Science.gov

Sample records for les jets turbulents

  1. DNS and LES/FMDF of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  2. LES/FMDF of turbulent jet ignition in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  3. Modeling studies of a turbulent pulsed jet flame using LES/PDF

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Wang, Haifeng

    2015-11-01

    The combustion field in a pulsed turbulent piloted jet flame is studied using an advanced large eddy simulation (LES) / probability density function (PDF) method. Measurement data with a joint OH-PLIF/OH* chemiluminescence/LDV system are available including the temporal series of the axial velocity and planar OH images. A time-dependent inflow condition is specified based on the measurement data. A direct comparison of the mean and rms velocities from the calculations and from the measurement shows a satisfactory prediction of the flow fields by using the employed modeling methods. The predicted OH mass fractions are compared qualitatively with the measured OH images at selected temporal and spatial locations. The comparison shows a good agreement. Conditional quantities and flame index are extracted from the simulations to examine the bimodal and multi-regime combustion dynamics in the flame. This paper is based upon work supported by the National Science Foundation under Grant No. CBET-1336075.

  4. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.

  5. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that result in having dreams come true. This paper primarily addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. It also addresses the latter problem in discussing what are relevant measures critical for aeroacoustics that should be used in validating LES codes. These new diagnostic techniques deliver measurements and flow statistics of increasing sophistication and capability, but what of their accuracy? And what are the measures to be used in validation? This paper argues that the issue of accuracy be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it is argued that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound.

  6. DNS of autoigniting turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan; Mahesh, Krishnan

    2014-11-01

    Direct numerical simulation of a round turbulent hydrogen jet injected into vitiated coflowing air is performed at a jet Reynolds number of 10,000 and the results are discussed. A predictor-corrector density based method for DNS/LES of compressible chemically reacting flows is developed and used on a cylindrical grid. A novel strategy to remove the center-line stiffness is developed. A fully developed turbulent pipe flow simulation is prescribed as the velocity inlet for the fuel jet. The flame base is observed to be stabilized primarily by autoignition. Further downstream the flame exhibits a diffusion flame structure with regions of rich and lean premixed regimes flanking the central diffusion flame. The lift-off height is well predicted by a simple relation between the ignition delay of the most-reactive mixture fraction and the streamwise velocity of the jet and coflow.

  7. Towards LES Models of Jets and Plumes

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, N. N.

    2000-01-01

    As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally

  8. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  9. Multiwave Interactions in Turbulent Jets

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1989-01-01

    Nonlinear wave-wave interactions in turbulent jets were investigated based on the integrated energy of each scale of motion in a cross section of the jet. The analysis indicates that two frequency components in the axisymmetric mode can interact with other background frequencies in the axisymmetric mode, thereby amplifying an enormous number of other frequencies. Two frequency components in a single helical mode cannot, by themselves, amplify other frequency components. But combinations of frequency components of helical and axisymmetric modes can amplify other frequencies in other helical modes. The present computations produce several features consistent with experimental observations such as: (1) dependency of the interactions on the initial phase differences, (2) enhancement of the momentum thickness under multifrequency forcing, and (3) the increase in background turbulence under forcing. In a multifrequency-excited jet, mixing enhancement was found to be a result of the turbulence enhancement rather than simply the amplification of forced wave components. The excitation waves pump energy from the mean flow to the turbulence, thus enhancing the latter. The high frequency waves enhance the turbulence close to the jet exit, but, the low frequency waves are most effective further downstream.

  10. CHEMICALLY REACTING TURBULENT JETS

    EPA Science Inventory

    The paper reports additional experimental evidence supporting a new description of the mechanism of turbulent entrainment, mixing, and chemical reactions that is emerging from experiments in the last few years which reveal the presence of large scale structures in turbulent shear...

  11. NON-PREMIXED TURBULENT JET FLAMES

    EPA Science Inventory

    The paper, part of a general investigation of mixing and chemical reaction in turbulent jets, concerns the length of non-premixed turbulent jet flames in a stationary environment. Experimental results for the turbulent flame length of chemically reacting jets in water show both i...

  12. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  13. Flash evaporation from turbulent water jets

    NASA Astrophysics Data System (ADS)

    Bharathan, D.; Penney, T.

    1983-02-01

    Results of an experimental investigation of flash evaporation from turbulent planar and axisymmetric water jets are reported. In the range of jet thicknesses tested, for planar jets, due to shattering, evaporation is found to be nearly independent of the jet thickness. Evaporation from the planar jets was found to be dependent on the initial level of turbulence in the water supply manifold. An approximate analysis to model the evaporation process based on the physical phenomena and experimental observations is outlined. Comparisons between the experimental data and analytical predictions of the liquid temperature variation along the jet are included. Use of screens in the water jet are shown to be effective for enhancing evaporation.

  14. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  15. Aeroacoustics of Turbulent High-Speed Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1996-01-01

    Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.

  16. Turbulent wall jet in a coflowing stream

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    A theoretical investigation was undertaken to develop a relatively simple model of a two-dimensional, turbulent wall jet in a coflowing stream. The incompressible jet flow was modeled by using an integral method which includes turbulent shear stress, entrainment, and heat transfer. The method solves the conservation equations for the average jet flow properties and uses the velocity profile suggested by Escudier and Nicoll to obtain detailed characteristics of the jet on a flat plate. The analytical results compare favorably with experimental data for a range of injection velocities, which demonstrates the usefulness of the theory for estimating jet growth, velocity decay, and wall skin friction. The theory, which was applied to a Coanda jet on a circular cylinder, provided estimates of suction pressures aft of the jet exit that were in close agreement with experimental values.

  17. The numerical analysis of a turbulent compressible jet

    NASA Astrophysics Data System (ADS)

    Debonis, James Raymond

    2000-10-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Sub-grid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two and three dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and sub-grid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved sub-grid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately ½Dj. Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 Uj.

  18. Large Eddy Simulation of Multiple Turbulent Round Jets

    NASA Astrophysics Data System (ADS)

    Balajee, G. K.; Panchapakesan, Nagangudy

    2015-11-01

    Turbulent round jet flow was simulated as a large eddy simulation with OpenFoam software package for a jet Reynolds number of 11000. The intensity of the fluctuating motion in the incoming nozzle flow was adjusted so that the initial shear layer development compares well with available experimental data. The far field development of averages of higher order moments up to fourth order were compared with experiments. The agreement is good indicating that the large eddy motions were being computed satisfactorily by the simulation. Turbulent kinetic energy budget as well as the quality of the LES simulations were also evaluated. These conditions were then used to perform a multiple turbulent round jets simulation with the same initial momentum flux. The far field of the flow was compared with the single jet simulation and experiments to test approach to self similarity. The evolution of the higher order moments in the development region where the multiple jets interact were studied. We will also present FTLE fields computed from the simulation to educe structures and compare it with those educed by other scalar measures. Support of AR&DB CIFAAR, and VIRGO cluster at IIT Madras is gratefully acknowledged.

  19. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  20. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  1. Adaptive resolution LES of a reacting non-premixed jet

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos; Deiterding, Ralf; Hill, David; Pullin, Dale

    2004-11-01

    We present results of a turbulent reactive non-premixed jet using Large-Eddy Simulation (LES) performed within the blockstructured adaptive mesh refinement infrastructure AMROC. A fully compressible formulation of the transport equations and the stretched-vortex subgrid-stress model of Misra & Pullin (1997) are integrated with the assumed Beta subgrid pdf model for non-premixed combustion. Flamelet libraries are precomputed with the Cantera chemistry package. The modeling technique has been previously used and validated/verified in prior work, primarily for incompressible flows. One difficulty commonly encountered for these unstationary flows is the need to resolve certain regions of the flow field more finely than others. These can include thin shear layers and regions of steep density gradients produced by combustion. We show that adaptive resolution can be used successfully in the context of LES. This work is part of Caltech's ASC center supported by the Department of Energy (DOE).

  2. Transverse jet injection into a supersonic turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B.; Drikakis, D.

    2011-04-01

    Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge-Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin-Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 1/45th of the computational resources used in the classical LES study.

  3. A theory for turbulent curved wall jets

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1986-01-01

    A simple theoretical model is proposed to describe the flow of a turbulent wall jet along a curved surface into a quiescent atmosphere. An integral method is used to solve the momentum equation and identifies three contributions to the spreading rate of the wall jet: (1) turbulent diffusion in the wall jet; (2) wall curvature; and (3) rate of change of wall curvature. Closed from approximate solutions are found for the case of a plane wall, a circular cylinder, and a logarithmic spiral surface. Comparison with experimental data for these three cases is made showing good agreement.

  4. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  5. Synchrotron brightness distribution of turbulent radio jets

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Bridle, A. H.; Chan, K. L.

    1981-01-01

    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile.

  6. Microgravity Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  7. Ray Traces Through Unsteady Jet Turbulence

    NASA Technical Reports Server (NTRS)

    Freund, J. B.; Fleischman, T. G.

    2002-01-01

    Results of an ongoing effort to quantify the role turbulence in scattering sound in jets are reported. Using a direct numerical simulation database to provide the flow data, ray paths traced through the mean flow are compared with those traced through the actual time evolving turbulent flow. Significant scattering by the turbulence is observed. The most notable effect is that upstream traveling waves that are trapped in the potential core by the mean flow, which acts as a wave guide, easily escape in the turbulent flow. A crude statistical estimate based on ray number density suggests that directivity is modified by the turbulence, but no rigorous treatment of non-uniformities in the high-frequency approximation is attempted.

  8. Formation and inflammation of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Chen, D. Y.; Oppenheim, A. K.

    1984-01-01

    The formation and inflammation of a planar, turbulent jet in an incompressible medium is modeled numerically by the use of the random vortex method amended by a flame propagation algorithm. The results demonstrate the dominant influence of turbulent eddies and their interactions upon the development of the jet. Its growth is shown to consist of three stages: formation of small eddies, pairing of eddies with the same sign of circulation, and pairing of eddies of opposite signs. On this basis a number of features of the jet mechanism are revealed, namely penetration, engulfment, entrainment, and intermittency. Two cases of inflammation are considered. In one, the jet is ignited at the center of the orifice, the solution tracing its own inflammation. In the other, combustion is initiated across its full cross section, the results modeling the action of a turbulent torch as it spreads the flame into the combustible surroundings. In both cases the flow field is still dominated by the turbulent eddies and their interactions. However, the coherence among them is encumbered as a consequence of expansion due to the exothermicity of the combustion process.

  9. Modelisations des effets de surface sur les jets horizontaux subsoniques d'hydrogene et de methane

    NASA Astrophysics Data System (ADS)

    Gomez, Luis Fernando

    Le developpement des codes et de normes bases sur une methodologie scientifique requiert la capacite de predire l'etendue inflammable de deversements gazeux d'hydrogene sous differentes conditions. Des etudes anterieures ont deja etabli des modeles bases sur les lois de conservation de la mecanique des fluides basees sur des correlations experimentales qui permettent de predire la decroissance de la concentration et de la vitesse d'un gaz le long de l'axe d'un jet libre vertical. Cette etude s'interesse aux effets de proximite a une surface horizontale parallele sur un jet turbulent. Nous nous interessons a son impact sur l'etendue du champ de la concentration et sur l'enveloppe inflammable en particulier. Cette etude est comparative : l'hydrogene est compare au methane. Ceci permet de degager l'influence des effets de difference de la densite sur le comportement du jet, et de comparer le comportement de l'hydrogene aux correlations experimentales, qui ont ete essentiellement etablies pour le methane. Un modele decrivant l'evolution spatio-temporelle du champ de concentration du gaz dilue est propose, base sur la mecanique des fluides computationnelle. Cette approche permet de varier systematiquement les conditions aux frontieres (proximite du jet a la surface, par exemple) et de connaitre en detail les proprietes de l'ecoulement. Le modele est implemente dans le code de simulations par volumes finis de FLUENT. Les resultats des simulations sont compares avec les lois de similitudes decoulant de la theorie des jets d'ecoulements turbulents libres ainsi qu'avec les resultats experimentaux disponibles. L'effet de la difference des masses molaires des constituantes du jet et des constituantes du milieu de dispersion est egalement etudie dans le contexte du comportement d'echelle de la region developpee du jet.

  10. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  11. The Aeroacoustics of Turbulent Coanda Wall Jets

    NASA Astrophysics Data System (ADS)

    Lubert, Caroline; Fox, Jason

    2007-11-01

    Turbulent Coanda wall jets have become increasingly widely used in a variety of industrial applications in recent years, due to the substantial flow deflection that they afford. A related characteristic is the enhanced turbulence levels and entrainment they offer, compared with conventional jet flows. This characteristic is, however, generally accompanied by a significant increase in the noise levels associated with devices employing this effect. As a consequence, the potential offered by Coanda devices is yet to be fully realized. This problem provides the impetus for the research detailed in this poster. To date, some work has been done on developing a mathematical model of the Turbulent Mixing Noise emitted by such a device, assuming that the surface adjoining the turbulent flow was essentially 2-D. This poster extends this fundamental model, through a combination of mathematical modeling and acoustical and optical experiments. The effect of a variety of parameters, including nozzle configuration and jet exit velocity will be discussed, and ways of reducing or attenuating the noise generated by such flow, whilst still maintaining the crucial flow characteristics, will be presented.

  12. LES/RANS Simulation of a Supersonic Reacting Wall Jet

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Boles, John A.; Baurle, Robert A.

    2010-01-01

    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.

  13. Turbulent jet patterns in accelerating flows

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1981-01-01

    Results of flow visualization experiments, and a semi-empirical model of a single turbulent jet injected perpendicularly to a different density cross flow are presented. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flow. It uses an entrainment correlation obtained from previous experiments of a jet in a cross stream. The results show trajectories and spreading rates, and are typified by a set of three parameters: momentum ratio, Froude number and density ratio. Agreement between test and calculated results is encouraging, but tend to be poorer with increasing momentum ratio.

  14. Simultaneous computation of jet turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C. H.; Ramos, J. I.

    1989-01-01

    The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.

  15. Extended LES-PaSR model for simulation of turbulent combustion

    NASA Astrophysics Data System (ADS)

    Sabelnikov, V.; Fureby, C.

    2013-03-01

    In this work, a novel model for Large Eddy Simulations (LES) of high Reynolds moderate Damköhler number turbulent flames is proposed. The development is motivated by the need for more accurate and versatile LES combustion models for engineering applications such as jet engines. The model is based on the finite rate chemistry approach in which the filtered species equations of a reduced reaction mechanism are solved prior to closure modeling. The modeling of the filtered reaction rate provides the challenge: as most of the chemical activity, and thus also most of the exothermicity occurs on the subgrid scales, this model needs to be based on the properties of fine-scale turbulence and mixing and Arrhenius chemistry. The model developed here makes use of the similarities with the mathematical treatment of multiphase flows together with the knowledge of fine-scale turbulence and chemistry obtained by Direct Numerical Simulation (DNS) and experiments. In the model developed, equations are proposed for the fine-structure composition and volume fraction that are solved together with the LES equations for the resolved scales. If subgrid convection can be neglected, the proposed model simplifies to the Partially Stirred Reactor (PaSR) model. To validate the proposed LES model, comparisons with experimental data and other LES results are made, using other turbulence chemistry interaction models, for a lean premixed bluff-body stabilized flame.

  16. Modeling of Turbulence Generated Noise in Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2004-01-01

    A numerically calculated Green's function is used to predict jet noise spectrum and its far-field directivity. A linearized form of Lilley's equation governs the non-causal Green s function of interest, with the non-linear terms on the right hand side identified as the source. In this paper, contributions from the so-called self- and shear-noise source terms will be discussed. A Reynolds-averaged Navier-Stokes solution yields the required mean flow as well as time- and length scales of a noise-generating turbulent eddy. A non-compact source, with exponential temporal and spatial functions, is used to describe the turbulence velocity correlation tensors. It is shown that while an exact non-causal Green's function accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound at moderate Mach numbers, at high subsonic and supersonic acoustic Mach numbers the polar directivity of radiated sound is not entirely captured by this Green's function. Results presented for Mach 0.5 and 0.9 isothermal jets, as well as a Mach 0.8 hot jet conclude that near the peak radiation angle a different source/Green's function convolution integral may be required in order to capture the peak observed directivity of jet noise.

  17. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  18. Flow topologies and turbulence scales in a jet-in-cross-flow

    NASA Astrophysics Data System (ADS)

    Ruiz, A. M.; Lacaze, G.; Oefelein, J. C.

    2015-04-01

    This paper presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of Su and Mungal ["Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets," J. Fluid Mech. 513(1), 1-45 (2004)]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  19. The deterministic chaos and random noise in turbulent jet

    SciTech Connect

    Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng

    2014-06-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.

  20. Numerical Study of High-Temperature Jet Flow Using RANS/LES and PANS Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2005-01-01

    Two multi-scale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k(epsilon)) model with a RANS/LES transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the Partially Averaged Navier-Stokes (PANS) model, where the unresolved kinetic energy parameter (f(sub k)) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS). It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and equal to one in the viscous sub layer, and when the RANS turbulent viscosity becomes smaller than the LES viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate and turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide valuable tool for accurate jet noise predictions. Solutions from these models are compared to RANS results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid RANS/LES and PANS in simulating such flow phenomena.

  1. Laser beam probing of jet exhaust turbulence.

    PubMed

    Hogge, C B; Visinsky, W L

    1971-04-01

    A He-Ne (6328-A) laser beam was passed through the highly turbulent region in the exhaust of a jet engine (J-57 with afterburner). Estimates of a structure constant that would characterize the turbulence in the exhaust are made from the beam spread of focused and collimated beams. The structure constant obtained in this manner is then compared with that determined from scintillation measurements of a (10.6-micro) beam and with the results of hot-wire anemometer readings taken in the exhaust. The various methods yield results for the structure constant that are in good agreement (typically a structure constant of the order of 3 x 10(-5) m(-?)). PMID:20094556

  2. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Astrophysics Data System (ADS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  3. Design of swirled axisymmetric turbulent jets

    NASA Astrophysics Data System (ADS)

    Zhumayev, Z. S.; Abramov, A. A.; Fayziyev, R. A.

    1984-10-01

    The problem of swirling a jet for such applications as turbulization of the flame from burners in industrial furnaces or combustion chambers is treated on the basis of steady state turbulent straight axisymmetric flow of an incompressible fluid with the addition of a tangential velocity component. In the corresponding system of four partial differential equations there appears an exchange coefficient proportional to the mixing half width squared. After reduction to dimensionless form, this system of nonlinear equations is solved for the appropriate boundary conditions with constant momentum flow and constant moment of momentum. Radial profiles of both axial and tangential velocity components at various distances from the nozzle throat have been calculated numerically by the method of finite differences with an implicit scheme. The maxima of both velocity components are found to decrease and to shift toward the jet axis with increasing distance from the nozzle. A sharp swirl can give rise to a positive pressure gradient sufficiently large to produce a backcurrent. The results agree qualitatively with experimental data.

  4. Behavior of turbulent gas jets in an axisymmetric confinement

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1985-01-01

    The understanding of the mixing of confined turbulent jets of different densities with air is of great importance to many industrial applications, such as gas turbine and Ramjet combustors. Although there have been numerous studies on the characteristics of free gas jets, little is known of the behavior of gas jets in a confinement. The jet, with a diameter of 8.73 mm, is aligned concentrically in a tube of 125 mm diameter, thus giving a confinement ratio of approximately 205. The arrangement forms part of the test section of an open-jet wind tunnel. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made with a one-color, one-component laser Doppler velocimeter operating in the forward scatter mode. Measurements show that the jets are highly dissipative. Consequently, equilibrium jet characteristics similar to those found in free air jets are observed in the first two diameters downstream of the jet. These results are independent of the fluid densities and velocities. Decay of the jet, on the other hand, is a function of both the jet fluid density and momentum. In all the cases studied, the jet is found to be completely dissipated in approximately 30 jet diameters, thus giving rise to a uniform flow with a very high but constant turbulence field across the confinement.

  5. A numerical study of confined turbulent jets

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1993-01-01

    A numerical investigation is reported of turbulent incompressible jets confined in two ducts, one cylindrical and the other conical with a 5 degree divergence. In each case, three Craya-Curtet numbers are considered which correspond, respectively, to flow situations with no moderate and strong recirculation. Turbulence closure is achieved by using the k-epsilon model and a recently proposed realizable Reynolds stress algebraic equation model that relates the Reynolds stresses explicitly to the quadratic terms of the mean velocity gradients and ensures the positiveness of each component of the turbulent kinetic energy. Calculations are carried out with a finite-volume procedure using boundary-fitted curvilinear coordinates. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to prevent the solutions from being contaminated by numerical diffusion. The calculated results are compared extensively with the available experimental data. It is shown that the numerical methods presented are capable of capturing the essential flow features observed in the experiments and that the realizable Reynolds stress algebraic equation model performs much better than the k-epsilon model for this class of flows of great practical importance.

  6. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  7. Coupling Turbulence in Hybrid LES-RANS Techniques

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen L.

    2011-01-01

    A formulation is proposed for hybrid LES-RANS computations that permits accurate computations during resolution changes, so that resolution may be changed at will in order to employ only as much resolution in each subdomain as is required by the physics. The two components of this formulation, establishing the accuracy of a hybrid model at constant resolutions throughout the RANS-to-LES range and maintaining that accuracy when resolution is varied, are demonstrated for decaying, homogeneous, isotropic turbulence.

  8. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the

  9. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  10. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE PAGESBeta

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  11. Turbulence modeling for impinging jet flows

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Rodman, Laura C.; Bradshaw, Peter; Bott, Donald M.; Shoemaker, William C.

    1992-01-01

    The objective of the present work is to improve the accuracy of the k-epsilon turbulence model for flows involving one or more jets impinging on a plate in a crossflow which generate a horseshoe vortex. The k-epsilon model is modified by adding source terms to the epsilon equation, which enables it to more accurately predict the shear stress in flows subject to streamline curvature and vortex stretching (or lateral divergence). Calculations with the modified model predict the ground vortex core to be about 15 percent upstream of its experimental location. This is a significant improvement over the standard model which yields higher errors for calculation of the vortex-core location.

  12. LES of turbulent lifted CH4 /H2 flames using a novel FGM-PDF model

    NASA Astrophysics Data System (ADS)

    Abtahizadeh, S. Ebrahim; van Oijen, Jeroen; Bastiaans, Rob; de Goey, Philip

    2014-11-01

    This study reports on numerical investigations of preferential diffusion effects on flame stabilization of turbulent lifted flames using LES with a FGM-PDF approach. The experimental test case is the Delft JHC burner to study Mild combustion; a clean combustion concept. In this burner, CH4 based fuel has been enriched from 0 to 25% of H2. Since the main stabilization mechanism of these turbulent flames is autoignition, the developed numerical model should be able to predict this complex event. Furthermore, addition of hydrogen makes modeling even more challenging due to its preferential diffusion effects. These effects are increasingly important since autoignition is typically initiated at very small mixture fractions where molecular diffusion is comparable to turbulence transport (eddy viscosity). In this study, first, a novel numerical model is developed based on the Flamelet Generated Manifolds (FGM) to account for preferential diffusion effects in autoignition. Afterwards, the developed FGM approach is implemented in LES of the H2 enriched turbulent lifted jet flames. Main features of these turbulent lifted flames such as the formation of ignition kernels and stabilization mechanisms are thoroughly analyzed and compared with the measurements of OH chemiluminescence. The authors gratefully acknowledge the financial support of the Dutch Technology Foundation (STW) under Project No. 10414.

  13. Characteristics of Turbulent/non-turbulent Interface in a Turbulent Planar Jet with a Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu; Ito, Yasumasa; Hayase, Toshiyuki

    2013-11-01

    Characteristics of chemical reaction (A + B --> P) near the turbulent/non-turbulent (T/NT) interface are investigated by using the direct numerical simulation of reactive planar jet. The reactants A and B are separately premixed into the jet and ambient flows, respectively. DNS is performed at three different Damköhler numbers. The conditional statistics conditioned on the distance from the T/NT interface is used to investigate the chemical reaction near the T/NT interface. The conditional mean concentration of product P shows a sharp jump near the T/NT interface, and the product P hardly exists in the non-turbulent region. This implies that the chemical reaction takes place in the turbulent region after the reactant B in the ambient flow is entrained into the turbulent region. The conditional mean scalar dissipation rate of mixture fraction has a large peak value slightly inside the T/NT interface. At the same point, the chemical reaction rate also has a peak value in the case of large Damköhler number. On the other hand, when the Damköhler number is small, the chemical reaction rate near the T/NT interface is smaller than that in the turbulent region. This work was carried out under the Collaborative Research Project of the Institute of Fluid Science, Tohoku University. Part of this work was supported by JSPS KAKENHI Grant Number 25002531 and MEXT KAKENHI Grant Numbers 25289030, 25289031, 2563005.

  14. Turbulence Associated With Broadband Shock Noise in Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2008-01-01

    Time-Resolved Particle Image Velocimetry (TRPIV) has been applied to a series of jet flows to measure turbulence statistics associated with broadband shock associated noise (BBSN). Data were acquired in jets of Mach numbers 1.05, 1.185, and 1.4 at different temperatures. Both convergent and ideally expanded nozzles were tested, along with a convergent nozzle modified to minimize screech. Key findings include the effect of heat on shock structure and jet decay, the increase in turbulent velocity when screech is present, and the relative lack of spectral detail associated with the enhanced turbulence.

  15. Secondary Peak in Nusselt Number for Jet Impinging Flows: LES Study

    NASA Astrophysics Data System (ADS)

    Dutta, Rabijit; Dewan, Anupam; Srinivasan, Balaji

    2013-11-01

    Jet impingement heat transfer is widely studied because of its industrial and as well as fundamental relevance. A secondary peak in Nusselt number at some distance away from the stagnation point is observed for both round and slot jet impingement flows at a small nozzle-to-plate spacing. Although various researchers have studied the reason behind this secondary peak, it is still an open question in the literature. We present large eddy simulation (LES) of turbulent slot jet impingement heat transfer to gain further insight into the phenomenon of secondary peak in Nusselt number. Profiles of mean velocities, turbulent fluctuating velocities and Nusselt numbers have been analyzed along the impingement plate. A sudden increase in the wall normal turbulence fluctuations have been observed in the region where the secondary peak in Nusselt number occurs. Further, an analysis of vortex structures of the flow showed that the increase in the wall normal turbulence could be associated with the secondary vortex observed near the impingement wall. PhD candidate.

  16. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  17. Multiscale turbulence effects in supersonic jets exhausting into still air

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Wilmoth, Richard G.

    1987-01-01

    A modified version of the multiscale turbulence model of Hanjalic has been applied to the problem of supersonic jets exhausting into still air. In particular, the problem of shock-cell decay through turbulent interaction with the mixing layer has been studied for both mildly interacting and strongly resonant jet conditions. The modified Hanjalic model takes into account the nonequilibrium energy transfer between two different turbulent spectral scales. The turbulence model was incorporated into an existing shock-capturing, parabolized Navier-Stokes computational model in order to perform numerical experiments. The results show that the two-scale turbulence model provides significant improvement over one-scale models in the prediction of plume shock structure for underexpanded supersonic (Mach 2) and sonic (Mach 1) jets. For the supersonic jet, excellent agreement with experiment was obtained for the centerline shock-cell pressure decay up to 40 jet radii. For the sonic jet, the agreement with experiment was not so good, but the two-scale model still showed significant improvement over the one-scale model. It is shown that by relating some of the coefficients in the turbulent-transport equations to the relative time scale for transfer of energy between scales the two-scale model can provide predictions that bound the measured shock-cell decay rate for the sonic jet.

  18. Modélisation du bruit des jets turbulents libres et subsoniques à température ambiante

    NASA Astrophysics Data System (ADS)

    Béchara, W.; Lafon, P.; Candel, S. M.

    1993-03-01

    Based on the theoretical model of Goldstein for a round free jet, we establish analytical expressions (G_a model) for the noise radiation from a turbulent jet, depending on the local statistical properties of the flow. These characteristics are calculated by solving the Reynolds average Navier-Stokes equations with a numerical code based on a K - \\varepsilon turbulence closure model. A comparison between the numerical results and the experimental data for a simple jet and two coaxial jets shows that this model correctly predicts the evolution of the acoustic radiation. The G_a model developed in the case of axisymmetric turbulence superimposed over a mean flow is found to be more suitable than the Ribner model associated to an isotropic turbulence. A comparison between differents models issued from Lighthill theory, shows that the G_a model yields the best directivity of the acoustic intensity at high jet exit velocities. À partir du modèle théorique proposé initialement par Goldstein pour un jet libre turbulent circulaire, on établit des expressions analytiques (modèle G_a) permettant le calcul du bruit émis à partir des grandeurs statistiques locales du jet turbulent. Ces grandeurs sont estimées par résolution des équations de Navier-Stokes moyennées à l'aide d'un code numérique de turbulence utilisant un modèle de fermeture de type K - \\varepsilon. La comparaison entre les résultats numériques obtenus et les données expérimentales, pour un jet simple et deux jets coaxiaux, montre que ce modèle estime correctement l'évolution des grandeurs acoustiques étudiées. Les calculs indiquent que le modèle G_a développé pour une turbulence axisymétrique convectée par un écoulement moyen est mieux adapté que celui de Ribner associé à une turbulence isotrope. De plus, une comparaison entre différents modèles basés sur la théorie de Lighthill indique que le modèle G_a donne la meilleure directivité de l'intensité acoustique aux

  19. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to

  20. Turbulence effects on hemolysis by revisiting experiments with LES computations

    NASA Astrophysics Data System (ADS)

    Ozturk, Mesude; O'Rear, Edgar; Papavassiliou, Dimitrios

    2015-11-01

    Determining mechanically stimulated red blood cell trauma as a function of turbulence properties is required to design prosthetic heart devices. Because blood is typically exposed to turbulence in such devices, the design of prosthetic heart devices depends on determining the effect of turbulent stresses on hemolysis. While turbulent stresses increase hemolysis when cells are exposed to them, turbulent flow characteristics in the vicinity of lysed blood cells, and the mechanism of cell damage remains uncertain. In this work, LES computations are used to investigate the effect of turbulent eddy structure on cell damage. The flow was simulated for classic Couette and capillary tube experiments, in order to examine the relation between hemolysis turbulence properties related to the dissipation of turbulent kinetic energy. The hypothesis tested is that eddies that are close in size with the erythrocytes are the ones that are responsible for hemolysis, rather than Reynolds stresses or viscous stresses. We define extensive measures, like the eddy areas for small eddies comparable to the size of the red blood cells, to provide a more general understanding of the mechanical cause of blood trauma.

  1. Micro-jets in confined turbulent cross flow

    SciTech Connect

    Kelman, J.B.; Greenhalgh, D.A.; Whiteman, M.

    2006-03-01

    The mixing of sub-millimetre diameter jets issuing into a turbulent cross flow is examined with a combination of laser diagnostic techniques. The cross flow stream is in a confined duct and the micro-jet issue from the sides of injector vanes. A range of cross jet momentum ratios, cross flow temperatures and turbulence intensities are investigated to examine the influence on the jet mixing. Methane, seeded with acetone, was used to measure the concentrations of the jets and the mixing of the jet fluid in the duct. Unlike previous jet in cross flow work, mixing appears to be dominated by the free stream turbulence, rather than the cross jet momentum ratios. Temperature increases in the free stream appear to increase the rate of mixing in the duct, despite the associated decrease in the Reynolds number. The dominance of the free stream turbulence in controlling the mixing is of particular interest in respect of gas turbine injection systems, as the cross jet momentum ratio is insufficient in defining the mixing process. (author)

  2. Naturally occurring and forced azimuthal modes in a turbulent jet

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Naturally occurring instability modes in an axisymmetric jet were studied using the modal frequency technique. The evolution of the modal spectrum was obtained for a jet with a Reynolds number based on a diameter of 400,000 for both laminar and turbulent nozzle boundary layers. In the early evolution of the jet the axisymmetric mode was predominant, with the azimuthal modes growing rapidly but dominating only the end of the potential core. The growth of the azimuthal was observed closer to the nozzle exit for the jet in the laminar boundary layer case than for the turbulent. Target modes for efficient excitation of the jet were determined and two cases of excitation were studied. First, a jet was excited simultaneously by two helical modes, m equals plus 1 and m equals minus 1 at a Strouhal number based on jet diameter of 0.15 and the axisymmetric mode, m equals 0 at a jet diameter of 0.6. Second, m equals plus one and m equals minus 1 at jet diameter equals 0.3 and m equals 0 at jet diameter equals 0.6 were excited simultaneously. The downstream evolution of the hydrodynamic modes and the spreading rate of the jet were documented for each case. Higher jet spreading rates, accompanied by distorted jet cross sections were observed for the cases where combinations of axisymmetric and helical forcings were applied.

  3. Turbulence measurements in axisymmetric jets of air and helium

    NASA Astrophysics Data System (ADS)

    Panchapakesan, N. R.

    Turbulent axisymmetric jets of air helium with the same nozzle momentum flux were studied experimentally using hot-wire probes. An X-wire hot-wire probe was used in the air jet and a composite probe consisting of an X-wire and an interference probe of the Way-Libby type was used in the helium jet to measure the helium concentration and two velocity components. Moments of turbulent fluctuations, up to fourth order, were calculated to characterize turbulent transport in the jet and to evaluate current models for triple moments that occur in the Reynolds stress equation. In the air jet, the momentum flux across the jet was found to be within +/- 5 percent of the nozzle input and the integral of the radial diffusive flux of the turbulent kinetic energy across the jet was found to be close to zero indicating consistency of measurements with the equations of motion. The fourth moments were very well described in terms of the second moments by the quasi-Gaussian approximation across the entire jet. Profiles of third moments were found to be significantly different from earlier measurements - (u(v exp 2)) (u(w exp 2)) and ((u exp 2)v) were found to be negative near the axis of the jet. The measurements in the helium jet were in the intermediate region between the non-buoyant jet and the plume regions. The helium mass flux across the jet was found to be within +/- 0 percent of the nozzle input. The far field behavior was in accord with the expected plume scalings. The near field behavior of the mean velocity along the axis of the jet follows the scaling expressed by the effective diameter but the mean concentration decay has a different density ratio dependence. The radical profiles of mean velocity and concentration indicate a turbulent Schmidt number of 0.7, the same as for passive scalars in round jets. Turbulent intensity of axial velocity fluctuations was significantly higher than that observed in the air jet while the radial and azimuthal intensities are virtually

  4. On integrating LES and laboratory turbulent flow experiments

    SciTech Connect

    Grinstein, Fernando Franklin

    2008-01-01

    Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

  5. Interaction of Pulsed Vortex Generator Jets with Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    McManus, K. R.; Johari, H.

    1996-11-01

    Vortex Generator Jets (VGJ) have been proposed as a means for active control of turbulent boundary layer separation by Johnston footnote AIAA J. 28, 989 (1990). It has been shown that a vortex generator jet can create weak longitudinal vorticity of a single sign when the surface-mounted jets are pitched and skewed with respect to the solid surface. The primary advantages of VGJs when compared to solid vortex generators are their lack of parasitic drag when the jets are off and the ability to rapidly activate and deactivate the jets for dynamic control. Pulsing of the jets is proposed as a way of increasing the turbulent mixing and therefore, improving the performance of vortex generator jets. Initial experiments with jets pitched at 45 deg and skewed at 90 deg degrees in air have indicated that large-scale turbulent structures are formed by the pulsed VGJs. Subsequent flow visualization experiments in a water tunnel suggest that fully-modulated jets embedded in a flat plate boundary layer result in a series of puffs which penetrate through the boundary layer. The influence of jet velocity, diameter, pulsing frequency and duty-cycle will be discussed. * Supported by NSF and PSI.

  6. Modeling of Turbulence Effect on Liquid Jet Atomization

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.

    2007-01-01

    Recent studies indicate that turbulence behaviors within a liquid jet have considerable effect on the atomization process. Such turbulent flow phenomena are encountered in most practical applications of common liquid spray devices. This research aims to model the effects of turbulence occurring inside a cylindrical liquid jet to its atomization process. The two widely used atomization models Kelvin-Helmholtz (KH) instability of Reitz and the Taylor analogy breakup (TAB) of O'Rourke and Amsden portraying primary liquid jet disintegration and secondary droplet breakup, respectively, are examined. Additional terms are formulated and appropriately implemented into these two models to account for the turbulence effect. Results for the flow conditions examined in this study indicate that the turbulence terms are significant in comparison with other terms in the models. In the primary breakup regime, the turbulent liquid jet tends to break up into large drops while its intact core is slightly shorter than those without turbulence. In contrast, the secondary droplet breakup with the inside liquid turbulence consideration produces smaller drops. Computational results indicate that the proposed models provide predictions that agree reasonably well with available measured data.

  7. Adaptive LES Methodology for Turbulent Flow Simulations

    SciTech Connect

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence

  8. Turbulence and heat excited noise sources in single and coaxial jets

    NASA Astrophysics Data System (ADS)

    Koh, Seong Ryong; Schröder, Wolfgang; Meinke, Matthias

    2010-03-01

    The generation of noise in subsonic high Reynolds number single and coaxial turbulent jets is analyzed by a hybrid method. The computational approach is based on large-eddy simulations (LES) and solutions of the acoustic perturbation equations (APE). The method is used to investigate the acoustic fields of one isothermal single stream jet at a Mach number 0.9 and a Reynolds number 400,000 based on the nozzle diameter and two coaxial jets whose Mach number and Reynolds number based on the secondary jet match the values of the single jet. One coaxial jet configuration possesses a cold primary flow, whereas the other configuration has a hot primary jet. Thus, the configurations allow in a first step the analysis of the relationship of the flow and acoustic fields of a single and a cold coaxial jet and in a second step the investigation of the differences of the fluid mechanics and aeroacoustics of cold and hot coaxial jets. For the isothermal single jet the present hybrid acoustic computation shows convincing agreement with the direct acoustic simulation based on large-eddy simulations. The analysis of the acoustic field of the coaxial jets focuses on two noise sources, the Lamb vector fluctuations and the entropy sources of the APE equations. The power spectral density (PSD) distributions evidence the Lamb vector fluctuations to represent the major acoustic sources of the isothermal jet. Especially the typical downstream and sideline acoustic generations occur on a cone-like surface being wrapped around the end of the potential core. Furthermore, when the coaxial jet possesses a hot primary jet, the acoustic core being characterized by the entropy source terms increases the low frequency acoustics by up to 5 dB, i.e., the sideline acoustics is enhanced by the pronounced temperature gradient.

  9. Establishing Consensus Turbulence Statistics for Hot Subsonic Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Werner, Mark P.

    2010-01-01

    Many tasks in fluids engineering require knowledge of the turbulence in jets. There is a strong, although fragmented, literature base for low order statistics, such as jet spread and other meanvelocity field characteristics. Some sources, particularly for low speed cold jets, also provide turbulence intensities that are required for validating Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) codes. There are far fewer sources for jet spectra and for space-time correlations of turbulent velocity required for aeroacoustics applications, although there have been many singular publications with various unique statistics, such as Proper Orthogonal Decomposition, designed to uncover an underlying low-order dynamical description of turbulent jet flow. As the complexity of the statistic increases, the number of flows for which the data has been categorized and assembled decreases, making it difficult to systematically validate prediction codes that require high-level statistics over a broad range of jet flow conditions. For several years, researchers at NASA have worked on developing and validating jet noise prediction codes. One such class of codes, loosely called CFD-based or statistical methods, uses RANS CFD to predict jet mean and turbulent intensities in velocity and temperature. These flow quantities serve as the input to the acoustic source models and flow-sound interaction calculations that yield predictions of far-field jet noise. To develop this capability, a catalog of turbulent jet flows has been created with statistics ranging from mean velocity to space-time correlations of Reynolds stresses. The present document aims to document this catalog and to assess the accuracies of the data, e.g. establish uncertainties for the data. This paper covers the following five tasks: Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. Compare PIV data with hotwire and laser Doppler

  10. Studies of turbulent round jets through experimentation, simulation, and modeling

    NASA Astrophysics Data System (ADS)

    Keedy, Ryan

    This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make

  11. Spectra and Diffusion in a Round Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1951-01-01

    In a round turbulent jet at room temperature, measurement of the shear correlation coefficient as a function of frequency (through band-pass filters) has given a rather direct verification of Kolmogoroff's local-isotropy hypothesis. One-dimensional power spectra of velocity and temperature fluctuations, measured in unheated and heated jets, respectively, have been contrasted. Under the same conditions, the two corresponding transverse correlation functions have been measured and compared. Finally, measurements have been made of the mean thermal wakes behind local (line) heat sources in the unheated turbulent jet, and the order of magnitude of the temperature fluctuations has been determined.

  12. Spectrums and Diffusion in a Round Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1950-01-01

    In a round turbulent jet at room temperature, measurement of the shear correlation coefficient as a function of frequency (through bandpass filters) has given a rather direct verification of Kolmogoroff's local-isotropy hypothesis. One-dimensional power spectrums of velocity and temperature fluctuations, measured in unheated and heated jets, respectively, have been contrasted. Under the same conditions, the two corresponding transverse correlation functions have been measured and compared. Finally, measurements have been made of the mean thermal wakes behind local (line) heat sources in the unheated turbulent jet, and the order of magnitude of the temperature fluctuations has been determined. (author)

  13. Input-output analysis of high-speed turbulent jet noise

    NASA Astrophysics Data System (ADS)

    Jeun, Jinah; Nichols, Joseph W.

    2015-11-01

    We apply input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with Mach numbers 0 . 6 jets, the optimal response closely resembles a wavepacket in both the nearfield and the farfield such as those obtained by the parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of suboptimal modes to noise generation are nearly equal to that of the optimal mode, explaining why PSE misses some of the farfield sound in this case. Finally, high-fidelity large eddy simulation (LES) is used to assess the prevalence of suboptimal modes in the unsteady data. By projecting LES data onto the corresponding input modes, the weighted gain of each mode is examined.

  14. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  15. Large Eddy Simulation Of Gravitational Effects In Transitional And Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Jaberi, Farhad A.; Givi, Peyman

    2003-01-01

    The influence of gravity on the spatial and the compositional structures of transitional and turbulent hydrocarbon diffusion flames are studies via large eddy simulation (LES) and direct numerical simulation (DNS) of round and planar jets. The subgrid-scale (SGS) closures in LES are based on the filtered mass density function (FMDF) methodology. The FMDF represents the joint probability density function (PDF) of the SGS scalars, and is obtained by solving its transport equation. The fundamental advantage of LES/FMDF is that it accounts for the effects of chemical reaction and buoyancy exactly. The methodology is employed for capturing some of the fundamental influences of gravity in equilibrium flames via realistic chemical kinetic schemes. Some preliminary investigation of the gravity effects in non-equilibrium flames is also conducted, but with idealized chemical kinetics models.

  16. Large eddy simulation of spark ignition in a turbulent methane jet

    SciTech Connect

    Lacaze, G.; Richardson, E.; Poinsot, T.

    2009-10-15

    Large eddy simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel formation, the progress and topology of the flame propagating upstream, and stabilization as a tubular edge flame are analyzed in detail and compared to experimental data for a range of ignition parameters. In addition to ignition simulations, statistical analysis of nonreacting LES solutions is carried out to discuss the ignition probability map established experimentally. (author)

  17. Interaction of a round turbulent jet with a thermocline

    NASA Astrophysics Data System (ADS)

    Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca

    2016-04-01

    Vertical turbulent jets serve as the models of numerous flows both in nature and industry including convective cloud flows in the atmosphere, effluents from submerged wastewater outfall systems in the ocean, pollutant discharge from industrial chimneys, subglacial discharge. We investigate the dynamics of an axisymmetric vertical turbulent jet in a stratified fluid with two layers of different temperature separated by a thermocline. This configuration is a typical model of the upper thermocline layer of lakes and pycnocline in oceans as well as thermal inversions in the atmosphere. In general, turbulent jets in nature and industry originate from the mixed sources of buoyancy and momentum. However, when the source is located far enough from the pycnocline, the jet mixes effectively with the surrounding fluid and the density of the flow at the pycnocline entrance tends to the density of the lower layer of stratification. Dynamics of such a flow in the pycnocline can be modelled employing a neutrally buoyant turbulent jet with the positive vertical momentum. We study the behaviour of a vertical round turbulent jet in an unconfined stratified environment by means of well-resolved large eddy simulation. We consider two cases: when the thermocline width is small and of the same order with the jet diameter at the thermocline entrance. Mean jet penetration, stratified turbulent entrainment and jet oscillations as well as the generation of internal waves are quantified. The mean jet penetration is predicted well by a simple model based on the conservation of the jet volume, momentum and buoyancy fluxes. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. For the thick thermocline we demonstrate the presence of a secondary horizontal flow in the upper thermocline, resulting in the entrainment of fluid

  18. Large Eddy Simulation of a Near Sonic Turbulent Jet and Its Radiated Noise

    NASA Technical Reports Server (NTRS)

    Constantinescu, G. S.; Lele, S. K.

    2001-01-01

    In this paper numerical simulations are used to calculate the turbulence dynamics simultaneously with the sound field for a high-speed near-sonic (Ma=0.9) compressible jet at two Reynolds numbers of 3,600 and 72,000. LES (Large Eddy Simulation) in conjunction with accurate numerical schemes is used to calculate the unsteady flow and sound in the near field of the jet. It is shown that the jet mean parameters, mean velocity fields and turbulence statistics are in good agreement with experimental data and results from other simulations. The sound in the near-field is calculated directly from the simulations. The calculations are shown to capture the peak in the dilatation and pressure spectra around a Strouhal number St=0.25-0.3, in agreement with typical jet-noise spectra measured in experiments. Dilatation contours in the near-field show the formation of acoustic waves with a dominant wavelength of 3.2-4 jet diameters, corresponding to the peak in the dilatation spectra. As expected, the non-compact noise sources are found to be most dominant in the region corresponding to the end of the potential core. The contribution of the LES model to the radiated noise appears to be weak and does not contaminate the sound field with spurious high-frequency noise. However, the frequency spectra of the sound show a rapid falloff away from the peak frequency. This is attributed to the quasi-laminar state of the shear-layers in the region prior to potential core closure, and a possible effect of insufficient azimuthal resolution at the observed location. Further analysis of the effect of the LES model, especially at high frequencies, is needed.

  19. Characteristics of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    Three dimensional turbulent jets in crossflow at low to medium jet-to-crossflow velocity ratios are computed with a finite volume numerical procedure which utilizes a second-moment closure model to approximate the Reynolds stresses. A multigrid method is used to accelerate the convergence rate of the procedure. Comparison of the computations to measured data show good qualitative agreement. All trends are correctly predicted, though there is some uncertainty on the height of penetration of the jet. The evolution of the vorticity field is used to explore the jet-crossflow interaction.

  20. A Jet-Stirred Apparatus for Turbulent Combustion Experiments

    NASA Astrophysics Data System (ADS)

    Davani, Abbasali; Ronney, Paul

    2015-11-01

    A novel jet-stirred combustion chamber is designed to study turbulent premixed flames. In the new approach, multiple impinging turbulent jets are used to stir the mixture. It is well known that pair of counterflowing turbulent jets produces nearly a constant intensity (u') along the jet axes. In this study, different numbers of impinging jets in various configurations are used to produce isotropic turbulence intensity. FLUENT simulations have been conducted to assess the viability of the proposed chamber. In order to be able to compare different configurations, three different non dimensional indices are introduces. Mean flow index; Homogeneity index, and Isotropicity index. Using these indices one can compare various chambers including conventional Fan-stirred Reactors. Results show that a concentric inlet/outlet chamber (CAIO) with 8 inlets and 8 outlets with inlet velocity of 20 m/s and initial intensity of 15% produces near zero mean flow and 2.5 m/s turbulence intensity which is much more higher than reported values for Fan-stirred chamber. This research was sponsored by National Science Foundation.

  1. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  2. Turbulent Mixing of an Angled Jet in Various Mainstream Conditions

    NASA Astrophysics Data System (ADS)

    Ryan, Kevin; Coletti, Filippo; Elkins, Christopher; Eaton, John

    2013-11-01

    The angled jet in crossflow has been studied in detail with specific emphasis on the turbulent mixing of the jet fluid with the mainstream flow. The interaction of the upstream boundary layer with the jet shear layer results in complex vortex patterns that cause large mean distortion of the jet and rapid turbulent mixing. Most previous studies have been conducted in flat plate flows with little attention paid to the characteristics of the boundary layer. The present study examines the effect of mainstream geometric changes on the jet trajectory, counter-rotating vortex pair strength, and turbulent mixing. Seven cases were examined including flat plate boundary layers with three different thicknesses, adverse and favorable pressure gradient cases, and flows with concave and convex streamwise curvature. Full field, 3D mean velocity and scalar concentration fields were measured using magnetic resonance imaging (MRI) techniques in a water flow. The distortion of the streamtube initiated at the hole exit was examined for each of the seven cases. The degree of mixing was quantified by measuring the amount of mainstream fluid entrained into the jet as well as the turbulent diffusivity as a function of streamwise position.

  3. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  4. Temperature-Corrected Model of Turbulence in Hot Jet Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Massey, Steven J.; Elmiligui, Alaa

    2007-01-01

    An improved correction has been developed to increase the accuracy with which certain formulations of computational fluid dynamics predict mixing in shear layers of hot jet flows. The CFD formulations in question are those derived from the Reynolds-averaged Navier-Stokes equations closed by means of a two-equation model of turbulence, known as the k-epsilon model, wherein effects of turbulence are summarized by means of an eddy viscosity. The need for a correction arises because it is well known among specialists in CFD that two-equation turbulence models, which were developed and calibrated for room-temperature, low Mach-number, plane-mixing-layer flows, underpredict mixing in shear layers of hot jet flows. The present correction represents an attempt to account for increased mixing that takes place in jet flows characterized by high gradients of total temperature. This correction also incorporates a commonly accepted, previously developed correction for the effect of compressibility on mixing.

  5. The role of POD modes in turbulent jet noise

    NASA Astrophysics Data System (ADS)

    Colonius, Tim; Freund, Jonathan

    2001-11-01

    We examine the acoustic radiation and structure of the POD modes of a turbulent, Re=3600, M=0.9 jet. The POD modes were computed using the method of snapshots with 2333 samples from a three-dimensional DNS database. The jet mean flow, turbulence statistics, and acoustic radiation were previously validated against experiments. We compute vector-valued POD modes for using several different physically meaningful norms and analyze the extent to which the most energetic modes (for the given norm) contribute to the overall acoustic radiation. This enables a detailed characterization of the contribution of large-scale turbulent structures to the radiated acoustic field. We also quantify the interaction of different modes by correlations of their variation in time as well as correlations with acoustic signals in the far field. We also examine the connection between the POD modes and the linear instability eigenfunctions of a slowly spreading jet.

  6. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  7. Modellingthe Turbulent Mixing Noise Associated with Coanda Jets

    NASA Astrophysics Data System (ADS)

    Smith, Caroline

    2004-11-01

    Turbulent Mixing Noise (TMN) is a primary high-frequency noise source in aeronautical and aerospace applications that utilize the Coanda effect, due to the enhanced turbulence levels and entrainment that devices employing this effect generally offer when compared with conventional jet flows. A theory, previously developed to predict the TMN emitted by unit volume of jet-type shear-layer turbulence close to a rigid plane, is extended to predict the aeroacoustic characteristics of a three-dimensional turbulent flow over a particular Coanda surface. The ability to accurately predict this significant source of high frequency acoustic radiation will allow investigation of modifications to basic Coanda devices, so that the benefits of such devices can be fully exploited, without this unfortunate side effect.

  8. The interaction of synthetic jets with turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Cui, Jing

    In recent years, a promising approach to the control of wall bounded as well as free shear flows, using synthetic jet (oscillatory jet with zero-net-mass-flux) actuators, has received a great deal of attention. A variety of impressive flow control results have been achieved experimentally by many researchers including the vectoring of conventional propulsive jets, modification of aerodynamic characteristics of bluff bodies, control of lift and drag of airfoils, reduction of skin-friction of a flat plate boundary layer, enhanced mixing in circular jets, and control of external as well as internal flow separation and of cavity oscillations. More recently, attempts have been made to numerically simulate some of these flowfields. Numerically several of the above mentioned flow fields have been simulated primarily by employing the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with a turbulence model and a limited few by Direct Numerical Simulation (DNS). In simulations, both the simplified boundary conditions at the exit of the jet as well as the details of the cavity and lip have been included. In this dissertation, I describe the results of simulations for several two- and three-dimensional flowfields dealing with the interaction of a synthetic jet with a turbulent boundary layer and control of separation. These simulations have been performed using the URANS equations in conjunction with either one- or a two-equation turbulence model. 2D simulations correspond to the experiments performed by Honohan at Georgia Tech. and 3D simulations correspond to the CFD validation test cases proposed in the NASA Langley Research Center Workshop---"CFD Validation of Synthetic Jets and Turbulent Separation Control" held at Williamsburg VA in March 2004. The sources of uncertainty due to grid resolution, time step, boundary conditions, turbulence modeling etc. have been examined during the computations. Extensive comparisons for various flow variables are made with the

  9. Turbulence in sound excited jets - Measurements and theory

    NASA Technical Reports Server (NTRS)

    Morris, P. J.; Baltas, C.

    1981-01-01

    The mechanisms by which the turbulent structure of an axisymmetric jet is modified by the presence of an acoustic excitation are examined. A model is described in which the excitation triggers instability waves at the jet exit. As these waves propagate downstream they extract energy from the mean flow and transfer it to the random turbulence. This results in an increase of the random turbulence levels and a more rapid mixing and spreading for the jet. Models are introduced for the Reynolds stress and the 'wave-induced stress'. It is shown that at high frequencies the presence of the instability wave may reduce the random turbulence levels. Numerical calculations are presented for both the radial and axial variation in the time-averaged properties of the flow as a function of excitation conditions. The calculations are compared with measurements of fluctuating velocity and pressure in a round jet with a Reynolds number of 375,000, based on jet diameter and exit velocity.

  10. Development of turbulent variable density mixing in jets with coflow

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2015-11-01

    Fully turbulent jets with coflow at two density ratios (At=0.1 & 0.6) were studied as a statistically stationary system for improving our understanding of variable density mixing in turbulent flows. The exit Reynolds number was matched for both flows at ~19,000 and simultaneous planar PIV and acetone PLIF measurements were acquired so the coupled evolution of the velocity and density statistics could be examined in terms of density-weighted average quantities. Measurements were taken over 10,000 snapshots of the flow at three locations to insure statistical convergence, and the spatial resolution (288 μm) was at or below the Taylor microscale. In agreement with our previous work at lower Reynolds numbers, for large density ratios turbulent kinetic energy and Reynolds stresses are preserved or increased with downstream distance, contrasting with the behavior at low density ratios. Furthermore, in regions where the buoyancy effects began dominating the initial momentum-driven flow (~30 jet diameters), the jet is still not developing toward a self-similar state. Instead, a region of homogeneous turbulence appeared to establish itself in the center of the jet even for the lower density ratio condition, in contrast with classical results for single-fluid jets.

  11. Flow field topology of submerged jets with fractal generated turbulence

    NASA Astrophysics Data System (ADS)

    Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2015-11-01

    Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.

  12. Mixing by turbulent buoyant jets in slender containers

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Nath, C.; Fernando, H. J. S.

    2012-10-01

    A turbulent buoyant jet injected vertically into a slender cylinder containing a stratified fluid is investigated experimentally. The working fluid is water, and salt is used to change its density to obtain either a positively or negatively buoyant jet. The interest is the vertical density distribution in container and its dependence on time and other parameters. For each case (lighter or heavier jet) the experimental data could be collapsed into a ‘universal’ time dependent behavior, when properly non-dimensionalized. A theoretical model is advanced to explain the results. Possible applications include refilling of crude oil into U.S. strategic petroleum reserves caverns.

  13. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner

    SciTech Connect

    Boushaki, T.; Mergheni, M.A.; Sautet, J.C.; Labegorre, B.

    2008-07-15

    The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of turbulent flames by the jets deflection in a natural gas-oxygen burner with separated jets. The burner of 25 kW power is constituted with three aligned jets, one central natural gas jet surrounded by two oxygen jets. The principal idea is to confine the fuel jet by oxygen jets to favour the mixing in order to improve the flame stability and consequently to reduce the pollutant emissions like NO{sub x}. The flame stability and its structural properties are analyzed by the OH chemiluminescence. The Particle Image Velocimetry technique has been used to characterize the dynamic field. Results show that the control by inclined jets has a considerable effect on the dynamic behaviour and flame topology. Indeed, the control by incline of oxygen jets towards fuel jet showed a double interest: a better stabilization of flame and a significant reduction of nitrogen oxides. Measurements showed that the deflection favours the mixing and accelerates the fusion of jets allowing the flame stabilization. (author)

  14. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method

    PubMed Central

    Lew, Phoi-Tack; Mongeau, Luc; Lyrintzis, Anastasios

    2010-01-01

    The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, Mj=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These “VR tones” did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier–Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes. PMID:20815448

  15. A Hybrid RANS/LES Approach for Predicting Jet Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2006-01-01

    Hybrid acoustic prediction methods have an important advantage over the current Reynolds averaged Navier-Stokes (RANS) based methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence. Unfortunately, they are unable to account for the high frequency sound generated by the turbulence in the initial mixing layers. This paper introduces an alternative approach that directly calculates the sound from a hybrid RANS/LES flow model (which can resolve the steep gradients in the initial mixing layers near the nozzle lip) and adopts modeling techniques similar to those used in current RANS based noise prediction methods to determine the unknown sources in the equations for the remaining unresolved components of the sound field. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid noise prediction methods.

  16. Evolution of turbulent jets in low aspect ratio containers

    NASA Astrophysics Data System (ADS)

    Pol, S.; Nath, C.; Gest, D.; Voropayev, S.; Fernando, H. J. S.; Webb, S.

    2009-11-01

    The evolution of homogeneous and buoyant turbulent jets released into a low aspect ratio (width/height) container was investigated experimentally using PIV, MSCT probing and digital imaging. The motivation was to understand mixing process occurring in U.S. Strategic Petroleum Reserves (SPR), where crude oil is stored in salt caverns of low aspect ratio. During maintenance or filling, oil is introduced as a jet from the top of the caverns. This study is focussed on mean and turbulent flow characteristics as well as global flow instability and periodic oscillations intrinsic to jets in low aspect ratio containers. Scaling arguments were advanced for salient flow parameters, which included the characteristic length (container width D) and velocity (for homogeneous jets, J^1/2D, where J is the momentum flux at the jet exit) scales. For buoyant jets, the buoyancy flux B needs to be introduced as an additional parameter. Such jet flows do not reach a steady state, but bifurcate periodically with a frequency scale J^1/2/ D^2 while enhancing global mixing.

  17. Splattering during turbulent liquid jet impingement on solid targets

    SciTech Connect

    Bhunia, S.K.; Lienhard, J.H. V . Dept. of Mechanical Engineering)

    1994-06-01

    In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, the authors present a more complete study of splattering and improved correlations that extend and supersede the previous reports on this topic. The authors report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8--5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exist. These experiments cover Weber numbers between 130--31,000, Reynolds numbers between 2,700--98,000, and nozzle-to-target separations of 0.2 [<=]l/d[<=]125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, the authors establish the range of applicability of the model of Lienhard et al. and the authors provide a more accurate set of coefficients for their correlation.

  18. Disturbance convection velocity in turbulent jets under aeroacoustic excitation

    NASA Astrophysics Data System (ADS)

    Pimshtein, V. G.

    2007-09-01

    The velocity of propagation of toroidal and oblique vortices formed in subsonic and supersonic turbulent jets under longitudinal internal and transverse external excitation by finite-amplitude saw-tooth acoustic waves is studied experimentally. It is demonstrated that the convection velocity of vortices is not constant, and the character of its variation depends on the vortex shape.

  19. The development of an axisymmetric curved turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Gregory-Smith, D. G.; Hawkins, M. J.

    1991-12-01

    An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.

  20. The effects of Gravity on Transitional and Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Mehravaran, Kian; Jaberi, Farhad

    2002-11-01

    The effects of gravity on compositional and physical structure of transitional and turbulent jet flames are studied via analysis of the data generated by direct numerical simulation (DNS) of a planar jet flame at various gravity conditions. A fully-compressible finite-difference computational solver is used together with a single step Arrhenius model for chemical reaction. The results of our non-reacting flow simulations are in good agreement with available experimental data for planar jets. The results of our reacting simulations are also consistent with previous findings and indicate that at zero- (or micro-) gravity condition combustion damps the flow instability; hence reduces ``turbulence production'' and jet growth. However, in ``normal'' gravity condition, combustion generated density variations and buoyancy effects promotes vorticity generation and enhances the otherwise damped turbulence by heat of reaction. Buoyancy generated vorticity and strain field leads to more jet entrainment as well as better mixing and combustion. Both large and small scale flow structures are modified by gravity; resulting in variation of the spatial and the compositional flame structures. The analysis of compositional flame structures suggest that finite-rate chemistry effects and localized flame extinction are more significant in normal gravity conditions than in zero-gravity.

  1. Intermittency in non-homogeneous Wake and Jet Turbulence

    NASA Astrophysics Data System (ADS)

    Mahjoub, O. B.; Sekula, E.; Redondo, J. M.

    2010-05-01

    The scale to scale transfer and the structure functions are calculated and from these the intermittency parametres [1[3]. The estimates of turbulent diffusivity could also be measured. Some two point correlations and time lag calculations are used to investigate the local mixedness [4,5] and the temporal and spatial integral length scales obtained from both Lagrangian and Eulerian correlations and functions. We compare these results with both theoretical and experimental ones in the Laboratory with a wind tunnel at the wake of a grid or cillinder with and withoutand a near Wall. The a theoretical description of how to simulate intermittency following the model of Babiano et al. (1996) and the role of locality in higher order exponents is applied to the different flows. The information about turbulent jets is needed in several configurations providing basic information about the turbulent free jet, the circular jet and the turbulent wall jet. The experimental measurements of turbulent velocity is based on Acoustic Doppler Velocimeter measurements of the jet centerline and off centered radial positions in the tank at several distances from the wall. Spectral and structure function analysis are useful to determine the flow mixing ability using also flow visualization [6,7]. Results of experiments include the velocity distribution, entrainment angle of the jets, jet and wake average and fluctuating velocity, PDF's, Skewness and Kurthosis, velocity and vorticity standard deviation, boundary layers function and turbulence intensity . Different range of Wake and Jet flows show a maximum of turbulent intensity at a certain distance from the wall as it breaks the flow simmetry and adds large scale vorticity in the different experiments, these efects are also believed to occur in Geo-Astrophysical flows. [1] Babiano, A. (2002), On Particle dispersion processes in two-dimensional turbulence. In Turbulent mixing in geophysical flows. Eds. Linden P.F. and Redondo J.M., p. 2

  2. Theoretical study of reactive and nonreactive turbulent coaxial jets

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Wakelyn, N. T.

    1976-01-01

    The hydrodynamic properties and the reaction kinetics of axisymmetric coaxial turbulent jets having steady mean quantities are investigated. From the analysis, limited to free turbulent boundary layer mixing of such jets, it is found that the two-equation model of turbulence is adequate for most nonreactive flows. For the reactive flows, where an allowance must be made for second order correlations of concentration fluctuations in the finite rate chemistry for initially inhomogeneous mixture, an equation similar to the concentration fluctuation equation of a related model is suggested. For diffusion limited reactions, the eddy breakup model based on concentration fluctuations is found satisfactory and simple to use. The theoretical results obtained from these various models are compared with some of the available experimental data.

  3. Numerical calculation of two-phase turbulent jets

    SciTech Connect

    Saif, A.A.

    1995-05-01

    Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.

  4. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    NASA Astrophysics Data System (ADS)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  5. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  6. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet

    NASA Astrophysics Data System (ADS)

    Taveira, Rodrigo R.; Diogo, José S.; Lopes, Diogo C.; da Silva, Carlos B.

    2013-10-01

    Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Reλ≈110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes “active” only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that “engulfment” is not significant for the present flow, indirectly suggesting that the entrainment is largely due to “nibbling” small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

  7. Buoyancy Effects in Turbulent Jet Flames in Crossflow

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2003-11-01

    The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.

  8. Strategies for comparing LES and experimental data of urban turbulence

    NASA Astrophysics Data System (ADS)

    Hertwig, D.; Nguyen van yen, R.; Patnaik, G.; Leitl, B.

    2012-12-01

    Unsteady flow within and above built environments is an important example of the complex nature of near-surface atmospheric turbulence. Typically, obstacle-resolving micro-scale meteorological models based on the Reynolds-averaged conservation equations are adopted to investigate and predict the mean-states of urban flow phenomena. The rapid advancements in computer capacities, however, fostered the use of time-resolved approaches like large-eddy simulation (LES) for applications on the urban micro-scale. LES has the potential to provide a realistic picture of the spatio-temporal behavior of turbulent flows within and above the urban canopy layer, which cannot be easily achieved with classic in-situ micro-meteorological measurements. The further success of eddy-resolving techniques, however, is coupled to the critical assessment of the model performance in terms of a rigorous validation against suitable reference data. This task is particularly challenging with regard to the time-dependent nature of the problem and the need to verify whether the model predicts turbulence structures in a realistic way. In this study, a hierarchy of validation strategies for urban LES flow fields is formulated and systematically applied. The test case is neutrally stratified turbulent flow in the inner city of Hamburg, Germany. The LES computations were conducted by the U.S. Naval Research Laboratory on the basis of a monotone integrated LES methodology. Reference experiments in terms of single-point, high resolution time-series measurements were carried out in the boundary-layer wind-tunnel facility at the University of Hamburg. The wind-tunnel model was built on a scale of 1:350 and included building structures with a full-scale spatial resolution of 0.5 m. Benchmark parameters for the congruent representation of atmospheric inflow conditions in the physical and the numerical model were obtained from long-term sonic anemometer measurements at a suburban meteorological field site

  9. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1992-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.

  10. Linear global modes in a high Reynolds number Mach 0.9 turbulent jet

    NASA Astrophysics Data System (ADS)

    Schmidt, Oliver; Towne, Aaron; Colonius, Tim

    2015-11-01

    A global linear stability and resolvent analysis of the mean flow from a carefully validated Mach 0 . 9 turbulent jet large eddy simulation (LES) is conducted. Spatiotemporal Fourier decomposition of the simulation data reveals the presence of large scale coherent structures at small azimuthal wavenumbers. The latter wave packets appear as discrete sets of lightly dampened modes in the linear global stability analysis. Their common feature is a spatial separation into an upstream traveling acoustic perturbation in the potential core region, and a Kelvin-Helmholtz-like vortical perturbation which is advected downstream. The least stable branch of discrete modes observed at Strouhal numbers 0 . 38 < St < 0 . 42 exhibits the same acoustic super-directivity as found in the LES and various experimental studies, and hence establishes a direct link between global linear instabilities and low-angle acoustic radiation. Branches at higher frequencies and azimuthal wavenumbers show multi-directive acoustic emission patterns. This observation is of particular interest since high angle, broadband radiation is commonly attributed to stochastic fluctuations of the turbulent jet shear layer.

  11. Variability in Active Galactic Nuclei from Propagating Turbulent Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-01

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is -1.8 to -2.3, while for the bulk velocity produced variations this range is -2.1 to -2.9 these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  12. Mean dynamics of a turbulent plane wall jet

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Klewicki, Joseph

    2015-11-01

    Experimental and large-eddy simulation data are used to investigate the balances between viscous and inertial forces in plane turbulent wall jets. In recent years, analysis of the mean momentum balance in its unintegrated form has been shown to provide a mathematically and physically useful means for clarifying the leading order mean dynamics as a function of the transverse coordinate. Distinct from its laminar counterpart, each of the terms in the appropriately simplified form of the mean dynamical equation for the planar turbulent wall jet is leading order somewhere, but not everywhere, across the flow domain. Similar to what is observed in the canonical turbulent wall-flows, there is a wall region where the mean viscous force retains leading order. The wall jet, however, contains two peaks of opposite sign in its Reynolds stress profile. With distance from the wall, the first peak is associated with the loss of a leading order viscous force, while the outer peak is akin to the wholly inertial balance exchange that occurs in shear-wake flows. The physics of these balances exchanges are described, the scaling behaviors of the leading order balance layers are estimated, and the present findings are compared with previous models of planar wall jet structure.

  13. Measurements of turbulent inclined plane dual jets

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Lin, Y. F.; Sheu, M. J.

    1993-11-01

    Measurements of mean velocities, flow direction, velocity fluctuations and Reynolds shear stress were made with a split film probe of hot wire anemometer to investigate the interactions created by two air jets issuing from two identical plane inclined nozzles. The reverse flow was detected by using the split film probe and observed by flow visualization. Experimental results with an inclined angle of 9° are presented in the paper. Some experimental results with an inclined angle of 27° are presented to investigate the effect of inclination on the flow field. Mean velocities approach self-preservation in both the converging region and the combining region. Velocity fluctuations and Reynolds shear stress approach self-preservation in the combining region only. The spreads of jet and the square of the decay of maximum mean velocity increase linearly as the distance from the nozzle exit increases.

  14. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  15. Swirling jet turbulent mixing and combustion computations

    NASA Technical Reports Server (NTRS)

    Rubel, A.

    1973-01-01

    Computations are presented describing the mixing and combustion of swirling jets in a coaxial stream. It is demonstrated that the boundary layer equations represent the flow reasonably well until reversed flow is imminent. For the range of parameters investigated indications are that the edge velocity has little effect on the behavior of the flow. Furthermore, confining the flow with a constant pressure wall, or impressing a favorable pressure gradient on the coaxial flow, acts to reduce the severity of the centerline adverse pressure gradient created by the swirl decay. A simple scalar eddy viscosity model, including a potential core formulation, is shown to described the behavior of weak swirling flow in the far region but is only in fair agreement with observations in the near region. The effects of swirl on a burning hydrocarbon jet exhausting into a cold coaxial stream are shown to be intensified by the reduction of the density due to combustion. The enhanced mixing properties of high swirl flow produce rapid diffusion of the burning gases into the cold edge flow causing early cessation of the NO producing reactions. Computations show that doubling the initial jet swirl could reduce the NO production by 25 percent.

  16. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are

  17. Scanning tomographic particle image velocimetry applied to a turbulent jet

    NASA Astrophysics Data System (ADS)

    Casey, T. A.; Sakakibara, J.; Thoroddsen, S. T.

    2013-02-01

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  18. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  19. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct numerical simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial.helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moser are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  20. Large-eddy simulation of axially-rotating, turbulent pipe and particle-laden swirling jet flows

    NASA Astrophysics Data System (ADS)

    Castro, Nicolas D.

    The flows of fully-developed turbulent rotating pipe and particle-laden swirling jet emitted from the pipe into open quiescent atmosphere are investigated numerically using Large-Eddy Simulation (LES). Simulations are performed at various rotation rates and Reynolds numbers, based on bulk velocity and pipe diameter, of 5.3x103, 12x103, and 24x103, respectively. Time-averaged LES results are compared with experimental and simulation data from previous studies. Pipe flow results confirm observations in previous studies, such as the deformation of the turbulent mean axial velocity profile towards the laminar Poiseuille-profile, with increased rotation. The Reynolds stress anisotropy tensor shows a redistribution due to pipe rotation. The axial component near the wall is suppressed, whereas the tangential component is amplified, as rotation is increased. The anisotropy invariant map also shows a movement away from the one-component limit in the viscous sublayer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S=0.5 is investigated. Swirl is observed to change the characteristics of the jet flow field, leading to an increase in jet spread and velocity decay and a corresponding decrease in the jet potential core. Lagrangian tracking with one way coupling is used to analyze particle dispersion in the jet flow. Three particle diameter sizes are investigated: 10, 100, and 500μm, which correspond to Stokes numbers of 0.06, 6, and 150, respectively. Particles are injected with an initial velocity set equal to the instantaneous fluid phase flow velocities at the jet inlet. The results show that, in the absence of swirl, particle dispersion is inversely proportional to particle size. With the addition of swirl, particle evolution is much more complicated. Largely unaffected by turbulent structures, the largest particles maintain their initial radial

  1. Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

    NASA Astrophysics Data System (ADS)

    Afshar, Ali

    An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.

  2. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.

  3. Experimental study of highly turbulent isothermal opposed-jet flows

    NASA Astrophysics Data System (ADS)

    Coppola, Gianfilippo; Gomez, Alessandro

    2010-10-01

    Opposed-jet flows have been shown to provide a valuable means to study a variety of combustion problems, but have been limited to either laminar or modestly turbulent conditions. With the ultimate goal of developing a burner for laboratory flames reaching turbulence regimes of relevance to practical systems, we characterized highly turbulent, strained, isothermal, opposed-jet flows using particle image velocimetry (PIV). The bulk strain rate was kept at 1250 s-1 and specially designed and properly positioned turbulence generation plates in the incoming streams boosted the turbulence intensity to well above 20%, under conditions that are amenable to flame stabilization. The data were analyzed with proper orthogonal decomposition (POD) and a novel statistical analysis conditioned to the instantaneous position of the stagnation surface. Both POD and the conditional analysis were found to be valuable tools allowing for the separation of the truly turbulent fluctuations from potential artifacts introduced by relatively low-frequency, large-scale instabilities that would otherwise partly mask the turbulence. These instabilities cause the stagnation surface to wobble with both an axial oscillation and a precession motion about the system axis of symmetry. Once these artifacts are removed, the longitudinal integral length scales are found to decrease as one approaches the stagnation line, as a consequence of the strained flow field, with the corresponding outer scale turbulent Reynolds number following a similar trend. The Taylor scale Reynolds number is found to be roughly constant throughout the flow field at about 200, with a value virtually independent of the data analysis technique. The novel conditional statistics allowed for the identification of highly convoluted stagnation lines and, in some cases, of strong three-dimensional effects, that can be screened, as they typically yield more than one stagnation line in the flow field. The ability to lock on the

  4. Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.

    2005-01-01

    This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.

  5. Broadband sound generation by confined turbulent jets.

    PubMed

    Zhang, Zhaoyan; Mongeau, Luc; Frankel, Steven H

    2002-08-01

    Sound generation by confined stationary jets is of interest to the study of voice and speech production, among other applications. The generation of sound by low Mach number, confined, stationary circular jets was investigated. Experiments were performed using a quiet flow supply, muffler-terminated rigid uniform tubes, and acrylic orifice plates. A spectral decomposition method based on a linear source-filter model was used to decompose radiated nondimensional sound pressure spectra measured for various gas mixtures and mean flow velocities into the product of (1) a source spectral distribution function; (2) a function accounting for near field effects and radiation efficiency; and (3) an acoustic frequency response function. The acoustic frequency response function agreed, as expected, with the transfer function between the radiated acoustic pressure at one fixed location and the strength of an equivalent velocity source located at the orifice. The radiation efficiency function indicated a radiation efficiency of the order (kD)2 over the planar wave frequency range and (kD)4 at higher frequencies, where k is the wavenumber and D is the tube cross sectional dimension. This is consistent with theoretical predictions for the planar wave radiation efficiency of quadrupole sources in uniform rigid anechoic tubes. The effects of the Reynolds number, Re, on the source spectral distribution function were found to be insignificant over the range 20002.5. The influence of a reflective open tube termination on the source function spectral distribution was found to be insignificant, confirming the absence of a feedback mechanism. PMID:12186047

  6. Probing Turbulence and Acceleration at Relativistic Shocks in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Boettcher, Markus; Summerlin, Errol J.

    2016-04-01

    Acceleration at relativistic shocks is likely to be important in various astrophysical jet sources, including blazars and other radio-loud active galaxies. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazar jets. The spectral index of the non-thermal particle distributions resulting from Monte Carlo simulations of shock acceleration, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the mean magnetic field obliquity to the shock normal. We investigate the radiative synchrotron/Compton signatures of thermal and non-thermal particle distributions generated from the acceleration simulations. Important constraints on the frequency of particle scattering and the level of field turbulence are identified for the jet sources Mrk 501, AO 0235+164 and Bl Lacertae. Results suggest the interpretation that turbulence levels decline with remoteness from jet shocks, with a significant role for non-gyroresonant diffusion.

  7. Microburst Simulation via Vortex-Ring and Turbulent Jet Models.

    NASA Astrophysics Data System (ADS)

    Wan, Tung

    Microbursts, suggested as primary causes of many aircraft fatal crashes, are the subject of this research. A microburst, or low-level intense wind shear, is generated by a thunderstorm or a small rain cloud, and presents hazardous conditions for aircraft during take-off and landing maneuvers. Recently released data show that a microburst resembles a transient vortex ring. Three microburst models have been constructed in this study. First, the turbulent jet model encompasses a free jet at high altitude and a wall jet near the ground surface. Second, the vortex ring model is a combination of a primary and an image vortex ring, with an inviscid -viscous interaction at the central axial and surface regions. An unsteady version of this model is also provided by solving the trajectory equation with the Direct Formal Integration (DFI) method or with the Runge-Kutta method. Third and finally, the complete unsteady microburst model equations (conservation of mass, momentum, and energy), or what has been referred to as the Navier-Stokes model formulation, are solved by the successive over relaxation method. Results show that the microburst can be simulated accurately by impulsive turbulent jet at high altitude and a transient vortex ring in mid-air and near the ground surface. In addition to improved understanding of the physical nature of microbursts, the models presented here can also be used for flight simulation and the pilot training purposes.

  8. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  9. On the Two Components of Turbulent Mixing Noise from Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Golebiowski, Michel; Seiner, J. M.

    1996-01-01

    It is argued that because of the lack of intrinsic length and time scales in the core part of the jet flow, the radiated noise spectrum of a high-speed jet should exhibit similarity. A careful analysis of all the axisymmetric supersonic jet noise spectra in the data-bank of the Jet Noise Laboratory of the NASA Langley Research Center has been carried out. Two similarity spectra, one for the noise from the large turbulence structures/instability waves of the jet flow, the other for the noise from the fine-scale turbulence, are identified. The two similarity spectra appear to be universal spectra for axisymmetric jets. They fit all the measured data including those from subsonic jets. Experimental evidence are presented showing that regardless of whether a jet is supersonic or subsonic the noise characteristics and generation mechanisms are the same. There is large turbulence structures/instability waves noise from subsonic jets. This noise component can be seen prominently inside the cone of silence of the fine-scale turbulence noise near the jet axis. For imperfectly expanded supersonic jets, a shock cell structure is formed inside the jet plume. Measured spectra are provided to demonstrate that the presence of a shock cell structure has little effect on the radiated turbulent mixing noise. The shape of the noise spectrum as well as the noise intensity remain practically the same as those of a fully expanded jet. However, for jets undergoing strong screeching, there is broadband noise amplification for both turbulent mixing noise components. It is discovered through a pilot study of the noise spectrum of rectangular and elliptic supersonic jets that the turbulent mixing noise of these jets is also made up of the same two noise components found in axisymmetric jets. The spectrum of each individual noise component also fits the corresponding similarity spectrum of axisymmetric jets.

  10. Computations of Complex Three-Dimensional Turbulent Free Jets

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

  11. Oscillations of a Turbulent Jet Incident Upon an Edge

    SciTech Connect

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  12. Control of coherent structure in coaxial swirling turbulent jets

    NASA Astrophysics Data System (ADS)

    Lee, Wonjoong

    The purpose of this investigation is to explore the swirl jet characteristics and the possibility of using artificial means for excitation of shear layers with the application as swirl jet control. For this purpose, a subsonic jet facility and a mechanical excitation device are designed and fabricated for the low speed and plain perturbations. The major system components consist of concentric subsonic nozzles, swirl generators, and the excitation devices with straight lobes. The experiments are carried out at various swirl flow conditions and excitation modes. Three components of mean velocity and turbulence fluctuation measurements are carried out with wave excitation using a stereoscopic particle image velocimetry. The acquired data are presented in cubic plots and two-dimensional contour plots. Furthermore, the numerical analysis is performed to investigate the helical excitation effects on a relatively high speed region. The computed data are presented in two-dimensional contour pictures and the trace plots of particles. Including extracted vorticity, both the experimental and computational results are compared with the baseline at various conditions, and with the values reported in the existing literature. In general, axisymmetric swirling jets are unstable in the near field to all the excitation modes examined. It is shown that the overall response of the swirling jet to excitation is not only dependent on the wave mode number, but also strongly on its sign; meaning the spiral direction of the convex lobes with respect to the swirling jet. This confirms the previous theoretical results. Excitation at both plain and helical perturbations simultaneously affects the flow property distributions in the vortex core and the shear layer at the jet periphery. Especially negative helical wave excitation is considered as the effective way of mixing enhancement for swirling jets compared to the straight lobe perturbation. The preferred mode is the second negative helical

  13. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    NASA Astrophysics Data System (ADS)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  14. Transition to turbulence and noise radiation in heated coaxial jet flows

    NASA Astrophysics Data System (ADS)

    Gloor, Michael; Bühler, Stefan; Kleiser, Leonhard

    2016-04-01

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35∘. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for rmic > 40R1, where rmic is the distance from the end of the potential core and R1 is the core-jet radius, a perfect 1/rmic decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  15. The effect of boundary-layer turbulence on mixing in heated jets

    NASA Astrophysics Data System (ADS)

    Strykowski, P. J.; Russ, S.

    1992-05-01

    The mixing properties of a heated axisymmetric jet at a density ratio of 0.55 were examined for initially laminar and turbulent separated boundary layers. Initially laminar jets displayed large intermittent spread rates with half-angles up to 45° and a corresponding rapid decay of the streamwise velocity and temperature on the jet axis. When the boundary layer was disturbed upstream of the nozzle exit, creating an initially turbulent separated layer, the jet mixing was significantly reduced. Flow visualization revealed that the turbulent conditions eliminated the intermittent nature of the jet spreading, producing constant spreading rates at half-angles near 10°.

  16. The effect of boundary-layer turbulence on mixing in heated jets

    NASA Astrophysics Data System (ADS)

    Strykowski, P. J.; Russ, S.

    1992-05-01

    The mixing properties of a heated axisymmetric jet at a density ratio of 0.55 were examined for initially laminar and turbulent separated boundary layers. Initially laminar jets displayed large intermittent spread rates with half-angles up to 45 deg and a corresponding rapid decay af the streamwise velocity and temperature on the jet axis. When the boundary layer was disturbed upstream of the nozzle exit, creating an initially turbulent separated layer, the jet mixing was significantly reduced. Flow visualization revealed that the turbulent conditions eliminated the intermittent nature of the jet spreading, producing constant spreading rates at half-angles near 10 deg.

  17. Characteristics Of Turbulent Nonpremixed Jet-Flames And Jet-Flames In Crossflow In Normal- And Low-Gravity

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.

    2003-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.

  18. Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flow.

    PubMed

    Shetty, Dinesh A; Frankel, Steven H

    2013-09-20

    The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423

  19. DNS of a turbulent lifted DME jet flame

    DOE PAGESBeta

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  20. Aeroacoustics of Turbulent Jets: Flow Structure, Noise Sources, and Control

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim Jeff; Callender, Bryan William; Martens, Steve

    The paper reviews research performed to advance the understanding of state-of-the-art technologies capable of reducing coaxial jet noise simulating the exhaust flow of turbofan engines. The review focuses on an emerging jet noise passive control technology known as chevron nozzles. The fundamental physical mechanisms responsible for the acoustic benefits provided by these nozzles are discussed. Additionally, the relationship between these physical mechanisms and some of the primary chevron geometric parameters are highlighted. Far-field acoustic measurements over a wide range of nozzle operating conditions illustrated the ability of the chevron nozzles to provide acoustic benefits. Detailed mappings of the acoustic near-field provided more insight into the chevron noise suppression mechanisms by successfully identifying two primary chevron effects consistent with the results of the far-field measurements: chevrons penetration and shear velocity across them. Mean and turbulence data identified the physical flow mechanisms responsible for the effects documented in the far- and near-field studies.

  1. Numerical Simulation of Turbulent Jets with Rectangular Cross-Section

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional turbulent jets with rectangular cross-section are simulated with a finite-difference numerical method. The full Navier-Stokes equations are solved at low Reynolds numbers, whereas at the high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporal discretization and a fourth-order compact scheme is used for spatial discretization. Computations are performed for different inlet conditions which represent different types of jet forcing. The phenomenon of axis-switching is observed, and it is confirmed that this is based on self-induction of the vorticity field. Budgets of the mean streamwise velocity show that convection is balanced by gradients of the Reynolds stresses and the pressure.

  2. Turbulent jet flow in a duct with a circulation zone

    NASA Astrophysics Data System (ADS)

    Glebov, G. A.; Petrov, V. N.

    An approximation method is proposed for calculating flows resulting from the interaction between a turbulent jet and a slipstream inside a duct, including the case where a back stream is formed near the wall. In accordance with the approach proposed here, the velocity profile in the mixing region is determined using the well known method of the polynomial approximation of the Reynolds shear stress profile in the duct cross-sections. The flow parameters are then determined using integral equations of flow rate and momentum. The results obtained using the approximation method are found to be in good agreement with experiment data.

  3. Turbulent jet flow in a channel with a circulation region

    NASA Astrophysics Data System (ADS)

    Glebov, G. A.; Petrov, V. N.

    1985-01-01

    An approximation method is proposed for calculating flows resulting from the interaction between a turbulent jet and a slipstream inside a duct, including the case where a back stream is formed near the wall. In accordance with the approach proposed here, the velocity profile in the mixing region is determined using the well known method of the polynomial approximation of the Reynolds shear stress profile in the duct cross-sections. The flow parameters are then determined using integral equations of flow rate and momentum. The results obtained using the approximation method are found to be in good agreement with experiment data.

  4. Numerical simulation of turbulent jet noise, part 1

    NASA Technical Reports Server (NTRS)

    Metcalfe, R. W.; Orszag, S. A.

    1975-01-01

    Flow characteristics, such as quadrupole moments are examined in order to study generation of aerodynamic noise. The mean flow quantities are set in accordance with experimental data and the incompressible Navier-Stokes are solved numerically. Isolated downstream sections of a turbulent jet are modelled separately with the mean flow characteristics held constant in time. The flows are allowed to evolve until the fluctuating velocity components reach a statistically steady state. Cross section contour plots of the velocity components and the quadrupole moments at three different downstream positions are presented.

  5. Experiments with Turbulent Jets at Mach Number 0.9

    NASA Technical Reports Server (NTRS)

    Agui, Juan; Andreopoulos, Yiannis; Davis, David O. (Technical Monitor)

    2001-01-01

    A systematic investigation of the structure of turbulent jets before their interaction with shock or expansion waves was undertaken during the last year. In particular compressibility and density effects in circular jets issuing in still air were investigated experimentally. Jets with nitrogen, helium, and krypton gases at 0.3, 0.6, and 0.9 Mach numbers were investigated in detail. Particle Image Velocimetry technique was developed, tested, and used to obtain qualitative information of the two-dimensional velocity field on a plane inside the flow field, which was illuminated by a laser sheet. The motion of particles was recorded by a CCD camera, which was appropriately triggered to capture two images within a fraction of a microsecond. Statistical averaging of the data at each location reduced the large amount of acquired data. It was found that the spreading rate of the jets was reduced with increased Mach numbers or increased density ratio. It was also found that decay rates of centerline Mach numbers are higher in gases with reduced density ratio. Mach number fluctuations appear to decrease with increasing Mach number of the flow. It has been proposed that the reason for this behavior is the reduction of vortex stretching activities with increased Mach number.

  6. Computational aeroacoustics of turbulent high-speed jets

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.

    2014-11-01

    Despite significant scientific investigation, jet noise remains a large component of the overall noise generated by supersonic aircraft. Experiments show that alterations to nozzle geometry, such as the addition of chevrons to the nozzle lip, can significantly reduce jet noise. In this talk, we assess unstructured large eddy simulation as a tool for predicting and understanding the aeroacoustic effects of complex geometry upon supersonic jets. Body-fitted, adaptive meshes are used to simulate the flow inside, around and through complicated nozzles, and results are validated against experimental measurements. High-fidelity simulations utilizing as many as one million processors simultaneously will be discussed, allowing for a detailed description of interactions between turbulence, shocks, and acoustics. This includes observations of the phenomenon of ``crackle'' noise in heated supersonic jets. We will briefly discuss challenges met and overcome along this frontier of com putational science, and describe how information extracted from the high-fidelity simulations can be used to construct accurate reduced-order models useful for aeroacoustic design. Computational resources were provided by the Argonne Leadership Computing Facility at Argonne National Laboratory and the ERDC and AFRL supercomputing centers.

  7. Turbulent acidic jets and plumes injected into an alkaline environment

    NASA Astrophysics Data System (ADS)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  8. The radiated noise from isotropic turbulence and heated jets

    NASA Technical Reports Server (NTRS)

    Lilley, G. M.

    1995-01-01

    Our understanding of aerodynamic noise has its foundations in the work of Sir James Lighthill (1952), which was the first major advance in acoustics since the pioneering work of Lord Rayleigh in the last century. The combination of Lighthill's theory of aerodynamic noise as applied to turbulent flows and the experimental growing database from the early 1950's was quickly exploited by various jet propulsion engine designers in reducing the noise of jet engines at takeoff and landing to levels marginally acceptable to communities living in the neighborhoods of airports. The success in this noise containment led to the rapid growth of fast economical subsonic civil transport aircraft worldwide throughout the 1960's and has continued to the present day. One important factor in this success story has been the improvements in the engine cycle that have led to both reductions in specific fuel consumption and noise. The second is the introduction of Noise Certification, which specifies the maximum noise levels at takeoff and landing that all aircraft must meet before they can be entered on the Civil Aircraft Register. The growing interest in the development of a new supersonic civil transport to replace 'Concorde' in the early years of the next century has led to a resurgence of interest in the more challenging problem of predicting the noise of hot supersonic jets and developing means of aircraft noise reduction at takeoff and landing to meet the standards now accepted for subsonic Noise Certification. The prediction of aircraft noise to the accuracy required to meet Noise Certification requirements has necessitated reliance upon experimental measurements and empirically derived laws based on the available experimental data bases. These laws have their foundation in the results from Lighthill's theory, but in the case of jet noise, where the noise is generated in the turbulent mixing region with the external ambient fluid, the complexity of the turbulent motion has

  9. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  10. An experimental study of turbulent flow in attachment jet combustors by LDV

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Cheng-Kang

    1993-12-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width.

  11. Computation of confined coflow jets with three turbulence models

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Shih, T. H.

    1993-07-01

    A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-epsilon model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-epsilon model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reattachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite-volume procedure. Numerical credibility of the solutions is ensured by using second-order accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-epsilon model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-epsilon model in capturing the essential flow features, while the RNG-based K-epsilon model does not seem to give improvements over the standard K-epsilon model under the flow conditions considered.

  12. Computation of confined coflow jets with three turbulence models

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T. H.

    1993-01-01

    A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-epsilon model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-epsilon model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reattachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite-volume procedure. Numerical credibility of the solutions is ensured by using second-order accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-epsilon model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-epsilon model in capturing the essential flow features, while the RNG-based K-epsilon model does not seem to give improvements over the standard K-epsilon model under the flow conditions considered.

  13. Turbulence in a microscale planar confined impinging-jets reactor.

    PubMed

    Liu, Ying; Olsen, Michael G; Fox, Rodney O

    2009-04-21

    Confined impinging-jets reactors (CIJR) offer many advantages for rapid chemical processing at the microscale in applications such as precipitation and the production of organic nanoparticles. It has been demonstrated that computational fluid dynamics (CFD) is a promising tool for "experiment-free" design and scale-up of such reactors. However, validation of the CFD model used for the microscale turbulence applications requires detailed experimental data on the unsteady flow, the availability of which has until now been very limited. In this work, microscopic particle-image velocimetry (microPIV) techniques were employed to measure the instantaneous velocity field for various Reynolds numbers in a planar CIJR. In order to illustrate the validation procedure, the performance of a particular CFD model, the two-layer k-epsilon model, was evaluated by comparing the predicted flow field with the experimental data. To our knowledge, this study represents the first attempt to directly measure and quantify velocity and turbulence in a microreactor and to use the results to validate a CFD model for microscale turbulent flows. PMID:19350093

  14. The Formation of Turbulent Vortex Rings by Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Lawson, John; Dawson, James

    2013-11-01

    Vortex rings formed by synthetic jets are found in many engineering and biological flows. For vortex rings formed both periodically and in isolation, a constraint on vortex formation (``pinch-off'') has been observed which is relevant to unsteady propulsion. However, there is no clear consensus on the physical mechanism of this constraint. We present analysis of time resolved, 2D Particle Image Velocimetry measurements of the velocity and material acceleration field in an axisymmetric, turbulent synthetic jet in air at maximum stroke ratios Lm / D = 2 - 15 . Using the acceleration field, pinch-off may be identified in a manner which is frame invariant and consistent with previous studies. An adverse pressure gradient behind the ring and induced by it plays a role in the pinch-off and separation of the ring from the jet. Recognising this, we revise an existing model for pinch-off: this revision fits our data well. Additionally, we show that as the ring forms, hydrodynamic impulse is delivered via two equally important mechanisms: a material flux and a vortex force. For large Lm / D , this vortex force may deliver a substantial impulse to the ring after pinch-off. This has implications for unsteady propulsion, models of vortex ring formation and existing explanations for pinch-off.

  15. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  16. Large eddy simulation of a lifted turbulent jet flame

    SciTech Connect

    Ferraris, S.A.; Wen, J.X.

    2007-09-15

    The flame index concept for large eddy simulation developed by Domingo et al. [P. Domingo, L. Vervisch, K. Bray, Combust. Theory Modell. 6 (2002) 529-551] is used to capture the partially premixed structure at the leading point and the dual combustion regimes further downstream on a turbulent lifted flame, which is composed of premixed and nonpremixed flame elements each separately described under a flamelet assumption. Predictions for the lifted methane/air jet flame experimentally tested by Mansour [M.S. Mansour, Combust. Flame 133 (2003) 263-274] are made. The simulation covers a wide domain from the jet exit to the far flow field. Good agreement with the data for the lift-off height and the mean mixture fraction has been achieved. The model has also captured the double flames, showing a configuration similar to that of the experiment which involves a rich premixed branch at the jet center and a diffusion branch in the outer region which meet at the so-called triple point at the flame base. This basic structure is contorted by eddies coming from the jet exit but remains stable at the lift-off height. No lean premixed branches are observed in the simulation or and experiment. Further analysis on the stabilization mechanism was conducted. A distinction between the leading point (the most upstream point of the flame) and the stabilization point was made. The later was identified as the position with the maximum premixed heat release. This is in line with the stabilization mechanism proposed by Upatnieks et al. [A. Upatnieks, J. Driscoll, C. Rasmussen, S. Ceccio, Combust. Flame 138 (2004) 259-272]. (author)

  17. Effect of noncircular orifice plates on the near flow field of turbulent free jets

    NASA Astrophysics Data System (ADS)

    Xu, Min-Yi; Tong, Xing-Qing; Yue, Dan-Ting; Zhang, Jian-Peng; Mi, Jian-Chun; Nathan, G. J.; Kalt, P. A. M.

    2014-12-01

    In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into air surroundings. All the orifice plates have identical opening areas or equivalent diameters (De) and their aspect ratios (AR) range from 1 to 6.5. Planar particle image velocimetry (PIV) is used to measure the velocity field at the same Reynolds number of Re = 5 × 104, where Re = UeDe/v with Ue being the exit bulk velocity and v the kinematic viscosity of fluid. The mean and turbulent velocity fields of all the five jets are compared in detail. Results show that the noncircular jets can enhance the entrainment rate, reflected by the higher acceleration rates of mean velocity decay and spread, shorten the length of the unmixed core, expedite the increase of turbulent intensity compared with the circular counterpart shortened unmixed core, and increase turbulent intensity comparing to the circular counterpart. Among the five jets, the rectangular jet (AR = 6.5) produces the greatest decay rate of the near-field mean velocity, postpones the position at which the `axis-switching' phenomenon occurs. This supports that axis switching phenomenon strongly depends on jet initial conditions. In addition, the hump in the centerline variation of the turbulence intensity is observed in the rectangular and triangular jets, but not in the circular jet, nor in diamond jet nor in notched-rectangular jet.

  18. A study of sound generation from turbulent heated round jets using three-dimensional large eddy simulation

    NASA Astrophysics Data System (ADS)

    Lew, Phoi-Tack

    Improvements in computing speed over the past decade have made Large Eddy Simulations (LES) amenable to the study of jet noise. The study of turbulent hot jets is required jets since all jet engines fitted on aircraft operate at hot exhaust conditions. The primary goal of this research was to further advance the science of jet noise prediction with a specific emphasis on heated jets using 3-D LES. For the 3-D LES methodology, spatial filtering is used as an implicit subgrid scale (SGS) model in place of an explicit SGS model, such as the classical Smagorinsky or Dynamic Smagorinsky models. To study the far-field noise, the porous FfowcsWilliams-Hawkings (FWH) surface integral acoustic formulation is employed. Results obtained for the heated jets in terms of jet development are in good agreement with other LES results and experimental data. The predicted overall sound pressure level (OASPL) values for heated jets exhibited the same trend as experimental data. The levels were over-predicted by approximately 3 dB, which was deemed satisfactory. An investigation of noise sources for heated jets was also performed within the framework of Lighthill's acoustic analogy. It is discovered that when a high-speed is jet heated, significant cancellations occur between shear and entropy noise sources compared to an unheated high speed jet. This could explain why a high speed heated jet is quieter than an unheated jet at the same ambient Mach number. High-order compact finite difference schemes along with high-order filters are used extensively in LES, especially for aeroacoustics problems, since these schemes have very high accuracy and spectral-like resolution as well as low-dispersion and diffusion errors. Due to the implicit nature of compact schemes, one technique of parallelization is based on the data transposition strategy. However, such transposition strategy is near impossible to apply to jets with complex geometries. Hence, an alternative parallelization methodology

  19. Mean velocity, turbulence intensity, and scale in a subsonic turbulent jet impinging normal to a large flat plate

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1977-01-01

    To explain the increase in noise when a jet impinges on a large flat plate, mean velocity, turbulence intensity, and scale were measured at nominal nozzle-exit velocities of 61, 138, and 192 meters per second with the plate located 7.1 nozzle-exit diameters from the nozzle. The maximum turbulence intensities in free and impinging jets were about the same; however, the integral length scale near the plate surface was only about one-half the free jet scale. The measured intensities and length scales, in conjunction with a contemporary theory of aerodynamic noise, provided a good explanation for the observed increase in noise associated with the impinging jet. An increase in the volume of highly turbulent flow could be the principal reason for the increase in noise.

  20. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  1. Protostellar jets and magnetised turbulence with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, Terrence

    2016-01-01

    Magnetic fields are an integral component of the formation of stars. During my thesis work, I built new methods to model magnetic fields in smoothed particle magnetohydrodynamics which enforce the divergence-free constraint on the magnetic field and reduce numerical dissipation of the magnetic field. Using these methods, we have performed simulations of isolated protostar formation, studying the production of jets and outflows of material and their effect on transporting angular momentum away from the protostar and reducing the efficiency of star formation. A major code comparison project on the small-scale turbulent dynamo amplification of magnetic fields was performed, using conditions representative of molecular clouds, the formation site of stars. The results were compared against results from grid-based methods, finding excellent agreement on their statistics and qualitative behaviour. I will outline the numerical methods developed, and present the results from our protostar and molecular cloud simulations.

  2. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  3. Numerical modeling of normal turbulent plane jet impingement on solid wall

    NASA Astrophysics Data System (ADS)

    Guo, C.-Y.; Maxwell, W. H. C.

    1984-10-01

    Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet.

  4. Numerical modeling of normal turbulent plane jet impingement on solid wall

    SciTech Connect

    Guo, C.Y.; Maxwell, W.H.C.

    1984-10-01

    Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.

  5. Emission of sound from axisymmetric turbulence convected by a mean flow with application to jet noise

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1972-01-01

    A model, based on Lighthill's theory, for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. Unlike Ribner's model, it does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic. turbulence by the more realistic one of axisymmetric turbulence. The implications of the model for jet noise are discussed.

  6. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  7. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  8. Entrainment of Vertical Jets in Turbulent Cross Flow

    NASA Astrophysics Data System (ADS)

    Freedland, Graham; Roberts, Karen; Mastin, Larry; Solovitz, Stephen; Cal, Raul

    2015-11-01

    Volcanic eruptions produce high concentrations of ash that produce clouds in the atmosphere that are hazardous for private and commercial aviation. Without accurate models to predict ash concentrations, air traffic is unable to safely navigate ash clouds downwind of an eruption as critical concentrations are difficult to identify visually. Current models rely on inputs such as plume height, eruptive dissipation and cross-flow wind speeds as well as empirical parameters such as the entrainment ratio between the cross-flow and the plume velocity. A wind tunnel experiment has been designed to investigate these models by injecting air orthogonally into a cross-flow. The ratio of the cross-flow and jet velocities is varied to simulate a weak plume and flow response is measured using particle image velocimetry. Grids upstream of the plume create different turbulence intensities, which, combined with different jet geometries, allow us to study the flow field, mean and second order moments and thereby obtain information to accurately model volcanic ash concentrations in the atmosphere.

  9. Effect of liquid droplets on turbulence structure in a round gaseous jet

    NASA Technical Reports Server (NTRS)

    Mostafa, A. M.; Elghobashi, S. E.

    1984-01-01

    A proposed two equation turbulence model for incompressible dilute two phase flows was validated and extended for steady incompressible two phase flow including phase change. The model was tested for the flow of a turbulent axisymmetric gaseous jet laden with multisize evaporating liquid droplets. Predicted results include distributions of the mean velocity; volume fractions of different phases concentration of the evaporated material in the carrier phase; turbulence intensity and shear stress of the carrier phase; droplet diameter distribution; and the jet spreading rate. Results are analyzed based on a qualitative comparison with the corresponding single phase jet flow.

  10. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  11. Fluorescence imaging study of free and impinging supersonic jets: Jet structure and turbulent transition

    NASA Astrophysics Data System (ADS)

    Inman, Jennifer Ann

    A series of experiments into the behavior of underexpanded jet flows has been conducted at NASA Langley Research Center. This work was conducted in support of the Return to Flight effort following the loss of the Columbia. The tests involved simulating flow through a hypothetical breach in the leading edge of the Space Shuttle Orbiter along its reentry trajectory, with the goal of generating a data set with which other researchers can test and validate computational modeling tools. Two nozzles supplied with high-pressure gas were used to generate axisymmetric underexpanded jets exhausting into a low-pressure chamber. These nozzles had exit Mach numbers of 1 and 2.6. Reynolds numbers based on nozzle exit conditions ranged from about 200 to 35,000, and nozzle exit-to-ambient jet pressure ratios ranged from about 1 to 37. Both free and impinging jets were studied, with impingement distances ranging from 10 to 40 nozzle diameters, and impingement angles of 45°, 60°, and 90°. For the majority of cases, the jet fluid was a mixture of 99.5% nitrogen seeded with 0.5% nitric oxide (NO). Planar laser-induced fluorescence (PLIF) of NO was used to non-intrusively visualize the flow with a temporal resolution on the order of lets. PLIF images were used to identify and measure the location and size of flow structures. PLIF images were further used to identify unsteady jet behavior in order to quantify the conditions governing the transition to turbulent flow. This dissertation will explain the motivation behind the work, provide details of the laser system and test hardware components, discuss the theoretical aspects of laser-induced fluorescence, give an overview of the spectroscopy of nitric oxide, and summarize the governing fluid mechanical concepts. It will present measurements of the size and location of flow structures, describe the basic mechanisms and origins of unsteady behavior in these flows, and discuss the dependence of such behavior on particular flow

  12. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS

  13. Interaction of a turbulent-jet noise source with transverse modes in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Baumeister, K. J.; Ingard, K. U.

    1978-01-01

    A turbulent jet was used to excite transverse acoustic modes in a rectangular duct. The pressure spectrum showed asymmetric singularities (pressure spikes) at the resonant frequencies of the duct modes. This validates previously published theoretical results. These pressure spikes occurred over a range of jet velocities, orientations, and inlet turbulence levels. At the frequency of the spike, the measured transverse pressure shape matched the resonant mode shape.

  14. Numerical investigation of heat transfer under confined impinging turbulent slot jets

    SciTech Connect

    Tzeng, P.Y.; Soong, C.Y.; Hsieh, C.D. )

    1999-06-01

    Impinging jet systems are extensively used to provide rapid heating, cooling, or drying in diverse industrial applications. Among these applications are the annealing of metals and plastic sheets; tempering and shaping of glass; drying of textiles, veneer, paper, and film materials; and cooling of combustion walls, turbine blades, and electronic components. This work numerically investigates confined impinging turbulent slot jets. Eight turbulence models, including one standard and seven low-Reynolds-number [kappa]-[epsilon] models, are employed and tested to predict the heat transfer performance of multiple impinging jets. Validation results indicate that the prediction by each turbulence model depends on grid distribution and numerical scheme used in spatial discretization. In addition, spent fluid exits are set between impinging jets to reduce the cross-flow effect in degradation of the heat transfer of downstream impinging jets. The overall heat transfer performance can be enhanced by proper spent fluid removal.

  15. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  16. Vorticity, turbulence production, and turbulence induced accelerations in a rectangular jet as measured using 3-D LDA

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    The flow field of a rectangular jet with a 4:1 aspect ratio (50.4 x 12.7 mm) was studied at a Reynolds number of 100,000 (Mach number 0.09) using a 3-D laser Doppler anemometer system. Measurements were performed along the major and minor axis planes and at various downstream cross-sections of the jet. The mean velocity vector and entire Reynolds stress tensor were measured and presented in a previous publication. The present work presents the vorticity vector, turbulence production, and turbulence induced acceleration vector distributions which were calculated from the previously presented data.

  17. Structure of three-dimensional turbulent offset jets with small offset distances

    NASA Astrophysics Data System (ADS)

    Agelin-Chaab, Martin; Tachie, Mark

    2009-11-01

    An offset jet is a jet that discharges into a medium above a wall which is offset by a certain distance. The ``Coanda effect'' forces the offset jet to deflect towards the wall and eventually attaches itself to the wall. The only detailed study of three-dimensional offset jets (3DOJs) did not report the flow field in the region from the jet exit to the point where the jet attaches itself to the wall. In this region flow reversal is expected. Velocity measurements of 3DOJs were conducted using particle image velocimetry. The 3DOJs have different jet exit offset distances (h) normalized by the jet exit diameter (d) of h/d = 0.5 to 4. The Reynolds numbers based on the jet exit velocities and jet exit diameters were 5000, 10000 and 20000. The detailed flow fields of the 3DOJs were examined in terms of mean velocities, and one-point turbulence statistics. In view of the wide range of length and temporal scales that are present in turbulent flows, multi-point turbulence statistics such as two-point velocity correlations and proper orthogonal decomposition are used to document the salient features of 3DOJs.

  18. Assessment of regularization models for LES of high-Re turbulent flows

    NASA Astrophysics Data System (ADS)

    Chandy, Abhilash; Frankel, Steven

    2008-11-01

    Regularization-based SGS turbulence models for LES are quantitatively assessed for decaying homogeneous turbulence (DHT) and transition to turbulence for the Taylor-Green vortex (TGV) through comparisons to laboratory measurements and DNS respectively. LES predictions using the Leray-α, LANS-α, and Clark-α regularization-based SGS models are compared to the classic non-dynamic Smagorinsky model. Regarding the regularization models, this work represents their first application to relatively high Re decaying turbulence with comparison to the active-grid-generated decaying turbulence measurements of Kang et al. (JFM, 2003) at Reλ 720 and the Re=3000 DNS of transition to turbulence in the TGV of Drikakis et al. (J. Turb., 2007). For DHT the non-dynamic Smagorinsky model is in excellent agreement with measurements for t.k.e., but higher-order moments show slight discrepancies and for TGV, the energy decay rates agree reasonably well with DNS. Regarding the regularization models stable results are not obtained as compared to Smagorinsky at the same grid resolution for various values of α, and at higher resolutions, they are in worse agreement. However, with additional dissipation such as in mixed α-Smagorinsky models, results are acceptable, but show slight deviations from Smagorinsky.

  19. Large Eddy Simulation/Probability Density Function Modeling of a Turbulent CH4/H2/N2 Jet Flame

    SciTech Connect

    Wang, Haifeng; Pope, Stephen B.

    2011-01-01

    In this work, we develop the large-eddy simulation (LES)/probability density function (PDF) simulation capability for turbulent combustion and apply it to a turbulent CH{sub 4}/H{sub 2}/N{sub 2} jet flame (DLR Flame A). The PDF code is verified to be second-order accurate with respect to the time-step size and the grid size in a manufactured one-dimensional test case. Three grids (64×64×16,192×192×48,320×320×80)(64×64×16,192×192×48,320×320×80) are used in the simulations of DLR Flame A to examine the effect of the grid resolution. The numerical solutions of the resolved mixture fraction, the mixture fraction squared, and the density are duplicated in the LES code and the PDF code to explore the numerical consistency between them. A single laminar flamelet profile is used to reduce the computational cost of treating the chemical reactions of the particles. The sensitivity of the LES results to the time-step size is explored. Both first and second-order time splitting schemes are used for integrating the stochastic differential equations for the particles, and these are compared in the jet flame simulations. The numerical results are found to be sensitive to the grid resolution, and the 192×192×48192×192×48 grid is adequate to capture the main flow fields of interest for this study. The numerical consistency between LES and PDF is confirmed by the small difference between their numerical predictions. Overall good agreement between the LES/PDF predictions and the experimental data is observed for the resolved flow fields and the composition fields, including for the mass fractions of the minor species and NO. The LES results are found to be insensitive to the time-step size for this particular flame. The first-order splitting scheme performs as well as the second-order splitting scheme in predicting the resolved mean and rms mixture fraction and the density for this flame.

  20. Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Compton, Debora A.; Johnston, James P.

    1991-01-01

    Weak longitudinal (streamwise) vortices produced by the interaction of simple round wall jets with a two-dimensional flow comprising a turbulent boundary layer were studied experimentally. Like the jets used in the Vortex Generator Jet (VGJ) method of stall control by Johnston and Nushi (1989), the jets in this study were pitched up at 45 degrees and skewed relative to the free stream as they entered from the wall. Skew angles of 90 to 45 degrees produced the strongest vortices, and vortex strength increased with jet speed over the range studied, VR = U(j)U(infinity) = 0.7 to 1.3. It is shown that the vortices produced by the jets are significantly different from those produced by a solid vortex generator, despite the fact that both types have proven effective in enhancement of mixing across a separated or separating turbulent boundary layer.

  1. Transport of inertial particles in a turbulent premixed jet flame

    NASA Astrophysics Data System (ADS)

    Battista, F.; Picano, F.; Troiani, G.; Casciola, C. M.

    2011-12-01

    The heat release, occurring in reacting flows, induces a sudden fluid acceleration which particles follow with a certain lag, due to their finite inertia. Actually, the coupling between particle inertia and the flame front expansion strongly biases the spatial distribution of the particles, by inducing the formation of localized clouds with different dimensions downstream the thin flame front. A possible indicator of this preferential localization is the so-called Clustering Index, quantifying the departure of the actual particle distribution from the Poissonian, which would correspond to a purely random spatial arrangement. Most of the clustering is found in the flame brush region, which is spanned by the fluctuating instantaneous flame front. The effect is significant also for very light particles. In this case a simple model based on the Bray-Moss-Libby formalism is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect is found to increases and persist well within the region of burned gases. The effect is maximum when the particle relaxation time is of the order of the flame front time scale. The evidence of this peculiar source of clustering is here provided by data from a direct numerical simulation of a turbulent premixed jet flame and confirmed by experimental data.

  2. The formation of turbulent vortex rings by synthetic jets

    NASA Astrophysics Data System (ADS)

    Lawson, J. M.; Dawson, J. R.

    2013-10-01

    An investigation is made into the mechanism of pinch-off for turbulent vortex rings formed by a synthetic jet using time resolved particle image velocimetry measurements in air. During formation, measurements of the material acceleration field show a trailing pressure maximum (TPM) forms behind the vortex core. The adverse pressure gradient behind this TPM inhibits vorticity transport into the ring and the TPM is spatially coincident with the termination of vorticity flux into a control volume moving with the ring. A Lagrangian Coherent Structures (LCS) analysis is shown to be in agreement with the role of the TPM in pinch-off and in identifying the vortex ring before separation. The LCS analysis provides physical insights which form the basis of a revised model of pinch-off, based on kinematics, which predicts the time of formation (formation number) well for the present dataset. The delivery of impulse to the vortex ring is also considered. Two equally important mechanisms are shown to play a role: a material flux and a vortex force. In the case of long maximum stroke ratio, it is demonstrated that a vortex force continues to deliver impulse to the ring after the material flux is terminated at pinch-off and that this contribution may be substantial. This shows that the pinch-off and separation process cannot be considered impulse invariant, which has important implications for unsteady propulsion, present models of vortex ring formation, and existing explanations for vortex ring pinch-off.

  3. Evaluating vortex generator jet experiments for turbulent flow separation control

    NASA Astrophysics Data System (ADS)

    von Stillfried, F.; Kékesi, T.; Wallin, S.; Johansson, A. V.

    2011-12-01

    Separating turbulent boundary-layers can be energized by streamwise vortices from vortex generators (VG) that increase the near wall momentum as well as the overall mixing of the flow so that flow separation can be delayed or even prevented. In general, two different types of VGs exist: passive vane VGs (VVG) and active VG jets (VGJ). Even though VGs are already successfully used in engineering applications, it is still time-consuming and computationally expensive to include them in a numerical analysis. Fully resolved VGs in a computational mesh lead to a very high number of grid points and thus, computational costs. In addition, computational parameter studies for such flow control devices take much time to set-up. Therefore, much of the research work is still carried out experimentally. KTH Stockholm develops a novel VGJ model that makes it possible to only include the physical influence in terms of the additional stresses that originate from the VGJs without the need to locally refine the computational mesh. Such a modelling strategy enables fast VGJ parameter variations and optimization studies are easliy made possible. For that, VGJ experiments are evaluated in this contribution and results are used for developing a statistical VGJ model.

  4. Estimation of Turbulent Wall Jet Velocity Fields for Noise Prediction

    NASA Astrophysics Data System (ADS)

    Nickels, Adam; Ukeiley, Lawrence; Reger, Robert; Cattafesta, Louis

    2015-11-01

    Estimation of the time-dependent turbulent velocity field of a planar wall jet based on discrete surface pressure measurements is performed using stochastic estimation in both the time and frequency domain. Temporally-resolved surface pressure measurements are measured simultaneously with planar Particle Image Velocimetry (PIV) snapshots, obtained at a relatively reduced rate. Proper Orthogonal Decomposition (POD) is then applied to both the surface pressure probes and the PIV snapshots, allowing for the isolation of portions of the wall pressure and velocity field signals that are well correlated. Using the time-varying pressure expansion coefficients as unconditional variables, velocity expansion coefficients are estimated and used to produce reconstructed estimates of the velocity field. Optimization in terms of number of unconditional probes employed, location of probes, and effects of PIV discretization are investigated with regards to the resulting estimates. Coupled with this analysis, Poisson's equation for fluctuating pressure is solved such that the necessary source terms of an acoustic analogy can be calculated for estimates of the far-field acoustics. Specifically in this work, the effects of using estimated velocity fields to solve for the hydrodynamic pressure and acoustic pressure will be studied.

  5. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  6. Selectivity of competitive-consecutive reactions depending on the turbulent mixing conditions in a co-axial jet mixer

    NASA Astrophysics Data System (ADS)

    Chorny, A.; Kornev, N.; Hassel, E.

    2010-12-01

    This paper considers the numerical results on the interaction between a turbulent co-axial jet and a co-flow of incompressible fluid (Schmidt number Sc≈1000) when competitive-consecutive reactions occur in a co-axial jet mixer. Firstly, RANS modeling was performed to predict flow phenomena. Two different mixing regimes were analyzed with and without a recirculation zone near a mixer wall. To describe the problem mathematically, the two-parameter turbulence k-ɛ model and various models for the computation of the averaged mixture fraction \\skew3\\bar f and its variance σ2 were used and verified by comparing them with the experimental and large eddy simulation (LES) data. The results revealed that the decay of \\skew5\\bar f and σ2 obtained by the developed RANS mixing model with the low-Reynolds-number effects (mechanical-to-scalar time ratio and turbulent Schmidt number in the transfer equation for σ2 as a function of Ret) was similar to the one found by LES and experiment. Second, the behavior of the competitive-consecutive reactions (A+B→P, B+R→S) in the co-axial mixer was considered. To calculate averaged chemical reaction rates, the transfer equations for concentrations adopted two approaches: a model with no regard to concentration fluctuations and the Li-Toor model with the Gaussian PDF of the mixture fraction. The yield of a desired product R was found to depend strongly on the mixing regime. The regime without recirculation zone appeared to be preferable as the reaction selectivity was smaller within the whole range of Reynolds number and initial reactant concentration ratio. This means that the amount of an undesired by-product S to be formed is minimal.

  7. LES of a Jet Excited by the Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2011-01-01

    The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.

  8. Hourly observations of the jet stream - Wind shear, Richardson number and pilot reports of turbulence

    NASA Technical Reports Server (NTRS)

    Syrett, William J.

    1991-01-01

    Results are presented of observations of the jet stream made on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages above western and central Pennsylvania during mid-November 1986 and mid-January 1987. Wind profilers are found to be far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability forecasts of turbulence based on wind profiler-derived shear values appears possible. A good correlation between pilot reports and turbulence and wind shear is found.

  9. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    SciTech Connect

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of

  10. Distorted turbulence submitted to frame rotation: RDT and LES results

    NASA Technical Reports Server (NTRS)

    Godeferd, Fabien S.

    1995-01-01

    The objective of this effort is to carry the analysis of Lee et al. (1990) to the case of shear with rotation. We apply the RDT approximation to turbulence submitted to frame rotation for the case of a uniformly sheared flow and compare its mean statistics to results of high resolution DNS of a rotating plane channel flow. In the latter, the mean velocity profile is modified by the Coriolis force, and accordingly, different regions in the channel can be identified. The properties of the plane pure strain turbulence submitted to frame rotation are, in addition, investigated in spectral space, which shows the usefulness of the spectral RDT approach. This latter case is investigated here. Among the general class of quadratic flows, this case does not follow the same stability properties as the others since the related mean vorticity is zero.

  11. Direct numerical simulation of transitional and turbulent buoyant planar jet flames

    NASA Astrophysics Data System (ADS)

    Mehravaran, K.; Jaberi, F. A.

    2004-12-01

    The effects of gravity on the physical and compositional structures of transitional and turbulent diffusion flames are studied via analysis of the data generated by direct numerical simulation of a planar jet flame at various gravity conditions. A fully compressible, high-order compact, finite-difference computational scheme is used together with a global kinetics model for chemical reaction. The results of our nonreacting turbulent jet simulations are in good agreement with the available experimental data. The results of our reacting jet simulations are also consistent with previous findings and indicate that in the absence of gravity, combustion damps the flow instability, and hence reduces "turbulence production" and jet growth. However, in the "finite-gravity" conditions, combustion generated density variations may promote turbulence and enhance both the mixing and the combustion through buoyancy effects. Our results also indicate that the gravity effects on a transitional/turbulent jet flame is not limited to large-scale flame flickering, and there is a significant impact on small-scale turbulence and mixing as well. Furthermore, the analysis of compositional flame structures suggests that the finite-rate chemistry effects are more significant in finite-gravity conditions than in zero-gravity.

  12. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  13. Statistical state dynamics of jet/wave coexistence in beta-plane turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Farrell, Brian; Ioannou, Petros

    Jets are commonly observed to coexist in the turbulence of planetary atmospheres with planetary scale waves and embedded vortices. These large-scale coherent structures arise and are maintained in the turbulence on time scales long compared to dissipation or advective time scales. The emergence, equilibration at finite amplitude, maintenance and stability of these structures pose fundamental theoretical problems. The emergence of jets and vortices from turbulence is not associated with an instability of the mean flow and their equilibration and stability at finite amplitude does not arise solely from the linear or nonlinear dynamics of these structures in isolation from the turbulence surrounding them. Rather the dynamics of these large-scale structures arises essentially from their cooperative interaction with the small-scale turbulence in which they are embedded. It follows that fundamental theoretical understanding of the dynamics of jets and vortices in turbulence requires adopting the perspective of the statistical state dynamics (SSD) of the entire turbulent state. In this work a theory for the jet/wave coexistence regime is developed using the SSD perspective.

  14. Effect of nozzle length-to-diameter ratio on atomization of turbulent liquid jets

    NASA Astrophysics Data System (ADS)

    Osta, Anu Ranjan

    Breakup of liquid jets is of considerable interest motivated by its applicability in combustion and propulsion systems (CI and SI engines), and agricultural fertilizer/pesticide sprays, among others. Almost all of the practical liquid injectors introduce some degree of turbulence in the liquid jet leaving the injector passage and an intriguing question is the relative importance of the liquid turbulence, cavitation, and the aerodynamic forces in the breakup processes of fuel injectors. A better design of liquid fuel injector would reduce pollutants and increase the efficiency of liquid fuel combustion processes. An experimental study to investigate the effect of nozzle length to diameter ratio on the surface properties of turbulent liquid jets in gaseous crossflow and still air was carried out. Straight cavitation-free nozzles with length/diameter ratios of 10, 20 and 40 were used to generate turbulent liquid jets in gaseous crossflow. The present study was limited to small Ohnesorge number liquid jets (Oh < 0.01) injected in crossflow within the shear breakup regime (WeG > 110). The diagnostics consisted of pulsed shadowgraphy, pulsed digital holographic microscopy and x-ray diagnostics. The x-ray tests were conducted at the Advanced Photon Source (APS) facility of Argonne National Laboratory. The test matrix was designed to maintain the same aerodynamic forces in order to isolate the effects of jet turbulence on the breakup process. The measurements included liquid jet surface properties, breakup location of the liquid column as a whole, the breakup regime transitions, bubble size inside the jet and seeding particle displacement inside the jet structures. The results include the jet surface characteristics, the liquid column breakup lengths, bubble growth, and phenomenological analysis to explain the observed results. It is observed that for a jet breakup in crossflow the injector passage length does play a role in determining the breakup length as well as

  15. Equilibration of the jet forming instability in barotropic beta-plane turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Bakas, Nikolaos; Ioannou, Petros

    2016-04-01

    Planetary turbulent flows are observed to self-organize into large scale structures such as zonal jets and coherent vortices. Recently, it was shown that a comprehensive understanding of the properties of these large scale structures and of the dynamics underlying their emergence and maintenance is gained through the study of the dynamics of the statistical state of the flow. Previous studies ad-dressed the emergence of the coherent structures in barotropic turbulence and showed the zonal jets emerge as an instability of the Statistical State Dynamics (SSD). In this work, the equilibration of the incipient instabilities and the stability of the equilibrated jets near onset is investigated. It is shown through a weakly nonlinear analysis of the SSD that the amplitude of the jet evolves according to a Ginzburg-Landau equation. The equilibrated jets were found to have a harmonic structure and an amplitude that is an increasing function of the planetary vorticity gradient. It is also shown that most of the equilibrated jets are secondarily unstable and will evolve through jet merging and branching to the stable jets that have a scale close to the most unstable (refering to the jet forming primary instability) emerging jet.

  16. Random Vortex-Street Model for a Self-Similar Plane Turbulent Jet

    NASA Astrophysics Data System (ADS)

    L'Vov, Victor S.; Pomyalov, Anna; Procaccia, Itamar; Govindarajan, Rama

    2008-08-01

    We ask what determines the (small) angle of turbulent jets. To answer this question we first construct a deterministic vortex-street model representing the large-scale structure in a self-similar plane turbulent jet. Without adjustable parameters the model reproduces the mean velocity profiles and the transverse positions of the large-scale structures, including their mean sweeping velocities, in a quantitative agreement with experiments. Nevertheless, the exact self-similar arrangement of the vortices (or any other deterministic model) necessarily leads to a collapse of the jet angle. The observed (small) angle results from a competition between vortex sweeping tending to strongly collapse the jet and randomness in the vortex structure, with the latter resulting in a weak spreading of the jet.

  17. An experimental investigation of confined, multiple, turbulent jet mixing with recirculation

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    1984-12-01

    An axisymmetric duct that simulated a combustor configuration, was used to examine the flow fields in combustors that utilize injector plates to establish turbulent jet mixing of fuels and oxidizers. Five different injector plates were tested. Flow fields downstream of the plates were investigated using flow visualization and laser velocimetry. Qualitative data for flows created by rings of discrete jets were obtained with dye injection and hydrogen bubble generation flow visualization techniques. Wall static pressure distributions were measured with a sensitive pressure transducer. The velocity and turbulence fields were quantified using a Bragg-diffracted, two-component laser doppler velocimeter (LV). The locations and extents of recirculation zones and jet expansion rates were deduced from the LV data. Results show that the flow due to an annular jet is two dimensional, but those due to discrete jets are fully three dimensional.

  18. A theoretical and experimental study of turbulent particle-laden jets

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Zhang, Q. F.; Faeth, G. M.

    1983-01-01

    Mean and fluctuating velocities of both phases, particle mass fluxes, particle size distributions in turbulent particle-laden jets were measured. The following models are considered: (1) a locally homogeneous flow (LHF) model, where slip between the phases was neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of particle dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model. The SSF model performed reasonably well with no modifications in the prescriptions for eddy properties from its original calibration. A modified k- model, incorporating direct contributions of interphase transport on turbulence properties (turbulence modulation), was developed within the framework of the SSF model.

  19. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  20. Characteristics of a two-dimensional turbulent jet in a bounded slipstream

    NASA Astrophysics Data System (ADS)

    Voronov, S. K.; Girshovich, T. A.; Grishin, A. N.

    1985-06-01

    A method for computing a two-dimensional turbulent jet injected at a right angle into a channeled flow is presented, taking into account the rarefaction behind the jet. The conditions at the front jet boundary are approximated using a solution to a displacement flow problem and data available on the flow around elliptical bodies. The boundedness of the flow and the jet velocity to stream velocity ratio are found to have a considerable effect on the jet trajectory; the axial velocity distribution in the jet, the nondimensional velocity profiles, and the back boundary of the stream, however, are not affected noticeably by these parameters. Analytical results are corroborated by experimental data for a two-dimensional jet in free and bounded flows, exhibiting complete qualitative and partial quantitative agreement.

  1. An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.

    2002-11-01

    We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.

  2. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  3. Investigation of the interaction of a turbulent impinging jet and a heated, rotating disk

    NASA Astrophysics Data System (ADS)

    Manceau, R.; Perrin, R.; Hadžiabdić, M.; Benhamadouche, S.

    2014-03-01

    The case of a turbulent round jet impinging perpendicularly onto a rotating, heated disc is investigated, in order to understand the mechanisms at the origin of the influence of rotation on the radial wall jet and associated heat transfer. The present study is based on the complementary use of an analysis of the orders of magnitude of the terms of the mean momentum and Reynolds stress transport equations, available experiments, and dedicated Reynolds-averaged Navier-Stokes computations with refined turbulence models. The Reynolds number Rej = 14 500, the orifice-to-plate distance H = 5D, where D is the jet-orifice diameter, and the four rotation rates were chosen to match the experiments of Minagawa and Obi ["Development of turbulent impinging jet on a rotating disk," Int. J. Heat Fluid Flow 25, 759-766 (2004)] and comparisons are made with the Nusselt number distribution measured by Popiel and Boguslawski ["Local heat transfer from a rotating disk in an impinging round jet," J. Heat Transfer 108, 357-364 (1986)], at a higher Reynolds number. The overestimation of turbulent mixing in the free-jet before the impact on the disk is detrimental to the prediction of the impingement region, in particular of the Nusselt number close to the symmetry axis, but the self-similar wall jet developing along the disk is correctly reproduced by the models. The analysis, experiments, and computations show that the rotational effect do not directly affect the outer layer, but only the inner layer of the wall jet. A noteworthy consequence is that entrainment at the outer edge of the wall jet is insensitive to rotation, which explains the dependence of the wall-jet thickness on the inverse of the non-dimensional rotation rate, observed in the experiments and the Reynolds stress model computations, but not reproduced by the eddy-viscosity models, due to the algebraic dependence to the mean flow. The analysis makes moreover possible the identification of a scenario for the appearance of

  4. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  5. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  6. High-fidelity Simulation of Jet Noise from Rectangular Nozzles . [Large Eddy Simulation (LES) Model for Noise Reduction in Advanced Jet Engines and Automobiles

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj

    2014-01-01

    This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.

  7. Effects of differential diffusion on the flame structure of oxygen enhanced turbulent non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Dietzsch, Felix; Gauding, Michael; Hasse, Christian

    2014-11-01

    By means of Direct Numerical Simulation we have investigated the influence of differential diffusion for non-premixed oxygen-enhanced turbulent flames. Oxygen-enhanced conversion usually yields higher amounts of H2 as compared to conventional air combustion. It is well known that H2 as a very diffusive species leads to differential diffusion effects. In addition to the diffusive transport mixing processes are also often controlled by turbulent transport. Previous investigations of a turbulent CH4/H2 oxygen-enhanced jet flame have shown that in mixture fraction space it is important to distinguish between regions of equal diffusivities and detailed transport. These findings are of particular interest when performing Large-Eddy simulations applying a flamelet approach. Using this approach a LES study was performed of the aforementioned flame considering differential diffusion. Therefore, flamelet equations including differential diffusion via non-unity constant Lewis numbers were solved. However, this study showed that keeping the non-unity Lewis numbers constant, is not sufficient to capture the diffusion phenomena in this particular flame. Direct Numerical Simulations have been conducted in order to investigate how Lewis numbers are affected in mixture fraction space. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under Grant: pr83xa.

  8. A dynamic hybrid RANS/LES modeling methodology for turbulent/transitional flow field prediction

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Faridul

    A dynamic hybrid Reynolds-averaged Navier-Stokes (RANS)-Large Eddy Simulation (LES) modeling framework has been investigated and further developed to improve the Computational Fluid Dynamics (CFD) prediction of turbulent flow features along with laminar-to-turbulent transitional phenomena. In recent years, the use of hybrid RANS/LES (HRL) models has become more common in CFD simulations, since HRL models offer more accuracy than RANS in regions of flow separation at a reduced cost relative to LES in attached boundary layers. The first part of this research includes evaluation and validation of a dynamic HRL (DHRL) model that aims to address issues regarding the RANS-to-LES zonal transition and explicit grid dependence, both of which are inherent to most current HRL models. Simulations of two test cases---flow over a backward facing step and flow over a wing with leading-edge ice accretion---were performed to assess the potential of the DHRL model for predicting turbulent features involved in mainly unsteady separated flow. The DHRL simulation results are compared with experimental data, along with the computational results for other HRL and RANS models. In summary, these comparisons demonstrate that the DHRL framework does address many of the weaknesses inherent in most current HRL models. Although HRL models are widely used in turbulent flow simulations, they have limitations for transitional flow predictions. Most HRL models include a fully turbulent RANS component for attached boundary layer regions. The small number of HRL models that do include transition-sensitive RANS models have issues related to the RANS model itself and to the zonal transition between RANS and LES. In order to address those issues, a new transition-sensitive HRL modeling methodology has been developed that includes the DHRL methodology and a physics-based transition-sensitive RANS model. The feasibility of the transition-sensitive dynamic HRL (TDHRL) model has been investigated by

  9. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  10. The effect of exit conditions on the development of an axisymmetric turbulent free jet

    NASA Technical Reports Server (NTRS)

    Kleis, S. J.; Foss, J. F.

    1974-01-01

    The mean flow in the near field of a submerged axisymmetric jet emitting from a plane wall is presented. An experimental configuration to provide a nearly uniform mean velocity profile with a core of homogeneous turbulence of variable intensity and scale was developed. Eight cases with intensity values of 0.004 less than or equal to U prime less than or equal to 0.035 and integral scales up to l sub x/R = 0.28 were investigated using conditional sampling techniques. It was found that the jet exhibits an increasing momentum flux in the near field. Contrary to expectation and the accepted assumption of ambient static pressure in a turbulent jet, results seem to be conclusive and borne out by comparison with published data. Both integral measures, mass and momentum flux ratios, are insensitive to exit turbulence variations, but, the detailed structure (including centerline velocity) variations with exit conditions are systematic and explainable.

  11. A turbulent nonisothermal jet in an Archimedean force field

    NASA Astrophysics Data System (ADS)

    Elemasov, V. E.; Glebov, G. A.; Kozlov, A. P.

    An integral method for calculating a vertical nonisothermal jet is presented which allows for the effects of Archimedean forces and nonisothermality. The method can be extended to the calculation of axisymmetric and plane jets in a slipstream and also to the case of jets issuing into a medium of a different concentration. It is shown that the consideration of Archimedean forces and nonisothermality results in a better agreement between calculations and experimental data.

  12. Impact pressures of turbulent high-velocity jets plunging in pools with flat bottom

    NASA Astrophysics Data System (ADS)

    Manso, P. A.; Bollaert, E. F. R.; Schleiss, A. J.

    2007-01-01

    Dynamic pressures created by the impact of high-velocity turbulent jets plunging in a water pool with flat bottom were investigated. Pressure fluctuations were sampled at 1 kHz at the jet outlet and at the pool bottom using piezo-resistive pressure transducers, jet velocities of up to 30 m/s and pool depth to jet diameter ratios from 2.8 to 11.4. The high-velocity jets entrain air in the pool in conditions similar to prototype applications at water release structures of dams. The intermittent character of plunge pool flows was investigated for shallow and deep pools, based on high order moments and time correlations. Maximum intermittency was observed for pool depths at 5.6 jet diameters, which approximate the core development length. Wall pressure skewness was shown to allow identifying the zone of influence of downward and upward moving currents.

  13. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  14. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  15. The effects of external and self excitations on axisymmetric jet turbulence and noise

    NASA Astrophysics Data System (ADS)

    Hasan, M. A. Z.

    The effects of external- and self-excitations on axisymmetric jet turbulence and noise as well as the self-sustained oscillation phenomena (SSOP) were experimentally studied. A high subsonic Mach number (Maximum Mach number = 0.7) air jet was used for most investigations while the SSOP study has involved ring tone, hole tone and 'whistler nozzle' excitations in low velocity air jets. Based on the data ring and hole tones and the 'whistler nozzle', it is shown that such tones are strongly dependent on the initial condition. For the initially turbulent jet, the tone occurs only when there is a resonator in the system. The data collapse when nondimensonalized by the exit momentum thickness and the distance between separation and impingment points rather than the diameter as suggested previously.

  16. Evolution of a confined turbulent jet in a long cylindrical cavity: Homogeneous fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Sanchez, X.; Nath, C.; Webb, S.; Fernando, H. J. S.

    2011-11-01

    The flow induced in a long cylinder by an axially discharging round turbulent jet was investigated experimentally with applications to crude oil storage in the U.S. strategic petroleum reserves (SPR). It was found that the flow does not reach a true steady state, but vacillates periodically. Digital video recordings and particle image velocimetry were used to map the flow structures and velocity/vorticity fields, from which the frequency of jet switching, jet stopping distance, mean flow, turbulence characteristics, and the influence of end-wall boundary conditions were inferred. The results were parameterized using the characteristic length D and velocity J1/2/D scales based on the jet kinematic momentum flux J and cylinder width D. The scaling laws so developed could be used to extrapolate laboratory observations to SPR flows.

  17. Similarity solutions of jet flows using a multiple-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Guo, K. L.

    1989-01-01

    An accurate finite difference scheme is used to study the performance of a newly developed multiple-scale turbulence model in the similarity region of plane/radial/round jet flows. Under the assumption that molecular viscosity can be neglected, the governing equations contain a hidden eigenvalue which corresponds to the sharp boundary of the flowfield. It is found that this eigenvalue is the locus of the free boundary separating the turbulent shear flow and the irrotational ambient fluid.

  18. On similarity solutions for turbulent and heated round jets

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Hwang, B. C.

    1986-01-01

    Commonly used empirical correlations for incompressible, heated round jets are shown to represent similarity solutions of the governing jet equations. These solutions give rise to self-similar eddy viscosities. Not all the similarity solutions are physically valid because some lead to zero eddy viscosities at the jet centerline. One physically valid solution is found to correlate best with round jet measurements and it gives a Gaussian error function description for the normalized mean velocity and temperature. Heat and momentum fluxes thus calculated are also in good agreement with measurements. Therefore, in addition to the classical similarity solution obtained by assuming constant eddy viscosity, another similarity solution to the jet equations is found where the eddy viscosity is self-similar.

  19. Synthetic Jet Interaction With A Turbulent Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Smith, Douglas R.

    2002-01-01

    Perhaps one of the more notable advances to have occurred in flow control technology in the last fifteen years is the application of surface-issuing jets for separation control on aerodynamic surfaces. The concept was introduced by Johnston and Night (1990) who proposed using circular jets, skewed and inclined to the wall, to generate streamwise vortices for the purpose of mitigating boundary layer separation. The skew and inclination angles have subsequently been shown to affect the strength and sign of the ensuing vortices. With a non-circular orifice, in addition to skew and inclination, the yaw angle of the major axis of the orifice can influence the flow control effectiveness of the jet. In particular, a study by Chang arid Collins (1997) revealed that a non-circular orifice, yawed relative to the freestream, can be used to control the size and strength of the vortices produced by the control jet. This early work used jets with only a steady injection of mass. Seifert et al. revealed that an unsteady blowing jet, could be as effective at separation control as a steady jet but with less mass flow. Seifert et al. showed that small amplitude blowing oscillations superimposed on a low momentum steady jet Was the most effective approach to delaying separation on a NACA 0015 airfoil at post-stall angles of attack. More recent work suggests that perhaps the most efficient jet control effect comes from a synthetic (oscillatory) jet where the time-averaged mass flux through the orifice is zero, but the net wall normal momentum is non-zero. The control effectiveness of synthetic jets has been demonstrated for several internal and external flow fields used synthetic jet control on a thick, blunt-nosed airfoil to delay stall well beyond the stall angles for the uncontrolled airfoil and with a dramatic increase in the lift-to-drag performance. Amitay et al. used an array of synthetic jets to mitigate flow separation in curved and diffusing ducts. While the control

  20. DNS of aerosol evolution in a turbulent jet

    NASA Astrophysics Data System (ADS)

    Zhou, Kun; Attili, Antonio; Bisetti, Fabrizio

    2011-11-01

    The effects of turbulence on the evolution of aerosols are not well understood. In this work, the interaction of aerosol dynamics and turbulence are studied in a canonical flow configuration by numerical means. The configuration consists of a hot nitrogen stream saturated with dibutyl phthalate (DBP) vapor mixing with cool air in a shear layer. A direct numerical simulation (DNS) for the momentum and scalar fields is coupled with the direct quadrature method of moments (DQMOM) for the condensing liquid phase. The effects of turbulent mixing on aerosol processes (nucleation, condensation, and coagulation) are quantified by analyzing the statistics of number density and droplet sizes.

  1. Pulsed laser measurements of particle and vapour concentrations in a turbulent jet

    NASA Astrophysics Data System (ADS)

    Kennedy, I. M.

    1989-10-01

    A turbulent jet of air has been seeded with both particles and a vapor. An excimer pumped dye laser excited visible fluorescence from the biacetyl vapor and Mie scattering from the micron-size particles. It was possible to measure the simultaneous scatteirng from both phases by using interference filters to separate the signals. It has been found that the biacetyl vapor provides an adequate tracer for measurements of the concentration field in a turbulent flow. Furthermore, the feasibility of making simultaneous concentration measurements of two phases in a turbulent flow has been demonstrated.

  2. A method for calculating a weakly nonisobaric supersonic turbulent jet in a subsonic slipstream

    NASA Astrophysics Data System (ADS)

    Kozlov, V. E.

    A novel approach for computing weakly nonisobaric turbulent jets in a subsonic slipstream is proposed whereby the flow is divided into a subsonic and a supersonic zone and two different evolutionary systems of equations are used in each of the two zones. The solutions are then joined at the Mach 1 line. Closure of the systems of equations is achieved by using a known one-parameter turbulence model that has been modified to allow for the effect of the Mach number on turbulent mixing. The results obtained are compared against experimental data.

  3. Investigation with an Interferometer of the Turbulent Mixing of a Free Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Gooderum, Paul B; Wood, George P; Brevoort, Maurice J

    1950-01-01

    The free turbulent mixing of a supersonic jet of Mach number 1.6 has been experimentally investigated. An interferometer, of which a description is given, was used for the investigation. Density and velocity distributions through the mixing zone have been obtained. It was found that there was similarity in distribution at the cross sections investigated and that, in the subsonic portion of the mixing zone, the velocity distribution fitted the theoretical distribution for incompressible flow. It was found that the rates of spread of the mixing zone both into the jet and into the ambient air were less than those of subsonic jets.

  4. Turbulent amplification of magnetic fields in colliding laboratory jets

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Meinecke, J.; Bell, A. R.; Doyle, H.; Bingham, R.; Churazov, E. M.; Crowston, R.; Murphy, C. D.; Woolsey, N. C.; Drake, R. P.; Kuranz, C. C.; MacDonald, M. J.; Wan, W. C.; Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.; Kuramitsu, Y.; Sakawa, Y.; Park, H.-S.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Lamb, D. Q.; Gregori, G.

    2015-11-01

    Turbulence and magnetic fields are ubiquitous in the universe. In galaxy clusters, turbulence is believed to amplify seed magnetic fields to values of a few μG, as observed through diffuse radio-synchrotron emission and Faraday rotation measurements. In this study we present experiments that emulate such a process in a controlled laboratory environment. Two laser-driven plasma flows collide to mimic the dynamics of a cluster merger. From the measured density fluctuations we infer the development of Kolmogorov-like turbulence. Measurements of the magnetic field show it is amplified by turbulent motions, reaching a non-linear regime that is a precursor to turbulent dynamo. We also present numerical simulations with the FLASH code that model these experiments. The simulations reproduce the measured plasma properties and enable us to disentangle and characterize the complex physical processes that occur in the experiment. This study provides a promising experimental platform to probe magnetic field amplification by turbulence in plasmas, a process thought to occur in many astrophysical phenomena.

  5. Kinetic energy budgets near the turbulent/nonturbulent interface in jets

    NASA Astrophysics Data System (ADS)

    Taveira, Rodrigo R.; da Silva, Carlos B.

    2013-01-01

    The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent

  6. Broadband Shock Noise Reduction in Turbulent Jets by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    The concept of effective jet properties introduced by the author (AIAA-2007-3 645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.

  7. EXPERIMENTS WITH HEAVY GAS JETS IN LAMINAR AND TURBULENT CROSS-FLOWS

    EPA Science Inventory

    A wind tunnel study was performed to determine the dispersion characteristics of gas jets with densities heavier than that of air. he experiments were done in a laminar cross-flow and then repeated in a turbulent boundary layer. ll major boundary-layer characteristics were measur...

  8. Turbulent transport and length scale measurement experiments with comfined coaxial jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Roback, R.

    1984-01-01

    A three phase experimental study of mixing downstream of swirling and nonswirling confined coaxial jets was conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures. The present effort was directed toward the acquisition of length scale and dissipation rate data that provide more accurate inlet boundary conditions for the computational procedures and a data base to evaluate the turbulent transport models in the near jet region where recirculation does not occur, and the acquisition of mass and momentum turbulent transport data for a nonswirling flow condition with a blunt inner jet inlet configuration rather than the tapered inner jet inlet. A measurement technique, generally used to obtain approximate integral length and microscales of turbulence and dissipation rates, was computerized. Results showed the dissipation rate varied by 2 1/2 orders of magnitude across the inlet plane, by 2 orders of magnitude 51 mm from the inlet plane, and by 1 order of magnitude at 102 mm from the inlet plane for a nonswirling flow test conditions.

  9. Investigation of the pressure and velocity fields in a turbulent separated flow using the LES technique

    NASA Astrophysics Data System (ADS)

    Arnal, M.; Friedrich, R.

    1991-01-01

    The large eddy simulation (LES) technique is utilized to investigate the turbulent separating and reattaching flow over a rearward-facing step. Simulations on a series of successively refined grids were performed (maximum resolution: 320 x 64 x 48). Statistical results are compared with experimental data and show good agreement. An examination of the simulated flow fields reveals the instantaneous structure of the separating shear layer, the reattachment zone and the recirculation region. Large departures from the mean in both the velocity and pressure fields are found to occur in all three regions. The shape and size of structures in the velocity and pressure fields varies with the proximity of solid walls and the region of the flow domain. Awareness of the instantaneous flow field structure is shown to be instrumental to having a complete understanding of the unsteady turbulent flow.

  10. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  11. a Second-Order Closure Prediction of Premixed Turbulent Combustion in Jets

    NASA Astrophysics Data System (ADS)

    Dave, Nikhil

    1985-12-01

    This thesis is a report on work carried out and results obtained in the prediction of a turbulent flow of premixed combustible gases discharging from a pipe and developing into a turbulent, combusting roundjet. The expressions for the chemical reaction rate term and other unclosed terms in the Favre averaged turbulent transport equations at the level of second-order closure are based on the Bray-Moss-Libby aerothermochemistry for premixed turbulent combustion, extended to variable enthalpy systems as in Bray, Champion, Dave, Libby (referenced herein). The numerical technique used is a parabolic solver developed by Kollmann from the GENMIX program due to Patankar and Spalding. Various test cases such as constant density and variable density jets are calculated using the program and the results are compared herein with experimentally observed values. Results for premixed turbulent combusting jets are compared with experimental data of Yoshida and of Shepherd and Moss. Buoyancy is found to play an important role in the behavior of these primixed combusting jets. Reasonable numerical agreement is obtained with the results of Yoshida, and good qualitative agreement is obtained with the data of Shepherd and Moss. Reasons for the discrepancies and limitations of the numerical simulation are discussed.

  12. Evolution of a pulsed vortex generator jet in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Rixon, Gregory S.; Johari, Hamid

    2001-11-01

    The development of a pulsed vortex generator jet in a turbulent boundary layer was studied experimentally. The jet was pitched 45-deg and skewed 90-deg with respect to the surface and flow direction, respectively. The jet-to-freestream velocity ratio was 3, and duty cycles of 0.5 and 0.25 were utilized. Phase-averaged data indicate that the circulation of the primary streamwise vortex averaged over the pulse duration is less than that in a steady jet. The circulation and peak vorticity decrease exponentially with the distance from the jet source at a rate comparable to that in a steady jet. The core of the primary vortex penetrates approximately 50boundary layer than the steady jet. The larger penetration takes place during the initial portion of the pulse and is due to the jet starting vortex ring. The superior performance of pulsed vortex generator jets observed in the past appears to stem from the placement of the streamwise vortices in the outer portions of the boundary layer.

  13. The interaction of jet/front systems and mountain waves: Implications for lower stratospheric aviation turbulence

    NASA Astrophysics Data System (ADS)

    Vollmer, David Russell

    The role of jet streaks and their associated upper-level structures (fronts, troughs, thermal fields, etc.) in enhancing orographically-induced aviation turbulence near and above the tropopause is investigated. The primary hypothesis for this research suggests that there is an optimal configuration for the positioning of upper-level circulations leading to vertically confluent flow and differential thermal advection, forming an intense inversion. Such a configuration may be associated with vertically-intersecting ageostrophic jet circulations or trough-induced differential vertical motions leading to cold air undercutting a warm layer aloft, and compression of the warm layer in the presence of jet-induced shear. This structure is then perturbed by mountain waves, leading to a downscale cascade of kinetic energy, eventually leading to potential aviation turbulence. Two cases of clear-air turbulence (CAT) are examined using mesoscale numerical simulations. The first case involved a DC-8 attempting to cross the Colorado Front Range when it encountered extreme CAT resulting in loss of part of one wing and an engine. In this case the superposition of two distinct jet features was hypothesized to have established an unusually strong tropopause which allowed strong buoyancy-driven motions to enhance the horizontal shear and turbulent eddies, eventually leading to the turbulent downburst hypothesized to have played a role in damaging the aircraft. The second study used data from the Terrain-Induced Rotor Experiment (T-REX) and examined a turbulent wave-breaking event recorded by a research aircraft in the lower stratosphere. A different jet regime was found in this case, with a strong upstream trough and decreasing cyclonic curvature with height above the tropopause and a strong lower stratospheric inversion. The vertical variation of static stability in the lower stratosphere was found to create a favorable environment for amplification and breaking of the mountain wave

  14. Analysis of the effect of initial conditions on the initial development of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Kim, Soong KI; Chung, Myung Kyoon; Cho, Ji Ryong

    1992-01-01

    The effect of the initial condition at the jet exit on the downstream evolution, particularly within the potential core length, were numerically investigated as well as with available experimental data. In order to select the most dependable computational model for the present numerical experiment, a comparative study has been performed with different turbulence models at k-epsilon level, and it was found that the k-epsilon-gammma model yields superior prediction accuracy over other conventional models. The calculated results show that the potential core length and the spreading rate the initial mixing layer are dependent on the initial length scale as well as the turbulent kinetic energy at the jet exit. Such effect of the initial length scale increases with higher initial turbulence level. An empirical parameter has been devised to collapse the calculated data of the potential core length and the spreading rate with various initial conditions onto a single curve.

  15. Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2012-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  16. Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2013-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  17. Computation of a Synthetic Jet in a Turbulent Cross-Flow Boundary Layer

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2004-01-01

    A series of unsteady Reynolds-averaged Navier-Stokes computations are performed for the flow of a synthetic jet issuing into a turbulent boundary layer through a circular orifice. This is one of the validation test cases from a synthetic jet validation workshop held in March 2004. Several numerical parameters are investigated, and the effects of three different turbulence models are explored. Both long-time-averaged and time-dependent phase-averaged results are compared to experiment. On the whole, qualitative comparisons of the mean flow quantities are fairly good. There are many differences evident in the quantitative comparisons. The calculations do not exhibit a strong dependence on the type of turbulence model employed.

  18. Reynolds number influence on statistical behaviors of turbulence in a circular free jet

    NASA Astrophysics Data System (ADS)

    Mi, J.; Xu, M.; Zhou, T.

    2013-07-01

    The present paper examines the effect of Reynolds number on turbulence properties in the transition region of a circular jet issuing from a smoothly contracting nozzle. Hot-wire measurements were performed for this investigation through varying the jet-exit Reynolds number Red (≡ Ujd/ν, where Uj, d, and ν are the jet-exit mean velocity, nozzle diameter, and kinematic viscosity) approximately from Red ≈ 4 × 103 to Red ≈ 2 × 104. Results reveal that the rates of the mean flow decay and spread vary with Reynolds number for Red < 104 and tend to become Reynolds-number independent at Red ≥ 104. Even more importantly, the small-scale turbulence properties, e.g., the mean rate of dissipation of kinetic energy (ɛ), the Kolmogorov and Taylor microscales, are found to vary in different forms over the Red ranges of Red > 104 and Red < 104. Namely, the critical Reynolds number appears to occur at Red,cr ≈ 104 across which the jet turbulence behaves distinctly. Two turbulence regimes are therefore identified: (i) developing or partially developed turbulence at Red < Red,cr and (ii) fully developed turbulence at Red ≥ Red,cr. It is suggested that the energy dissipation rate (DR) can be expressed as \\varepsilon ˜ ν U_c^2 /R^2 in regime (i) and \\varepsilon ˜ U_c^3 /R in regime (ii), where Uc and R are the centerline (or maximum) mean velocity and half-radius at which the mean velocity is 0.5Uc. In addition, the critical Reynolds number appears to vary from flow to flow.

  19. Direct and Large Eddy Simulations of Three Dimensional Round Turbulent Jets

    NASA Astrophysics Data System (ADS)

    Lienau, Jeffrey Jay

    1994-01-01

    The turbulent flow in a spatially developing three dimensional incompressible round jet is simulated numerically. High order accurate finite difference methods are developed using compact differencing with formal accuracy varying from second to seventh order in the spatial directions. A large eddy simulation model is used to simulate the effect of the unresolved part of the motion. The spatially developing flow in a round jet is computed starting with the inviscid solution and structural and statistical properties of the flow are established. The Kelvin-Helmholtz instability is induced with small disturbances at the jet pipe. The vortex sheet rolls up into rings that interact and produce a variety of structures. The structures emerging in the development of the flow are analyzed using the local and global properties of kinetic energy and vorticity. It is found that the dynamics of breakdown in the round turbulent jet consists of four mechanisms. The first is the evolution of the vortex rings via the Kelvin Helmholtz instability. The second is the instability of the vorticity between the rings which develops into the braid region. The third is the interaction of the braids with the rings and the final is the transition to turbulent flow. The transport of particles is simulated numerically in the round turbulent jet. The particles investigated were the fluid particles, hexadecane particles ranging in size from 35 to 160 μm and vaporizing pentane particles in both heated and non-heated environments. For the heated environments, limiting cases of zero and infinite heat conductivity within the droplet were investigated. Particle dispersion, time of flight, average velocity and droplet diameter are presented for the first sixty diameters of the jet and compared to experimental data. The comparisons are good which provides support for the computational results.

  20. Direct and large eddy simulations of three dimensional round turbulent jets

    NASA Astrophysics Data System (ADS)

    Lienau, Jeffrey Jay

    1994-01-01

    The turbulent flow in a spatially developing three dimensional incompressible round jet is simulated numerically. High order accurate finite difference methods are developed using compact differencing with formal accuracy varying from second to seventh order in the spatial directions. A large eddy simulation model is used to simulate the effect of the unresolved part of the motion. The spatially developing flow in a round jet is computed starting with the inviscid solution and structural and statistical properties of the flow are established. The Kelvin-Helmholtz instability is induced with small disturbances at the jet pipe. The vortex sheet rolls up into rings that interact and produce a variety of structures. The structures emerging in the development of the flow are analyzed using the local and global properties of kinetic energy and vorticity. It is found that the dynamics of breakdown in the round turbulent jet consists of four mechanisms. The first is the evolution of the vortex rings via the Kelvin Helmholtz instability. The second is the instability of the vorticity between the rings which develops into the braid region. The third is the interaction of the braids with the rings and the final is the transition to turbulent flow. The transport of particles is simulated numerically in the round turbulent jet. The particles investigated were the fluid particles, hexadecane particles ranging in size from 35 to 160 micrometers and vaporizing pentane particles in both heated and nonheated environments. For the heated environments, limiting cases of zero and infinite heat conductivity within the droplet were investigated. Particle dispersion time of flight, average velocity and droplet diameter are presented for the first sixty diameters of the jet and compared to experimental data. The comparisons are good which provides support for the computational results.

  1. Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Pei, X.; Ghasemi, M.; Xu, H.; Hasnain, Q.; Wu, S.; Tu, Y.; Lu, X.

    2016-06-01

    In this paper, dynamic characterizations of the turbulent flow field in atmospheric pressure plasma jets (APPJs) are investigated by focusing on the effect of different APPJ parameters, such as gas flow rate, applied voltage, pulse repetition frequency, and time duration of the pulse. We utilize Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate or the applied voltage amplitude. However, the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation shows that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream. It seems that the dominating mechanisms responsible for the formation of turbulent fronts in plasma jets might not be ion momentum transfer.

  2. Effect of liquid droplets on turbulence in a round gaseous jet

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Elghobashi, S. E.

    1986-01-01

    The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled formes. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data.

  3. Radiation from Relativistic Jets in Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.

    2008-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.

  4. Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames

    SciTech Connect

    Mehta, R.S.; Haworth, D.C.; Modest, M.F.

    2010-05-15

    A comprehensive model for luminous turbulent flames is presented. The model features detailed chemistry, radiation and soot models and state-of-the-art closures for turbulence-chemistry interactions and turbulence-radiation interactions. A transported probability density function (PDF) method is used to capture the effects of turbulent fluctuations in composition and temperature. The PDF method is extended to include soot formation. Spectral gas and soot radiation is modeled using a (particle-based) photon Monte Carlo method coupled with the PDF method, thereby capturing both emission and absorption turbulence-radiation interactions. An important element of this work is that the gas-phase chemistry and soot models that have been thoroughly validated across a wide range of laminar flames are used in turbulent flame simulations without modification. Six turbulent jet flames are simulated with Reynolds numbers varying from 6700 to 15,000, two fuel types (pure ethylene, 90% methane-10% ethylene blend) and different oxygen concentrations in the oxidizer stream (from 21% O{sub 2} to 55% O{sub 2}). All simulations are carried out with a single set of physical and numerical parameters (model constants). Uniformly good agreement between measured and computed mean temperatures, mean soot volume fractions and (where available) radiative fluxes is found across all flames. This demonstrates that with the combination of a systematic approach and state-of-the-art physical models and numerical algorithms, it is possible to simulate a broad range of luminous turbulent flames with a single model. (author)

  5. Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.

    PubMed

    Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P

    2016-01-01

    3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core. PMID:26967544

  6. Dynamic formulation of thickened flame model for LES of premixed turbulent combustion.

    NASA Astrophysics Data System (ADS)

    Meneveau, C.; Nottin, C.; Veynante, D.

    2000-11-01

    As demonstrated in Colin et al. (Phys. Fluids 12, p. 1843, 2000) the thickened flame model for LES of premixed combustion (TFLES) has a number of attractive features such as correct asymptotics in the limit of DNS, in the case of a thickened laminar, steady flame, etc.. For the general case of turbulent, unsteady and curved, premixed flames, the model requires empirical parameters to be specified. With the aim of decreasing the dependence on empirical parameters, the dynamic procedure is applied to this problem. We find that the traditional application of the Germano identity, which seeks undetermined multiplicative model coefficients, fails because of a trivial cancellation of the coefficients when inserted in the Germano identity. We suggest that this is a general problem when applying the dynamic model to phenomena that occur at very disparate length-scales (here the true reaction occurs in a region which is typically much thinner than the LES grid-size). On the other hand, we find that the dynamic procedure is well-posed when searching for unknown scaling exponents (instead of coefficients). A new power-law formulation of dynamic TFLES is developed, and tested using a fully compressible, sixth-order finite-difference code (NTMIX). Applications to several cases are discussed: (a) 1-D laminar flame, (b) laminar flame-vortex interaction, and (c) flame propagation through 2-D decaying isotropic turbulence.

  7. Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate.

    PubMed

    Benmouhoub, Dahbia; Mataoui, Amina

    2013-10-01

    The flow field and heat transfer of a plane impinging jet on a hot moving wall were investigated using one point closure turbulence model. Computations were carried out by means of a finite volume method. The evolutions of mean velocity components, vorticity, skin friction coefficient, Nusselt number and pressure coefficient are examined in this paper. Two parameters of this type of interaction are considered for a given impinging distance of 8 times the nozzle thickness (H/e = 8): the jet-surface velocity ratio and the jet exit Reynolds number. The flow field structure at a given surface-to-jet velocity ratio is practically independent to the jet exit Reynolds number. A slight modification of the flow field is observed for weak surface-to-jet velocity ratios while the jet is strongly driven for higher velocity ratio. The present results satisfactorily compare to the experimental data available in the literature for Rsj ≤ 1.The purpose of this paper is to investigate this phenomenon for higher Rsj values (0 ≤ Rsj ≤ 4). It follows that the variation of the mean skin friction and the Nusselt number can be correlated according to the surface-to-jet velocity ratios and the Reynolds numbers. PMID:24895466

  8. A second-order closure prediction of premixed turbulent combustion in jets

    NASA Astrophysics Data System (ADS)

    Davé, N.; Kollmann, W.

    1987-02-01

    In this paper, a numerical prediction is reported involving second-order closure of a turbulent flow of a vertically burning, lean mixture of premixed combustible gases discharging from a pipe and developing into a turbulent combusting roundjet. Classical closures are used where available. Expressions for the chemical reaction rate term and other unclosed terms related to variable density flow in the Favre-averaged turbulent transport equations are based on the Bray-Moss-Libby aerothermochemistry for premixed turbulent combustion, extended to variable enthalpy systems. Mixing of hot burned and cool ambient gases and the attendant buoyancy effects are found to be significant physical phenomena in the behavior of such lean premixed combusting jets. Results of the simulation are compared with experimental data of Yoshida [Proceedings of the Eighteenth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 931] with which reasonable numerical agreement is obtained. Reasons for discrepancies and possible lines for future research are discussed.

  9. On the effect of fractal generated turbulence on the heat transfer of circular impinging jets

    NASA Astrophysics Data System (ADS)

    Astarita, Tommaso; Cafiero, Gioacchino; Discetti, Stefano

    2013-11-01

    The intense local heat transfer achieved by circular impinging jets is exploited in countless industrial applications (cooling of turbine blades, paper drying, tempering of glass and metals, etc). The heat transfer rate depends mainly on the Reynolds number, the nozzle-to-plate distance and the upstream turbulence. It is possible to enhance the heat transfer by exciting/altering the large scale structures embedded within the jet. In this work turbulent energy is injected by using a fractal grid at the nozzle exit. Fractal grids can generate more intense turbulence with respect to regular grids with the same blockage ratio by enhancing the jet turbulence over different scales. Consequently, they are expected to improve the convective heat transfer. The results outline that a significant improvement is achieved (for small nozzle-to-plate distances up to 100% at the stagnation point and more than 10% on the integral heat transfer over a circular area of 3 nozzle diameters) under the same power input.

  10. Specific features of a stopped pipe blown by a turbulent jet: Aeroacoustics of the panpipes.

    PubMed

    Auvray, Roman; Fabre, Benoît; Meneses, Felipe; de la Cuadra, Patricio; Lagrée, Pierre-Yves

    2016-06-01

    Flute-like instruments with a stopped pipe were widely used in ancient cultures and continue to be used in many musical expressions throughout the globe. They offer great flexibility in the input control parameters, allowing for large excursions in the flux and in the geometrical configuration for the lips of the instrumentalist. For instance, the transverse offset of the jet axis relative to the labium can be shifted beyond the operational limits found in open-open pipes, and the total jet flux can be increased up to values that produce highly turbulent jets while remaining on the first oscillating regime. Some of the fundamental aspects of the acoustics and hydrodynamics of this kind of instrument are studied, like the instability of the jet wave and the static aerodynamic balance in the resonator. A replica of an Andean siku has been created to observe, through the Schlieren flow visualization, the behavior of both excitation and resonator of the instrument. PMID:27369145