud droplet particles, which is one of the important measurements, will provides an important reference for artificial weather modification. Digital holographic technology, for that it can realize the three-dimensional particle field measurement and get detail parameters of particle, is widely used in particle measurement along with the high development of modern high resolution CCD and computer technology. In this text , particle of cloud droplet simulated in the laboratory were recorded. By using the in-line digital holographic to obtain the digital holographic image of cloud droplets particles, and single feature parameters (including the shape, size, ovality) of the cloud droplets particles by calculating . It laid a foundation for the future research of cloud group particle characteristics of particle field.

  5. Two-stage method to suppress speckle noise in digital holography

    NASA Astrophysics Data System (ADS)

    Leng, Junmin; Zhou, Jinhe; Lang, Xiaoping; Li, Xiaoying

    2015-10-01

    The two-stage method is proposed to suppress speckle noise in the digital hologram. Three kinds of optical denoising ways are analyzed and compared at first. The optimal one is used to reduce speckle preliminarily. At the same time, the statistical property of the speckle is changed by the optical way. Then the optimized NLM algorithm is adopted to further suppress speckle noise. The experimental system is set up, and the performance indices are calculated. The results are compared with other algorithms. It is demonstrated that the presented method can effectively suppress speckle noise in the digital hologram and the processed image is very vivid.

  6. Lensless single-exposure super-resolved interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Granero, Luis; Ferreira, Carlos; García, Javier; Micó, Vicente

    2013-04-01

    Single Exposure Super Resolved Interferometric Microscopy (SESRIM) has been recently proposed as a way to achieve one dimensional super resolved imaging in digital holographic microscopy. SESRIM uses Red-Green-Blue (RGB) multiplexing for illuminating the sample having different propagation angles for each one of the three illumination wavelengths and it has been experimentally validated considering color (A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, "Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing," Opt. Lett. 36, 885-887, 2011) and monochrome (A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, "Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor," J. Opt. Soc. Am. A 28, 2346-2358, 2011) digital sensors for holographic recording. In this contribution, we will first review some of the characteristics of the previously reported SESRIM approaches and second, we will present preliminary results for the extension of SESRIM to the field of lensless holographic microscopy. Experimental results are reported validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).

  7. Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing.

    PubMed

    Girshovitz, Pinhas; Shaked, Natan T

    2014-04-15

    We present a new approach for obtaining significant speedup in the digital processing of extracting unwrapped phase profiles from off-axis digital holograms. The new technique digitally multiplexes two orthogonal off-axis holograms, where the digital reconstruction, including spatial filtering and two-dimensional phase unwrapping on a decreased number of pixels, can be performed on both holograms together, without redundant operations. Using this technique, we were able to reconstruct, for the first time to our knowledge, unwrapped phase profiles from off-axis holograms with 1 megapixel in more than 30 frames per second using a standard single-core personal computer on a MATLAB platform, without using graphic-processing-unit programming or parallel computing. This new technique is important for real-time quantitative visualization and measurements of highly dynamic samples and is applicable for a wide range of applications, including rapid biological cell imaging and real-time nondestructive testing. After comparing the speedups obtained by the new technique for holograms of various sizes, we present experimental results of real-time quantitative phase visualization of cells flowing rapidly through a microchannel. PMID:24978968

  8. Dual-wavelength digital holography for 3D particle image velocimetry: experimental validation.

    PubMed

    Grare, S; Allano, D; Coëtmellec, S; Perret, G; Corbin, F; Brunel, M; Gréhan, G; Lebrun, D

    2016-01-20

    A multi-exposure digital in-line hologram of a particle field is recorded by two successive pulses of different wavelengths. During the reconstruction step, each recording can be independently analyzed by selecting a given wavelength. This procedure enables avoiding the superimposition of particle images that may be close to each other. PMID:26835957

  9. Polarization analysis by off-axis digital holography with an improved optical system and an evaluation of its performance by simulation

    SciTech Connect

    Yokota, Masayuki

    2008-12-01

    An optical system of off-axis digital holography for imaging the Jones vector of an object wave is improved, and a Faraday rotator for the reference wave is also newly constructed. To evaluate the accuracy of the polarization analysis, quarter- and half-wave plates are used as the object, and the distribution of the polarization state of the transmitted light is analyzed for various orientations of the wave plates. The polarization analysis is also simulated, and the effect of a finite value of the extinction ratio and the modulation error for the reference wave is investigated numerically.

  10. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  11. Single-shot digital holography for fast measuring optical properties of fibers.

    PubMed

    Agour, Mostafa; El-Farahaty, Keremal; Seisa, Eman; Omar, Emam; Sokkar, Taha

    2015-10-01

    We propose a fast method for measuring optical properties, e.g., the refractive index profile and birefringence, of fibers. It is based on recovering the phase distribution of light refracted by a fiber sample at the recording plane from a single-shot digital hologram. During the recovering process, an optimized approach based on the spatial carrier frequency method was utilized. The proposed approach enhances affects that arise from the limited spatial extent of the bandpass filter associated with the implementation of the spatial carrier frequency method. In contrast to the low spatial resolution of off-axis digital holograms, the method ensures the best utilization of the camera support. From the recovered phase information, the optical path difference is measured; thus, the refractive index profile, the mean refractive index, and the birefringence of isotactic polypropylene (IPP) are determined. Experimental results are given for illustration. PMID:26479652

  12. Experimental verification of phase retrieval of microbeads in high-speed phase imaging using digital holography

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu; Xia, Peng; Quan, Xiangyu; Nagahama, Naoya; Tanimoto, Shunsuke; Nitta, Kouichi; Awatsuji, Yasuhiro

    2016-06-01

    One of fast measurement systems of μm-size phase objects based on digital holographic microscope with transmission geometry is presented. For building a 3D inspection system of the phase objects, the improvement of recovered phase image is discussed. Under the CW laser illumination, the movement afterimage of phase object was observed. The phase object is recovered by deconvolution filter. Experimental and numerical evaluation are presented.

  13. Direct to Digital Holography for Semiconductor Wafer Defect Detection and Review

    SciTech Connect

    ThomasJr., C. E.; Bahm, Tracy M.; Baylor, Larry R; Bingham, Philip R.; Burns, Steven W.; Chidley, Matthew D; Dai, Xiaolong; Delahanty, Robert J.; Doti, Christopher J.; El-Khashab, Ayman; Fisher, Robert L.; Gilbert, Judd M.; Cui, Hongtao; Goddard Jr, James Samuel; Hanson, Gregory R; Hickson, Joel D.; Hunt, Martin A.; Hylton, Kathy W; John, George C.; Jones, Michael L.; McDonald, Kenneth R.; Mayo, Michael W.; McMackin, Ian; Patek, David; Price, John H.; Rasmussen, David A; Schaefer, Louis J.; Scheidt, Thomas R.; Schulze, Mark A.; Schumaker, Philip D.; Shen, Bichuan; Smith, Randall G.; Su, Allen N.; Tobin Jr, Kenneth William; Usry, William R.; Voelkl, Edgar; Weber, Karsten S.; Jones, Paul G.; Owen, Robert W.

    2002-01-01

    A method for recording true holograms (not holographic interferometry) directly to a digital video medium in a single image has been invented. This technology makes the amplitude and phase for every pixel of the target object wave available. Since phase is proportional to wavelength, this makes high-resolution metrology an implicit part of the holographic recording. Measurements of phase can be made to one hundredth or even one thousandth of a wavelength, so the technology is attractive for finding defects on semiconductor wafers, where feature sizes are now smaller than the wavelength of even deep ultra-violet light.

  14. An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance

    NASA Astrophysics Data System (ADS)

    Hua, Li-Li; Xu, Ning; Yang, Geng

    2014-06-01

    In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness.

  15. Common-path depth-filtered digital holography for high resolution imaging of buried semiconductor structures

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Schellenberg, Falk; Gerhardt, Nils C.; Paar, Christof; Hofmann, Martin R.

    2016-03-01

    We investigate digital holographic microscopy (DHM) in reflection geometry for non-destructive 3D imaging of semiconductor devices. This technique provides high resolution information of the inner structure of a sample while maintaining its integrity. To illustrate the performance of the DHM, we use our setup to localize the precise spots for laser fault injection, in the security related field of side-channel attacks. While digital holographic microscopy techniques easily offer high resolution phase images of surface structures in reflection geometry, they are typically incapable to provide high quality phase images of buried structures due to the interference of reflected waves from different interfaces inside the structure. Our setup includes a sCMOS camera for image capture, arranged in a common-path interferometer to provide very high phase stability. As a proof of principle, we show sample images of the inner structure of a modern microcontroller. Finally, we compare our holographic method to classic optical beam induced current (OBIC) imaging to demonstrate its benefits.

  16. Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples

    SciTech Connect

    Khmaladze, A.; Restrepo-Martinez, A.; Kim, M.; Castaneda, R.; Blandon, A.

    2008-06-15

    We present a simultaneous dual-wavelength phase-imaging digital holographic technique demonstrated on porous coal samples. The use of two wavelengths enables us to increase the axial range at which the unambiguous phase imaging can be performed, but also increases the noise. We employ a noise reduction 'fine map' algorithm, which uses the two-wavelength phase map as a guide to correct a single-wavelength phase image. Then, the resulting noise of a fine map is reduced to the level of single-wavelength noise. A comparison to software unwrapping is also presented. A simple way of correcting a curvature mismatch between the reference and the object beams is offered.

  17. Optimal principal component analysis-based numerical phase aberration compensation method for digital holography.

    PubMed

    Sun, Jiasong; Chen, Qian; Zhang, Yuzhen; Zuo, Chao

    2016-03-15

    In this Letter, an accurate and highly efficient numerical phase aberration compensation method is proposed for digital holographic microscopy. Considering that most parts of the phase aberration resides in the low spatial frequency domain, a Fourier-domain mask is introduced to extract the aberrated frequency components, while rejecting components that are unrelated to the phase aberration estimation. Principal component analysis (PCA) is then performed only on the reduced-sized spectrum, and the aberration terms can be extracted from the first principal component obtained. Finally, by oversampling the reduced-sized aberration terms, the precise phase aberration map is obtained and thus can be compensated by multiplying with its conjugation. Because the phase aberration is estimated from the limited but more relevant raw data, the compensation precision is improved and meanwhile the computation time can be significantly reduced. Experimental results demonstrate that our proposed technique could achieve both high compensating accuracy and robustness compared with other developed compensation methods. PMID:26977692

  18. Common path in-line holography using enhanced joint object reference digital interferometers

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 22(5), 4719 (2013)]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated. PMID:24663838

  19. Parallel Monitoring of Living Cell Cultures by Means of Digital-Holography and Fluorescent Microscopy

    NASA Astrophysics Data System (ADS)

    Murav'eva, M. S.; Dudenkova, V. V.; Rybnikov, A. I.; Zakharov, Yu. N.

    2015-01-01

    We propose using the method of holographic microscopy to detect fine morphologic changes in living cells. An "LSM 510" laser confocal scanning microscope is modified to allow recording digital microholograms which can be used to reconstruct the amplitude and phase of the radiation transmitting through the sample. Measuring the phase increment of the object beam in cells and the intercellular space yields information on the optical length of the ray path in the cells (spatial dimensions and the refractive index), which in turn contains information on changes in the morphology and intracellular contents. Calcium activity is studied by means of fluorescent microscopy which makes it possible to detect minor variations in the intracellular concentration of calcium ions. By studying the dynamics of calcium oscillations and variations in the optical thickness, conclusions are made about the interrelation of functional and morphological variations, and comparative analysis of these variations is performed.

  20. Pulsed digital holography for high-speed contouring that uses a two-wavelength method.

    PubMed

    Pedrini, G; Fröning, P; Tiziani, H J; Gusev, M E

    1999-06-01

    A two-wavelength method for a fast shape measurement by use of a pulsed ruby laser is presented. The wavelength change is produced by alteration of the distance between the plates of the laser's output etalon. One plate of the etalon is mounted on a vibrating piezoelectric element; this allows a fast wavelength change. Two holograms at different wavelengths are recorded in a few microseconds by use of a CCD. The holograms are reconstructed digitally, and the wave-front phase is calculated. The shape is obtained by subtraction of the phases of the wave fronts recorded at different wavelengths. Environmental disturbances at low frequencies, such as air turbulence, vibrations, and object drift, have no influence on the measurement. Experimental results are presented. PMID:18319945

  1. Lensless in-line holographic microscope with Talbot grating illumination.

    PubMed

    Feng, Shaodong; Wang, Mingjun; Wu, Jigang

    2016-07-15

    We have developed a wide field-of-view lensless in-line holographic microscope (LIHM) capable of acquiring microscopic images with a compact design. In our imaging system, a Ronchi grating was illuminated by a collimated laser beam to generate a Talbot self-imaging grating illumination on the sample, and the in-line holograms were recorded by a CMOS imaging sensor behind the sample. An iterative reconstruction algorithm was then applied to reconstruct the sample image while eliminating the twin-image background that appears in traditional in-line holography. In the algorithm, the dark areas of the illumination grating were used as a known constraint to define the sample support that led to convergence of the iteration. The whole-sample image can be acquired by laterally shifting the grating. We demonstrated the performance of our iteration algorithm and imaging system by successfully acquiring images of polystyrene microspheres with 5 μm diameter and the wing of a green lacewing. PMID:27420484

  2. Lensless Fluorescent Microscopy on a Chip

    PubMed Central

    Coskun, Ahmet F.; Su, Ting-Wei; Sencan, Ikbal; Ozcan, Aydogan

    2011-01-01

    On-chip lensless imaging in general aims to replace bulky lens-based optical microscopes with simpler and more compact designs, especially for high-throughput screening applications. This emerging technology platform has the potential to eliminate the need for bulky and/or costly optical components through the help of novel theories and digital reconstruction algorithms. Along the same lines, here we demonstrate an on-chip fluorescent microscopy modality that can achieve e.g., <4μm spatial resolution over an ultra-wide field-of-view (FOV) of >0.6-8 cm2 without the use of any lenses, mechanical-scanning or thin-film based interference filters. In this technique, fluorescent excitation is achieved through a prism or hemispherical-glass interface illuminated by an incoherent source. After interacting with the entire object volume, this excitation light is rejected by total-internal-reflection (TIR) process that is occurring at the bottom of the sample micro-fluidic chip. The fluorescent emission from the excited objects is then collected by a fiber-optic faceplate or a taper and is delivered to an optoelectronic sensor array such as a charge-coupled-device (CCD). By using a compressive-sampling based decoding algorithm, the acquired lensfree raw fluorescent images of the sample can be rapidly processed to yield e.g., <4μm resolution over an FOV of >0.6-8 cm2. Moreover, vertically stacked micro-channels that are separated by e.g., 50-100 μm can also be successfully imaged using the same lensfree on-chip microscopy platform, which further increases the overall throughput of this modality. This compact on-chip fluorescent imaging platform, with a rapid compressive decoder behind it, could be rather valuable for high-throughput cytometry, rare-cell research and microarray-analysis. PMID:21876522

  3. Focal length calibration of an electrically tunable lens by digital holography.

    PubMed

    Wang, Zhaomin; Qu, Weijuan; Yang, Fang; Asundi, Anand Krishna

    2016-02-01

    The electrically tunable lens (ETL) is a novel current-controlled adaptive optical component which can continuously tune its focus in a specific range via changing its surface curvature. To quantitatively characterize its tuning power, here we assume the ETL to be a pure phase object and present a novel calibration method to dynamically measure its wavefront by use of digital holographic microscopy (DHM). The least squares method is then used to fit the radius of curvature of the wavefront. The focal length is obtained by substituting the radius into the Zemax model of the ETL. The behavior curve between the focal length of the ETL and its driven current is drawn, and a quadratic mathematic model is set up to characterize it. To verify our model, an ETL and offset lens combination is proposed and applied to ETL-based transport of intensity equation (TIE) phase retrieval microscopy. The experimental result demonstrates the calibration works well in TIE phase retrieval in comparison with the phase measured by DHM. PMID:26836076

  4. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  5. Dual-Utility of Digital Holography & Epi-Fluorescence to Localize Cellular Nuclei

    NASA Astrophysics Data System (ADS)

    Sheldrake, Eric

    Digital Holographic Microscopy (DHM) and Epi-Fluorescence have been combined for biological imaging. DHM is a non-invasive phase contrast microscopy technique that provides quantitative information such as the variations in refractive index and physical height. 3D physical height and refractive index profiles are imaged for HEK293 and CHO cells. These values and profiles are compared with known values for the sample gathered from literature and other microscopy techniques, including Scanning Electron Microscopy. The measured CHO cellular length is (15.31 +/- 2.60) microm. Localization of cellular nuclei is performed using the Epi-Fluorescence setup and the DNA specific fluorophore DAPI. The fluorescence intensity profile was imaged, where nuclei shape, size, and localization are compared using an A.1 Zeiss Fluorescence Microscope. The CHO cells are comparable with apoptotic cells, where the measured nucleus length is (10.91 +/- 2.27) microm. DHM and Epi-Fluorescence are combined to analyze the physical heights of the cell as well as localize its nucleus. The combination of these techniques are greatly advantageous to understand cellular functions and variability.

  6. Custom field-of-view optofluidic imaging by synthetic digital holography

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Paturzo, M.; Marchesano, V.; Ferraro, P.

    2016-03-01

    A recently proposed imaging modality, named Space-Time Scanning Interferometry (STSI), exploits object scanning to synthesize interferograms mapped in a hybrid space-time domain. A single linear sensor array is sufficient to create such interferograms with unlimited Field of View (FoV) along the scanning direction. If properly selected, three detector lines allows to recovery the phase information by Phase Shifting (PS) interferometry algorithms. Here we show the application of the STSI method to microfluidic imaging of biological samples, where the required phase shift between interferograms is intrinsically offered due to the sample movement, i.e. scanning does not need to be provided. Besides, out-of-focus recordings are performed using a single line detector, in order to synthesize an unlimited FoV Space-Time Digital Hologram (STDH). As conventional DH, a STDH yields full-field, quantitative, flexible focusing imaging. In addition, in a STDH the FoV is customizable in one direction, so that the desired magnification of a large size sample can be set, still being able to image this entirely. Besides, STDH allows to capture data from a multitude of flowing samples and to process the corresponding information in a single operation, thus avoiding hologram stitching. Experiments have been carried out to demonstrate the capability of STDH provide very high-throughput imaging of objects flowing in a liquid volume using a linear sensor array easily embeddable onboard LoC platforms.

  7. Tomography using multiple wavelengths in digital holography: method, simulations, and experiments

    NASA Astrophysics Data System (ADS)

    Montfort, Frédéric; Charrière, Florian; Colomb, Tristan; Kuehn, Jonas; Cuche, Etienne; Depeursinge, Christian

    2006-04-01

    In this paper we present a method for tomographic imaging using multiple wavelengths in digital holographic microscopy. This method is based on the recording at different wavelengths equally separated in the k-domain, in off-axis geometry, of the interference between a reference wave and an object wave reflected by a microscopic sample and magnified by a microscope objective. A couple charged device (CCD) camera records consecutively the resulting holograms, which are then numerically reconstructed to obtain their resulting wavefront. Those wavefronts are then summed. The result of this operation is a constructive addition of complex waves in the selected plane and destructive addition in the others. Varying the plane of interest enables the scan the object in depth. For the presented simulations and experiments, twenty wavelengths are used in the 480-700 nm range. An object consisting of irregularly stairs with heights of 375, 525, 975, 1200 and 1275 nm is reconstructed. Its lateral dimensions are 250 × 250 microns. The results show clearly a 3D imaging technique with axial resolution under the micron.

  8. 3D visualization and biovolume estimation of motile cells by digital holography

    NASA Astrophysics Data System (ADS)

    Merola, F.; Miccio, L.; Memmolo, P.; Di Caprio, G.; Coppola, G.; Netti, P.

    2014-05-01

    For the monitoring of biological samples, physical parameters such as size, shape and refractive index are of crucial importance. However, up to now the morphological in-vitro analysis of in-vitro cells has been limited to 2D analysis by classical optical microscopy such as phase-contrast or DIC. Here we show an approach that exploits the capability of optical tweezers to trap and put in self-rotation bovine spermatozoa flowing into a microfluidic channel. At same time, digital holographic microscopy allows to image the cell in phase-contrast modality for each different angular position, during the rotation. From the collected information about the cell's phase-contrast signature, we demonstrate that it is possible to reconstruct the 3D shape of the cell and estimate its volume. The method can open new pathways for rapid measurement of in-vitro cells volume in microfluidic lab-on-a-chip platform, thus having access to 3D shape of the object avoiding tomography microscopy, that is an overwhelmed and very complex approach for measuring 3D shape and biovolume estimation.

  9. Real-time phase-contrast analysis of domain switching in lithium niobate by digital holography

    NASA Astrophysics Data System (ADS)

    Grilli, Simonetta; Ferraro, Pietro; de Angelis, Marella; De Nicola, Sergio; Alfieri, Domenico; Paturzo, Melania; De Natale, Paolo; Sansone, Lucia; Pierattini, Giovanni

    2004-08-01

    We present a method for in-situ visualization of electric field domain reversal in congruent lithium niobate (LN) through an electro-optic interferometric technique. The crystal refractive index n changes by the linear electro-optic and piezoelectric effects along the z crystal axis, due to the external electric field. This variation depends on the domain orientation so that two adjacent antiparallel domains present a refractive index difference equal to 2Dn which is used for in-situ visualization of the reversed domain pattern during formation. A digital holographic (DH) technique is employed for a two-dimensional (2D) reconstruction of the wavefield transmitted by the sample in amplitude and phase during the process. The corresponding amplitude-map and phase-map movies are presented. The amplitude-map gives qualitative information about the spatial evolution of the domain boundaries while the phase-map provides measurement of the 2D distribution of the phase shift induced along the z axis. The phase-map movies provide unequivocal information about the spatial distribution of the reversed domain regions. This technique can be used as in-situ monitoring method alternative to the measurement of the poling current which provides information only about the amount of charge delivered to the sample, ignoring the spatial distribution of the domain boundaries.

  10. Dual-wavelength Digital Holography for quantification of cell volume and integral refractive index (RI)

    NASA Astrophysics Data System (ADS)

    Boss, Daniel; Kuehn, Jonas; Depeursinge, Christian; Magistretti, Pierre J.; Marquet, Pierre

    2011-07-01

    Quantitative Phase Imaging techniques such as DHM have emerged recently in life sciences and can be aimed at monitoring and quantifying non-invasively dynamic cellular processes modifying cell morphology and/or content. Concretely, the DHM phase signal depends on two cell parameters: cell thickness and integral refractive index. Consequently, due to its dual origin, the interpretation of the phase signal variations remain difficult. Since a net water flux across the cell membrane causes a variation of both parameters, the phase signal cannot be related directly to cellular RI or thickness variations, but must be understood as a coupled signal of these two parameters. We have developped a Dual-wavelength Digital Holographic Microscopy (DHM) setup to separately measure in a single shot fashion cellular thickness and integral RI of living cells. The method is based on the use of an absorbing dye that causes a high RI dispersion in the extracellular medium at the two recording wavelength. Consequently, the phase signals measured at the two wavelengths, differ significantly from each other. Practically, both cell RI and thickness can be univocally determined from the two phase measurements. Important biophysical parameters of living cells, including dry mass concentrations and water membrane permeability can be deduced.

  11. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  12. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  13. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    NASA Astrophysics Data System (ADS)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage

  14. Digital in-line holography for the extraction of 3D trajectories of small particles in a 2D Benard-von Karman flow

    NASA Astrophysics Data System (ADS)

    Salah, Nebya; Allano, Daniel; Godard, Gilles; Malek, Mokrane; Lebrun, Denis; Paranthoën, P.

    2006-09-01

    Digital In-line Holography is widely used to visualize fluid flows seeded with small particles. Such holograms record directly the far-field diffraction patterns of particles on a CCD camera. From the successive reconstruction planes, the three-dimensional location of the particles can be determined. This imaging system doesn't need focusing. The principle is based on the direct analysis of the diffraction patterns by mean of space-frequency operators such as Wavelet Transformation or Fractional Fourier Transformation. This method, already tested in our laboratory, leads to a better resolution than classical holography for the estimation of 3D particle locations (50μm instead of 0.5mm in depth). In the case of moving particles, it is interesting to illuminate the sample volume by several laser pulses. This can be easily realized by controlling the input current of a modulated laser diode. Then, the CCD camera cumulates the sum of in-line particle holograms recorded at different times. By searching for the best focus plane of each particle image, the 3D coordinate of each particle can be extracted at a given time. This technique is applied to determine trajectories of small particles in a well-controlled 2D Benard-von Karman street allowing a Lagrangian approach. Preliminary results are presented.

  15. Thermodynamic holography

    PubMed Central

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  16. Thermodynamic holography.

    PubMed

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  17. Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code.

    PubMed

    Lin, Chao; Shen, Xueju; Li, Baochen

    2014-08-25

    We demonstrate that all parameters of optical lightwave can be simultaneously designed as keys in security system. This multi-dimensional property of key can significantly enlarge the key space and further enhance the security level of the system. The single-shot off-axis digital holography with orthogonal polarized reference waves is employed to perform polarization state recording on object wave. Two pieces of polarization holograms are calculated and fabricated to be arranged in reference arms to generate random amplitude and phase distribution respectively. When reconstruction, original information which is represented with QR code can be retrieved using Fresnel diffraction with decryption keys and read out noise-free. Numerical simulation results for this cryptosystem are presented. An analysis on the key sensitivity and fault tolerance properties are also provided. PMID:25321276

  18. Dental Holography

    NASA Astrophysics Data System (ADS)

    Dirtoft, Ingegerd

    1983-12-01

    Ten years have passed since the first articles appeared in this new field. The qualities of the laser light together with the need of contactless 3-D measurements for different dental purposes seemed to be extremely promising, but still just a few scientists have used the method and mostly for laboratory studies. For some reason there has been a preponderance for orthodontic measurements. This seems to be a bit peculiar from holographic view compared with measurements for engineering purposes, which usually are made on metals. So naturally holography can become a clinical tool for measurements in the field of fixed bridges, removable partial dentures and implants. One of the problems is that the need for holography in dental research must be fulfilled in collaboration with physicists. Only a two-way communication during an entire experiment can balance both technical and odontological demands and thus give practical and clinical important results. The need for an easy way of handling the evaluation to get all required information is another problem and of course the holographic equipment must be converted to a box easy to handle for everyone. At last the position of dental holography today is going to be carefully examined together with an attempt to look into the hopefully exciting and not to utopic future for this research field.

  19. Parallel-mode scanning optical sectioning using digital Fresnel holography with three-wave interference phase-shifting.

    PubMed

    Kelner, Roy; Rosen, Joseph

    2016-02-01

    The Fresnel incoherent correlation holography (FINCH) method is applicable to various techniques of imaging, including fluorescence microscopy. Recently, a FINCH configuration capable of optical sectioning, using a scanning phase pinhole, has been suggested [Optica 1, 70 (2014)]. This capability is highly important in situations that demand the suppression of out-of-focus information from the hologram reconstruction of a specific plane of interest, such as the imaging of thick samples in biology. In this study, parallel-mode scanning using multiple phase pinholes is suggested as a means to shorten the acquisition time in an optical sectioning FINCH configuration. The parallel-mode scanning is enabled through a phase-shifting procedure that extracts the mixed term of two out of three interfering beams. PMID:26906796

  20. High-resolution digital holographic imaging by using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Da-Yong; Wang, Yun-Xin; Rong, Lu

    2014-09-01

    Digital holography is the product of the optical holography, computer technology and photoelectric detection technology, and has the advantage of high-speed, real-time, full field of view, non-contact and quantitative phase contrast imaging. However, the numerical aperture of the hologram is limited due to the smaller sensitive area of the photoelectric sensor and the larger pixel size, and it is uneasy to meet the practical requirement on the imaging resolution. An approach is presented to achieve the high-resolution digital holographic imaging based on a spatial light modulator(SLM). An amplitude spatial light modulator is placed between the object and the CCD in the lensless Fourier transform digital holographic imaging system. The distribution of a diffraction grating is loaded into the SLM. In this way, more light including the high-frequency content, diffracted from the object, can be collected by the CCD. The standard resolution target is used as the object. The reconstructed image is obtained by the Fresnel diffraction propagation algorithm, which exhibits three diffraction orders. The results show that the resolution is improved from 62.5 μm to 31.3 μm.

  1. Computer holography by means of the laser diodes

    NASA Astrophysics Data System (ADS)

    Borodin, Arthur N.; Ilchenko, Volodymyr; Malov, Alexander N.; Sychevskiy, Alexey V.

    2007-02-01

    A computer holography is the optical hologram recording on the CCD-matrix with digital reconstruction of the 2Dimages for the different volume object cross-sections. The possibility to use compact semiconductor laser diodes in the computer holography for 3D-scene registration is experimentally proved in the D. Gabor's scheme. For off axis hologram recording the S. Benton's scheme for holography using is suggested.

  2. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  3. Integration of a conoscopic holography sensor on a CMM

    NASA Astrophysics Data System (ADS)

    Fernández, P.; Blanco, D.; Valiño, G.; Hoang, H.; Suárez, L.; Mateos, S.

    2012-04-01

    Conoscopic Holography is a non-contact digitizing technique used for verification and reverse engineering tasks. Conoscopic holography share some advantages with other non-contact digitizing techniques: surface digitizing from a secure distance and high point sampling rates. On the other hand, conoscopic holography owns some exclusive advantages: no occlusion problems, vision angles up to 85° and a higher robustness against variations in surface characteristics. The work presented here is part of a project that aims to evaluate conoscopic holography performance when used as an on-machine measurement system. Here, the scope is the integration of a conoscopic holography sensor onto a coordinates measuring machine. Special attention has been paid to calibration procedure, in order to achieve measurements with similar accuracy as those obtained with more common techniques, like laser triangulation sensors.

  4. High-speed (20  kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows.

    PubMed

    Guildenbecher, Daniel R; Cooper, Marcia A; Sojka, Paul E

    2016-04-10

    High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from single experimental realizations. The method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values. PMID:27139851

  5. High-speed (20 kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows

    DOE PAGESBeta

    Guildenbecher, Daniel R.; Cooper, Marcia A.; Sojka, Paul E.

    2016-04-05

    High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from singlemore » experimental realizations. Furthermore, the method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.« less

  6. Lensless imaging for wide field of view

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Yagi, Yasushi

    2015-02-01

    It is desirable to engineer a small camera with a wide field of view (FOV) because of current developments in the field of wearable cameras and computing products, such as action cameras and Google Glass. However, typical approaches for achieving wide FOV, such as attaching a fisheye lens and convex mirrors, require a trade-off between optics size and the FOV. We propose camera optics that achieve a wide FOV, and are at the same time small and lightweight. The proposed optics are a completely lensless and catoptric design. They contain four mirrors, two for wide viewing, and two for focusing the image on the camera sensor. The proposed optics are simple and can be simply miniaturized, since we use only mirrors for the proposed optics and the optics are not susceptible to chromatic aberration. We have implemented the prototype optics of our lensless concept. We have attached the optics to commercial charge-coupled device/complementary metal oxide semiconductor cameras and conducted experiments to evaluate the feasibility of our proposed optics.

  7. Single Beam Holography.

    ERIC Educational Resources Information Center

    Chen, Hsuan; Ruterbusch, Paul H.

    1979-01-01

    Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)

  8. Progress in acoustic holography

    NASA Astrophysics Data System (ADS)

    Hildebrand, B. P.

    1985-01-01

    The theory underlying the methods used in acoustic holography (the real-time liquid surface levitation and the scanning holography methods) and in electromagnetic holography, which uses electromagnetic impulses (radar) or electromagnetic waves (eddy current) is developed. These holographic techniques are illustrated with experimental results, including the use of the liquid surface levitation method for inspecting fiberglass laminate tubes, and examples of the time-of-flight holographic images, the coherent ultrasonic images, multifrequency ultrasonic images, and the synthetic aperture holography images obtained by the use of the scanning holography methodology. Other examples illustrate applications of radar holography and eddy current holography. These examples are used to refute some traditional negative comments on nonoptical holography.

  9. Incoherent holography

    NASA Astrophysics Data System (ADS)

    Abramson, Nils H.

    2000-10-01

    Dennis Gabor invented in-line holography in 1947, but at that time the coherent light from a laser did not yet exist and therefore the holograms he produced were of very low quality. When the laser was born in 1960 beautiful 3-D off- center holograms were for the first time produced by Emmett Leith and Juris Upatnieks. However, already as early as 1934 the inventor and artist Hans Weil patented a method to produce simple pictures that appeared floating in space, by scratching a transparent or metallic surface in certain directions. In 1995 William J. Beaty published a method for Hand-Drawn Holograms. Then it became possible for any artist to draw his own 3-D pictures of simple objects and using his ingenious techniques these hand drawn images will mimic many of the qualities of ordinary holograms.

  10. Holography: A survey

    NASA Technical Reports Server (NTRS)

    Dudley, D. D.

    1973-01-01

    The development of holography and the state of the art in recording and displaying information, microscopy, motion, pictures, and television applications are discussed. In addition to optical holography, information is presented on microwave, acoustic, ultrasonic, and seismic holography. Other subjects include data processing, data storage, pattern recognition, and computer-generated holography. Diagrams of holographic installations are provided. Photographs of typical holographic applications are used to support the theoretical aspects.

  11. Holography and tomography

    SciTech Connect

    Howells, M.

    1997-02-01

    This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography.

  12. A new wavelet-based reconstruction algorithm for twin image removal in digital in-line holography

    NASA Astrophysics Data System (ADS)

    Hattay, Jamel; Belaid, Samir; Aguili, Taoufik; Lebrun, Denis

    2016-07-01

    Two original methods are proposed here for digital in-line hologram processing. Firstly, we propose an entropy-based method to retrieve the focus plane which is very useful for digital hologram reconstruction. Secondly, we introduce a new approach to remove the so-called twin images reconstructed by holograms. This is achieved owing to the Blind Source Separation (BSS) technique. The proposed method is made up of two steps: an Adaptive Quincunx Lifting Scheme (AQLS) and a statistical unmixing algorithm. The AQLS tool is based on wavelet packet transform, whose role is to maximize the sparseness of the input holograms. The unmixing algorithm uses the Independent Component Analysis (ICA) tool. Experimental results confirm the ability of convolutive blind source separation to discard the unwanted twin image from in-line digital holograms.

  13. Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration

    NASA Astrophysics Data System (ADS)

    Granero, Luis; Ferreira, Carlos; Zalevsky, Zeev; García, Javier; Micó, Vicente

    2016-07-01

    Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample's range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional restriction concerning the object field of view (FOV) must be imposed to the technique. Experimental results are reported for both a synthetic object (USAF resolution test target) and a biological sample (swine sperm sample) validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).

  14. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    NASA Astrophysics Data System (ADS)

    Mokrý, P.; Psota, P.; Steiger, K.; Václavík, J.; Doleček, R.; Lédl, V.; Šulc, M.

    2015-02-01

    The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH). The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV). The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  15. Spatial crystal imaging by means of atomic electron holography

    NASA Astrophysics Data System (ADS)

    Luehr, Tobias; Winkelmann, Aimo; Nolze, Gert; Westphal, Carsten

    2015-03-01

    The determination of atom structures is the key for the understanding of basic functional properties of matter or for designing new high-tech materials. For structure determination, holography is a very attractive option, since this method enables lensless three-dimensional imaging. In principle, x-ray photoelectron diffraction (XPD) experiments correspond to a microscopic holography setup. The electron diffraction pattern is highly sensitive to the local structure of the emitter environment, since the emitting atom is located in the near-field of the scattering atoms. Hence, holographic reconstructions of XPD-patterns should yield a spatial image of the sample's atom arrangement. However, anisotropic electron scattering and multiple scattering effects generally cause strong artifacts in the reconstruction. In this contribution we show how to circumvent this problem with electrons at kinetic energies of Ekin >= 10 keV. The resulting spatial images contain hundreds of clearly separated atoms at their correct locations. Furthermore, XPD-patterns allow an element-specific assignment of the reconstructed atoms within the image. This is the first demonstration of true atom imaging following Dennis Gabor's idea of electron holography.

  16. Measurement of three-dimensional stress field of RP model having a notch by using digital holography

    NASA Astrophysics Data System (ADS)

    Tanak, Y.; Murata, S.

    2010-06-01

    We measure three-dimensional stress field of RP model having a V-notch. RP model (Elastic modulues E = 3317 MPa, 9.3 × 7.7 × 50 mm3 having a V-notch) is made of acrylic transparent resin and tracer particle (averaged diameter: 60μm) are dispersed. The model is subjected to the static load (100 N) at the middle. Firstly, three-dimensional deflection is measured by using digital holographic PTV (Particle Tracking Velocimetry). Finally, three-dimensional stress field of RP model is visualized as a differential value of the deflection field.

  17. Impact of noise in holography with extended references in the low signal regime.

    PubMed

    Boutu, W; Gauthier, D; Ge, X; Cassin, R; Ducousso, M; Gonzalez, A I; Iwan, B; Samaan, J; Wang, F; Kovačev, M; Merdji, H

    2016-03-21

    Signal-to-noise ratio is a key factor in lensless imaging, particularly for low diffraction signal experiments in the single shot regime. We present our recent study of the noise impact on holography with extended references. Experimental data have been measured in single shot acquisition using an intense coherent soft X-ray high harmonic source. The impact of hardware and software noise under various detection conditions is discussed. A final comparison between single shot and multi-shot regimes is given. PMID:27136823

  18. Custom field-of-view quantitative label-free microscopy by optofluidic space-time digital holography

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Paturzo, M.; Marchesano, V.; Ferraro, P.

    2016-02-01

    We introduce a novel imaging modality, named Space-Time Scanning Interferometry (STSI), which synthesizes interferograms mapped in a hybrid space-time domain. A single linear sensor array is sufficient to build up synthetic interferograms with unlimited Field of View (FoV) along the scanning direction, reduced noise, and allowing quantitative phase retrieval. We applied the STSI method to in-flow on-chip microscopy of biological samples. Out-of-focus recordings are performed using a single line detector, in order to synthesize an unlimited FoV Space-Time Digital Hologram (STDH) yielding full-field, 3D information. Experimental proofs have been carried out to demonstrate the useful capability of STDH to overcome the trade-off existing between FoV and sample magnification, thus providing a high-throughput, label/free, quantitative, diagnostic tool to study biological elements onboard LoC platforms.

  19. Holography-guided ptychography with soft X-rays.

    PubMed

    Hessing, Piet; Pfau, Bastian; Guehrs, Erik; Schneider, Michael; Shemilt, Laura; Geilhufe, Jan; Eisebitt, Stefan

    2016-01-25

    Ptychography is a lensless imaging technique that aims to reconstruct an object from a set of coherent diffraction patterns originating from different and partially overlapping sample illumination areas. For a successful convergence of the iterative algorithms used, the sample scan positions have to be known with very high accuracy. Here, we present a method that allows to directly encode this information in the diffraction patterns without the need of accurate position encoders. Our approach relies on combining ptychography with another coherent imaging method, namely Fourier-transform holography. We have imaged two different objects using coherent soft-X-ray illumination and investigate the influence of experimental and numerical position refinement on the reconstruction result. We demonstrate that holographically encoded positions significantly reduce the experimental and numerical requirements. Our ptychographic reconstructions cover a large field of view with diffraction-limited resolution and high sensitivity in the reconstructed phase shift and absorption of the objects. PMID:26832562

  20. Lensless magneto-optic speed sensor

    DOEpatents

    Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.

    1998-02-17

    Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.

  1. Lensless Magneto-optic speed sensor

    DOEpatents

    Veeser, Lynn R.; Forman, Peter R.; Rodriguez, Patrick J.

    1998-01-01

    Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.

  2. On the Diffraction Limit for Lensless Imaging

    PubMed Central

    Mielenz, Klaus D.

    1999-01-01

    The diffraction limit for lensless imaging, defined as the sharpest possible point image obtainable with a pinhole aperture, is analyzed and compared to the corresponding limit for imaging with lenses by means of theoretical considerations and numerical computations using the Fresnel-Lommel diffraction theory for circular apertures. The numerical result (u = π) obtained for the best configuration parameter u which defines the optical setup is consistent with the quarter-wave criterion, and is the same as the value reported in a classical paper by Petzval but smaller than the value (u = 1.8π) found by Lord Rayleigh. The smallest discernible detail (pixel) in a composite image is defined by an expression found by Rayleigh on applying the half-wave criterion and is shown to be consistent with the Sparrow criterion of resolution. The numerical values of other measures of image size are reported and compared to equivalent parameters of the Fraunhofer-Airy profile that governs imaging with lenses.

  3. Lensless imaging system to quantify cell proliferation

    NASA Astrophysics Data System (ADS)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  4. Hyperspectral digital holography of microobjects

    NASA Astrophysics Data System (ADS)

    Kalenkov, Sergey G.; Kalenkov, Georgy S.; Shtanko, Alexander E.

    2015-03-01

    Novel method is suggested for a hyperspectral wave field holographic recording, based on asymmetrical Fourier spectrometer with a flat microobject placed in one of its arms. The output signal, which is the interference of the reference field with the field diffracted by the object, is registered by CCD. The process of recording is reduced to consecutive registration of two-dimensional interferograms by changing the optical length of the reference arm of the interferometer. One-dimensional Fourier transform of the interferogram in each pixel gives a spatial distribution of the complex amplitude for all spectral components of a hyperspectral object field. Inverse Fresnel transform of this field gives a hyperspectral object field in the object plane. Hyperspectral amplitude and average-phase profile images of standard microscope samples obtained experimentally are presented. Coloring, Fellgett's advantage and speckle noise reduction are discussed.

  5. Haptic Holography/Touching the Ethereal

    NASA Astrophysics Data System (ADS)

    Page, Michael

    2013-02-01

    Haptic Holography, was perhaps, first proposed by workers at MIT in the 90s. The Media Lab, headed up by Dr. Stephen Benton, with published papers by Wendy Plesiak and Ravi Pappuh. -1 Recent developments in both the technology of digital holography and haptics have made it practical to conduct further investigations. Haptic holography is auto-stereoscopic and provides co-axial viewing for the user. Haptic holography may find application in medical & surgical training and as a new form of synthetic reality for artists and designers. At OCAD's PHASE Lab (Prototypes for Holographic Art and Science Explorations) workers are exploring hybrid forms of augmented reality, that combine haptics, interactivity and auto-stereoscopic imagery. Conventional Haptic environments, while presenting a 3D physics environment, typically provide a 2D visual work/play space. Orienteering in such an environment creates an uncertain spatial relationship for the user. Our group creates 3d models from which we create holographic constructs. The same model is used to create the physics environment. The two models are super-imposed. The result: Holograms you can touch.

  6. Diffuse reflectance measurements using lensless CMOS imaging chip

    NASA Astrophysics Data System (ADS)

    Schelkanova, I.; Pandya, A.; Shah, D.; Lilge, L.; Douplik, A.

    2014-10-01

    To assess superficial epithelial microcirculation, a diagnostic tool should be able to detect the heterogeneity of microvasculature, and to monitor qualitative derangement of perfusion in a diseased condition. Employing a lensless CMOS imaging chip with an RGB Bayer filter, experiments were conducted with a microfluidic platform to obtain diffuse reflectance maps. Haemoglobin (Hb) solution (160 g/l) was injected in the periodic channels (grooves) of the microfluidic phantom which were covered with ~250 μm thick layer of intralipid to obtain a diffusive environment. Image processing was performed on data acquired on the surface of the phantom to evaluate the diffuse reflectance from the subsurface periodic pattern. Thickness of the microfluidic grooves, the wavelength dependent contrast between Hb and the background, and effective periodicity of the grooves were evaluated. Results demonstrate that a lens-less CMOS camera is capable of capturing images of subsurface structures with large field of view.

  7. Widefield lensless imaging through a fiber bundle via speckle correlations.

    PubMed

    Porat, Amir; Andresen, Esben Ravn; Rigneault, Hervé; Oron, Dan; Gigan, Sylvain; Katz, Ori

    2016-07-25

    Flexible fiber-optic endoscopes provide a solution for imaging at depths beyond the reach of conventional microscopes. Current endoscopes require focusing and/or scanning mechanisms at the distal end, which limit miniaturization, frame-rate, and field of view. Alternative wavefront-shaping based lensless solutions are extremely sensitive to fiber-bending. We present a lensless, bend-insensitive, single-shot imaging approach based on speckle-correlations in fiber bundles that does not require wavefront shaping. Our approach computationally retrieves the target image by analyzing a single camera frame, exploiting phase information that is inherently preserved in propagation through convnetional fiber bundles. Unlike conventional fiber-based imaging, planar objects can be imaged at variable working distances, the resulting image is unpixelated and diffraction-limited, and miniaturization is limited only by the fiber diameter. PMID:27464136

  8. Lensless ghost imaging based on mathematical simulation and experimental simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yanyan; Wang, Biyi; Zhao, Yingchao; Dong, Junzhang

    2014-02-01

    The differences of conventional imaging and correlated imaging are discussed in this paper. The mathematical model of lensless ghost imaging system is set up and the image of double slits is computed by mathematical simulation. The results are also testified by the experimental verification. Both the theory simulation and experimental verifications results shows that the mathematical model based on statistical optical principle are keeping consistent with real experimental results.

  9. Lensless ghost imaging through the strongly scattering medium

    NASA Astrophysics Data System (ADS)

    Zhe, Yang; Lianjie, Zhao; Xueliang, Zhao; Wei, Qin; Junlin, Li

    2016-02-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175094 and 91221205), the National Basic Research Program of China (Grant No. 2015CB921002), and partially supported by the Basic Research Fund of Beijing Institute of Technology (Grant No. 20141842005).

  10. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry.

    PubMed

    Kumar, Manoj; Shakher, Chandra

    2016-02-10

    In this paper, an application of digital holography for the measurement of surface deformations and the strain field to understand the shrinkage behavior of wood during convective drying is presented. Moisture absorption and desorption induce the dimensional changes and deformations in wood that leads to failure of certain components made of wood. The knowledge of the dimensional changes in wood, deformations, strain distribution and their causes are important for the best utilization of wood. For the study, lensless Fourier transform digital holographic interferometry is used to measure moisture- induced deformation, strain distribution, and the coefficient of hygroscopic shrinkage in different samples of wood. The technique is highly sensitive and enables the observation of deformation and strain distribution during the variations of moisture content in the wood. The wet wood sample was exposed to convective drying, which leads to changes in the moisture content and the associated deformations. The deformation/strain in each step of drying process is used to evaluate the coefficient of hygroscopic shrinkage in different wood samples. The experiments were repeated for differently treated woods. The experimental results show that the strain and coefficient of hygroscopic shrinkage can be minimized if the wood is dried in the presence of the proper moisture content. PMID:26906359

  11. An Introduction to Educational Holography.

    ERIC Educational Resources Information Center

    Lloyd, R. Scott

    Holograms are capable of taking the two-dimensional ways of envisioning information to another dimension of presentation, representation, and conceptualization. Educational holography is joining display holography, holographic testing of materials, and holographic optical elements as a fourth major field in holography. Holograms are explored as…

  12. Holography In Biomedical Sciences

    NASA Astrophysics Data System (ADS)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  13. Holography and Optical Storage

    NASA Astrophysics Data System (ADS)

    Imlau, Mirco; Fally, Martin; Coufal, Hans; Burr, Geoffrey; Sincerbox, Glenn

    The term holography is composed of the Greek words holos (= whole) and graphein (= to record, to write), and thus summarizes the key aspects of its underlying principle: recording the complete wavefront of an object, i.e., its intensity as well as its phase. Interference and diffraction phenomena are employed to record and retrieve the full information, a technique pioneered by Dennis Gabor in 1948. He was honored with the Nobel prize in Physics in 1971, reflecting the general impact of holography on modern physics.

  14. A technique of measuring spectral characteristics of detector arrays in amateur and professional photocameras and their application for problems of digital holography

    NASA Astrophysics Data System (ADS)

    Lesnichii, V. V.; Petrov, N. V.; Cheremkhin, P. A.

    2013-10-01

    The possibility of using commercial digital cameras that support image saving in the RAW format in scientific applications for measuring spatial intensity distributions in different ranges of the visible spectrum is considered. Spectral characteristics of photo sensors were measured for three digital cameras: Canon EOS 1000D, Nikon D50, and Nikon D90. Ways of applying spectral characteristics in problems of improving the quality of multicolor digital holograms are considered.

  15. Virtual integral holography

    NASA Astrophysics Data System (ADS)

    Venolia, Dan S.; Williams, Lance

    1990-08-01

    components of a stereo display system with user point-of-view tracking for interactive 3D, and a digital realization of integral composite display which we term virtual integral holography. The primary drawbacks of holographic display - film processing turnaround time, and the difficulties of displaying scenes in full color -are obviated, and motion parallax cues provide easy 3D interpretation even for users who cannot see in stereo.

  16. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  17. Holography without Fuss.

    ERIC Educational Resources Information Center

    Davies, Steve

    1989-01-01

    Outlines what a hologram is, the main types of holography, and how a simple system producing a white light reflection hologram can be set up in a school physics laboratory. Discusses the basic optics of the hologram and procedures and materials for making holograms in school. (YP)

  18. Digital holographic measurements of shape and three-dimensional sound-induced displacements of tympanic membrane

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2013-10-01

    Acoustically induced vibrations of the tympanic membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and three-dimensional (3-D) displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. Sound-induced 3-D displacements of the TM are estimated from shape and one-dimensional displacements measured in cadaveric chinchillas using a lensless dual-wavelength digital holography system (DWDHS). The DWDHS consists of laser delivery, optical head, and computing platform subsystems. Shape measurements are performed in double-exposure mode with the use of two wavelengths of a tunable laser, while nanometer-scale displacements are measured along a single sensitivity direction with a constant wavelength. Taking into consideration the geometrical and dimensional constrains imposed by the anatomy of the TM, we combine principles of thin-shell theory together with displacement measurements along a single sensitivity vector and TM surface shape to extract the three principal components of displacement in the full-field-of-view. We test, validate, and identify limitations of this approach via the application of finite element method to artificial geometries.

  19. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane

    PubMed Central

    Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2014-01-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  20. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane.

    PubMed

    Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2013-10-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  1. Compressive coherent anti-Stokes Raman scattering holography.

    PubMed

    Cocking, Alexander; Mehta, Nikhil; Shi, Kebin; Liu, Zhiwen

    2015-09-21

    Coherent anti-Stokes Raman scattering (CARS) holography captures both the amplitude and the phase of the anti-Stokes field generated from a sample and can thus perform single-shot, chemically selective three-dimensional imaging. We present compressive CARS holography, a numerical technique based on the concept of compressive sensing, to improve the quality of reconstructed images by leveraging sparsity in the source distribution and reducing the out-of-focus background noise. In particular, we use the two-step iterative shrinkage threshold (TwIST) algorithm with an l1 norm regularizer to iteratively retrieve images from an off axis CARS digital hologram. It is shown that the use of compressive CARS holography enhances the CARS holographic imaging technique by reducing noise and thereby effectively emulating a higher axial resolution using only a single shot hologram. PMID:26406699

  2. Lensless ghost imaging of a phase object with pseudo-thermal light

    NASA Astrophysics Data System (ADS)

    Zhang, De-Jian; Tang, Qiang; Wu, Teng-Fei; Qiu, Hao-Chuan; Xu, De-Qin; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2014-03-01

    We report an experimental realization of lensless ghost imaging for a phase-only object with pseudo-thermal light, which was proposed by W. Gong and S. Han [Phys. Rev. A 82, 023828 (2010)]. In contrast with conventional ghost imaging, the scheme involves the interference of two correlated fields and the phase information of the object can be retrieved. This imaging technique completes the nonlocally lensless spatial reconstruction of both amplitude and phase distributions in ghost imaging with thermal light.

  3. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip†

    PubMed Central

    Coskun, Ahmet F.; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-01-01

    We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm2 with a spatial resolution of <4 μm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 μm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications. PMID:21283900

  4. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells. PMID:19277078

  5. Holography: science and art

    NASA Astrophysics Data System (ADS)

    Boone, Pierre M.

    1998-09-01

    Art and science are separated by a very large distance nowadays. Long ago, e.g. in Renaissance, or even earlier, in classic Greece and Rome, or still earlier in Egypt or Mesopotamia, arts and sciences were united. Today they seem to go separate paths: science for the industry, arts for the gallery. Holography is an exception: no art without science, but also no science without art.

  6. Holography in Hong Kong

    NASA Astrophysics Data System (ADS)

    Leung, Kang M.

    1995-02-01

    Before 1984, to a westerner Hong Kong was hardly a recognizable dot on a world atlas. It is a Chinese city and a British colony. At midnight on 30 June 1997, Britain will end its century and a half of colonial rule in Hong Kong, leaving China to resume sovereignty over its six million people. Since 1990, in the stress of this crisis Hong Kong prospers at a time of global recession. This also creates many opportunities in higher education among the youngsters. The success of the city attracts, at least 12% of persons who emigrated in the 10 years before 1992 have returned to Hong Kong. This dramatic change brings in unexpected new information and high technologies to the city. Holography is one of these new technologies. It was rarely understood by the general population before the 1980s. But with the scattered efforts of some research workers from the academic and commercial groups along with the prosperity of the city, the subject of holography has become increasingly popular. This report gives a quick survey on the major activities of holography in Hong Kong.

  7. Medical applications of holography

    NASA Astrophysics Data System (ADS)

    von Bally, Gert

    1991-11-01

    From the various capabilities of holography for image processing and measuring purposes, holographic interferometric techniques have found more extended application in biological and medical research. Due to their special properties the different methods of holographic interferometry are applied to characteristic fields of biomedical investigations where--similar to nondestructive testing--vibration and deformation analysis is of interest. Features of holographic interferometry, such as the possibility of noncontactive, three-dimensional investigations with a large field-of-depth, are used with advantage. The main applications can be found in basic research e.g., in audiology, dentistry, opthalmology, and experimental orthopedics. Because of the great number of investigations and the variety of medical domains in which these investigations were performed this survey is confined to some characteristic examples. As in all fields of optics and laser metrology, a review on biomedical applications of holography would be incomplete if military developments and utilization were not mentioned. As demonstrated by selected examples, the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare--like biomedical research. The term ''Star Wars Medicine'', which becomes an increasingly popular expression for laser applications (including holography) in medicine, characterizes the consequences of this development.

  8. Holography in the Junior High.

    ERIC Educational Resources Information Center

    Tomaszkiewicz, Frank

    1988-01-01

    Examines the use of holography in the art technology program of a junior high school. Characterizing holography as a valuable artistic experience and discovery experience and stressing the importance of student interest and involvement, the author discusses the necessary equipment for the project and includes two diagrams of a holographic setup.…

  9. Lensless hyperspectral spectromicroscopy with a tabletop extreme-ultraviolet source

    NASA Astrophysics Data System (ADS)

    Gardner, Dennis F.; Zhang, Bosheng; Seaberg, Matthew H.; Shanblatt, Elisabeth R.; Porter, Christina L.; Karl, Robert; Mancuso, Christopher; Kapteyn, Henry C.; Murnane, Margaret M.; Adams, Daniel E.

    2016-03-01

    We demonstrate hyperspectral coherent imaging in the EUV spectral region for the first time, without the need for hardware-based wavelength separation. This new scheme of spectromicroscopy is the most efficient use of EUV photons for imaging because there is no energy loss from mirrors or monochromatizing optics. An EUV spectral comb from a tabletop high-harmonic source, centered at a wavelength of 30nm, illuminates the sample and the scattered light is collected on a pixel-array detector. Using a lensless imaging technique known as ptychographical information multiplexing, we simultaneously retrieve images of the spectral response of the sample at each individual harmonic. We show that the retrieved spectral amplitude and phase agrees with theoretical predictions. This work demonstrates the power of coherent EUV beams for rapid material identification with nanometer-scale resolution.

  10. Holography of incoherently illuminated 3D scenes

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Rosen, Joseph

    2008-04-01

    We review several methods of generating holograms of 3D realistic objects illuminated by incoherent white light. Using these methods, it is possible to obtain holograms with a simple digital camera, operating in regular light conditions. Thus, most disadvantages characterizing conventional holography, namely the need for a powerful, highly coherent laser and meticulous stability of the optical system are avoided. These holograms can be reconstructed optically by illuminating them with a coherent plane wave, or alternatively by using a digital reconstruction technique. In order to generate the proposed hologram, the 3D scene is captured from multiple points of view by a simple digital camera. Then, the acquired projections are digitally processed to yield the final hologram of the 3D scene. Based on this principle, we can generate Fourier, Fresnel, image or other types of holograms. To obtain certain advantages over the regular holograms, we also propose new digital holograms, such as modified Fresnel holograms and protected correlation holograms. Instead of shifting the camera mechanically to acquire a different projection of the 3D scene each time, it is possible to use a microlens array for acquiring the entire projections in a single camera shot. Alternatively, only the extreme projections can be acquired experimentally, while the middle projections are predicted digitally by using the view synthesis algorithm. The prospective goal of these methods is to facilitate the design of a simple, portable digital holographic camera which can be useful for a variety of practical applications.

  11. New trend in electron holography

    NASA Astrophysics Data System (ADS)

    Tanigaki, Toshiaki; Harada, Ken; Murakami, Yasukazu; Niitsu, Kodai; Akashi, Tetsuya; Takahashi, Yoshio; Sugawara, Akira; Shindo, Daisuke

    2016-06-01

    Electron holography using a coherent electron wave is a promising technique for high-resolution visualization of electromagnetic fields in and around objects. The capability of electron holography has been enhanced by the development of new technologies and has thus become an even more powerful tool for exploring scientific frontiers. This review introduces these technologies including split-illumination electron holography and vector-field electron tomography. Split-illumination electron holography, which uses separated coherent waves, overcomes the limits imposed by the lateral coherence requirement for electron waves in electron holography. Areas that are difficult to observe using conventional electron holography are now observable. Exemplified applications include observing a singular magnetic domain wall in electrical steel sheets, local magnetizations at anti-phase boundaries, and electrostatic potentials in metal-oxide-semiconductor field-effect transistors. Vector-field electron tomography can be used to visualize magnetic vectors in three dimensions. Two components of the vectors are reconstructed using dual-axis tomography, and the remaining one is calculated using div B   =  0. A high-voltage electron microscope can be used to achieve precise magnetic reconstruction. For example, magnetic vortices have been visualized using a 1 MV holography electron microscope.

  12. Holography gets smart

    NASA Astrophysics Data System (ADS)

    Lowe, Chris; Larbey, Cynthia

    2008-02-01

    At least 6% of world trade, amounting to some 200bn per year, involves counterfeit goods. But this figure would be even higher were it not for the humble hologram. Invented 50 years ago, holograms provide authentication tags to deter copying, and can be found everywhere from credit cards, passports and banknotes to consumer goods, cosmetics and pharmaceuticals. Holography also underpins supermarket scanners and CD players; it can even be used to store optical data in 3D. Now, however, holograms are making their mark as powerful yet cheap diagnostic tools, which could in particular have many applications in biomedicine.

  13. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  14. Adaptive Optical Scanning Holography.

    PubMed

    Tsang, P W M; Poon, Ting-Chung; Liu, J-P

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  15. DSN Microwave Antenna Holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  16. Split-illumination electron holography

    SciTech Connect

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  17. Testing Helioseismic Holography

    NASA Astrophysics Data System (ADS)

    MacBeth, Jamie

    The recent advent of "helioseismic holography" or "acoustic imaging" as it has sometimes been called, has provided a rich new set of techiniques and phenomena to aid local helioseismology. Through the application of these techniques to SOHO-MDI observations, strange new signatures - the "acoustic moat" and "acoustic glories" - have been documented but difficult to understand (Braun et al. 1998). In addition, by comparing the depth diagnostics between observations and simulations of an active region introducing random noise to a solar atmosphere through the ray approximation, it has been suggested that the refraction or absortion of p-modes in sunspots is primarily superficial. The purpose of this study is to better understand helioseismic holography through more testing. More specifically we propose a normal mode approach to generating artificial datasets. By solving the wave equation on the sphere with a sound speed perturbation resembling an active region, and summing the perturbed eigenfunctions in fourier space with the corresponding eigenfrequencies, we hope to construct an artificial dataset that more closely resembles the real thing. Although thousands of solar p-modes need to be considered, as well as millions (or more) of points in the resulting artificial dataset to be used, we aspire to make this possibly computationally expensive venture practical. With this method we hope to better test the depth, frequency, and pupil size diagnostics of acoustic images. This research is supported by NASA grant NAG5-3077 at Stanford University.

  18. When is holography consistent?

    NASA Astrophysics Data System (ADS)

    McInnes, Brett; Ong, Yen Chin

    2015-09-01

    Holographic duality relates two radically different kinds of theory: one with gravity, one without. The very existence of such an equivalence imposes strong consistency conditions which are, in the nature of the case, hard to satisfy. Recently a particularly deep condition of this kind, relating the minimum of a probe brane action to a gravitational bulk action (in a Euclidean formulation), has been recognized; and the question arises as to the circumstances under which it, and its Lorentzian counterpart, is satisfied. We discuss the fact that there are physically interesting situations in which one or both versions might, in principle, not be satisfied. These arise in two distinct circumstances: first, when the bulk is not an Einstein manifold and, second, in the presence of angular momentum. Focusing on the application of holography to the quark-gluon plasma (of the various forms arising in the early Universe and in heavy-ion collisions), we find that these potential violations never actually occur. This suggests that the consistency condition is a "law of physics" expressing a particular aspect of holography.

  19. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed

  20. Digital holographic interferometry for measurement of temperature in axisymmetric flames.

    PubMed

    Sharma, Shobhna; Sheoran, Gyanendra; Shakher, Chandra

    2012-06-01

    In this paper, experimental investigations and analysis is presented to measure the temperature and temperature profile of gaseous flames using lensless Fourier transform digital holographic interferometry. The evaluations of the experimental results give the accuracy, sensitivity, spatial resolution, and range of measurements to be well within the experimental limits. Details of the experimental results and analysis are presented. PMID:22695554

  1. Holography Experiments on Optical Imaging.

    ERIC Educational Resources Information Center

    Bonczak, B.; Dabrowski, J.

    1979-01-01

    Describes experiments intended to produce a better understanding of the holographic method of producing images and optical imaging by other optical systems. Application of holography to teaching physics courses is considered. (Author/SA)

  2. Volumetric Imaging Using Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Garlick, T. F.; Garlick, G. F.

    Transmission acoustical holography holds tremendous promise for medical imaging applications. As with optical holography, an image is obtained using the interference of two coherent acoustic sources, the transmitted object wave with a reference wave. Although resultant images are true holograms, depth can be difficult to quantify and an entire volume in one image can often result in "too much" information. Since Physicians/Radiologists are often interested in viewing a single plane at a time, techniques have been developed to generate acoustic holograms of "slices" within a volume. These primarily include focused transmission holography with spatial and frequency filtering techniques. These techniques along with an overview and current status of acoustical holography in medical imaging applications will be presented

  3. Measurements of polystyrene bead trajectories and spatial distributions in a turbulent water flow, square duct using high-speed digital holography

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Rabencov, Boris; Arca, Javier

    2014-11-01

    Near neutrally buoyant, polystyrene beads (583 micrometers) were tracked in a square (50 × 50 mm2), closed-loop, turbulent water duct at a bulk flow Reynolds number of 10,602 (friction velocity 0.0208 m/s) using single view, inline digital holographic cinematography (at 1 kHz). The volume of interest (50 × 17.4 × 17.4 mm3) was positioned at the bottom part of the channel. The mean bead diameter normalized by inner wall coordinates was d+ = 14.2, with Stokes numbers of 8.5. In-house developed algorithms, fine-tuned to tracking single and overlapping beads were developed. Bead in-focus positions were determined by maximum intensity gradient method. Results showed that in agreement with literature publications, ascending beads lagged the mean streamwise water velocity while descending ones had similar velocities. Average streamwise bead velocities and number densities collapsed onto wall-normal-streamwise and spanwise-streamwise planes, indicated preferential segregation of ascending and descending beads up to a height of 100 wall units. Spanwise ``lane'' separation distances ranged between 150-200 wall units, larger but of the same order as the spanwise extent of coherent near-wall turbulence structures. Duct corners were nearly devoid of beads likely caused by secondary flows. Israel Science Foundation Grant 915/10 and COST Actions MP0806 and FP1005.

  4. Miniaturized Lensless Imaging Systems for Cell and Microorganism Visualization in Point-of-Care Testing

    PubMed Central

    Gurkan, Umut Atakan; Moon, Sangjun; Geckil, Hikmet; Xu, Feng; Wang, Shuqi; Lu, Tian Jian; Demirci, Utkan

    2011-01-01

    Low-cost, robust, and user-friendly diagnostic capabilities at the point-of-care (POC) are critical for treating infectious diseases and preventing their spread in developing countries. Recent advances in micro- and nano-scale technologies have enabled the merger of optical and fluidic technologies (optofluidics) paving the way for cost-effective lensless imaging and diagnosis for POC testing in resource limited settings. Applications of the emerging lensless imaging technologies include detecting and counting cells of interest, which allows rapid and affordable diagnostic decisions. This review presents the advances in lensless imaging and diagnostic systems, and their potential clinical applications in developing countries. The emerging technologies are reviewed from a POC perspective considering cost-effectiveness, portability, sensitivity, throughput and ease of use for resource-limited settings. PMID:21298800

  5. In-situ measurements of orographic mixed-phase clouds in a High Alpine Environment using Digital in-line Holography

    NASA Astrophysics Data System (ADS)

    Henneberger, Jan; Henneberg, Olga; Lloyd, Gary; Fugal, Jacob; Lohmann, Ulrike

    2015-04-01

    Mixed-phase Clouds (MPCs), consisting of an unstable mixture of ice particles and supercooled liquid droplets, are found in many seasons of the year over broad stretches of the earth. In particular for orographic MPCs in complex High Alpine terrains the level of understanding is low because auf their complicated structure and dynamics. In-situ measurements of MPCs at the high altitude research station Jungfraujoch (JFJ), Switzerland were taken with the digital holographic imager HOLIMO II (Henneberger et. al, 2013) during the winters of 2012 and 2013 (within the CLACE campaign). Each HOLIMO II image (the so called hologram) yields single particle information like size and shadowgraph for hundreds of particle within a well-defined sample volume (which can be up to a few hundreds). Advancements in data processing software now offer phase-resolved size distributions, concentrations, and water contents, with a sampling rate that sees variations in these parameters on a 25m length-scale in a MPC. The HOLIMO II measurements are compared to commonly used cloud instrumentation, which were simultaneously operated at the JFJ by the University of Manchester. The field data reveal the unstable co-existence of water droplets and ice crystals, i.e. the presence of an only partially-glaciated MPC maintained at the JFJ for over several hours. At the JFJ a larger frequency of intermediate glaciation conditions were found than in in-situ aircraft observations of MPCs associated with frontal systems by Korolev et al. (2003). The higher longevity of these intermediate glaciation conditions of MPCs at the JFJ suggests that higher updraft velocities, and therefore higher water-vapor supersaturations, prevent the quickly glaciation of the MPCs. The JFJ location has a steeper topography for northerly winds meaning higher updraft velocities than for southerly winds. And the measurements show more intermediate values of glaciation from the North with the higher updraft velocities than from

  6. High-speed CMOS image sensor for high-throughput lensless microfluidic imaging system

    NASA Astrophysics Data System (ADS)

    Yan, Mei; Huang, Xiwei; Jia, Qixiang; Nadipalli, Revanth; Wang, Tongxi; Shang, Yang; Yu, Hao; Je, Minkyu; Yeo, Kiatseng

    2012-03-01

    The integration of CMOS image sensor and microfluidics becomes a promising technology for point-of-care (POC) diagnosis. However, commercial image sensors usually have limited speed and low-light sensitivity. One high-speed and high-sensitivity CMOS image sensor chip is introduced in this paper, targeted for high-throughput microfluidic imaging system. Firstly, high speed image sensor architecture is introduced with design of column-parallel single-slope analog-todigital converter (ADC) with digital correlated double sampling (CDS). The frame rate can be achieved to 2400 frames/second (fps) with resolution of 128×96 for high-throughput microfluidic imaging. Secondly, the designed system has superior low-light sensitivity, which is achieved by large pixel size (10μm×10μm, 56% fill factor). Pixel peak signalnoise- ratio (SNR) reaches to 50dB with 10dB improvement compared to the commercial pixel (2.2μm×2.2μm). The degradation of pixel resolution is compensated by super-resolution image processing algorithm. By reconstructing single image with multiple low-resolution frames, we can equivalently achieve 2μm resolution with physical 10μm pixel. Thirdly, the system-on-chip (SoC) integration results in a real-time controlled intelligent imaging system without expensive data storage and time-consuming computer analysis. This initial sensor prototype with timing-control makes it possible to develop high-throughput lensless microfluidic imaging system for POC diagnosis.

  7. Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams

    SciTech Connect

    Sandberg, Richard L.; Paul, Ariel; Raymondson, Daisy A.; Haedrich, Steffen; Gaudiosi, David M.; Holtsnider, Jim; Tobey, Ra'anan I.; Cohen, Oren; Murnane, Margaret M.; Kapteyn, Henry C.; Song, Changyong; Miao Jianwei; Liu Yanwei; Salmassi, Farhad

    2007-08-31

    We present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size. These patterns reconstruct to images with 214 nm resolution. This work demonstrates a practical tabletop lensless microscope that promises to find applications in materials science, nanoscience, and biology.

  8. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber

    NASA Astrophysics Data System (ADS)

    Sivankutty, Siddharth; Tsvirkun, Viktor; Bouwmans, Géraud; Kogan, Dani; Oron, Dan; Andresen, Esben Ravn; Rigneault, Hervé

    2016-08-01

    We investigate lensless endoscopy using coherent beam combining and aperiodic multicore fibers (MCF). We show that diffracted orders, inherent to MCF with periodically arranged cores, dramatically reduce the field of view (FoV) and that randomness in MCF core positions can increase the FoV up to the diffraction limit set by a single fiber core, while maintaining MCF experimental feasibility. We demonstrate experimentally pixelation-free lensless endoscopy imaging over a 120 micron FoV with an aperiodic MCF designed with widely spaced cores. We show that this system is suitable to perform beam scanning imaging by simply applying a tilt to the proximal wavefront.

  9. Microwave antenna holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  10. A complete digital optics applied to digital holographic microscopy: application to chromatic aberration compensation

    NASA Astrophysics Data System (ADS)

    Colomb, Tristan; Charrière, Florian; Kühn, Jonas; Montfort, Frédéric; Depeursinge, Christian

    2007-06-01

    In optics, optical elements are used to transform, to filter or to process physical wavefronts in order to magnify images, compensate for aberration or to suppress unwanted diffracted order for example. Because digital holography provides numerical wavefronts, we developed a digital optics, involving numerical elements such as numerical lenses and pinholes, to mimic numerically what is usually done physically, with the advantage to be able to define any shape for these elements and to place them everywhere without obstruction problems. We demonstrate that automatic and non-automatic procedures allow diffracted order or parasitic interferences filtering, compensation for aberration and image distortion, and control of position and magnification of reconstructed wavefront. We apply this digital optics to compensate for chromatic aberration in multi-wavelength holography in order to have perfect superposition between wavefronts reconstructed from digital hologram recorded with different wavelengths. This has a great importance for synthetic wavelength digital holography or tomographic digital holography that use multiple wavelengths.

  11. The microwave holography system for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Serra, G.; Bolli, P.; Busonera, G.; Pisanu, T.; Poppi, S.; Gaudiomonte, F.; Zacchiroli, G.; Roda, J.; Morsiani, M.; López-Pérez, J. A.

    2012-09-01

    Microwave holography is a well-established technique for mapping surface errors of large reflector antennas, particularly those designed to operate at high frequencies. We present here a holography system based on the interferometric method for mapping the primary reflector surface of the Sardinia Radio Telescope (SRT). SRT is a new 64-m-diameter antenna located in Sardinia, Italy, equipped with an active surface and designed to operate up to 115 GHz. The system consists mainly of two radio frequency low-noise coherent channels, designed to receive Ku-band digital TV signals from geostationary satellites. Two commercial prime focus low-noise block converters are installed on the radio telescope under test and on a small reference antenna, respectively. Then the signals are amplified, filtered and downconverted to baseband. An innovative digital back-end based on FPGA technology has been implemented to digitize two 5 MHz-band signals and calculate their cross-correlation in real-time. This is carried out by using a 16-bit resolution ADCs and a FPGA reaching very large amplitude dynamic range and reducing post-processing time. The final holography data analysis is performed by CLIC data reduction software developed within the Institut de Radioastronomie Millimétrique (IRAM, Grenoble, France). The system was successfully tested during several holography measurement campaigns, recently performed at the Medicina 32-m radio telescope. Two 65-by-65 maps, using an on-the-fly raster scan with on-source phase calibration, were performed pointing the radio telescope at 38 degrees elevation towards EUTELSAT 7A satellite. The high SNR (greater than 60 dB) and the good phase stability led to get an accuracy on the surface error maps better than 150 μm RMS.

  12. Ultra-realistic imaging: a new beginning for display holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David

    2014-02-01

    Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.

  13. Higher Spin Holography

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming

    This dissertation splits into two distinct halves. The first half is devoted to the study of the holography of higher spin gauge theory in AdS 3. We present a conjecture that the holographic dual of W N minimal model in a 't Hooft-like large N limit is an unusual "semi-local" higher spin gauge theory on AdS3 x 1. At each point on the S1 lives a copy of three-dimensional Vasiliev theory, that contains an infinite tower of higher spin gauge fields coupled to a single massive complex scalar propagating in AdS3. The Vasiliev theories at different points on the S1 are correlated only through the AdS3 boundary conditions on the massive scalars. All but one single tower of higher spin symmetries are broken by the boundary conditions. This conjecture is checked by comparing tree-level two- and three-point functions, and also one-loop partition functions on both side of the duality. The second half focuses on the holography of higher spin gauge theory in AdS 4. We demonstrate that a supersymmetric and parity violating version of Vasiliev's higher spin gauge theory in AdS4 admits boundary conditions that preserve N = 0,1,2,3,4 or 6 supersymmetries. In particular, we argue that the Vasiliev theory with U( M) Chan-Paton and N = 6 boundary condition is holographically dual to the 2+1 dimensional U(N) k x U(M) -k ABJ theory in the limit of large N, k and finite M. In this system all bulk higher spin fields transform in the adjoint of the U(M) gauge group, whose bulk t'Hooft coupling is M/N. Our picture suggests that the supersymmetric Vasiliev theory can be obtained as a limit of type IIA string theory in AdS4 x CP3, and that the non-Abelian Vasiliev theory at strong bulk 't Hooft coupling smoothly turn into a string field theory. The fundamental string is a singlet bound state of Vasiliev's higher spin particles held together by U(M) gauge interactions.

  14. Optical analysis of spherical mirrors of telescopes: The lens-less Schmidt case

    NASA Astrophysics Data System (ADS)

    Cattaneo, Paolo Walter

    2009-09-01

    The light distribution on the focal surface of spheric mirrors designed for telescopes in the lens-less Schmidt configuration is calculated analytically using geometrical optics. This analysis was motivated by considerations of the design of the AUGER fluorescence detector [J. Abraham, et al., Nucl. Instr. and Meth. A 533 (2004) 50]. Its geometrical parameters are used in the examples.

  15. Holography In An Industrial Environment

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Jones, D. G.

    1988-01-01

    Holography has recently achieved new importance as a means of providing the data necessary for the development and validation of computer models. Increasingly, design work is being performed through the application of complicated three-dimensional models to gas flow prediction and the use of finite-element models for investigation of mechanical behaviour and stress. This paper reviews the many applications of holography that have been developed at Rolls-Royce over the past 20 years. These cover all of the major fields within holographic interferometry; flow visualisation, nondestructive testing, vibration analysis, and holographic contouring. Of equal interest with the techniques themselves are the problems encountered and overcome in applying these techniques in a demanding and at times hostile industrial environment away from the laboratory. The extensive use of high-power pulsed lasers has greatly facilitated this move and has allowed holography to be used routinely in normal component test areas.

  16. Single-exposure color digital holography

    NASA Astrophysics Data System (ADS)

    Feng, Shaotong; Wang, Yanhui; Zhu, Zhuqing; Nie, Shouping

    2010-11-01

    In this paper, we report a method for color image reconstruction by recording only one single multi-wavelength hologram. In the recording process, three lasers of different wavelengths emitting in the red, green and blue regions are used for illuminating on the object and the object diffraction fields will arrive at the hologram plane simultaneously. Three reference beams with different spatial angles will interfere with the corresponding object diffraction fields on the hologram plane, respectively. Finally, a series of sub-holograms incoherently overlapped on the CCD to be recorded as a multi-wavelength hologram. Angular division multiplexing is employed to reference beams so that the spatial spectra of the multiple recordings will be separated in the Fourier plane. In the reconstruction process, the multi-wavelength hologram will be Fourier transformed into its Fourier plane, where the spatial spectra of different wavelengths are separated and can be easily extracted by employing frequency filtering. The extracted spectra are used to reconstruct the corresponding monochromatic complex amplitudes, which will be synthesized to reconstruct the color image. For singleexposure recording technique, it is convenient for applications on the real-time image processing fields. However, the quality of the reconstructed images is affected by speckle noise. How to improve the quality of the images needs for further research.

  17. Electron Holography: phases matter.

    PubMed

    Lichte, Hannes

    2013-06-01

    Essentially, all optics is wave optics, be it with light, X-rays, neutrons or electrons. The information transfer from the object to the image can only be understood in terms of waves given by amplitude and phase. However, phases are difficult to measure: for slowly oscillating waves such as sound or low-frequency electromagnetic waves, phases can be measured directly; for high frequencies this has to be done by heterodyne detection, i.e. superposition with a reference and averaging over time. In optics, this is called interferometry. Because interference is mostly very difficult to achieve, phases have often been considered 'hidden variables' seemingly pulling the strings from backstage, only visible by their action on the image intensity. This was almost the case in conventional Electron Microscopy with the phase differences introduced by an object. However, in the face of the urgent questions from solid state physics and materials science, these phases have to be determined precisely, because they encode the most dominant object properties, such as charge distributions and electromagnetic fields. After more than six decades of very patient advancement, electron interferometry and holography offer unprecedented analytical facilities down to an atomic scale. Akira Tonomura has prominently contributed to the present state. PMID:23620338

  18. GPU-accelerated compressive holography.

    PubMed

    Endo, Yutaka; Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2016-04-18

    In this paper, we show fast signal reconstruction for compressive holography using a graphics processing unit (GPU). We implemented a fast iterative shrinkage-thresholding algorithm on a GPU to solve the ℓ1 and total variation (TV) regularized problems that are typically used in compressive holography. Since the algorithm is highly parallel, GPUs can compute it efficiently by data-parallel computing. For better performance, our implementation exploits the structure of the measurement matrix to compute the matrix multiplications. The results show that GPU-based implementation is about 20 times faster than CPU-based implementation. PMID:27137282

  19. Dynamic Structures through Microdifferential Holography

    PubMed Central

    Sharnoff, Mark; Brehm, Lawrence P.; Henry, Richard W.

    1986-01-01

    The principles of microdifferential holography are developed primarily from nonmathematical argument, and the method's capabilities are compared with those of x-ray and optical diffraction. Microdifferential holography is very sensitive to small displacements of strongly scattering elements of a specimen whether or not they can be optically resolved. We present and interpret differential images of electrical activity of neurons and of contractile activity of isolated skeletal fibers. The latter confirm the suggestion of earlier work that the dynamic regions of contracting muscle are organized along myofibrillar segments rather than by sarcomeres. ImagesFIGURE 2FIGURE 3FIGURE 4FIGURE 5FIGURE 6FIGURE 7 PMID:19431634

  20. Time dependent holography

    NASA Astrophysics Data System (ADS)

    Das, Diptarka

    One of the most important results emerging from string theory is the gauge gravity duality (AdS/CFT correspondence) which tells us that certain problems in particular gravitational backgrounds can be exactly mapped to a particular dual gauge theory a quantum theory very similar to the one explaining the interactions between fundamental subatomic particles. The chief merit of the duality is that a difficult problem in one theory can be mapped to a simpler and solvable problem in the other theory. The duality can be used both ways. Most of the current theoretical framework is suited to study equilibrium systems, or systems where time dependence is at most adiabatic. However in the real world, systems are almost always out of equilibrium. Generically these scenarios are described by quenches, where a parameter of the theory is made time dependent. In this dissertation I describe some of the work done in the context of studying quantum quench using the AdS/CFT correspondence. We recover certain universal scaling type of behavior as the quenching is done through a quantum critical point. Another question that has been explored in the dissertation is time dependence of the gravity theory. Present cosmological observations indicate that our universe is accelerating and is described by a spacetime called de-Sitter(dS). In 2011 there had been a speculation over a possible duality between de-Sitter gravity and a particular field theory (Euclidean SP(N) CFT). However a concrete realization of this proposition was still lacking. Here we explicitly derive the dS/CFT duality using well known methods in field theory. We discovered that the time dimension emerges naturally in the derivation. We also describe further applications and extensions of dS/CFT. KEYWORDS: Holography, AdS/CFT correspondence, Quantum Quench, dS/CFT correspondence, Chaos.

  1. Ultra-realistic 3-D imaging based on colour holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  2. Industrial holography: The Rolls-Royce experience

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Jones, D. G.

    1986-07-01

    Holographic interferometry applications to flow visualization, nondestructive testing, vibration analysis, and holographic contouring are described. Problems encountered and overcome in applying these techniques in a demanding, at times hostile, environment away from the laboratory are discussed. Holography for routine vibration analysis; pulsed holography of large, vibrating assemblies; holographic vibrometry on rotating components; holographic flow visualization in wind tunnels; and pulsed holography in rotating, transonic flow are illustrated.

  3. 'Micromanaging de Sitter holography'

    SciTech Connect

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP

    2010-08-26

    We develop tools to engineer de Sitter vacua with semi-holographic duals, using elliptic fibrations and orientifolds to uplift Freund-Rubin compactifications with CFT duals. The dual brane construction is compact and constitutes a microscopic realization of the dS/dS correspondence, realizing d-dimensional de Sitter space as a warped compactification down to (d-1)-dimensional de Sitter gravity coupled to a pair of large-N matter sectors. This provides a parametric microscopic interpretation of the Gibbons-Hawking entropy. We illustrate these ideas with an explicit class of examples in three dimensions, and describe ongoing work on four-dimensional constructions. The Gibbons-Hawking entropy of the de Sitter horizon [1] invites a microscopic interpretation and a holographic formulation of inflating spacetimes. Much progress was made in the analogous problem in black hole physics using special black holes in string theory whose microstates could be reliably counted, such as those analyzed in [2,3]; this led to the AdS/CFT correspondence [4]. In contrast, a microscopic understanding of the entropy of de Sitter space is more difficult for several reasons including its potential dynamical connections to other backgrounds (metastability), the absence of a non-fluctuating timelike boundary, and the absence of supersymmetry. In this paper, we develop a class of de Sitter constructions in string theory, built up from AdS/CFT dual pairs along the lines of [5], which are simple enough to provide a microscopic accounting of the parametric scaling of the Gibbons-Hawking entropy. These models realize microscopically a semi-holographic description of metastable de Sitter space which had been derived macroscopically in [6]. It would also be interesting to connect this to other approaches to de Sitter holography such as [7, 8] and to other manifestations of the de Sitter entropy such as [9]. The construction is somewhat analogous to neutral black branes analyzed in [11]. We will

  4. Image magnification in lensless holographic projection using double-sampling Fresnel diffraction.

    PubMed

    Qu, Weidong; Gu, Huarong; Zhang, Hao; Tan, Qiaofeng

    2015-12-01

    Since the diffraction angle is limited by the spatial resolution of the spatial light modulator (SLM), the size of the optical image of the lensless holographic projection with a SLM is very small. Using a divergent spherical beam to illuminate a SLM is an effective method to physically increase the projection angle; nevertheless, the sampling ranges of the existing Fresnel diffraction algorithms with fast Fourier transform keep unchanged. In this paper, a double-sampling Fresnel diffraction algorithm to enlarge the sampling range is proposed when using a divergent spherical beam to illuminate a SLM, and the magnification of the optical image is realized in lensless holographic projection. The hologram can be easily optimized by the Gerschberg-Saxton algorithm. Simulation and experimental results with enlarged optical image are presented successfully. PMID:26836654

  5. X-ray fluorescence holography.

    PubMed

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. PMID:22318258

  6. Spatially-Heterodyned Holography

    SciTech Connect

    Thomas, Clarence E; Hanson, Gregory R

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  7. Multicolor Holography With Phase Shifting

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1996-01-01

    Prototype apparatus constructed to test feasibility of two-color holographic interferometric scheme in which data for reconstructing holographic wavefront obtained with help of phase-shifting technique. Provides two sets of data needed to solve equations for effects of temperature and concentration. Concept extended to holography at three or more wavelengths to measure three or more phenomena associated with significant variations in index of refraction

  8. Use of holography in medicine

    NASA Astrophysics Data System (ADS)

    Myers, Bert

    1995-02-01

    Because of their high impact and sharpness, we believe that holograms make better teaching tools than conventional images, and one day will be common in medical texts and journals. To be maximally effective as teaching tools, in some instances there must be labels or arrows within the images. Although our main interest is to use holography as a teaching device, other investigators are already using it for diagnosis and treatment.

  9. Holography: childrens' window to relativity

    NASA Astrophysics Data System (ADS)

    MacShane, James E.

    1995-02-01

    This paper is concerned with the development of the concept of natural education. Psychology has discovered that all humans learn intuitively the cultural concepts of time from birth to eight and one-half to ten years of age. Einstein showed us that this must also be the natural time for the development of spatial concepts. The importance of this has been dramatized for me in the past eight years that I have been developing the Laser Arts and Holography Programs and Workshops. I have worked with over 100,000 students kindergarten through eighth grade. I have worked with 175 students age 8 to 10 in three hour and one half workshops specifically on the development of time and space concepts. The concepts developed are based upon the vast amount of psychological evidence related to the natural development of time and space understandings, Dr. Nils Abramson's 'Light in Flight' and subsequent work on the clarification of relativity through holography, and Maria Montessori's method of Scientific Education. The paper also demonstrates the natural method of teaching science to younger students is to teach scientifically. All of the research which has been done in the past 100 years has been used by the educational institutions to try to improve the system. What has not been done is changing the system to how humans learn. Because of the perceived hi-tech nature of the program I am able to dramatize the potential. An outline for a holography curriculum kindergarten through eighth grade is included.

  10. Progress in industrial holography in France

    NASA Astrophysics Data System (ADS)

    Smigielski, Paul

    1992-01-01

    Industrial applications of holography in France are briefly reviewed. Particular attention is given to nondestructive testing of helicopter blades at Aerospatiale Central Laboratory, the use of holography at Renault for car-engine vibration study, vibration characterization of turbo-jet engine components at SNECMA, and vibration analysis of plates in an industrial hemodynamic tunnel.

  11. Introduction to an introduction to holography

    NASA Astrophysics Data System (ADS)

    Unterseher, Fred D.; Deem, Rebecca E.

    1995-02-01

    A preliminary introduction to holography geared towards artists and the general public is discussed. The method is based on a participatory approach that relates holography to psychology/perception, science/physics, and art/imaging. The overall intention is designed to break down unconscious assumptions.

  12. HOLONET: a network for training holography

    NASA Astrophysics Data System (ADS)

    Pombo, Pedro; Santos, Emanuel

    2014-07-01

    Holography is an optics technique based on wave physics and lasers with several applications at our day life. The production of holograms involves experimental work based on hands-on activities and creativity. All these elements can contribute to the promotion of experimental teaching of optics and training on holography. The hologram itself acting as a final result from a long process of research and study can enable the engagement of high school students on physics and promote the stimulus on optics learning. Taking these assumptions into account a network of schools working on holography was built involving thirty schools from all country. Holography systems were developed and several hands-on activities were constructed. During last sixteen years students are working on laser optics and holography producing different kinds of holograms. This study presents all holography labs implemented at schools and it will analyzed the holography systems and materials developed for students. Training strategy will be discussed and holograms obtained by students will be presented. Results obtained show us that holography can be implemented as a strategy for promoting the learning of optics and it is a particular way to involve students on experimental work and lab research. Results obtained during this study will be presented in detail and analyzed with focus on students performance. Educational results, teachers training, prizes and other positive outcomes will be discussed and compared.

  13. Virtual gallery of ancient coins through conoscopic holography

    NASA Astrophysics Data System (ADS)

    Schirripa Spagnolo, Giuseppe; Majo, Raffaele; Carli, Marco; Ambrosini, Dario; Paoletti, Domenica

    2003-10-01

    Physical access to historic and artistic manufactures can be limited by a lot of factors. In particular, the access to the collection of the ancient coins is difficult, especially for students. Indeed, for coins digital archive of high quality three-dimensional model and remote fruition is of great interest. In this work we propose 3D acquisition and digitizing techniques for the virtualized reality of ancient coins (virtual gallery). The system used for creating 3D shape of coins is based on conoscopic holography. This technique is a non-contact three-dimensional measuring technique that makes possible to produce holograms, even with incoherent light, with fringe periods that can be measured precisely to determine the exact distance to the point measured. It is suitable to obtain 3D profile with high resolution also on surface with unevenness reflectivity (this situation is usual on the surface of the ancient coins). By conoscopic holography, high-resolution 3D model can be obtained. However, accurate representation and high-quality display are fundamental requirements to avoid misinterpretation of the data. Therefore, virtual galleries can be obtained through a procedure involving 3D acquisition, 3D model and visualization. In conclusion, we propose an optoelectronic application, integrated with multimedia techniques, in order to improve the access to collection of ancient coins belonging to museums or privates.

  14. Aesthetics and representation in holography

    NASA Astrophysics Data System (ADS)

    Kac, Eduardo

    1995-02-01

    Every medium has a code, a set of rules or conventions according to which determined elements are organized into a signifying system. The English language is a code as is perspective in painting and photography. In the first case, the elements are phonemes organized into words and sentences according to a social convention: the syntax of English. In the second case, the elements are dots and lines organized into pictures according to a geometric method. An artist or movement can break the conventions of the medium, as has done Cezanne with painting, Moholy-Nagy with photography and cummings with the English idiom in poetry, and create new elements and rules for combining them. If this is done, the level of predictability (or conventionality) is lowered and unpredictability is increased -- becoming more difficult for the immediate audience to understand it. But once these new rules are learned and the ideas behind them widely understood, the level of unpredictability is lowered and they become new conventions that can be accepted by the audience. Holographic artists exploring the medium -- as opposed to advertisers using holography, who favor a high level of predictability -- are breaking several visual and cultural conventions. As a matter of fact, holography is so new that many questions are left open about the nature of the medium. Therefore, any attempt to clarify the issues raised by holography on a cultural level has a prospective (and not conclusive) tone, concentrating more thoroughly on general points and on the promise of its potentialities than on the records of its historical achievements so far.

  15. Artistic Representation with Pulsed Holography

    NASA Astrophysics Data System (ADS)

    Ishii, S.

    2013-02-01

    This thesis describes artistic representation through pulsed holography. One of the prevalent practical problems in making holograms is object movement. Any movement of the object or film, including movement caused by acoustic vibration, has the same fatal results. One way of reducing the chance of movement is by ensuring that the exposure is very quick; using a pulsed laser can fulfill this objective. The attractiveness of using pulsed laser is based on the variety of materials or objects that can be recorded (e.g., liquid material or instantaneous scene of a moving object). One of the most interesting points about pulsed holograms is that some reconstructed images present us with completely different views of the real world. For example, the holographic image of liquid material does not appear fluid; it looks like a piece of hard glass that would produce a sharp sound upon tapping. In everyday life, we are unfamiliar with such an instantaneous scene. On the other hand, soft-textured materials such as a feather or wool differ from liquids when observed through holography. Using a pulsed hologram, we can sense the soft touch of the object or material with the help of realistic three-dimensional (3-D) images. The images allow us to realize the sense of touch in a way that resembles touching real objects. I had the opportunity to use a pulsed ruby laser soon after I started to work in the field of holography in 1979. Since then, I have made pulsed holograms of activities, including pouring water, breaking eggs, blowing soap bubbles, and scattering feathers and popcorn. I have also created holographic art with materials and objects, such as silk fiber, fabric, balloons, glass, flowers, and even the human body. Whenever I create art, I like to present the spectator with a new experience in perception. Therefore, I would like to introduce my experimental artwork through those pulsed holograms.

  16. Nearfield acoustic holography. I - Theory of generalized holography and the development of NAH

    NASA Technical Reports Server (NTRS)

    Maynard, J. D.; Williams, E. G.; Lee, Y.

    1985-01-01

    Because its underlying principles are so fundamental, holography has been studied and applied in many areas of science. Recently, a technique has been developed which takes the maximum advantage of the fundamental principles and extracts much more information from a hologram than is customarily associated with such a measurement. In this paper the fundamental principles of holography are reviewed, and a sound radiation measurement system, called nearfield acoustic holography (NAH), which fully exploits the fundamental principles, is described.

  17. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  18. Holography through optically active windows

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1979-01-01

    By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

  19. Holography stabilizes the vacuum energy.

    PubMed

    Thomas, Scott

    2002-08-19

    Gravitational holography is argued to render the cosmological constant stable against divergent quantum corrections, thus providing a technically natural solution to the cosmological constant problem. Evidence for quantum stability of the cosmological constant is illustrated in a number of examples including bulk descriptions in terms of delocalized degrees of freedom, boundary screen descriptions on stretched horizons, and nonsupersymmetric conformal field theories as dual descriptions of anti-de Sitter space. In an expanding universe, holographic quantum contributions to the stress-energy tensor are argued to be at most of order the energy density of the dominant matter component. PMID:12190453

  20. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-01

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging. PMID:25969190

  1. Damage Detection Using Holography and Interferometry

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This paper reviews classical approaches to damage detection using laser holography and interferometry. The paper then details the modern uses of electronic holography and neural-net-processed characteristic patterns to detect structural damage. The design of the neural networks and the preparation of the training sets are discussed. The use of a technique to optimize the training sets, called folding, is explained. Then a training procedure is detailed that uses the holography-measured vibration modes of the undamaged structures to impart damage-detection sensitivity to the neural networks. The inspections of an optical strain gauge mounting plate and an International Space Station cold plate are presented as examples.

  2. Holography with standing surface plasma waves

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.

    1974-01-01

    Holography with standing surface plasma waves, where both reference and object beams propagate in opposite directions, has been investigated using an Al reflection grating coated with evaporated As2S3 layers. The image, which appears only for p-polarization and at certain critical angles, is enhanced by the Lippman-Bragg effect and by an increase in intensity over ordinary holography approximately equal to the absolute value of the real part of the dielectric constant for Al. Also considered is holography with object light alone in photoresist layers, using the beam-splitting properties of the grating.

  3. Photochromic materials for holography: issues and constraints

    NASA Astrophysics Data System (ADS)

    Bianco, Andrea; Pariani, Giorgio; Zanutta, Alessio; Castagna, Rossella; Bertarelli, Chiara

    2012-03-01

    Photochromic materials can find application in holography, thanks to the peculiar possibility to change reversibly their transparency in the visible (amplitude holography) and their refractive index in the near infrared region (phase holography). The main advantages of such materials are rewritability and self-development. A large change of the key property is crucial to obtain efficient devices and some strategies are followed, accordingly. Production of the holograms have open important issues regarding the film thickness and the nonlinear response to light, because of the strong absorption of the writing light by the material. Results related to these topics, mainly focused on diarylethene-based materials, are reported.

  4. Holography as a Liberal Arts Physics Course

    ERIC Educational Resources Information Center

    Huang, Jacob Wen-kuang

    1978-01-01

    Describes a liberal arts physics course for all majors interested in holography or to satisfy the general education requirements. An outline of the course and some experience of offering it are given. (Author/GA)

  5. Holography: Art in an Ephemeral Medium.

    ERIC Educational Resources Information Center

    Buterbaugh, James G.

    1979-01-01

    The science of holography provides an opportunity to see reality by illusion using laser light, lenses, and mirrors. To develop as holographic artists, students must first gain proficiency in using its techniques, equipment, and materials. (Author/CMV)

  6. Present State Iof Holography In Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, Masane; Hayashi, Yuzo; Yamamoto, Y.

    1983-07-01

    In 1948,Dr. Dennis Gabor introduced the theory of holography as "the optical recording of the object wave formed by the resulting interference pattern of two mutually coherent, component light beams." Through the studies of enumerous practical applications, the theory of holography was further advanced to be used in conjunction with the laser beam to better serve a more practical minded industry. Such developments were introduced and engineered by Dr. Emmett Leith and Dr. Juris Upatnieks in 1962.

  7. Optimal quantisation applied to digital holographic data

    NASA Astrophysics Data System (ADS)

    Shortt, Alison E.; Naughton, Thomas J.; Javidi, Bahram

    2005-06-01

    Digital holography is an inherently three-dimensional (3D) technique for the capture of real-world objects. Many existing 3D imaging and processing techniques are based on the explicit combination of several 2D perspectives (or light stripes, etc.) through digital image processing. The advantage of recording a hologram is that multiple 2D perspectives can be optically combined in parallel, and in a constant number of steps independent of the hologram size. Although holography and its capabilities have been known for many decades, it is only very recently that digital holography has been practically investigated due to the recent development of megapixel digital sensors with sufficient spatial resolution and dynamic range. The applications of digital holography could include 3D television, virtual reality, and medical imaging. If these applications are realised, compression standards will have to be defined. We outline the techniques that have been proposed to date for the compression of digital hologram data and show that they are comparable to the performance of what in communication theory is known as optimal signal quantisation. We adapt the optimal signal quantisation technique to complex-valued 2D signals. The technique relies on knowledge of the histograms of real and imaginary values in the digital holograms. Our digital holograms of 3D objects are captured using phase-shift interferometry.

  8. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects

    PubMed Central

    Coskun, Ahmet F.; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2010-01-01

    We demonstrate the use of a compressive sampling algorithm for on-chip fluorescent imaging of sparse objects over an ultra-large field-of-view (>8 cm2) without the need for any lenses or mechanical scanning. In this lensfree imaging technique, fluorescent samples placed on a chip are excited through a prism interface, where the pump light is filtered out by total internal reflection after exciting the entire sample volume. The emitted fluorescent light from the specimen is collected through an on-chip fiber-optic faceplate and is delivered to a wide field-of-view opto-electronic sensor array for lensless recording of fluorescent spots corresponding to the samples. A compressive sampling based optimization algorithm is then used to rapidly reconstruct the sparse distribution of fluorescent sources to achieve ~10 µm spatial resolution over the entire active region of the sensor-array, i.e., over an imaging field-of-view of >8 cm2. Such a wide-field lensless fluorescent imaging platform could especially be significant for high-throughput imaging cytometry, rare cell analysis, as well as for micro-array research. PMID:20588904

  9. Ultra wide band 3-D cross section (RCS) holography

    SciTech Connect

    Collins, H.D.; Hall, T.E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the hot spot'' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 {times} 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  10. Ultra wide band 3-D cross section (RCS) holography

    SciTech Connect

    Collins, H.D.; Hall, T.E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target`s scattering areas, and uniquely identifies the ``hot spot`` locations on the target. In addition, the target and calibration sphere`s plane wave angular spectrums are computed (via digital algorithm) and used to generate the target`s far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 {times} 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  11. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  12. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  13. Modular Holography For Use In Industry

    NASA Astrophysics Data System (ADS)

    Ettemeyer, A.; Schorner, J.; Rottenkolber, H.; Obermeier, E.

    1989-01-01

    A new system of holography is presented. This modular testing equipment fulfils the performance requirements for industrial measuring equipment. A holographic camera-head module with the approximate dimensions of a television camera is installed close to or actually on the object to be tested. For holography using a continous wave laser it is necessary only to secure the object to a base-plate mounted on vibration insulators. This is not necessary if pulse holography is used. Because of its small size, the measuring head can also be attached directly to the test object. This largely eliminates the effects of movements of the whole body of the objects. The technical realization of modular holography was made possible by the use of glass fibres. A rigid connection between the laser and the measuring apparatus is no longer necessary. The necessary light for the recording of the hologram is provided by the laser-base module and fed to the measuring head via a glass fibre cable. The hologram recorded by the measuring head is transmitted directly by means of a television camera to the computer-analyzer module, where it is evaluated and presented in user-friendly form. An example from industry is taken to demonstrate the use of the modular holography system.

  14. Modular Holography For Use In Industry

    NASA Astrophysics Data System (ADS)

    Ettemeyer, A.; Schomer, J.; Rottenkolber, H.; Obermeier, E.

    1988-06-01

    A new system of holography is presented. This modular testing equipment fulfils the performance requirements for industrial measuring equipment. A holographic camera-head module with the approximate dimensions of a television camera is installed close to or actually on the object to be tested. For holography using a continuous wave laser it is necessary only to secure the object to a base-plate mounted on vibration insulators. This is not necessary if pulse holography is used. Because of its small size, the measuring head can also be attached directly to the test object. This largely eliminates the effects of movements of the whole body of the objects. The technical realization of modular holography was made possible by the use of glass fibres. A rigid connection between the laser and the measuring apparatus is no longer necessary. The necessary light for the recording of the hologram is provided by the laser-base module and fed to the measuring head via a glass fibre cable. The hologram recorded by the measuring head is transmitted directly by means of a television camera to the computer-analyzer module, where it is evaluated and presented in user-friendly form. An example from industry is taken to demonstrate the use of the modular holography system.

  15. Improving the resolution in phase-shifting Gabor holography by CCD shift

    NASA Astrophysics Data System (ADS)

    Granero, L.; Micó, V.; Zalevsky, Z.; García, J.; Javidi, B.

    2015-05-01

    Holography dates back to the year when Dennis Gabor reported on a method to avoid spherical aberration and to improve image quality in electron microscopy. Gabor's two-step holographic method was pioneer but suffered from three major drawbacks: the reconstructed image is affected by coherent noise, the twin image problem of holography that also affects the final image quality, and a restricted sample range (weak diffraction assumption) for preserving the holographic behavior of the method. Nowadays, most of those drawbacks have been overcome and new capabilities have been added due to the replacement of the classical recording media (photographic plate) by digital sensors (CCD and CMOS cameras). But in the Gabor' regime, holography is restricted to weak diffraction assumptions because otherwise, diffraction prevents an accurate recovery of the object's complex wavefront. In this contribution, we present an experimental approach to overcome such limitation and improve final image resolution. We use the phase-shifting Gabor configuration while the CCD camera is shifted to different off-axis positions in order to capture a bigger portion of the diffracted wavefront. Thus, once the whole image set is recorded and digitally processed for each camera's position, we merge the resulting band-pass images into one image by assembling a synthetic aperture. Finally, a superresolved image is recovered by Fourier transformation of the information contained in the generated synthetic aperture. Experimental results are provided using a USAF resolution test target and validating our concepts for a gain in resolution of close to 2.

  16. Spin and wavelength multiplexed nonlinear metasurface holography

    PubMed Central

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  17. Spin and wavelength multiplexed nonlinear metasurface holography

    NASA Astrophysics Data System (ADS)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  18. Spin and wavelength multiplexed nonlinear metasurface holography.

    PubMed

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  19. Advanced technology development multi-color holography

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1994-01-01

    Several key aspects of multi-color holography and some non-conventional ways to study the holographic reconstructions are considered. The error analysis of three-color holography is considered in detail with particular example of a typical triglycine sulfate crystal growth situation. For the numerical analysis of the fringe patterns, a new algorithm is introduced with experimental verification using sugar-water solution. The role of the phase difference among component holograms is also critically considered with examples of several two- and three-color situations. The status of experimentation on two-color holography and fabrication of a small breadboard system is also reported. Finally, some successful demonstrations of unconventional ways to study holographic reconstructions are described. These methods are deflectometry and confocal optical processing using some Spacelab III holograms.

  20. Holography in the curriculum of medical institutes

    NASA Astrophysics Data System (ADS)

    Gorelik, S. Y.; Nagibina, I. M.; Baranov, S. V.; Bolshakov, Oleg P.; Petrishin, V. L.

    1995-11-01

    Holography at present is the most effective technique of obtaining 3-D images of different objects. That's why there is more and more dissemination of holography in different fields of science and engineering, for example, in medicine. So, last time the technique of synthesized holograms obtained for evaluating inner organs states of patients without surgical intervention was designed. Due to properties of the hologram such as high quality of image and relative simplicity of duplication it is clear that holography could take its place in the curriculum of medical specializations because posters, photos, and models cannot give a full notation about an object of interest. The attempt to obtain holographical complete sets to demonstrate the most frequent pathologic changes of a human's bones was undertaken by our Institutes. The aim of our research was to obtain holograms with the following properties: minimum cost and high quality of reconstructed image to identify both the presented objects and the pathologic changes of them.

  1. Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-07-01

    We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.

  2. Coherent EUV light from high-order harmonic generation: Enhancement and applications to lensless diffractive imaging

    NASA Astrophysics Data System (ADS)

    Paul, Ariel J.

    2007-12-01

    The first half of this thesis presents the first demonstration of quasi-phase matching in the coherent high-order harmonic conversion of ultrafast laser pulses into the EUV region of the spectrum. To achieve this quasi-phase matching, a novel method of fabricating hollow waveguides with a modulated inner diameter was developed. This technique lead to significant enhancements of EUV flux at wavelengths shorter than were previously accessible by known phase-matching techniques. In the second half of this thesis, the first tabletop demonstration of lensless diffractive imaging with EUV light is presented using HHG in a gas-filled hollow waveguide to provide coherent illumination. This tabletop microscope shows a spatial resolution of ˜ 200 nm and a large depth of field. Furthermore, the technique is easily scalable to shorter wavelengths of interest to biological imaging.

  3. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.

    PubMed

    Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha

    2016-01-01

    We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170

  4. DSS-24 microwave holography measurements

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.; Withington, P. M.; Jackson, H. J.

    1995-01-01

    The JPL DSN Microwave Antenna Holography System (MAHST) was applied to the newly constructed DSS-24 34-m beam-waveguide antenna at Goldstone, California. The application of MAHST measurements and corrections at DSS 24 provided the critical RF performance necessary to not only meet the project requirements and goals, but to surpass them. A performance increase of 0.35 dB at X-band (8.45 GHz) and 4.9 dB at Ka-band (32 GHz) was provided by MAHST, resulting in peak efficiencies of 75.25 percent at X-band and 60.6 percent at Ka-band (measured from the Cassegrain focus at f1). The MAHST enabled setting the main reflector panels of DSS 24 to 0.25-mm rms, making DSS 24 the highest precision antenna in the NASA/JPL DSN. The precision of the DSS-24 antenna (diameter/rms) is 1.36 x 10(exp 5), and its gain limit is at 95 GHz.

  5. Nonlinear holography for acoustic wave detection

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Dolfi, D.; Huignard, J. P.; Molin, S.; Peigné, A.; Residori, S.

    2015-03-01

    A liquid crystal medium is used to perform nonlinear dynamic holography and is coupled with multimode optical fibers for optical sensing applications. Thanks to the adaptive character of the nonlinear holography, and to the sensitivity of the multimode fibers, we demonstrate that the system is able to perform efficient acoustic wave detection even with noisy signals. The detection limit is estimated and multimode versus monomode optical fiber are compared. Finally, a wavelength multiplexing protocol is implemented for the spatial localization of the acoustic disturbances.

  6. Systems analysis for DSN microwave antenna holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  7. Holography on the Spacelab 3 mission

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Kroes, R. L.

    1985-01-01

    Spacelab 3's Fluid Experiment System, in which triglycine sulfate crystals were produced by a low temperature solution-growth technique, employs holography as its primary data-gathering system. This use of holography allows optical techniques which would be difficult to apply in orbit to be used after the holographic data is returned to ground laboratories, using an analysis of the reconstructed holographic image. The system used allows both single- and double-exposure holograms to be obtained in two separate orthogonal configurations.

  8. Minkowski diagram in relativity and holography.

    PubMed

    Abramson, N

    1988-05-01

    Now that ultrashort laser pulses can be used in holography, the temporal and spatial resolution approach the same order of magnitude. In that case the limited speed of light sometimes causes large measuring errors if correction methods are not introduced. Therefore, we want to revive the Minkowski diagram, which was invented in 1908 to visualize relativistic relations between time and space. We show how this diagram in a modified form can be used to derive both the static holodiagram, used for conventional holography, including ultrahigh-speed recordings of wavefronts, and a dynamic holodiagram used for studying the apparent distortions of objects recorded at relativistic speeds. PMID:20531662

  9. Holography - Application To Art: Curatorial Observations

    NASA Astrophysics Data System (ADS)

    Dinsmore, Sydney

    1987-06-01

    An exploration of the need to define a specific and critical language to describe the art of holography. Within any discussion of art, critical analysis must maintain an objective openess, particularily when the discourse concerns new media. To apply technological invention to art, new media is often without precedent on which to base criticism and bias. For this reason, holography falls prey to comparative rhetoric and established evaluation of other forms of imaging,as photography emulated the compositional romanticism of painting initially. Isolated and often misunderstood within the context of history, new media vascillates between legitimacy and curiosity in an attempt to create specific parameters to identify perceptual transition.

  10. Generalized in-line digital holographic technique based on intensity measurements at two different planes

    NASA Astrophysics Data System (ADS)

    Situ, Guohai; Ryle, James P.; Gopinathan, Unnikrishnan; Sheridan, John T.

    2008-02-01

    In-line digital holography based on two-intensity measurements [Zhang et al. Opt. Lett. 29, 1787 (2004)], is modified by introducing a π shifting in the reference phase. Such an improvement avoids the assumption that the object beam must be much weaker than the reference beam in strength and results in a simplified experimental implementation. Computer simulations and optical experiments are carried out to validate the method, which we refer to as position-phase-shifting digital holography.

  11. Spatially resolved, diffuse reflectance imaging for subsurface pattern visualization toward development of a lensless imaging platform: phantom experiments

    NASA Astrophysics Data System (ADS)

    Schelkanova, Irina; Pandya, Aditya; Saiko, Guennadi; Nacy, Lidia; Babar, Hannan; Shah, Duoaud; Lilge, Lothar; Douplik, Alexandre

    2016-01-01

    A portable, spatially resolved, diffuse reflectance lensless imaging technique based on the charge-coupled device or complementary metal-oxide semiconductor sensor directly coupled to the fiber optic bundle is proposed for visualization of subsurface structures such as superficial microvasculature in the epithelium. We discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiber-optic cable over a microfluidic phantom containing periodic hemoglobin absorption contrast. To evaluate the ability of the technique to recover information about the subsurface linear structures, scattering layers formed of the Sylgard® 184 Silicone Elastomer and titanium dioxide were placed atop the microfluidic phantom. Thickness of the layers ranged from 0.2 to 0.7 mm, and the values of the reduced scattering coefficient (μs‧) were between 0.85 and 4.25 mm-1. The results demonstrate that fiber-optic, lensless platform can be used for two-dimensional imaging of absorbing inclusions in diffuse reflectance mode. In these experiments, it was shown that diffuse reflectance imaging can provide sufficient spatial sampling of the phantom for differentiation of 30 μm structural features of the embedded absorbing pattern inside the scattering media.

  12. Entangled States, Holography and Quantum Surfaces

    SciTech Connect

    Chapline, G F

    2003-08-13

    Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.

  13. Synthetic optical holography for rapid nanoimaging

    PubMed Central

    Schnell, M.; Carney, P. S.; Hillenbrand, R.

    2014-01-01

    Holography has paved the way for phase imaging in a variety of wide-field techniques, including electron, X-ray and optical microscopy. In scanning optical microscopy, however, the serial fashion of image acquisition seems to challenge a direct implementation of traditional holography. Here we introduce synthetic optical holography (SOH) for quantitative phase-resolved imaging in scanning optical microscopy. It uniquely combines fast phase imaging, technical simplicity and simultaneous operation at visible and infrared frequencies with a single reference arm. We demonstrate SOH with a scattering-type scanning near-field optical microscope (s-SNOM) where it enables reliable quantitative phase-resolved near-field imaging with unprecedented speed. We apply these capabilities to nanoscale, non-invasive and rapid screening of grain boundaries in CVD-grown graphene, by recording 65 kilopixel near-field images in 26 s and 2.3 megapixel images in 13 min. Beyond s-SNOM, the SOH concept could boost the implementation of holography in other scanning imaging applications such as confocal microscopy. PMID:24651276

  14. Advanced technology development multi-color holography

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1993-01-01

    This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.

  15. Determination of the surface morphology of gold-decahedra nanoparticles using an off-axis electron holography dual-lens imaging system

    PubMed Central

    Cantu-Valle, J.; Ruiz-Zepeda, F.; Voelkl, E.; Kawasaki, M.; Santiago, U.; José-Yacaman, M.; Ponce, A.

    2014-01-01

    The purpose of this paper is to show surface irregularities in gold decahedra nanoparticles extracted by using off-axis electron holography in a JEOL ARM 200F microscope. Electron holography has been used in a dual-lens system within the objective lenses: main objective lens and objective minilens. Parameters such as biprism voltage, fringe spacing (σ), fringe width (W) and optimum fringe contrast have been calibrated. The reliability of the transmission electron microscope performance with these parameters was carried out through a plug-in in the Digital-Micrograph software, which considers the mean inner potential within the particle leading a precise determination of the morphological surface of decahedral nanoparticles obtained from the reconstructed unwrapped phase and image processing. We have also shown that electron holography has the capability to extract information from nanoparticle shape that is currently impossible to obtain with any other electron microscopy technique. PMID:24055122

  16. Waveguide-Based Off-Axis Holography with Hard X Rays

    SciTech Connect

    Fuhse, C.; Ollinger, C.; Salditt, T.

    2006-12-22

    We present an off-axis holography experiment based on the coherent cone beams emitted from a pair of x-ray waveguides. A magnified off-axis hologram is recorded, from which the phase of the optical transmission function of a sample is obtained by digital holographic reconstruction. A spatial resolution of about 100 nm has been achieved at 10.4 keV photon energy. Spatial resolution is determined by the cross-sectional dimensions of the waveguide and could approach a fundamental limit of about 10 nm in future experiments. In addition, we propose a new experimental setup that might overcome this limitation.

  17. Imaging nanoparticles in cells by nanomechanical holography

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Venmar, Katherine T; Lynch, Rachel M; Voy, Brynn H; Shekhawat, Gajendra; Dravid, Vinayak; Thundat, Thomas George

    2008-06-01

    Nanomaterials have potential medical applications, for example in the area of drug delivery, and their possible adverse effects and cytotoxicity are curently receiving attention1,2. Inhalation of nanoparticles is of great concern, because nanoparticles can be easily aerosolized. Imaging techniques that can visualize local populations of nanoparticles at nanometre resolution within the structures of cells are therefore important3. Here we show that cells obtained from mice exposed to single-walled carbon nanohorns can be probed using a scanning probe microscopy technique called scanning near field ultrasonic holography. The nanohorns were observed inside the cells, and this was further confirmed using micro Raman spectroscopy. Scanning near field ultrasonic holography is a useful technique for probing the interactions of engineered nanomaterials in biological systems, which will greatly benefit areas in drug delivery and nanotoxicology.

  18. Limits of computational white-light holography

    NASA Astrophysics Data System (ADS)

    Mader, Sebastian; Kozacki, Tomasz; Tompkin, Wayne

    2013-02-01

    Recently, computational holograms are being used in applications, where previously conventional holograms were applied. Compared to conventional holography, computational holography is based on imaging of virtual objects instead of real objects, which renders them somewhat more flexibility. Here, computational holograms are calculated based on the superposition of point sources, which are placed at the mesh vertices of arbitrary 3D models. The computed holograms have full parallax and exhibit a problem in viewing that we have called "ghosting", which is linked to the viewing of computational holograms based on 3D models close to the image plane. Experimental white-light reconstruction of these holograms showed significant blurring, which is explained here based on simulations of the lateral as well as the axial resolution of a point image with respect to the source spectrum and image distance. In accordance with these simulations, an upper limit of the distance to the image plane is determined, which ensures high quality imaging.

  19. Industrial Holography Combined With Image Processing

    NASA Astrophysics Data System (ADS)

    Schorner, J.; Rottenkolber, H.; Roid, W.; Hinsch, K.

    1988-01-01

    Holographic test methods have gained to become a valuable tool for the engineer in research and development. But also in the field of non-destructive quality control holographic test equipment is now accepted for tests within the production line. The producer of aircraft tyres e. g. are using holographic tests to prove the guarantee of their tyres. Together with image processing the whole test cycle is automatisized. The defects within the tyre are found automatically and are listed on an outprint. The power engine industry is using holographic vibration tests for the optimization of their constructions. In the plastics industry tanks, wheels, seats and fans are tested holographically to find the optimum of shape. The automotive industry makes holography a tool for noise reduction. Instant holography and image processing techniques for quantitative analysis have led to an economic application of holographic test methods. New developments of holographic units in combination with image processing are presented.

  20. Imaging nanoparticles in cells by nanomechanical holography

    NASA Astrophysics Data System (ADS)

    Tetard, Laurene; Passian, Ali; Venmar, Katherine T.; Lynch, Rachel M.; Voy, Brynn H.; Shekhawat, Gajendra; Dravid, Vinayak P.; Thundat, Thomas

    2008-08-01

    Nanomaterials have potential medical applications, for example in the area of drug delivery, and their possible adverse effects and cytotoxicity are curently receiving attention. Inhalation of nanoparticles is of great concern, because nanoparticles can be easily aerosolized. Imaging techniques that can visualize local populations of nanoparticles at nanometre resolution within the structures of cells are therefore important. Here we show that cells obtained from mice exposed to single-walled carbon nanohorns can be probed using a scanning probe microscopy technique called scanning near field ultrasonic holography. The nanohorns were observed inside the cells, and this was further confirmed using micro Raman spectroscopy. Scanning near field ultrasonic holography is a useful technique for probing the interactions of engineered nanomaterials in biological systems, which will greatly benefit areas in drug delivery and nanotoxicology.

  1. Restoration of singularities in reconstructed phase of crystal image in electron holography.

    PubMed

    Li, Wei; Tanji, Takayoshi

    2014-12-01

    Off-axis electron holography can be used to measure the inner potential of a specimen from its reconstructed phase image and is thus a powerful technique for materials scientists. However, abrupt reversals of contrast from white to black may sometimes occur in a digitally reconstructed phase image, which results in inaccurate information. Such phase distortion is mainly due to the digital reconstruction process and weak electron wave amplitude in some areas of the specimen. Therefore, digital image processing can be applied to the reconstruction and restoration of phase images. In this paper, fringe reconnection processing is applied to phase image restoration of a crystal structure image. The disconnection and wrong connection of interference fringes in the hologram that directly cause a 2π phase jump imperfection are correctly reconnected. Experimental results show that the phase distortion is significantly reduced after the processing. The quality of the reconstructed phase image was improved by the removal of imperfections in the final phase. PMID:25272997

  2. Measuring Shapes Of Reflectors By Microwave Holography

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1989-01-01

    Pair of reports discusses theoretical foundation and recent theoretical and practical developments in use of microwave holography to measure surfaces of microwave antennas. (Second report abbreviated version of first report.) Microwave holographic measurements provide acceptable accuracy and are more convenient and less time consuming than optical and mechanical measurements, especially where measurements repeated. Microwave holographyic metrology of lare reflectors, first reported in 1976, improved into accurate technique with potential industrial applications.

  3. Applications of optical holography to applied mechanics.

    NASA Technical Reports Server (NTRS)

    Aprahamian, R.

    1972-01-01

    This paper provides a brief summary of applications of optical holography and holographic interferometry to applied solid mechanics. Basic equations commonly used in fringe interpretation are described and used to reduce the data contained on holographic interferograms. A comparison of data obtained holographically with analytical prediction is given wherever possible. Applications contained herein include front surface physics, study of bomb breakup, transverse wave propagation, study of mode shapes of panels at elevated temperatures, nondestructive testing, and vibration analysis.

  4. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    PubMed Central

    Raharijaona, Thibaut; Mignon, Paul; Juston, Raphaël; Kerhuel, Lubin; Viollet, Stéphane

    2015-01-01

    An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers. PMID:26184193

  5. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications.

    PubMed

    Kim, Wihan; Chen, Xi; Jo, Javier A; Applegate, Brian E

    2016-05-01

    The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2  dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38  dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities. PMID:27128052

  6. Single-pixel phase-corrected fiber bundle endomicroscopy with lensless focussing capability

    PubMed Central

    Gordon, George S.D.; Joseph, James; Bohndiek, Sarah E.; Wilkinson, Timothy D.

    2016-01-01

    In this paper a novel single-pixel method for coherent imaging through an endoscopic fiber bundle is presented. The use of a single-pixel detector allows greater sensitivity over a wider range of wavelengths, which could have significant applications in endoscopic fluorescence microscopy. First, the principle of lensless focussing at the distal end of a coherent fiber bundle is simulated to examine the impact of pixelation at microscopic scales. Next, an experimental optical correlator system using spatial light modulators (SLMs) is presented. A simple contrast imaging method of characterizing and compensating phase aberrations introduced by fiber bundles is described. Experimental results are then presented showing that our phase compensation method enables characterization of the optical phase profile of individual fiberlets. After applying this correction, early results demonstrating the ability of the system to electronically adjust the focal plane at the distal end of the fiber bundle are presented. The structural similarity index (SSIM) between the simulated image and the experimental focus-adjusted image increases noticeably when the phase correction is applied and the retrieved image is visually recognizable. Strategies to improve image quality are discussed. PMID:27279676

  7. X-Ray Holography with Atomic Resolution

    NASA Astrophysics Data System (ADS)

    Tegze, Miklós

    1997-03-01

    In the conventional diffraction experiments only the intensity of the scattered radiation is recorded, its phase is lost. In holography [1], the scattered radiation is mixed with a reference wave and the resulting interference pattern is recorded. The hologram contains both the intensity and the phase information and the three dimensional image of the object can be reconstructed. The most important limitation of this imaging technique is the spatial resolution, which is given by the wavelength and/or by the source size. In the last decade the introduction of soft x-ray instead of visible light tremendously improved the resolution which reached a few hundred angstrom [2]. An other line in holography, based on the inside source concept, was suggested recently [3]. We have applied this concept for the case of fluorescent x-rays emitted by a single crystal. We were the first to demonstrate theoretically [4] and experimentally [5] the feasibility of x-ray holography with atomic resolution. We have recorded the holograms of different crystals and successfully reconstructed the three dimensional order of the atoms. [1] D. Gabor, Nature 161, 777 (1948). [2] M. Howels, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid and S. Rothman, Science 238, 514 (1987). [3] A. Szöke, in Short Wavelength Coherent Radiation: Generation and Applications, T. Attwood, J. Booker (eds), AIP Conference Proceedings No. 147, New York (1986). [4] M. Tegze and G. Faigel, Europhys. Lett. 16, 41 (1991). [5] M. Tegze and G. Faigel, Nature 380, 49 (1996).

  8. Electron holography of devices with epitaxial layers

    SciTech Connect

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0} = 12.75 V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge} = 18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L = 30 nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  9. Laser Holography. High Tech with High Potential for Learning Activities.

    ERIC Educational Resources Information Center

    Schlegel, Ronald D.

    1986-01-01

    This article discusses the procedure, historical development, and applications of holography, and discusses the feasibility and value of implementing a unit or course of study of laser holography into an existing photography laboratory and curriculum. An equipment and supplies list, giving supplies and cost, is included. (CT)

  10. Guest Editoria Holography A Dedication To Dennis Gabor

    NASA Astrophysics Data System (ADS)

    Wyant, James C.; Chen, Chungte T.; Reynolds, George O.

    1980-10-01

    We thought it was time to bring the readers of Optical Engineering up to date on the new developments in holography, as was done exactly five years ago with the September/October 1975 special issue. The seeds for this special issue were sown during the 1978 Gordon Conference on Coherent Optics and Holography held at the Miramar Hotel in Santa Barbara, California. The conference clearly demonstrated, through the discussion of many interesting research and development applications, that holography is alive and well. For example, artists have discovered holography as a new medium and there is a museum for displaying new holographic developments and inventions. In addition to the opening of the New York museum where artists and patrons are thoroughly enjoying holography, the past five years have witnessed the publication of the Handbook of Optical Holography, continuing issues of the Acoustical Holography proceedings, the gathering of scientists to exchange ideas at three Gordon Conferences in 1976, 1978, and 1980, and the SPIE conference on holography held in Los Angeles in February 1980.

  11. Holography and Art - Using rainbow hologram in my works

    NASA Astrophysics Data System (ADS)

    Cho, Duck Hee

    2013-02-01

    Holography can be understood as one of the more sophisticated subjects within the realm of modern art. Even after several years of study and application, understanding Holography simply does not get any easier. For that reason, instead of trying to discuss both the technical and the artistic aspects of holography, the emphasis will strictly be on the latter. Just like any other paradigm or medium capable of fascinating the human hearts, holography has changed the way I encounter the world. Changed perception of the world brought me feelings of child-like delight. Among the various subdivisions of holography, I hold Rainbow Hologram exceptionally close to my heart. Not only is it related to my previous works but its bright, crisp and various color movements are also depicted wonderfully in 3-dimension. I would like to share my fascination with rainbow hologram with you.

  12. On the ultrasonic holography. [procedures and equipment required for free liquid surface deformation method of holography

    NASA Technical Reports Server (NTRS)

    Zieniuk, J. K.

    1974-01-01

    The development of a system of ultrasonic holography is discussed. The limitations of the acousto-optical transformers, the scanning method, and the Pohlman cell are analyzed. The application of the free liquid surface deformation method is emphasized. The test equipment required for the liquid surface deformation method is described. An illustration of a typical test installation is provided.

  13. Investigation of particles located in the water by digital holography

    NASA Astrophysics Data System (ADS)

    Dyomin, V. V.; Kamenev, D. V.

    2016-03-01

    An automatic technique for processing holograms of particles present in water is proposed. Its applications to determine particle concentration and their size distribution are illustrated with examples. The method is validated using waterborne air bubbles and particles settling in water. The use of video based on holographic data is considered for dynamic investigation of these particles. This video consists of sequences of holographic images of particles and the concentration and particle size distribution is studied in dynamics.

  14. Compressive wideband microwave radar holography

    NASA Astrophysics Data System (ADS)

    Wilson, Scott A.; Narayanan, Ram M.

    2014-05-01

    Compressive sensing has emerged as a topic of great interest for radar applications requiring large amounts of data storage. Typically, full sets of data are collected at the Nyquist rate only to be compressed at some later point, where information-bearing data are retained and inconsequential data are discarded. However, under sparse conditions, it is possible to collect data at random sampling intervals less than the Nyquist rate and still gather enough meaningful data for accurate signal reconstruction. In this paper, we employ sparse sampling techniques in the recording of digital microwave holograms over a two-dimensional scanning aperture. Using a simple and fast non-linear interpolation scheme prior to image reconstruction, we show that the reconstituted image quality is well-retained with limited perceptual loss.

  15. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting†‡

    PubMed Central

    Zhang, Xiaohui; Khimji, Imran; Gurkan, Umut Atakan; Safaee, Hooman; Catalano, Paolo Nicolas; Keles, Hasan Onur; Kayaalp, Emre

    2013-01-01

    5.3 million American couples of reproductive age (9%) are affected by infertility, among which male factors account for up to 50% of cases, which necessitates the identification of parameters defining sperm quality, including sperm count and motility. In vitro fertilization (IVF) with or without intra cytoplasmic sperm injection (ICSI) has become the most widely used assisted reproductive technology (ART) in modern clinical practice to overcome male infertility challenges. One of the obstacles of IVF and ICSI lies in identifying and isolating the most motile and presumably healthiest sperm from semen samples that have low sperm counts (oligozoospermia) and/or low sperm motility (oligospermaesthenia). Microfluidic systems have shown potential to sort sperm with flow systems. However, the small field of view (FOV) of conventional microscopes commonly used to image sperm motion presents challenges in tracking a large number of sperm cells simultaneously. To address this challenge, we have integrated a lensless charge-coupled device (CCD) with a microfluidic chip to enable wide FOV and automatic recording as the sperm move inside a microfluidic channel. The integrated system enables the sorting and tracking of a population of sperm that have been placed in a microfluidic channel. This channel can be monitored in both horizontal and vertical configuration similar to a swim-up column method used clinically. Sperm motilities can be quantified by tracing the shadow paths for individual sperm. Moreover, as the sperm are sorted by swimming from the inlet towards the outlet of a microfluidic channel, motile sperm that reach the outlet can be extracted from the channel at the end of the process. This technology can lead to methods to evaluate each sperm individually in terms of motility response in a wide field of view, which could prove especially useful, when working with oligozoospermic or oligospermaesthenic samples, in which the most motile sperm need to be isolated from

  16. Ultrathin endoscopes: nonlinear lensless imaging at the tip of a multimode fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sivankutty, Siddharth; Andresen, Esben R.; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé

    2016-03-01

    Recent advances in wavefront shaping techniques have enabled so-called lensless endoscopes using fiber probes. Unlocking the full potential of such endoscopes call for the capability of optically sectioned and/or label free imaging. Or in other words, imaging through fibers must retain the functionality of a nonlinear microscope. This is a key challenge due to the temporal broadening of ultrashort pulses in fibers owing to modal dispersion. Here, we detail the first ever demonstration of two photon fluorescence imaging at the distal tip of a conventional graded index (GRIN) multimode fiber. GRIN fibers possess a high mode density, excellent throughput and limited temporal broadening. These features, in addition to its ready availability, make them attractive candidates for ultrathin endoscopes. In our approach, we apply the transmission matrix formalism and treat these fibers akin to highly scattering media. This lets us retrieve combinations of input modes that would generate intense focal spots throughout the field of view. Furthermore, we identify a regime where the modal dispersion in the fiber is minimal and two-photon excitation with femtosecond light pulses is possible. This allows us to perform two-photon imaging with ultrashort pulses in an epi-detection configuration analogous to conventional nonlinear microscopes. Finally, these concepts are validated by acquiring optically sectioned two photon fluorescence images of 3D samples with cellular resolution. We believe this first report of an ultrathin rigid endoscope of only 125 µm thickness would further accelerate the development of novel tools for demanding applications in biological imaging and opto-genetics.

  17. Ethereal presences in holography and photography

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Byrne, Kay

    2007-02-01

    This paper examines the concept of the 'Presence of Absence' in post-mortem photography and holography, drawing upon both historical and lesser-known images as reference. To create a photographic negative one needs the presence of light to expose the light sensitive surface, be it glass, a polished plate or plastic. A hologram may also be created when a coherent light source, for example from a Laser, travels through a light sensitive material and falls upon the subject to be recorded. A holograph however, retains the optical qualities of both phase and amplitude, the memory of light. Both mediums recall, as it were, 'now absent moments', and confronts us with what is 'not there' as much as 'what is'. This paper examines the exploration of absence and presence in post-mortem photography and holography and it's a richly visceral visual language. A photonic syntax can interpret death as an elegant yet horrific aesthetic, the photograph may be beautify screened and yet obscene in its content. In essence one can be a voyeur, experiencing a mere visual whisper of the true nature of the subject. Our Victorian forefathers explored postmortem photography as an object of mourning, and at the close of the nineteenth century when Jack the Ripper had the inhabitants of White Chapel in a grip of fear, photography made its mark as a documentation of violent crime. Today, within contemporary photography, death is now presented within the confines of the 'Art Gallery', as a sensual, and at times, sensationalised art form. In exploring post-mortem imagery, both in holography and conventional photography, absence presents an aspect of death as startling in its unanimated form and detailed in its finite examination of mortality.

  18. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  19. Multi-field inflation from holography

    SciTech Connect

    Garriga, Jaume; Urakawa, Yuko; Skenderis, Kostas E-mail: K.Skenderis@soton.ac.uk

    2015-01-01

    We initiate the study of multi-field inflation using holography. Bulk light scalar fields correspond to nearly marginal operators in the boundary theory and the dual quantum field theory is a deformation of a CFT by such operators. We compute the power spectra of adiabatic and entropy perturbations in a simple model and find that the adiabatic curvature perturbation is not conserved in the presence of entropy perturbations but becomes conserved when the entropy perturbations are set to zero or the model is effectively a single scalar model, in agreement with expectations from cosmological perturbation theory.

  20. A ripple tank explanation of holography

    NASA Astrophysics Data System (ADS)

    Weiss, Moshe

    1981-01-01

    The article has a threefold purpose: (i) to demonstrate the validity of the reversal principle for wave phenomena as interference and diffraction, (ii) to use this principle to explain holography even to students unacquainted with waves and (iii) to demonstrate a teaching method which is also appropriate for disadvantaged students. The GIREP conference held in summer 1979 on 'Waves' and on 'Teaching physics to disadvantaged students' recommended inter alia in its summary on waves to 'pull down' to secondary school level topics from recent developments in physics and, on the disadvantaged, to lower the level of abstraction required in learning.

  1. Dark field electron holography for strain measurement.

    PubMed

    Béché, A; Rouvière, J L; Barnes, J P; Cooper, D

    2011-02-01

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. PMID:21333860

  2. Results and further experiments using Spacelab holography

    NASA Technical Reports Server (NTRS)

    Owen, R. B.; Kroes, R. L.; Witherow, W. K.

    1986-01-01

    Spacelab 3 provided the platform for the first extensive application of holography in space. Holograms of excellent quality were recorded during the flight, providing information on the solution growth of triglycine sulfate crystals under microgravity conditions. The suppression of convection and the development of a symmetric concentration-depletion region around each crystal were clearly shown. Crystal growth was governed by diffusion mass transport across the depletion region. The successful performance of the holographic unit has prompted NASA to schedule a slightly modified version for reflight on IML-1; opportunities now exist for other investigators to use this facility.

  3. Art of color holography: pioneers in change

    NASA Astrophysics Data System (ADS)

    Richardson, Martin J.; Bjelkhagen, Hans I.

    2000-10-01

    The possibility to easily record full color holograms, (simply color holograms) has opened new possibilities for art holographers. This paper includes details concerning preparation of subject matter and its practical suitability for color holographic recordings from practical working sessions at ARTCAPI Atelier de Recherche Technique et de Creation Artistique en Physique et en Informatique in France. Martin Richardson as invited artist and Hans Bjelkhagen as scientist holographer describe color holography to a wider public audience through artistic display. Both directly recorded true color images and computer-generated images based on the ZEBRA printing technique are to be presented.

  4. Living human face measurements using pulsed holography

    NASA Astrophysics Data System (ADS)

    Bongartz, Jens; Giel, Dominik M.; Hering, Peter

    2000-10-01

    A method to measure precisely the 2D portrait of patients undergoing maxillofacial surgery based on holography is presented. We record holograms of patients with a pulsed Nd:YLF laser system on high resolution photographic glass plates. These images contain the 3D spatial information which, due to the extremely short recording time, is not affected at all by involuntary movements. The reconstructed real image of the hologram is sliced into a series of 2D projections by means of a screen. A first approach to reconstruct the patient's 3D surface information from the captured data set is presented.

  5. "Kunstwerk" in the age of holography

    NASA Astrophysics Data System (ADS)

    Öhlmann, Dietmar; Meulien Ohlmann, Odile

    2013-02-01

    In 2007 one auction shocked collectors and artists: Two art works of Rudie Berkhout were offered for one thousand dollars on eBay. The closing down of museums for holography in Cologne, New York and Washington DC paid a big price of respect for true art. Benjamin's vision about "Art in the Age of Mechanical Reproduction" found a new expression in abuse and ignorance. Beautiful sculptures of Art are reduced to "Holograms" like Rudie's "Cairo Aspect" placed in a rummage sale, covered by fingerprints of ignorance.

  6. Determination of optical field generated by a microlens using digital holographic method

    NASA Astrophysics Data System (ADS)

    Kozacki, T.; Józwik, M.; Jóźwicki, R.

    2009-09-01

    In the paper, application of the digital holographic method for full field characterization of the beam generated by microlenses is considered. For this goal, the laboratory setup was designed based on Mach-Zehnder interferometry with the additional reference channel. The beam generated by a microlens was imaged by an afocal system and intensity distributions or interferograms (holograms) were registered by CCD camera. The digital holography using one image allows us to determine microlens parameters, i.e., focal length, aberrations, and shape. The optimum conditions to determine the surface shape of a microlens using holographic method have been found. We compare obtained results with geometrical and interferometric measurements. We show the advantage of digital holography for a shape microlens determination (improved accuracy), aberrations, and focal length (characterization facility). Through optimum refocusing, the digital holography gives more precise shape. The paper is accompanied with computer simulations and the experimental measurement data for geometrical, interferometric, and holographic methods.

  7. Electron holography for fields in solids: problems and progress.

    PubMed

    Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel

    2013-11-01

    Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter. PMID:23831133

  8. Massively parallel X-ray holography

    SciTech Connect

    Spence, John C.H; Marchesini, Stefano; Boutet, Sebastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Sasa; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, MAlcolm R.; Shaevitz, Joshua W; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-08-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography1,2,3 as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array4 placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter

  9. Simulated electron holography of PSD particles

    NASA Astrophysics Data System (ADS)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Nagy, Les

    2016-04-01

    Electron holography is an experimental technique that is capable of observing magnetic microstructures on the same scale as can be determined using numerical modeling and thus bridge the gap between experimental measurements and theory. I will present a technique for simulating holographic images from the results of micromagnetic models and demonstrate an easily used tool for generating holograms on the fly in an interactive environment (ie in ParaView). Since holography flattens 3D information onto a 2D image, some useful information can be lost. By looking at some examples of holograms of interesting 3D magnetizations (ie PSD structures), particularly how they change as they're rotated, along with comparisons of different structures, I will examine what information can be retrieved and what might be lost. The existance of an external dipole can be indicative of an in-plane component of a seemingly out-of-plane vortex core. It is also seen, however, that two quite different structures (in this case a [111] vortex core and a [111] uniform magnetization) can sometimes be quite indistinguishable.

  10. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  11. Introductory overview of holography and speckle

    NASA Astrophysics Data System (ADS)

    Parker, David E.

    1990-10-01

    The purpose of this paper is to provide a nonmathematical overview of holographic and speckle interferometry. This provides information necessary for those participants with little or no background in these areas to understand the application papers in the Holography Speckle session of ICALEO''89. Holography A hologram is an optical device which is capable of producing threedimensional images. The word hologram stems from the Greek root holos which means whole complete or entire and the word gram which means message. Thus a hologram is a complete record of a scene or object. The first hologram was produced by Dennis Gabor in 1948. In 1971 he won the Nobel Prize for his work. Leith and Upatnieks produced the first holograms using a laser in the early 1960''s. In conventional photography the light reflected from a scene is focused by a camera lens onto a photographic emulsion. The variation in irradiance of the light reaching the emulsion is related only to the amplitude of the electric field due to the light. To produce three-dimensional images a hologram records information about both the amplitude and phase of light reflected from a scene or object. Production Hologram Figure 1 is a sketch of a system which can be used to produce optical holograms. A laser operating in the TEM mode is used as a light source. A continuous wave or a pulsed laser can be

  12. Combined optimal quantization and lossless coding of digital holograms of three-dimensional objects

    NASA Astrophysics Data System (ADS)

    Shortt, Alison E.; Naughton, Thomas J.; Javidi, Bahram

    2006-10-01

    Digital holography is an inherently three-dimensional (3D) technique for the capture of real-world objects. Many existing 3D imaging and processing techniques are based on the explicit combination of several 2D perspectives (or light stripes, etc.) through digital image processing. The advantage of recording a hologram is that multiple 2D perspectives can be optically combined in parallel, and in a constant number of steps independent of the hologram size. Although holography and its capabilities have been known for many decades, it is only very recently that digital holography has been practically investigated due to the recent development of megapixel digital sensors with sufficient spatial resolution and dynamic range. The applications of digital holography could include 3D television, virtual reality, and medical imaging. If these applications are realized, compression standards will have to be defined. We outline the techniques that have been proposed to date for the compression of digital hologram data and show that they are comparable to the performance of what in communication theory is known as optimal signal quantization. We adapt the optimal signal quantization technique to complex-valued 2D signals. The technique relies on knowledge of the histograms of real and imaginary values in the digital holograms. Our digital holograms of 3D objects are captured using phase-shift interferometry. We complete the compression procedure by applying lossless techniques to the quantized holographic pixels.

  13. Real-time holography on bacteriorhodopsin-based materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.

    1998-09-01

    The main properties and mechanisms of photoresponse of the bacteriohodopsin-based materials are presented. Fields of their potential applications in the real-time holography and nonlinear optics are discussed.

  14. Theoretical scheme for simultaneously observing forward-backward photoelectron holography.

    PubMed

    Du, Hongchuan; Wu, Hongmei; Wang, Huiqiao; Yue, Shengjun; Hu, Bitao

    2016-02-15

    Photoelectron angular momentum distribution of He+ driven by a few-cycle laser is investigated numerically. We simultaneously observe two dominant interference patterns with one shot of lasers by solving the 3D time-dependent Schrodinger equation. Analysis of a semiclassical model identifies these two interference patterns as two types of photoelectron holography. The interference pattern with Pz0 is a type of forward rescattering holography, which comes from the interference between direct (reference) and rescattered (signal) forward electrons ionized in the same quarter-cycle. The interference pattern with Pz<0 is a type of backward rescattering holography, which comes from the interference between a direct electron ionized in the third quarter-cycle and rescattered backward electron ionized in the first quarter-cycle. Moreover, we propose a method to distinguish this backward rescattering holography and intracycle interference patterns of direct electrons. PMID:26872166

  15. Absorbing New Subjects: Holography as an Analog of Photography

    NASA Astrophysics Data System (ADS)

    Johnston, Sean F.

    2006-05-01

    I discuss the early history of holography and explore how perceptions, applications, and forecasts of the subject were shaped by prior experience. I focus on the work of Dennis Gabor (1900 1979) in England,Yury N. Denisyuk (b. 1924) in the Soviet Union, and Emmett N. Leith (1927 2005) and Juris Upatnieks (b. 1936) in the United States. I show that the evolution of holography was simultaneously promoted and constrained by its identification as an analog of photography, an association that influenced its assessment by successive audiences of practitioners, entrepreneurs, and consumers. One consequence is that holography can be seen as an example of a modern technical subject that has been shaped by cultural influences more powerfully than generally appreciated. Conversely, the understanding of this new science and technology in terms of an older one helps to explain why the cultural effects of holography have been more muted than anticipated by forecasters between the 1960s and 1990s.

  16. Experimental research of digital holographic microscopic measuring

    NASA Astrophysics Data System (ADS)

    Zhu, Xueliang; Chen, Feifei; Li, Jicheng

    2013-06-01

    Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.

  17. Modeling and design of micromachined optical Söller collimators for lensless CCD-based fluorometry.

    PubMed

    Balsam, Joshua; Ossandon, Miguel; Bruck, Hugh Alan; Rasooly, Avraham

    2012-11-01

    To address the needs of medical diagnostics in resource-poor settings, it is necessary to develop low cost, simple and portable Point of Care detectors for integrated medical diagnostics. Previously, we have described a simple lensless fluorometer with sensitivity in the range of current ELISA plate readers. The key to the lensfree fluorometer is the uniform spatial distribution of light, which we achieved using a simple optical collimator based on a "stack of pinholes" (a stack of black PMMA plates with arrays of pinholes machined via laser) enabling the light to be collimated from the LED light source through the necessary wavelength filters and the assay's microfluidics directly onto the CCD without a lens. In this paper, we describe the optical principle for designing these Söller collimators for lensfree CCD-based fluorometry. The illuminating surface was modeled as a collection of differential areas emitting uniformly and spherically, and the intensity contribution of each emitting area was summed over the detector surface. To compute the final light intensity distribution from such a differential model we derived an integral equation to sum the individual intensity contributions from the two-dimensional emitting surface. The equation is for a single-hole collimator. Light intensity measurements were taken by placing a collimator with a particular aspect ratio (the ratio of hole length to diameter (L/d)) over the CCD image sensor and capturing an image. The resulting image is the 2D light intensity profile generated by the collimator. As the aspect ratio is increased the slope of the light intensity profile increases, corresponding to an increased degree of collimation. To test the model, the measured maximum and mean light intensities were compared with the theoretical predictions generated from the model. There was an agreement between the variation of the mean (R(2) = 0.990) and maximum (R(2) = 0.938) values of light intensities with aspect ratios based

  18. Particle and flow field holography: A critical survey

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1987-01-01

    A brief background is provided for the fields of particle and flow visualization holography. A summary of methods currently in use is given, followed by a discussion of more recent and unique applications. The problem of data reduction is discussed. A state of the art summary is then provided with a prognosis of the future of the field. Particle and flow visualization holography are characterized as powerful tools currently in wide use and with significant untapped potential.

  19. New goals of the German Association for Holography, DGH

    NASA Astrophysics Data System (ADS)

    Ohlmann, Dietmar; Moeller, Niklas; Meulien-Ohlmann, Odile

    1998-02-01

    The explosion of the holography display has now to be expressed at the past, but a new generation of people, especially the young one and specialists working in research institutions push the information on holography to be spread. This is why, after a phase of stagnation, and who says stagnation says restriction, the DGH with its new board of directors is ready to answer this new need.

  20. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media. PMID:26146767

  1. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  2. Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 {mu}m

    SciTech Connect

    Vandenrijt, Jean-Francois; Georges, Marc P.

    2010-09-20

    Electronic speckle pattern interferometry and digital holographic interferometry are investigated at long infrared wavelengths. Using such wavelengths allows one to extend the measurement range and decrease the sensitivity of the techniques to external perturbations. We discuss the behavior of reflection by the object surfaces due to the long wavelength. We have developed different experimental configurations associating a CO2 laser emitting at 10.6{mu}m and microbolometer arrays. Phase-shifting in-plane and out-of-plane electronic speckle pattern interferometry and lensless digital holographic interferometry are demonstrated on rotation measurements of a solid object.

  3. Neural-net Processed Electronic Holography for Rotating Machines

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This report presents the results of an R&D effort to apply neural-net processed electronic holography to NDE of rotors. Electronic holography was used to generate characteristic patterns or mode shapes of vibrating rotors and rotor components. Artificial neural networks were trained to identify damage-induced changes in the characteristic patterns. The development and optimization of a neural-net training method were the most significant contributions of this work, and the training method and its optimization are discussed in detail. A second positive result was the assembly and testing of a fiber-optic holocamera. A major disappointment was the inadequacy of the high-speed-holography hardware selected for this effort, but the use of scaled holograms to match the low effective resolution of an image intensifier was one interesting attempt to compensate. This report also discusses in some detail the physics and environmental requirements for rotor electronic holography. The major conclusions were that neural-net and electronic-holography inspections of stationary components in the laboratory and the field are quite practical and worthy of continuing development, but that electronic holography of moving rotors is still an expensive high-risk endeavor.

  4. Digital holographic Michelson interferometer for nanometrology

    NASA Astrophysics Data System (ADS)

    Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.

    2014-11-01

    The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.

  5. Simultaneous Conoscopic Holography and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A new instrument was developed for chemical characterization of surfaces that combines the analytical power of Raman spectroscopy with the three-dimensional topographic information provided by conoscopic holography. The figure schematically depicts the proposed hybrid instrument. The output of the conoscopic holographic portion of the instrument is a topographical map of the surface; the output of the Raman portion of the instrument is hyperspectral Raman data, from which the chemical and/or biological composition of the surface would be deduced. By virtue of the basic principles of design and operation of the instrument, the hyperspectral image data would be inherently spatially registered with the topographical data. In conoscopic holography, the object and reference beams of classical holography are replaced by the ordinary and extraordinary components generated by a single beam traveling through a birefringent, uniaxial crystal. In the basic conoscopic configuration, a laser light is projected onto a specimen and the resulting illuminated spot becomes a point source of diffuse light that propagates in every direction. The laser beam is rasterscanned in two dimensions (x and y) perpendicular to the beam axis (z), and at each x,y location, the pattern of interference between the ordinary and extraordinary rays is recorded. The recorded interferogram constitutes the conoscopic hologram. Of particular significance for the proposed instrument is that the conoscopic hologram contains information on the z coordinate (height) of the illuminated surface spot. Hence, a topographical map of the specimen is constructed point-by-point by rastering the laser beam in the x and y directions and correlating the x and y coordinates with the z information obtained from the interferograms. Conoscopic imaging is an established method, and conoscopic laboratory instruments for surface metrology are commercially available. In Raman spectroscopy of a surface, one measures the spectrum

  6. Scalable Optical Architectures for Electronic Holography.

    NASA Astrophysics Data System (ADS)

    St.-Hilaire, Pierre

    Holography has long been recognized as an effective way to convey the information of complex 3-dimensional structures such as those encountered in medical imaging, computer-aided design and navigation. However, attempts at implementing a real-time holographic display device have been hampered by the enormous space-bandwidth products required by such a task. I present here an approach that alleviates many of the problems encountered in previous attempts at real-time computer generated holography. The basic idea underlying the MIT electronic holography display is the use of an acousto-optic modulator as a dynamic display medium and the synthesis of a large aperture by scanning the image of the modulator. The original implementation of the display is unsuitable for images larger than a few square centimeters, because the necessary optical space -bandwidth product become unmanageable by the electronic and optical subsystems. The goal of this thesis is to demonstrate that large displays can be implemented with available technologies if we break the space bandwidth product in small segments at both the image plane and Fourier plane, i.e. if we take a parallel approach. In the image plane domain the display space-bandwidth product can be increased by simultaneously writing multiple acoustic columns on a single crystal and then optically multiplexing the resulting holograms. I discuss the proper conditions under which the interline crosstalk remains acceptable and introduce a scanning geometry that allows for such a multiple channel operation. The Fourier domain can also be segmented in small domains, each being processed by a different scanning element. I describe the behavior of the image when such a segmentation in implemented and I then derive the conditions under which it can be effected without incurring significant image degradation. I finally describe the implementation of these concepts into a large scale holographic display which includes the use of an array of 6

  7. Compact handheld digital holographic microscopy system development

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Sui, Liansheng; Asundi, Anand

    2009-12-01

    Development of a commercial prototype of reflection handheld digital holographic microscope system is presented in this paper. The concept is based on lensless magnification using diverging wave geometry and the miniaturized optical design which provides a compact packaged system. The optical geometry design provides the same curvature of object and reference waves and thus phase aberration is automatically compensated. The basic methodology of the system is developed and it further explored for 3D imaging, static deflection and vibration measurements applications. Based on the developed methodology an user-friendly software is developed suitable for industrial shop floor environment. The applications of the system are presented for 3D imaging, static deflection measurement and vibration analysis of MEMS samples. The developed system is well suitable for the testing of MEMS and Microsystems samples, with full-field and real-time features, for static and dynamic inspection and characterization and to monitor micro-fabrication process.

  8. Compact handheld digital holographic microscopy system development

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Sui, Liansheng; Asundi, Anand

    2010-03-01

    Development of a commercial prototype of reflection handheld digital holographic microscope system is presented in this paper. The concept is based on lensless magnification using diverging wave geometry and the miniaturized optical design which provides a compact packaged system. The optical geometry design provides the same curvature of object and reference waves and thus phase aberration is automatically compensated. The basic methodology of the system is developed and it further explored for 3D imaging, static deflection and vibration measurements applications. Based on the developed methodology an user-friendly software is developed suitable for industrial shop floor environment. The applications of the system are presented for 3D imaging, static deflection measurement and vibration analysis of MEMS samples. The developed system is well suitable for the testing of MEMS and Microsystems samples, with full-field and real-time features, for static and dynamic inspection and characterization and to monitor micro-fabrication process.

  9. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix.

    PubMed

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-06-01

    We demonstrate lensless quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED matrix. Based on the multi-wavelength phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of 3.72μm and an axial resolution of 5μm, across a wide field-of-view of 24mm2. We experimentally demonstrate the success of our method by imaging cheek cells, micro-beads, and fertilized eggs of Parascaris equorum. Such high-throughput and miniaturized imaging device can provide a cost-effective tool for telemedicine applications and point-of-care diagnostics in resource-limited environments. PMID:26072796

  10. Quantitative evaluation of spatial phase light modulator characteristics in Fresnel incoherent correlation holography

    NASA Astrophysics Data System (ADS)

    Man, Tianlong; Wan, Yuhong; Chen, Hao; Jiang, Zhuqing; Wang, Dayong

    2012-11-01

    Fresnel incoherent correlation holography (FINCH) is one of the methods for recording holograms of 3D samples under incoherent illumination. The FINCH combines the theory of spatial self-coherence and the in-line phase-shift technology together to form a complex hologram. A spatial phase light modulator (SPLM) plays important roles as the dynamic diffraction optical element (DOE) and phase shifter. When the incoherent light generated from each object point of the 3D samples incidents to a SPLM, it can be split into two spatial self-coherent beams with different curvatures. The hologram caused by these two beams can then be captured by an image detector. Three holograms with different phase shift are recorded sequentially for eliminating the zero-order and twin image, and then a complex valued hologram is obtained by superposing the three holograms. In this paper, the modulation characteristics of SPLM and phase shift error in FINCH are investigated. Based on digital holography, phase modulation characteristics of SPLM are measured under coherent and narrow-bandwidth incoherent illumination respectively. Phase shift error due to quasi monochromatic light illumination is then analyzed in FINCH. The effect of phase shift error on the quality of reconstructed image is also investigated. It is demonstrated the FINCH setup has a smaller phase shift error by experiment.

  11. Industrial Holography - The Rolls-Royce Experience

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Jones, D. G.

    1987-10-01

    Holographic interferometry has provided the engineer with one of the most powerful and versatile measurement tools of the twentieth century. It seems only natural that such a technique should have found widespread application in the aero-engine industry. The quest for ever more fuel-efficient gas-turbine engines is constantly stretching and extending the frontiers of technology. It creates an increasing need for understanding of the mechanical and aerodynamic behaviour of components under extreme conditions. Holography has recently achieved new importance as a means of providing the data necessary for the development and validation of computer models. Increasingly, design work is being performed by the application of complicated three-dimensional computer models to gas flow prediction and the use of finite-element models for the investigation of mechanical behaviour and stress.

  12. Quantum probabilities for inflation from holography

    NASA Astrophysics Data System (ADS)

    Hartle, James B.; Hawking, S. W.; Hertog, Thomas

    2014-01-01

    The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in hbar quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.

  13. X-ray holography in-flight

    NASA Astrophysics Data System (ADS)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Ekeberg, Tomas; Hantke, Max; Daurer, Benedikt; Nettelblad, Carl; Bielecki, Johan; Faigel, Guila; Hasse, Dirk; Morgan, Andrew; Mühlig, Kerstin; Seibert, Marvin; Chapman, Henry; Hajdu, Janos; Maia, Filipe; Moeller, Thomas; Bostedt, Christoph

    2016-05-01

    The advent of X-ray free-electron lasers, delivering ultra intense femtosecond X-ray flashes, opens the door for structure determination of single nanoparticles and biosamples with single shots. The first X-ray diffraction imaging experiments at LCLS delivered promising results on samples in the gas phase. However, the reconstruction of non-periodic structures is still challenging due to the loss of phase information. Meanwhile, X-ray holographic approaches allow for recording the phase directly into the diffraction image. In my talk, I will present the first successful proof-of-principle experiment for ``in-flight''-holography with free viruses. Our experiments pave the way for unique studies on levitating nanospecimen that are of central interest in several scientific communities including atmosphere research, chemistry, material sciences, and studies on matter under extreme conditions.

  14. Tailoring ultrasonic beams with optoacoustic holography

    NASA Astrophysics Data System (ADS)

    Meyer, Alex; Gspan, Stefan J.; Bernet, Stefan; Ritsch-Marte, Monika

    2003-06-01

    A combination of laser-induced ultrasound generation and ultrasonic holography for spatial control of the generated ultrasonic pulse is presented. Ultrasound is produced by absorption of laser pulses at an absorbing layer in a water tank via the optoacoustic effect. In order to produce a defined ultrasonic frequency in the MHz range, the laser pulses are harmonically time-modulated using an acousto-optic modulator (AOM). Additionally, the laser intensity is spatially controlled. This is realized with a high resolution liquid crystal spatial light modulator (LCD). A computer generated pattern is displayed at the LCD and projected by the expanded laser beam to an absorptive layer in the water tank. As a result, the emitted ultrasonic wave emerges in a predetermined way, which is an acoustical analogue to the effect of a "diffractive optical element" in laser optics. The flexible method of optical ultrasound generation and diffractive steering promises new applications in medical and technical ultrasound diagnostics.

  15. Entanglement entropy in higher derivative holography

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Kaviraj, Apratim; Sinha, Aninda

    2013-08-01

    We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena [1] have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.

  16. Holography of 3D flat cosmological horizons.

    PubMed

    Bagchi, Arjun; Detournay, Stéphane; Fareghbal, Reza; Simón, Joan

    2013-04-01

    We provide a first derivation of the Bekenstein-Hawking entropy of 3D flat cosmological horizons in terms of the counting of states in a dual field theory. These horizons appear in the flat limit of nonextremal rotating Banados-Teitleboim-Zanelli black holes and are remnants of the inner horizons. They also satisfy the first law of thermodynamics. We study flat holography as a limit of AdS(3)/CFT(2) to semiclassically compute the density of states in the dual theory, which is given by a contraction of a 2D conformal field theory, exactly reproducing the bulk entropy in the limit of large charges. We comment on how the dual theory reproduces the bulk first law and how cosmological bulk excitations are matched with boundary quantum numbers. PMID:25166977

  17. Quantum probabilities for inflation from holography

    SciTech Connect

    Hartle, James B.; Hawking, S.W.; Hertog, Thomas E-mail: S.W.Hawking@damtp.cam.ac.uk

    2014-01-01

    The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in h-bar quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.

  18. Holography in museums of the Ukraine

    NASA Astrophysics Data System (ADS)

    Markov, Vladimir B.; Mironyuk, G. I.

    1991-02-01

    The capability of a hologram to reproduce the three-dimensional image of a real objects - its optical replica, atracts attention of specialists engaged in different domains of science and engineering. Holographic methods for image formation are rather interesting for medicine and biology, for systems of visual information representation (in making versatile simulator, for example) and for facilities of non-destructive testing of units and mechanisms, for simulation, etc. Applications of holography to museum practice seems to be rather promising. In this case holographic methods may be quite timely both as a means of visual information imaging and as a means capable of appreciably raising and improving the state of technical equipment of present-day museums.

  19. Random phase-free computer holography and its applications

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2016-06-01

    Random phase is required in computer-generated hologram (CGH) to widely diffuse object light and to avoid its concentration on the CGH; however, the random phase causes considerable speckle noise in the reconstructed image and degrades the image quality. We introduce a simple and computationally inexpensive method that improves the image quality and reduces the speckle noise by multiplying the object light with the designed convergence light. We furthermore propose the improved method of the designed convergence light with iterative method to reduce ringing artifacts. Subsequently, as the application, a lensless zoomable holographic projection is introduced.

  20. LED-based digital hologram reconstruction by compressive sensing

    NASA Astrophysics Data System (ADS)

    Weng, Jiawen; Yang, Chuping; Qin, Yi; Li, Hai

    2015-10-01

    LED-based digital hologram, considered as low-coherence digital hologram, is confined to in-line holography because the interference fringes could be observed only when the angle between the object and reference wave is small enough. So, phase-shifting technique is usually employed. But it is not fit for dynamic analysis for demanding more than one hologram. A numerical reconstruction method based on compressive sensing theory for single LED-based digital hologram is proposed to achieve dynamic analysis. By this method, the out-of-focus twin image and the coherent noise can be inhibited to some extent. The theory is presented in detail, and experimental result on LED-based digital holography with USAF pattern as test target, is performed to demonstrate the feasibility and validity of the method.

  1. Image digitizer system for bubble chamber laser

    SciTech Connect

    Haggerty, H

    1986-12-08

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed. (LEW)

  2. Methods for coherent lensless imaging and X-ray wavefront measurements

    NASA Astrophysics Data System (ADS)

    Guizar Sicairos, Manuel

    requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full

  3. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    NASA Astrophysics Data System (ADS)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  4. Optical interference with digital holograms

    NASA Astrophysics Data System (ADS)

    Gossman, David; Perez-Garcia, Benjamin; Hernandez-Aranda, Raul I.; Forbes, Andrew

    2016-07-01

    In 1804, Thomas Young reported the observation of fringes in the intensity of light, and attributed it to the concept of interference between coherent sources. In this paper, we revisit this famous experiment and show how it can easily be demonstrated with digital holography. We look closely at the concept of interference with light and ask, "fringes in what?" We then show that depending on how light interferes, fringe patterns in observables other than intensity can be seen. We explain this conceptually and demonstrate it experimentally. We provide a holistic approach to the topic, aided by modern laboratory practices for a straightforward demonstration of the underlying physics.

  5. Generation of digital textured surface models from hologram recordings

    NASA Astrophysics Data System (ADS)

    Frey, Susanne; Thelen, Andrea; Hirsch, Sven; Hering, Peter

    2007-04-01

    Digital sensors and fast digital image processing facilitate the use of pulsed holography for 3D surface measurement of moving objects. The real image of a hologram is reconstructed optically. A sequence of high-resolution projection images of the real image with a varying distance to the hologram is recorded digitally. Focus detection in this image sequence by digital image processing yields the shape of the recorded object. The image intensity serves as a precise pixel-matching texture. An application of this concept is the generation of a textured 3D computer model of a facial surface from a portrait hologram.

  6. Practical holography IV; Proceedings of the Meeting, LOS Angeles, CA, Jan. 18, 19, 1990

    NASA Astrophysics Data System (ADS)

    Benton, Stephen A.

    1990-05-01

    Various papers on practical holography are presented. Individual topics addressed include: dichromated gelatin for holographic optical elements, novel enhancement of photopolymers, photopolymers for holography, new rehalogenating bleach for the production of Lippmann holograms, effects of bleach constituents on the performance of silver-halide holograms, highly sensitive positive resists for holography, holographic 3-D printer, generation of high-quality holograms with liquid-crystal SLM, display holography for medical tomography, 3-D display of ultrasound B-mode image by holographic stereogram, edge-lit rainbow holograms, electronic display system for computational holography, and DCG recording with red light. Also discussed are: corneal topography via two-wavelength holography, optically produced cylindrical HOEs for signal-processing applications, hybrid diffractive-refractive telescope, volume IR reflective gratings, holographic lithography for microcircuits, photorefractive waveguide grating switches for optical interconnects, non-Fourier computer-generated holography for 3-D display, phase selection in binary-phase-only filters for optical pattern recognition.

  7. X-ray holography at Lawrence Livermore National Laboratory

    SciTech Connect

    Trebes, J.; Annese, C.; Birdsall, D.; Brase, J.; Gray, J.; Lane, S.; London, R.; Matthews, D.; Peters, D.; Pinkel, D.; Stone, G.; Rapp, D.; Rosen, M.; Weier, U.; Yorkey, T.

    1990-10-11

    The x-ray holography program at the Lawrence Livermore National Laboratory has two principal goals: (1) the development of x-ray diffraction techniques for DNA sequence analysis and (2) the development of x-ray laser holography for structural analysis of intact biological cells and organelles. DNA sequence analysis will be accomplished by applying x-ray diffraction techniques to determine the ensemble average of the sequence of labels along the individual elements of crystalline DNA. X-ray laser holographic imaging will be accomplished by applying three dimensional x-ray holography to elucidate the structure of few hundred angstrom objects such as 300 {Angstrom} chromatin fibers, nuclear pores and nucleic acid replication complexes in living cells. Existing laboratory x-ray lasers will be utilized to produce flash x-ray holograms of the biological structures.

  8. Pit Distribution Design for Computer-Generated Waveguide Holography

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Imai, Tadayuki; Ueno, Masahiro; Ohtani, Yoshimitsu; Endo, Masahiro; Kurokawa, Yoshiaki; Yoshikawa, Hiroshi; Watanabe, Toshifumi; Fukuda, Makoto

    2008-02-01

    Multilayered waveguide holography (MWH) is one of a number of page-oriented data multiplexing holographies that will be applied to optical data storage and three-dimensional (3D) moving images. While conventional volumetric holography using photopolymer or photorefractive materials requires page-by-page light exposure for recording, MWH media can be made by employing stamping and laminating technologies that are suitable for mass production. This makes devising an economical mastering technique for replicating holograms a key issue. In this paper, we discuss an approach to pit distribution design that enables us to replace expensive electron beam mastering with economical laser beam mastering. We propose an algorithm that avoids the overlapping of even comparatively large adjacent pits when we employ laser beam mastering. We also compensate for the angular dependence of the diffraction power, which strongly depends on pit shape, by introducing an enhancement profile so that a diffracted image has uniform intensity.

  9. Shallow depth subsurface imaging with microwave holography

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Andrei; Ivashov, Sergey; Razevig, Vladimir; Vasiliev, Igor; Bechtel, Timothy

    2014-05-01

    In this paper, microwave holography is considered as a tool to obtain high resolution images of shallowly buried objects. Signal acquisition is performed at multiple frequencies on a grid using a two-dimensional mechanical scanner moving a single transceiver over an area of interest in close proximity to the surface. The described FFT-based reconstruction technique is used to obtain a stack of plan view images each using only one selected frequency from the operating waveband of the radar. The extent of a synthetically-formed aperture and the signal wavelength define the plan view resolution, which at sounding frequencies near 7 GHz amounts to 2 cm. The system has a short depth of focus which allows easy selection of proper focusing plane. The small distance from the buried objects to the antenna does not prevent recording of clean images due to multiple reflections (as happens with impulse radars). The description of the system hardware and signal processing technique is illustrated using experiments conducted in dry sand. The microwave images of inert anti-personnel mines are demonstrated as examples. The images allow target discrimination based on the same visually-discernible small features that a human observer would employ. The demonstrated technology shows promise for modification to meet the specific practical needs required for humanitarian demining or in multi-sensor survey systems.

  10. Application of neutron holography to polycrystalline samples

    NASA Astrophysics Data System (ADS)

    Szakál, A.; Markó, M.; Krexner, G.; Cser, L.

    2015-07-01

    Neutron holography can be an efficient tool to investigate the local real-space structure of crystalline materials around specific probe nuclei serving as radiation source or detector. The positions of atoms in the neighborhood of such nuclei are observable with high (picometry) accuracy. Measurements of this type require orientational order and, therefore, restrict the range of study essentially to single crystals. However, if the information searched for is limited to the distances between the probe and the surrounding nuclei instead of their positions, holographic techniques can be applied to polycrystalline samples as well. In order to prove this statement, the expected multi-wavelength holographic signal of a polycrystalline sample was calculated. The holographic signal can be obtained by applying time-of-flight techniques, and by using a proper mathematical procedure, the distances between the probe nucleus and the surrounding nuclei can be reconstructed. A model calculation taking into account real instrument parameters confirms this expectation. The experimental verification of the predictions can be undertaken at existing pulsed neutron sources being able to provide the required experimental conditions. This new method opens the way to expand the field of investigation towards gaining information about the local atomic structure of polycrystalline materials which are of importance also in various applications.

  11. m-Learning and holography: Compatible techniques?

    NASA Astrophysics Data System (ADS)

    Calvo, Maria L.

    2014-07-01

    Since the last decades, cell phones have become increasingly popular and are nowadays ubiquitous. New generations of cell phones are now equipped with text messaging, internet, and camera features. They are now making their way into the classroom. This is creating a new teaching and learning technique, the so called m-Learning (or mobile-Learning). Because of the many benefits that cell phones offer, teachers could easily use them as a teaching and learning tool. However, an additional work from the teachers for introducing their students into the m-Learning in the classroom needs to be defined and developed. As an example, optical techniques, based upon interference and diffraction phenomena, such as holography, appear to be convenient topics for m-Learning. They can be approached with simple examples and experiments within the cell phones performances and classroom accessibility. We will present some results carried out at the Faculty of Physical Sciences in UCM to obtain very simple holographic recordings via cell phones. The activities were carried out inside the course on Optical Coherence and Laser, offered to students in the fourth course of the Grade in Physical Sciences. Some open conclusions and proposals will be presented.

  12. Industrial Applications Of Holography In Aerospatiale

    NASA Astrophysics Data System (ADS)

    Le Floc'H, C.; Gagnage, B.

    1982-10-01

    AEROSPAT1ALE occupies a leading position in the European aerospace industry. Its industrial potential is exemplified by : - Its 4 divisions : Aircraft, Helicopters, Tactical Missiles and Space and Balistic Systems. - Its 11 factories. - Its 6 subsidiaries. The vitality of the firm can be demonstrated by a few figures : - Turnover (fiscal 1980 without the subsidiaries), 13, 169 millions French Francs. - Exports (in 1980), 48,2%. - Workforce (on 31st December 1980), 38,857 of whom 3,919 were with the subsidiaries. Among Aerospatiale products, we can quote : - Ariane. - Airbus. - Super Puma, Astar, Dauphin. - Tactical Missiles AS 15, AS 30, AM 59. - Satellites Meteostat, Intelsat V and Exosat. Certain projects were carried out in multi-national cooperation. These high-performance, high-reliability products presuppose the implementation of advanced technology. Hence, in order to maintain their standard, we use non-destructive testing thechniques such as X-rays or ultrasonics which have given complete satisfaction in the detection of flaws. However, to reduce the inspection contribution to the cost price of our products, we were led to develop new, large-scale methods, such as acoustic analysis and holographic interferometry. This paper covers the uses of holography in an industrial environment. We shall discuss the technical advantages of the method, illustrated by several examples,and the economical advantages, demonstrated by the practical example of an inspection line. Finally for the enhancement of Aerospatiale's technology (new materials, and holographic inspection) we will go on to outline other fields of activity.

  13. A simplified holography based superresolution system

    NASA Astrophysics Data System (ADS)

    Mudassar, Asloob Ahmad

    2015-12-01

    In this paper we are proposing a simple idea based on holography to achieve superresolution. The object is illuminated by three fibers which maintain the mutual coherence between the light waves. The object in-plane rotation along with fiber-based illumination is used to achieve superresolution. The object in a 4f optical system is illuminated by an on-axis fiber to make the central part of the object's spectrum to the pass through the limiting square-aperture placed at the Fourier plane and the corresponding hologram of the image is recorded at the image plane. The on-axis fiber is switched off and the two off axis fibers (one positioned on the vertical axis and the other positioned on diagonal) are switched on one by one for each orientation of the object position. Four orientations of object in-plane rotation are used differing in angle by 90°. This will allow the recording of eight holographic images in addition to the one recorded with on-axis fiber. The three fibers are at the vertices of a right angled isosceles triangle and are aligned toward the centre of the lens following the fiber plane to generate plane waves for object illumination. The nine holographic images are processed for construction of object's original spectrum, the inverse of which gives the super-resolved image of the original object. Mathematical modeling and simulations are reported.

  14. Acoustic-emission linear-pulse holography

    SciTech Connect

    Collins, H.D.; Lemon, D.K.; Busse, L.J.

    1982-06-01

    This paper describes Acoustic Emission Linear Pulse Holography which combines the advantages of linear imaging and acoustic emission into a single NDE inspection system. This unique system produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. Conventional linear holographic imaging uses an ultrasonic transducer to transmit energy into the volume being imaged. When the crack or defect reflects that energy, the crack acts as a new source of acoustic waves. To formulate an image of that source, a receiving transducer is scanned over the volume of interest and the phase of the received signals is measured at successive points on the scan. The innovation proposed here is the utilization of the crack generated acoustic emission as the acoustic source and generation of a line image of the crack as it grows. A thirty-two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The phases are calculated using the pulse time-of-flight (TOF) times from the reference transducer to the array of receivers. Computer reconstruction of the image is accomplished using a one-dimensional FFT algorithm (i.e., backward wave). Experimental results are shown which graphically illustrate the unique acoustic emission images of a single point and a linear crack in a 100 mm x 1220 mm x 1220 mm aluminum plate.

  15. Synthetic holography based on scanning microcavity

    NASA Astrophysics Data System (ADS)

    Di Donato, A.; Farina, M.

    2015-11-01

    Synthetic optical holography (SOH) is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA) equal to 0.1 and a Mode Field Diameter (MDF) of 5.6 μm.

  16. Holography And Holometry Applications In Dental Research

    NASA Astrophysics Data System (ADS)

    Willenborg, George C.

    1987-06-01

    The earliest reference to holographic applications appeared in the dental literature in 1972 when Wictorin, Bjelkhagen and Abramson described a method to study elastic deformation of defective gold solder joints in simulated fixed bridges. Their paper, published in the Swedish dental literature, offered a concise presentation of the interferometry technique which led to the development of other research applications of holographic interferometry(holometry) in dentistry. In this presentation, the development and application of the interferometry technique in the dental field will be discussed. Various interesting and potentially useful applications of holography have appeared in the dental literature over the past decade. Some of these, which will be discussed, include the use of holograms as a storage medium for dental study models, multiplexing of computer(CT) scan sections to form white light viewable holograms and the potential application of holographic training aids in the teaching of the basic courses of dental anatomy and restorative dentistry. In addition, some unique related applications will be mentioned including a laser reflection method for accurate non-contact measurement of tooth mobility/movement and a technique for contour mapping of occlusal surfaces to measure wear of restorative materials.

  17. Applications Of Endoscopic Holography Through Fiber Optics

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Friedman, M. D.; Epstein, Max

    1989-10-01

    Holographic endoscopy or endoholography combines the features of endoscopy and holography. It can be utilized in holographic imaging or interferometry inside natural cavities of the body. In imaging, the ability to record a three-dimensional, large focal depth, high resolution image of internal organs and tissue may greatly enhance the detection of disease and abnormality. With contact recording endoholography it is possible to obtain high resolution holographic recordings which can be examined microscopically. In this technique, a specially designed endoscope uses a single-mode optical fiber for illumination where Denisyuk holograms are recorded on film at the endoscope's distal end. The holograms are viewed under a stereomicroscope with high magnification, allowing for the observation of individual cells. Specific dyes are used to enhance the contrast of the tissue prior to the recording of the holographic images. In endoholographic interferometry, the use of conventional multi-fiber imaging structures is sufficient to obtain an adequate recording of interference patterns. The use of conventional fiberoptic imaging structures for holographic investigations of displacement and vibration is demonstrated. Image-plane holograms are formed at the proximal output end of an imaging multifiber. Pairs of double-pulsed holograms of dynamic events are recorded, one through the multifiber, the other in a conventional manner as a standard of reference. The fringes of both holograms are practically identical. The ability to perform measurements in holographic interferometry through optical fibers should lead to further developments in medical as well as industrial applications.

  18. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  19. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  20. Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction.

    PubMed

    Li, Zeyu; Li, Lei; Qin, Yu; Li, Guangbin; Wang, Du; Zhou, Xun

    2016-09-01

    We demonstrate the enhancement of resolution and image quality in terahertz (THz) lens-free in-line digital holography by sub-pixel sampling with double-distance reconstruction. Multiple sub-pixel shifted low-resolution (LR) holograms recorded by a pyroelectric array detector (100 μm × 100 μm pixel pitch, 124 × 124 pixels) are aligned precisely to synthesize a high-resolution (HR) hologram. By this method, the lateral resolution is no more limited by the pixel pitch, and lateral resolution of 150 μm is obtained, which corresponds to 1.26λ with respect to the illuminating wavelength of 118.8 μm (2.52 THz). Compared with other published works, to date, this is the highest resolution in THz digital holography when considering the illuminating wavelength. In addition, to suppress the twin-image and zero-order artifacts, the complex amplitude distributions of both object and illuminaing background wave fields are reconstructed simultaneously. This is achieved by iterative phase retrieval between the double HR holograms and background images at two recording planes, which does not require any constraints on object plane or a priori knowledge of the sample. PMID:27607716

  1. Probing Molecular Dynamics by Laser-Induced Backscattering Holography.

    PubMed

    Haertelt, Marko; Bian, Xue-Bin; Spanner, Michael; Staudte, André; Corkum, Paul B

    2016-04-01

    We use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H_{2} and D_{2} molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H_{2} and D_{2} with subangstrom spatial and subcycle temporal resolution. In addition, we show that attosecond electron dynamics can be resolved. These results open a new avenue for ultrafast studies of molecular dynamics in small molecules. PMID:27081975

  2. Probing Molecular Dynamics by Laser-Induced Backscattering Holography

    NASA Astrophysics Data System (ADS)

    Haertelt, Marko; Bian, Xue-Bin; Spanner, Michael; Staudte, André; Corkum, Paul B.

    2016-04-01

    We use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H2 and D2 molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H2 and D2 with subangstrom spatial and subcycle temporal resolution. In addition, we show that attosecond electron dynamics can be resolved. These results open a new avenue for ultrafast studies of molecular dynamics in small molecules.

  3. Holography and the virtual patient: the holographic medical image

    NASA Astrophysics Data System (ADS)

    Ko, Kathryn; Erickson, Ronald R.; Webster, John M.

    1996-12-01

    Practical holographic systems utilizing the pulsed laser are finding potential applications in medicine. Exploiting both the hologram's true 3D image and holographic interferometry these techniques enhance the physician's vision beyond the 2D radiological imaging of even the best CT and MRI. The authors describe the use of pulsed laser holography as applied to the morphological specialties: anatomy, pathology, and surgery. The authors report on the Holographic Brain Anatomy Atlas for medical education; pathologic documentation with holography, and the use of holographic interferometry in surgical planning. The techniques are outlined and a discussion on the interpretation of holographic interferometry with living subjects is provided.

  4. Phase estimation from digital holograms without unwrapping.

    PubMed

    Iglesias, Ignacio

    2014-09-01

    Digital holography is a convenient method for determining the phase induced by transparent objects. When the phase change is higher than 2π, an unwrapping algorithm is needed to provide a useful phase map. In the presence of noise, this process is not trivial and not fully resolved. In this paper a procedure is proposed to circumvent the need for unwrapping by estimating the phase from its gradient, which is directly computed from the reconstructed field. Application of the method to digital holograms of microscopic samples is demonstrated. PMID:25321512

  5. Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements

    NASA Astrophysics Data System (ADS)

    Barnhart, D. H.; Koek, W. D.; Juchem, T.; Hampp, N.; Coupland, J. M.; Halliwell, N. A.

    2004-04-01

    Recent trends in optical metrology suggest that, in order for holographic measurement to become a widespread tool, it must be based on methods that do not require physical development of the hologram. While digital holography has been successfully demonstrated in recent years, unfortunately the limited information capacity of present electronic sensors, such as CCD arrays, is still many orders of magnitude away from directly competing with the high-resolution silver halide plates used in traditional holography. As a result, present digital holographic methods with current electronic sensors cannot record object sizes larger than several hundred microns at high resolution. In this paper, the authors report on the use of bacteriorhodopsin (BR) for digital holography to overcome these limitations. In particular, BR is a real-time recording medium with an information capacity (5000 line-pairs/mm) that even exceeds high resolution photographic film. As such, a centimetre-square area of BR film has the same information capacity of several hundred state-of-the-art CCD cameras. For digital holography, BR temporarily holds the hologram record so that its information content can be digitized for numeric reconstruction. In addition, this paper examines the use of BR for optical reconstruction without chemical development. When correctly managed, it is found that BR is highly effective, in terms of both quality and process time, for three-dimensional holographic measurements. Consequently, several key holographic applications, based on BR, are proposed in this paper.

  6. Single-shot dual-polarization holography: measurement of the polarization state of a magnetic sample

    NASA Astrophysics Data System (ADS)

    Khodadad, Davood; Amer, Eynas; Gren, Per; Melander, Emil; Hällstig, Emil; Sjödahl, Mikael

    2015-08-01

    In this paper a single-shot digital holographic set-up with two orthogonally polarized reference beams is proposed to achieve rapid acquisition of Magneto-Optical Kerr Effect images. Principles of the method and the background theory for dynamic state of polarization measurement by use of digital holography are presented. This system has no mechanically moving elements or active elements for polarization control and modulation. An object beam is combined with two reference beams at different off-axis angles and is guided to a detector. Then two complex fields (interference terms) representing two orthogonal polarizations are recorded in a single frame simultaneously. Thereafter the complex fields are numerically reconstructed and carrier frequency calibration is done to remove aberrations introduced in multiplexed digital holographic recordings. From the numerical values of amplitude and phase, a real time quantitative analysis of the polarization state is possible by use of Jones vectors. The technique is demonstrated on a magnetic sample that is a lithographically patterned magnetic microstructure consisting of thin permalloy parallel stripes.

  7. Digital reverse propagation in focusing Kerr media

    SciTech Connect

    Goy, Alexandre; Psaltis, Demetri

    2011-03-15

    Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The reverse propagation method used in digital holography to form images from recorded holograms works even in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics 3, 211 (2009).]. Here, we report experimental results in focusing media.

  8. Spaceflight Holography Investigation in a Virtual Apparatus

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The movement of a particle in a fluid is one of the most fundamental processes in physics and plays an important role in materials science. For example, the physics of crystal growth from a nucleation site in solution can be dominated by movement of the solution over the crystal surface. Gravity usually dominates the equations of motion, but in microgravity other terms can dominate, making the equation much more complex. Until recently, the equations were solved only by numerical methods and/or by neglecting terms. During this study, we discovered an exact solution to the equations, which shows that the usually neglected terms become extremely important in microgravity. We also developed diagnostic recording methods using holography to save all of the particle field data, allowing the experiment to essentially be transferred from space back to earth in what we call the virtual apparatus . We will record holograms of particle distributions in motion in microgravity and bring them back to earth for analysis, allowing the study of the full three-dimensional motion of sets of particles, allowing us to test the new analytical solutions. The experiment will also provide accurate measurements of the quasi-steady acceleration of the space platform and other interesting microgravity and g-jitter effects. This program will produce the flight definition for an experiment in the microgravity environment of space to validate the theoretical model. We will design an experiment with the help of the theoretical model that is optimized for testing the model, measuring g, g-jitter, and other microgravity phenomena.

  9. X-ray holography with an atomic scatterer.

    PubMed

    Mityureva, A A; Smirnov, V V

    2016-08-01

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. PMID:27137096

  10. Intellectual property issues in holography and high tech

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya

    2004-06-01

    The author with technical education background (Ph.D. in holography) shares her 3+ years of experience working on intellectual property (IP) issues that includes patents, trademarks, and copyrights. A special attention is paid to the patent issues: the application procedure, the patent requirements, the databases for prior art search, how to make the cost efficient filing.

  11. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  12. Intraoperative brain tumor resection cavity characterization with conoscopic holography

    NASA Astrophysics Data System (ADS)

    Simpson, Amber L.; Burgner, Jessica; Chen, Ishita; Pheiffer, Thomas S.; Sun, Kay; Thompson, Reid C.; Webster, Robert J., III; Miga, Michael I.

    2012-02-01

    Brain shift compromises the accuracy of neurosurgical image-guided interventions if not corrected by either intraoperative imaging or computational modeling. The latter requires intraoperative sparse measurements for constraining and driving model-based compensation strategies. Conoscopic holography, an interferometric technique that measures the distance of a laser light illuminated surface point from a fixed laser source, was recently proposed for non-contact surface data acquisition in image-guided surgery and is used here for validation of our modeling strategies. In this contribution, we use this inexpensive, hand-held conoscopic holography device for intraoperative validation of our computational modeling approach to correcting for brain shift. Laser range scan, instrument swabbing, and conoscopic holography data sets were collected from two patients undergoing brain tumor resection therapy at Vanderbilt University Medical Center. The results of our study indicate that conoscopic holography is a promising method for surface acquisition since it requires no contact with delicate tissues and can characterize the extents of structures within confined spaces. We demonstrate that for two clinical cases, the acquired conoprobe points align with our model-updated images better than the uncorrected images lending further evidence that computational modeling approaches improve the accuracy of image-guided surgical interventions in the presence of soft tissue deformations.

  13. Conoscopic holography for image registration: a feasibility study

    NASA Astrophysics Data System (ADS)

    Lathrop, Ray A.; Cheng, Tiffany T.; Webster, Robert J., III

    2009-02-01

    Preoperative image data can facilitate intrasurgical guidance by revealing interior features of opaque tissues, provided image data can be accurately registered to the physical patient. Registration is challenging in organs that are deformable and lack features suitable for use as alignment fiducials (e.g. liver, kidneys, etc.). However, provided intraoperative sensing of surface contours can be accomplished, a variety of rigid and deformable 3D surface registration techniques become applicable. In this paper, we evaluate the feasibility of conoscopic holography as a new method to sense organ surface shape. We also describe potential advantages of conoscopic holography, including the promise of replacing open surgery with a laparoscopic approach. Our feasibility study investigated use of a tracked off-the-shelf conoscopic holography unit to perform a surface scans on several types of biological and synthetic phantom tissues. After first exploring baseline accuracy and repeatability of distance measurements, we performed a number of surface scan experiments on the phantom and ex vivo tissues with a variety of surface properties and shapes. These indicate that conoscopic holography is capable of generating surface point clouds of at least comparable (and perhaps eventually improved) accuracy in comparison to published experimental laser triangulation-based surface scanning results.

  14. Dopant profiling in the TEM, progress towards quantitative electron holography

    SciTech Connect

    Cooper, David; Truche, Robert; Chabli, Amal; Twitchett-Harrison, Alison C.; Midgley, Paul A.; Dunin-Borkowski, Rafal E.

    2007-09-26

    Off-axis electron holography has been used to characterise the dopant potential in GaAs p-n junctions. We show that the measured potential across the junctions is affected by both FIB specimen preparation and by charging in the TEM and suggest methods that can be used to minimise these problems.

  15. Comparative simulations of Fresnel holography methods for atomic waveguides

    NASA Astrophysics Data System (ADS)

    Henderson, V. A.; Griffin, P. F.; Riis, E.; Arnold, A. S.

    2016-02-01

    We have simulated the optical properties of micro-fabricated Fresnel zone plates (FZPs) as an alternative to spatial light modulators for producing non-trivial light potentials to trap atoms within a lensless Fresnel arrangement. We show that binary (1 bit) FZPs with wavelength (1 μm) spatial resolution consistently outperform kinoforms of spatial and phase resolution comparable to commercial SLMs in root mean square error comparisons, with FZP kinoforms demonstrating increasing improvement for complex target intensity distributions. Moreover, as sub-wavelength resolution microfabrication is possible, FZPs provide an exciting possibility for the creation of static cold-atom trapping potentials useful to atomtronics, interferometry, and the study of fundamental physics.

  16. Stimulated Raman scattering holography for time-resolved imaging of methane gas.

    PubMed

    Amer, Eynas; Gren, Per; Edenharder, Stefan; Sjödahl, Mikael

    2016-05-01

    In this paper, pulsed digital holographic detection is coupled to the stimulated Raman scattering (SRS) process for imaging gases. A Q-switched Nd-YAG laser (532 nm) has been used to pump methane gas (CH4) at pressures up to 12 bars. The frequency-tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) has been tuned to 629.93 nm so that the frequency difference between the pump (532 nm) and the Stokes beams fits a Raman active vibrational mode of the methane molecule (2922  cm-1). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped in time, space, and polarization on the gas molecules, resulting in a stimulated Raman gain of the Stokes beam and a corresponding loss of the pump beam through the SRS process. The resulting gain of the Stokes beam has been detected using pulsed digital holography by blending it with a reference beam on the detector. Two holograms of the Stokes beam, without and with the pump beam fringes present, were recorded. Intensity maps calculated from the recorded digital holograms showed amplification of the Stokes beam at the position of overlap with the pump beam fringes and the gas molecules. The gain of the Stokes beam has been separated from the background in the Fourier domain. A gain of about 4.5% at a pump beam average intensity of 4  MW/cm2 and a Stokes beam intensity of 0.16  MW/cm2 have been recorded at a gas pressure of 12 bars. The gain decreased linearly with decreasing gas pressure. The results show that SRS holography is a promising technique to pinpoint a specific species and record its spatial and temporal distribution. PMID:27140351

  17. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  18. Some Remarks on the Historical Origin and Current Prospects of Holography

    NASA Astrophysics Data System (ADS)

    Sieroka, Norman

    2015-01-01

    Holography is sometimes claimed to be a fundamental principle in the advancement of quantum gravity. This paper critically evaluates this claim and provides a look back at an important historical forerunner of the modern concept of holography, which is to be found in the work of Hermann Weyl. By the same token, a brief and rather skeptical response to the recent and broad public interest in holography will be given.

  19. Optical holography applications for the zero-g Atmospheric Cloud Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1974-01-01

    A complete description of holography is provided, both for the time-dependent case of moving scene holography and for the time-independent case of stationary holography. Further, a specific holographic arrangement for application to the detection of particle size distribution in an atmospheric simulation cloud chamber. In this chamber particle growth rate is investigated; therefore, the proposed holographic system must capture continuous particle motion in real time. Such a system is described.

  20. Reconstruction of images from Gabor zone plate gamma-ray holography

    NASA Astrophysics Data System (ADS)

    Unwin, Clare E.; Rew, G. A. A.; Perks, J. R.; Beynon, T. D.; Scott, Malcolm C.

    1999-09-01

    Zone plate holography is a way of obtaining 3D images from a single exposure. Unlike conventional holography, coherent radiation sources are not required. Gama ray zone plate holography can be used to image gamma rays emitted by radiopharmaceuticals used in nuclear medicine. This work concerns the computer based reconstruction of gamma ray holograms. Reconstruction algorithms including correlation and Wiener filtering are described. The images obtained using the different methods are compared.