Science.gov

Sample records for lethal factor mutant

  1. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants

    PubMed Central

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  2. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.

    PubMed

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  3. Lethal infection by Bordetella pertussis mutants in the infant mouse model.

    PubMed Central

    Weiss, A A; Goodwin, M S

    1989-01-01

    Different aspects of lethal infection of infant mice with Bordetella pertussis were examined. Mutants deficient in vir-regulated genes were tested for the ability to cause a lethal infection in the infant mouse model. Adenylate cyclase toxin-hemolysin and pertussis toxin were required to cause a lethal infection at low doses. Mixed infection caused by challenging the mice with an equal number of pertussis toxin and adenylate cyclase toxin-hemolysin mutants at a dose at which neither alone was lethal was also unable to cause a lethal infection. Production of the filamentous hemagglutinin and the dermonecrotic toxin was not required to cause a lethal infection. Nine other mutants in vir-regulated genes whose phenotypes have yet to be determined were also tested. Only two of these mutants were impaired in the ability to cause a lethal infection. Expression of fimbriae does not appear to affect the dose required to cause a lethal infection; however, fimbrial expression was correlated with the later stages of a nonlethal, persistent infection. Growth of the bacteria in MgSO4, a condition which reversibly suppresses expression of the genes required for virulence, did not alter the ability of the bacteria to cause a lethal infection. Auxotrophic mutants deficient in leucine biosynthesis were as virulent as the parental strain; however, mutants deficient in methionine biosynthesis were less virulent. A B. parapertussis strain was much less effective in promoting a lethal infection than any of the wild-type B. pertussis strains examined. A persistent infection in the lungs was observed for weeks after challenge for mice given a sublethal dose of B. pertussis, and transmission from infected infants to the mother was never observed. PMID:2572561

  4. Inhibitors of the Metalloproteinase Anthrax Lethal Factor.

    PubMed

    Goldberg, Allison B; Turk, Benjamin E

    2016-01-01

    Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LFinhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and highthroughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection. PMID:27072692

  5. A conditionally lethal mutant of Salmonella Typhimurium induces a protective response in mice.

    PubMed

    Hidalgo, Alejandro A; Villagra, Nicolás A; Jerez, Sebastián A; Fuentes, Juan A; Mora, Guido C

    2016-02-01

    Here we present the design of a conditionally lethal mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) which growth depends on tetracycline (Tet). Four mutants of S. Typhimurium, with Tet-conditional growth, were created by inserting the tetRA cassette. Three of the mutants presented a conditional-lethal phenotype in vitro. One mutant in the yabB gene remained conditional inside cells and did not persisted after 24 h in cell cultures. The capacity of S. Typhimurium yabB::tetRA to invade deep organs was investigated in intraperitoneally (IP) infected mice fed with or without chlortetracycline (CTet), a Tet analog with lower antibiotic activity. The yabB::tetRA mutant was undetectable in liver or spleen of animals under normal diet, while in mice under diet including CTet, yabB::tetRA invaded at a level comparable to the WT in mice under normal diet. Moreover, yabB::tetRA produced a strong humoral-immunoresponse after one IP immunization with 10(6) bacteria, measured as serum reactivity against S. Typhimurium whole cell extract. By contrast, oral immunization with 10(6) bacteria was weaker and variable on inducing antibodies. Consistently, IP infected mice were fully protected in a challenge with 10(4) oral S. Typhimurium, while protection was partial in orally immunized mice. Our data indicate that S. Typhimurium yabB::tetRA is a conditionally attenuated strain capable of inducing a protective response in mice in non-permissive conditions. PMID:26792728

  6. The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency.

    PubMed

    Meng, Yan; Katsuma, Susumu; Daimon, Takaaki; Banno, Yutaka; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Mita, Kazuei; Shimada, Toru

    2009-04-24

    Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. An inherited defect in BH4 biosynthesis is caused by the deficiency of sepiapterin reductase (SPR), which catalyzes the biosynthesis of BH4 from guanosine triphosphate at the terminal step. The human SPR gene has been mapped at the PARK3 locus, which is related to the onset of Parkinson disease. In this study, we report that mutant strains, lemon (lem) and its lethal allele lemon lethal (lem(1)) with yellow body coloration, of the silkworm Bombyx mori could be used as the first insect model for human SPR deficiency diseases. We demonstrated that mutations in the SPR gene (BmSpr) were responsible for the irregular body coloration of lem and lem(l). Moreover, biochemical analysis revealed that SPR activity in lem(l) larvae was almost completely diminished, resulting in a lethal phenotype that the larvae cannot feed and that die immediately after the first ecdysis. Oral administration of BH4 and dopamine to lem(l) larvae effectively increased their survival rates and feeding abilities. Our data demonstrate that BmSPR plays a crucial role in the generation of BH4, and monoamine neurotransmitters in silkworms and the lem (lem(l)) mutant strains will be an invaluable resource to address many questions regarding SPR and BH4 deficiencies. PMID:19246455

  7. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours

    PubMed Central

    Costa-Cabral, Sara; Brough, Rachel; Konde, Asha; Aarts, Marieke; Campbell, James; Marinari, Eliana; Riffell, Jenna; Bardelli, Alberto; Torrance, Christopher; Lord, Christopher J.; Ashworth, Alan

    2016-01-01

    Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation. PMID:26881434

  8. A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant.

    PubMed

    Nystuen, Arne M; Schwendinger, Jamie K; Sachs, Andrew J; Yang, Andy W; Haider, Neena B

    2007-01-01

    The soluble N-ethylmaleimide sensitive factor attachment receptors are a large family of membrane-associated proteins that are critical for Ca(2+)-mediated synaptic vesicle release. This family includes the VAMP, synaptosomal-associated protein, and syntaxin proteins. In this report, we describe a mutation in vesicle-associated membrane protein 1(VAMP1)/synaptobrevin in the mouse neurological mutant lethal-wasting (lew). The lethal-wasting mutant phenotype is characterized by a general lack of movement and wasting, eventually leading to death before weaning. Mutants are visibly immobile and lay on their side by postnatal day 10 (P10). Before this stage, mutants can be identified by a failure to attempt to right themselves. Affected mice die on average at P15. We used a positional cloning strategy to identify the mutation associated with this neurological phenotype. Lethal wasting had previously been linked to chromosome 6. We further narrowed the genetic disease interval and selected a small number of candidate genes for mutation screening. Genes were evaluated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) to detect differences in their expression levels between control and mutant brain ribonucleic acid (RNA) samples. VAMP1 mRNA was found to be significantly downregulated in the lethal-wasting brain compared to wild-type littermates. Subsequently, a nonsense mutation was identified in the coding region of the gene. This mutation is predicted to truncate approximately half of the protein; however, Western blot analysis showed that no protein is detectable in the mutant. VAMP1 is selectively expressed in the retina and in discrete areas of the brain including the zona incerta and rostral periolivary region, although no gross histological abnormalities were observed in these tissues. Taken together, these data indicate that VAMP1 has a vital role in a subset of central nervous system tissues. PMID:17102983

  9. Correlation between In Vitro Cytotoxicity and In Vivo Lethal Activity in Mice of Epsilon Toxin Mutants from Clostridium perfringens

    PubMed Central

    Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R.; Blasi, Juan

    2014-01-01

    Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB. PMID:25013927

  10. Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens.

    PubMed

    Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R; Blasi, Juan

    2014-01-01

    Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB. PMID:25013927

  11. Factors Affecting Lethal Isotherms During Cryoablation Procedures

    PubMed Central

    Rau, Andrew C.; Siskey, Ryan; Ochoa, Jorge A.; Good, Tracy

    2016-01-01

    Background: Creating appropriately-sized, lethal isotherms during cryoablation of renal tumors is critical in order to achieve sufficiently-sized zones of cell death. To ensure adequate cell death in target treatment locations, surgeons must carefully select the type, size, location, and number of probes to be used, as well as various probe operating parameters. Objective: The current study investigates the effects of probe type, operating pressure, and clinical method on the resulting sizes of isotherms in an in vitro gelatin model. Method: Using a total of four cryoprobes from two manufacturers, freeze procedures were conducted in gelatin in order to compare resulting sizes of constant temperature zones (isotherms). The effects of certain procedural parameters which are clinically adjustable were studied. Results: Test results show that the sizes of 0 °C,-20 °C and -40 °C isotherms created by similarly-sized probes from two different manufacturers were significantly different for nearly all comparisons made, and that size differences resulting from changing the operating pressure were not as prevalent. Furthermore, isotherm sizes created using a multiple freeze procedure (a ten minute freeze, followed by a five minute passive thaw, followed by another ten minute freeze) did not result in statistically-significant differences when compared to those created using a single freeze procedure in all cases. Conclusion: These results indicate that selection of the probe manufacturer and probe size may be more important for dictating the size of kill zones during cryoablation than procedural adjustments to operating pressures or freeze times.

  12. Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila.

    PubMed Central

    Bhadra, U; Pal-Bhadra, M; Birchler, J A

    2000-01-01

    The evolution of sex determination mechanisms is often accompanied by reduction in dosage of genes on a whole chromosome. Under these circumstances, negatively acting regulatory genes would tend to double the expression of the genome, which produces compensation of the single-sex chromosome and increases autosomal gene expression. Previous work has suggested that to reduce the autosomal expression to the female level, these dosage effects are modified by a chromatin complex specific to males, which sequesters a histone acetylase to the X. The reduced autosomal histone 4 lysine 16 (H4Lys16) acetylation results in lowered autosomal expression, while the higher acetylation on the X is mitigated by the male-specific lethal complex, preventing overexpression. In this report, we examine how mutations in the principal sex determination gene, Sex lethal (Sxl), impact the H4 acetylation and gene expression on both the X and autosomes. When Sxl expression is missing in females, we find that the sequestration occurs concordantly with reductions in autosomal H4Lys16 acetylation and gene expression on the whole. When Sxl is ectopically expressed in Sxl(M) mutant males, the sequestration is disrupted, leading to an increase in autosomal H4Lys16 acetylation and overall gene expression. In both cases we find relatively little effect upon X chromosomal gene expression. PMID:10835396

  13. Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation

    PubMed Central

    Kim, Jonggul; Masterson, Larry R.; Cembran, Alessandro; Verardi, Raffaello; Shi, Lei; Gao, Jiali; Taylor, Susan S.; Veglia, Gianluigi

    2015-01-01

    The dynamic interplay between kinases and substrates is crucial for the formation of catalytically committed complexes that enable phosphoryl transfer. However, a clear understanding on how substrates modulate kinase structural dynamics to control catalytic efficiency is still missing. Here, we used solution NMR spectroscopy to study the conformational dynamics of two complexes of the catalytic subunit of the cAMP-dependent protein kinase A with WT and R14 deletion phospholamban, a lethal human mutant linked to familial dilated cardiomyopathy. Phospholamban is a central regulator of heart muscle contractility, and its phosphorylation by protein kinase A constitutes a primary response to β-adrenergic stimulation. We found that the single deletion of arginine in phospholamban’s recognition sequence for the kinase reduces its binding affinity and dramatically reduces phosphorylation kinetics. Structurally, the mutant prevents the enzyme from adopting conformations and motions committed for catalysis, with concomitant reduction in catalytic efficiency. Overall, these results underscore the importance of a well-tuned structural and dynamic interplay between the kinase and its substrates to achieve physiological phosphorylation levels for proper Ca2+ signaling and normal cardiac function. PMID:25775607

  14. Small Molecule Inhibitors of Anthrax Lethal Factor Toxin

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Cardinale, Steven C.; Butler, Michelle M.; Bowlin, Terry L.; Peet, Norton P.

    2014-01-01

    This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds. PMID:24290062

  15. Inactivated pep27 mutant as an effective mucosal vaccine against a secondary lethal pneumococcal challenge in mice

    PubMed Central

    Choi, Sang-Yoon; Tran, Thao Dang-Hien; Briles, David E.

    2013-01-01

    Purpose A pep27 mutant may be able to elicit mucosal immunity against pneumococcal diseases, and could be employed as an inexpensive attenuated vaccine. However, this particular mutant contains an erythromycin-resistance marker. The purpose of the current study is to develop a markerless pep27 mutant and assess whether this inactivated mutant is able to induce mucosal immunity. Materials and Methods Mice were vaccinated intranasally with the inactivated markerless pep27 mutant every 2 weeks for a total of three times, after which time serum samples were analyzed for antibody titers. The mice were then challenged with a lethal D39 strain and their survival time was measured. The cross-reactivity of the antisera against pep27 was also compared to other mutant serotypes. Results Intranasal immunization of mice with the inactivated markerless pep27 mutant provides effective protection and rapidly cleared bacterial colonization in vivo. Moreover, antisera raised against the pep27 mutant may cross-react with several other serotype strains. Conclusion Intranasal immunization with the inactivated pep27 mutant may be able to provide mucosal immunity, and could represent an efficient mucosal vaccine. PMID:23596592

  16. Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery

    PubMed Central

    Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun

    2014-01-01

    The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383

  17. A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster.

    PubMed

    Chi, Wanhao; Zhang, Li; Du, Wei; Zhuang, Xiaoxi

    2014-06-01

    The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases. PMID:24739647

  18. miR-342 overexpression results in a synthetic lethal phenotype in BRCA1-mutant HCC1937 breast cancer cells

    PubMed Central

    Crippa, Elisabetta; Folini, Marco; Pennati, Marzia; Zaffaroni, Nadia; Pierotti, Marco A.; Gariboldi, Manuela

    2016-01-01

    Expression of miR-342 has been strongly correlated with estrogen receptor (ER) status in breast cancer, where it is highest in ER-positive and lowest in triple-negative tumors. We investigated the effects of miR-342 transfection in the triple-negative breast cancer cell lines MDA-MB-231 and HCC1937, the latter carrying a germ-line BRCA1 mutation. Reconstitution of miR-342 led to caspase-dependent induction of apoptosis only in HCC1937 cells, while overexpression of wild-type BRCA1 in HCC1937 cells counteracted miR-342-mediated induction of apoptosis, suggesting that miR-342 overexpression and the lack of functional BRCA1 result in a synthetic lethal phenotype. Moreover, siRNA-mediated depletion of BRCA1 in MDA-MB-231 cells expressing the wild-type protein led to apoptosis upon transfection with miR-342. Using an in silico approach and a luciferase reporter system, we identified and functionally validated the Baculoviral IAP repeat-containing 6 gene (BIRC6), which encodes the anti-apoptotic factor Apollon/BRUCE, as a target of miR-342. In our model, BIRC6 likely acts as a determinant of the miRNA-dependent induction of apoptosis in BRCA1-mutant HCC1937 cells. Together, our findings suggest a tumor-suppressive function of miR-342 that could be exploited in the treatment of a subset of BRCA1-mutant hereditary breast cancers. PMID:26919240

  19. Preparation and characterization of cobalt-substituted anthrax lethal factor

    SciTech Connect

    Saebel, Crystal E.; Carbone, Ryan; Dabous, John R.; Lo, Suet Y.; Siemann, Stefan

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Cobalt-substituted anthrax lethal factor (CoLF) is highly active. Black-Right-Pointing-Pointer CoLF can be prepared by bio-assimilation and direct exchange. Black-Right-Pointing-Pointer Lethal factor binds cobalt tightly. Black-Right-Pointing-Pointer The electronic spectrum of CoLF reveals penta-coordination. Black-Right-Pointing-Pointer Interaction of CoLF with thioglycolic acid follows a 2-step mechanism. -- Abstract: Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl{sub 2}, and (ii) direct exchange by treatment of zinc-LF with CoCl{sub 2}. Independent of the method employed, the protein was found to contain one Co{sup 2+} per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co{sup 2+} ion to be five-coordinate, an observation similar to that reported for other Co{sup 2+}-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co{sup 2+}:TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.

  20. Potent inhibitors of anthrax lethal factor from green tea

    PubMed Central

    Dell'Aica, Isabella; Donà, Massimo; Tonello, Fiorella; Piris, Alejandro; Mock, Michèle; Montecucco, Cesare; Garbisa, Spiridione

    2004-01-01

    The anthrax lethal factor (LF) has a major role in the development of anthrax. LF is delivered by the protective antigen (PA) inside the cell, where it exerts its metalloprotease activity on the N-terminus of MAPK-kinases. PA+LF are cytotoxic to macrophages in culture and kill the Fischer 344 rat when injected intravenously. We describe here the properties of some polyphenols contained in green tea as powerful inhibitors of LF metalloproteolytic activity, and how the main catechin of green tea, (−)epigallocatechin-3-gallate, prevents the LF-induced death of macrophages and Fischer 344 rats. PMID:15031715

  1. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality.

    PubMed Central

    Takahashi, K; Yamada, H; Yanagida, M

    1994-01-01

    Precise chromosome transmission in cell division cycle is maintained by a number of genes. The attempt made in the present study was to isolate temperature-sensitive (ts) fission yeast mutants that display high loss rates of minichromosomes at permissive or semipermissive temperature (designated mis). By colony color assay of 539 ts strains that contain a minichromosome, we have identified 12 genetic loci (mis1-mis12) and determined their phenotypes at restrictive temperature. Seven of them are related to cell cycle block phenotype at restrictive temperature, three of them in mitosis. Unequal distribution of regular chromosomes in the daughters is extensive in mis6 and mis12. Cells become inviable after rounds of cell division due to missegregation. The phenotype of mis5 is DNA replication defect and hypersensitivity to UV ray and hydroxyurea. mis5+ encodes a novel member of the ubiquitous MCM family required for the onset of replication. The mis5+ gene is essential for viability and functionally distinct from other previously identified members in fission yeast, cdc21+, nda1+, and nda4+. The mis11 mutant phenotype was the cell division block with reduced cell size. Progression of the G1 and G2 phases is blocked in mis11. The cloned mis11+ gene is identical to prp2+, which is essential for RNA splicing and similar to a mammalian splicing factor U2AF65. Images PMID:7865880

  2. TATA-Binding Protein Mutants That Are Lethal in the Absence of the Nhp6 High-Mobility-Group Protein

    PubMed Central

    Eriksson, Peter; Biswas, Debabrata; Yu, Yaxin; Stewart, James M.; Stillman, David J.

    2004-01-01

    The Saccharomyces cerevisiae Nhp6 protein is related to the high-mobility-group B family of architectural DNA-binding proteins that bind DNA nonspecifically but bend DNA sharply. Nhp6 is involved in transcriptional activation by both RNA polymerase II (Pol II) and Pol III. Our previous genetic studies have implicated Nhp6 in facilitating TATA-binding protein (TBP) binding to some Pol II promoters in vivo, and we have used a novel genetic screen to isolate 32 new mutations in TBP that are viable in wild-type cells but lethal in the absence of Nhp6. The TBP mutations that are lethal in the absence of Nhp6 cluster in three regions: on the upper surface of TBP that may have a regulatory role, near residues that contact Spt3, or near residues known to contact either TFIIA or Brf1 (in TFIIIB). The latter set of mutations suggests that Nhp6 becomes essential when a TBP mutant compromises its ability to interact with either TFIIA or Brf1. Importantly, the synthetic lethality for some of the TBP mutations is suppressed by a multicopy plasmid with SNR6 or by an spt3 mutation. It has been previously shown that nhp6ab mutants are defective in expressing SNR6, a Pol III-transcribed gene encoding the U6 splicing RNA. Chromatin immunoprecipitation experiments show that TBP binding to SNR6 is reduced in an nhp6ab mutant. Nhp6 interacts with Spt16/Pob3, the yeast equivalent of the FACT elongation complex, consistent with nhp6ab cells being extremely sensitive to 6-azauracil (6-AU). However, this 6-AU sensitivity can be suppressed by multicopy SNR6 or BRF1. Additionally, strains with SNR6 promoter mutations are sensitive to 6-AU, suggesting that decreased SNR6 RNA levels contribute to 6-AU sensitivity. These results challenge the widely held belief that 6-AU sensitivity results from a defect in transcriptional elongation. PMID:15226442

  3. Synthetic lethality in ATM-deficient RAD50-mutant tumors underlie outlier response to cancer therapy

    PubMed Central

    Al-Ahmadie, Hikmat; Iyer, Gopa; Hohl, Marcel; Asthana, Saurabh; Inagaki, Akiko; Schultz, Nikolaus; Hanrahan, Aphrothiti J.; Scott, Sasinya N.; Brannon, A. Rose; McDermott, Gregory C.; Pirun, Mono; Ostrovnaya, Irina; Kim, Philip; Socci, Nicholas D.; Viale, Agnes; Schwartz, Gary K.; Reuter, Victor; Bochner, Bernard H.; Rosenberg, Jonathan E.; Bajorin, Dean F.; Berger, Michael F.; Petrini, John H.J.; Solit, David B.; Taylor, Barry S.

    2014-01-01

    Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small cell cancer to combined checkpoint kinase 1 (Chk1) inhibition and DNA damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of Chk1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy whereby checkpoint inhibition in combination with DNA damaging chemotherapy is synthetically lethal in tumor but not normal cells with somatic mutations that impair Mre11 complex function. PMID:24934408

  4. KRAS mutant NSCLC, a new opportunity for the synthetic lethality therapeutic approach.

    PubMed

    de Castro Carpeño, Javier; Belda-Iniesta, Cristóbal

    2013-04-01

    K-RAS accounts for 90% of RAS mutations in lung adenocarcinomas, the most commonly mutated oncogene in NSCLC, with mutations detected in about 25% of all tumors. Direct inhibition of KRAS has proven clinically challenging. So far, no successful targeted therapy has been developed and remains an elusive target for cancer therapy. Despite significant efforts, currently there are no drugs directly targeting mutated KRAS. Thus, new strategies have emerged for targeting RAS including the use of synthetic lethality. A specific knowledge of individual tumor molecular abnormalities that result in oncogene-specific "synthetic lethal" interactions will allow the rationale to combine promising targeted therapies for KRAS-mutated NSCLC. In this article, we review the new approach based on testing drugs or combinations of agents that work downstream of activated K-RAS. PMID:25806225

  5. Tumour necrosis factor alpha antibody protects against lethal meningococcaemia.

    PubMed

    Nassif, X; Mathison, J C; Wolfson, E; Koziol, J A; Ulevitch, R J; So, M

    1992-03-01

    Tumour necrosis factor alpha (TNF-alpha) has been shown to be the principal mediator of Gram-negative bacterial endotoxin-induced shock. Nevertheless, evidence suggests that TNF-alpha plays a beneficial role in controlling bacterial infections when multiplication of the microorganism is required to kill the host. Using an infant rat model of Neisseria meningitidis infection, we found that blood TNF-alpha concentration reaches a peak three hours after intraperitoneal injection of 3 x 10(6) bacteria. Thereafter, the level of TNF-alpha decreased and was undetectable six to eight hours after infection. A correlation was observed between the magnitude of initial TNF-alpha response and a fatal outcome. Pretreatment of the animals with polyclonal anti-TNF antiserum significantly reduced mortality relative to animals pretreated with control serum. However, pretreatment of animals with anti-TNF antibody did not alter the bacterial invasion of the cerebrospinal fluid. Injection of heat-killed bacteria did not cause death and induced lower TNF-alpha levels than the same number of live bacteria. This excludes the possibility that the role of TNF-alpha is to mediate a shock induced by the endotoxin component of the bacterial inoculum. These results indicate that TNF-alpha has a deleterious effect in this model of bacteraemia. Identification of the critical factors that determine the action of TNF-alpha during lethal bacteraemia will lead to a better understanding of these diseases and the development of appropriate therapeutic intervention. PMID:1552859

  6. Preparation and characterization of cobalt-substituted anthrax lethal factor.

    PubMed

    Säbel, Crystal E; Carbone, Ryan; Dabous, John R; Lo, Suet Y; Siemann, Stefan

    2011-12-01

    Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl(2), and (ii) direct exchange by treatment of zinc-LF with CoCl(2). Independent of the method employed, the protein was found to contain one Co(2+) per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co(2+) ion to be five-coordinate, an observation similar to that reported for other Co(2+)-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co(2+):TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions. PMID:22093822

  7. C. elegans ten-1 is synthetic lethal with mutations in cytoskeleton regulators, and enhances many axon guidance defective mutants

    PubMed Central

    2010-01-01

    Background Teneurins are transmembrane proteins that assist morphogenetic processes in many organisms. ten-1 is the C. elegans teneurin homolog with two transcripts, ten-1a and ten-1b, that respectively encode a long (TEN-1L) and short (TEN-1S) form of the protein. We previously isolated a C. elegans mutant where one pharyngeal neuron was frequently misplaced, and now show that it corresponds to a novel allele of ten-1. Results The novel ten-1(et5) allele is a hypomorph since its post-embryonic phenotype is weaker than the null alleles ten-1(ok641) and ten-1(tm651). ten-1 mutants have defects in all pharyngeal neurons that we examined, and in vivo reporters show that only the long form of the ten-1 gene is expressed in the pharynx, specifically in six marginal cells and the M2 neurons. Defects in the pharyngeal M2 neurons were enhanced when the ten-1(ok641) mutation was combined with mutations in the following genes: mig-14, unc-5, unc-51, unc-52 and unc-129. None of the body neurons examined show any defects in the ten-1(ok641) mutant, but genetic interaction studies reveal that ten-1(ok641) is synthetic lethal with sax-3, unc-34 and unc-73, and examination of the hypodermal cells in embryos of the ten-1(ok641) mutant point to a role of ten-1 during hypodermal cell morphogenesis. Conclusions Our results are consistent with ten-1 normally providing a function complementary to the cytoskeletal remodeling processes that occur in migrating cells or cells undergoing morphogenesis. It is possible that ten-1 influences the composition/distribution of extracellular matrix. PMID:20497576

  8. Natural and glucosyl flavonoids inhibit poly(ADP-ribose) polymerase activity and induce synthetic lethality in BRCA mutant cells

    PubMed Central

    MAEDA, JUNKO; ROYBAL, ERICA J.; BRENTS, COLLEEN A.; UESAKA, MITSURU; AIZAWA, YASUSHI; KATO, TAKAMITSU A.

    2014-01-01

    Poly(ADP-ribose) polymerase (PARP) inhibitors have been proven to represent superior clinical agents targeting DNA repair mechanisms in cancer therapy. We investigated PARP inhibitory effects of the natural and synthetic flavonoids (quercetin, rutin, monoglucosyl rutin and maltooligosyl rutin) and tested the synthetic lethality in BRCA2 mutated cells. In vitro ELISA assay suggested that the flavonoids have inhibitory effects on PARP activity, but glucosyl modifications reduced the inhibitory effect. Cytotoxicity tests of Chinese hamster cells defective in BRCA2 gene (V-C8) and its parental V79 cells showed BRCA2-dependent synthetic lethality when treated with the flavonoids. BRCA2 mutated cells were three times more sensitive to the flavonoids than the wild-type and gene complemented cells. Reduced toxicity was observed in a glucosyl modification-dependent manner. The present study provides support for the clinical use of new treatment drugs, and is the beginning of the potential application of flavonoids in cancer prevention and the periodic consumption of appropriate flavonoids to reduce cancer risk in individuals carrying a mutant allele of the BRCA2 gene. PMID:24317580

  9. Characteristics of Plant Essential Genes Allow for within- and between-Species Prediction of Lethal Mutant Phenotypes[OPEN

    PubMed Central

    Lloyd, John P.; Seddon, Alexander E.; Moghe, Gaurav D.; Simenc, Matthew C.; Shiu, Shin-Han

    2015-01-01

    Essential genes represent critical cellular components whose disruption results in lethality. Characteristics shared among essential genes have been uncovered in fungal and metazoan model systems. However, features associated with plant essential genes are largely unknown and the full set of essential genes remains to be discovered in any plant species. Here, we show that essential genes in Arabidopsis thaliana have distinct features useful for constructing within- and cross-species prediction models. Essential genes in A. thaliana are often single copy or derived from older duplications, highly and broadly expressed, slow evolving, and highly connected within molecular networks compared with genes with nonlethal mutant phenotypes. These gene features allowed the application of machine learning methods that predicted known lethal genes as well as an additional 1970 likely essential genes without documented phenotypes. Prediction models from A. thaliana could also be applied to predict Oryza sativa and Saccharomyces cerevisiae essential genes. Importantly, successful predictions drew upon many features, while any single feature was not sufficient. Our findings show that essential genes can be distinguished from genes with nonlethal phenotypes using features that are similar across kingdoms and indicate the possibility for translational application of our approach to species without extensive functional genomic and phenomic resources. PMID:26286535

  10. KRAS mutant NSCLC, a new opportunity for the synthetic lethality therapeutic approach

    PubMed Central

    Belda-Iniesta, Cristóbal

    2013-01-01

    K-RAS accounts for 90% of RAS mutations in lung adenocarcinomas, the most commonly mutated oncogene in NSCLC, with mutations detected in about 25% of all tumors. Direct inhibition of KRAS has proven clinically challenging. So far, no successful targeted therapy has been developed and remains an elusive target for cancer therapy. Despite significant efforts, currently there are no drugs directly targeting mutated KRAS. Thus, new strategies have emerged for targeting RAS including the use of synthetic lethality. A specific knowledge of individual tumor molecular abnormalities that result in oncogene-specific “synthetic lethal” interactions will allow the rationale to combine promising targeted therapies for KRAS-mutated NSCLC. In this article, we review the new approach based on testing drugs or combinations of agents that work downstream of activated K-RAS. PMID:25806225

  11. The Structural Variation Is Associated with the Embryonic Lethality of a Novel Red Egg Mutant Fuyin-lre of Silkworm, Bombyx mori.

    PubMed

    Chen, Anli; Liao, Pengfei; Li, Qiongyan; Zhao, Qiaoling; Yang, Weike; Zhu, Shuifen; Wu, Fang; He, Rongfan; Dong, Zhanpeng; Huang, Ping

    2015-01-01

    Bombyx mori presents several types of egg color mutations, all of which have been extensively discussed in sericulture. While the red egg mutation has been previously observed, lethal red-egg mutants have not been reported. In the present work, the red egg mutant Fuyin-lre (Fuyin-lethal red egg) was discovered from the Fuyin germplasm resource of B. mori. This mutant features red-colored eggs and embryonic lethality. Genetic analysis showed that Fuyin-lre follows recessive inheritance, with the red egg gene re governing the egg color, and the embryonic lethality of Fuyin-lre may be caused by mutations of other genes closely linked to re. Digital gene expression (DGE) was employed to compare the transcription profiles of Fuyin and Fuyin-lre eggs after 24 and 48 h of incubation. A total of 48 differentially expressed genes followed the same expression patterns in both groups at both time points (FDR < 0.01 and log 2 Ratio ≥ 1). Further analyses indicated that 8 out of the 48 genes (including re) were closely linked to re. These 8 genes were highly expressed in wild-type Fuyin and the red egg mutant re but showed nearly absent expression in Fuyin-lre. Sequencing of the re gene confirmed that the re gene itself does not induce embryonic lethality, and structure analysis showed that the structural variation of the region where the 8 genes were located may be associated with the embryonic lethality of Fuyin-lre. The present work provides a good foundation for future studies on the mechanism of embryonic lethality and embryonic development in Fuyin-lre. PMID:26030868

  12. The Structural Variation Is Associated with the Embryonic Lethality of a Novel Red Egg Mutant Fuyin-lre of Silkworm, Bombyx mori

    PubMed Central

    Li, Qiongyan; Zhao, Qiaoling; Yang, Weike; Zhu, Shuifen; Wu, Fang; He, Rongfan; Dong, Zhanpeng; Huang, Ping

    2015-01-01

    Bombyx mori presents several types of egg color mutations, all of which have been extensively discussed in sericulture. While the red egg mutation has been previously observed, lethal red-egg mutants have not been reported. In the present work, the red egg mutant Fuyin-lre (Fuyin-lethal red egg) was discovered from the Fuyin germplasm resource of B. mori. This mutant features red-colored eggs and embryonic lethality. Genetic analysis showed that Fuyin-lre follows recessive inheritance, with the red egg gene re governing the egg color, and the embryonic lethality of Fuyin-lre may be caused by mutations of other genes closely linked to re. Digital gene expression (DGE) was employed to compare the transcription profiles of Fuyin and Fuyin-lre eggs after 24 and 48 h of incubation. A total of 48 differentially expressed genes followed the same expression patterns in both groups at both time points (FDR < 0.01 and log 2 Ratio ≥ 1). Further analyses indicated that 8 out of the 48 genes (including re) were closely linked to re. These 8 genes were highly expressed in wild-type Fuyin and the red egg mutant re but showed nearly absent expression in Fuyin-lre. Sequencing of the re gene confirmed that the re gene itself does not induce embryonic lethality, and structure analysis showed that the structural variation of the region where the 8 genes were located may be associated with the embryonic lethality of Fuyin-lre. The present work provides a good foundation for future studies on the mechanism of embryonic lethality and embryonic development in Fuyin-lre. PMID:26030868

  13. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    SciTech Connect

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C.; Chen,David J.

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.

  14. Effects of metallothionein on zinc metabolism in lethal-milk mutant mice

    SciTech Connect

    Grider, A. Jr.

    1986-01-01

    The lethal-milk mice (C57BL/6J-Im) exhibit various pleiotropic effects, including a congenital otolith defect, production of zinc-deficient milk, and clinical signs of a systemic Zn deficiency by one year of age. The clinical signs include alopecia, dermatitis, and skin lesions. The systemic zinc deficiency may be due to increased levels of metallothionein (MT) in the intestine and/or liver of Im mice. The untreated Im mice contain twice as much intestinal MT as do C57BL/6J-(+/sup im//+ /sup Im/) (B6) controls. This was determined by a sulfhydryl assay, by the /sup 109/Cd-saturation/hemolysate method, and by the /sup 65/Zn-binding assay. Various concentrations of Cd or Zn were added to the drinking water three days before assaying for MT. Compared to B6 mice, the Im mice exhibited more MT in their liver by the /sup 65/Zn-MT binding assay (3-fold) and by the /sup 109/Cd-saturation/hemolysate method (18-fold). The effects of the two zinc treatments did not differ significantly between Im and B6 mice. The retention and excretion of /sup 65/Zn (administered intraperitoneally) were determined over a 14-day period, but the results did not different between the Im and B6 mice. The increased concentrations of MT within the Im mice was not significantly different for the intestine and liver. Based on these data and other studies, the Im mice may exhibit alterations in zinc homeostasis due to some deregulation of MT metabolism, including the inner ear of the fetus, the lactating mammary gland, and the intestine and liver of adults by one year of age.

  15. Ion Conductance of the Stem of the Anthrax Toxin Channel during Lethal Factor Translocation

    PubMed Central

    Schiffmiller, Aviva; Finkelstein, Alan

    2014-01-01

    The tripartite anthrax toxin consists of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA63 (the 63 kDa, C-terminal part of PA) forms heptameric channels in cell membranes that allow for the transport of LF and EF into the cytosol. These channels are mushroom-shaped, with a ring of seven phenylalanine residues (known as the phenylalanine clamp) lining the junction between the cap and stem. It is known that when LF is translocated through the channel, the phenylalanine clamp creates a seal that causes an essentially complete block of conduction. In order to examine ion conductance in the stem of the channel, we used Venus yellow fluorescent protein (YFP) as a molecular stopper to trap LFN (the 30 kDa, 263-residue N-terminal segment of LF), and various truncated constructs of LFN, in mutant channels in which the phenylalanine clamp residues were mutated to alanines. Here we present evidence that ion movement occurs within the channel stem (but is stopped, of course, at the phenylalanine clamp) during protein translocation. Furthermore, we also propose that the lower region of the stem plays an important role in securing peptide chains during translocation. PMID:24996036

  16. Lifestyle and dietary factors in the prevention of lethal prostate cancer.

    PubMed

    Wilson, Kathryn M; Giovannucci, Edward L; Mucci, Lorelei A

    2012-05-01

    The prevention of lethal prostate cancer is a critical public health challenge that would improve health and reduce suffering from this disease. In this review, we discuss the evidence surrounding specific lifestyle and dietary factors in the prevention of lethal prostate cancer. We present a summary of evidence for the following selected behavioral risk factors: obesity and weight change, physical activity, smoking, antioxidant intake, vitamin D and calcium, and coffee intake. PMID:22504869

  17. Endoplasmic reticulum stress-mediated apoptosis contributes to a skeletal dysplasia resembling platyspondylic lethal skeletal dysplasia, Torrance type, in a novel Col2a1 mutant mouse line.

    PubMed

    Kimura, Makoto; Ichimura, Satoki; Sasaki, Kuniaki; Masuya, Hiroshi; Suzuki, Tomohiro; Wakana, Shigeharu; Ikegawa, Shiro; Furuichi, Tatsuya

    In humans, mutations in the COL2A1 gene encoding the α1(II) chain of type II collagen, create many clinical phenotypes collectively termed type II collagenopathies. However, the mechanisms generating this diversity remain to be determined. Here we identified a novel Col2a1 mutant mouse line by screening a large-scale N-ethyl-N-nitrosourea mutant mouse library. This mutant possessed a p.Tyr1391Ser missense mutation in the C-propeptide coding region, and this mutation was located in positions corresponding to the human COL2A1 mutation responsible for platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T). As expected, p.Tyr1391Ser homozygotes exhibited lethal skeletal dysplasias resembling PLSD-T, including extremely short limbs and severe dysplasia of the spine and pelvis. The secretion of the mutant proteins into the extracellular space was disrupted, accompanied by an abnormally expanded endoplasmic reticulum (ER) and the up-regulation of ER stress-related genes in chondrocytes. Chondrocyte apoptosis was severely induced in the growth plate of the homozygotes. These findings strongly suggest that ER stress-mediated apoptosis caused by the accumulated mutant proteins in ER contributes to skeletal dysplasia in Co12a1 mutant mice and PLSD-T patients. PMID:26545783

  18. Chitin synthase III: Synthetic lethal mutants and “stress related” chitin synthesis that bypasses the CSD3/CHS6 localization pathway

    PubMed Central

    Osmond, Barbara C.; Specht, Charles A.; Robbins, Phillips W.

    1999-01-01

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Δ, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that “stress response” chitin synthesis proceeds through an alternate Chs3p targeting pathway. PMID:10500155

  19. Subsite specificity of anthrax lethal factor and its implications for inhibitor development

    PubMed Central

    Li, Feng; Terzyan, Simon; Tang, Jordan

    2011-01-01

    The lethal factor of Bacillus anthracis is a major factor for lethality of anthrax infection by this bacterium. With the aid of the protective antigen, lethal factor gains excess to the cell cytosol where it manifests toxicity as a metalloprotease. For better understanding of its specificity, we have determined its residue preferences of nineteen amino acids in six subsites (from P3 to P3’) as relative kcat/Km values (specificity constants). These results showed that lethal factor has a broad specificity with preference toward hydrophobic residues, but not charged or branched residues. The most preferred residues in these six subsites are, from P1 to P3’, Trp, Leu, Met, Tyr, Pro, and Leu. The result of residue preference was used to design new substrates with superior hydrolytic characteristics and inhibitors with high potency. For better use of the new findings for inhibitor design, we have modeled the most preferred residues in the active site of lethal factor. The observed interactions provide new insights to future inhibitor designs. PMID:21396916

  20. Nanopore Biosensor for Label-Free and Real-Time Detection of Anthrax Lethal Factor

    PubMed Central

    2015-01-01

    We report a label-free real-time nanopore sensing method for the detection of anthrax lethal factor, a component of the anthrax toxin, by using a complementary single-stranded DNA as a molecular probe. The method is rapid and sensitive: sub-nanomolar concentrations of the target anthrax lethal factor DNA could be detected in ∼1 min. Further, our method is selective, which can differentiate the target DNA from other single-stranded DNA molecules at the single-base resolution. This sequence-specific detection approach should find useful application in the development of nanopore sensors for the detection of other pathogens. PMID:24806593

  1. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening.

    PubMed

    Cardona-Correa, Albin; Rios-Velazquez, Carlos

    2016-05-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein‑protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting‑phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase‑A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF‑interacting peptides. With a minimum concentration of LF for interaction at 1 µg/ml, the T7PD isolated pepsin A3 pre‑protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID

  2. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening

    PubMed Central

    CARDONA-CORREA, ALBIN; RIOS-VELAZQUEZ, CARLOS

    2016-01-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID:27035230

  3. GATA factor transgenes under GATA-1 locus control rescue germline GATA-1 mutant deficiencies.

    PubMed

    Takahashi, S; Shimizu, R; Suwabe, N; Kuroha, T; Yoh, K; Ohta, J; Nishimura, S; Lim, K C; Engel, J D; Yamamoto, M

    2000-08-01

    GATA-1 germline mutation in mice results in embryonic lethality due to defective erythroid cell maturation, and thus other hematopoietic GATA factors do not compensate for the loss of GATA-1. To determine whether the obligate presence of GATA-1 in erythroid cells is due to its distinct biochemical properties or spatiotemporal patterning, we attempted to rescue GATA-1 mutant mice with hematopoietic GATA factor complementary DNAs (cDNAs) placed under the transcriptional control of the GATA-1 gene. We found that transgenic expression of a GATA-1 cDNA fully abrogated the GATA-1-deficient phenotype. Surprisingly, GATA-2 and GATA-3 factors expressed from the same regulatory cassette also rescued the embryonic lethal phenotype of the GATA-1 mutation. However, adult mice rescued with the latter transgenes developed anemia, while GATA-1 transgenic mice did not. These results demonstrate that the transcriptional control dictating proper GATA-1 accumulation is the most critical determinant of GATA-1 activity during erythropoiesis. The results also show that there are biochemical distinctions among the hematopoietic GATA proteins and that during adult hematopoiesis the hematopoietic GATA factors are not functionally equivalent. PMID:10910904

  4. A fragment of anthrax lethal factor delivers proteins to the cytosol without requiring protective antigen

    PubMed Central

    Kushner, Nicholas; Zhang, Dong; Touzjian, Neal; Essex, Max; Lieberman, Judy; Lu, Yichen

    2003-01-01

    Anthrax protective antigen (PA) is a 735-aa polypeptide that facilitates the exit of anthrax lethal factor (LF) from the endosome to the cytosol where the toxin acts. We recently found, however, that a fusion protein of the detoxified N-terminal domain of lethal factor (LFn) with a foreign peptide could induce CD8 T cell immune responses in the absence of PA. Because CD8 T cells recognize peptides derived from proteins degraded in the cytosol, this result suggests that lethal factor may be capable of entering the cytosol independently of PA. To investigate this further, the intracellular trafficking of an LFn-enhanced green fluorescent protein fusion protein (LFn-GFP) in the presence or absence of PA was examined by using confocal microscopy. LFn-GFP is able to enter the cytosol without PA. Moreover, it efficiently colocalizes with the proteosome 20s subunit, which degrades proteins into peptides for presentation to CD8 T cells by the MHC class I pathway. We further demonstrate that in the presence of an immune adjuvant LFn fusion protein without PA is able to effectively elicit anti-HIV cytotoxic T lymphocyte in inbred mice. These results indicate that LFn may be used without PA in a protein vaccine as a carrier to deliver antigens into the cytosol for efficient induction of T lymphocyte responses. Furthermore, these results enable us to propose a modified molecular mechanism of anthrax lethal toxin. PMID:12740437

  5. Study of radiosensitive Drosophila lines. XI. Induction of recessive sex-linked lethal mutations in females of the mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.

    1986-05-01

    The authors have studied the frequency of occurrence of recessive sex-linked lethal mutations (RSLLM) after treatment of the females with ..gamma..-rays as a function of the dose (from 5 to 20 Gy) and oogenesis stage. They have shown that within the dose range used the oocytes of the 14th and 7th development stage are more sensitive in females of the mutant line than in those of the control. They detected significant differences in the frequency of occurrence of RSLLM between the 14th and 7th stages of development of oocytes for both Drosophila lines investigated.

  6. New Infestin-4 Mutants with Increased Selectivity against Factor XIIa

    PubMed Central

    Vuimo, Tatiana A.; Surov, Stepan S.; Ovsepyan, Ruzanna A.; Korneeva, Vera A.; Vorobiev, Ivan I.; Orlova, Nadezhda A.; Minakhin, Leonid; Kuznedelov, Konstantin; Severinov, Konstantin V.; Ataullakhanov, Fazoil I.; Panteleev, Mikhail A.

    2015-01-01

    Factor XIIa (fXIIa) is a serine protease that triggers the coagulation contact pathway and plays a role in thrombosis. Because it interferes with coagulation testing, the need to inhibit fXIIa exists in many cases. Infestin-4 (Inf4) is a Kazal-type inhibitor of fXIIa. Its specificity for fXIIa can be enhanced by point mutations in the protease-binding loop. We attempted to adapt Inf4 for the selective repression of the contact pathway under various in vitro conditions, e.g., during blood collection and in ‘global’ assays of tissue factor (TF)-dependent coagulation. First, we designed a set of new Inf4 mutants that, in contrast to wt-Inf4, had stabilized canonical conformations during molecular dynamics simulation. Off-target activities against factor Xa (fXa), plasmin, and other coagulation proteases were either reduced or eliminated in these recombinant mutants, as demonstrated by chromogenic assays. Interactions with fXIIa and fXa were also analyzed using protein-protein docking. Next, Mutant B, one of the most potent mutants (its Ki for fXIIa is 0.7 nM) was tested in plasma. At concentrations 5–20 μM, this mutant delayed the contact-activated generation of thrombin, as well as clotting in thromboelastography and thrombodynamics assays. In these assays, Mutant B did not affect coagulation initiated by TF, thus demonstrating sufficient selectivity and its potential practical significance as a reagent for coagulation diagnostics. PMID:26670620

  7. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

    PubMed Central

    Menard, A; Papini, E; Mock, M; Montecucco, C

    1996-01-01

    The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase. PMID:8973585

  8. Thioamide Hydroxypyrothiones Supersede Amide Hydroxypyrothiones in Potency Against Anthrax Lethal Factor

    PubMed Central

    Agrawal, Arpita; de Oliveira, César Augusto F.; Cheng, Yuhui; Jacobsen, Jennifer A.; McCammon, J. Andrew; Cohen, Seth M.

    2009-01-01

    Anthrax lethal factor (LF) is a critical virulence factor in the pathogenesis of anthrax. A structure-activity relationship (SAR) of potential lethal factor inhibitors (LFi) is presented in which the zinc-binding group (ZBG), linker, and backbone moieties for a series of hydroxypyrone-based compounds were systematically varied. It was found that hydroxypyrothione ZBGs generate more potent inhibitors than hydroxypyrone ZBGs. Furthermore, coupling the hydroxypyrothione to a backbone group via a thioamide bond improves potency when compared to an amide linker. QM/MM studies show that the thioamide bond in these inhibitors allows for the formation of two additional hydrogen bonds with the protein active site. In both types of hydroxypyrothione compounds, ligand efficiencies of 0.29-0.54 kcal mol-1 per heavy atom were achieved. The results highlight the need for a better understanding to optimize the interplay between the ZBG, linker, and backbone to get improved LFi. PMID:19170530

  9. Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.

    PubMed

    Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A

    2009-09-01

    Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis. PMID:19477207

  10. Host immunity to Bacillus anthracis lethal factor and other immunogens: implications for vaccine design.

    PubMed

    Altmann, Daniel M

    2015-03-01

    Infections of humans with Bacillus anthracis are an issue with respect to the biothreat both to civilians and military personnel, infections of individuals by infected livestock in endemic regions and, recently, infections of intravenous drug users injecting anthrax-contaminated heroin. Existing vaccination regimens are reliant on protective antigen neutralization induced by repeated boosts with the AVA or AVP vaccines. However, there is ongoing interest in updated approaches in light of the intensive booster regime and extent of reactogenicity inherent in the current protocols. Several other immunogens from the B. anthracis proteome have been characterized in recent years, including lethal factor. Lethal factor induces strong CD4 T-cell immunity and encompasses immunodominant epitopes of relevance across diverse HLA polymorphisms. Taken together, recent studies emphasize the potential benefits of vaccines able to confer synergistic immunity to protective antigen and to other immunogens, targeting both B-cell and T-cell repertoires. PMID:25400140

  11. Factors Associated with Increased Risk for Lethal Violence in Intimate Partner Relationships among Ethnically Diverse Black Women

    PubMed Central

    Sabri, Bushra; Stockman, Jamila K.; Campbell, Jacquelyn C.; O’Brien, Sharon; Campbell, Doris; Callwood, Gloria B.; Bertrand, Desiree; Sutton, Lorna W.; Hart-Hyndman, Greta

    2014-01-01

    The purpose of this study was to identify factors associated with increased risk for lethal violence among ethnically diverse Black women in Baltimore, Maryland (MD) and the US Virgin Islands (USVI). Women with abuse experiences (n=456) were recruited from primary care, prenatal or family planning clinics in Baltimore, MD and St. Thomas and St. Croix, USVI. Logistic regression was used to examine factors associated with the risk for lethal violence among abused women. Factors independently related to increased risk of lethal violence included fear of abusive partners, PTSD symptoms, and use of legal resources. These factors must be considered in assessing safety needs of Black women in abusive relationships. PMID:25429191

  12. Acquired coagulant factor VIII deficiency induced by Bacillus anthracis lethal toxin in mice.

    PubMed

    Sun, Der-Shan; Lee, Po-Chien; Kau, Jyh-Hwa; Shih, Yung-Luen; Huang, Hsin-Hsien; Li, Chen-Ru; Lee, Chin-Cheng; Wu, Yu-Ping; Chen, Kuo-Ching; Chang, Hsin-Hou

    2015-01-01

    Mice treated with anthrax lethal toxin (LT) exhibit hemorrhage caused by unknown mechanisms. Moreover, LT treatment in mice induced liver damage. In this study, we hypothesized that a suppressed coagulation function may be associated with liver damage, because the liver is the major producing source of coagulation factors. The hepatic expression of coagulant factors and the survival rates were analyzed after cultured cells or mice were exposed to LT. In agreement with our hypothesis, LT induces cytotoxicity against hepatic cells in vitro. In addition, suppressed expression of coagulation factor VIII (FVIII) in the liver is associated with a prolonged plasma clotting time in LT-treated mice, suggesting a suppressive role of LT in coagulation. Accordingly, we further hypothesized that a loss-of-function approach involving treatments of an anticoagulant should exacerbate LT-induced abnormalities, whereas a gain-of-function approach involving injections of recombinant FVIII to complement the coagulation deficiency should ameliorate the pathogenesis. As expected, a sublethal dose of LT caused mortality in the mice that were non-lethally pretreated with an anticoagulant (warfarin). By contrast, treatments of recombinant FVIII reduced the mortality from a lethal dose of LT in mice. Our results indicated that LT-induced deficiency of FVIII is involved in LT-mediated pathogenesis. Using recombinant FVIII to correct the coagulant defect may enable developing a new strategy to treat anthrax. PMID:25906166

  13. Acquired coagulant factor VIII deficiency induced by Bacillus anthracis lethal toxin in mice

    PubMed Central

    Sun, Der-Shan; Lee, Po-Chien; Kau, Jyh-Hwa; Shih, Yung-Luen; Huang, Hsin-Hsien; Li, Chen-Ru; Lee, Chin-Cheng; Wu, Yu-Ping; Chen, Kuo-Ching; Chang, Hsin-Hou

    2015-01-01

    Mice treated with anthrax lethal toxin (LT) exhibit hemorrhage caused by unknown mechanisms. Moreover, LT treatment in mice induced liver damage. In this study, we hypothesized that a suppressed coagulation function may be associated with liver damage, because the liver is the major producing source of coagulation factors. The hepatic expression of coagulant factors and the survival rates were analyzed after cultured cells or mice were exposed to LT. In agreement with our hypothesis, LT induces cytotoxicity against hepatic cells in vitro. In addition, suppressed expression of coagulation factor VIII (FVIII) in the liver is associated with a prolonged plasma clotting time in LT-treated mice, suggesting a suppressive role of LT in coagulation. Accordingly, we further hypothesized that a loss-of-function approach involving treatments of an anticoagulant should exacerbate LT-induced abnormalities, whereas a gain-of-function approach involving injections of recombinant FVIII to complement the coagulation deficiency should ameliorate the pathogenesis. As expected, a sublethal dose of LT caused mortality in the mice that were non-lethally pretreated with an anticoagulant (warfarin). By contrast, treatments of recombinant FVIII reduced the mortality from a lethal dose of LT in mice. Our results indicated that LT-induced deficiency of FVIII is involved in LT-mediated pathogenesis. Using recombinant FVIII to correct the coagulant defect may enable developing a new strategy to treat anthrax. PMID:25906166

  14. An Arabidopsis pex10 Null Mutant Is Embryo Lethal, Implicating Peroxisomes in an Essential Role during Plant Embryogenesis1

    PubMed Central

    Sparkes, Imogen A.; Brandizzi, Federica; Slocombe, Stephen P.; El-Shami, Mahmoud; Hawes, Chris; Baker, Alison

    2003-01-01

    Peroxisomes participate in many important functions in plants, including seed reserve mobilization, photorespiration, defense against oxidative stress, and auxin and jasmonate signaling. In mammals, defects in peroxisome biogenesis result in multiple system abnormalities, severe developmental delay, and death, whereas in unicellular yeasts, peroxisomes are dispensable unless required for growth of specific substrates. PEX10 encodes an integral membrane protein required for peroxisome biogenesis in mammals and yeast. To investigate the importance of PEX10 in plants, we characterized a Ds insertion mutant in the PEX10 gene of Arabidopsis (AtPEX10). Heterozygous AtPEX10::dissociation element mutants show normal vegetative phenotypes under optimal growth conditions, but produce about 20% abnormal seeds. The embryos in the abnormal seeds are predominantly homozygous for the disruption allele. They show retarded development and some morphological abnormalities. No viable homozygous mutant plants were obtained. AtPEX10 fused to yellow fluorescent protein colocalized with green fluorescent protein-serine-lysine-leucine, a well-documented peroxisomal marker, suggesting that AtPEX10 encodes a peroxisomal protein that is essential for normal embryo development and viability. PMID:14576288

  15. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor.

    PubMed

    Maize, Kimberly M; Kurbanov, Elbek K; Johnson, Rodney L; Amin, Elizabeth Ambrose; Finzel, Barry C

    2015-12-21

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'(∗) which might afford new opportunities to design selective inhibitors that target this subsite. PMID:26578066

  16. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    SciTech Connect

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C.

    2015-11-11

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  17. An Arabidopsis Mutant Tolerant to Lethal Ultraviolet-B Levels Shows Constitutively Elevated Accumulation of Flavonoids and Other Phenolics1

    PubMed Central

    Bieza, Kim; Lois, Rodrigo

    2001-01-01

    The isolation and characterization of mutants hypersensitive to ultraviolet (UV) radiation has been a powerful tool to learn about the mechanisms that protect plants against UV-induced damage. To increase our understanding of the various mechanisms of defense against UVB radiation, we searched for mutations that would increase the level of tolerance of Arabidopsis plants to UV radiation. We describe a single gene dominant mutation (uvt1) that leads to a remarkable tolerance to UVB radiation conditions that would kill wild-type plants. Pigment analyses show a constitutive increase in accumulation of UV-absorbing compounds in uvt1 that increases the capacity of the leaves to block UVB radiation and therefore is likely to be responsible for the elevated resistance of this mutant to UVB radiation. These increases in absorption in the UV region are due, at least in part, to increases in flavonoid and sinapate accumulation. Expression of chalcone synthase (CHS) mRNA was shown to be constitutively elevated in uvt1 plants, suggesting that the increases in absorption may be a consequence of changes in gene expression. Expression of CHS in uvt1 was shown to be still inducible by UV, indicating that the uvt1 lesion may not affect the UV-mediated regulation of CHS gene expression. Our data support an important role for UV screens in the overall protection of plants to UVB radiation. The uvt1 mutant could prove to be an important tool to elucidate further the exact role of UV-absorbing pigments in UV protection as well as the relative contribution of other mechanisms to the overall tolerance of plants to UV radiation. PMID:11457961

  18. In vivo dynamics of active edema and lethal factors during anthrax

    PubMed Central

    Rougeaux, Clémence; Becher, François; Ezan, Eric; Tournier, Jean-Nicolas; Goossens, Pierre L.

    2016-01-01

    Lethal and edema toxins are critical virulence factors of Bacillus anthracis. However, little is known about their in vivo dynamics of production during anthrax. In this study, we unraveled for the first time the in vivo kinetics of production of the toxin components EF (edema factor) and LF (lethal factor) during cutaneous infection with a wild-type toxinogenic encapsulated strain in immuno-competent mice. We stratified the asynchronous infection process into defined stages through bioluminescence imaging (BLI), while exploiting sensitive quantitative methods by measuring the enzymatic activity of LF and EF. LF was produced in high amounts, while EF amounts steadily increased during the infectious process. This led to high LF/EF ratios throughout the infection, with variations between 50 to a few thousands. In the bloodstream, the early detection of active LF and EF despite the absence of bacteria suggests that they may exert long distance effects. Infection with a strain deficient in the protective antigen toxin component enabled to address its role in the diffusion of LF and EF within the host. Our data provide a picture of the in vivo complexity of the infectious process. PMID:26996161

  19. In vivo dynamics of active edema and lethal factors during anthrax.

    PubMed

    Rougeaux, Clémence; Becher, François; Ezan, Eric; Tournier, Jean-Nicolas; Goossens, Pierre L

    2016-01-01

    Lethal and edema toxins are critical virulence factors of Bacillus anthracis. However, little is known about their in vivo dynamics of production during anthrax. In this study, we unraveled for the first time the in vivo kinetics of production of the toxin components EF (edema factor) and LF (lethal factor) during cutaneous infection with a wild-type toxinogenic encapsulated strain in immuno-competent mice. We stratified the asynchronous infection process into defined stages through bioluminescence imaging (BLI), while exploiting sensitive quantitative methods by measuring the enzymatic activity of LF and EF. LF was produced in high amounts, while EF amounts steadily increased during the infectious process. This led to high LF/EF ratios throughout the infection, with variations between 50 to a few thousands. In the bloodstream, the early detection of active LF and EF despite the absence of bacteria suggests that they may exert long distance effects. Infection with a strain deficient in the protective antigen toxin component enabled to address its role in the diffusion of LF and EF within the host. Our data provide a picture of the in vivo complexity of the infectious process. PMID:26996161

  20. Enhanced non-homologous end joining contributes toward synthetic lethality of pathological RAD51C mutants with poly (ADP-ribose) polymerase.

    PubMed

    Somyajit, Kumar; Mishra, Anup; Jameei, Aida; Nagaraju, Ganesh

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors are actively under clinical trials for the treatment of breast and ovarian cancers that arise due to mutations in BRCA1 and BRCA2. The RAD51 paralog RAD51C has been identified as a breast and ovarian cancer susceptibility gene. The pathological RAD51C mutants that were identified in cancer patients are hypomorphic with partial repair function. However, targeting cancer cells that express hypomorphic mutants of RAD51C is highly challenging. Here, we report that RAD51C-deficient cells can be targeted by a 'synthetic lethal' approach using PARP inhibitor and this sensitivity was attributed to accumulation of cells in the G2/M and chromosomal aberrations. In addition, spontaneous hyperactivation of PARP1 was evident in RAD51C-deficient cells. Interestingly, RAD51C-negative cells exhibited enhanced recruitment of non-homologous end joining (NHEJ) proteins onto chromatin and this accumulation correlated with increased activity of error-prone NHEJ as well as genome instability leading to cell death. Notably, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV rescued this phenotype. Strikingly, stimulation of NHEJ by low dose of ionizing radiation (IR) in the PARP inhibitor-treated RAD51C-deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity 'synergistically'. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a 'synergistic approach' and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other homologous recombination pathway genes. PMID:25292178

  1. Protection against lethal bacterial infection in mice by monocyte-chemotactic and -activating factor.

    PubMed Central

    Nakano, Y; Kasahara, T; Mukaida, N; Ko, Y C; Nakano, M; Matsushima, K

    1994-01-01

    Chemotactic factors regulate the recruitment of neutrophils, lymphocytes, or monocytes-macrophages to infectious and inflammatory sites. The purpose of this study was to determine whether monocyte-chemotactic and -activating factor (MCAF [MCP-1], a JE gene product) also influences the host defense mechanism against microbial infection. We evaluated the effect of recombinant human MCAF on the survival rate of mice systemically infected with Pseudomonas aeruginosa or Salmonella typhimurium. The administration of 2.5 micrograms of MCAF 6 h before infection completely protected the mice from lethal infection. Mice with cyclophosphamide-induced leukopenia exhibiting increased susceptibility to P. aeruginosa were also endowed with resistance by the same dose of MCAF. Administration of MCAF at -6 h was critical, since MCAF given either earlier or later than -6 h failed to rescue mice from lethal infection. The in vivo effect on the survival of mice paralleled the reduced recovery of viable P. aeruginosa or S. typhimurium from the peritoneal cavity, i.e., the number of recovered bacteria from the MCAF (2.5 micrograms per mouse)-treated mice was reduced to less than 2% of control mice for P. aeruginosa and 4% of control mice for S. typhimurium at 24 h. Since MCAF exhibited chemotaxis on murine macrophages as well as enhanced phagocytosis and killing of bacteria in vitro, the activation of macrophages, followed by the recruitment into the peritoneal cavity, is responsible for eliminating bacteria and thus enhancing the survival rate. PMID:8300198

  2. Purification and biophysical characterization of the core protease domain of anthrax lethal factor

    SciTech Connect

    Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.; Vlamis-Gardikas, Alexios; Bentrop, Detlef; Spyroulias, Georgios A.

    2010-06-04

    Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site are essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.

  3. Ribosomal Elongation Factor 4 Promotes Cell Death Associated with Lethal Stress

    PubMed Central

    Li, Liping; Hong, Yuzhi; Luan, Gan; Mosel, Michael; Malik, Muhammad; Drlica, Karl

    2014-01-01

    ABSTRACT Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. PMID:25491353

  4. Incompatibility Between X Chromosome Factor and Pericentric Heterochromatic Region Causes Lethality in Hybrids Between Drosophila melanogaster and Its Sibling Species

    PubMed Central

    Cattani, M. Victoria; Presgraves, Daven C.

    2012-01-01

    The Dobzhansky–Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F1 hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F1 hybrid females with D. melanogaster. As F1 hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhlmau. The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin. PMID:22446316

  5. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs

    PubMed Central

    Hwang, Jihwan; Lee, Kangseok; Phadtare, Sangita; Inouye, Masayori

    2012-01-01

    CspA is a major cold-shock inducible protein (70 aa), and its major role in the cold-shock response was shown to be as an RNA chaperone destabilizing secondary structure of mRNAs at low temperature. Previously, we showed that the overexpression of mutant cspA containing premature nonsense codons at various positions led to stalled ribosomes on mutant cspA transcripts, ultimately leading to cell death. This lethality is primarily due to the highly translatable cspA 5′-UTR that recruits most of the ribosomes from other mRNAs, which are then stalled at the abnormal stop codon. This was called the ‘LACE’ effect. We show here that nonsense mutation even at 67th position as well as substitutions of aromatic amino acid residues present on the RNA-binding surface of CspA protein to alanine caused the LACE effect by trapping a substantial amount of ribosomes on cspA mRNAs. In an attempt to identify a suppressor(s), which may help the cells to recover from the inhibitory LACE effect, genetic screening of an E. coli genomic library was performed. We isolated suppressors that contained the genomic fragments encoding uvrD and dinG, respectively, whose gene products are ATP-dependent DNA helicases. The nucleic acid-binding and ATPase activities of these two helicases were found to be essential for their suppression activity. This genomic screening offers an approach to shed light on the mechanistic of 5′-UTR of cspA mRNA and novel roles of E. coli helicases that function in DNA repair. PMID:22832783

  6. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs.

    PubMed

    Hwang, Jihwan; Lee, Kangseok; Phadtare, Sangita; Inouye, Masayori

    2012-01-01

    CspA is a major cold shock-inducible protein (70 aa), and its major role in the cold shock response was shown to be as an RNA chaperone destabilizing secondary structure of mRNAs at low temperature. Previously, we showed that the overexpression of mutant cspA containing premature non-sense codons at various positions led to stalled ribosomes on mutant cspA transcripts, ultimately leading to cell death. This lethality is primarily due to the highly translatable cspA 5'-UTR that recruits most of the ribosomes from other mRNAs, which are then stalled at the abnormal stop codon. This was called the 'LACE' effect. We show here that non-sense mutation even at the 67th position as well as substitutions of aromatic amino acid residues present on the RNA-binding surface of CspA protein to alanine caused the LACE effect by trapping a substantial amount of ribosomes on cspA mRNAs. In an attempt to identify a suppressor(s), which may help the cells to recover from the inhibitory LACE effect, genetic screening of an Escherichia coli genomic library was performed. We isolated suppressors that contained the genomic fragments encoding uvrD and dinG, respectively, whose gene products are ATP-dependent DNA helicases. The nucleic acid-binding and ATPase activities of these two helicases were found to be essential for their suppression activity. This genomic screening offers an approach to shed light on the mechanistic of 5'-UTR of cspA mRNA and novel roles of E. coli helicases that function in DNA repair. PMID:22832783

  7. Amplification of Adenine Phosphoribosyltransferase Suppresses the Conditionally Lethal Growth and Virulence Phenotype of Leishmania donovani Mutants Lacking Both Hypoxanthine-guanine and Xanthine Phosphoribosyltransferases*

    PubMed Central

    Boitz, Jan M.; Ullman, Buddy

    2010-01-01

    Leishmania donovani cannot synthesize purines de novo and obligatorily scavenge purines from the host. Previously, we described a conditional lethal Δhgprt/Δxprt mutant of L. donovani (Boitz, J. M., and Ullman, B. (2006) J. Biol. Chem. 281, 16084–16089) that establishes that L. donovani salvages purines primarily through hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine phosphoribosyltransferase (XPRT). Unlike wild type L. donovani, the Δhgprt/Δxprt knock-out cannot grow on 6-oxypurines and displays an absolute requirement for adenine or adenosine and 2′-deoxycoformycin, an inhibitor of parasite adenine aminohydrolase activity. Here, we demonstrate that the ability of Δhgprt/Δxprt parasites to infect mice was profoundly compromised. Surprisingly, mutant parasites that survived the initial passage through mice partially regained their virulence properties, exhibiting a >10-fold increase in parasite burden in a subsequent mouse infection. To dissect the mechanism by which Δhgprt/Δxprt parasites persisted in vivo, suppressor strains that had regained their capacity to grow under restrictive conditions were cloned from cultured Δhgprt/Δxprt parasites. The ability of these suppressor clones to grow in and metabolize 6-oxypurines could be ascribed to a marked amplification and overexpression of the adenine phosphoribosyltransferase (APRT) gene. Moreover, transfection of Δhgprt/Δxprt cells with an APRT episome recapitulated the suppressor phenotype in vitro and enabled growth on 6-oxypurines. Biochemical studies further showed that hypoxanthine, unexpectedly, was an inefficient substrate for APRT, evidence that could account for the ability of the suppressors to metabolize hypoxanthine. Subsequent analysis implied that APRT amplification was also a potential contributory mechanism by which Δhgprt/Δxprt parasites displayed persistence and increased virulence in mice. PMID:20363738

  8. Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis.

    PubMed Central

    Drake, T. A.; Cheng, J.; Chang, A.; Taylor, F. B.

    1993-01-01

    Disseminated intravascular thrombosis is a frequent complication of endotoxic shock, and modulation of endothelial cell hemostatic properties has been proposed to play a role in its pathogenesis based on studies of endothelial cells in culture. This study examined the in vivo expression of tissue factor (TF) and thrombomodulin (TM) in a baboon model of lethal Escherichia coli sepsis using immunohistochemistry with monospecific antibodies. Expression of E-selectin (E-sel) was also determined as a marker of endothelial cell activation. Correlation of immunoreactivity with procoagulant activity in lipopolysaccharide-stimulated cultured human endothelial cells showed that immunohistochemistry was sufficiently sensitive to detect as little as 5% of the maximum in vitro endothelial cell TF response. Vascular endothelium of control animals expressed TM but had no detectable TF or E-sel. Following E. coli infusion, widespread E-sel expression and microvascular fibrin deposition was evident within 6 hours. However, expression of TF by endothelial cells became detectable only in the splenic microvasculature, where endothelial specificity of TF expression was confirmed by dual immunofluorescence of TF with von Willebrand's factor and with TM. In the spleen, there was a dissociation of expression of TF and E-sel, with marginal zone vessels being TF-positive and E-sel-negative, whereas sinusoidal endothelium was E-sel-positive but TF-negative. TM expression was unchanged from controls. Additionally, expression of TF by lung alveolar epithelial cells, splenic macrophages, and epithelial cells of the renal glomeruli was observed to be enhanced in septic animals. This study documents endothelial cell expression of TF in vivo in a relevant pathological setting. At the same time, compared with endothelial cells in culture, there is in vivo both significantly greater control of TF expression than expected, given the strong positive stimuli present in lethal E. coli septic shock and

  9. Factor V Leiden mutation does not affect coagulopathy or outcome in lethal H1N1 influenza.

    PubMed

    Schouten, M; van der Sluijs, K F; Roelofs, J J T H; Levi, M; Van't Veer, C; van der Poll, T

    2010-12-01

    Influenza A is a major cause of mortality. Knowledge on coagulation activation in influenza infection is limited. The factor V Leiden (FVL) mutation is possibly subject to positive selection pressure. It is unknown whether this mutation impacts on the outcome of severe influenza. In the present study, the effect of lethal influenza on pulmonary and systemic coagulation activation and whether or not FVL mutation alters coagulation activation in and the course of lethal influenza, was determined. Wild-type mice, and mice heterozygous or homozygous for FVL were infected intranasally with a lethal dose of H1N1 (haemagglutinin 1 and neuraminidase 1) influenza A. Mice were sacrificed after 48 or 96 h for determination of coagulation activation, histopathology, pulmonary inflammatory parameters and viral load, or were observed in a survival study. Extensive local and systemic coagulation activation during lethal influenza was demonstrated by increased lung and plasma levels of thrombin-antithrombin complexes and fibrin degradation products, and by pulmonary fibrin deposition. FVL mutation did not influence the procoagulant response, lung histopathology or survival. FVL mice demonstrated elevated viral loads 48 h after infection. In conclusion, coagulation is activated locally and systemically during lethal murine influenza A infection. The FVL mutation does not influence coagulation activation, lung inflammation or survival in lethal influenza A. PMID:20413539

  10. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    PubMed Central

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  11. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model.

    PubMed

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-02-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  12. Highly predictive support vector machine (SVM) models for anthrax toxin lethal factor (LF) inhibitors.

    PubMed

    Zhang, Xia; Amin, Elizabeth Ambrose

    2016-01-01

    Anthrax is a highly lethal, acute infectious disease caused by the rod-shaped, Gram-positive bacterium Bacillus anthracis. The anthrax toxin lethal factor (LF), a zinc metalloprotease secreted by the bacilli, plays a key role in anthrax pathogenesis and is chiefly responsible for anthrax-related toxemia and host death, partly via inactivation of mitogen-activated protein kinase kinase (MAPKK) enzymes and consequent disruption of key cellular signaling pathways. Antibiotics such as fluoroquinolones are capable of clearing the bacilli but have no effect on LF-mediated toxemia; LF itself therefore remains the preferred target for toxin inactivation. However, currently no LF inhibitor is available on the market as a therapeutic, partly due to the insufficiency of existing LF inhibitor scaffolds in terms of efficacy, selectivity, and toxicity. In the current work, we present novel support vector machine (SVM) models with high prediction accuracy that are designed to rapidly identify potential novel, structurally diverse LF inhibitor chemical matter from compound libraries. These SVM models were trained and validated using 508 compounds with published LF biological activity data and 847 inactive compounds deposited in the Pub Chem BioAssay database. One model, M1, demonstrated particularly favorable selectivity toward highly active compounds by correctly predicting 39 (95.12%) out of 41 nanomolar-level LF inhibitors, 46 (93.88%) out of 49 inactives, and 844 (99.65%) out of 847 Pub Chem inactives in external, unbiased test sets. These models are expected to facilitate the prediction of LF inhibitory activity for existing molecules, as well as identification of novel potential LF inhibitors from large datasets. PMID:26615468

  13. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    SciTech Connect

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  14. Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding

    PubMed Central

    Maize, Kimberly M.; Kurbanov, Elbek K.; De La Mora-Rey, Teresa; Geders, Todd W.; Hwang, Dong-Jin; Walters, Michael A.; Johnson, Rodney L.; Amin, Elizabeth A.; Finzel, Barry C.

    2014-01-01

    The secreted anthrax toxin consists of three components: the protective antigen (PA), edema factor (EF) and lethal factor (LF). LF, a zinc metalloproteinase, compromises the host immune system primarily by targeting mitogen-activated protein kinase kinases in macrophages. Peptide substrates and small-molecule inhibitors bind LF in the space between domains 3 and 4 of the hydrolase. Domain 3 is attached on a hinge to domain 2 via residues Ile300 and Pro385, and can move through an angular arc of greater than 35° in response to the binding of different ligands. Here, multiple LF structures including five new complexes with co-crystallized inhibitors are compared and three frequently populated LF conformational states termed ‘bioactive’, ‘open’ and ‘tight’ are identified. The bioactive position is observed with large substrate peptides and leaves all peptide-recognition subsites open and accessible. The tight state is seen in unliganded and small-molecule complex structures. In this state, domain 3 is clamped over certain substrate subsites, blocking access. The open position appears to be an intermediate state between these extremes and is observed owing to steric constraints imposed by specific bound ligands. The tight conformation may be the lowest-energy conformation among the reported structures, as it is the position observed with no bound ligand, while the open and bioactive conformations are likely to be ligand-induced. PMID:25372673

  15. Separation as a Risk Factor for Victims of Intimate Partner Violence: Beyond Lethality and Injury. A Response to Campbell

    ERIC Educational Resources Information Center

    Logan, T. K.; Walker, Robert

    2004-01-01

    Although separation is a commonly experienced life transition, it is generally a stressful life event and is associated with negative mental health and health problems for women regardless of victimization history. The research clearly suggests that separation is a risk factor for lethal violence and injury; however, separation for women leaving…

  16. Substrate Recognition of Anthrax Lethal Factor Examined by Combinatorial and Pre-steady-state Kinetic Approaches*

    PubMed Central

    Zakharova, Maria Yu.; Kuznetsov, Nikita A.; Dubiley, Svetlana A.; Kozyr, Arina V.; Fedorova, Olga S.; Chudakov, Dmitry M.; Knorre, Dmitry G.; Shemyakin, Igor G.; Gabibov, Alexander G.; Kolesnikov, Alexander V.

    2009-01-01

    Lethal factor (LF), a zinc-dependent protease of high specificity produced by Bacillus anthracis, is the effector component of the binary toxin that causes death in anthrax. New therapeutics targeting the toxin are required to reduce systemic anthrax-related fatalities. In particular, new insights into the LF catalytic mechanism will be useful for the development of LF inhibitors. We evaluated the minimal length required for formation of bona fide LF substrates using substrate phage display. Phage-based selection yielded a substrate that is cleaved seven times more efficiently by LF than the peptide targeted in the protein kinase MKK6. Site-directed mutagenesis within the metal-binding site in the LF active center and within phage-selected substrates revealed a complex pattern of LF-substrate interactions. The elementary steps of LF-mediated proteolysis were resolved by the stopped-flow technique. Pre-steady-state kinetics of LF proteolysis followed a four-step mechanism as follows: initial substrate binding, rearrangement of the enzyme-substrate complex, a rate-limiting cleavage step, and product release. Examination of LF interactions with metal ions revealed an unexpected activation of the protease by Ca2+ and Mn2+. Based on the available structural and kinetic data, we propose a model for LF-substrate interaction. Resolution of the kinetic and structural parameters governing LF activity may be exploited to design new LF inhibitors. PMID:19359249

  17. Deficiency of the myogenic factor MyoD causes a perinatally lethal fetal akinesia

    PubMed Central

    Crinnion, Laura A; Murphy, Helen; Newbould, Melanie; Harrison, Sally M; Lascelles, Carolina; Antanaviciute, Agne; Carr, Ian M; Sheridan, Eamonn; Bonthron, David T; Smith, Audrey

    2016-01-01

    Background Lethal fetal akinesia deformation sequence (FADS) describes a clinically and genetically heterogeneous phenotype that includes fetal akinesia, intrauterine growth retardation, arthrogryposis and developmental anomalies. Affected babies die as a result of pulmonary hypoplasia. We aimed to identify the underlying genetic cause of this disorder in a family in which there were three affected individuals from two sibships. Methods Autosomal-recessive inheritance was suggested by a family history of consanguinity and by recurrence of the phenotype between the two sibships. We performed exome sequencing of the affected individuals and their unaffected mother, followed by autozygosity mapping and variant filtering to identify the causative gene. Results Five autozygous regions were identified, spanning 31.7 Mb of genomic sequence and including 211 genes. Using standard variant filtering criteria, we excluded all variants as being the likely pathogenic cause, apart from a single novel nonsense mutation, c.188C>A p.(Ser63*) (NM_002478.4), in MYOD1. This gene encodes an extensively studied transcription factor involved in muscle development, which has nonetheless not hitherto been associated with a hereditary human disease phenotype. Conclusions We provide the first description of a human phenotype that appears to result from MYOD1 mutation. The presentation with FADS is consistent with a large body of data demonstrating that in the mouse, MyoD is a major controller of precursor cell commitment to the myogenic differentiation programme. PMID:26733463

  18. Metalloproteinase Inhibitors, Nonantimicrobial Chemically Modified Tetracyclines, and Ilomastat Block Bacillus anthracis Lethal Factor Activity in Viable Cells

    PubMed Central

    Kocer, Salih S.; Walker, Stephen G.; Zerler, Brad; Golub, Lorne M.; Simon, Sanford R.

    2005-01-01

    Lethal toxin, produced by the bacterium Bacillus anthracis, is a major contributor to morbidity and mortality in animals and humans who have contracted anthrax. One component of this toxin, lethal factor (LF), proteolytically inactivates members of the mitogen-activated protein kinase kinase (MAPKK or MEK) family. In this study we show that CMT-300, CMT-308, and Ilomastat, agents initially characterized as matrix metalloproteinase inhibitors which are in early stages of development as pharmaceuticals, effectively inhibit the zinc metalloproteinase activity of LF. All three inhibitors, CMT-300, CMT-308, and Ilomastat, inhibit LF-mediated cleavage of a synthetic peptide substrate based on the N-terminal domain of MEKs. Inhibition of LF-mediated MEK proteolysis by all three agents was also achieved using lysates of the human monocytoid line MonoMac 6 as sources of MAPKKs and visualization of the extent of cleavage after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by detection by Western blotting. Finally, we have demonstrated inhibition of intracellular MEKs in viable human monocytes and MonoMac 6 cells by these agents after incubation of the cells with a reconstituted preparation of recombinant lethal toxin. All three agents are effective inhibitors when incubated with LF prior to exposure to cells, while the CMTs, but not Ilomastat, are also effective when added after LF has already entered the viable cell targets. These results offer promise for strategies to combat effects of the lethal toxin of B. anthracis. PMID:16239558

  19. Characterization of the Two Maize Embryo-Lethal Defective Kernel Mutants Rgh*-1210 and Fl*-1253b: Effects on Embryo and Gametophyte Development

    PubMed Central

    Clark, J. K.; Sheridan, W. F.

    1988-01-01

    We have examined the effects on embryonic and gametophytic development of two nonallelic defective-kernel mutants of maize. Earlier studies indicated that both mutants are abnormal in embryonic morphogenesis as well as in the formation of their endosperm. Mutant rgh*-1210 embryos depart from the normal embryogenic pathway at the proembryo and transition stage, by developing meristematic lobes and losing bilateral symmetry. They continue growth as irregular cell masses that enlarge and become necrotic. Somatic embryos arising in rgh*-1210 callus cultures display the rgh*-1210 mutant phenotype. Mutant fl*-1253B embryos are variably blocked from the coleoptilar stage through stage 2. Following formation of the shoot apex in the mutant embryos the leaf primordia and tissues surrounding the embryonic axis continue growth and cell division, while the scutellum ceases development and becomes hypertrophied. Mutant fl*-1253B embryos are unable to germinate, either in mutant kernels or as immature embryos in culture, and the mutant scutellar tissue does not produce regenerable callus. Expression of the fl*-1253B locus during male gametophytic development is revealed by a marked reduction in pollen transmission as a result of mutant expression during the interval between meiosis and the initiation of pollen tube growth. In both mutants, there is considerable proliferation of the aleurone cells of the endosperm. Mutant expression of rgh*-1210 in the female gametophyte is revealed by the abnormal antipodal cells of the embryo sac. These results show that these two gene loci play unique and crucial roles in normal morphogenesis of the embryo. In addition, it is evident that both mutants are pleiotropic in affecting the development of the endosperm and gametophyte as well as the embryo. These pleiotropisms suggest some commonality in the gene regulation of development in these three tissues. PMID:17246478

  20. Studies on radiosensitive lines of Drosophila. IX. Analysis of fertility and frequency of dominant lethal mutations in the gamma-irradiated females of the mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.M.

    1986-03-01

    Fertility and frequency of dominant lethal mutations (DLM) induced by gamma rays in females at the age of 0-5 h and 5-7 days were studied in the radiosensitive mutant rad(2)201/sup G1/ of Drosophila. It has been found that the oocytes of mutant lines are more radiosensitive as compared to those of the wild type flies when compared on the basis of DLM frequency obtained through the entire maturation period. The early oocytes of stages 2-7, i.e., at the stages corresponding to the recombination-defective properties of mutation rad(2)201/sup g1/ are the most sensitive. It has also been demonstrated that the gamma-ray doses exceeding 10 Gy cause a strong sterilizing effect in the mutant females as a result of destruction and resorption of the egg chamber, irradiated at the stages of previtellogenic growth of oocytes. In the radiosensitive mutant females, the sensitivity of the oocytes for DLM induction does not correlate with the sensitivity of the ovarian follicles toward the resorbing effect of gamma rays. The possible involvement of the mutant locus in the genetic processes in different specialized cells of the sexual pathway in Drosophila is discussed.

  1. A targeted deletion/insertion in the mouse Pcsk1 locus is associated with homozygous embryo preimplantation lethality, mutant allele preferential transmission and heterozygous female susceptibility to dietary fat.

    PubMed

    Mbikay, Majambu; Croissandeau, Gilles; Sirois, Francine; Anini, Younes; Mayne, Janice; Seidah, Nabil G; Chrétien, Michel

    2007-06-15

    Proprotein convertase 1 (PC1) is a neuroendocrine proteinase involved in the proteolytic activation of precursors to hormones and neuropeptides. To determine the physiological importance of PC1, we produced a mutant mouse from embryonic stem cells in which its locus (Pcsk1) had been inactivated by homologous recombination. The inactivating mutation consisted of a 32.7-kb internal deletion and a 1.8 kb insertion of the bacterial neomycin resistance gene (neo) under the mouse phosphoglycerate kinase 1 protein (PGKneo). Intercross of Pcsk1(+/-) mice produced no Pcsk1(-/-) offspring or blastocysts; in addition, more than 80% of the offspring were Pcsk1(+/-). These observations suggested that the mutation caused preimplantation lethality of homozygous embryos and preferential transmission of the mutant allele. Interestingly, RT-PCR analysis on RNA from endocrine tissues from Pcsk1(+/-) mice revealed the presence of aberrant transcripts specifying the N-terminal half of the PC1 propeptide fused to neo gene product. Mass spectrometric profiles of proopiomelanocortin-derived peptides in the anterior pituitary were similar between Pcsk1(+/-) and Pcsk1(+/+) mice, but significantly different between male and female mice of the same genotype. Relative to their wild-type counterparts, female mutant mice exhibited stunted growth under a low fat diet, and catch-up growth under a high-fat diet. The complex phenotype exhibited by this Pcsk1 mutant mouse model may be due to PC1 deficiency aggravated by expression of aberrant gene products from the mutant allele. PMID:17490633

  2. CD4+ T Cells Targeting Dominant and Cryptic Epitopes from Bacillus anthracis Lethal Factor.

    PubMed

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K Y; Musson, Julie A; Moore, Stephen J; Gallagher, Theresa; Baillie, Les; Williamson, Ethel D; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2015-01-01

    Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA

  3. CD4+ T Cells Targeting Dominant and Cryptic Epitopes from Bacillus anthracis Lethal Factor

    PubMed Central

    Ascough, Stephanie; Ingram, Rebecca J.; Chu, Karen K. Y.; Musson, Julie A.; Moore, Stephen J.; Gallagher, Theresa; Baillie, Les; Williamson, Ethel D.; Robinson, John H.; Maillere, Bernard; Boyton, Rosemary J.; Altmann, Daniel M.

    2016-01-01

    Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the

  4. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    PubMed

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  5. Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes

    PubMed Central

    Huang, Brenda; Wei, Wenjie; Wang, Guohao; Gaertig, Marta A.; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    SUMMARY Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington’s disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remain unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knock-in mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  6. Studies on radiosensitive lines of Drosophila. X. Effect of 0. 8 MeV neutrons from reactor on the survival and frequency of dominant lethals in mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.; Sharygin, V.I.; Postnikov, L.N.; Efremov, O.A.

    1986-04-01

    The frequency of dominant lethal mutations (DLM) was studied in the females of the radiosensitive mutant line rad(2)201/sup G1/ following exposure to different doses of neutrons at various stages of oogenesis. Survival of pupae after irradiation of larvae was also studied. It has been demonstrated that in respect of DLM induction, the differential sensitivity of oocytes to the action of neutrons in the control (nonmutated) line is similar to that of gamma-ray treatment. The sensitivity of oocytes at the 7th and earlier stages is higher in the mutant females than in control line. The analysis of relative biological efficiency (RBE) of the neutrons showed that they are more effective in the control line as compared to the mutant line, in respect of survival as well as frequency of DLM induction. The RBE of neutrons depended on the stage of oocyte development: the highest RBE was observed in immature sex cells of females. The possible mechanisms of higher sensitivity of mutant line rad(2)201/sup G1/ to the action of ionizing radiation are discussed.

  7. The Live Attenuated Actinobacillus pleuropneumoniae Triple-Deletion Mutant ΔapxIC ΔapxIIC ΔapxIV-ORF1 Strain, SLW05, Immunizes Pigs against Lethal Challenge with Haemophilus parasuis

    PubMed Central

    Fu, Shulin; Ou, Jiwen; Zhang, Minmin; Xu, Juan; Liu, Huazhen; Liu, Jinlin; Yuan, Fangyan; Chen, Huanchun

    2013-01-01

    Haemophilus parasuis and Actinobacillus pleuropneumoniae both belong to the family Pasteurellaceae and are major respiratory pathogens that cause large economic losses in the pig industry worldwide. We previously constructed an attenuated A. pleuropneumoniae serovar 1 live vaccine prototype, SLW05 (ΔapxIC ΔapxIIC ΔapxIV-ORF1), which is able to produce nontoxic but immunogenic ApxIA, ApxIIA, and ApxIVA. This triple-deletion mutant strain was shown to elicit protective immunity against virulent A. pleuropneumoniae. In the present study, we investigated whether immunization with SLW05 could also protect against lethal challenge with virulent H. parasuis SH0165 (serovar 5) or MD0322 (serovar 4). The SLW05 strain was found to elicit a strong humoral antibody response in pigs and to confer significant protection against challenge with a lethal dose of H. parasuis SH0165 or MD0322. IgG subtype analysis revealed that SLW05 induces a bias toward a Th1-type immune response and stimulates interleukin 2 (IL-2) and gamma interferon (IFN-γ) production. Moreover, antisera from SLW05-vaccinated pigs efficiently inhibited both A. pleuropneumoniae and H. parasuis growth in a whole-blood assay. This is the first report that a live attenuated A. pleuropneumoniae vaccine with SLW05 can protect against lethal H. parasuis infection, which provides a novel approach for developing an attenuated H. parasuis vaccine. PMID:23220998

  8. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins.

    PubMed

    Silin, Vitalii; Kasianowicz, John J; Michelman-Ribeiro, Ariel; Panchal, Rekha G; Bavari, Sina; Robertson, Joseph W F

    2016-01-01

    Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects. PMID:27348008

  9. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    PubMed Central

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the “pool effect.” After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt PMID:25999923

  10. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  11. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens.

    PubMed

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  12. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase

    NASA Astrophysics Data System (ADS)

    Koo, Han-Mo; Vanbrocklin, Matt; McWilliams, Mary Jane; Leppla, Stephan H.; Duesbery, Nicholas S.; Vande Woude, George F.

    2002-03-01

    Lethal factor, the principal virulence factor of Bacillus anthracis, inhibits mitogen-activated protein kinase (MAPK) signaling by proteolytically cleaving MAPK kinases. Edema factor, another component of anthrax toxin, is an adenylate cyclase, which increases intracellular cAMP. Inhibition of MAPK signaling with either anthrax lethal toxin (LeTx) or small molecule MAPK kinase inhibitors triggers apoptosis in human melanoma cells. Normal melanocytes do not undergo apoptosis in response to MAPK inhibition but arrest in the G1 phase of the cell cycle. Importantly, in vivo treatment of human melanoma xenograft tumors in athymic nude mice with LeTx results in significant or complete tumor regression without apparent side effects, suggesting that inhibiting the MAPK signaling pathway may be a useful strategy for treating melanoma. Additionally, interrupting MAPK signaling with LeTx and elevating cAMP with anthrax edema toxin in both melanoma cells and melanocytes lead to dramatic melanin production, perhaps explaining the formation of blackened eschars in cutaneous anthrax.

  13. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  14. Structures of the DfsB Protein Family Suggest a Cationic, Helical Sibling Lethal Factor Peptide.

    PubMed

    Taylor, Jonathan D; Taylor, Gabrielle; Hare, Stephen A; Matthews, Steve J

    2016-02-13

    Bacteria have developed a variety of mechanisms for surviving harsh environmental conditions, nutrient stress and overpopulation. Paenibacillus dendritiformis produces a lethal protein (Slf) that is able to induce cell death in neighbouring colonies and a phenotypic switch in more distant ones. Slf is derived from the secreted precursor protein, DfsB, after proteolytic processing. Here, we present new crystal structures of DfsB homologues from a variety of bacterial species and a surprising version present in the yeast Saccharomyces cerevisiae. Adopting a four-helix bundle decorated with a further three short helices within intervening loops, DfsB belongs to a non-enzymatic class of the DinB fold. The structure suggests that the biologically active Slf fragment may possess a C-terminal helix rich in basic and aromatic residues that suggest a functional mechanism akin to that for cationic antimicrobial peptides. PMID:26804569

  15. Serum amyloid A protects murine macrophages from lethal toxin-mediated death.

    PubMed

    Rose, Kira; Long, Paul; Shankar, Malini; Ballard, Jimmy D; Webb, Carol F

    2012-01-01

    Lethal toxin, a key virulence factor produced by Bacillus anthracis, induces cell death, in part by disrupting numerous signaling pathways, in mouse macrophages. However, exposure to sublethal doses of lethal toxin allows some cells to survive. Because these pro-survival signaling events occur within a few hours after exposure to sublethal doses, we hypothesized that acute phase proteins might influence macrophage survival. Our data show that serum amyloid A (SAA) is produced in response to lethal toxin treatment. Moreover, pre-treatment of macrophages with exogenous SAA protected macrophages from lethal toxin-mediated death. Exogenous SAA activated the p38 mitogen activated protein kinase (MAP) kinase pathway, while lethal toxin mutants incapable of p38 activation were incapable of causing cell death. Chemical inhibition of the p38 activation pathway abrogated the protective effects of SAA. These data show that SAA affords protection against lethal toxin in mouse macrophages and link this response to the p38 pathway. PMID:22082566

  16. Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and. cap alpha. factor pheromones

    SciTech Connect

    Chan, R.K.; Otte, C.A.

    1982-01-01

    Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by ..cap alpha.. factor pheromone. When sst1 mutants were mixed with normal SST/sup +/ cells, the entire population recovered together from ..cap alpha.. factor arrest, suggesting that SST/sup +/ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a ''barrier'' to the diffusion of ..cap alpha.. factor, were lesions in the same genes. These findings suggest that sst1 mutants are defective in recovery from ..cap alpha.. factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST/sup +/ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to ..cap alpha.. factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of ..cap alpha.. factor for a much longer time than SST/sup +/ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of ..cap alpha.. factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective (''sterile'').

  17. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer

    PubMed Central

    Valley, Christopher C.; Arndt-Jovin, Donna J.; Karedla, Narain; Steinkamp, Mara P.; Chizhik, Alexey I.; Hlavacek, William S.; Wilson, Bridget S.; Lidke, Keith A.; Lidke, Diane S.

    2015-01-01

    Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization. PMID:26337388

  18. Characterization of factor IIIGLc in catabolite repression-resistant (crr) mutants of Salmonella typhimurium.

    PubMed Central

    Scholte, B J; Schuitema, A R; Postma, P W

    1982-01-01

    crr mutants of Salmonella typhimurium are thought to be defective in the regulation of adenylate cyclase and a number of transport systems by the phosphoenolpyruvate-dependent sugar phosphotransferase system, crr mutants are also defective in the enzymatic activity of factor IIIGlc (IIIGlc), a protein component of the phosphotransferase system involved in glucose transport. Therefore, it has been proposed that IIIGlc is the primary effector of phosphotransferase system-mediated regulation of cell metabolism. We characterized crr mutants with respect to the presence and function of IIIGlc by using an immunochemical approach. All of the crr mutants tested had low (0 to 30%) levels of IIIGlc compared with wild-type cells, as determined by rocket immunoelectrophoresis. The IIIGlc isolated from one crr mutant was investigated in more detail and showed abnormal aggregation behavior, which indicated a structural change in the protein. These results supported the hypothesis that a crr mutation directly affects IIIGlc, probably by altering the structural gene of IIIGlc. Several crr strains which appeared to be devoid of IIIGlc in immunoprecipitation assays were still capable of in vitro phosphorylation and transport of methyl alpha-glucoside. This phosphorylation activity was sensitive to specific anti-IIIGlc serum. Moreover, the membranes of crr mutants, as well as those of wild-type cells, contained a protein that reacted strongly with our anti-IIIGlc serum. We propose that S. typhimurium contains a membrane-bound form of IIIGlc which may be involved in phosphotransferase system activity. Images PMID:7035434

  19. An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor.

    PubMed

    Baillie, Les W; Huwar, Theresa B; Moore, Stephen; Mellado-Sanchez, Gabriela; Rodriguez, Liliana; Neeson, Brendan N; Flick-Smith, Helen C; Jenner, Dominic C; Atkins, Helen S; Ingram, Rebecca J; Altmann, Danny M; Nataro, James P; Pasetti, Marcela F

    2010-09-24

    Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone. PMID:20691267

  20. Sex-lethal interacts with splicing factors in vitro and in vivo.

    PubMed Central

    Deshpande, G; Samuels, M E; Schedl, P D

    1996-01-01

    The Drosophila sex determination gene Sex-lethal controls its own expression and the expression of downstream target genes such as transformer by regulating RNA splicing. Genetic and molecular studies have established that Sxl requires the product of another gene, snf, to autoregulate the splicing of its own transcripts. snf has recently been shown to encode a Drosophila U1 and U2 small nuclear ribonucleoprotein particle protein. In the work reported here, we demonstrate that the Sxl and Snf proteins can interact directly in vitro and that these two proteins are part of an RNase-sensitive complex in vivo which can be immunoprecipitated with the Sxl antibody. Unlike bulk Snf protein, which sediments slowly in sucrose gradients, the Snf protein associated with Sxl is in a large, rapidly sedimenting complex. Detailed characterization of the Sxl-Snf complexes from cross-linked extracts indicates that these complexes contain additional small nuclear ribonucleoprotein particle proteins and the U1 and U2 small nuclear RNAs. Finally, consistent with the RNase sensitivity of the Sxl-Snf complexes, Sxl transcripts can also be immunoprecipitated by Sxl antibodies. On the basis of the physical interactions between Sxl and Snf, we present a model for Sxl splicing regulation. This model helps explain how the Sxl protein is able to promote the sex-specific splicing of Sxl transcripts, utilizing target sequences that are distant from the regulated splice sites. PMID:8756662

  1. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation.

    PubMed Central

    Gishizky, M L; Cortez, D; Pendergast, A M

    1995-01-01

    Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479904

  2. Prediction of protein-peptide interactions: application of the XPairIt API to anthrax lethal factor and substrates

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret M.; Sellers, Michael S.

    2013-05-01

    As software and methodology develop, key aspects of molecular interactions such as detailed energetics and flexibility are continuously better represented in docking simulations. In the latest iteration of the XPairIt API and Docking Protocol, we perform a blind dock of a peptide into the cleavage site of the Anthrax lethal factor (LF) metalloprotein. Molecular structures are prepared from RCSB:1JKY and we demonstrate a reasonably accurate docked peptide through analysis of protein motion and, using NCI Plot, visualize and characterize the forces leading to binding. We compare our docked structure to the 1JKY crystal structure and the more recent 1PWV structure, and discuss both captured and overlooked interactions. Our results offer a more detailed look at secondary contact and show that both van der Waals and electrostatic interactions from peptide residues further from the enzyme's catalytic site are significant.

  3. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant.

    PubMed

    Kamisugi, Yasuko; Mitsuya, Shiro; El-Shami, Mahmoud; Knight, Celia D; Cuming, Andrew C; Baker, Alison

    2016-01-01

    Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division. PMID:26542980

  4. Saccharomyces cerevisiae a-Factor Mutants Reveal Residues Critical for Processing, Activity, and Export

    PubMed Central

    Huyer, Gregory; Kistler, Amy; Nouvet, Franklin J.; George, Carolyn M.; Boyle, Meredith L.; Michaelis, Susan

    2006-01-01

    The Saccharomyces cerevisiae mating pheromone a-factor provides a paradigm for understanding the biogenesis of prenylated fungal pheromones. The biogenesis of a-factor involves multiple steps: (i) C-terminal CAAX modification (where C is cysteine, A is aliphatic, and X is any residue) which includes prenylation, proteolysis, and carboxymethylation (by Ram1p/Ram2p, Ste24p or Rce1p, and Ste14p, respectively); (ii) N-terminal processing, involving two sequential proteolytic cleavages (by Ste24p and Axl1p); and (iii) nonclassical export (by Ste6p). Once exported, mature a-factor interacts with the Ste3p receptor on MATα cells to stimulate mating. The a-factor biogenesis machinery is well defined, as is the CAAX motif that directs C-terminal modification; however, very little is known about the sequence determinants within a-factor required for N-terminal processing, activity, and export. Here we generated a large collection of a-factor mutants and identified residues critical for the N-terminal processing steps mediated by Ste24p and Axl1p. We also identified mutants that fail to support mating but do not affect biogenesis or export, suggesting a defective interaction with the Ste3p receptor. Mutants significantly impaired in export were also found, providing evidence that the Ste6p transporter recognizes sequence determinants as well as CAAX modifications. We also performed a phenotypic analysis of the entire set of isogenic a-factor biogenesis machinery mutants, which revealed information about the dependency of biogenesis steps upon one another, and demonstrated that export by Ste6p requires the completion of all processing events. Overall, this comprehensive analysis will provide a useful framework for the study of other fungal pheromones, as well as prenylated metazoan proteins involved in development and aging. PMID:16963638

  5. Synthetic Lethality Screen Identifies RPS6KA2 as Modifier of Epidermal Growth Factor Receptor Activity in Pancreatic Cancer12

    PubMed Central

    Milosevic, Nada; Kühnemuth, Benjamin; Mühlberg, Leonie; Ripka, Stefanie; Griesmann, Heidi; Lölkes, Carolin; Buchholz, Malte; Aust, Daniela; Pilarsky, Christian; Krug, Sebastian; Gress, Thomas; Michl, Patrick

    2013-01-01

    Pancreatic cancer is characterized by a high degree of resistance to chemotherapy. Epidermal growth factor receptor (EGFR) inhibition using the small-molecule inhibitor erlotinib was shown to provide a small survival benefit in a subgroup of patients. To identify kinases whose inhibition acts synergistically with erlotinib, we employed a kinome-wide small-interfering RNA (siRNA)-based loss-of-function screen in the presence of erlotinib. Of 779 tested kinases, we identified several targets whose inhibition acted synergistically lethal with EGFR inhibition by erlotinib, among them the S6 kinase ribosomal protein S6 kinase 2 (RPS6KA2)/ribosomal S6 kinase 3. Activated RPS6KA2 was expressed in approximately 40% of 123 human pancreatic cancer tissues. RPS6KA2 was shown to act downstream of EGFR/RAS/mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling and was activated by EGF independently of the presence of KRAS mutations. Knockdown of RPS6KA2 by siRNA led to increased apoptosis only in the presence of erlotinib, whereas RPS6KA2 activation or overexpression rescued from erlotinib- and gemcitabine-induced apoptosis. This effect was at least in part mediated by downstream activation of ribosomal protein S6. Genetic as well as pharmacological inhibition of RPS6KA2 by the inhibitor BI-D1870 acted synergistically with erlotinib. By applying this synergistic lethality screen using a kinome-wide RNA interference-library approach, we identified RPS6KA2 as potential drug target whose inhibition synergistically enhanced the effect of erlotinib on tumor cell survival. This kinase therefore represents a promising drug candidate suitable for the development of novel inhibitors for pancreatic cancer therapy. PMID:24403857

  6. Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110

    PubMed Central

    Trede, Nikolaus S.; Medenbach, Jan; Damianov, Andrey; Hung, Lee-Hsueh; Weber, Gerhard J.; Paw, Barry H.; Zhou, Yi; Hersey, Candace; Zapata, Agustin; Keefe, Matthew; Barut, Bruce A.; Stuart, Andrew B.; Katz, Tammisty; Amemiya, Chris T.; Zon, Leonard I.; Bindereif, Albrecht

    2007-01-01

    The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease. PMID:17416673

  7. Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case Study.

    PubMed

    Heald, Robert; Bowman, Krista K; Bryan, Marian C; Burdick, Daniel; Chan, Bryan; Chan, Emily; Chen, Yuan; Clausen, Saundra; Dominguez-Fernandez, Belen; Eigenbrot, Charles; Elliott, Richard; Hanan, Emily J; Jackson, Philip; Knight, Jamie; La, Hank; Lainchbury, Michael; Malek, Shiva; Mann, Sam; Merchant, Mark; Mortara, Kyle; Purkey, Hans; Schaefer, Gabriele; Schmidt, Stephen; Seward, Eileen; Sideris, Steve; Shao, Lily; Wang, Shumei; Yeap, Kuen; Yen, Ivana; Yu, Christine; Heffron, Timothy P

    2015-11-25

    Because of their increased activity against activating mutants, first-generation epidermal growth factor receptor (EGFR) kinase inhibitors have had remarkable success in treating non-small-cell lung cancer (NSCLC) patients, but acquired resistance, through a secondary mutation of the gatekeeper residue, means that clinical responses only last for 8-14 months. Addressing this unmet medical need requires agents that can target both of the most common double mutants: T790M/L858R (TMLR) and T790M/del(746-750) (TMdel). Herein we describe how a noncovalent double mutant selective lead compound was optimized using a strategy focused on the structure-guided increase in potency without added lipophilicity or reduction of three-dimensional character. Following successive rounds of design and synthesis it was discovered that cis-fluoro substitution on 4-hydroxy- and 4-methoxypiperidinyl groups provided synergistic, substantial, and specific potency gain through direct interaction with the enzyme and/or effects on the proximal ligand oxygen atom. Further development of the fluorohydroxypiperidine series resulted in the identification of a pair of diastereomers that showed 50-fold enzyme and cell based selectivity for T790M mutants over wild-type EGFR (wtEGFR) in vitro and pathway knock-down in an in vivo xenograft model. PMID:26455919

  8. Differential Effects of Myopathy-Associated Caveolin-3 Mutants on Growth Factor Signaling

    PubMed Central

    Brauers, Eva; Dreier, Agnes; Roos, Andreas; Wormland, Berthold; Weis, Joachim; Krüttgen, Alexander

    2010-01-01

    Caveolin-3 is an important scaffold protein of cholesterol-rich caveolae. Mutations of caveolin-3 cause hereditary myopathies that comprise remarkably different pathologies. Growth factor signaling plays an important role in muscle physiology; it is influenced by caveolins and cholesterol-rich rafts and might thus be affected by caveolin-3 dysfunction. Prompted by the observation of a marked chronic peripheral neuropathy in a patient suffering from rippling muscle disease due to the R26Q caveolin-3 mutation and because TrkA is expressed by neuronal cells and skeletal muscle fibers, we performed a detailed comparative study on the effect of pathogenic caveolin-3 mutants on the signaling and trafficking of the TrkA nerve growth factor receptor and, for comparison, of the epidermal growth factor receptor. We found that the R26Q mutant slightly and the P28L strongly reduced nerve growth factor signaling in TrkA-transfected cells. Surface biotinylation experiments revealed that the R26Q caveolin-3 mutation markedly reduced the internalization of TrkA, whereas the P28L did not. Moreover, P28L expression led to increased, whereas R26Q expression decreased, epidermal growth factor signaling. Taken together, we found differential effects of the R26Q and P28L caveolin-3 mutants on growth factor signaling. Our findings are of clinical interest because they might help explain the remarkable differences in the degree of muscle lesions caused by caveolin-3 mutations and also the co-occurrence of peripheral neuropathy in the R26Q caveolinopathy case presented. PMID:20472890

  9. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  10. Development of a Cell-Based Fluorescence Resonance Energy Transfer Reporter for Bacillus anthracis Lethal Factor Protease

    SciTech Connect

    Kimura, R H; Steenblock, E R; Camarero, J A

    2007-03-22

    We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased 5 times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.

  11. Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation.

    PubMed

    Alisaraie, Laleh; Rouiller, Isabelle

    2016-01-01

    During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation. PMID:26659402

  12. A multifactorial analysis of factors related to lethality after treatment of perforated gastroduodenal ulcer. 1935-1985.

    PubMed Central

    Svanes, C; Salvesen, H; Espehaug, B; Søreide, O; Svanes, K

    1989-01-01

    One thousand one hundred and twenty-eight patients treated for perforated gastroduodenal ulcer during the years 1935-1985 were studied at the Haukeland University Hospital. The majority of patients (97.7%) were treated surgically. The data was analyzed by contingency tables and chi square testing, and a stepwise logistic regression analysis was performed in order to reveal interactions between variables and to elucidate time trends in lethality rates. The total postperforation lethality was 7.4%, the postsurgical death rate was 6.6%, and the death rate among conservatively treated patients was 42.3%. Lethality was significantly influenced by year of hospital admission and increased markedly with the age of the patients. For all age groups, the lethality decreased markedly with time. Treatment delay was associated with a moderate but significant increase in lethality. In patients with gastric ulcer the lethality was 3.6 times higher than in those with duodenal ulcer. The death rate was similar in the duodenal and pyloric ulcer groups. Death rate decreased with time in both stomach ulcer, duodenal, and pyloric ulcer patients. There was no sex difference and no difference between patients treated with simple suture or gastric resection. PMID:2930287

  13. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    PubMed

    Thullier, Philippe; Avril, Arnaud; Mathieu, Jacques; Behrens, Christian K; Pellequer, Jean-Luc; Pelat, Thibaut

    2013-01-01

    The lethal toxin (LT) of Bacillus anthracis, composed of the protective antigen (PA) and the lethal factor (LF), plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF) to form the edema toxin (ET), which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236), of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260) was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest. PMID:23741517

  14. Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress.

    PubMed

    Ouyang, Weiming; Torigoe, Chikako; Fang, Hui; Xie, Tao; Frucht, David M

    2014-02-14

    Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis. PMID:24366872

  15. Staphylococcus aureus Formyl-Methionyl Transferase Mutants Demonstrate Reduced Virulence Factor Production and Pathogenicity

    PubMed Central

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; DeMarsh, Peter; Zalacain, Magdalena

    2013-01-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  16. Staphylococcus aureus formyl-methionyl transferase mutants demonstrate reduced virulence factor production and pathogenicity.

    PubMed

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; Demarsh, Peter; Aubart, Kelly; Zalacain, Magdalena

    2013-07-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  17. Loss of Mig6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma

    PubMed Central

    Maity, Tapan K.; Venugopalan, Abhilash; Linnoila, Ilona; Cultraro, Constance M.; Giannakou, Andreas; Nemati, Roxanne; Zhang, Xu; Webster, Joshua D.; Ritt, Daniel; Ghosal, Sarani; Hoschuetzky, Heinz; Simpson, R. Mark; Biswas, Romi; Politi, Katerina; Morrison, Deborah K.; Varmus, Harold E.; Guha, Udayan

    2015-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here we demonstrate that Mig6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for Mig6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. PMID:25735773

  18. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  19. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability.

    PubMed

    Fritz, Elsa; Izaurieta, Pamela; Weiss, Alexandra; Mir, Franco R; Rojas, Patricio; Gonzalez, David; Rojas, Fabiola; Brown, Robert H; Madrid, Rodolfo; van Zundert, Brigitte

    2013-06-01

    Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1(G93A)) increases persistent sodium inward currents (PC(Na)), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Na(v)) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1(G93A). These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1(G93A) on motoneurons is increased excitability, an observation with direct implications for therapy of ALS. PMID:23486205

  20. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability

    PubMed Central

    Fritz, Elsa; Izaurieta, Pamela; Weiss, Alexandra; Mir, Franco R.; Rojas, Patricio; Gonzalez, David; Rojas, Fabiola; Brown, Robert H.; Madrid, Rodolfo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1G93A) increases persistent sodium inward currents (PCNa), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Nav) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1G93A. These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1G93A on motoneurons is increased excitability, an observation with direct implications for therapy of ALS. PMID:23486205

  1. RAI1 Transcription Factor Activity Is Impaired in Mutants Associated with Smith-Magenis Syndrome

    PubMed Central

    Carmona-Mora, Paulina; Canales, Cesar P.; Cao, Lei; Perez, Irene C.; Srivastava, Anand K.; Young, Juan I.; Walz, Katherina

    2012-01-01

    Smith-Magenis Syndrome (SMS) is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1), located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the resulting phenotype. We compared the clinical phenotype of SMS patients carrying a mutation in RAI1 coding region either in the N-terminal or the C-terminal half of the protein and no significant differences were found. In order to study the molecular mechanism related to these two groups of RAI1 mutations first we analyzed those mutations that result in the truncated protein corresponding to the N-terminal half of RAI1 finding that they have cytoplasmic localization (in contrast to full length RAI1) and no ability to activate the transcription through an endogenous target: the BDNF enhancer. Similar results were found in lymphoblastoid cells derived from a SMS patient carrying RAI1 c.3103insC, where both mutant and wild type products of RAI1 were detected. The wild type form of RAI1 was found in the chromatin bound and nuclear matrix subcellular fractions while the mutant product was mainly cytoplasmic. In addition, missense mutations at the C-terminal half of RAI1 presented a correct nuclear localization but no activation of the endogenous target. Our results showed for the first time a correlation between RAI1 mutations and abnormal protein function plus they suggest that a reduction of total RAI1 transcription factor activity is at the heart of the SMS clinical presentation. PMID:23028815

  2. Hypopigmentation and Maternal-Zygotic Embryonic Lethality Caused by a Hypomorphic Mbtps1 Mutation in Mice

    PubMed Central

    Rutschmann, Sophie; Crozat, Karine; Li, Xiaohong; Du, Xin; Hanselman, Jeffrey C.; Shigeoka, Alana A.; Brandl, Katharina; Popkin, Daniel L.; McKay, Dianne B.; Xia, Yu; Moresco, Eva Marie Y.; Beutler, Bruce

    2012-01-01

    The site 1 protease, encoded by Mbtps1, mediates the initial cleavage of site 2 protease substrates, including sterol regulatory element binding proteins and CREB/ATF transcription factors. We demonstrate that a hypomorphic mutation of Mbtps1 called woodrat (wrt) caused hypocholesterolemia, as well as progressive hypopigmentation of the coat, that appears to be mechanistically unrelated. Hypopigmentation was rescued by transgenic expression of wild-type Mbtps1, and reciprocal grafting studies showed that normal pigmentation depended upon both cell-intrinsic or paracrine factors, as well as factors that act systemically, both of which are lacking in wrt homozygotes. Mbtps1 exhibited a maternal-zygotic effect characterized by fully penetrant embryonic lethality of maternal-zygotic wrt mutant offspring and partial embryonic lethality (~40%) of zygotic wrt mutant offspring. Mbtps1 is one of two maternal-zygotic effect genes identified in mammals to date. It functions nonredundantly in pigmentation and embryogenesis. PMID:22540041

  3. Hypopigmentation and maternal-zygotic embryonic lethality caused by a hypomorphic mbtps1 mutation in mice.

    PubMed

    Rutschmann, Sophie; Crozat, Karine; Li, Xiaohong; Du, Xin; Hanselman, Jeffrey C; Shigeoka, Alana A; Brandl, Katharina; Popkin, Daniel L; McKay, Dianne B; Xia, Yu; Moresco, Eva Marie Y; Beutler, Bruce

    2012-04-01

    The site 1 protease, encoded by Mbtps1, mediates the initial cleavage of site 2 protease substrates, including sterol regulatory element binding proteins and CREB/ATF transcription factors. We demonstrate that a hypomorphic mutation of Mbtps1 called woodrat (wrt) caused hypocholesterolemia, as well as progressive hypopigmentation of the coat, that appears to be mechanistically unrelated. Hypopigmentation was rescued by transgenic expression of wild-type Mbtps1, and reciprocal grafting studies showed that normal pigmentation depended upon both cell-intrinsic or paracrine factors, as well as factors that act systemically, both of which are lacking in wrt homozygotes. Mbtps1 exhibited a maternal-zygotic effect characterized by fully penetrant embryonic lethality of maternal-zygotic wrt mutant offspring and partial embryonic lethality (~40%) of zygotic wrt mutant offspring. Mbtps1 is one of two maternal-zygotic effect genes identified in mammals to date. It functions nonredundantly in pigmentation and embryogenesis. PMID:22540041

  4. Development of Synthetic Lethality Anticancer Therapeutics

    PubMed Central

    2015-01-01

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy. PMID:24893124

  5. Investigation of a panel of monoclonal antibodies and polyclonal sera against anthrax toxins resulted in identification of an anti-lethal factor antibody with disease-enhancing characteristics.

    PubMed

    Kulshreshtha, Parul; Tiwari, Ashutosh; Priyanka; Joon, Shikha; Sinha, Subrata; Bhatnagar, Rakesh

    2015-12-01

    Hybridomas were created using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor). Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immnized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies secreted by all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H10 and H8) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). Single chain variable fragment (LETscFv) was derived from H10 hybridoma. H11 was found to have disease-enhancing property. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature. This in vitro abrogation of disease-enhancement provides the proof of concept that in polyclonal sera the disease enhancing character of a fraction of antibodies is overshadowed by the protective nature of the rest of the antibodies generated on active immunization. PMID:26364143

  6. ATP Depletion Via Mitochondrial F1F0 Complex by Lethal Factor is an Early Event in B. Anthracis-Induced Sudden Cell Death.

    PubMed

    Woodberry, Mitchell W; Aguilera-Aguirre, Leopoldo; Bacsi, Attila; Chopra, Ashok K; Kurosky, Alexander; Peterson, Johnny W; Boldogh, Istvan

    2009-01-01

    Bacillus anthracis' primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF), lethal factor (LF) and protective antigen (PA). In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin-dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein kinase kinases. Lethal toxin (LT: PA plus LF)-induced death of macrophages is primarily attributed to expression of the sensitive Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell death and its prevention increases survival of toxin-sensitive cells. PMID:26124678

  7. Factors influencing maternal behavior in the hubb/hubb mutant mouse.

    PubMed

    Alston-Mills, B; Parker, A C; Eisen, E J; Wilson, R; Fletcher, S

    We examined the maternal behavior of hubb/hubb mutant mice and normal control (+/hubb) siblings. From previous observations we noted that mutants groom their pups less, suckle less than normal, and often cannibalize the young. To date, these observations had not been quantified. Although prolactin (PRL) is linked to maternal behavior, it was difficult to measure because of the hyperirratibility of the mutant mice. Consequently, dopamine (DA) and its metabolite, dihydroxyphenylacetic acid (DOPAC), were measured in the median eminence in brains of both normal and mutant mice. Tyrosine hydroxylase, the rate-determining step in dopamine synthesis, was localized in the brain by immunohistochemistry. Five mutant and nine normal dams were observed for pup retrieval and crouching. Mean time for pup retrieval was slower (p < 0.06) for mutants (28.09 s) than for normal dams (18.49 s). Crouching was the same for both strains. Mutant pups were cold to the touch, and not well groomed. Brains from both strains were examined at Day 11 and Day 18 of gestation and Day 2 and Day 11 of lactation. Qualitatively, tyrosine hydroxylase localization in the arcuate nucleus and median eminence was the same in both strains for the gestation samples. The decrease in staining observed from gestation to lactation in the normal mice was increased in the mutants. Dopamine was similar in both strains at all stages, but DOPAC was significantly higher at early lactation in the mutants. We do not assume an absolute inverse relationship between dopaminergic activities and prolactin, but it is likely that the increase in DOPAC in the mutant reflects a decrease in prolactin, which could contribute to the diminished maternal care in the mutants. PMID:10627055

  8. FRET studies with Factor X mutants provide insight into the topography of the membrane-bound Factor X/Xa

    PubMed Central

    Qureshi, Shabir H.; Yang, Likui; Yegneswaran, Subramanian; Rezaie, Alireza R.

    2007-01-01

    FRET (fluorescence resonance energy transfer) studies have shown that the vitamin K-dependent coagulation proteases bind to membrane surfaces perpendicularly, positioning their active sites above the membrane surfaces. To investigate whether EGF (epidermal growth factor) domains of these proteases play a spacer function in this model of the membrane interaction, we used FRET to measure the distance between the donor fluorescein dye in the active sites of Fl–FPR (fluorescein–D-Phe-Pro-Arg-chloromethane)-inhibited fXa (activated Factor Xa) and its N-terminal EGF deletion mutant (fXa-desEGF1), and the acceptor OR (octadecylrhodamine) dye incorporated into phospholipid vesicles composed of 80% phosphatidylcholine and 20% phosphatidylserine. The average distance of closest approach (L) between fluorescein in the active site and OR at the vesicle surface was determined to be 56±1 Å (1 Å=0.1 nm) and 63±1 Å for fXa-desEGF1 compared with 72±2 Å and 75±1 Å for fXa, in the absence and presence of fVa (activated Factor V) respectively, assuming κ2=2/3. In comparison, an L value of 95±6 Å was obtained for a S195C mutant of fXa in the absence of fVa in which fluorescein was attached directly to Cys195 of fXa. These results suggest that (i) EGF1 plays a spacer function in holding the active site of fXa above the membrane surface, (ii) the average distance between fluorescein attached to Fl–FPR in the active site of fXa and OR at the vesicle surface may not reflect the actual distance of the active-site residue relative to the membrane surface, and (iii) fVa alters the orientation and/or the height of residue 195 above the membrane surface. PMID:17635109

  9. GRP78(BiP) facilitates the cytosolic delivery of anthrax lethal factor (LF) in vivo and functions as an unfoldase in vitro

    PubMed Central

    Tamayo, Alfred G.; Slater, Louise; Taylor-Parker, Julian; Bharti, Ajit; Harrison, Robert; Hung, Deborah T.; Murphy, John R.

    2011-01-01

    Summary Anthrax toxin is an A/B bacterial protein toxin which is composed of the enzymatically active Lethal Factor (LF) and/or Oedema Factor (EF) bound to Protective Antigen 63 (PA63) which functions as both the receptor binding and transmembrane domains. Once the toxin binds to its cell surface receptors it is internalized into the cell and traffics through Rab5- and Rab7-associated endosomal vesicles. Following acidification of the vesicle lumen, PA63 undergoes a dynamic change forming a beta-barrel that inserts into and forms a pore through the endosomal membrane. It is widely recognized that LF, and the related fusion protein LFnDTA, must be completely denatured in order to transit through the PA63 formed pore and enter the eukaryotic cell cytosol. We demonstrate by protease protection assays that the molecular chaperone GRP78 mediates the unfolding of LFnDTA and LF at neutral pH and thereby converts these proteins from a trypsin resistant to sensitive conformation. We have used immuno-electron microscopy and gold-labeled antibodies to demonstrate that both GRP78 and GRP94 chaperones are present in the lumen of endosomal vesicles. Finally, we have used siRNA to demonstrate that knock down of GRP78 results in the emergence of resistance to anthrax lethal toxin and edema toxin action. PMID:21797942

  10. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: Factors contributing to increased activity retention

    PubMed Central

    Augustyniak, Wojciech; Brzezinska, Agnieszka A; Pijning, Tjaard; Wienk, Hans; Boelens, Rolf; Dijkstra, Bauke W; Reetz, Manfred T

    2012-01-01

    Previously, Lipase A from Bacillus subtilis was subjected to in vitro directed evolution using iterative saturation mutagenesis, with randomization sites chosen on the basis of the highest B-factors available from the crystal structure of the wild-type (WT) enzyme. This provided mutants that, unlike WT enzyme, retained a large part of their activity after heating above 65°C and cooling down. Here, we subjected the three best mutants along with the WT enzyme to biophysical and biochemical characterization. Combining thermal inactivation profiles, circular dichroism, X-ray structure analyses and NMR experiments revealed that mutations of surface amino acid residues counteract the tendency of Lipase A to undergo precipitation under thermal stress. Reduced precipitation of the unfolding intermediates rather than increased conformational stability of the evolved mutants seems to be responsible for the activity retention. PMID:22267088

  11. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants.

    PubMed

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-01-01

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control. PMID:27183270

  12. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants

    PubMed Central

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-01-01

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control. DOI: http://dx.doi.org/10.7554/eLife.14712.001 PMID:27183270

  13. Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis.

    PubMed

    Ortega-Prieto, Ana M; Sheldon, Julie; Grande-Pérez, Ana; Tejero, Héctor; Gregori, Josep; Quer, Josep; Esteban, Juan I; Domingo, Esteban; Perales, Celia

    2013-01-01

    Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV. PMID:23976977

  14. Adverse drug interactions as a high-risk factor for lethal post-transplant complications in Chinese population.

    PubMed

    Yang, Ting; Wu, Xue Mei; Qiu, Hong Qiang; Fu, Dan Hui; Hu, Jian Da; Li, Jian; Zheng, Xiao Yun; Luo, Xiao Feng; Yuan, Xiao Hong; Chen, Ru Ling; Chen, Zhi Zhe

    2013-01-01

    Metabolism of triazole antifungal agents is highly competitive to conventional post-transplant immunosuppressants like cyclosporine A (CsA) via the cytochrome P450-dependent pathway. We present the first report on lethal complications that may arise due to this type of drug interaction. A retrospective survey identified 10 of 104 cases (9.62%) that suffered life-threatening complications associated with the interaction between CsA and itraconazole or voriconazole following allogeneic hematopoietic stem cell transplantation (allo-HSCT) at our center. According to the close drug monitoring, all 10 patients experienced supratherapeutic levels of CsA even with a preemptive CsA dosage reduction and prompt dose adjustment. Six patients developed grade I to III acute graft-versus-host disease (aGVHD) and eventually died from either idiopathic pneumonia syndrome or diffuse alveolar hemorrhage; another four patients died from CSA-associated neurological complications. Impaired hepatic and renal function was noted in only one of these 10 cases. The high frequency as well as the unpredictability of severe complications lead us to suggest that triazole should always be replaced by another antifungal medication (e.g., amphotericin B or Echincandins) while patients receive CsA after HSCT, especially in the Chinese population. PMID:23294039

  15. Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942.

    PubMed

    Benson, Phoebe J; Purcell-Meyerink, Diane; Hocart, Charles H; Truong, Thy T; James, Gabriel O; Rourke, Loraine; Djordjevic, Michael A; Blackburn, Susan I; Price, G D

    2016-01-01

    Interest in the production of carbon commodities from photosynthetically fixed CO2 has focused attention on cyanobacteria as a target for metabolic engineering and pathway investigation. We investigated the redirection of carbon flux in the model cyanobacterial species, Synechococcus elongatus PCC 7942, under nitrogen deprivation, for optimized production of the industrially desirable compound, pyruvate. Under nitrogen limited conditions, excess carbon is naturally stored as the multi-branched polysaccharide, glycogen, but a block in glycogen synthesis, via knockout mutation in the gene encoding ADP-glucose pyrophosphorylase (glgC), results in the accumulation of the organic acids, pyruvate and 2-oxoglutarate, as overflow excretions into the extracellular media. The ΔglgC strain, under 48 h of N-deprivation was shown to excrete pyruvate for the first time in this strain. Additionally, by increasing culture pH, to pH 10, it was possible to substantially elevate excretion of pyruvate, suggesting the involvement of an unknown substrate/proton symporter for export. The ΔglgC mutant was also engineered to express foreign transporters for glucose and sucrose, and then grown photomixotrophically with exogenous organic carbon supply, as added 5 mM glucose or sucrose during N- deprivation. Under these conditions we observed a fourfold increase in extracellular pyruvate excretion when glucose was added, and a smaller increase with added sucrose. Although the magnitude of pyruvate excretion did not correlate with the capacity of the ΔglgC strain for bicarbonate-dependent photosynthetic O2 evolution, or with light intensity, there was, however, a positive correlation observed between the density of the starter culture prior to N-deprivation and the final extracellular pyruvate concentration. The factors that contribute to enhancement of pyruvate excretion are discussed, as well as consideration of whether the source of carbon for pyruvate excretion might be derived from

  16. Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942

    PubMed Central

    Benson, Phoebe J.; Purcell-Meyerink, Diane; Hocart, Charles H.; Truong, Thy T.; James, Gabriel O.; Rourke, Loraine; Djordjevic, Michael A.; Blackburn, Susan I.; Price, G. D.

    2016-01-01

    Interest in the production of carbon commodities from photosynthetically fixed CO2 has focused attention on cyanobacteria as a target for metabolic engineering and pathway investigation. We investigated the redirection of carbon flux in the model cyanobacterial species, Synechococcus elongatus PCC 7942, under nitrogen deprivation, for optimized production of the industrially desirable compound, pyruvate. Under nitrogen limited conditions, excess carbon is naturally stored as the multi-branched polysaccharide, glycogen, but a block in glycogen synthesis, via knockout mutation in the gene encoding ADP-glucose pyrophosphorylase (glgC), results in the accumulation of the organic acids, pyruvate and 2-oxoglutarate, as overflow excretions into the extracellular media. The ΔglgC strain, under 48 h of N-deprivation was shown to excrete pyruvate for the first time in this strain. Additionally, by increasing culture pH, to pH 10, it was possible to substantially elevate excretion of pyruvate, suggesting the involvement of an unknown substrate/proton symporter for export. The ΔglgC mutant was also engineered to express foreign transporters for glucose and sucrose, and then grown photomixotrophically with exogenous organic carbon supply, as added 5 mM glucose or sucrose during N- deprivation. Under these conditions we observed a fourfold increase in extracellular pyruvate excretion when glucose was added, and a smaller increase with added sucrose. Although the magnitude of pyruvate excretion did not correlate with the capacity of the ΔglgC strain for bicarbonate-dependent photosynthetic O2 evolution, or with light intensity, there was, however, a positive correlation observed between the density of the starter culture prior to N-deprivation and the final extracellular pyruvate concentration. The factors that contribute to enhancement of pyruvate excretion are discussed, as well as consideration of whether the source of carbon for pyruvate excretion might be derived from

  17. Lon Mutant of Brucella abortus Induces Tumor Necrosis Factor-Alpha in Murine J774.A1 Macrophage

    PubMed Central

    Park, Sungdo; Choi, Young-Sill; Park, Sang-Hee; Kim, Young-Rok; Chu, Hyuk; Hwang, Kyu-Jam; Park, Mi-Yeoun

    2013-01-01

    Objectives The objective of this study was to isolate a Brucella lon mutant and to analyze the cytokine response of B. lon mutant during macrophage infection. Methods A wild-type Brucella abortus strain was mutagenized by Tn5 transposition. From the mouse macrophage J774.A1 cells, total RNA was isolated at 0 hours, 6 hours, 12 hours, and 24 hours after infection with Brucella. Using mouse cytokine microarrays, we measured transcriptional levels of the cytokine response, and validated our results with a reverse transcriptase-polymerase chain reaction (RT-PCR) assay to confirm the induction of cytokine messenger RNA (mRNA). Results In host J774.A1 macrophages, mRNA levels of T helper 1 (Th1)-type cytokines, including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-2 (IL-2), and IL-3, were significantly higher in the lon mutant compared to wild-type Brucella and the negative control. TNF-α levels in cell culture media were induced as high as 2 μg/mL after infection with the lon mutant, a greater than sixfold change. Conclusion In order to understand the role of the lon protein in virulence, we identified and characterized a novel B. lon mutant. We compared the immune response it generates to the wild-type Brucella response in a mouse macrophage cell line. We demonstrated that the B. lon mutants induce TNF-α expression from the host J774.A1 macrophage. PMID:24524018

  18. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1.

    PubMed

    Oike, Takahiro; Ogiwara, Hideaki; Tominaga, Yuichi; Ito, Kentaro; Ando, Osamu; Tsuta, Koji; Mizukami, Tatsuji; Shimada, Yoko; Isomura, Hisanori; Komachi, Mayumi; Furuta, Koh; Watanabe, Shun-Ichi; Nakano, Takashi; Yokota, Jun; Kohno, Takashi

    2013-09-01

    The occurrence of inactivating mutations in SWI/SNF chromatin-remodeling genes in common cancers has attracted a great deal of interest. However, mechanistic strategies to target tumor cells carrying such mutations are yet to be developed. This study proposes a synthetic-lethality therapy for treating cancers deficient in the SWI/SNF catalytic (ATPase) subunit, BRG1/SMARCA4. The strategy relies upon inhibition of BRM/SMARCA2, another catalytic SWI/SNF subunit with a BRG1-related activity. Immunohistochemical analysis of a cohort of non-small-cell lung carcinomas (NSCLC) indicated that 15.5% (16 of 103) of the cohort, corresponding to preferentially undifferentiated tumors, was deficient in BRG1 expression. All BRG1-deficient cases were negative for alterations in known therapeutic target genes, for example, EGFR and DDR2 gene mutations, ALK gene fusions, or FGFR1 gene amplifications. RNA interference (RNAi)-mediated silencing of BRM suppressed the growth of BRG1-deficient cancer cells relative to BRG1-proficient cancer cells, inducing senescence via activation of p21/CDKN1A. This growth suppression was reversed by transduction of wild-type but not ATPase-deficient BRG1. In support of these in vitro results, a conditional RNAi study conducted in vivo revealed that BRM depletion suppressed the growth of BRG1-deficient tumor xenografts. Our results offer a rationale to develop BRM-ATPase inhibitors as a strategy to treat BRG1/SMARCA4-deficient cancers, including NSCLCs that lack mutations in presently known therapeutic target genes. PMID:23872584

  19. Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4+ T Cell Immunity

    PubMed Central

    Ascough, Stephanie; Ingram, Rebecca J.; Chu, Karen K.; Reynolds, Catherine J.; Musson, Julie A.; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J.; Gallagher, Theresa B.; Dyson, Hugh; Williamson, E. Diane; Robinson, John H.; Maillere, Bernard; Boyton, Rosemary J.; Altmann, Daniel M.

    2014-01-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified. PMID:24788397

  20. The zebrafish early arrest mutants.

    PubMed

    Kane, D A; Maischein, H M; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kelsh, R N; Mullins, M C; Odenthal, J; Warga, R M; Nüsslein-Volhard, C

    1996-12-01

    This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes. PMID:9007229

  1. Synthesis, purification, and characterization of an Arg sub 152 yields Glu site-directed mutant of recombinant human blood clotting factor VII

    SciTech Connect

    Wildgoose, P.; Kisiel, W. ); Berkner, K.L. )

    1990-04-03

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg{sub 152}-Ile{sub 153}. Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg{sub 152} {yields} Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M{sup r}{approx}40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX.

  2. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region

    SciTech Connect

    Kane, W.H.; Devore-Carter, D.; Ortel, T.L. )

    1990-07-24

    Human coagulation factor V is a protein cofactor that is an essential component of the prothrombinase complex. A full-length factor V cDNA has been subcloned into the mammalian expression vector pDX and used to transfect COS cells. Approximately 95 {plus minus} 4% of the recombinant human factor V (rHFV) synthesized in COS cells is secreted into the culture medium. Factor V activity determined by fibrometer assay increased approximately 5-fold from 0.027 {plus minus} 0.012 to 0.124 {plus minus} 0.044 unit/mL following activation by the factor V activating enzyme from Russell's viper venom (RVV-V). A chromogenic assay specific for factor Va indicated that recombinant factor V had 3.8 {plus minus} 1.3% of the activity of the activated protein. The estimated specific activity of the recombinant factor Va was approximately 1,800 {plus minus} 500 units/mg, which is similar to the specific activity of purified plasma factor Va of 1,700-2,000 units/mg. Immunoprecipitation of ({sup 35}S)methionine-labeled rHFV revealed a single high molecular mass component. Treatment of rHFV with thrombin or RVV-V resulted in the formation of proteolytic products that were similar to those seen with plasma factor V. The authors have also expressed a mutant, rHFV-des-B{sub 811-1441}, that lacks a large portion of the highly glycosylated connecting region that is present in factor V. This mutant constitutively expressed 38 {plus minus} 7% of the activity of the RVV-V-activated protein. These results suggest that one of the functions of the large connecting region in factor V is to inhibit constitutive procoagulant activity.

  3. Nonenzymatic anticoagulant activity of the mutant serine protease Ser360Ala-activated protein C mediated by factor Va.

    PubMed Central

    Gale, A. J.; Sun, X.; Heeb, M. J.; Griffin, J. H.

    1997-01-01

    The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506. PMID:9007985

  4. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb.

    PubMed

    Pengelly, Ana Raquel; Copur, Ömer; Jäckle, Herbert; Herzig, Alf; Müller, Jürg

    2013-02-01

    Although many metazoan enzymes that add or remove specific modifications on histone proteins are essential transcriptional regulators, the functional significance of posttranslational modifications on histone proteins is not well understood. Here, we show in Drosophila that a point mutation in lysine 27 of histone H3 (H3-K27) fails to repress transcription of genes that are normally repressed by Polycomb repressive complex 2 (PRC2), the methyltransferase that modifies H3-K27. Moreover, differentiated H3-K27 mutant cells show homeotic transformations like those seen in PRC2 mutant cells. Taken together, these analyses demonstrate that H3-K27 is the crucial physiological substrate that PRC2 modifies for Polycomb repression. PMID:23393264

  5. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1.

    PubMed

    Ding, Ying; Adachi, Hiroaki; Katsuno, Masahisa; Sahashi, Kentaro; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki; Sobue, Gen

    2016-07-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract in ataxin-1 (ATXN1). The pathological hallmarks of SCA1 are the loss of cerebellar Purkinje cells and neurons in the brainstem and the presence of nuclear aggregates containing the polyQ-expanded ATXN1 protein. Heat shock protein 90 (Hsp90) inhibitors have been shown to reduce polyQ-induced toxicity. This study was designed to examine the therapeutic effects of BIIB021, a purine-scaffold Hsp90 inhibitor, on the protein homeostasis of polyQ-expanded mutant ATXN1 in a cell culture model of SCA1. Our results demonstrated that BIIB021 activated heat shock factor 1 (HSF1) and suppressed the abnormal accumulation of ATXN1 and its toxicity. The pharmacological degradation of mutant ATXN1 via activated HSF1 was dependent on both the proteasome and autophagy systems. These findings indicate that HSF1 is a key molecule in the regulation of the protein homeostasis of the polyQ-expanded mutant ATXN1 and that Hsp90 has potential as a novel therapeutic target in patients with SCA1. PMID:27058144

  6. Novel hydrazone moiety-bearing aminopyrimidines as selective inhibitors of epidermal growth factor receptor T790M mutant.

    PubMed

    Qin, Mingze; Wang, Tingting; Xu, Boxuan; Ma, Zonghui; Jiang, Nan; Xie, Hongbo; Gong, Ping; Zhao, Yanfang

    2015-11-01

    The epidermal growth factor receptor (EGFR) T790M mutant is found in approximately 50% of clinically acquired resistance to gefitinib among patients with non-small cell lung cancer (NSCLC). Here, a series of novel aminopyrimidines bearing a hydrazone moiety were identified as potent and selective EGFR inhibitors. Compounds 14a, 15g, and 15i potently inhibited all EGFR mutants including EGFR T790M/L858R, EGFR T790M/delE746_A750, and EGFR T790M while they showed weak effects on the wild type (WT) EGFR. In addition, these compounds effectively suppressed proliferation of gefitinib-resistant H1975 (EGFR T790M/L858R) cells but were less potent against A549 (WT EGFR and k-Ras mutation) and HT-29 (non-special gene type) cells, showing a high safety index. Therefore, 14a, 15g, and 15i might be promising candidates to overcome drug resistance mediated by the EGFR T790M mutant. PMID:26451770

  7. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model.

    PubMed

    Yue, Yingying; Li, Peng; Song, Nannan; Li, Bingqing; Li, Zhihui; Guo, Yuqi; Zhang, Weidong; Wei, Ming Q; Gai, Zhongtao; Meng, Hong; Wang, Jiwen; Qin, Lizeng

    2016-05-01

    Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post‑inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection. PMID:27035332

  8. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model

    PubMed Central

    YUE, YINGYING; LI, PENG; SONG, NANNAN; LI, BINGQING; LI, ZHIHUI; GUO, YUQI; ZHANG, WEIDONG; WEI, MING Q.; GAI, ZHONGTAO; MENG, HONG; WANG, JIWEN; QIN, LIZENG

    2016-01-01

    Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post-inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection. PMID:27035332

  9. Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia123

    PubMed Central

    Kinsella, Sinéad

    2016-01-01

    Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 G93A expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia. PMID:27257617

  10. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. PMID:27131901

  11. Cloning, expression and purification of binding domains of lethal factor and protective antigen of Bacillus anthracis in Escherichia coli and evaluation of their related murine antibody.

    PubMed

    Rezaee, Mehdi; Honari, Hossein; Kooshk, Mohammad Reza Ashrafi

    2014-01-01

    Anthrax is common disease between human and animals caused by Bacillus anthracis. The cell binding domain of protective antigen (PAD4) and the binding domain of lethal factor (LFD1) have high immunogenicity potential and always were considered as a vaccine candidate against anthrax. The aims of this study are cloning and expressing of PAD4 and LFD1 in Escherichia coli, purification of the recombinant proteins and determination of their immunogenicity through evaluating of the relative produced polyclonal antibodies in mice. PAD4 and LFD1 genes were cloned in pET28a(+) vector and expressed in E. coli Bl21(DE3)PlysS. Expression and purification of the two recombinant proteins were confirmed by SDS-PAGE and Western blotting techniques. The PAD4 and LFD1 were purified using Ni(+)-NTA affinity chromatography (95-98 %), yielding 37.5 and 45 mg/l of culture, respectively. The antigens were injected three times into mice and production of relative antibodies was evaluated by ELISA test. The results showed that both PAD4 and LFD1 are immunogenic, but LFD1 has higher potential to stimulate Murine immune system. With regard to the high level of LFD1 and PAD4 expression and also significant increment in produced polyclonal antibodies, these recombinant proteins can be considered as a recombinant vaccine candidate against anthrax. PMID:24430302

  12. Complementation of the embryo-lethal T-DNA insertion mutant of AUXIN-BINDING-PROTEIN 1 (ABP1) with abp1 point mutated versions reveals crosstalk of ABP1 and phytochromes

    PubMed Central

    Effendi, Yunus; Ferro, Noel; Labusch, Corinna; Geisler, Markus; Scherer, Günther F. E.

    2015-01-01

    The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII–FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin- or light-induced expression of marker genes, we showed that auxin-induced expression was delayed already after 10min, and light-induced expression within 60min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10–20min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways. PMID:25392478

  13. A Neutralizing Monoclonal IgG1 Antibody of Platelet-Activating Factor Acetylhydrolase SsE Protects Mice against Lethal Subcutaneous Group A Streptococcus Infection

    PubMed Central

    Liu, Mengyao; Feng, Wenchao; Zhu, Hui

    2015-01-01

    Group A Streptococcus (GAS) can cause life-threatening invasive infections, including necrotizing fasciitis. There are no effective treatments for severe invasive GAS infections. The platelet-activating factor (PAF) acetylhydrolase SsE produced by GAS is required for invasive GAS to evade innate immune responses and to invade soft tissues. This study determined whether the enzymatic activity of SsE is critical for its function in GAS skin invasion and inhibition of neutrophil recruitment and whether SsE is a viable target for immunotherapy for severe invasive GAS infections. An isogenic derivative of M1T1 strain MGAS5005 producing SsE with an S178A substitution (SsES178A), an enzymatically inactive SsE mutant protein, was generated. This strain induced higher levels of neutrophil infiltration and caused smaller lesions than MGAS5005 in subcutaneous infections of mice. This phenotype is similar to that of MGAS5005 sse deletion mutants, indicating that the enzymatic activity of SsE is critical for its function. An anti-SsE IgG1 monoclonal antibody (MAb), 2B11, neutralized the PAF acetylhydrolase activity of SsE. Passive immunization with 2B11 increased neutrophil infiltration, reduced skin invasion, and protected mice against MGAS5005 infection. However, 2B11 did not protect mice when it was administered after MGAS5005 inoculation. MGAS5005 induced vascular effusion at infection sites at early hours after GAS inoculation, suggesting that 2B11 did not always have access to infection sites. Thus, the enzymatic activity of SsE mediates its function, and SsE has the potential to be included in a vaccine but is not a therapeutic target. An effective MAb-based immunotherapy for severe invasive GAS infections may need to target virulence factors that are critical for systemic survival of GAS. PMID:25916987

  14. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.

    PubMed Central

    Zhou, Y N; Kusukawa, N; Erickson, J W; Gross, C A; Yura, T

    1988-01-01

    The product of the Escherichia coli rpoH (htpR) gene, sigma 32, is required for heat-inducible transcription of the heat shock genes. Previous studies on the role of sigma 32 in growth at low temperature and in gene expression involved the use of nonsense and missense rpoH mutations and have led to ambiguous or conflicting results. To clarify the role of sigma 32 in cell physiology, we have constructed loss-of-function insertion and deletion mutations in rpoH. Strains lacking sigma 32 are extremely temperature sensitive and grow only at temperatures less than or equal to 20 degrees C. There is no transcription from the heat shock promoters preceding the htpG gene or the groESL and dnaKJ operons; however, several heat shock proteins are produced in the mutants. GroEL protein is present in the rpoH null mutants, but its synthesis is not inducible by a shift to high temperature. The low-level synthesis of GroEL results from transcription initiation at a minor sigma 70-controlled promoter for the groE operon. DnaK protein synthesis cannot be detected at low temperature, but can be detected after a shift to 42 degrees C. The mechanism of this heat-inducible synthesis is not known. We conclude that sigma 32 is required for cell growth at temperatures above 20 degrees C and is required for transcription from the heat shock promoters. Several heat shock proteins are synthesized in the absence of sigma 32, indicating that there are additional mechanisms controlling the synthesis of some heat shock proteins. Images PMID:2900239

  15. Mutant forms of tumour necrosis factor receptor I that occur in TNF-receptor-associated periodic syndrome retain signalling functions but show abnormal behaviour

    PubMed Central

    Todd, Ian; Radford, Paul M; Draper-Morgan, Kelly-Ann; McIntosh, Richard; Bainbridge, Susan; Dickinson, Peter; Jamhawi, Lama; Sansaridis, Marios; Huggins, Mary L; Tighe, Patrick J; Powell, Richard J

    2004-01-01

    Tumour necrosis factor (TNF)-receptor-associated periodic syndrome (TRAPS) is a hereditary autoinflammatory disorder involving autosomal-dominant missense mutations in TNF receptor superfamily 1A (TNFRSF1A) ectodomains. To elucidate the molecular effects of TRAPS-related mutations, we transfected HEK-293 cells to produce lines stably expressing high levels of either wild-type (WT) or single mutant recombinant forms of TNFRSF1A. Mutants with single amino acid substitutions in the first cysteine-rich domain (CRD1) were produced both as full-length receptor proteins and as truncated forms lacking the cytoplasmic signalling domain (Δsig). High-level expression of either WT or mutant full-length TNFRSF1A spontaneously induced apoptosis and interleukin-8 production, indicating that the mutations in CRD1 did not abrogate signalling. Consistent with this, WT and mutant full-length TNFRSF1A formed cytoplasmic aggregates that co-localized with ubiquitin and chaperones, and with the signal transducer TRADD, but not with the inhibitor, silencer of death domain (SODD). Furthermore, as expected, WT and mutant Δsig forms of TNFRSF1A did not induce apoptosis or interleukin-8 production. However, whereas the WT full-length TNFRSF1A was expressed both in the cytoplasm and on the cell surface, the mutant receptors showed strong cytoplasmic expression but reduced cell-surface expression. The WT and mutant Δsig forms of TNFRSF1A were all expressed at the cell surface, but a proportion of the mutant receptors were also retained in the cytoplasm and co-localized with BiP. Furthermore, the mutant forms of surface-expressed Δsig TNFRSF1A were defective in binding TNF-α. We conclude that TRAPS-related CRD1 mutants of TNFRSF1A possess signalling properties associated with the cytoplasmic death domain, but other behavioural features of the mutant receptors are abnormal, including intracellular trafficking and TNF binding. PMID:15312137

  16. Amphitrite ornata dehaloperoxidase (DHP): investigations of structural factors that influence the mechanism of halophenol dehalogenation using "peroxidase-like" myoglobin mutants and "myoglobin-like" DHP mutants.

    PubMed

    Du, Jing; Huang, Xiao; Sun, Shengfang; Wang, Chunxue; Lebioda, Lukasz; Dawson, John H

    2011-09-27

    Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O(2) transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity ∼10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of "peroxidase-like" Mb mutants and "Mb-like" DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned ∼0.3 and ∼0.8 Å, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the "DHP-like" position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual-function enzyme DHP. PMID

  17. Amphitrite ornata Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using ;Peroxidase-like; Myoglobin Mutants and ;Myoglobin-like; DHP Mutants

    SciTech Connect

    Du, Jing; Huang, Xiao; Sun, Shengfang; Wang, Chunxue; Lebioda, Lukasz; Dawson, John H.

    2012-05-14

    Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O{sub 2} transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity {approx}10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of 'peroxidase-like' Mb mutants and 'Mb-like' DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned {approx}0.3 and {approx}0.8 {angstrom}, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the 'DHP-like' position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual

  18. Genome-Wide Screen for Oxalate-Sensitive Mutants of Saccharomyces cerevisiae▿ †

    PubMed Central

    Cheng, V.; Stotz, H. U.; Hippchen, K.; Bakalinsky, A. T.

    2007-01-01

    Oxalic acid is an important virulence factor produced by phytopathogenic filamentous fungi. In order to discover yeast genes whose orthologs in the pathogen may confer self-tolerance and whose plant orthologs may protect the host, a Saccharomyces cerevisiae deletion library consisting of 4,827 haploid mutants harboring deletions in nonessential genes was screened for growth inhibition and survival in a rich medium containing 30 mM oxalic acid at pH 3. A total of 31 mutants were identified that had significantly lower cell yields in oxalate medium than in an oxalate-free medium. About 35% of these mutants had not previously been detected in published screens for sensitivity to sorbic or citric acid. Mutants impaired in endosomal transport, the rgp1Δ, ric1Δ, snf7Δ, vps16Δ, vps20Δ, and vps51Δ mutants, were significantly overrepresented relative to their frequency among all verified yeast open reading frames. Oxalate exposure to a subset of five mutants, the drs2Δ, vps16Δ, vps51Δ, ric1Δ, and rib4Δ mutants, was lethal. With the exception of the rib4Δ mutant, all of these mutants are impaired in vesicle-mediated transport. Indirect evidence is provided suggesting that the sensitivity of the rib4Δ mutant, a riboflavin auxotroph, is due to oxalate-mediated interference with riboflavin uptake by the putative monocarboxylate transporter Mch5. PMID:17644632

  19. Differential recognition of the polypyrimidine-tract by the general splicing factor U2AF65 and the splicing repressor sex-lethal.

    PubMed Central

    Singh, R; Banerjee, H; Green, M R

    2000-01-01

    The polypyrimidine-tract (Py-tract) adjacent to 3' splice sites is an essential splicing signal and is recognized by several proteins, including the general splicing factor U2AF65 and the highly specific splicing repressor Sex-lethal (SXL). They both contain ribonucleoprotein-consensus RNA-binding motifs. However, U2AF65 recognizes a wide variety of Py-tracts, whereas SXL recognizes specific Py-tracts such as the nonsex-specific Py-tract of the transformer pre-mRNA. It is not understood how these seemingly similar proteins differentially recognize the Py-tract. To define these interactions, we used chemical interference and protection assays, saturation mutagenesis, and RNAs containing modified nucleotides. We find that these proteins recognize distinct features of the RNA. First, although uracils within the Py-tract are protected from chemical modification by both of these proteins, modification of any one of seven uracils by hydrazine, or any of eight phosphates by ethylnitrosourea strongly interfered with the binding of SXL only. Second, the 2' hydroxyl groups or backbone conformation appeared important for the binding of SXL, but not U2AF65. Third, although any of the bases (cytosine >> adenine > guanine) could substitute for uracils for U2AF65 binding, only guanine partially substituted for certain uracils for SXL binding. The different dependence on individual contacts and nucleotide preference may provide a basis for the different RNA-binding specificities and thus functions of U2AF65 and SXL in 3' splice site choice. PMID:10864047

  20. Development of a comprehensive, validated pharmacophore hypothesis for anthrax toxin lethal factor (LF) inhibitors using genetic algorithms, Pareto scoring, and structural biology.

    PubMed

    Chiu, Ting-Lan; Amin, Elizabeth A

    2012-07-23

    Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis. The anthrax toxin lethal factor (LF), an 89-kDa zinc hydrolase secreted by the bacilli, is the toxin component chiefly responsible for pathogenesis and has been a popular target for rational and structure-based drug design. Although hundreds of small-molecule compounds have been designed to target the LF active site, relatively few reported inhibitors have exhibited activity in cell-based assays, and no LF inhibitor is currently available to treat or prevent anthrax. This study presents a new pharmacophore map assembly, validated by experiment, designed to rapidly identify and prioritize promising LF inhibitor scaffolds from virtual compound libraries. The new hypothesis incorporates structural information from all five available LF enzyme-inhibitor complexes deposited in the Protein Data Bank (PDB) and is the first LF pharmacophore map reported to date that includes features representing interactions involving all three key subsites of the LF catalytic binding region. In a wide-ranging validation study on all 546 compounds for which published LF biological activity data exist, this model displayed strong selectivity toward nanomolar-level LF inhibitors, successfully identifying 72.1% of existing nanomolar-level compounds in an unbiased test set, while rejecting 100% of weakly active (>100 μM) compounds. In addition to its capabilities as a database searching tool, this comprehensive model points to a number of key design principles and previously unidentified ligand-receptor interactions that are likely to influence compound potency. PMID:22697455

  1. Protection from genital herpes disease, seroconversion and latent infection in a non-lethal murine genital infection model by immunization with an HSV-2 replication-defective mutant virus.

    PubMed

    Diaz, Fernando M; Knipe, David M

    2016-01-15

    Viral vaccines have traditionally protected against disease, but for viruses that establish latent infection, it is desirable for the vaccine to reduce infection to reduce latent infection and reactivation. While seroconversion has been used in clinical trials of herpes simplex virus (HSV) vaccines to measure protection from infection, this has not been modeled in animal infection systems. To measure the ability of a genital herpes vaccine candidate to protect against various aspects of infection, we established a non-lethal murine model of genital HSV-2 infection, an ELISA assay to measure antibodies specific for infected cell protein 8 (ICP8), and a very sensitive qPCR assay. Using these assays, we observed that immunization with HSV-2 dl5-29 virus reduced disease, viral shedding, seroconversion, and latent infection by the HSV-2 challenge virus. Therefore, it may be feasible to obtain protection against genital disease, seroconversion and latent infection by immunization, even if sterilizing immunity is not achieved. PMID:26609935

  2. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and. cap alpha. factor pheromones

    SciTech Connect

    Chan, R.K.; Otte, C.A.

    1982-01-01

    Eight independently isolated mutants which are supersensitive (Sst/sup -/) to the G1 arrest induced by the tridecapeptide pheromone ..cap alpha.. factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by ..cap alpha.. factor. These mutants carries lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to ..cap alpha.. factor, but MAT..cap alpha.. sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT..cap alpha.. cells. Even in the absence of added ..cap alpha.. pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology (''shmoo'' shape) that normally develops only after MATa cells are exposed to ..cap alpha.. factor. This ''self-shmooing'' phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT..cap alpha.. diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT..cap alpha.. sst2-1/sst2-1) were still insensitive to ..cap alpha.. factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked nor centromere distal to MAT on the right arm of chromosome III.

  3. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF)

    PubMed Central

    Tan, B S; Tiong, K H; Choo, H L; Fei-Lei Chung, F; Hii, L-W; Tan, S H; Yap, I KS; Pani, S; Khor, N TW; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O

    2015-01-01

    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers. PMID:26181206

  4. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants

    PubMed Central

    2013-01-01

    Background Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. Results Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains

  5. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2.

    PubMed

    Kleinschmidt, Kerstin; Ploeger, Frank; Nickel, Joachim; Glockenmeier, Julia; Kunz, Pierre; Richter, Wiltrud

    2013-08-01

    Non healing bone defects remain a worldwide health problem and still only few osteoinductive growth factors are available for clinical use in bone regeneration. By introducing BMP-2 residues into growth and differentiation factor (GDF)-5 we recently produced a mutant GDF-5 protein BB-1 which enhanced heterotopic bone formation in mice. Designed to combine positive features of GDF-5 and BMP-2, we suspected that this new growth factor variant may improve long bone healing compared to the parent molecules and intended to unravel functional mechanisms behind its action. BB-1 acquired an increased binding affinity to the BMP-IA receptor, mediated enhanced osteogenic induction of human mesenchymal stem cells versus GDF-5 and higher VEGF secretion than BMP-2 in vitro. Rabbit radius defects treated with a BB-1-coated collagen carrier healed earlier and with increased bone volume compared to BMP-2 and GDF-5 according to in vivo micro-CT follow-up. While BMP-2 callus often remained spongy, BB-1 supported earlier corticalis and marrow cavity formation, showing no pseudojoint persistence like with GDF-5. Thus, by combining positive angiogenic and osteogenic features of GDF-5 and BMP-2, only BB-1 restored a natural bone architecture within 12 weeks, rendering this promising growth factor variant especially promising for long bone regeneration. PMID:23680368

  6. Anti-tumor necrosis factor VNAR single domains reduce lethality and regulate underlying inflammatory response in a murine model of endotoxic shock

    PubMed Central

    2013-01-01

    Background In sepsis, tumor necrosis factor (TNF) is the key factor triggering respiratory burst, tissue injury and disseminated coagulation. Anti-TNF strategies based on monoclonal antibodies or F(ab’)2 fragments have been used in sepsis with contradictory results. Immunoglobulin new antigen receptors (IgNAR) are a unique subset of antibodies consisting of five constant (CNAR) and one variable domains (VNAR). VNAR domains are the smallest, naturally occurring, antibody-based immune recognition units, having potential use as therapy. Our aim was to explore the impact of an anti-TNF VNAR on survival in an experimental model of endotoxic shock. Also, mRNA expression and serum protein of several inflammatory molecules were measured. Results Endotoxic shock was induced by lipopolysaccharide (LPS) in male Balb/c mice. Animals were treated with anti-TNF VNAR domains, F(ab’)2 antibody fragments, or saline solution 15 minutes before, 2 h and 24 h after lethal dose100 (LD100) LPS administration. TNF blockade with either VNAR domains or F(ab’)2 fragments were associated with lower mortality (60% and 75%, respectively) compared to LD100. Challenge with LPS induced significant production of serum TNF and interleukins -10 and -6 at 3 h. After that, significant reduction of IL-6 at 24 h (vs 3 h) was shown only in the VNAR group. Nitrites level also increased in response to LPS. In liver, TNF and IL-10 mRNA expression showed a pro-inflammatory imbalance in response to LPS. Blocking TNF was associated with a shift towards an anti-inflammatory status; however, polarization was more pronounced in animals receiving F(ab’)2 fragments than in those with VNAR therapy. With regard to IL-6, gene expression was increased at 3 h in all groups. TNF blockade was associated with rapid and sustained suppression of IL-6 expression, even more evident in the VNAR group. Finally, expression of inducible-nitric oxide synthase (iNOS) increased in response to LPS at 3 h, but this

  7. Lethality of Sortase Depletion in Actinomyces oris Caused by Excessive Membrane Accumulation of a Surface Glycoprotein

    PubMed Central

    Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung

    2014-01-01

    Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351

  8. LETHALITY IN MICE AND RATS EXPOSED TO 2450 MHZ CIRCULARLY POLARIZED MICROWAVES AS A FUNCTION OF EXPOSURE DURATION AND ENVIRONMENTAL FACTORS

    EPA Science Inventory

    Adult male CD-1 mice and CD rats were used to determine LD50/24 hr of lethality from exposure to 2450-MHz circularly-polarized microwaves. Groups of sixteen mice or six rats were exposed in each of 32 combinations of nominal power density (10, 25, 50 or 75 mW/sq. cm.), exposure d...

  9. Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene.

    PubMed

    Qian, H S; Liu, P; Huw, L-Y; Orme, A; Halks-Miller, M; Hill, S M; Jin, F; Kretschmer, P; Blasko, E; Cashion, L; Szymanski, P; Vergona, R; Harkins, R; Yu, J; Sessa, W C; Dole, W P; Rubanyi, G M; Kauser, K

    2006-09-01

    Gene delivery of angiogenic growth factors is a promising approach for the treatment of ischemic cardiovascular diseases. However, success of this new therapeutic principle is hindered by the lack of critical understanding as to how disease pathology affects the efficiency of gene delivery and/or the downstream signaling pathways of angiogenesis. Critical limb ischemia occurs in patients with advanced atherosclerosis often exhibiting deficiency in endothelial nitric oxide production. Similar to these patients, segmental femoral artery resection progresses into severe ischemic necrosis in mice deficient in endothelial nitric oxide synthase (ecNOS-KO) as well as in balb/c mice. We used these models to evaluate the influence of severe ischemia on transfection efficiency and duration of transgene expression in the skeletal muscle following plasmid injection in combination with electroporation. Subsequently, we also explored the potential therapeutic effect of the phosphomimetic mutant of ecNOS gene (NOS1177D) using optimized delivery parameters, and found significant benefit both in ecNOS-KO and balb/c mice. Our results indicate that NOS1177D gene delivery to the ischemic skeletal muscle can be efficient to reverse critical limb ischemia in pathological settings, which are refractory to treatments with a single growth factor, such as vascular endothelial growth factor. PMID:16642030

  10. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants

    PubMed Central

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-01-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  11. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants.

    PubMed

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-07-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  12. Oncogenic activity of BIRC2 and BIRC3 mutants independent of nuclear factor-κB-activating potential.

    PubMed

    Yamato, Azusa; Soda, Manabu; Ueno, Toshihide; Kojima, Shinya; Sonehara, Kyuto; Kawazu, Masahito; Sai, Eirin; Yamashita, Yoshihiro; Nagase, Takahide; Mano, Hiroyuki

    2015-09-01

    BIRC2 and BIRC3 are closely related members of the inhibitor of apoptosis (IAP) family of proteins and play pivotal roles in regulation of nuclear factor-κB (NF-κB) signaling and apoptosis. Copy number loss for and somatic mutation of BIRC2 and BIRC3 have been frequently detected in lymphoid malignancies, with such genetic alterations being thought to contribute to carcinogenesis through activation of the noncanonical NF-κB signaling pathway. Here we show that BIRC2 and BIRC3 mutations are also present in a wide range of epithelial tumors and that most such nonsense or frameshift mutations confer direct transforming potential. This oncogenic function of BIRC2/3 mutants is largely independent of their ability to activate NF-κB signaling. Rather, all of the transforming mutants lack an intact RING finger domain, with loss of ubiquitin ligase activity being essential for transformation irrespective of NF-κB regulation. The serine-threonine kinase NIK was found to be an important, but not exclusive, mediator of BIRC2/3-driven carcinogenesis, although this function was independent of NF-κB activation. Our data thus suggest that, in addition to the BIRC2/3-NIK-NF-κB signaling pathway, BIRC2/3-NIK signaling targets effectors other than NF-κB and thereby contributes directly to carcinogenesis. Identification of these effectors may provide a basis for the development of targeted agents for the treatment of lymphoid malignancies and other cancers with BIRC2/3 alterations. PMID:26094954

  13. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model

    PubMed Central

    Park, Seok Joo; Chung, Yoon Hee; Lee, Jeong Hyun; Dang, Duy-Khanh; Nam, Yunsung; Jeong, Ji Hoon; Kim, Yong Sun; Nabeshima, Toshitaka

    2014-01-01

    Background It has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH)/insulin-like growth factor-1 (IGF-1). Methods In this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice. Results The GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt)/phospho-glycogen synthase kinase3β (p-GSK3β), phospho-extracellular signal-related kinase (p-ERK), and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK), Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist. Conclusion The results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation. PMID:25309793

  14. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation.

    PubMed

    Campos, Juan F; Cara, Beatriz; Pérez-Martín, Fernando; Pineda, Benito; Egea, Isabel; Flores, Francisco B; Fernandez-Garcia, Nieves; Capel, Juan; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael; Bolarin, Maria C

    2016-06-01

    A screening under salt stress conditions of a T-DNA mutant collection of tomato (Solanum lycopersicum L.) led to the identification of the altered response to salt stress 1 (ars1) mutant, which showed a salt-sensitive phenotype. Genetic analysis of the ars1 mutation revealed that a single T-DNA insertion in the ARS1 gene was responsible of the mutant phenotype. ARS1 coded for an R1-MYB type transcription factor and its expression was induced by salinity in leaves. The mutant reduced fruit yield under salt acclimation while in the absence of stress the disruption of ARS1 did not affect this agronomic trait. The stomatal behaviour of ars1 mutant leaves induced higher Na(+) accumulation via the transpiration stream, as the decreases of stomatal conductance and transpiration rate induced by salt stress were markedly lower in the mutant plants. Moreover, the mutation affected stomatal closure in a response mediated by abscisic acid (ABA). The characterization of tomato transgenic lines silencing and overexpressing ARS1 corroborates the role of the gene in regulating the water loss via transpiration under salinity. Together, our results show that ARS1 tomato gene contributes to reduce transpirational water loss under salt stress. Finally, this gene could be interesting for tomato molecular breeding, because its manipulation could lead to improved stress tolerance without yield penalty under optimal culture conditions. PMID:26578112

  15. Targeted inactivation of the mouse locus encoding coagulation factor XIII-A: hemostatic abnormalities in mutant mice and characterization of the coagulation deficit.

    PubMed

    Lauer, Peter; Metzner, Hubert J; Zettlmeissl, Gerd; Li, Meng; Smith, Austin G; Lathe, Richard; Dickneite, Gerhard

    2002-12-01

    Blood coagulation factor XIII (FXIII) promotes cross-linking of fibrin during blood coagulation; impaired clot stabilization in human genetic deficiency is associated with marked pathologies of major clinical impact, including bleeding symptoms and deficient wound healing. To investigate the role of FXIII we employed homologous recombination to generate a targeted deletion of the inferred exon 7 of the FXIII-A gene. FXIII transglutaminase activity in plasma was reduced to about 50% in mice heterozygous for the mutant allele, and was abolished in homozygous null mice. Plasma fibrin gamma-dimerization was also indetectable in the homozygous deficient animals, confirming the absence of activatable FXIII. Homozygous mutant mice were fertile, although reproduction was impaired. Bleeding episodes, hematothorax, hematoperitoneum and subcutaneous hemorrhage in mutant mice were associated with reduced survival. Arrest of tail-tip bleeding in FXIII-A deficient mice was markedly and significantly delayed; replacement of mutant mice with human plasma FXIII (Fibrogammin P) restored bleeding time to within the normal range. Thrombelastography (TEG) experiments demonstrated impaired clot stabilization in FXIII-A mutant mice, replacement with human FXIII led to dose-dependent TEG normalization. The mutant mice thus reiterate some key features of the human genetic disorder: they will be valuable in assessing the role of FXIII in other associated pathologies and the development of new therapies. PMID:12529747

  16. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants.

    PubMed

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-12-10

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links

  17. A rationally designed mutant of plasma platelet-activating factor acetylhydrolase hydrolyzes the organophosphorus nerve agent soman.

    PubMed

    Kirby, Stephen D; Norris, Joseph; Sweeney, Richard; Bahnson, Brian J; Cerasoli, Douglas M

    2015-12-01

    Organophosphorus compounds (OPs) such as sarin and soman are some of the most toxic chemicals synthesized by man. They exert toxic effects by inactivating acetylcholinesterase (AChE) and bind secondary target protein. Organophosphorus compounds are hemi-substrates for enzymes of the serine hydrolase superfamily. Enzymes can be engineered by amino acid substitution into OP-hydrolyzing variants (bioscavengers) and used as therapeutics. Some enzymes associated with lipoproteins, such as human plasma platelet-activating factor acetylhydrolase (pPAF-AH), are also inhibited by OPs; these proteins have largely been ignored for engineering purposes because of complex interfacial kinetics and a lack of structural data. We have expressed active human pPAF-AH in bacteria and previously solved the crystal structure of this enzyme with OP adducts. Using these structures as a guide, we created histidine mutations near the active site of pPAF-AH (F322H, W298H, L153H) in an attempt to generate novel OP-hydrolase activity. Wild-type pPAF-AH, L153H, and F322H have essentially no hydrolytic activity against the nerve agents tested. In contrast, the W298H mutant displayed novel somanase activity with a kcat of 5min(-1) and a KM of 590μM at pH7.5. There was no selective preference for hydrolysis of any of the four soman stereoisomers. PMID:26343853

  18. Crystal Structure of the C-terminal Domain of Splicing Factor Prp8 Carrying Retinitis Pigmentosa Mutants

    SciTech Connect

    Zhang,L.; Shen, J.; Guarnieri, M.; Heroux, A.; Yang, K.; Zhao, R.

    2007-01-01

    Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an / structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn{sup 2+} coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn{sup 2+}-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.

  19. AUXIN RESPONSE FACTOR7 Restores the Expression of Auxin-Responsive Genes in Mutant Arabidopsis Leaf Mesophyll ProtoplastsW⃞

    PubMed Central

    Wang, Shucai; Tiwari, Shiv B.; Hagen, Gretchen; Guilfoyle, Tom J.

    2005-01-01

    AUXIN RESPONSE FACTOR7 (ARF7) is one of five ARF transcriptional activators in Arabidopsis thaliana that is proposed to regulate auxin-responsive expression of genes containing TGTCTC auxin response elements in their promoters. An Arabidopsis mutant (nonphototropic hypocotyl4-1 [nph4-1]) that is a null for ARF7 showed strongly reduced expression of integrated auxin-responsive reporter genes and natural genes that were monitored in Arabidopsis leaf mesophyll protoplasts. Expression of the reporter and natural genes was restored in an auxin-dependent manner when protoplasts were transfected with a 35S:ARF7 effector gene, encoding a full-length ARF7 protein. Transfection of effector genes encoding other ARF activators restored auxin-responsive gene expression to varying degrees, but less than that observed with the ARF7 effector gene. Arabidopsis lines that were null for ARF6, ARF8, or ARF19 were not defective in expression of the reporter and natural auxin response genes assayed in mesophyll protoplasts, suggesting that ARF7 plays a major role in regulating expression of a subset of auxin response genes in leaf mesophyll cells. Auxin-responsive gene expression was induced in wild-type protoplasts and restored in nph4-1 protoplasts only with auxin and not with other hormones, including brassinolide. In the presence of auxin, however, brassinolide modestly enhanced auxin-responsive gene expression. PMID:15923351

  20. Reanalysis of parabiosis of obesity mutants in the age of leptin.

    PubMed

    Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M

    2015-07-21

    In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure. PMID:26150485

  1. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function

    PubMed Central

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A.; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M.; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin

    2012-01-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness. PMID:23027535

  2. Deadly Lessons: Understanding Lethal School Violence.

    ERIC Educational Resources Information Center

    Moore, Mark H., Ed.; Petrie, Carol V., Ed.; Braga, Anthony A., Ed.; McLaughlin, Brenda L., Ed.

    This collection of papers is the outcome of the National Academies' effort to glean information from six different case studies of student-perpetrated school shootings. Part 1, "Case Studies of Lethal School Violence," includes: "The Copycat Factor: Mental Illness, Guns, and the Shooting Incident at Heritage High School, Rockdale County, Georgia"…

  3. The population genetics of synthetic lethals.

    PubMed

    Phillips, P C; Johnson, N A

    1998-09-01

    Synthetic lethals are variants at different loci that have little or no effect on viability singly but cause lethality in combination. The importance of synthetic lethals and, more generally, of synthetic deleterious loci (SDL) has been controversial. Here, we derive the expected frequencies for SDL under a mutation-selection balance for the complete haploid model and selected cases of the diploid model. We have also obtained simple approximations that demonstrate good fit to exact solutions based on numerical iterations. In the haploid case, equilibrium frequencies of carrier haplotypes (individuals with only a single mutation) are comparable to analogous single-locus results, after allowing for the effects of linkage. Frequencies in the diploid case, however, are much higher and more comparable to the square root of the single-locus results. In particular, when selection operates only on the double-mutant homozygote and linkage is not too tight, the expected frequency of the carriers is approximately the quartic root of the ratio between the mutation rate and the selection coefficient of the synthetics. For a reasonably wide set of models, the frequencies of carriers can be on the order of a few percent. The equilibrium frequencies of these deleterious alleles can be relatively high because, with SDL, both dominance and epistasis act to shield carriers from exposure to selection. We also discuss the possible role of SDL in maintaining genetic variation and in hybrid breakdown. PMID:9725860

  4. The anthrax protective antigen (PA63) bound conformation of a peptide inhibitor of the binding of lethal factor to PA63: as determined by trNOESY NMR and molecular modeling.

    PubMed

    Hicks, Rickey P; Bhattacharjee, Apurba K; Koser, Brandon W; Traficante, Daniel D

    2004-10-21

    Anthrax protective antigen (PA) is one of the three proteins produced by the gram positive bacteria Bacillus anthracis collectively known as the "anthrax toxin" (Ascenzi, P.; Visca, P.; Ippolito, G.; Spallarossa, A.; Bolognesi, M.; et al. Anthrax toxin: a tripartite lethal combination. FEBS Lett. 2002, 531, 384-388). The role played by PA in anthrax intoxication is to transport the two enzymes lethal factor (LF) and edema factor (EF) into the cell. Collier and co-workers (Mourez, M.; Kane, R. S.; Mogridge, J.; Metallo, S.; Deschatelets, P.; et al. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 2001, 958). reported the isolation of two peptides via phage display that bind to the PA63 heptamer and inhibit its interaction with LF and EF, and thereby prevent the transport of LF and EF into the cell. One of these peptides, His-Thr-Ser-Thr-Try-Trp-Trp-Leu-Asp-Gly-Ala-Pro (P1), was selected for structural investigation on the basis of its ability to prevent the binding of LF to the PA63 heptamer bundle. Two-dimensional trNOESY experiments coupled with NOE restrained simulated annealing calculations were used to determine the PA63-bound conformation of P1. On binding to PA63, P1 adopts a helical conformation involving residues 3-9 while the C- and N-terminal residues exhibit dynamic fraying. PMID:15481973

  5. High-Throughput Sequencing of Campylobacter jejuni Insertion Mutant Libraries Reveals mapA as a Fitness Factor for Chicken Colonization

    PubMed Central

    Johnson, Jeremiah G.; Livny, Jonathan

    2014-01-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture. PMID:24633877

  6. pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants

    PubMed Central

    Murugan, Elavazhagan; Venkatraman, Anandalakshmi; Lei, Zhou; Mouvet, Victoria; Rui Yi Lim, Rayne; Muruganantham, Nandhakumar; Goh, Eunice; Swee Lim Peh, Gary; Beuerman, Roger W.; Chaurasia, Shyam S.; Rajamani, Lakshminarayanan; Mehta, Jodhbir S.

    2016-01-01

    Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4th_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic and non-amyloidogenic phenotypes, we expressed the 4th_FAS1 domains of TGFβIp carrying the mutations R555W (non-amyloidogenic) and H572R (amyloidogenic) along with the wild-type (WT). R555W was more susceptible to acidic pH compared to H572R and displayed varying chemical stabilities with decreasing pH. Thermal denaturation studies at acidic pH showed that while WT did not undergo any conformational transition, the mutants exhibited a clear pH-dependent irreversible conversion from αβ conformation to β-sheet oligomers. The β-oligomers of both mutants were stable at physiological temperature and pH. Electron microscopy and dynamic light scattering studies showed that β-oligomers of H572R were larger compared to R555W. The β-oligomers of both mutants were cytotoxic to primary human corneal stromal fibroblast (pHCSF) cells. The β-oligomers of both mutants exhibit variations in their morphologies, sizes, thermal and chemical stabilities, aggregation patterns and cytotoxicities. PMID:27030015

  7. Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    PubMed Central

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F.

    2003-01-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-α could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-α shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-α doses in TLR4−/− but not in TLR2−/− mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 μg. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-α, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use. PMID:12874325

  8. Subfunctionalization of Sigma Factors during the Evolution of Land Plants Based on Mutant Analysis of Liverwort (Marchantia polymorpha L.) MpSIG1

    PubMed Central

    Ueda, Minoru; Takami, Tsuneaki; Peng, Lianwei; Ishizaki, Kimitsune; Kohchi, Takayuki; Shikanai, Toshiharu; Nishimura, Yoshiki

    2013-01-01

    Sigma factor is a subunit of plastid-encoded RNA polymerase that regulates the transcription of plastid-encoded genes by recognizing a set of promoters. Sigma factors have increased in copy number and have diversified during the evolution of land plants, but details of this process remain unknown. Liverworts represent the basal group of embryophytes and are expected to retain the ancestral features of land plants. In liverwort (Marchantia polymorpha L.), we isolated and characterized a T-DNA-tagged mutant (Mpsig1) of sigma factor 1 (MpSIG1). The mutant did not show any visible phenotypes, implying that MpSIG1 function is redundant with that of other sigma factors. However, quantitative reverse-transcription polymerase chain reaction and RNA gel blot analysis revealed that genes related to photosynthesis were downregulated, resulting in the minor reduction of some protein complexes. The transcript levels of genes clustered in the petL, psaA, psbB, psbK, and psbE operons of liverwort were lower than those in the wild type, a result similar to that in the SIG1 defective mutant in rice (Oryza sativa). Overexpression analysis revealed primitive functional divergence between the SIG1 and SIG2 proteins in bryophytes, whereas these proteins still retain functional redundancy. We also discovered that the predominant sigma factor for ndhF mRNA expression has been diversified in liverwort, Arabidopsis (Arabidopsis thaliana), and rice. Our study shows the ancestral function of SIG1 and the process of functional partitioning (subfunctionalization) of sigma factors during the evolution of land plants. PMID:24025801

  9. An arf1Delta synthetic lethal screen identifies a new clathrin heavy chain conditional allele that perturbs vacuolar protein transport in Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Graham, T R

    1998-01-01

    ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1Delta allele and defined seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1Delta). Most of the swa mutants exhibit phenotypes comparable to arf1Delta mutants such as temperature-conditional growth, hypersensitivity to fluoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 3' end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a significant defect in transport of carboxypeptidase Y or carboxypeptidase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not significantly affected in the chc1-5 mutant, further implicating clathrin specifically in the Golgi to vacuole transport pathway for carboxypeptidase Y. PMID:9755191

  10. Translation elongation factor 1A mutants with altered actin bundling activity show reduced aminoacyl-tRNA binding and alter initiation via eIF2α phosphorylation.

    PubMed

    Perez, Winder B; Kinzy, Terri Goss

    2014-07-25

    Apart from its canonical function in translation elongation, eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with the actin cytoskeleton. Amino acid substitutions in eEF1A that reduce its ability to bind and bundle actin in vitro cause improper actin organization in vivo and reduce total translation. Initial in vivo analysis indicated the reduced translation was through initiation. The mutant strains exhibit increased levels of phosphorylated initiation factor 2α (eIF2α) dependent on the presence of the general control non-derepressible 2 (Gcn2p) protein kinase. Gcn2p causes downregulation of total protein synthesis at initiation in response to increases in deacylated tRNA levels in the cell. Increased levels of eIF2α phosphorylation are not due to a general reduction in translation elongation as eEF2 and eEF3 mutants do not exhibit this effect. Deletion of GCN2 from the eEF1A actin bundling mutant strains revealed a second defect in translation. The eEF1A actin-bundling proteins exhibit changes in their elongation activity at the level of aminoacyl-tRNA binding in vitro. These findings implicate eEF1A in a feedback mechanism for regulating translation at initiation. PMID:24936063

  11. Lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-01-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage gas gun capable of 7 km/s. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92% of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1 MA to 1.3 MA ramped current waveform will be delivered to the railgun.

  12. The Lethality Test System

    NASA Astrophysics Data System (ADS)

    Parsons, W. M.; Sims, J. R.; Parker, J. V.

    1986-11-01

    The Lethality Test System (LTS) under construction at Los Alamos is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/sec. The launcher is a 25 mm round bore, plasma armature railgun 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/sec. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92 percent of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1-1.3 MA ramped current waveform will be delivered to the railgun.

  13. Isolation of Temperature-Sensitive Mutants of L-Cells*

    PubMed Central

    Thompson, L. H.; Mankovitz, R.; Baker, R. M.; Till, J. E.; Siminovitch, L.; Whitmore, G. F.

    1970-01-01

    Procedures are described for the isolation of conditional lethal mutants of mouse L-60T cells. The mutant lines were temperature sensitive by the following criteria: (a) colony-forming ability, (b) growth in suspension culture, and (c) rate of uptake of tritiated-thymidine. Images PMID:5271170

  14. Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor alpha signaling cascade by transforming mutants of Cbl: implications for Cbl's function and oncogenicity.

    PubMed Central

    Bonita, D P; Miyake, S; Lupher, M L; Langdon, W Y; Band, H

    1997-01-01

    Recent studies have demonstrated that Cbl, the 120-kDa protein product of the c-cbl proto-oncogene, serves as a substrate of a number of receptor-coupled tyrosine kinases and forms complexes with SH3 and SH2 domain-containing proteins, pointing to its role in signal transduction. Based on genetic evidence that the Caenorhabditis elegans Cbl homolog, SLI-1, functions as a negative regulator of the LET-23 receptor tyrosine kinase and our demonstration that Cbl's evolutionarily conserved N-terminal transforming region (Cbl-N; residues 1 to 357) harbors a phosphotyrosine binding (PTB) domain that binds to activated ZAP-70 tyrosine kinase, we examined the possibility that oncogenic Cbl mutants may activate mitogenic signaling by deregulating cellular tyrosine kinase machinery. Here, we show that expression of Cbl-N and two other transforming Cbl mutants (CblY368 delta and Cbl366-382 delta or Cb170Z), but not wild-type Cbl, in NIH 3T3 fibroblasts leads to enhancement of endogenous tyrosine kinase signaling. We identified platelet-derived growth factor receptor alpha (PDGFR alpha) as one target of mutant Cbl-induced deregulation. In mutant Cbl transfectants, PDGFR alpha was hyperphosphorylated and constitutively complexed with a number of SH2 domain-containing proteins. PDGFR alpha hyperphosphorylation and enhanced proliferation of mutant Cbl-transfected NIH 3T3 cells were drastically reduced upon serum starvation, and PDGF-AA substituted for the maintenance of these traits. PDGF-AA stimulation of serum-starved Cbl transfectants induced the in vivo association of transfected Cbl proteins with PDGFR alpha. In vitro, Cbl-N directly bound to PDGFR alpha derived from PDGF-AA-stimulated cells but not to that from unstimulated cells, and this binding was abrogated by a point mutation (G306E) corresponding to a loss-of-function mutation in SLI-1. The Cbl-N/G306E mutant protein, which failed to induce enhanced growth and transformation of NIH 3T3 cells, also failed to induce

  15. Role of macrophage oxidative burst in the action of anthrax lethal toxin.

    PubMed Central

    Hanna, P. C.; Kruskal, B. A.; Ezekowitz, R. A.; Bloom, B. R.; Collier, R. J.

    1994-01-01

    BACKGROUND: Major symptoms and death from systemic Bacillus anthracis infections are mediated by the action of the pathogen's lethal toxin on host macrophages. High levels of the toxin are cytolytic to macrophages, whereas low levels stimulate these cells to produce cytokines (interleukin-1 beta and tumor necrosis factor-alpha), which induce systemic shock and death. MATERIALS AND METHODS: Experiments were performed to assess the possibility that the oxidative burst may be involved in one or both of lethal toxin's effects on macrophages. Toximediated cell lysis, superoxide anion and cytokine production were measured. Effects of antioxidants and macrophage mutations were examined. RESULTS: RAW264.7 murine macrophages treated with high levels of toxin released large amounts of superoxide anion, beginning at about 1 hr, which correlates with the onset of cytolysis. Cytolysis could be blocked with various exogenous antioxidants or with N-acetyl-L-cysteine and methionine, which promote production of the endogenous antioxidant, glutathione. Mutant murine macrophage lines deficient in production of reactive oxygen intermediates (ROIs) were relatively insensitive to the lytic effects of the toxin, whereas a line with increased oxidative burst potential showed elevated sensitivity. Also, cultured blood monocyte-derived macrophages from a patient with Chronic Granulomatous Disease, a disorder in which the phagocyte's oxidative burst is disabled, were totally resistant to toxin, in contrast to control monocytes. CONCLUSIONS: These results imply that the cytolytic effect of the toxin is mediated by ROIs. Additionally, cytokine production and consequent pathologies showed partial dependence on macrophage ROIs. Antioxidants moderately inhibited toxin-induced cytokine production in vitro, and BALB/c mice pretreated with N-acetyl-L-cysteine or mepacrine showed partial protection against lethal toxin. Thus ROIs are involved in both the cytolytic action of anthrax lethal toxin and

  16. Structure-Based Systematic Isolation of Conditional-Lethal Mutations in the Single Yeast Calmodulin Gene

    PubMed Central

    Ohya, Y.; Botstein, D.

    1994-01-01

    Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089

  17. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.

    PubMed

    Wang, Yuanyi; Gao, Zhongwen; Zhang, Yiping; Feng, Shi-Qing; Liu, Yulong; Shields, Lisa B E; Zhao, Ying-Zheng; Zhu, Qingsan; Gozal, David; Shields, Christopher B; Cai, Jun

    2016-07-01

    Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth. PMID:26084439

  18. Increased Expression of Clumping Factor and Fibronectin-Binding Proteins by hemB Mutants of Staphylococcus aureus Expressing Small Colony Variant Phenotypes

    PubMed Central

    Vaudaux, Pierre; Francois, Patrice; Bisognano, Carmelo; Kelley, William L.; Lew, Daniel P.; Schrenzel, Jacques; Proctor, Richard A.; McNamara, Peter J.; Peters, G.; Von Eiff, Christof

    2002-01-01

    Small colony variants (SCVs) of Staphylococcus aureus are slow-growing subpopulations that cause persistent and relapsing infections. The altered phenotype of SCV can arise from defects in menadione or hemin biosynthesis, which disrupt the electron transport chain and decrease ATP concentrations. With SCVs, virulence is altered by a decrease in exotoxin production and susceptibility to various antibiotics, allowing their intracellular survival. The expression of bacterial adhesins by SCVs is poorly documented. We tested fibrinogen- and fibronectin-mediated adhesion of a hemB mutant of S. aureus 8325-4 that is defective for hemin biosynthesis and exhibits a complete SCV phenotype. In this strain, adhesion to fibrinogen and fibronectin was significantly higher than that of its isogenic, normally growing parent and correlated with the increased surface display of these adhesins as assessed by flow cytometry. Real-time quantitative reverse transcription-PCR demonstrated increased expression of clfA and fnb genes by the hemB mutant compared to its isogenic parent. The influence of the hemB mutation on altered adhesin expression was confirmed by showing complete restoration of the wild-type adhesive phenotype in the hemB mutant, either by complementing with intact hemB or by supplementing the growth medium with hemin. Increased surface display of fibrinogen and fibronectin adhesins by the hemB mutation occurred independently from agr, a major regulatory locus of virulence factors in S. aureus. Both agr-positive and agr-lacking hemB mutants were also more efficiently internalized by human embryonic kidney cells than were their isogenic controls, presumably because of increased surface display of their fibronectin adhesins. PMID:12228267

  19. Diminished activity-dependent brain-derived neurotrophic factor expression underlies cortical neuron microcircuit hypoconnectivity resulting from exposure to mutant huntingtin fragments.

    PubMed

    Gambazzi, Luca; Gokce, Ozgun; Seredenina, Tamara; Katsyuba, Elena; Runne, Heike; Markram, Henry; Giugliano, Michele; Luthi-Carter, Ruth

    2010-10-01

    Although previous studies of Huntington's disease (HD) have addressed many potential mechanisms of striatal neuron dysfunction and death, it is also known, based on clinical findings, that cortical function is dramatically disrupted in HD. With respect to disease etiology, however, the specific molecular and neuronal circuit bases for the cortical effects of mutant huntingtin (htt) have remained largely unknown. In the present work, we studied the relationship between the molecular effects of mutant htt fragments in cortical cells and the corresponding behavior of cortical neuron microcircuits by using a novel cellular model of HD. We observed that a transcript-selective diminution in activity-dependent brain-derived neurotrophic factor (BDNF) expression preceded the onset of a synaptic connectivity deficit in ex vivo cortical networks, which manifested as decreased spontaneous collective burst-firing behavior measured by multielectrode array substrates. Decreased BDNF expression was determined to be a significant contributor to network-level dysfunction, as shown by the ability of exogenous BDNF to ameliorate cortical microcircuit burst firing. The molecular determinants of the dysregulation of activity-dependent BDNF expression by mutant htt seem to be distinct from previously elucidated mechanisms, because they do not involve known neuron-restrictive silencer factor/RE1-silencing transcription factor-regulated promoter sequences but instead result from dysregulation of BDNF exon IV and VI transcription. These data elucidate a novel HD-related deficit in BDNF gene regulation as a plausible mechanism of cortical neuron hypoconnectivity and cortical function deficits in HD. Moreover, the novel model paradigm established here is well suited to further mechanistic and drug screening research applications. PMID:20624994

  20. Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development.

    PubMed

    Eisenmann, D M; Kim, S K

    2000-11-01

    The Caenorhabditis elegans vulva develops from the progeny of three vulval precursor cells (VPCs) induced to divide and differentiate by a signal from the somatic gonad. Evolutionarily conserved Ras and Notch extracellular signaling pathways are known to function during this process. To identify novel loci acting in vulval development, we carried out a genetic screen for mutants having a protruding-vulva (Pvl) mutant phenotype. Here we report the initial genetic characterization of several novel loci: bar-1, pvl-4, pvl-5, and pvl-6. In addition, on the basis of their Pvl phenotypes, we show that the previously identified genes lin-26, mom-3/mig-14, egl-18, and sem-4 also function during vulval development. Our characterization indicates that (1) pvl-4 and pvl-5 are required for generation/survival of the VPCs; (2) bar-1, mom-3/mig-14, egl-18, and sem-4 play a role in VPC fate specification; (3) lin-26 is required for proper VPC fate execution; and (4) pvl-6 acts during vulval morphogenesis. In addition, two of these genes, bar-1 and mom-3/mig-14, are known to function in processes regulated by Wnt signaling, suggesting that a Wnt signaling pathway is acting during vulval development. PMID:11063687

  1. ERdj3 is an Endoplasmic Reticulum Degradation Factor for Mutant Glucocerebrosidase Variants Linked to Gaucher’s Disease

    PubMed Central

    Tan, Yun Lei; Genereux, Joseph C.; Pankow, Sandra; Aerts, Johannes M.F.G.; Yates, John R.; Kelly, Jeffery W.

    2014-01-01

    SUMMARY Gaucher’s disease (GD) is caused by mutations that compromise β-glucocerebrosidase (GCase) folding in the endoplasmic reticulum (ER), leading to excessive degradation instead of trafficking, which results in insufficient lysosomal function. We hypothesized that ER GCase interacting proteins play critical roles in making quality control decisions, i.e., facilitating ER-associated degradation (ERAD) instead of folding and trafficking. Utilizing GCase immunoprecipitation followed by mass spectrometry-based proteomics, we identified endogenous HeLa cell GCase protein interactors, including ERdj3, an ER resident Hsp40 not previously established to interact with GCase. Depleting ERdj3 reduced the rate of mutant GCase degradation in patient-derived fibroblasts, while increasing folding, trafficking and function by directing GCase to the pro-folding ER calnexin pathway. Inhibiting ERdj3-mediated mutant GCase degradation while simultaneously enhancing calnexin-associated folding, by way of a diltiazem-mediated increase in ER Ca2+ levels, yields a synergistic rescue of L444P GCase lysosomal function. Our findings suggest a combination therapeutic strategy for ameliorating GD. PMID:25126989

  2. A Sall4 Mutant Mouse Model Useful for Studying the Role of Sall4 in Early Embryonic Development and Organogenesis

    PubMed Central

    Warren, Madhuri; Wang, Wei; Spiden, Sarah; Chen-Murchie, Dongrong; Tannahill, David; Steel, Karen P.; Bradley, Allan

    2008-01-01

    Summary SALL4 is a homologue of the Drosophila homeotic gene spalt, a zinc finger transcription factor, required for inner cell mass proliferation in early embryonic development. It also interacts with other transcription factors to control the development of the anorectal region, kidney, heart, limbs, and brain. Truncating mutations in SALL4 cause Okihiro syndrome, manifest as Duane anomaly, radial ray defects and sensorineural and conductive deafness. We report the characterization of a novel murine Sall4 null allele created by bacterial recombineering in ES cells. Homozygous mutant mice exhibit early embryonic lethality. Heterozygous mutant mice recapitulate phenotypic features of Okihiro syndrome including deafness, lower anogenital tract abnormalities, renal hypoplasia, anencephaly, Hirschprung’s disease, and skeletal defects. This phenotype shows important differences in cardiac and ear manifestations to previously characterized Sall4 mutant alleles and should prove useful for the investigation of the influence of modifier alleles and protein interactions on the transcriptional regulatory function of Sall4. PMID:17216607

  3. Factors That Drive Peptide Assembly from Native to Amyloid Structures: Experimental and Theoretical Analysis of [Leu-5]-Enkephalin Mutants

    PubMed Central

    2015-01-01

    Five different mutants of [Leu-5] Enkephalin YGGFL peptide have been investigated for fibril formation propensities. The early oligomer structures have been probed with a combination of ion-mobility mass spectrometry and computational modeling. The two peptides YVIFL and YVVFL form oligomers and amyloid-like fibrils. YVVFV shows an early stage oligomer distribution similar to those of the previous two, but amyloid-like aggregates are less abundant. Atomic resolution X-ray structures of YVVFV show two different modes of interactions at the dry interface between steric zippers and pairs of antiparallel β-sheets, but both are less favorable than the packing motif found in YVVFL. Both YVVFV and YVVFL can form a Class 6 steric zipper. However, in YVVFV, the strands between mating sheets are parallel to each other and in YVVFL they are antiparallel. The overall data highlight the importance of structurally characterizing high order oligomers within oligomerization pathways in studies of nanostructure assembly. PMID:24915112

  4. Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates

    PubMed Central

    Ostermann, Eleonore; Macquin, Cécile; Krezel, Wojciech; Bahram, Seiamak; Georgel, Philippe

    2015-01-01

    Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis. PMID:25955106

  5. von Willebrand disease type 2A phenotypes IIC, IID and IIE: A day in the life of shear-stressed mutant von Willebrand factor.

    PubMed

    Brehm, M A; Huck, V; Aponte-Santamaría, C; Obser, T; Grässle, S; Oyen, F; Budde, U; Schneppenheim, S; Baldauf, C; Gräter, F; Schneider, S W; Schneppenheim, R

    2014-07-01

    The bleeding disorder von Willebrand disease (VWD) is caused by mutations of von Willebrand factor (VWF), a multimeric glycoprotein essential for platelet-dependent primary haemostasis. VWD type 2A-associated mutations each disrupt VWF biosynthesis and function at different stages, depending on the VWF domain altered by the mutation. These effects cause considerable heterogeneity in phenotypes and symptoms. To characterise the molecular mechanisms underlying the specific VWF deficiencies in VWD 2A/IIC, IID and IIE, we investigated VWF variants with patient-derived mutations either in the VWF pro-peptide or in domains D3 or CK. Additionally to static assays and molecular dynamics (MD) simulations we used microfluidic approaches to perform a detailed investigation of the shear-dependent function of VWD 2A mutants. For each group, we found distinct characteristics in their intracellular localisation visualising specific defects in biosynthesis which are correlated to respective multimer patterns. Using microfluidic assays we further determined shear flow-dependent characteristics in polymer-platelet-aggregate formation, platelet binding and string formation for all mutants. The phenotypes observed under flow conditions were not related to the mutated VWF domain. By MD simulations we further investigated how VWD 2A/IID mutations might alter the ability of VWF to form carboxy-terminal dimers. In conclusion, our study offers a comprehensive picture of shear-dependent and shear-independent dysfunction of VWD type 2A mutants. Furthermore, our microfluidic assay might open new possibilities for diagnosis of new VWD phenotypes and treatment choice for VWD patients with shear-dependent VWF dysfunctions that are currently not detectable by static tests. PMID:24598842

  6. Effect of lethality on the extinction and on the error threshold of quasispecies.

    PubMed

    Tejero, Hector; Marín, Arturo; Montero, Francisco

    2010-02-21

    In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. PMID:19833133

  7. Clostridium sordellii Lethal-Toxin Autoprocessing and Membrane Localization Activities Drive GTPase Glucosylation Profiles in Endothelial Cells

    PubMed Central

    Craven, Ryan

    2015-01-01

    ABSTRACT Clostridium sordellii infections cause gangrene and edema in humans and gastrointestinal infections in livestock. One of the principle virulence factors is TcsL, a large protein toxin which glucosylates host GTPases to cause cytopathic and cytotoxic effects. TcsL has two enzymatic domains, an N-terminal glucosyltransferase domain (GTD) and an autoprocessing domain responsible for release of the GTD within the cell. The GTD can then use its N-terminal membrane localization domain (MLD) for orientation on membranes and modification of GTPases. This study describes the use of conditionally immortalized murine pulmonary microvascular endothelial cells as a model for the study of TcsL functional activities. Point mutations that disrupt the glucosyltransferase, autoprocessing, or membrane localization activities were introduced into a recombinant version of TcsL, and the activities of these mutants were compared to those of wild-type toxin. We observed that all mutants are defective or impaired in cytotoxicity but differ in their modification of Rac1 and Ras. The data suggest a model where differences in GTPase localization dictate cellular responses to intoxication and highlight the importance of autoprocessing in the function of TcsL. IMPORTANCE Clostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification. PMID:27303685

  8. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants

    PubMed Central

    2012-01-01

    Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances. PMID:22839202

  9. Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells.

    PubMed

    Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R

    2010-07-29

    The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685

  10. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure.

    PubMed Central

    Murillas, R; Larcher, F; Conti, C J; Santos, M; Ullrich, A; Jorcano, J L

    1995-01-01

    Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation. Images PMID:7489711

  11. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  12. Definition of lethality thresholds for KE less-lethal projectiles

    NASA Astrophysics Data System (ADS)

    Cuadros, Jaime H.

    1997-01-01

    The interest in the definition and application of the lethality threshold for KE less-lethal projectiles has increased in the last few years, as the demand for proper use of these weapons has increased from the public at large and the law enforcement community. Experiments have been performed and reported utilizing commercially available projectiles in 12 ga., 37 mm against an anthropomorphic dummy and damage criteria developed by the automobile industry. The utility of the method is discussed and future trends are presented.

  13. Expression of the CTCFL Gene during Mouse Embryogenesis Causes Growth Retardation, Postnatal Lethality, and Dysregulation of the Transforming Growth Factor β Pathway

    PubMed Central

    Sati, Leyla; Zeiss, Caroline; Yekkala, Krishna; Demir, Ramazan

    2015-01-01

    CTCFL, a paralog of CTCF, also known as BORIS (brother of regulator of imprinted sites), is a testis-expressed gene whose function is largely unknown. Its product is a cancer testis antigen (CTA), and it is often expressed in tumor cells and also seen in two benign human vascular malformations, juvenile angiofibromas and infantile hemangiomas. To understand the function of Ctcfl, we created tetracycline-inducible Ctcfl transgenic mice. We show that Ctcfl expression during embryogenesis results in growth retardation, eye malformations, multiorgan pathologies, vascular defects, and neonatal death. This phenotype resembles prior mouse models that perturb the transforming growth factor β (TGFB) pathway. Embryonic stem (ES) cells with the Ctcfl transgene reproduce the phenotype in ES cell-tetraploid chimeras. Transcriptome sequencing of the Ctcfl ES cells revealed 14 genes deregulated by Ctcfl expression. Bioinformatic analysis revealed the TGFB pathway as most affected by embryonic Ctcfl expression. Understanding the consequence of Ctcfl expression in nontesticular cells and elucidating downstream targets of Ctcfl could explain the role of its product as a CTA and its involvement in two, if not more, human vascular malformations. PMID:26169830

  14. Structural basis for a lethal mutation in U6 RNA.

    PubMed

    Sashital, Dipali G; Allmann, Anne M; Van Doren, Steven R; Butcher, Samuel E

    2003-02-18

    U6 RNA is essential for nuclear pre-mRNA splicing and has been implicated directly in catalysis of intron removal. The U80G mutation at the essential magnesium binding site of the U6 3' intramolecular stem-loop region (ISL) is lethal in yeast. To further understand the structure and function of the U6 ISL, we have investigated the structural basis for the lethal U80G mutation by NMR and optical spectroscopy. The NMR structure reveals that the U80G mutation causes a structural rearrangement within the ISL resulting in the formation of a new Watson-Crick base pair (C67 x G80), and disrupts a protonated C67 x A79 wobble pair that forms in the wild-type structure. Despite the structural change, the accessibility of the metal binding site is unperturbed, and cadmium titration produces similar phosphorus chemical shift changes for both the U80G mutant and wild-type RNAs. The thermodynamic stability of the U80G mutant is significantly increased (Delta Delta G(fold) = -3.6 +/- 1.9 kcal/mol), consistent with formation of the Watson-Crick pair. Our structural and thermodynamic data, in combination with previous genetic data, suggest that the lethal basis for the U80G mutation is stem-loop hyperstabilization. This hyperstabilization may prevent the U6 ISL melting and rearrangement necessary for association with U4. PMID:12578359

  15. Diffuse Glomerular Nodular Lesions in Diabetic Pigs Carrying a Dominant-Negative Mutant Hepatocyte Nuclear Factor 1-Alpha, an Inheritant Diabetic Gene in Humans

    PubMed Central

    Hara, Satoshi; Umeyama, Kazuhiro; Yokoo, Takashi; Nagashima, Hiroshi; Nagata, Michio

    2014-01-01

    Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha (HNF1α) P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3) gene in humans. In this model, glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that the nodules consisted of various collagen types (I, III, IV, V and VI) with advanced glycation end-product (AGE) and Nε-carboxymethyl-lysine (CML) deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming growth factor-beta (TGF-β) was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous HNF1α and HNF1β, indicating that mutant HNF1α did not directly contribute to glomerular nodular formation in diabetic pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in several respects from that of human glomerular nodular lesions, the somewhat acute and

  16. Toxin-induced resistance in Bacillus anthracis lethal toxin-treated macrophages

    PubMed Central

    Salles, Isabelle I.; Tucker, Amy E.; Voth, Daniel E.; Ballard, Jimmy D.

    2003-01-01

    In the current study, we show that macrophages adaptively resist anthrax lethal toxin (LT) through a toxin-activated process termed toxin-induced resistance (TIR). TIR was triggered by pretreatment of RAW 264.7 or J774A.1 macrophages with a low dose of LT for at least 6 h, which resulted in resistance to high doses of LT for 96 h. Activation of TIR required functional toxin, because LT subunits, mutants, and heat-inactivated toxin were unable to trigger resistance. TIR macrophages were not altered in toxin receptor levels or cell cycle profiles. Treatment of TIR macrophages with high doses of LT resulted in a sustained decline in full-length mitogen-activated protein kinase kinase 2, a known target of lethal factor, and a marked reduction in diphosphorylated extracellular response kinases 1,2 for 24 h. However, despite the sustained loss of full-length mitogen-activated protein kinase kinase 2, by 48 h, TIR macrophages regained diphosphorylated extracellular response kinases 1,2, suggesting an adaptation led to recovery of this signaling pathway. TIR macrophages were also able to maintain normal levels of ubiquitinylated proteins, whereas sensitive cells show a rapid reduction in ubiquitin-modified proteins before cell death, indicating a possible alteration in proteasome activity contributed to resistance. These results provide a paradigm for toxin-cell interactions and suggest macrophages are capable of adapting to and tolerating toxic doses of LT. PMID:14519843

  17. Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning.

    PubMed Central

    Budziszewski, G J; Lewis, S P; Glover, L W; Reineke, J; Jones, G; Ziemnik, L S; Lonowski, J; Nyfeler, B; Aux, G; Zhou, Q; McElver, J; Patton, D A; Martienssen, R; Grossniklaus, U; Ma, H; Law, M; Levin, J Z

    2001-01-01

    We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening approximately 38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype. PMID:11779813

  18. Impaired Eye-Blink Conditioning in waggler, a Mutant Mouse With Cerebellar BDNF Deficiency

    PubMed Central

    Bao, Shaowen; Chen, Lu; Qiao, Xiaoxi; Knusel, Beat; Thompson, Richard F.

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning. PMID:10454360

  19. JAK3 inhibitor VI is a mutant specific inhibitor for epidermal growth factor receptor with the gatekeeper mutation T790M

    PubMed Central

    Nishiya, Naoyuki; Sakamoto, Yasumitsu; Oku, Yusuke; Nonaka, Takamasa; Uehara, Yoshimasa

    2015-01-01

    AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR). METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs. RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid

  20. Systematic annotation and analysis of “virmugens” - virulence factors whose mutants can be used as live attenuated vaccines

    PubMed Central

    Racz, Rebecca; Chung, Monica; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Live attenuated vaccines are usually generated by mutation of genes encoding virulence factors. “Virmugen” is coined here to represent a gene that encodes for a virulent factor of a pathogen and has been proven feasible in animal models to make a live attenuated vaccine by knocking out this gene. Not all virulence factors are virmugens. VirmugenDB is a web-based virmugen database (http://www.violinet.org/virmugendb). Currently, VirmugenDB includes 225 virmugens that have been verified to be valuable for vaccine development against 57 bacterial, viral, and protozoan pathogens. Bioinformatics analysis has revealed significant patterns in virmugens. For example, 10 Gram-negative and one Gram-positive bacterial aroA genes are virmugens. A sequence analysis has revealed at least 50% of identities in the protein sequences of the 10 Gram-negative bacterial aroA virmugens. As a pathogen case study, Brucella virmugens were analyzed. Out of 15 verified Brucella virmugens, six are related to carbohydrate or nucleotide transport and metabolism, and two involving cell membrane biogenesis. In addition, 54 virmugens from 24 viruses and 12 virmugens from 4 parasites are also stored in VirmugenDB. Virmugens tend to involve metabolism of nutrients (e.g., amino acids, carbohydrates, and nucleotides) and cell membrane formation. Host genes whose expressions were regulated by virmugen mutation vaccines or wild type virulent pathogens have also been annotated and systematically compared. The bioinformatics annotation and analysis of virmugens helps elucidate enriched virmugen profiles and the mechanisms of protective immunity, and further supports rational vaccine design. PMID:23219434

  1. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells.

    PubMed Central

    Kabarowski, J H; Allen, P B; Wiedemann, L M

    1994-01-01

    The Philadelphia translocation commonly observed in chronic myeloid leukaemia (CML) and a proportion of cases of acute leukaemia results in the creation of a chimeric fusion protein, BCR-ABL. The fusion protein exhibits an elevated tyrosine kinase activity as compared to normal ABL. Using a temperature sensitive mutant of p210 BCR-ABL (ts-p210) we find that the primary effect of BCR-ABL expression in an IL-3 dependent cell line is to prolong survival following growth factor withdrawal; only a small proportion of cells remain viable and rapidly evolve to complete growth factor independence. During passage in the presence of IL-3 at the temperature permissive for kinase activity, ts-p210 expressing cultures become dominated by completely growth factor independent cells within 10-30 days. There is also a significant difference between BCR-ABL and IL-3 mediated signalling with respect to the MAP kinase pathway; in contrast to IL-3 stimulation or v-ABL expression, BCR-ABL does not signal ERK 2 (MAP 2 kinase) activation, underlining the apparent inability of BCR-ABL to deliver an immediate proliferative signal in Ba/F3 cells. Our data suggest that growth factor independence does not simply reflect the convergence of BCR-ABL and IL-3 mediated signalling pathways and its development, at least in Ba/F3 cells, requires prolonged exposure to BCR-ABL kinase activity. We suggest that the myeloid expansion characteristic of CML may result from the prolongation of survival of myeloid progenitor cells under conditions of limiting growth factor rather than their uncontrolled proliferation. Images PMID:7813429

  2. Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams

    PubMed Central

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha

    2014-01-01

    ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469

  3. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.

    PubMed

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72-1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening. PMID:27104786

  4. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type

    PubMed Central

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72–1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening. PMID:27104786

  5. In vitro secretion deficits are common among human coagulation factor XIII subunit B missense mutants: correlations with patient phenotypes and molecular models.

    PubMed

    Biswas, Arijit; Thomas, Anne; Bevans, Carville G; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2013-11-01

    Coagulation factor XIII (FXIII) proenzyme circulates in plasma as a heterotetramer composed of two each of A and B subunits. Upon activation, the B subunits dissociate from the A subunit dimer, which gains transglutaminase activity to cross-link preformed fibrin clots increasing mechanical strength and resistance to degradation. The B subunits are thought to possess a carrier/protective function before FXIII activation. Mutations in either A or B subunits are associated with pathological patient phenotypes characterized by mild to severe bleeding. In vitro expression of FXIII B subunit (FXIIIB) missense variants in HEK293T cells revealed impaired secretion for all seven variants studied. To investigate the likely molecular environments of the missense residues, we created molecular models of individual FXIIIB Sushi domains using phylogenetically similar complement factor H Sushi domain structural templates. Assessment of the local molecular environments for the models suggested surface or buried positions for each mutant residue and possible pathological mechanisms. The in vitro expression system and in silico analytical methods and models we developed can be used to further investigate the molecular basis of FXIIIB mutation pathologies. PMID:23913518

  6. Human ARF4 expression rescues sec7 mutant yeast cells.

    PubMed Central

    Deitz, S B; Wu, C; Silve, S; Howell, K E; Melançon, P; Kahn, R A; Franzusoff, A

    1996-01-01

    Vesicle-mediated traffic between compartments of the yeast secretory pathway involves recruitment of multiple cytosolic proteins for budding, targeting, and membrane fusion events. The SEC7 gene product (Sec7p) is a constituent of coat structures on transport vesicles en route to the Golgi complex in the yeast Saccharomyces cerevisiae. To identify mammalian homologs of Sec7p and its interacting proteins, we used a genetic selection strategy in which a human HepG2 cDNA library was transformed into conditional-lethal yeast sec7 mutants. We isolated several clones capable of rescuing sec7 mutant growth at the restrictive temperature. The cDNA encoding the most effective suppressor was identified as human ADP ribosylation factor 4 (hARF4), a member of the GTPase family proposed to regulate recruitment of vesicle coat proteins in mammalian cells. Having identified a Sec7p-interacting protein rather than the mammalian Sec7p homolog, we provide evidence that hARF4 suppressed the sec7 mutation by restoring secretory pathway function. Shifting sec7 strains to the restrictive temperature results in the disappearance of the mutant Sec7p cytosolic pool without apparent changes in the membrane-associated fraction. The introduction of hARF4 to the cells maintained the balance between cytosolic and membrane-associated Sec7p pools. These results suggest a requirement for Sec7p cycling on and off of the membranes for cell growth and vesicular traffic. In addition, overexpression of the yeast GTPase-encoding genes ARF1 and ARF2, but not that of YPT1, suppressed the sec7 mutant growth phenotype in an allele-specific manner. This allele specificity indicates that individual ARFs are recruited to perform two different Sec7p-related functions in vesicle coat dynamics. PMID:8668142

  7. Molecular characterization and developmental expression of the TFIIH factor p62 gene from Drosophila melanogaster: effects on the UV light sensitivity of a p62 mutant fly.

    PubMed

    Castro, Juan; Merino, Carlos; Zurita, Mario

    2002-05-30

    TFIIH is a multiprotein complex that has a central role in the RNA pol II mediated transcription, in DNA repair and in the control of the cell cycle. Mutations in some components of TFIIH are associated with three hereditary human syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The p62 protein is a structural component of the TFIIH core and no syndromes have been identified up to date by mutations in this human gene. In this work we report the molecular and genetic characterization of the Drosophila melanogaster p62 gene (Dmp62). The Dmp62 gene product shows high identity with its human and mouse homologues. Using computer analysis we identified several common motifs in the p62 proteins from different organisms, suggesting that these motifs could be involved in possible protein-protein interactions within the TFIIH complex or with other transcription and DNA repair factors. The Dmp62 transcript is expressed at similar levels throughout development, although there is a significant increase of the transcript level during the late embryogenesis and in the adult male. The analysis of a Drosophila line with a P-element enhancer trap insertion at the Dmp62 5'-UTR that directs the lac-Z expression from the Dmp62 promoter, showed a high level of expression in the gut, the testis and the pericardial cells. A P-element that disrupts the Dmp62 gene (Dmp62mut) produces early embryo lethality in homozygous flies. Heterozygous Dmp62mut larvae are more sensitive to UV light irradiation, and those individuals that are able to develop into adults have severe abdominal cuticular damage after UV light irradiation. PMID:12509240

  8. Heterozygosity for Hypoxia Inducible Factor 1α decreases the incidence of thymic lymphomas in a p53 mutant mouse model

    PubMed Central

    Bertout, Jessica A.; Patel, Shetal A.; Fryer, Benjamin H.; Durham, Amy C.; Covello, Kelly L.; Olive, Kenneth P.; Goldschmidt, Michael H.; Simon, M. Celeste

    2009-01-01

    Hypoxia Inducible Factors (HIFs) are critical mediators of the cellular response to decreased oxygen tension and are overexpressed in a number of tumors. While HIF1α and HIF2α share a high degree of sequence homology, recent work has shown that the two α subunits can have contrasting and tissue-specific effects on tumor growth. To directly compare the role of each HIFα subunit in spontaneous tumorigenesis, we bred a mouse model of expanded HIF2α expression and Hif1α+/− mice to homozygotes for the R270H mutation in p53. Here we report that p53R270H/R270H mice, which have not been previously described, develop a unique tumor spectrum relative to p53R270H/− mice, including a high incidence of thymic lymphomas. Heterozygosity for Hif1α significantly reduced the incidence of thymic lymphomas observed in this model. Moreover, reduced Hif1α levels correlated with decreased stabilization of activated Notch1 and expression of the Notch target genes, Dtx1 and Nrarp. These observations uncover a novel role for HIF1α in Notch pathway activation during T-cell lymphomagenesis. PMID:19293180

  9. An Allele of Sequoia Dominantly Enhances a Trio Mutant Phenotype to Influence Drosophila Larval Behavior

    PubMed Central

    Liebl, Eric C.

    2013-01-01

    The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency. PMID:24376789

  10. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  11. Mutants resistant to anti-microtubule herbicides map to a locus on the uni linkage group in Chlamydomonas reinhardtii

    SciTech Connect

    James, S.W.; Ranum, L.P.W.; Silflow, C.D.; Lefebvre, P.A.

    1988-01-01

    The authors have used genetic analysis to study the mode of action of two anti-microtubule herbicides, amiprophos-methyl (APM) and oryzaline (ORY). Over 200 resistant mutants were selected by growth on APM- or ORY-containing plates. The 21 independently isolated mutants examined in this study are 3- to 8-fold resistant to APM and are strongly cross-resistant to ORY and butamiphos, a close analog of APM. Two Mendelian genes, apm1 and apm2, are defined by linkage and complementation analysis. There are 20 alleles of apm1 and one temperature-sensitive lethal (33/sup 0/) allele of apm2. Mapping by two-factor crosses places apm1 6.5 cM centromere proximal to uni1 and within 4 cM of pf7 on the uni linkage group, a genetically circular linkage group comprising genes which affect flagellar assembly or function; apm2 maps near the centromere of linkage group VIII. Allele-specific synthetic lethality is observed in crosses between amp2 and alleles of apm1. Also, self crosses of apm2 are zygotic lethal, whereas crosses of nine apm1 alleles inter se result in normal germination and tetrad viability. The mutants are recessive to their wild-type alleles but doubly heterozygous diploids (apm1 +/+ apm2) made with apm2 and any of 15 apm1 alleles display partial intergenic noncomplementation, expressed as intermediate resistance. Diploids homozygous for mutant alleles of apm1 are 4-6-fold resistant to APM and ORY; diploids homozygous for apm2 are ts/sup -/ and 2-fold resistant to the herbicides. From the results described the authors suggest that the gene products of apm1 and apm2 may interact directly or function in the same structure or process.

  12. Adenoviral delivery of truncated MMP-8 fused with the hepatocyte growth factor mutant 1K1 ameliorates liver cirrhosis and promotes hepatocyte proliferation

    PubMed Central

    Liu, Jinghua; Li, Jianbo; Fu, Weiwei; Tang, Jiacheng; Feng, Xu; Chen, Jiang; Liang, Yuelong; Jin, Ren’an; Xie, Anyong; Cai, Xiujun

    2015-01-01

    Liver cirrhosis is a chronic liver disease caused by chronic liver injury, which activates hepatic stellate cells (HSCs) and the secretion of extracellular matrix (ECM). Cirrhosis accounts for an extensive level of morbidity and mortality worldwide, largely due to lack of effective treatment options. In this study, we have constructed a fusion protein containing matrix metal-loproteinase 8 (MMP-8) and the human growth factor mutant 1K1 (designated cMMP8-1K1) and delivered it into hepatocytes and in vivo and in cell culture via intravenous injection of fusion protein-harboring adenovirus. In doing so, we found that the cMMP8-1K1 fusion protein promotes the proliferation of hepatocytes, likely resulting from the combined inhibition of type I collagen secretion and the degradation of the ECM in the HSCs. This fusion protein was also observed to ameliorate liver cirrhosis in our mouse model. These changes appear to be linked to changes in downstream gene expression. Taken together, these results suggest a possible strategy for the treatment of liver cirrhosis and additional work is warranted. PMID:26527860

  13. [Acute lethal alcohol intoxication (author's transl)].

    PubMed

    Kringsholm, B

    1976-01-01

    In 14,744 autopsy cases from an 18-year period 92 cases (of which 7 were ruled out because of decomposition were observed in which death was supposed to be due to direct acute alcoholic intoxication. In the police reports 81 persons were designated as chronic alcoholics or abusers of spirits. The blood alcohol level ranged between 2.04 and 4.92 o/oo. The cases studied were divided into two groups, one with low and the other with high lethal alcohol level. Fatty liver and cirrhosis were found with identical frequency in the two groups, whereas cardiac hypertrophy of obscure origin occurred markedly more often in the group with low lethal blood alcohol level. On the basis the possible mechanism of death in the cases with cardiac hypertrophy is discussed. Finally, the relation between the blood and urine alcohol concentrations observed in 72 cases is discussed. On the assumption that the water phase of the blood was 75 per cent of the total blood, death occurred in the persons without cardiac hypertrophy with fairly identical frequency either in the phase of absorption or the phase of elimination, whereas in the persons with cardiac hypertrophy death most often occurred in the phase of absorption. These statements should, however, be taken with some reservation, partly because the water phase of the blood may vary considerably post mortem (60-90 per cent) and partly because the urine alcohol concentration depends on serval variable factors. PMID:137612

  14. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants.

    PubMed

    Cervantes, Emilio; Javier Martín, José; Ardanuy, Ramón; de Diego, Juana G; Tocino, Angel

    2010-03-15

    A new model for the description of Arabidopsis seed shape based on the comparison of the outline of its longitudinal section with a transformed cardioid is presented. The transformation consists of scaling the horizontal axis by a factor equal to the Golden Ratio. The elongated cardioid approximates the shape of the Arabidopsis seed with more accuracy than other figures. The length to width ratio in wild-type Columbia Arabidopsis dry seeds is close to the Golden Ratio and decreases over the course of imbibition. Dry seeds of etr1-1 mutants presented a reduced length to width ratio. Application of the new model based on the cardioid allows for comparison of shape between wild-type and mutant genotypes, revealing other general alterations in the seeds in ethylene signaling pathway mutants (etr1-1). PMID:19880215

  15. Therapeutic efficacy of a mutant of keratinocyte growth factor-2 on trinitrobenzene sulfonic acid-induced rat model of Crohn’s disease

    PubMed Central

    Wang, Jinfeng; Chen, Huihua; Wang, Yuanyuan; Cai, Xin; Zou, Minji; Xu, Tao; Wang, Min; Wang, Jiaxi; Xu, Donggang

    2016-01-01

    Background: Keratinocyte growth factor-2 (KGF-2) has been testified to be a multifunctional growth factor, which can stimulate the regeneration and reconstruction of epidermis, corium and mucosa. Its effect on Crohn’s disease has hitherto not been evaluated. Here, we investigated the preventive and therapeutic actions of STEA, a mutant of human KGF-2 with high activity, on trinitrobenzene sulfonic acid (TNBS)-induced rat model of Crohn’s disease. Methods: Rats with TNBS-induced colitis were treated with STEA and clinical scores were evaluated. Body weight, mortality, macroscopic and microscopic damage of the colonic tissue were examined. The levels of inflammatory cytokines in serum were detected by ELISA, the T cell subpopulations and the cell cycle of intestinal epithelial cells were analyzed by flow cytometry. Results: Both preventive and therapeutic administration of STEA significantly ameliorated body weight loss, diarrhea, and intestinal inflammation, reduced the high mortality and histopathologic damage of rats with TNBS-induced colitis. The serum level of inflammatory cytokines, such as TNF-α, IL-1β, IFN-γ and IL-6 were markedly decreased in colitis rats treated with STEA. The CD4+ and CD8+ T lymphocytes in peripheral blood were reduced with STEA administration at early stage of colitis. In addition, STEA treatment could promote the growth of intestinal epithelial cells by increasing the cell proportion in S phase of cell cycle and inhibiting cell apoptosis. Conclusions: Both preventive and therapeutic administration of STEA could ameliorate the colonic damages in rats with TNBS-induced colitis. STEA might be a promising option for the treatment of Crohn’s disease. PMID:27158345

  16. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease

    SciTech Connect

    Zuleta, Amparo; Vidal, Rene L.; Armentano, Donna; Parsons, Geoffrey; Hetz, Claudio

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer The contribution of ER stress to HD has not been directly addressed. Black-Right-Pointing-Pointer Expression of XBP1s using AAVs decreases Huntingtin aggregation in vivo. Black-Right-Pointing-Pointer We describe a new in vivo model of HD based on the expression of a large fragment of mHtt-RFP. -- Abstract: Huntington's disease (HD) is caused by mutations that expand a polyglutamine region in the amino-terminal domain of Huntingtin (Htt), leading to the accumulation of intracellular inclusions and progressive neurodegeneration. Recent reports indicate the engagement of endoplasmic reticulum (ER) stress responses in human HD post mortem samples and animal models of the disease. Adaptation to ER stress is mediated by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates protein folding stress by controlling the expression of distinct transcription factors including X-Box binding protein 1 (XBP1). Here we targeted the expression of XBP1 on a novel viral-based model of HD. We delivered an active form of XBP1 locally into the striatum of adult mice using adeno-associated vectors (AAVs) and co-expressed this factor with a large fragment of mutant Htt as a fusion protein with RFP (Htt588{sup Q95}-mRFP) to directly visualize the accumulation of Htt inclusions in the brain. Using this approach, we observed a significant reduction in the accumulation of Htt588{sup Q95}-mRFP intracellular inclusion when XBP1 was co-expressed in the striatum. These results contrast with recent findings indicating a protective effect of XBP1 deficiency in neurodegeneration using knockout mice, and suggest a potential use of gene therapy strategies to manipulate the UPR in the context of HD.

  17. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation.

    PubMed Central

    Fanger, G R; Vaillancourt, R R; Heasley, L E; Montmayeur, J P; Johnson, G L; Maue, R A

    1997-01-01

    The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation. PMID:8972189

  18. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function

    PubMed Central

    Sasaki, Masato; Knobbe, Christiane B.; Itsumi, Momoe; Elia, Andrew J.; Harris, Isaac S.; Chio, Iok In Christine; Cairns, Rob A.; McCracken, Susan; Wakeham, Andrew; Haight, Jillian; Ten, Annick You; Snow, Bryan; Ueda, Takeshi; Inoue, Satoshi; Yamamoto, Kazuo; Ko, Myunggon; Rao, Anjana; Yen, Katharine E.; Su, Shinsan M.; Mak, Tak Wah

    2012-01-01

    Isocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knock-in (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality. Surprisingly, intracellular reactive oxygen species (ROS) are attenuated in Idh1-KI brain cells despite an apparent increase in the NADP+/NADPH ratio. Idh1-KI cells also show high levels of D-2-hydroxyglutarate (D2HG) that are associated with inhibited prolyl-hydroxylation of hypoxia-inducible transcription factor-1α (Hif1α) and up-regulated Hif1α target gene transcription. Intriguingly, D2HG also blocks prolyl-hydroxylation of collagen, causing a defect in collagen protein maturation. An endoplasmic reticulum (ER) stress response induced by the accumulation of immature collagens may account for the embryonic lethality of these mutants. Importantly, D2HG-mediated impairment of collagen maturation also led to basement membrane (BM) aberrations that could play a part in glioma progression. Our study presents strong in vivo evidence that the D2HG produced by the mutant Idh1 enzyme is responsible for the above effects. PMID:22925884

  19. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    PubMed

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. PMID:27208285

  20. Tasers--less than lethal!

    PubMed

    Sharma, Abiram; Theivacumar, Nada S; Souka, Hesham M

    2009-05-01

    We report a case of potentially lethal injury associated with the use of Taser. A 42-year-old man was stopped by police for potential detention. He held a large carving knife over his epigasrium threatening to stab himself. With a view to achieving immobilisation, a Taser gun was used. On activation of the Taser, the subject suffered a 7-cm wide and 10-cm deep stab injury to the upper abdomen. In this case, activation of the Taser resulted in the contraction of skeletal muscles, flexors more intensely than extensors, resulting in the stab injury. PMID:19416583

  1. Tasers – Less than Lethal!

    PubMed Central

    Sharma, Abiram; Theivacumar, Nada S; Souka, Hesham M

    2009-01-01

    We report a case of potentially lethal injury associated with the use of Taser. A 42-year-old man was stopped by police for potential detention. He held a large carving knife over his epigasrium threatening to stab himself.With a view to achieving immobilisation, a Taser gun was used. On activation of the Taser, the subject suffered a 7-cm wide and 10-cm deep stab injury to the upper abdomen. In this case, activation of the Taser resulted in the contraction of skeletal muscles, flexors more intensely than extensors, resulting in the stab injury. PMID:19416583

  2. Membranous Insulin-like Growth Factor-1 Receptor (IGF1R) Expression Is Predictive of Poor Prognosis in Patients with Epidermal Growth Factor Receptor (EGFR)-Mutant Lung Adenocarcinoma

    PubMed Central

    Park, Eunhyang; Park, Soo Young; Kim, Hyojin; Sun, Ping-Li; Jin, Yan; Cho, Suk Ki; Kim, Kwhanmien; Lee, Choon-Taek; Chung, Jin-Haeng

    2015-01-01

    Background: Insulin-like growth factor-1 receptor (IGF1R) is a membrane receptor-type tyrosine kinase that has attracted considerable attention as a potential therapeutic target, although its clinical significance in non-small cell lung cancer (NSCLC) is controversial. This study aimed to clarify the clinical significance of IGF1R expression in human NSCLC. Methods: IGF1R protein expression was evaluated using immunohistochemistry in 372 patients with NSCLC who underwent curative surgical resection (146 squamous cell carcinomas [SqCCs] and 226 adenocarcinomas [ADCs]). We then analyzed correlations between expression of IGF1R and clinicopathological and molecular features and prognostic significance. Results: Membranous and cytoplasmic IGF1R expression were significantly higher in SqCCs than in ADCs. In patients with SqCC, membranous IGF1R expression was associated with absence of vascular, lymphatic, and perineural invasion; lower stage; and better progression-free survival (PFS) (hazard ratio [HR], 0.586; p = .040). In patients with ADC, IGF1R expression did not have a significant prognostic value; however, in the subgroup of epidermal growth factor receptor (EGFR)-mutant ADC, membranous IGF1R expression was associated with lymphatic and perineural invasion, solid predominant histology, and higher cancer stage and was significantly associated with worse PFS (HR, 2.582; p = .009). Conclusions: Lung ADC and SqCC showed distinct IGF1R expression profiles that demonstrated prognostic significance. High membranous IGF1R expression was predictive of poor PFS in EGFR-mutant lung ADC, while it was predictive of better PFS in SqCC. These findings will help improve study design for subsequent investigations and select patients for future anti-IGF1R therapy. PMID:26265685

  3. The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers

    PubMed Central

    Uchiyama, Junzo; Koshimizu, Eriko; Qi, Jie; Nanjappa, Purushothama; Imamura, Shintaro; Islam, Asiful; Neuberg, Donna; Amsterdam, Adam; Roberts, Thomas M.

    2008-01-01

    There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and

  4. Molecular simulation investigation on the interaction between barrier-to-autointegration factor dimer or its Gly25Glu mutant and LEM domain of emerin.

    PubMed

    Shang, Yu-Dong; Zhang, Ji-Long; Wang, Yan; Zhang, Hong-Xing; Zheng, Qing-Chuan

    2014-11-01

    The interaction between barrier-to-autointegration factor dimer (BAF2) and LEM domain of emerin (Em(LEM)) was studied by molecular simulation methods. Nonspecific fragment of double-strand DNA molecule was docked with each chain of BAF2 by ZDOCK program. The model of DNA2:BAF2:Em(LEM) was thus constructed. The mutant Gly25Glu of BAF2 was manually constructed to explore the detailed effect of the mutation on the binding of BAF2 and Em(LEM). It has been experimentally suggested that point mutation Gly25Glu can disturb the binding between BAF2 and Em(LEM). Then, molecular dynamics (MD) simulations were performed on DNA2:BAF2(WT):Em(LEM) and DNA2:BAF2(MT):Em(LEM) complexes. 30ns trajectories revealed that the trajectory fluctuations of MT complex are more violent than that of the WT complex. Further, the binding free energy analysis showed that the electronegative residues Asp57, Glu61 and Asp65 from chain A, glu36 from chain B of BAF2 mainly contribute to interact with Em(LEM). Besides, a stable π-π stack between trp62 and phe39 from BAF2(WT) chain B is destroyed by Glu25 in BAF2(MT). As a result, trp62 forms an interaction with glu25, and phe39 converts to strengthen affinity to Em(LEM). On the other hand, Trp62 from chain A also forms a strong interaction with MT Glu25. Thus, with the docking of DNA, BAF2(MT) has higher affinity with Em(LEM) than BAF2(WT). PMID:25462326

  5. Electroshock weapons can be lethal!

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2008-03-01

    Electroshock weapons (EWs)-stun guns, tasers, riot shields-are electroconductive devices designed to safely incapacitate healthy men neuromuscularly, so they are called nonlethal or less-lethal. EW firms seeking large nonmilitary markets targeted law enforcement and corrections personnel, who began using EWs in prisons/jails and on public patrol in 1980 in the USA. This shifted the EW-shocked population from healthy soldiers to a heterogeneous mix of both sexes, ages 6-92, in a wide variety of health conditions! An EW operates by disrupting normal physiological processes, producing transient effects in healthy people. But if a person's health is sufficiently compromised, the margin of safety can be lost, resulting in death or permanent health problems. 325 people have died after EW shock since 1980. Did the EW cause these deaths? Evidence indicates that EWs do play a causal role in most such deaths. EWs can be lethal for people in diabetic shock^1 (hypoglycemia), which may be why Robert Dziekanski-a Polish immigrant to Canada-died so quickly after he was tasered at Vancouver Airport: not having eaten for over 10 hours, he likely was severely hypoglycemic. The EW death rate in North America is 30 times higher than need be, because EW users have not been properly trained to use EWs on a heterogeneous population safely! ^1J. Clinical Engineering 30(3):111(2005).

  6. rRNA Suppressor of a Eukaryotic Translation Initiation Factor 5B/Initiation Factor 2 Mutant Reveals a Binding Site for Translational GTPases on the Small Ribosomal Subunit▿

    PubMed Central

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G.; Maher, Kathryn N.; Lorsch, Jon R.; Dever, Thomas E.

    2009-01-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit. PMID:19029250

  7. Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor.

    PubMed

    Lu, Liang; Wang, Shuying; Zheng, Lei; Li, Xuelin; Suswam, Esther A; Zhang, Xiaowen; Wheeler, Crystal G; Nabors, L B; Filippova, Natalia; King, Peter H

    2009-12-01

    Down-regulation of vascular endothelial growth factor (VEGF) in the mouse leads to progressive and selective degeneration of motor neurons similar to amyotrophic lateral sclerosis (ALS). In mice expressing ALS-associated mutant superoxide dismutase 1 (SOD1), VEGF mRNA expression in the spinal cord declines significantly prior to the onset of clinical manifestations. In vitro models suggest that dysregulation of VEGF mRNA stability contributes to that decline. Here, we show that the major RNA stabilizer, Hu Antigen R (HuR), and TIA-1-related protein (TIAR) colocalize with mutant SOD1 in mouse spinal cord extracts and cultured glioma cells. The colocalization was markedly reduced or abolished by RNase treatment. Immunoanalysis of transfected cells indicated that colocalization occurred in insoluble aggregates and inclusions. RNA immunoprecipitation showed a significant loss of VEGF mRNA binding to HuR and TIAR in mutant SOD1 cells, and there was marked depletion of HuR from polysomes. Ectopic expression of HuR in mutant SOD1 cells more than doubled the mRNA half-life of VEGF and significantly increased expression to that of wild-type SOD1 control. Cellular effects produced by mutant SOD1, including impaired mitochondrial function and oxidative stress-induced apoptosis, were reversed by HuR in a gene dose-dependent pattern. In summary, our findings indicate that mutant SOD1 impairs post-transcriptional regulation by sequestering key regulatory RNA-binding proteins. The rescue effect of HuR suggests that this impairment, whether related to VEGF or other potential mRNA targets, contributes to cytotoxicity in ALS. PMID:19805546

  8. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

    PubMed

    Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L

    2015-01-01

    Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein. PMID:25636612

  9. Upregulation of the Saccharomyces cerevisiae efflux pump Tpo1 rescues an Imp2 transcription factor-deficient mutant from bleomycin toxicity.

    PubMed

    Berra, Siham; Ayachi, Sami; Ramotar, Dindial

    2014-07-01

    Yeast mutants lacking the transcriptional co-activator Imp2 are hypersensitive to the anticancer drug bleomycin, although the gene targets involved in this process remain elusive. A search for multicopy suppressors that rescue the imp2Δ mutant from bleomycin toxicity revealed the transcriptional activator Yap1, which can turn on many target genes such as transporters involved in regulating drug resistance. We show that YAP1 overexpression stimulated the expression of the TPO1 gene encoding a polyamine efflux pump, and that Yap1 failed to rescue the imp2Δ mutant from bleomycin toxicity in the absence of the TPO1 gene. Moreover, TPO1 overexpression, and not the related transporter gene QDR3, conferred upon the tpo1Δ imp2Δ double mutant parental resistance to bleomycin. We conclude that YAP1 overexpression rescues the imp2Δ mutant from bleomycin toxicity by triggering Tpo1 expression to expel the drug. Our data provide the first evidence that bleomycin could be a substrate for the Tpo1 efflux pump. PMID:24599794

  10. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed Central

    Downward, Julian

    2015-01-01

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacological approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be “undruggable.” This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS mutant but not wild type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS mutant cancers. Possible reasons for these disappointing results are discussed here, along with a re-evaluation of the approaches taken. Based on experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS mutant cancers. PMID:25878361