Science.gov

Sample records for lethality screen reveals

  1. High throughput synthetic lethality screen reveals a tumorigenic role of adenylate cyclase in fumarate hydratase-deficient cancer cells

    PubMed Central

    2014-01-01

    Background Synthetic lethality is an appealing technique for selectively targeting cancer cells which have acquired molecular changes that distinguish them from normal cells. High-throughput RNAi-based screens have been successfully used to identify synthetic lethal pathways with well-characterized tumor suppressors and oncogenes. The recent identification of metabolic tumor suppressors suggests that the concept of synthetic lethality can be applied to selectively target cancer metabolism as well. Results Here, we perform a high-throughput RNAi screen to identify synthetic lethal genes with fumarate hydratase (FH), a metabolic tumor suppressor whose loss-of-function has been associated with hereditary leiomyomatosis and renal cell carcinoma (HLRCC). Our unbiased screen identified synthetic lethality between FH and several genes in heme metabolism, in accordance with recent findings. Furthermore, we identified an enrichment of synthetic lethality with adenylate cyclases. The effects were validated in an embryonic kidney cell line (HEK293T) and in HLRCC-patient derived cells (UOK262) via both genetic and pharmacological inhibition. The reliance on adenylate cyclases in FH-deficient cells is consistent with increased cyclic-AMP levels, which may act to regulate cellular energy metabolism. Conclusions The identified synthetic lethality of FH with adenylate cyclases suggests a new potential target for treating HLRCC patients. PMID:24568598

  2. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy

    PubMed Central

    Kim, Bogyou; Wang, Shangzi; Lee, Ji Min; Jeong, Yunju; Ahn, TaeJin; Son, Dae-Soon; Park, Hye Won; Yoo, Hyeon-seok; Song, Yun-Jeong; Lee, Eunjin; Oh, Young Mi; Lee, Saet Byoul; Choi, Jaehyun; Murray, Joseph C; Zhou, Yan; Song, Paul H; Kim, Kyung-Ah; Weiner, Louis M

    2014-01-01

    Met is a receptor tyrosine kinase that promotes cancer progression. In addition, Met has been implicated in resistance of tumors to various targeted therapies such as EGFR inhibitors in lung cancers, and has been prioritized as a key molecular target for cancer therapy. However, the underlying mechanism of resistance to Met targeting drugs is poorly understood. Here, we describe screening of 1310 genes to search for key regulators related to drug resistance to an anti-Met therapeutic antibody (SAIT301) by employing a siRNA-based synthetic lethal screening method. We found that knockdown of 69 genes in Met-amplified MKN45 cells sensitized the anti-tumor activity of SAIT301. Pathway analysis of these 69 genes implicated FGFR as a key regulator for anti-proliferative effects of Met targeting drugs. Inhibition of FGFR3 increased target cell apoptosis through the suppression of Bcl-xL expression, followed by reduced cancer cell growth in the presence of Met targeting drugs. Treatment of cells with the FGFR inhibitors substantially restored the efficacy of SAIT301 in SAIT301-resistant cells and enhanced the efficacy in SAIT301-sensitive cells. In addition to FGFR3, integrin β3 is another potential target for combination treatment with SAIT301. Suppression of integrin β3 decreased AKT phosphorylation in SAIT301-resistant cells and restores SAIT301 responsiveness in HCC1954 cells, which are resistant to SAIT301. Gene expression analysis using CCLE database shows cancer cells with high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting FGFR and integrin β3 could be used as predictive markers for Met targeted therapy and provide a potential therapeutic option to overcome acquired and innate resistance for the Met targeting drugs. PMID:24662823

  3. A synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting pro-apoptotic switch in PIK3CA+ oral cancers

    PubMed Central

    Yamaguchi, Kosuke; Iglesias-Bartolomé, Ramiro; Wang, Zhiyong; Callejas-Valera, Juan Luis; Amornphimoltham, Panomwat; Molinolo, Alfredo A.; Cohen, Ezra E.; Califano, Joseph A.; Lippman, Scott M.; Luo, Ji; Gutkind, J. Silvio

    2016-01-01

    mTOR inhibition has emerged as a promising strategy for head and neck squamous cell carcinomas (HNSCC) treatment. However, most targeted therapies ultimately develop resistance due to the activation of adaptive survival signaling mechanisms limiting the activity of targeted agents. Thus, co-targeting key adaptive mechanisms may enable more effective cancer cell killing. Here, we performed a synthetic lethality screen using shRNA libraries to identify druggable candidates for combinatorial signal inhibition. We found that the ERK pathway was the most highly represented. Combination of rapamycin with trametinib, a MEK1/2 inhibitor, demonstrated strong synergism in HNSCC-derived cells in vitro and in vivo, including HNSCC cells expressing the HRAS and PIK3CA oncogenes. Interestingly, cleaved caspase-3 was potently induced by the combination therapy in PIK3CA+ cells in vitro and tumor xenografts. Moreover, ectopic expression of PIK3CA mutations into PIK3CA− HNSCC cells sensitized them to the pro-apoptotic activity of the combination therapy. These findings indicate that co-targeting the mTOR/ERK pathways may provide a suitable precision strategy for HNSCC treatment. Moreover, PIK3CA+ HNSCC are particularly prone to undergo apoptosis after mTOR and ERK inhibition, thereby providing a potential biomarker of predictive value for the selection of patients that may benefit from this combination therapy. PMID:26882569

  4. Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams

    PubMed Central

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha

    2014-01-01

    ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469

  5. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed Central

    Downward, Julian

    2015-01-01

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacological approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be “undruggable.” This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS mutant but not wild type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS mutant cancers. Possible reasons for these disappointing results are discussed here, along with a re-evaluation of the approaches taken. Based on experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS mutant cancers. PMID:25878361

  6. Lethal Prostate Cancer in the PLCO Cancer Screening Trial.

    PubMed

    Shoag, Jonathan; Mittal, Sameer; Halpern, Joshua A; Scherr, Douglas; Hu, Jim C; Barbieri, Christopher E

    2016-07-01

    The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial randomized men to usual care or annual prostate-specific antigen (PSA) screening for 6 yr and digital rectal examination for 4 yr. This trial found no difference between the intervention and usual care arms of the study in the primary end point of prostate cancer (PCa)-specific mortality. The PLCO trial results have had a major impact on health policy and the rate of PSA screening in the United States. We analyzed the 13-yr screening and outcomes data from the 151 participants who died of PCa in the screening arm of the trial to better understand how randomization to screening failed to prevent PCa death in these men. We found that of these men, 81 (53.6%) either were never screened as part of the trial or had an initial positive screen. Only 17 (11.3%) of those who died reached year 6 of the trial with a PSA <4.0 ng/ml. The men who died in the screening arm were also older at study entry than the average PLCO participant (66 vs 62 yr; p < 0.001). Our analysis should inform the interpretation of the PLCO trial and provide insight into future trial design. PMID:27166670

  7. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  8. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    SciTech Connect

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of the same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).

  9. In Silico Screening Identifies a Novel Potential PARP1 Inhibitor Targeting Synthetic Lethality in Cancer Treatment

    PubMed Central

    Li, Jian; Zhou, Nan; Cai, Peiling; Bao, Jinku

    2016-01-01

    Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8) and amber score (−51.42). Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development. PMID:26907257

  10. In Silico Screening Identifies a Novel Potential PARP1 Inhibitor Targeting Synthetic Lethality in Cancer Treatment.

    PubMed

    Li, Jian; Zhou, Nan; Cai, Peiling; Bao, Jinku

    2016-01-01

    Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (-86.8) and amber score (-51.42). Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was -177.28 kJ/mol while that of olaparib was -159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development. PMID:26907257

  11. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    SciTech Connect

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C.; Chen,David J.

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.

  12. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments

    PubMed Central

    Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David

    2015-01-01

    The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342

  13. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis

    PubMed Central

    Hartin, Samantha N.; Hudson, Martin L.; Yingling, Curtis; Ackley, Brian D.

    2015-01-01

    Background The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. Results We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. Conclusions PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens. PMID:25938228

  14. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening

    PubMed Central

    CARDONA-CORREA, ALBIN; RIOS-VELAZQUEZ, CARLOS

    2016-01-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID:27035230

  15. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening.

    PubMed

    Cardona-Correa, Albin; Rios-Velazquez, Carlos

    2016-05-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein‑protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting‑phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase‑A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF‑interacting peptides. With a minimum concentration of LF for interaction at 1 µg/ml, the T7PD isolated pepsin A3 pre‑protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID

  16. Ribavirin reveals a lethal threshold of allowable mutation frequency for Hantaan virus.

    PubMed

    Chung, Dong-Hoon; Sun, Yanjie; Parker, William B; Arterburn, Jeffrey B; Bartolucci, Al; Jonsson, Colleen B

    2007-11-01

    The broad spectrum of antiviral activity of ribavirin (RBV) lies in its ability to inhibit IMP dehydrogenase, which lowers cellular GTP. However, RBV can act as a potent mutagen for some RNA viruses. Previously we have shown a lack of correlation between antiviral activity and GTP repression for Hantaan virus (HTNV) and evidence for RBV's ability to promote error-prone replication. To further explore the mechanism of RBV, GTP levels, specific infectivity, and/or mutation frequency was measured in the presence of RBV, mycophenolic acid (MPA), selenazofurin, or tiazofurin. While all four drugs resulted in a decrease in the GTP levels and infectious virus, only RBV increased the mutation frequency of viral RNA (vRNA). MPA, however, could enhance RBV's mutagenic effect, which suggests distinct mechanisms of action for each. Therefore, a simple drop in GTP levels does not drive the observed error-prone replication. To further explore RBV's mechanism of action, we made a comprehensive analysis of the mutation frequency over several RBV concentrations. Of importance, we observed that the viral population reached a threshold after which mutation frequency did not correlate with a dose-dependent decrease in the level of vRNA, PFU, or [RTP]/[GTP] (where RTP is ribavirin-5'-triphosphate) over these same concentrations of RBV. Modeling of the relationship of mutation frequency and drug concentration showed an asymptotic relationship at this point. After this threshold, approximately 57% of the viral cDNA population was identical to the wild type. These studies revealed a lethal threshold, after which we did not observe a complete loss of the quasispecies structure of the wild-type genome, although we observed extinction of HTNV. PMID:17699579

  17. An Arrayed Genome-Scale Lentiviral-Enabled Short Hairpin RNA Screen Identifies Lethal and Rescuer Gene Candidates

    PubMed Central

    Bhinder, Bhavneet; Antczak, Christophe; Ramirez, Christina N.; Shum, David; Liu-Sullivan, Nancy; Radu, Constantin; Frattini, Mark G.

    2013-01-01

    Abstract RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder–Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general. PMID:23198867

  18. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis.

    PubMed Central

    Efimov, V P; Morris, N R

    1998-01-01

    Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complete range of dynein function in A. nidulans, we searched for synthetic lethal mutations that significantly reduced growth in the absence of dynein but had little effect on their own. We isolated 19 sld (synthetic lethality without dynein) mutations in nine different genes. Mutations in two genes exacerbate the nuclear migration defect seen in the absence of dynein. Mutations in six other genes, including sldA and sldB, show a strong synthetic lethal interaction with a mutation in the mitotic kinesin bimC and, thus, are likely to play a role in mitosis. Mutations in sldA and sldB also confer hypersensitivity to the microtubule-destabilizing drug benomyl. sldA and sldB were cloned by complementation of their mutant phenotypes using an A. nidulans autonomously replicating vector. Sequencing revealed homology to the spindle assembly checkpoint genes BUB1 and BUB3 from Saccharomyces cerevisiae. Genetic interaction between dynein and spindle assembly checkpoint genes, as well as other mitotic genes, indicates that A. nidulans dynein plays a role in mitosis. We suggest a model for dynein motor action in A. nidulans that can explain dynein involvement in both mitosis and nuclear distribution. PMID:9584089

  19. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening

    PubMed Central

    Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J.; Dickinson, Mary; Greene, Nicholas D. E.; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A.; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David

    2013-01-01

    Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data. PMID:23519032

  20. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers

    PubMed Central

    Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike

    2016-01-01

    The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646

  1. Synthetic Lethality Screen Identifies RPS6KA2 as Modifier of Epidermal Growth Factor Receptor Activity in Pancreatic Cancer12

    PubMed Central

    Milosevic, Nada; Kühnemuth, Benjamin; Mühlberg, Leonie; Ripka, Stefanie; Griesmann, Heidi; Lölkes, Carolin; Buchholz, Malte; Aust, Daniela; Pilarsky, Christian; Krug, Sebastian; Gress, Thomas; Michl, Patrick

    2013-01-01

    Pancreatic cancer is characterized by a high degree of resistance to chemotherapy. Epidermal growth factor receptor (EGFR) inhibition using the small-molecule inhibitor erlotinib was shown to provide a small survival benefit in a subgroup of patients. To identify kinases whose inhibition acts synergistically with erlotinib, we employed a kinome-wide small-interfering RNA (siRNA)-based loss-of-function screen in the presence of erlotinib. Of 779 tested kinases, we identified several targets whose inhibition acted synergistically lethal with EGFR inhibition by erlotinib, among them the S6 kinase ribosomal protein S6 kinase 2 (RPS6KA2)/ribosomal S6 kinase 3. Activated RPS6KA2 was expressed in approximately 40% of 123 human pancreatic cancer tissues. RPS6KA2 was shown to act downstream of EGFR/RAS/mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling and was activated by EGF independently of the presence of KRAS mutations. Knockdown of RPS6KA2 by siRNA led to increased apoptosis only in the presence of erlotinib, whereas RPS6KA2 activation or overexpression rescued from erlotinib- and gemcitabine-induced apoptosis. This effect was at least in part mediated by downstream activation of ribosomal protein S6. Genetic as well as pharmacological inhibition of RPS6KA2 by the inhibitor BI-D1870 acted synergistically with erlotinib. By applying this synergistic lethality screen using a kinome-wide RNA interference-library approach, we identified RPS6KA2 as potential drug target whose inhibition synergistically enhanced the effect of erlotinib on tumor cell survival. This kinase therefore represents a promising drug candidate suitable for the development of novel inhibitors for pancreatic cancer therapy. PMID:24403857

  2. A synthetic lethal screen identifies the Vitamin D receptor as a novel gemcitabine sensitizer in pancreatic cancer cells

    PubMed Central

    Bhattacharjee, V; Zhou, Y; Yen, TJ

    2014-01-01

    Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells’ ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs. PMID:25558828

  3. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction.

    PubMed

    Patel, Trushar R; Nikodemus, Denise; Besong, Tabot M D; Reuten, Raphael; Meier, Markus; Harding, Stephen E; Winzor, Donald J; Koch, Manuel; Stetefeld, Jörg

    2016-01-01

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1N), α-5 (hLM α-5N) and β-3 (hLM β-3N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function. PMID:26215696

  4. Synthetic lethal screening with small molecule inhibitors provides a pathway to rational combination therapies for melanoma

    PubMed Central

    Roller, Devin; Axelrod, Mark; Capaldo, Brian; Jensen, Karin; Mackey, Aaron; Weber, Michael J; Gioeli, Daniel

    2012-01-01

    Recent data demonstrate that extracellular signals are transmitted through a network of proteins rather than hierarchical signaling pathways suggesting why inhibition of a single component of a canonical pathway is insufficient for the treatment of cancer. The biological outcome of signaling through a network is inherently more robust and resistant to inhibition of a single network component. In this study, we performed a functional chemical genetic screen to identify novel interactions between signaling inhibitors that would not be predicted based on our current understanding of signaling networks. We screened over 300 drug combinations in nine melanoma cell lines and have identified pairs of compounds that show synergistic cytotoxicity. The synergistic cytotoxicities identified did not correlate with the known RAS and BRAF mutational status of the melanoma cell lines. Among the most robust results was synergy between sorafenib, a multi-kinase inhibitor with activity against RAF, and diclofenac, a non-steroidal anti-inflammatory drug (NSAID). Drug substitution experiments using the NSAIDs celecoxib and ibuprofen or the MEK inhibitor PD325901 and the RAF inhibitor RAF265 suggest that inhibition of cyclooxygenase (COX) and MAP kinase signaling are targets for the synergistic cytotoxicity of sorafenib and diclofenac. Co-treatment with sorafenib and diclofenac interrupts a positive feedback signaling loop involving ERK, cPLA2, and COX. Genome-wide expression profiling demonstrates synergy-specific down-regulation of survival-related genes. This study has uncovered novel functional drug combinations and suggests that the underlying signaling networks that control responses to targeted agents can vary substantially depending on unexplored components of the cell genotype. PMID:22962324

  5. An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer.

    PubMed

    Sethi, Geetika; Pathak, Harsh B; Zhang, Hong; Zhou, Yan; Einarson, Margret B; Vathipadiekal, Vinod; Gunewardena, Sumedha; Birrer, Michael J; Godwin, Andrew K

    2012-01-01

    Targeted therapies have been used to combat many tumor types; however, few have effectively improved the overall survival in women with epithelial ovarian cancer, begging for a better understanding of this deadly disease and identification of essential drivers of tumorigenesis that can be targeted effectively. Therefore, we used a loss-of-function screening approach to help identify molecular vulnerabilities that may represent key points of therapeutic intervention. We employed an unbiased high-throughput lethality screen using a 24,088 siRNA library targeting over 6,000 druggable genes and studied their effects on growth and/or survival of epithelial ovarian cancer (EOC) cell lines. The top 300 "hits" affecting the viability of A1847 cells were rescreened across additional EOC cell lines and non-tumorigenic, human immortalized ovarian epithelial cell lines. Fifty-three gene candidates were found to exhibit effects in all tumorigenic cell lines tested. Extensive validation of these hits refined the list to four high quality candidates (HSPA5, NDC80, NUF2, and PTN). Mechanistic studies show that silencing of three genes leads to increased apoptosis, while HSPA5 silencing appears to alter cell growth through G1 cell cycle arrest. Furthermore, two independent gene expression studies show that NDC80, NUF2 and PTN were significantly aberrantly overexpressed in serous adenocarcinomas. Overall, our functional genomics results integrated with the genomics data provide an important unbiased avenue towards the identification of prospective therapeutic targets for drug discovery, which is an urgent and unmet clinical need for ovarian cancer. PMID:23056589

  6. In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase.

    PubMed Central

    Geslain, R; Martin, F; Delagoutte, B; Cavarelli, J; Gangloff, J; Eriani, G

    2000-01-01

    Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination. PMID:10744027

  7. Screening and analysis of genes expressed upon infection of broad bean with Clover yellow vein virus causing lethal necrosis.

    PubMed

    Nakahara, Kenji S; Kitazawa, Hiroaki; Atsumi, Go; Choi, Sun Hee; Suzuki, Yuji; Uyeda, Ichiro

    2011-01-01

    Clover yellow vein virus (ClYVV) causes lethal systemic necrosis in legumes, including broad bean (Vicia faba) and pea (Pisum sativum). To identify host genes involved in necrotic symptom expression after ClYVV infection, we screened cDNA fragments in which expression was changed in advance of necrotic symptom expression in broad bean (V. faba cv. Wase) using the differential display technique and secondarily with Northern blot analysis. Expression changes were confirmed in 20 genes, and the six that exhibited the most change were analyzed further. These six genes included a gene that encodes a putative nitrate-induced NOI protein (VfNOI), and another was homologous to an Arabidopsis gene that encodes a glycine- and proline-rich protein GPRP (VfGPRP). We recently reported that necrotic symptom development in ClYVV-infected pea is associated with expression of salicylic acid (SA)-dependent pathogenesis-related (PR) proteins and requires SA-dependent host responses. Interestingly, VfNOI and VfGPRP expression was correlated with that of the putative SA-dependent PR proteins in ClYVV-infected broad bean. However, broad bean infected with a recombinant ClYVV expressing the VfGPRP protein showed weaker symptoms and less viral multiplication than that infected with ClYVV expressing the GFP protein. These results imply that VfGPRP plays a role in defense against ClYVV rather than in necrotic symptom expression. PMID:21767375

  8. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  9. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics

    PubMed Central

    2013-01-01

    Background Snake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites. Results To better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression. Conclusions Our results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented

  10. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.

    PubMed

    Toledo, Chad M; Ding, Yu; Hoellerbauer, Pia; Davis, Ryan J; Basom, Ryan; Girard, Emily J; Lee, Eunjee; Corrin, Philip; Hart, Traver; Bolouri, Hamid; Davison, Jerry; Zhang, Qing; Hardcastle, Justin; Aronow, Bruce J; Plaisier, Christopher L; Baliga, Nitin S; Moffat, Jason; Lin, Qi; Li, Xiao-Nan; Nam, Do-Hyun; Lee, Jeongwu; Pollard, Steven M; Zhu, Jun; Delrow, Jeffery J; Clurman, Bruce E; Olson, James M; Paddison, Patrick J

    2015-12-22

    To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality. PMID:26673326

  11. Functional metagenomic screen reveals new and diverse microbial rhodopsins

    PubMed Central

    Pushkarev, Alina; Béjà, Oded

    2016-01-01

    Ion-translocating retinylidene rhodopsins are widely distributed among marine and freshwater microbes. The translocation is light-driven, contributing to the production of biochemical energy in diverse microbes. Until today, most microbial rhodopsins had been detected using bioinformatics based on homology to other rhodopsins. In the past decade, there has been increased interest in microbial rhodopsins in the field of optogenetics since microbial rhodopsins were found to be most useful in vertebrate neuronal systems. Here we report on a functional metagenomic assay for detecting microbial rhodopsins. Using an array of narrow pH electrodes and light-emitting diode illumination, we were able to screen a metagenomic fosmid library to detect diverse marine proteorhodopsins and an actinorhodopsin based solely on proton-pumping activity. Our assay therefore provides a rather simple phenotypic means to enrich our understanding of microbial rhodopsins without any prior knowledge of the genomic content of the environmental entities screened. PMID:26894445

  12. Functional metagenomic screen reveals new and diverse microbial rhodopsins.

    PubMed

    Pushkarev, Alina; Béjà, Oded

    2016-09-01

    Ion-translocating retinylidene rhodopsins are widely distributed among marine and freshwater microbes. The translocation is light-driven, contributing to the production of biochemical energy in diverse microbes. Until today, most microbial rhodopsins had been detected using bioinformatics based on homology to other rhodopsins. In the past decade, there has been increased interest in microbial rhodopsins in the field of optogenetics since microbial rhodopsins were found to be most useful in vertebrate neuronal systems. Here we report on a functional metagenomic assay for detecting microbial rhodopsins. Using an array of narrow pH electrodes and light-emitting diode illumination, we were able to screen a metagenomic fosmid library to detect diverse marine proteorhodopsins and an actinorhodopsin based solely on proton-pumping activity. Our assay therefore provides a rather simple phenotypic means to enrich our understanding of microbial rhodopsins without any prior knowledge of the genomic content of the environmental entities screened. PMID:26894445

  13. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  14. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  15. An arf1Delta synthetic lethal screen identifies a new clathrin heavy chain conditional allele that perturbs vacuolar protein transport in Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Graham, T R

    1998-01-01

    ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1Delta allele and defined seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1Delta). Most of the swa mutants exhibit phenotypes comparable to arf1Delta mutants such as temperature-conditional growth, hypersensitivity to fluoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 3' end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a significant defect in transport of carboxypeptidase Y or carboxypeptidase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not significantly affected in the chc1-5 mutant, further implicating clathrin specifically in the Golgi to vacuole transport pathway for carboxypeptidase Y. PMID:9755191

  16. Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM

    PubMed Central

    Kim, Yong-Wan; Liu, Ta Jen; Koul, Dimpy; Tiao, Ningyi; Feroze, Abdullah H.; Wang, Jing; Powis, Garth; Yung, W. K. Alfred

    2011-01-01

    Several small molecules that inhibit the PI3 kinase (PI3K)-Akt signaling pathway are in clinical development. Although many of these molecules have been effective in preclinical models, it remains unclear whether this strategy alone will be sufficient to interrupt the molecular events initiated and maintained by signaling along the pathways because of the activation of other pathways that compensate for the inhibition of the targeted kinase. In this study, we performed a synthetic lethality screen to identify genes or pathways whose inactivation, in combination with the PI3K inhibitors PX-866 and NVPBEZ-235, might result in a lethal phenotype in glioblastoma multiforme (GBM) cells. We screened GBM cells (U87, U251, and T98G) with a large-scale, short hairpin RNA library (GeneNet), which contains 43 800 small interfering RNA sequences targeting 8500 well-characterized human genes. To decrease off-target effects, we selected overlapping genes among the 3 cell lines that synergized with PX-866 to induce cell death. To facilitate the identification of potential targets, we used a GSE4290 dataset and The Cancer Genome Atlas GBM dataset, identifying 15 target genes overexpressed in GBM tissues. We further analyzed the selected genes using Ingenuity Pathway Analysis software and showed that the 15 genes were closely related to cancer-promoting pathways, and a highly interconnected network of aberrations along the MYC, P38MAPK, and ERK signaling pathways were identified. Our findings suggest that inhibition of these pathways might increase tumor sensitivity to PX-866 and therefore represent a potential clinical therapeutic strategy. PMID:21430111

  17. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors.

    PubMed

    Vafai, Scott B; Mevers, Emily; Higgins, Kathleen W; Fomina, Yevgenia; Zhang, Jianming; Mandinova, Anna; Newman, David; Shaw, Stanley Y; Clardy, Jon; Mootha, Vamsi K

    2016-01-01

    Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS). Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as "complex I bypass." In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology. PMID:27622560

  18. A Synthetic Lethality Screen Using a Focused siRNA Library to Identify Sensitizers to Dasatinib Therapy for the Treatment of Epithelial Ovarian Cancer

    PubMed Central

    Pathak, Harsh B.; Zhou, Yan; Sethi, Geetika; Hirst, Jeff; Schilder, Russell J.; Golemis, Erica A.; Godwin, Andrew K.

    2015-01-01

    Molecular targeted therapies have been the focus of recent clinical trials for the treatment of patients with recurrent epithelial ovarian cancer (EOC). The majority have not fared well as monotherapies for improving survival of these patients. Poor bioavailability, lack of predictive biomarkers, and the presence of multiple survival pathways can all diminish the success of a targeted agent. Dasatinib is a tyrosine kinase inhibitor of the Src-family kinases (SFK) and in preclinical studies shown to have substantial activity in EOC. However, when evaluated in a phase 2 clinical trial for patients with recurrent or persistent EOC, it was found to have minimal activity. We hypothesized that synthetic lethality screens performed using a cogently designed siRNA library would identify second-site molecular targets that could synergize with SFK inhibition and improve dasatinib efficacy. Using a systematic approach, we performed primary siRNA screening using a library focused on 638 genes corresponding to a network centered on EGFR, HER2, and the SFK-scaffolding proteins BCAR1, NEDD9, and EFS to screen EOC cells in combination with dasatinib. We followed up with validation studies including deconvolution screening, quantitative PCR to confirm effective gene silencing, correlation of gene expression with dasatinib sensitivity, and assessment of the clinical relevance of hits using TCGA ovarian cancer data. A refined list of five candidates (CSNK2A1, DAG1, GRB2, PRKCE, and VAV1) was identified as showing the greatest potential for improving sensitivity to dasatinib in EOC. Of these, CSNK2A1, which codes for the catalytic alpha subunit of protein kinase CK2, was selected for additional evaluation. Synergistic activity of the clinically relevant inhibitor of CK2, CX-4945, with dasatinib in reducing cell proliferation and increasing apoptosis was observed across multiple EOC cell lines. This overall approach to improving drug efficacy can be applied to other targeted agents

  19. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus

    PubMed Central

    Campbell, Jennifer; Singh, Atul K.; Santa Maria, John P.; Kim, Younghoon; Brown, Stephanie; Swoboda, Jonathan G.; Mylonakis, Eleftherios; Wilkinson, Brian J.; Walker, Suzanne

    2010-01-01

    Methicillin resistance in Staphylococcus aureus depends on the production of mecA, which encodes penicillin-binding protein 2A (PBP2A), an acquired peptidoglycan transpeptidase (TP) with reduced susceptibility to beta-lactam antibiotics. PBP2A crosslinks nascent peptidoglycan when the native TPs are inhibited by beta-lactams. Although mecA expression is essential for beta-lactam resistance, it is not sufficient. Here we show that blocking the expression of wall teichoic acids (WTAs) by inhibiting the first enzyme in the pathway, TarO, sensitizes MRSA strains to beta-lactams even though the beta-lactam-resistant transpeptidase, PBP2A, is still expressed. The dramatic synergy between TarO inhibitors and beta-lactams is noteworthy not simply because strategies to overcome methicillin-resistant S. aureus (MRSA) are desperately needed, but because neither TarO nor the activities of the native TPs are essential in MRSA strains. The “synthetic lethality” of inhibiting TarO and the native TPs suggests a functional connection between ongoing WTA expression and peptidoglycan assembly in S. aureus. Indeed, transmission electron microscopy shows that S. aureus cells blocked in WTA synthesis have extensive defects in septation and cell separation, indicating dysregulated cell wall assembly and degradation. Our studies imply that WTAs play a fundamental role in S. aureus cell division and raise the possibility that synthetic lethal compound combinations may have therapeutic utility for overcoming antibiotic resistant bacterial infections. PMID:20961110

  20. Identification of unique sensitizing targets for anti-inflammatory CDDO-Me in metastatic melanoma by a large-scale synthetic lethal RNAi screening

    PubMed Central

    Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2013-01-01

    Summary CDDO-Me has been shown to exert potent anti-inflammatory activity for chronic kidney disease and antitumor activity for several tumors, including melanoma, in early clinical trials. To improve CDDO-Me response in melanoma, we utilized a large-scale synthetic lethal RNAi screen targeting 6,000 human druggable genes to identify targets that would sensitize melanoma cells to CDDO-Me. Based on screening results, five unique genes (GNPAT, SUMO1, SPINT2, FLI1, and SSX1) significantly potentiated the growth-inhibitory effects of CDDO-Me and induced apoptosis in A375, a BRAF mutated melanoma line (P<0.001). These five genes were then individually validated as targets to potentiate CDDO-Me activity, and related downstream signaling pathways of these genes were analyzed. In addition, the levels of phosphorylated Erk1/2, Akt, GSK-2, and PRAS40 were dramatically decreased by downregulating each of these five genes separately, suggesting a set of common mediators. Our findings indicate that GNPAT, SUMO1, SPINT2, FLI1, and SSX1 play critical roles in synergy with inflammation pathways in modulating melanoma cell survival, and could serve as sensitizing targets to enhance CDDO-Me efficacy in melanoma growth control. PMID:23020131

  1. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer.

    PubMed

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J; Adams, David J; Leung, Hing Y

    2016-07-19

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  2. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer

    PubMed Central

    Ahmad, Imran; Mui, Ernest; Galbraith, Laura; Patel, Rachana; Tan, Ee Hong; Salji, Mark; Rust, Alistair G.; Repiscak, Peter; Hedley, Ann; Markert, Elke; Loveridge, Carolyn; van der Weyden, Louise; Edwards, Joanne; Sansom, Owen J.; Adams, David J.; Leung, Hing Y.

    2016-01-01

    Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition. PMID:27357679

  3. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations

    PubMed Central

    Toledo, Luis I.; Murga, Matilde; Zur, Rafal; Soria, Rebeca; Rodriguez, Antonio; Martinez, Sonia; Oyarzabal, Julen; Pastor, Joaquin; Bischoff, James R.; Fernandez-Capetillo, Oscar

    2016-01-01

    SUMMARY Oncogene activation has been shown to generate replication-born DNA damage, also known as replicative stress (RS). Notably, the ATR kinase –and not ATM- is the primary responder to RS. One limitation for the study of ATR is the lack of potent inhibitors. We here describe a cell-based screening strategy that has allowed us to identify compounds with ATR inhibitory activity in the nanomolar range. Pharmacological inhibition of ATR generates RS, leading to chromosomal breakage in the presence of conditions that stall replication forks. Moreover, ATR inhibition is particularly toxic for p53 deficient cells, this toxicity being exacerbated by RS-generating conditions such as the overexpression of cyclin E. Importantly, one of the compounds is NVP-BEZ235, a dual PI3K/mTOR inhibitor that is currently being tested for cancer chemotherapy, but which we now show is also very potent against ATM, ATR and DNA-PKcs. PMID:21552262

  4. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  5. Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog.

    PubMed

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-16

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  6. A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    PubMed Central

    Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285

  7. Kinome RNAi Screens Reveal Synergistic Targeting of MTOR and FGFR1 Pathways for Treatment of Lung Cancer and HNSCC.

    PubMed

    Singleton, Katherine R; Hinz, Trista K; Kleczko, Emily K; Marek, Lindsay A; Kwak, Jeff; Harp, Taylor; Kim, Jihye; Tan, Aik Choon; Heasley, Lynn E

    2015-10-15

    The FGFR1 is a therapeutic target under investigation in multiple solid tumors and clinical trials of selective tyrosine kinase inhibitors (TKI) are underway. Treatment with a single TKI represents a logical step toward personalized cancer therapy, but intrinsic and acquired resistance mechanisms limit their long-term benefit. In this study, we deployed RNAi-based functional genomic screens to identify protein kinases controlling the intrinsic sensitivity of FGFR1-dependent lung cancer and head and neck squamous cell cancer (HNSCC) cells to ponatinib, a multikinase FGFR-active inhibitor. We identified and validated a synthetic lethal interaction between MTOR and ponatinib in non-small cell lung carcinoma cells. In addition, treatment with MTOR-targeting shRNAs and pharmacologic inhibitors revealed that MTOR is an essential protein kinase in other FGFR1-expressing cancer cells. The combination of FGFR inhibitors and MTOR or AKT inhibitors resulted in synergistic growth suppression in vitro. Notably, tumor xenografts generated from FGFR1-dependent lung cancer cells exhibited only modest sensitivity to monotherapy with the FGFR-specific TKI, AZD4547, but when combined with the MTOR inhibitor, AZD2014, significantly attenuated tumor growth and prolonged survival. Our findings support the existence of a signaling network wherein FGFR1-driven ERK and activated MTOR/AKT represent distinct arms required to induce full transformation. Furthermore, they suggest that clinical efficacy of treatments for FGFR1-driven lung cancers and HNSCC may be achieved by combining MTOR inhibitors and FGFR-specific TKIs. PMID:26359452

  8. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. PMID:26031293

  9. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  10. Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer

    PubMed Central

    Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja

    2015-01-01

    Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723

  11. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  12. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  13. Disease-toxicant screen reveals a neuroprotective interaction between Huntington’s disease and manganese exposure

    PubMed Central

    Williams, B. Blairanne; Li, Daphne; Wegrzynowicz, Michal; Vadodaria, Bhavin K.; Anderson, Joel G.; Kwakye, Gunnar F.; Aschner, Michael; Erikson, Keith M.; Bowman, Aaron B.

    2011-01-01

    Recognizing the similarities between Huntington’s disease pathophysiology and the neurotoxicology of various metals, we hypothesized that they may exhibit disease-toxicant interactions revealing cellular pathways underlying neurodegeneration. Here we utilize metals and the STHdh mouse striatal cell line model of Huntington’s disease to perform a gene-environment interaction screen. We report that striatal cells expressing mutant Huntingtin exhibit elevated sensitivity to cadmium toxicity and resistance to manganese toxicity. This neuroprotective gene-environment interaction with manganese is highly specific, as it does not occur with iron, copper, zinc, cobalt, cadmium, lead, or nickel ions. Analysis of the Akt cell-stress signaling pathway showed diminished activation with manganese exposure and elevated activation after cadmium exposure in the mutant cells. Direct examination of intracellular manganese levels found that mutant cells have a significant impairment in manganese accumulation. Furthermore, YAC128Q mice, a Huntington’s disease model, showed decreased total striatal manganese levels following manganese exposure relative to wild-type mice. Thus, this disease-toxicant interaction screen has revealed that expression of mutant Huntingtin results in heightened sensitivity to cadmium neurotoxicity and a selective impairment of manganese accumulation. PMID:19845833

  14. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology.

    PubMed

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D B; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila. PMID:26215380

  15. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology

    PubMed Central

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D. B.; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A.; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A.; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila. PMID:26215380

  16. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  17. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin

    PubMed Central

    Yee, Rebecca; Cui, Peng; Shi, Wanliang; Feng, Jie; Zhang, Ying

    2015-01-01

    Chronic infections with Staphylococcus aureus such as septicemia, osteomyelitis, endocarditis, and biofilm infections are difficult to treat because of persisters. Despite many efforts in understanding bacterial persistence, the mechanisms of persister formation in S. aureus remain elusive. Here, we performed a genome-wide screen of a transposon mutant library to study the molecular mechanisms involved in persistence of community-acquired S. aureus. Screening of the library for mutants defective in persistence or tolerance to rifampicin revealed many genes involved in metabolic pathways that are important for antibiotic persistence. In particular, the identified mutants belonged to metabolic pathways involved in carbohydrate, amino acid, lipid, vitamin and purine biosynthesis. Five mutants played a role in purine biosynthesis and two mutants, purB, an adenylosuccinate lyase, and purM, a phosphoribosylaminoimidazole synthetase, were selected for further confirmation. Mutants purB and purM showed defective persistence compared to the parental strain USA300 in multiple stress conditions including various antibiotics, low pH, and heat stress. The defect in persistence was restored by complementation with the wildtype purB and purM gene in the respective mutants. These findings provide new insights into the mechanisms of persistence in S. aureus and provide novel therapeutic targets for developing more effective treatment for persistent infections due to S. aureus. PMID:27025643

  18. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  19. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators

    PubMed Central

    Dopie, Joseph; Rajakylä, Eeva K.; Joensuu, Merja S.; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K.

    2015-01-01

    ABSTRACT Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  20. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    PubMed

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  1. High-throughput sequencing of a 4.1 Mb linkage interval reveals FLVCR2 deletions and mutations in lethal cerebral vasculopathy.

    PubMed

    Thomas, Sophie; Encha-Razavi, Ferechté; Devisme, Louise; Etchevers, Heather; Bessieres-Grattagliano, Bettina; Goudefroye, Géraldine; Elkhartoufi, Nadia; Pateau, Emilie; Ichkou, Amale; Bonnière, Maryse; Marcorelle, Pascale; Parent, Philippe; Manouvrier, Sylvie; Holder, Muriel; Laquerrière, Annie; Loeuillet, Laurence; Roume, Joelle; Martinovic, Jelena; Mougou-Zerelli, Soumaya; Gonzales, Marie; Meyer, Vincent; Wessner, Marc; Feysot, Christine Bole; Nitschke, Patrick; Leticee, Nadia; Munnich, Arnold; Lyonnet, Stanislas; Wookey, Peter; Gyapay, Gabor; Foliguet, Bernard; Vekemans, Michel; Attié-Bitach, Tania

    2010-10-01

    Rare lethal disease gene identification remains a challenging issue, but it is amenable to new techniques in high-throughput sequencing (HTS). Cerebral proliferative glomeruloid vasculopathy (PGV), or Fowler syndrome, is a severe autosomal recessive disorder of brain angiogenesis, resulting in abnormally thickened and aberrant perforating vessels leading to hydranencephaly. In three multiplex consanguineous families, genome-wide SNP analysis identified a locus of 14 Mb on chromosome 14. In addition, 280 consecutive SNPs were identical in two Turkish families unknown to be related, suggesting a founder mutation reducing the interval to 4.1 Mb. To identify the causative gene, we then specifically enriched for this region with sequence capture and performed HTS in a proband of seven families. Due to technical constraints related to the disease, the average coverage was only 7×. Nonetheless, iterative bioinformatic analyses of the sequence data identified mutations and a large deletion in the FLVCR2 gene, encoding a 12 transmembrane domain-containing putative transporter. A striking absence of alpha-smooth muscle actin immunostaining in abnormal vessels in fetal PGV brains, suggests a deficit in pericytes, cells essential for capillary stabilization and remodeling during brain angiogenesis. This is the first lethal disease-causing gene to be identified by comprehensive HTS of an entire linkage interval. PMID:20690116

  2. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide.

    PubMed

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; Dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-03-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63-116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20-52.54% and -0.95-62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide. PMID:24688298

  3. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide

    PubMed Central

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-01-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63–116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20–52.54% and −0.95–62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide. PMID:24688298

  4. An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis

    PubMed Central

    Kälin, Roland E.; Bänziger-Tobler, Nadja E.; Detmar, Michael

    2009-01-01

    Angiogenesis and lymphangiogenesis are essential for organogenesis but also play important roles in tissue regeneration, chronic inflammation, and tumor progression. Here we applied in vivo forward chemical genetics to identify novel compounds and biologic mechanisms involved in (lymph)angiogenesis in Xenopus tadpoles. A novel 2-step screening strategy involving a simple phenotypic read-out (edema formation or larval lethality) followed by semiautomated in situ hybridization was devised and used to screen an annotated chemical library of 1280 bioactive compounds. We identified 32 active compounds interfering with blood vascular and/or lymphatic development in Xenopus. Selected compounds were also tested for activities in a variety of endothelial in vitro assays. Finally, in a proof-of-principle study, the adenosine A1 receptor antagonist 7-chloro-4-hydroxy-2-phenyl-1,8-naphthyridine, an inhibitor of blood vascular and lymphatic development in Xenopus, was shown to act also as a potent antagonist of VEGFA-induced adult neovascularization in mice. Taken together, the present chemical library screening strategy in Xenopus tadpoles represents a rapid and highly efficient approach to identify novel pathways involved in (lymph)angiogenesis. In addition, the recovered compounds represent a rich resource for in-depth analysis, and their drug-like features will facilitate further evaluation in preclinical models of inflammation and cancer metastasis. PMID:19478043

  5. Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae

    PubMed Central

    Niu, Wei; Li, Zhihua; Zhan, Wenjing; Iyer, Vishwanath R.; Marcotte, Edward M.

    2008-01-01

    Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression. PMID:18617996

  6. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon

    PubMed Central

    Leis, Benedikt; Heinze, Simon; Angelov, Angel; Pham, Vu Thuy Trang; Thürmer, Andrea; Jebbar, Mohamed; Golyshin, Peter N.; Streit, Wolfgang R.; Daniel, Rolf; Liebl, Wolfgang

    2015-01-01

    Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8–70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential. PMID:26191525

  7. A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1

    PubMed Central

    Kavi, Harsh; Lu, Xingwu; Xu, Na; Bartholdy, Boris A.; Vershilova, Elena; Skoultchi, Arthur I.; Fyodorov, Dmitry V.

    2015-01-01

    Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression. PMID:25628309

  8. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities.

    PubMed

    Hart, Traver; Chandrashekhar, Megha; Aregger, Michael; Steinhart, Zachary; Brown, Kevin R; MacLeod, Graham; Mis, Monika; Zimmermann, Michal; Fradet-Turcotte, Amelie; Sun, Song; Mero, Patricia; Dirks, Peter; Sidhu, Sachdev; Roth, Frederick P; Rissland, Olivia S; Durocher, Daniel; Angers, Stephane; Moffat, Jason

    2015-12-01

    The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell. PMID:26627737

  9. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1.

    PubMed

    Strickland, Alleene V; Schabhüttl, Maria; Offenbacher, Hans; Synofzik, Matthis; Hauser, Natalie S; Brunner-Krainz, Michaela; Gruber-Sedlmayr, Ursula; Moore, Steven A; Windhager, Reinhard; Bender, Benjamin; Harms, Matthew; Klebe, Stephan; Young, Peter; Kennerson, Marina; Garcia, Avencia Sanchez Mejias; Gonzalez, Michael A; Züchner, Stephan; Schule, Rebecca; Shy, Michael E; Auer-Grumbach, Michaela

    2015-09-01

    Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways. PMID:26100331

  10. In Vivo RNAi Screen Reveals Neddylation Genes as Novel Regulators of Hedgehog Signaling

    PubMed Central

    Su, Ying; Liu, Min; Ospina, Jason K.; Yang, Shengyuan; Zhu, Alan Jian

    2011-01-01

    Hedgehog (Hh) signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi) screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub) and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12) that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci), the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling. PMID:21931660

  11. Synthetic Lethal Screen Demonstrates That a JAK2 Inhibitor Suppresses a BCL6-dependent IL10RA/JAK2/STAT3 Pathway in High Grade B-cell Lymphoma.

    PubMed

    Beck, Daniel; Zobel, Jenny; Barber, Ruth; Evans, Sian; Lezina, Larissa; Allchin, Rebecca L; Blades, Matthew; Elliott, Richard; Lord, Christopher J; Ashworth, Alan; Porter, Andrew C G; Wagner, Simon D

    2016-08-01

    We demonstrate the usefulness of synthetic lethal screening of a conditionally BCL6-deficient Burkitt lymphoma cell line, DG75-AB7, with a library of small molecules to determine survival pathways suppressed by BCL6 and suggest mechanism-based treatments for lymphoma. Lestaurtinib, a JAK2 inhibitor and one of the hits from the screen, repressed survival of BCL6-deficient cells in vitro and reduced growth and proliferation of xenografts in vivo BCL6 deficiency in DG75-AB7 induced JAK2 mRNA and protein expression and STAT3 phosphorylation. Surface IL10RA was elevated by BCL6 deficiency, and blockade of IL10RA repressed STAT3 phosphorylation. Therefore, we define an IL10RA/JAK2/STAT3 pathway each component of which is repressed by BCL6. We also show for the first time that JAK2 is a direct BCL6 target gene; BCL6 bound to the JAK2 promoter in vitro and was enriched by ChIP-seq. The place of JAK2 inhibitors in the treatment of diffuse large B-cell lymphoma has not been defined; we suggest that JAK2 inhibitors might be most effective in poor prognosis ABC-DLBCL, which shows higher levels of IL10RA, JAK2, and STAT3 but lower levels of BCL6 than GC-DLBCL and might be usefully combined with novel approaches such as inhibition of IL10RA. PMID:27268052

  12. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction.

    PubMed

    Tiwari, Prabhat; Kumar, Arun; Das, Rudra Nayan; Malhotra, Vivek; VijayRaghavan, K

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  13. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction

    PubMed Central

    Tiwari, Prabhat; Malhotra, Vivek; VijayRaghavan, K.

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  14. MicroSCALE Screening Reveals Genetic Modifiers of Therapeutic Response in Melanoma

    PubMed Central

    Wood, Kris C.; Konieczkowski, David J.; Johannessen, Cory M.; Boehm, Jesse S.; Tamayo, Pablo; Botvinnik, Olga B.; Mesirov, Jill P.; Hahn, William C.; Root, David E.; Garraway, Levi A.; Sabatini, David M.

    2012-01-01

    Cell microarrays are a promising tool for performing large-scale functional genomic screening in mammalian cells at reasonable cost, but due to technical limitations, have been restricted for use with a narrow range of cell lines and short-term assays. Here, we describe MicroSCALE (Microarrays of Spatially Confined Adhesive Lentiviral Features), a cell microarray-based platform that enables application of this technology to a wide range of cell types and longer term assays. We used MicroSCALE to uncover kinases that when overexpressed partially desensitized B-RAFV600E-mutant melanoma cells to inhibitors of the mitogen-activated protein kinase kinase kinase (MAPKKK) RAF, the MAPKKs MEK1 and 2, mTOR (mammalian target of rapamycin), or PI3K (phosphatidylinositol 3-kinase). These screens indicated that cells treated with inhibitors acting through common mechanisms were affected by a similar profile of overexpressed proteins. In contrast, screens involving inhibitors acting through distinct mechanisms yielded unique profiles, a finding that has potential relevance for small molecule target identification and combination drugging studies. Further, by integrating large-scale functional screening results with cancer cell line gene expression and pharmacological sensitivity data, we validated the nuclear factor κB (NF-κB) pathway as a potential mediator of resistance to MAPK pathway inhibitors. The MicroSCALE platform described here may enable new classes of large-scale, resource-efficient screens that were not previously feasible, including those involving combinations of cell lines, perturbations, and assay outputs or those involving limited numbers of cells and limited or expensive reagents. PMID:22589389

  15. MicroSCALE screening reveals genetic modifiers of therapeutic response in melanoma.

    PubMed

    Wood, Kris C; Konieczkowski, David J; Johannessen, Cory M; Boehm, Jesse S; Tamayo, Pablo; Botvinnik, Olga B; Mesirov, Jill P; Hahn, William C; Root, David E; Garraway, Levi A; Sabatini, David M

    2012-01-01

    Cell microarrays are a promising tool for performing large-scale functional genomic screening in mammalian cells at reasonable cost, but owing to technical limitations they have been restricted for use with a narrow range of cell lines and short-term assays. Here, we describe MicroSCALE (Microarrays of Spatially Confined Adhesive Lentiviral Features), a cell microarray-based platform that enables application of this technology to a wide range of cell types and longer-term assays. We used MicroSCALE to uncover kinases that when overexpressed partially desensitized B-RAFV600E-mutant melanoma cells to inhibitors of the mitogen-activated protein kinase kinase kinase (MAPKKK) RAF, the MAPKKs MEK1 and 2 (MEK1/2, mitogen-activated protein kinase kinase 1 and 2), mTOR (mammalian target of rapamycin), or PI3K (phosphatidylinositol 3-kinase). These screens indicated that cells treated with inhibitors acting through common mechanisms were affected by a similar profile of overexpressed proteins. In contrast, screens involving inhibitors acting through distinct mechanisms yielded unique profiles, a finding that has potential relevance for small-molecule target identification and combination drugging studies. Further, by integrating large-scale functional screening results with cancer cell line gene expression and pharmacological sensitivity data, we validated the nuclear factor κB pathway as a potential mediator of resistance to MAPK pathway inhibitors. The MicroSCALE platform described here may enable new classes of large-scale, resource-efficient screens that were not previously feasible, including those involving combinations of cell lines, perturbations, and assay outputs or those involving limited numbers of cells and limited or expensive reagents. PMID:22589389

  16. Development of Synthetic Lethality Anticancer Therapeutics

    PubMed Central

    2015-01-01

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy. PMID:24893124

  17. Systematic analysis of RNAi reports identifies dismal commonality at gene-level & reveals an unprecedented enrichment in pooled shRNA screens

    PubMed Central

    Bhinder, Bhavneet; Djaballah, Hakim

    2013-01-01

    RNA interference (RNAi) has opened promising avenues to better understand gene function. Though many RNAi screens report on the identification of genes, very few, if any, have been further studied and validated. Data discrepancy is emerging as one of RNAi main pitfalls. We reasoned that a systematic analysis of lethality-based screens, since they score for cell death, would examine the extent of hit discordance at inter-screen level. To this end, we developed a methodology for literature mining and overlap analysis of several screens using both siRNA and shRNA flavors, and obtained 64 gene lists censoring an initial list of 7,430 nominated genes. We further performed a comparative analysis first at a global level followed by hit re-assessment under much more stringent conditions. To our surprise, none of the hits overlapped across the board even for PLK1, which emerged as a strong candidate in siRNA screens; but only marginally in the shRNA ones. Furthermore, EIF5B emerges as the most common hit only in the shRNA screens. A highly unusual and unprecedented result was the observation that 5,269 out of 6,664 nominated genes (~80%) in the shRNA screens were exclusive to the pooled format, raising concerns as to the merits of pooled screens which qualify hits based on relative depletions, possibly due to multiple integrations per cell, data deconvolution or inaccuracies in intracellular processing causing off-target effects. Without golden standards in place, we would encourage the community to pay more attention to RNAi screening data analysis practices, bearing in mind that it is combinatorial in nature and one active siRNA duplex or shRNA hairpin per gene does not suffice credible hit nomination. Finally, we also would like to caution interpretation of pooled shRNA screening outcomes. PMID:23848309

  18. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S

    PubMed Central

    Shiver, Anthony L.; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios

    2016-01-01

    Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376

  19. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism.

    PubMed

    Robertson, Anne L; Holmes, Geoffrey R; Bojarczuk, Aleksandra N; Burgon, Joseph; Loynes, Catherine A; Chimen, Myriam; Sawtell, Amy K; Hamza, Bashar; Willson, Joseph; Walmsley, Sarah R; Anderson, Sean R; Coles, Mark C; Farrow, Stuart N; Solari, Roberto; Jones, Simon; Prince, Lynne R; Irimia, Daniel; Rainger, G Ed; Kadirkamanathan, Visakan; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-26

    Diseases of failed inflammation resolution are common and largely incurable. Therapeutic induction of inflammation resolution is an attractive strategy to bring about healing without increasing susceptibility to infection. However, therapeutic targeting of inflammation resolution has been hampered by a lack of understanding of the underlying molecular controls. To address this drug development challenge, we developed an in vivo screen for proresolution therapeutics in a transgenic zebrafish model. Inflammation induced by sterile tissue injury was assessed for accelerated resolution in the presence of a library of known compounds. Of the molecules with proresolution activity, tanshinone IIA, derived from a Chinese medicinal herb, potently induced inflammation resolution in vivo both by induction of neutrophil apoptosis and by promoting reverse migration of neutrophils. Tanshinone IIA blocked proinflammatory signals in vivo, and its effects are conserved in human neutrophils, supporting a potential role in treating human inflammation and providing compelling evidence of the translational potential of this screening strategy. PMID:24574340

  20. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    PubMed

    Shiver, Anthony L; Osadnik, Hendrik; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios; Gross, Carol A

    2016-06-01

    Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376

  1. Large pathogen screening reveals first report of Megaselia scalaris (Diptera: Phoridae) parasitizing Apis mellifera intermissa (Hymenoptera: Apidae).

    PubMed

    Menail, Ahmed Hichem; Piot, Niels; Meeus, Ivan; Smagghe, Guy; Loucif-Ayad, Wahida

    2016-06-01

    As it is most likely that global warming will also lead to a shift in pollinator-habitats northwards, the study of southern species becomes more and more important. Pathogen screenings in subspecies of Apis mellifera capable of withstanding higher temperatures, provide an insight into future pathogen host interactions. Screenings in different climate regions also provide a global perspective on the prevalence of certain pathogens. In this project, we performed a pathogen screening in Apis mellifera intermissa, a native subspecies of Algeria in northern Africa. Colonies were sampled from different areas in the region of Annaba over a period of two years. Several pathogens were detected, among them Apicystis bombi, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae, Lake Sinai Virus, Sacbrood Virus and Deformed Wing Virus (DWV). Our screening also revealed a phoroid fly, Megaselia scalaris, parasitizing honey bee colonies, which we report here for the first time. In addition, we found DWV to be present in the adult flies and replicating virus in the larval stages of the fly, which could indicate that M. scalaris acts as a vector of DWV. PMID:27130035

  2. DNA Elements Reducing Transcriptional Gene Silencing Revealed by a Novel Screening Strategy

    PubMed Central

    Ueno, Keiichiro; Ohashi, Yuko; Mitsuhara, Ichiro

    2013-01-01

    Transcriptional gene silencing (TGS)–a phenomenon observed in endogenous genes/transgenes in eukaryotes–is a huge hindrance to transgenic technology and occurs mainly when the genes involved share sequence homology in their promoter regions. TGS depends on chromosomal position, suggesting the existence of genomic elements that suppress TGS. However, no systematic approach to identify such DNA elements has yet been reported. Here, we developed a successful novel screening strategy to identify such elements (anti-silencing regions–ASRs), based on their ability to protect a flanked transgene from TGS. A silenced transgenic tobacco plant in which a subsequently introduced transgene undergoes obligatory promoter-homology dependent TGS in trans allowed the ability of DNA elements to prevent TGS to be used as the screening criterion. We also identified ASRs in a genomic library from a different plant species (Lotus japonicus: a perennial legume); the ASRs include portions of Ty1/copia retrotransposon-like and pararetrovirus-like sequences; the retrotransposon-like sequences also showed interspecies anti-TGS activity in a TGS-induction system in Arabidopsis. Anti-TGS elements could provide effective tools to reduce TGS and ensure proper regulation of transgene expression. Furthermore, the screening strategy described here will also facilitate the efficient identification of new classes of anti-TGS elements. PMID:23382937

  3. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes

    PubMed Central

    Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-01-01

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone1,2, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down’s syndrome3-5. Which genes safeguard accurate progression through meiosis is largely unclear. Here, we developed high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNAi within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated dataset of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and now allows systematic studies of meiosis in mammals. PMID:26147080

  4. Synthetic protection short interfering RNA screen reveals glyburide as a novel radioprotector.

    PubMed

    Jiang, Jianfei; McDonald, Peter R; Dixon, Tracy M; Franicola, Darcy; Zhang, Xichen; Nie, Suhua; Epperly, Laura D; Huang, Zhentai; Kagan, Valerian E; Lazo, John S; Epperly, Michael W; Greenberger, Joel S

    2009-10-01

    To assist in screening existing drugs for use as potential radioprotectors, we used a human unbiased 16,560 short interfering RNA (siRNA) library targeting the druggable genome. We performed a synthetic protection screen that was designed to identify genes that, when silenced, protected human glioblastoma T98G cells from gamma-radiation-induced cell death. We identified 116 candidate protective genes, then identified 10 small molecule inhibitors of 13 of these candidate gene products and tested their radioprotective effects. Glyburide, a clinically used second-generation hypoglycemic drug, effectively decreased radiation-induced cell death in several cell lines including T98G, glioblastoma U-87 MG, and normal lung epithelial BEAS-2B and in primary cultures of astrocytes. Glyburide significantly increased the survival of 32D cl3 murine hematopoietic progenitor cells when administrated before irradiation. Glyburide was radioprotective in vivo (90% of C57BL/6NHsd female mice pretreated with 10 mg/kg glyburide survived 9.5 Gy total-body irradiation compared to 42% of irradiated controls, P = 0.0249). These results demonstrate the power of unbiased siRNA synthetic protection screening with a druggable genome library to identify new radioprotectors. PMID:19772462

  5. Similarity-based virtual screening for microtubule stabilizers reveals novel antimitotic scaffold.

    PubMed

    Ayoub, Ahmed T; Klobukowski, Mariusz; Tuszynski, Jack

    2013-07-01

    Microtubules are among the most studied and best characterized cancer targets identified to date. Many microtubule stabilizers have been introduced so far that work by disrupting the dynamic instability of microtubules causing mitotic block and apoptosis. However, most of these molecules, especially taxol and epothilone, suffer absorption, toxicity and/or resistance problems. Here we employ a novel similarity-based virtual screening approach in the hope of finding other microtubule stabilizers that perform better and have lower toxicity and resistance. Epothilones, discodermolide, eleutherobin and sarcodictyin A have been found to compete with taxanes for the β-tubulin binding site, which suggests common chemical features qualifying for that. Our approach was based on similarity screening against all these compounds and other microtubule stabilizers, followed by virtual screening against the taxol binding site. Some novel hits were found, together with a novel highly rigid molecular scaffold. After visual manipulations, redocking and rescoring of this novel scaffold, its affinity dramatically increased in a promising trend, which qualifies for biological testing. PMID:23871820

  6. Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Haeili, Mehri; Moore, Casey; Davis, Christopher J. C.; Cochran, James B.; Shah, Santosh; Shrestha, Tej B.; Zhang, Yaofang; Bossmann, Stefan H.; Benjamin, William H.

    2014-01-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262

  7. Screening the Budding Yeast Genome Reveals Unique Factors Affecting K2 Toxin Susceptibility

    PubMed Central

    Servienė, Elena; Lukša, Juliana; Orentaitė, Irma

    2012-01-01

    Background Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. Principal Findings We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Significance Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action. PMID:23227207

  8. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus.

    PubMed

    Haeili, Mehri; Moore, Casey; Davis, Christopher J C; Cochran, James B; Shah, Santosh; Shrestha, Tej B; Zhang, Yaofang; Bossmann, Stefan H; Benjamin, William H; Kutsch, Olaf; Wolschendorf, Frank

    2014-07-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262

  9. A large-scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum.

    PubMed

    Gao, Runchi; Zhao, Siwei; Jiang, Xupin; Sun, Yaohui; Zhao, Sanjun; Gao, Jing; Borleis, Jane; Willard, Stacey; Tang, Ming; Cai, Huaqing; Kamimura, Yoichiro; Huang, Yuesheng; Jiang, Jianxin; Huang, Zunxi; Mogilner, Alex; Pan, Tingrui; Devreotes, Peter N; Zhao, Min

    2015-05-26

    Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Among these, we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8, or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis. PMID:26012633

  10. A large scale screen reveals genes that mediate electrotaxis in Dictyostelium discoideum**

    PubMed Central

    Gao, Runchi; Zhao, Siwei; Jiang, Xupin; Sun, Yaohui; Zhao, Sanjun; Gao, Jing; Borleis, Jane; Willard, Stacey; Tang, Ming; Cai, Huaqing; Kamimura, Yoichiro; Huang, Yuesheng; Jiang, Jianxin; Huang, Zunxi; Mogilner, Alex; Pan, Tingrui; Devreotes, Peter N; Zhao, Min

    2015-01-01

    Directional cell migration in an electric field, a phenomenon called galvanotaxis or electrotaxis, occurs in many types of cells, and may play an important role in wound healing and development. Small extracellular electric fields can guide the migration of amoeboid cells, and here, we established a large-scale screening approach to search for mutants with electrotaxis phenotypes from a collection of 563 Dictyostelium discoideum strains with morphological defects. We identified 28 strains that were defective in electrotaxis and 10 strains with a slightly higher directional response. Using plasmid rescue followed by gene disruption, we identified some of the mutated genes, including some previously implicated in chemotaxis. Amongst these we studied PiaA, which encodes a critical component of TORC2, a kinase protein complex that transduces changes in motility by activating the kinase PKB (also known as Akt). Furthermore, we found that electrotaxis was decreased in mutants lacking gefA, rasC, rip3, lst8 or pkbR1, genes that encode other components of the TORC2-PKB pathway. Thus, we have developed a high-throughput screening technique that will be a useful tool to elucidate the molecular mechanisms of electrotaxis. PMID:26012633

  11. A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model.

    PubMed

    Zanesi, Nicola; Balatti, Veronica; Riordan, Jesse; Burch, Aaron; Rizzotto, Lara; Palamarchuk, Alexey; Cascione, Luciano; Lagana, Alessandro; Dupuy, Adam J; Croce, Carlo M; Pekarsky, Yuri

    2013-05-23

    TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eμ-TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL. PMID:23591791

  12. A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model

    PubMed Central

    Zanesi, Nicola; Balatti, Veronica; Riordan, Jesse; Burch, Aaron; Rizzotto, Lara; Palamarchuk, Alexey; Cascione, Luciano; Lagana, Alessandro; Dupuy, Adam J.; Croce, Carlo M.

    2013-01-01

    TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eμ−TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL. PMID:23591791

  13. A Cell-Based Screen Reveals that the Albendazole Metabolite, Albendazole Sulfone, Targets Wolbachia

    PubMed Central

    Bray, Walter M.; White, Pamela M.; Ruybal, Jordan; Lokey, R. Scott; Debec, Alain; Sullivan, William

    2012-01-01

    Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts. PMID:23028321

  14. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma.

    PubMed

    Garrison, Erin; Treeck, Moritz; Ehret, Emma; Butz, Heidi; Garbuz, Tamila; Oswald, Benji P; Settles, Matt; Boothroyd, John; Arrizabalaga, Gustavo

    2012-01-01

    Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle. PMID:23209419

  15. Characterization of Differentiated SH-SY5Y as Neuronal Screening Model Reveals Increased Oxidative Vulnerability

    PubMed Central

    Forster, J. I.; Köglsberger, S.; Trefois, C.; Boyd, O.; Baumuratov, A. S.; Buck, L.; Balling, R.; Antony, P. M. A.

    2016-01-01

    The immortalized and proliferative cell line SH-SY5Y is one of the most commonly used cell lines in neuroscience and neuroblastoma research. However, undifferentiated SH-SY5Y cells share few properties with mature neurons. In this study, we present an optimized neuronal differentiation protocol for SH-SY5Y that requires only two work steps and 6 days. After differentiation, the cells present increased levels of ATP and plasma membrane activity but reduced expression of energetic stress response genes. Differentiation results in reduced mitochondrial membrane potential and decreased robustness toward perturbations with 6-hydroxydopamine. We are convinced that the presented differentiation method will leverage genetic and chemical high-throughput screening projects targeting pathways that are involved in the selective vulnerability of neurons with high energetic stress levels. PMID:26738520

  16. Screening for Dimethylarginine Dimethylaminohydrolase Inhibitors Reveals Ebselen as a Bioavailable Inactivator

    PubMed Central

    2011-01-01

    Dimethylarginine dimethylaminohydrolase (DDAH) is an endogenous regulator of nitric oxide production and represents a potential therapeutic target. However, only a small number of biologically useful inhibitors have been reported, and many of these are substrate analogues. To seek more diverse scaffolds, we developed a high-throughput screening (HTS) assay and queried two small libraries totaling 2446 compounds. The HTS assay proved to be robust, reproducible, and scalable, with Z′ factors ≥ 0.78. One inhibitor, ebselen, is structurally divergent from substrate and was characterized in detail. This selenazole covalently inactivates DDAH in vitro and in cultured cells. The rate constant for inactivation of DDAH (44000 ± 2400 M–1 s–1) is greater than those reported for any other target, suggesting that this pathway is an important aspect of ebselen's total pharmacological effects. PMID:21927644

  17. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling

    PubMed Central

    Fröhlich, Florian; Moreira, Karen; Aguilar, Pablo S.; Hubner, Nina C.; Mann, Matthias; Walter, Peter

    2009-01-01

    The protein and lipid composition of eukaryotic plasma membranes is highly dynamic and regulated according to need. The sphingolipid-responsive Pkh kinases are candidates for mediating parts of this regulation, as they affect a diverse set of plasma membrane functions, such as cortical actin patch organization, efficient endocytosis, and eisosome assembly. Eisosomes are large protein complexes underlying the plasma membrane and help to sort a group of membrane proteins into distinct domains. In this study, we identify Nce102 in a genome-wide screen for genes involved in eisosome organization and Pkh kinase signaling. Nce102 accumulates in membrane domains at eisosomes where Pkh kinases also localize. The relative abundance of Nce102 in these domains compared with the rest of the plasma membrane is dynamically regulated by sphingolipids. Furthermore, Nce102 inhibits Pkh kinase signaling and is required for plasma membrane organization. Therefore, Nce102 might act as a sensor of sphingolipids that regulates plasma membrane function. PMID:19564405

  18. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells

    PubMed Central

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells. PMID:23212246

  19. What RNAi screens in model organisms revealed about microbicidal response in mammals?

    PubMed Central

    Abnave, Prasad; Conti, Filippo; Torre, Cedric; Ghigo, Eric

    2015-01-01

    The strategies evolved by pathogens to infect hosts and the mechanisms used by the host to eliminate intruders are highly complex. Because several biological pathways and processes are conserved across model organisms, these organisms have been used for many years to elucidate and understand the mechanisms of the host-pathogen relationship and particularly to unravel the molecular processes enacted by the host to kill pathogens. The emergence of RNA interference (RNAi) and the ability to apply it toward studies in model organisms have allowed a breakthrough in the elucidation of host-pathogen interactions. The aim of this mini-review is to highlight and describe recent breakthroughs in the field of host-pathogen interactions using RNAi screens of model organisms. We will focus specifically on the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. Moreover, a recent study examining the immune system of planarian will be discussed. PMID:25629007

  20. A directed mutagenesis screen in Drosophila melanogaster reveals new mutants that influence hedgehog signaling.

    PubMed Central

    Haines, N; van den Heuvel, M

    2000-01-01

    The Hedgehog signaling pathway has been recognized as essential for patterning processes in development of metazoan animal species. The signaling pathway is, however, not entirely understood. To start to address this problem, we set out to isolate new mutations that influence Hedgehog signaling. We performed a mutagenesis screen for mutations that dominantly suppress Hedgehog overexpression phenotypes in the Drosophila melanogaster wing. We isolated four mutations that influence Hedgehog signaling. These were analyzed in the amenable wing system using genetic and molecular techniques. One of these four mutations affects the stability of the Hedgehog expression domain boundary, also known as the organizer in the developing wing. Another mutation affects a possible Hedgehog autoregulation mechanism, which stabilizes the same boundary. PMID:11102373

  1. RNAi Screen Reveals Potentially Novel Roles of Cytokines in Myoblast Differentiation

    PubMed Central

    Ge, Yejing; Waldemer, Rachel J.; Nalluri, Ramakrishna; Nuzzi, Paul D.; Chen, Jie

    2013-01-01

    Cytokines are cell-secreted signaling molecules that modulate various cellular functions, with the best-characterized roles in immune responses. The expression of numerous cytokines in skeletal muscle tissues and muscle cells has been reported, but their function in skeletal myogenesis, the formation of skeletal muscle, has been largely underexplored. To systematically examine the potential roles of cytokines in skeletal myogenesis, we undertook an RNAi screen of 134 mouse cytokine genes for their involvement in the differentiation of C2C12 myoblasts. Our results have uncovered 29 cytokines as strong candidates for novel myogenic regulators, potentially conferring positive and negative regulation at distinct stages of myogenesis. These candidates represent a diverse collection of cytokine families, including interleukins, TNF-related factors, and chemokines. Our findings suggest the fundamental importance of cytokines in the cell-autonomous regulation of myoblast differentiation, and may facilitate future identification of novel therapeutic targets for improving muscle regeneration and growth in health and diseases. PMID:23844157

  2. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    PubMed Central

    Ambegaokar, Surendra S.; Jackson, George R.

    2011-01-01

    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350

  3. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry.

    PubMed

    Silva-Ayala, Daniela; López, Tomás; Gutiérrez, Michelle; Perrimon, Norbert; López, Susana; Arias, Carlos F

    2013-06-18

    Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells. PMID:23733942

  4. High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    PubMed Central

    Han, Xiao; Guo, Jinhai; Deng, Weiwei; Zhang, Chenying; Du, Peige; Shi, Taiping; Ma, Dalong

    2008-01-01

    Background Estrogen receptor α (ERα) is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE) with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. Results From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131) as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE). In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene. Conclusion We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells. PMID:18847501

  5. Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific.

    PubMed

    Dubern, Jean-Frédéric; Cigana, Cristina; De Simone, Maura; Lazenby, James; Juhas, Mario; Schwager, Stephan; Bianconi, Irene; Döring, Gerd; Eberl, Leo; Williams, Paul; Bragonzi, Alessandra; Cámara, Miguel

    2015-11-01

    Pseudomonas aeruginosa is a multi-host opportunistic pathogen causing a wide range of diseases because of the armoury of virulence factors it produces, and it is difficult to eradicate because of its intrinsic resistance to antibiotics. Using an integrated whole-genome approach, we searched for P. aeruginosa virulence genes with multi-host relevance. We constructed a random library of 57 360 Tn5 mutants in P. aeruginosa PAO1-L and screened it in vitro for those showing pleiotropic effects in virulence phenotypes (reduced swarming, exo-protease and pyocyanin production). A set of these pleiotropic mutants were assayed for reduced toxicity in Drosophila melanogaster, Caenorhabditis elegans, human cell lines and mice. Surprisingly, the screening revealed that the virulence of the majority of P. aeruginosa mutants varied between disease models, suggesting that virulence is dependent on the disease model used and hence the host environment. Genomic analysis revealed that these virulence-related genes encoded proteins from almost all functional classes, which were conserved among P. aeruginosa strains. Thus, we provide strong evidence that although P. aeruginosa is capable of infecting a wide range of hosts, many of its virulence determinants are host specific. These findings have important implication when searching for novel anti-virulence targets to develop new treatments against P. aeruginosa. PMID:25845292

  6. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells.

    PubMed

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA) library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S); therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2. PMID:26325290

  7. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells

    PubMed Central

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA) library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S); therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2. PMID:26325290

  8. Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma

    PubMed Central

    Hettmer, Simone; Schinzel, Anna C; Tchessalova, Daria; Schneider, Michaela; Parker, Christina L; Bronson, Roderick T; Richards, Nigel GJ; Hahn, William C; Wagers, Amy J

    2015-01-01

    Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value. DOI: http://dx.doi.org/10.7554/eLife.09436.001 PMID:26499495

  9. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase

    PubMed Central

    Fukuoh, Atsushi; Cannino, Giuseppe; Gerards, Mike; Buckley, Suzanne; Kazancioglu, Selena; Scialo, Filippo; Lihavainen, Eero; Ribeiro, Andre; Dufour, Eric; Jacobs, Howard T

    2014-01-01

    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number. PMID:24952591

  10. Metagenome-based screening reveals worldwide distribution of LOV-domain proteins.

    PubMed

    Pathak, Gopal P; Losi, Aba; Gärtner, Wolfgang

    2012-01-01

    Metagenomes from various environments were screened for sequences homologous to light, oxygen, voltage (LOV)-domain proteins. LOV domains are flavin binding, blue-light (BL)-sensitive photoreceptors present in 10-15% of deposited prokaryotic genomes. The LOV domain has been selected, since BL is an ever present and sometimes harmful environmental factor for microbial communities. The majority of the metagenome material originated from the Sargasso Sea Project and from open-ocean sampling. In total, more than 40 million open reading frames were investigated for LOV-domain sequences. Most sequences were identified from aquatic material, but they were also found in metagenomes from soil and extreme environments, e.g. hypersaline ponds, acidic mine drainage or wastewater treatment facilities. A total of 578 LOV domains was assigned by three criteria: (1) the highly conserved core region, (2) the presence of minimally 14 essential amino acids and (3) a minimal length of 80 amino acids. More than three quarters of these identified genes showed a sequence divergence of more than 20% from database-deposited LOV domains from known organisms, indicating the large variation of this photoreceptor motif. The broad occurrence of LOV domains in metagenomes emphasizes their important physiological role for light-induced signal transduction, stress adaptation and survival mechanisms. PMID:22044076

  11. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation.

    PubMed

    Blondel, S; Egesipe, A-L; Picardi, P; Jaskowiak, A-L; Notarnicola, M; Ragot, J; Tournois, J; Le Corf, A; Brinon, B; Poydenot, P; Georges, P; Navarro, C; Pitrez, P R; Ferreira, L; Bollot, G; Bauvais, C; Laustriat, D; Mejat, A; De Sandre-Giovannoli, A; Levy, N; Bifulco, M; Peschanski, M; Nissan, X

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by a dramatic appearance of premature aging. HGPS is due to a single-base substitution in exon 11 of the LMNA gene (c.1824C>T) leading to the production of a toxic form of the prelamin A protein called progerin. Because farnesylation process had been shown to control progerin toxicity, in this study we have developed a screening method permitting to identify new pharmacological inhibitors of farnesylation. For this, we have used the unique potential of pluripotent stem cells to have access to an unlimited and relevant biological resource and test 21,608 small molecules. This study identified several compounds, called monoaminopyrimidines, which target two key enzymes of the farnesylation process, farnesyl pyrophosphate synthase and farnesyl transferase, and rescue in vitro phenotypes associated with HGPS. Our results opens up new therapeutic possibilities for the treatment of HGPS by identifying a new family of protein farnesylation inhibitors, and which may also be applicable to cancers and diseases associated with mutations that involve farnesylated proteins. PMID:26890144

  12. Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion

    PubMed Central

    Kleinfelter, Lara M.; Jangra, Rohit K.; Jae, Lucas T.; Herbert, Andrew S.; Mittler, Eva; Stiles, Katie M.; Wirchnianski, Ariel S.; Kielian, Margaret; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. PMID:26126854

  13. Genetic Signature of Histiocytic Sarcoma Revealed by a Sleeping Beauty Transposon Genetic Screen in Mice

    PubMed Central

    Been, Raha A.; Linden, Michael A.; Hager, Courtney J.; DeCoursin, Krista J.; Abrahante, Juan E.; Landman, Sean R.; Steinbach, Michael; Sarver, Aaron L.; Largaespada, David A.; Starr, Timothy K.

    2014-01-01

    Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients. PMID:24827933

  14. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis.

    PubMed

    Govin, Jérôme; Dorsey, Jean; Gaucher, Jonathan; Rousseaux, Sophie; Khochbin, Saadi; Berger, Shelley L

    2010-08-15

    Profound epigenetic differences exist between genomes derived from male and female gametes; however, the nature of these changes remains largely unknown. We undertook a systematic investigation of chromatin reorganization during gametogenesis, using the model eukaryote Saccharomyces cerevisiae to examine sporulation, which has strong similarities with higher eukaryotic spermatogenesis. We established a mutational screen of histones H3 and H4 to uncover substitutions that reduce sporulation efficiency. We discovered two patches of residues-one on H3 and a second on H4-that are crucial for sporulation but not critical for mitotic growth, and likely comprise interactive nucleosomal surfaces. Furthermore, we identified novel histone post-translational modifications that mark the chromatin reorganization process during sporulation. First, phosphorylation of H3T11 appears to be a key modification during meiosis, and requires the meiotic-specific kinase Mek1. Second, H4 undergoes amino tail acetylation at Lys 5, Lys 8, and Lys 12, and these are synergistically important for post-meiotic chromatin compaction, occurring subsequent to the post-meiotic transient peak in phosphorylation at H4S1, and crucial for recruitment of Bdf1, a bromodomain protein, to chromatin in mature spores. Strikingly, the presence and temporal succession of the new H3 and H4 modifications are detected during mouse spermatogenesis, indicating that they are conserved through evolution. Thus, our results show that investigation of gametogenesis in yeast provides novel insights into chromatin dynamics, which are potentially relevant to epigenetic modulation of the mammalian process. PMID:20713519

  15. Genome-Wide Screen Reveals Replication Pathway for Quasi-Palindrome Fragility Dependent on Homologous Recombination

    PubMed Central

    Zhang, Yu; Saini, Natalie; Sheng, Ziwei; Lobachev, Kirill S.

    2013-01-01

    Inverted repeats capable of forming hairpin and cruciform structures present a threat to chromosomal integrity. They induce double strand breaks, which lead to gross chromosomal rearrangements, the hallmarks of cancers and hereditary diseases. Secondary structure formation at this motif has been proposed to be the driving force for the instability, albeit the mechanisms leading to the fragility are not well-understood. We carried out a genome-wide screen to uncover the genetic players that govern fragility of homologous and homeologous Alu quasi-palindromes in the yeast Saccharomyces cerevisiae. We found that depletion or lack of components of the DNA replication machinery, proteins involved in Fe-S cluster biogenesis, the replication-pausing checkpoint pathway, the telomere maintenance complex or the Sgs1-Top3-Rmi1 dissolvasome augment fragility at Alu-IRs. Rad51, a component of the homologous recombination pathway, was found to be required for replication arrest and breakage at the repeats specifically in replication-deficient strains. These data demonstrate that Rad51 is required for the formation of breakage-prone secondary structures in situations when replication is compromised while another mechanism operates in DSB formation in replication-proficient strains. PMID:24339793

  16. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination.

    PubMed

    Zhang, Yu; Saini, Natalie; Sheng, Ziwei; Lobachev, Kirill S

    2013-01-01

    Inverted repeats capable of forming hairpin and cruciform structures present a threat to chromosomal integrity. They induce double strand breaks, which lead to gross chromosomal rearrangements, the hallmarks of cancers and hereditary diseases. Secondary structure formation at this motif has been proposed to be the driving force for the instability, albeit the mechanisms leading to the fragility are not well-understood. We carried out a genome-wide screen to uncover the genetic players that govern fragility of homologous and homeologous Alu quasi-palindromes in the yeast Saccharomyces cerevisiae. We found that depletion or lack of components of the DNA replication machinery, proteins involved in Fe-S cluster biogenesis, the replication-pausing checkpoint pathway, the telomere maintenance complex or the Sgs1-Top3-Rmi1 dissolvasome augment fragility at Alu-IRs. Rad51, a component of the homologous recombination pathway, was found to be required for replication arrest and breakage at the repeats specifically in replication-deficient strains. These data demonstrate that Rad51 is required for the formation of breakage-prone secondary structures in situations when replication is compromised while another mechanism operates in DSB formation in replication-proficient strains. PMID:24339793

  17. A genome-wide screen in Saccharomyces cerevisiae Reveals Pathways affected By Arsenic Toxicity

    PubMed Central

    Zhou, Xue; Arita, Adriana; Ellen, Thomas P.; Liu, Xin; Bai, Jingxiang; Rooney, John P.; Kurtz, Adrienne D.; Klein, Catherine B.; Dai, Wei; Begley, Thomas J.; Costa, Max

    2009-01-01

    We have used Saccharomyces cerevisiae to identify toxicologically important proteins and pathways involved in arsenic-induced toxicity and carcinogenicity in humans. We performed a systemic screen of the complete set of 4,733 haploid S. cerevisiae single gene deletion mutants to identify those that have decreased or increased growth, relative to wild-type, after exposure to sodium arsenite (NaAsO2). IC50 values for all mutants were determined to further validate our results. Ultimately we identified 248 mutants sensitive to arsenite and 5 mutants resistant to arsenite exposure. We analyzed the proteins corresponding to arsenite-sensitive mutants and determined that they belonged to functional categories that include protein binding, phosphate metabolism, vacuolar/lysosomal transport, protein targeting, sorting, and translocation, cell growth/morphogenesis, cell polarity and filament formation. Furthermore, these data were mapped onto a protein interactome to identify arsenite toxicity-modulating networks. These networks are associated with the cytoskeleton, ubiquitination, histone acetylation and the MAPK signaling pathway. Our studies have potential implications for understanding toxicity and carcinogenesis in arsenic-induced human conditions, such as cancer and aging. PMID:19631266

  18. RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection.

    PubMed

    Derré, Isabelle; Pypaert, Marc; Dautry-Varsat, Alice; Agaisse, Hervé

    2007-10-26

    Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific. PMID:17967059

  19. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks.

    PubMed

    Yang, Hee-Jeong; Bogomolnaya, Lydia M; Elfenbein, Johanna R; Endicott-Yazdani, Tiana; Reynolds, M Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin; McClelland, Michael; Andrews-Polymenis, Helene

    2016-04-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used bySalmonellato colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence ofSalmonella entericaserotype Typhimurium in chickens. A library of 182S.Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks.STM0580,STM1295,STM1297,STM3612,STM3615, andSTM3734are needed forSalmonellato colonize and persist in chicks and were not previously associated with this ability. One of these key genes,STM1297(selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572

  20. A Genetic Mosaic Screen Reveals Ecdysone-Responsive Genes Regulating Drosophila Oogenesis.

    PubMed

    Ables, Elizabeth T; Hwang, Grace H; Finger, Danielle S; Hinnant, Taylor D; Drummond-Barbosa, Daniela

    2016-01-01

    Multiple aspects of Drosophila oogenesis, including germline stem cell activity, germ cell differentiation, and follicle survival, are regulated by the steroid hormone ecdysone. While the transcriptional targets of ecdysone signaling during development have been studied extensively, targets in the ovary remain largely unknown. Early studies of salivary gland polytene chromosomes led to a model in which ecdysone stimulates a hierarchical transcriptional cascade, wherein a core group of ecdysone-sensitive transcription factors induce tissue-specific responses by activating secondary branches of transcriptional targets. More recently, genome-wide approaches have identified hundreds of putative ecdysone-responsive targets. Determining whether these putative targets represent bona fide targets in vivo, however, requires that they be tested via traditional mutant analysis in a cell-type specific fashion. To investigate the molecular mechanisms whereby ecdysone signaling regulates oogenesis, we used genetic mosaic analysis to screen putative ecdysone-responsive genes for novel roles in the control of the earliest steps of oogenesis. We identified a cohort of genes required for stem cell maintenance, stem and progenitor cell proliferation, and follicle encapsulation, growth, and survival. These genes encode transcription factors, chromatin modulators, and factors required for RNA transport, stability, and ribosome biogenesis, suggesting that ecdysone might control a wide range of molecular processes during oogenesis. Our results suggest that, although ecdysone target genes are known to have cell type-specific roles, many ecdysone response genes that control larval or pupal cell types at developmental transitions are used reiteratively in the adult ovary. These results provide novel insights into the molecular mechanisms by which ecdysone signaling controls oogenesis, laying new ground for future studies. PMID:27226164

  1. A Genetic Mosaic Screen Reveals Ecdysone-Responsive Genes Regulating Drosophila Oogenesis

    PubMed Central

    Ables, Elizabeth T.; Hwang, Grace H.; Finger, Danielle S.; Hinnant, Taylor D.; Drummond-Barbosa, Daniela

    2016-01-01

    Multiple aspects of Drosophila oogenesis, including germline stem cell activity, germ cell differentiation, and follicle survival, are regulated by the steroid hormone ecdysone. While the transcriptional targets of ecdysone signaling during development have been studied extensively, targets in the ovary remain largely unknown. Early studies of salivary gland polytene chromosomes led to a model in which ecdysone stimulates a hierarchical transcriptional cascade, wherein a core group of ecdysone-sensitive transcription factors induce tissue-specific responses by activating secondary branches of transcriptional targets. More recently, genome-wide approaches have identified hundreds of putative ecdysone-responsive targets. Determining whether these putative targets represent bona fide targets in vivo, however, requires that they be tested via traditional mutant analysis in a cell-type specific fashion. To investigate the molecular mechanisms whereby ecdysone signaling regulates oogenesis, we used genetic mosaic analysis to screen putative ecdysone-responsive genes for novel roles in the control of the earliest steps of oogenesis. We identified a cohort of genes required for stem cell maintenance, stem and progenitor cell proliferation, and follicle encapsulation, growth, and survival. These genes encode transcription factors, chromatin modulators, and factors required for RNA transport, stability, and ribosome biogenesis, suggesting that ecdysone might control a wide range of molecular processes during oogenesis. Our results suggest that, although ecdysone target genes are known to have cell type-specific roles, many ecdysone response genes that control larval or pupal cell types at developmental transitions are used reiteratively in the adult ovary. These results provide novel insights into the molecular mechanisms by which ecdysone signaling controls oogenesis, laying new ground for future studies. PMID:27226164

  2. Reverse genetic screening reveals poor correlation between Morpholino-induced and mutant phenotypes in zebrafish

    PubMed Central

    Gupta, A.; Grosse, A. S.; van Impel, A.; Kirchmaier, B. C.; Peterson-Maduro, J.; Kourkoulis, G.; Male, I.; DeSantis, D.F.; Sheppard-Tindell, S.; Ebarasi, L.; Betsholtz, C.; Schulte-Merker, S.; Wolfe, S. A.; Lawson, N. D.

    2014-01-01

    SUMMARY The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than twenty genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately eighty percent of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses. PMID:25533206

  3. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease

    PubMed Central

    Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.

    2014-01-01

    Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557

  4. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    PubMed Central

    Kowtoniuk, Walter E.; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David R.

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3′-aminoacylated tRNAs, nucleobase-modified RNAs, and 5′-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule–RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule–RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule–RNA conjugates, including 3′-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5′ terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (≲200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  5. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA.

    PubMed

    Kowtoniuk, Walter E; Shen, Yinghua; Heemstra, Jennifer M; Agarwal, Isha; Liu, David R

    2009-05-12

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule-RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule-RNA conjugates, including 3'-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5' terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (approximately < 200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  6. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases.

    PubMed

    Shindo, Takayuki; Kaschani, Farnusch; Yang, Fan; Kovács, Judit; Tian, Fang; Kourelis, Jiorgos; Hong, Tram Ngoc; Colby, Tom; Shabab, Mohammed; Chawla, Rohini; Kumari, Selva; Ilyas, Muhammad; Hörger, Anja C; Alfano, James R; van der Hoorn, Renier A L

    2016-09-01

    Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes. PMID:27603016

  7. Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli

    PubMed Central

    Kumar, Ashwani; Stewart, Geordie; Samanfar, Bahram; Aoki, Hiroyuki; Wagih, Omar; Vlasblom, James; Phanse, Sadhna; Lad, Krunal; Yeou Hsiung Yu, Angela; Graham, Christopher; Jin, Ke; Brown, Eric; Golshani, Ashkan; Kim, Philip; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack; Houry, Walid A.; Parkinson, John; Emili, Andrew

    2014-01-01

    Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems. PMID:24586182

  8. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening

    PubMed Central

    Kuznetsov, Vyacheslav I.; Hengge, Alvan C.; Johnson, Sean J.

    2013-01-01

    The recently discovered 150-residue human VHZ (VH1 related protein, Z member) is one of the smallest protein tyrosine phosphatases (PTPs) known, and contains only the minimal structural elements common to all PTPs. We report a substrate screening analysis and a crystal structure of the VHZ complex with vanadate at 1.1 Å resolution, with a detailed structural comparison with other members of the protein tyrosine phosphatase family, including classical tyrosine-specific protein tyrosine phosphatases (PTPs) and dual specific phosphatases (DSPs). A screen with 360 phosphorylated peptides shows VHZ efficiently catalyzes the hydrolysis of phospho-tyrosine(pY)-containing peptides, but exhibits no activity toward phospho-serine (pS) or phospho-threonine (pT) peptides. The new structure reveals a deep and narrow active site more typical of the classical tyrosine specific PTPs. Despite the high structural and sequence similarities between VHZ and classical PTPs, its general acid IPD-loop is most likely conformationally rigid, in contrast to the flexible WPD counterpart of classical PTPs. VHZ also lacks substrate recognition domains and other domains typically found on classical PTPs. It is therefore proposed that VHZ is more properly classified as an atypical PTP rather than an atypical DSP, as has been suggested. PMID:23145819

  9. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    PubMed Central

    Rallis, Charalampos; López-Maury, Luis; Georgescu, Teodora; Pancaldi, Vera; Bähler, Jürg

    2014-01-01

    Summary Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not. PMID:24463365

  10. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  11. A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression

    PubMed Central

    Millet, Yves A.; Chao, Michael C.; Sasabe, Jumpei; Davis, Brigid M.

    2015-01-01

    Diverse environmental stimuli and a complex network of regulatory factors are known to modulate expression of Vibrio cholerae's principal virulence factors. However, there is relatively little known about how metabolic factors impinge upon the pathogen's well-characterized cascade of transcription factors that induce expression of cholera toxin and the toxin-coregulated pilus (TCP). Here, we used a transposon insertion site (TIS) sequencing-based strategy to identify new factors required for expression of tcpA, which encodes the major subunit of TCP, the organism's chief intestinal colonization factor. Besides identifying most of the genes known to modulate tcpA expression, the screen yielded ptsI and ptsH, which encode the enzyme I (EI) and Hpr components of the V. cholerae phosphoenolpyruvate phosphotransferase system (PTS). In addition to reduced expression of TcpA, strains lacking EI, Hpr, or the associated EIIAGlc protein produced less cholera toxin (CT) and had a diminished capacity to colonize the infant mouse intestine. The PTS modulates virulence gene expression by regulating expression of tcpPH and aphAB, which themselves control expression of toxT, the central activator of virulence gene expression. One mechanism by which PTS promotes virulence gene expression appears to be by modulating the amounts of intracellular cyclic AMP (cAMP). Our findings reveal that the V. cholerae PTS is an additional modulator of the ToxT regulon and demonstrate the potency of loss-of-function TIS sequencing screens for defining regulatory networks. PMID:26056384

  12. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  13. Phenothiazine Neuroleptics Signal to the Human Insulin Promoter as Revealed by a Novel High-Throughput Screen

    PubMed Central

    KISELYUK, ALICE; FARBER-KATZ, SUZETTE; COHEN, TOM; LEE, SEUNG-HEE; GERON, IFAT; AZIMI, BEHRAD; HEYNEN-GENEL, SUSANNE; SINGER, ODED; PRICE, JEFFREY; MERCOLA, MARK; ITKIN-ANSARI, PAMELA; LEVINE, FRED

    2012-01-01

    A number of diabetogenic stimuli interact to influence insulin promoter activity, making it an attractive target for both mechanistic studies and therapeutic interventions. High-throughput screening (HTS) for insulin promoter modulators has the potential to reveal novel inputs into the control of that central element of the pancreatic β-cell. A cell line from human islets in which the expression of insulin and other β-cell-restricted genes are modulated by an inducible form of the bHLH transcription factor E47 was developed. This cell line, T6PNE, was adapted for HTS by transduction with a vector expressing green fluorescent protein under the control of the human insulin promoter. The resulting cell line was screened against a library of known drugs for those that increase insulin promoter activity. Members of the phenothiazine class of neuroleptics increased insulin gene expression upon short-term exposure. Chronic treatment, however, resulted in suppression of insulin promoter activity, consistent with the effect of phenothiazines observed clinically to induce diabetes in chronically treated patients. In addition to providing insights into previously unrecognized targets and mechanisms of action of phenothiazines, the novel cell line described here provides a broadly applicable platform for mining new molecular drug targets and central regulators of β-cell differentiated function. PMID:20547533

  14. A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer.

    PubMed

    O'Donnell, Kathryn A; Keng, Vincent W; York, Brian; Reineke, Erin L; Seo, Daekwan; Fan, Danhua; Silverstein, Kevin A T; Schrum, Christina T; Xie, Wei Rose; Mularoni, Loris; Wheelan, Sarah J; Torbenson, Michael S; O'Malley, Bert W; Largaespada, David A; Boeke, Jef D

    2012-05-22

    The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy. PMID:22556267

  15. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source. PMID:24187129

  16. In vitro breast cancer cell lethality of Brazilian plant extracts.

    PubMed

    Suffredini, I B; Paciencia, M L B; Frana, S A; Varella, A D; Younes, R N

    2007-10-01

    In this study we screened the cytotoxicity of 1220 plant extracts obtained from 351 plants belonging to 74 families occurring in the Amazon and Atlantic rain forests against MCF-7 human breast adenocarcinoma cell lines. All extracts were tested at a dose of 100 microg/mL. Only 11 aqueous or organic extracts belonging to the Annonaceae, Apocynaceae, Araceae, Clusiaceae, Flacourtiaceae, Leguminosae, Olacaceae and Violaceae showed marked lethal activity. Vismia guianensis and Annona hypoglauca extracts showed the greatest lethal activity. PMID:18236788

  17. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling.

    PubMed

    Dong, Chuanfu; Dolke, Franziska; von Reuss, Stephan H

    2016-08-14

    The indole ascarosides (icas) represent a highly potent class of nematode-derived modular signalling components that integrate structural inputs from amino acid, carbohydrate, and fatty acid metabolism. Comparative analysis of the crude exo-metabolome of hermaphroditic Caenorhabditis briggsae using a highly sensitive mass spectrometric screen reveals an indole ascaroside blend dominated by two new components. The structures of isolated icas#2 and icas#6.2 were determined by NMR spectroscopy and confirmed by total synthesis and chemical correlation. Low atto- to femtomolar amounts of icas#2 and icas#6.2 act in synergism to attract males indicating a function as sex pheromone. Comparative analysis of 14 Caenorhabditis species further demonstrates that species-specific indole ascaroside biosynthesis is highly conserved in the Elegans group. Functional characterization of the dominating indole ascarosides icas#2, icas#3, and icas#9 reveals a high degree of species-specificity and considerable variability with respect to gender-specificity, thus, confirming that indole ascarosides modulate different biological functions within the Elegans group. Although the nematode response was usually most pronounced towards conspecific signals, Caenorhabditis brenneri, the only species of the Elegans group that does not produce any indole ascarosides, exhibits a robust response to icas#2 suggesting the potential for interspecies interactions. PMID:27381649

  18. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis

    PubMed Central

    Stadelmann, Britta; Rufener, Reto; Aeschbacher, Denise; Spiliotis, Markus; Gottstein, Bruno; Hemphill, Andrew

    2016-01-01

    The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load. PMID:26967740

  19. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis.

    PubMed

    Stadelmann, Britta; Rufener, Reto; Aeschbacher, Denise; Spiliotis, Markus; Gottstein, Bruno; Hemphill, Andrew

    2016-03-01

    The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load. PMID:26967740

  20. Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity

    PubMed Central

    Sandlin, Rebecca D.; Fong, Kim Y.; Wicht, Kathryn J.; Carrell, Holly M.; Egan, Timothy J.; Wright, David W.

    2014-01-01

    The emergence of drug resistant strains of Plasmodium spp. creates a critical need for the development of novel antimalarials. Formation of hemozoin, a crystalline heme detoxification process vital to parasite survival serves as an important drug target. The quinoline antimalarials including chloroquine and amodiaquine owe their antimalarial activity to inhibition of hemozoin formation. Though in vivo formation of hemozoin occurs within the presence of neutral lipids, the lipophilic detergent NP-40 was previously shown to serve as a surrogate in the β-hematin (synthetic hemozoin) formation process. Consequently, an NP-40 mediated β-hematin formation assay was developed for use in high-throughput screening. Here, the assay was utilized to screen 144,330 compounds for the identification of inhibitors of crystallization, resulting in 530 hits. To establish the effectiveness of these target-based β-hematin inhibitors against Plasmodiumfalciparum, each hit was further tested in cultures of parasitized red blood cells. This effort revealed that 171 of the β-hematin inhibitors are also active against the parasite. Dose–response data identified 73 of these β-hematin inhibitors have IC50 values ⩽5 μM, including 25 compounds with nanomolar activity against P. falciparum. A scaffold-based analysis of this data identified 14 primary scaffolds that represent 46% of the 530 total hits. Representative compounds from each of the classes were further assessed for hemozoin inhibitory activity in P. falciparum infected human erythrocytes. Each of the hit compounds tested were found to be positive inhibitors, while a negative control did not perturb this biological pathway in culture. PMID:25516843

  1. Toxicology screen

    MedlinePlus

    Barbiturates - screen; Benzodiazepines - screen; Amphetamines - screen; Analgesics - screen; Antidepressants - screen; Narcotics - screen; Phenothiazines - screen; Drug abuse screen; Blood alcohol test

  2. A Complex Regulatory Network Coordinating Cell Cycles During C. elegans Development Is Revealed by a Genome-Wide RNAi Screen

    PubMed Central

    Roy, Sarah H.; Tobin, David V.; Memar, Nadin; Beltz, Eleanor; Holmen, Jenna; Clayton, Joseph E.; Chiu, Daniel J.; Young, Laura D.; Green, Travis H.; Lubin, Isabella; Liu, Yuying; Conradt, Barbara; Saito, R. Mako

    2014-01-01

    The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development. PMID:24584095

  3. Virtual screening reveals a viral-like polymerase inhibitor that complexes with the DNA polymerase of Moniliophthora perniciosa.

    PubMed

    Andrade, B S; Souza, C S; Santos, G; Góes-Neto, A

    2016-01-01

    The filamentous fungus Moniliophthora perniciosa is a basidiomycota that causes the witches' broom disease in cocoa trees (Theobroma cacao L.). The mitochondrial DNA polymerase of M. perniciosa (MpmitDNApol) is classified within the B family of DNA polymerases, which can be found in viruses and cellular organelles. Using virtual screening processes, accessing KEGG, PubChem, and ZINC databases, we selected the 27 best putative nucleoside viral-like polymerase inhibitors to test against MpmitDNApol. We used Autodock Vina to perform docking simulations of the selected molecules and to return energy values in several ligand conformations. Then, we used Pymol v1.7.4.4 to check the stereochemistry of chiral carbons, hydrogen bonding receptors, absence or presence of hydrogen, sub and superstructure, numbers of rings, rotatable bonds, and donor groups. We selected the Entecavir Hydrate, a drug used to control hepatitis B; subsequently AMBER 14 was used to describe the behavior of polymerase-entecavir complex after setting up 3500 ps of simulation in water at a temperature of 300 K. From the simulation, a graph of Potential Energy was generated revealing that the ligand remains in the catalytic site after 3500 ps with a final energy of -612,587.4214 kcal/mol. PMID:27323084

  4. A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis

    PubMed Central

    Jose, Mini; Tollis, Sylvain; Nair, Deepak; Mitteau, Romain; Velours, Christophe; Massoni-Laporte, Aurelie; Royou, Anne; Sibarita, Jean-Baptiste; McCusker, Derek

    2015-01-01

    The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis. PMID:25947137

  5. Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib

    PubMed Central

    Jagannathan, S; Abdel-Malek, M A Y; Malek, E; Vad, N; Latif, T; Anderson, K C; Driscoll, J J

    2015-01-01

    Although the therapeutic benefit of proteasome inhibition in multiple myeloma remains unchallenged, drug resistance inevitably emerges through mechanisms that remain elusive. Bortezomib provokes unwanted protein accumulation and the endoplasmic reticulum stress to activate the unfolded protein response (UPR) and autophagy as compensatory mechanisms that restore protein homeostasis. High-throughput screens to detect pharmacologics that modulated autophagy to enhance the anti-myeloma effect of bortezomib revealed metformin, a widely used antidiabetic agent with proven efficacy and limited adverse effects. Metformin co-treatment with bortezomib suppressed induction of the critical UPR effector glucose-regulated protein 78 (GRP78) to impair autophagosome formation and enhance apoptosis. Gene expression profiling of newly diagnosed myeloma patient tumors further correlated the hyperexpression of GRP78-encoding HSPA5 with reduced clinical response to bortezomib. The effect of bortezomib was enhanced with metformin co-treatment using myeloma patient tumor cells and the chemoresistant, stem cell-like side population that may contribute to disease recurrence. The relevance of the findings was confirmed in vivo as shown by metformin co-treatment with bortezomib that delayed the growth of myeloma xenotransplants. Taken together, our results suggest that metformin suppresses GRP78, a key driver of bortezomib-induced autophagy, and support the pharmacologic repositioning of metformin to enhance the anti-myeloma benefit of bortezomib. PMID:26108695

  6. SCREENING FOR REFERRAL BY A SPORTS PHYSICAL THERAPIST REVEALS AN EFFORT THROMBOSIS IN A COLLEGIATE PITCHER: A CASE REPORT

    PubMed Central

    Pinerola, Jase; Ogle, Karen Craig; Wallmann, Harvey W.

    2016-01-01

    ABSTRACT Background and Purpose Screening for referral, regardless of setting, is the responsibility of all physical therapists. A serious condition that sports physical therapists may encounter is upper extremity (UE) deep venous thrombosis (DVT), which can result in the important and sometimes fatal complication of pulmonary embolism. Case Description A 22 year-old male right-hand dominant collegiate pitcher was referred for physical therapist evaluation and treatment secondary to acute right UE pain and swelling. The athlete described the onset of these symptoms as insidious, denying any form of trauma. The athlete had undergone testing, which included UE Doppler ultrasound of the bilateral UE veins and a computed tomography (CT) scan of the chest without contrast; both of which were deemed negative. He was subsequently diagnosed with thoracic outlet syndrome and referred to the team physical therapist. After examination, the physical therapist hypothesized the athlete was presenting with a possible vascular compromise. Findings leading to this decision were: 1) insidious onset, 2) inability to account for the athlete's pain with ROM, strength, neurological, or provocation testing, 3) significant swelling of the right UE (arm and forearm), 4) increased discomfort with palpation in the supraclavicular region, and 5) history of strenuous UE use. Outcomes The athlete was referred back to the orthopedist. A venogram CT was ordered, which revealed an axillary and subclavian DVT and the presence of venous collaterals. The athlete was referred to a vascular surgeon who performed a right first rib removal. The athlete was able to complete post-operative rehabilitation and successfully return to competitive throwing the following spring. Discussion The delay in the initial diagnosis may have been due to the vague symptomology associated with venous complications and negative findings upon initial diagnostic testing. Conclusion This case report highlights the importance

  7. The Lethality Test System

    NASA Astrophysics Data System (ADS)

    Parsons, W. M.; Sims, J. R.; Parker, J. V.

    1986-11-01

    The Lethality Test System (LTS) under construction at Los Alamos is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/sec. The launcher is a 25 mm round bore, plasma armature railgun 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/sec. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92 percent of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1-1.3 MA ramped current waveform will be delivered to the railgun.

  8. Lethality test system

    SciTech Connect

    Parsons, W.M.; Sims, J.R.; Parker, J.V.

    1986-01-01

    The Lethality Test System (LTS), presently under construction at Los Alamos, is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/s. The launcher is a 25 mm round bore, plasma armature railgun extending 22 m in length. Preinjection is accomplished with a two-stage gas gun capable of 7 km/s. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92% of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1 MA to 1.3 MA ramped current waveform will be delivered to the railgun.

  9. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens

    PubMed Central

    Koh, Cho Yeow; Kallur Siddaramaiah, Latha; Ranade, Ranae M.; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J. Robert; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Fan, Erkang; Hol, Wim G. J.

    2015-01-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallo­graphically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS. PMID:26249349

  10. A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.

    PubMed

    Srivas, Rohith; Shen, John Paul; Yang, Chih Cheng; Sun, Su Ming; Li, Jianfeng; Gross, Andrew M; Jensen, James; Licon, Katherine; Bojorquez-Gomez, Ana; Klepper, Kristin; Huang, Justin; Pekin, Daniel; Xu, Jia L; Yeerna, Huwate; Sivaganesh, Vignesh; Kollenstart, Leonie; van Attikum, Haico; Aza-Blanc, Pedro; Sobol, Robert W; Ideker, Trey

    2016-08-01

    An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and genes encoding drug targets across multiple genotoxic environments. Guided by the strongest signal, we evaluate thousands of TSG-drug combinations in HeLa cells, resulting in networks of conserved synthetic lethal interactions. Analysis of these networks reveals that interaction stability across environments and shared gene function increase the likelihood of observing an interaction in human cancer cells. Using these rules, we prioritize ∼10(5) human TSG-drug combinations for future follow-up. We validate interactions based on cell and/or patient survival, including topoisomerases with RAD17 and checkpoint kinases with BLM. PMID:27453043

  11. Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies

    PubMed Central

    2014-01-01

    Background Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of

  12. Lethal outcome in xanthogranulomatous endometritis.

    PubMed

    Noack, Frank; Briese, Juliane; Stellmacher, Florian; Hornung, Daniela; Horny, Hans-Peter

    2006-05-01

    Xanthogranulomatous inflammation is rare, mainly involving the kidneys, while primary xanthogranulomatous endometritis (XE) is a very unusual finding, histologically characterized by partial or complete replacement of the mucosa by granulation tissue with an abundance of foamy histiocytes, siderophages and multinucleated giant cells. We present the case of a 69-year-old woman with a short history of abdominal pain and a palpable mass in the pouch of Douglas. Dilatation of the cervix drained a pyometra. Histological examination of the curettage rendered the diagnosis of XE. Microbiological studies revealed enterococcus spp. and Peptostreptococcus magnus. Despite antibiotic treatment the patient died of heart failure due to systemic inflammation. Autopsy confirmed the diagnosis of XE with transmural extension into the peritoneal cavity. Such a lethal course of XE is extraordinary. Proposed causes of XE include obstruction, infection and hemorrhage. Demonstration of enterococcus spp. and P. magnus supports the probable significance of bacteria in the development of XE. Because this condition may mimic malignant disease macroscopically and histologically, knowledge of XE is of major importance for both pathologists and gynecologists. PMID:16725016

  13. Potential lethal and non-lethal effects of predators on dispersal of spider mites.

    PubMed

    Otsuki, Hatsune; Yano, Shuichi

    2014-11-01

    Predators can affect prey dispersal lethally by direct consumption or non-lethally by making prey hesitate to disperse. These lethal and non-lethal effects are detectable only in systems where prey can disperse between multiple patches. However, most studies have drawn their conclusions concerning the ability of predatory mites to suppress spider mites based on observations of their interactions on a single patch or on heavily infested host plants where spider mites could hardly disperse toward intact patches. In these systems, specialist predatory mites that penetrate protective webs produced by spider mites quickly suppress the spider mites, whereas generalist predators that cannot penetrate the webs were ineffective. By using a connected patch system, we revealed that a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), effectively prevented dispersal of spider mites, Tetranychus kanzawai Kishida (Acari: Tetranychidae), by directly consuming dispersing individuals. We also revealed that a generalist predatory mite, Euseius sojaensis Ehara (Acari: Phytoseiidae), prevented between-patch dispersal of T. kanzawai by making them hesitate to disperse. In contrast, a specialist phytoseiid predatory mite, Neoseiulus womersleyi Schicha, allowed spider mites to escape an initial patch, increasing the number of colonized patches within the system. Our results suggest that ants and generalist predatory mites can effectively suppress Tetranychus species under some conditions, and should receive more attention as agents for conservation biological control in agroecosystems. PMID:24867061

  14. Virtual screening using MTiOpenScreen and PyRx 0,8 revealed ZINC95486216 as a human acetylcholinesterase inhibitor candidate

    NASA Astrophysics Data System (ADS)

    Sulistyo Dwi K., P.; Arindra Trisna, W.; Vindri Catur P., W.; Wijayanti, Erna; Ichsan, Mochammad

    2016-03-01

    One of the efforts to prevent Alzheimer's disease becomes more severe is by inhibiting the activity of Human acetylcholinesterase enzyme (PDB ID: 4BDT). In this study, virtual screening againts 885 natural compounds from AfroDB has been done using MTIOpenScreen and this step has been successful in identifying ZINC15121024 (-12,9) and ZINC95486216 (-12,7) as the top rank compounds. This data then strengthened by the results of second docking step using Autodock software that has been integrated in PyRx 0.8 software. From this stage, ZINC95486216 (-11,3 kcal/mol) is a compound with the most negative binding affinity compared with four Alzheimer's drugs that have been officially used to date including Rivastigmine (-6,3 Kcal/mol), Donepenzil (-7.9 kcal/mol), Galantamine (-8.4 kcal/mol), and Huprine W (-7.3 kcal/mol). In addition, based on the results of the 2D and 3D visualization using LigPlus and PyMol softwares, respectively, known that the five compounds above are equally capable of binding to several amino acids (Trp 286, Phe295, and Tyr341) located in the active site of Human Acetylcholinesterase enzyme.

  15. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    PubMed Central

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  16. Approaches to identifying synthetic lethal interactions in cancer.

    PubMed

    Thompson, Jordan M; Nguyen, Quy H; Singh, Manpreet; Razorenova, Olga V

    2015-06-01

    Targeting synthetic lethal interactions is a promising new therapeutic approach to exploit specific changes that occur within cancer cells. Multiple approaches to investigate these interactions have been developed and successfully implemented, including chemical, siRNA, shRNA, and CRISPR library screens. Genome-wide computational approaches, such as DAISY, also have been successful in predicting synthetic lethal interactions from both cancer cell lines and patient samples. Each approach has its advantages and disadvantages that need to be considered depending on the cancer type and its molecular alterations. This review discusses these approaches and examines case studies that highlight their use. PMID:26029013

  17. Approaches to Identifying Synthetic Lethal Interactions in Cancer

    PubMed Central

    Thompson, Jordan M.; Nguyen, Quy H.; Singh, Manpreet; Razorenova, Olga V.

    2015-01-01

    Targeting synthetic lethal interactions is a promising new therapeutic approach to exploit specific changes that occur within cancer cells. Multiple approaches to investigate these interactions have been developed and successfully implemented, including chemical, siRNA, shRNA, and CRISPR library screens. Genome-wide computational approaches, such as DAISY, also have been successful in predicting synthetic lethal interactions from both cancer cell lines and patient samples. Each approach has its advantages and disadvantages that need to be considered depending on the cancer type and its molecular alterations. This review discusses these approaches and examines case studies that highlight their use. PMID:26029013

  18. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A.

    PubMed

    Wu, Yuanzhong; Zhou, Liwen; Wang, Xin; Lu, Jinping; Zhang, Ruhua; Liang, Xiaoting; Wang, Li; Deng, Wuguo; Zeng, Yi-Xin; Huang, Haojie; Kang, Tiebang

    2016-01-01

    The regulation of stability is particularly crucial for unstable proteins in cells. However, a convenient and unbiased method of identifying regulators of protein stability remains to be developed. Recently, a genome-scale CRISPR-Cas9 library has been established as a genetic tool to mediate loss-of-function screening. Here, we developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome CRISPR-Cas9 library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Using Cdc25A as an example, Cul4B-DDB1(DCAF8) was identified as a new E3 ligase for Cdc25A. Moreover, the acetylation of Cdc25A at lysine 150, which was acetylated by p300/CBP and deacetylated by HDAC3, prevented the ubiquitin-mediated degradation of Cdc25A by the proteasome. This is the first study to report that acetylation, as a novel posttranslational modification, modulates Cdc25A stability, and we suggest that this unbiased CRISPR-Cas9 screening method at the genome scale may be widely used to globally identify regulators of protein stability. PMID:27462461

  19. Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse

    PubMed Central

    DiTommaso, Tia; Jones, Lynelle K.; Cottle, Denny L.; Gerdin, Anna-Karin; Vancollie, Valerie E.; Watt, Fiona M.; Ramirez-Solis, Ramiro; Bradley, Allan; Steel, Karen P.; Sundberg, John P.; White, Jacqueline K.; Smyth, Ian M.

    2014-01-01

    The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation. PMID:25340873

  20. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A

    PubMed Central

    Wu, Yuanzhong; Zhou, Liwen; Wang, Xin; Lu, Jinping; Zhang, Ruhua; Liang, Xiaoting; Wang, Li; Deng, Wuguo; Zeng, Yi-Xin; Huang, Haojie; Kang, Tiebang

    2016-01-01

    The regulation of stability is particularly crucial for unstable proteins in cells. However, a convenient and unbiased method of identifying regulators of protein stability remains to be developed. Recently, a genome-scale CRISPR-Cas9 library has been established as a genetic tool to mediate loss-of-function screening. Here, we developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome CRISPR-Cas9 library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Using Cdc25A as an example, Cul4B-DDB1DCAF8 was identified as a new E3 ligase for Cdc25A. Moreover, the acetylation of Cdc25A at lysine 150, which was acetylated by p300/CBP and deacetylated by HDAC3, prevented the ubiquitin-mediated degradation of Cdc25A by the proteasome. This is the first study to report that acetylation, as a novel posttranslational modification, modulates Cdc25A stability, and we suggest that this unbiased CRISPR-Cas9 screening method at the genome scale may be widely used to globally identify regulators of protein stability. PMID:27462461

  1. Lethal Skeletal Dysplasia in Mice and Humans Lacking the Golgin GMAP-210

    PubMed Central

    Smits, Patrick; Bolton, Andrew D.; Funari, Vincent; Hong, Minh; Boyden, Eric D.; Lu, Lei; Manning, Danielle K.; Dwyer, Noelle D.; Moran, Jennifer L.; Prysak, Mary; Merriman, Barry; Nelson, Stanley F.; Bonafé, Luisa; Superti-Furga, Andrea; Ikegawa, Shiro; Krakow, Deborah; Cohn, Daniel H.; Kirchhausen, Tom; Warman, Matthew L.; Beier, David R.

    2011-01-01

    BACKGROUND Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations. PMID:20089971

  2. Cofactor-Independent Phosphoglycerate Mutase from Nematodes Has Limited Druggability, as Revealed by Two High-Throughput Screens

    PubMed Central

    Crowther, Gregory J.; Booker, Michael L.; He, Min; Li, Ting; Raverdy, Sylvine; Novelli, Jacopo F.; He, Panqing; Dale, Natalie R. G.; Fife, Amy M.; Barker, Robert H.; Kramer, Martin L.; Van Voorhis, Wesley C.; Carlow, Clotilde K. S.; Wang, Ming-Wei

    2014-01-01

    Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z′-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a “druggability paradox” of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data. PMID:24416464

  3. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays

    PubMed Central

    Titmarsh, Drew M.; Glass, Nick R.; Mills, Richard J.; Hidalgo, Alejandro; Wolvetang, Ernst J.; Porrello, Enzo R.; Hudson, James E.; Cooper-White, Justin J.

    2016-01-01

    Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) – a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration. PMID:27097795

  4. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays.

    PubMed

    Titmarsh, Drew M; Glass, Nick R; Mills, Richard J; Hidalgo, Alejandro; Wolvetang, Ernst J; Porrello, Enzo R; Hudson, James E; Cooper-White, Justin J

    2016-01-01

    Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) - a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration. PMID:27097795

  5. Comparative RNAi Screens in C. elegans and C. briggsae Reveal the Impact of Developmental System Drift on Gene Function

    PubMed Central

    Verster, Adrian J.; Ramani, Arun K.; McKay, Sheldon J.; Fraser, Andrew G.

    2014-01-01

    Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes. PMID:24516395

  6. Proteomic screening of variola virus reveals a unique NF-κB inhibitor that is highly conserved among pathogenic orthopoxviruses

    PubMed Central

    Mohamed, Mohamed R.; Rahman, Masmudur M.; Lanchbury, Jerry S.; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-01-01

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein–protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-κB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-κB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-κB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses. PMID:19451633

  7. Syn-Lethality: An Integrative Knowledge Base of Synthetic Lethality towards Discovery of Selective Anticancer Therapies

    PubMed Central

    Li, Xue-juan; Mishra, Shital K.; Wu, Min; Zhang, Fan

    2014-01-01

    Synthetic lethality (SL) is a novel strategy for anticancer therapies, whereby mutations of two genes will kill a cell but mutation of a single gene will not. Therefore, a cancer-specific mutation combined with a drug-induced mutation, if they have SL interactions, will selectively kill cancer cells. While numerous SL interactions have been identified in yeast, only a few have been known in human. There is a pressing need to systematically discover and understand SL interactions specific to human cancer. In this paper, we present Syn-Lethality, the first integrative knowledge base of SL that is dedicated to human cancer. It integrates experimentally discovered and verified human SL gene pairs into a network, associated with annotations of gene function, pathway, and molecular mechanisms. It also includes yeast SL genes from high-throughput screenings which are mapped to orthologous human genes. Such an integrative knowledge base, organized as a relational database with user interface for searching and network visualization, will greatly expedite the discovery of novel anticancer drug targets based on synthetic lethality interactions. The database can be downloaded as a stand-alone Java application. PMID:24864230

  8. A genome-wide siRNA screen reveals positive and negative regulators of the NOD2 and NF-κB signaling pathways.

    PubMed

    Warner, Neil; Burberry, Aaron; Franchi, Luigi; Kim, Yun-Gi; McDonald, Christine; Sartor, Maureen A; Núñez, Gabriel

    2013-01-15

    The cytoplasmic receptor NOD2 (nucleotide-binding oligomerization domain 2) senses peptidoglycan fragments and triggers host defense pathways, including activation of nuclear factor κB (NF-κB) signaling, which lead to inflammatory immune responses. Dysregulation of NOD2 signaling is associated with inflammatory diseases, such as Crohn's disease and Blau syndrome. We used a genome-wide small interfering RNA screen to identify regulators of the NOD2 signaling pathway. Several genes associated with Crohn's disease risk were identified in the screen. A comparison of candidates from this screen with other "omics" data sets revealed interconnected networks of genes implicated in NF-κB signaling, thus supporting a role for NOD2 and NF-κB pathways in the pathogenesis of Crohn's disease. Many of these regulators were validated in secondary assays, such as measurement of interleukin-8 secretion, which is partially dependent on NF-κB. Knockdown of putative regulators in human embryonic kidney 293 cells followed by stimulation with tumor necrosis factor-α revealed that most of the genes identified were general regulators of NF-κB signaling. Overall, the genes identified here provide a resource to facilitate the elucidation of the molecular mechanisms that regulate NOD2- and NF-κB-mediated inflammation. PMID:23322906

  9. A Genome-Wide siRNA Screen Reveals Positive and Negative Regulators of the NOD2 and NF-κB Signaling Pathways

    PubMed Central

    Warner, Neil; Burberry, Aaron; Franchi, Luigi; Kim, Yun-Gi; McDonald, Christine; Sartor, Maureen A.; Núñez, Gabriel

    2013-01-01

    The cytoplasmic receptor NOD2 (nucleotide-binding oligomerization domain 2) senses peptidoglycan fragments and triggers host defense pathways that lead to inflammatory immune responses. Dysregulation of NOD2 signaling is associated with inflammatory diseases, such as Crohn’s disease and Blau syndrome. We used a genome-wide, small interfering RNA (siRNA) screen to identify regulators of the NOD2 signaling pathway. Several genes associated with Crohn’s disease risk were identified in the screen, supporting a role for NOD2 and nuclear factor κB (NF-κB) pathways in the pathogenesis of Crohn’s disease. A comparison of hits from this screen with other “omics” data sets revealed interconnected networks of genes implicated in NF-κB signaling. Secondary assays, including the measurement of interleukin-8 secretion, served to validate many of the regulators. Knockdown of putative regulators in HEK293 cells followed by stimulation with tumor necrosis factor α revealed that most of the genes identified were general regulators of NF-κB signaling. Overall, the genes identified here provide a resource to facilitate the elucidation of the molecular mechanisms that regulate NOD2- and NF-κB–mediated inflammation. PMID:23322906

  10. Definition of lethality thresholds for KE less-lethal projectiles

    NASA Astrophysics Data System (ADS)

    Cuadros, Jaime H.

    1997-01-01

    The interest in the definition and application of the lethality threshold for KE less-lethal projectiles has increased in the last few years, as the demand for proper use of these weapons has increased from the public at large and the law enforcement community. Experiments have been performed and reported utilizing commercially available projectiles in 12 ga., 37 mm against an anthropomorphic dummy and damage criteria developed by the automobile industry. The utility of the method is discussed and future trends are presented.

  11. Inhibitors of the Metalloproteinase Anthrax Lethal Factor.

    PubMed

    Goldberg, Allison B; Turk, Benjamin E

    2016-01-01

    Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LFinhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and highthroughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection. PMID:27072692

  12. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells

    PubMed Central

    Panarella, Angela; Bexiga, Mariana G.; Galea, George; O’ Neill, Elaine D.; Salvati, Anna; Dawson, Kenneth A.; Simpson, Jeremy C.

    2016-01-01

    Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to design effective drug delivery strategies that can use the endocytic pathway, or by-pass lysosomal accumulation, a comprehensive understanding of nanoparticle uptake and trafficking mechanisms is therefore fundamental. Here we describe and apply an RNA interference-based high-content screening microscopy strategy to assess the intracellular trafficking of fluorescently-labeled polystyrene nanoparticles in HeLa cells. We screened a total of 408 genes involved in cytoskeleton and membrane function, revealing roles for myosin VI, Rab33b and OATL1 in this process. This work provides the first systematic large-scale quantitative assessment of the proteins responsible for nanoparticle trafficking in cells, paving the way for subsequent genome-wide studies. PMID:27374232

  13. Annotating novel genes by integrating synthetic lethals and genomic information

    PubMed Central

    Schöner, Daniel; Kalisch, Markus; Leisner, Christian; Meier, Lukas; Sohrmann, Marc; Faty, Mahamadou; Barral, Yves; Peter, Matthias; Gruissem, Wilhelm; Bühlmann, Peter

    2008-01-01

    Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W) as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process. PMID:18194531

  14. New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis1[W][OA

    PubMed Central

    Lu, Yan; Savage, Linda J.; Ajjawi, Imad; Imre, Kathleen M.; Yoder, David W.; Benning, Christoph; DellaPenna, Dean; Ohlrogge, John B.; Osteryoung, Katherine W.; Weber, Andreas P.; Wilkerson, Curtis G.; Last, Robert L.

    2008-01-01

    In traditional mutant screening approaches, genetic variants are tested for one or a small number of phenotypes. Once bona fide variants are identified, they are typically subjected to a limited number of secondary phenotypic screens. Although this approach is excellent at finding genes involved in specific biological processes, the lack of wide and systematic interrogation of phenotype limits the ability to detect broader syndromes and connections between genes and phenotypes. It could also prevent detection of the primary phenotype of a mutant. As part of a systems biology approach to understand plastid function, large numbers of Arabidopsis thaliana homozygous T-DNA lines are being screened with parallel morphological, physiological, and chemical phenotypic assays (www.plastid.msu.edu). To refine our approaches and validate the use of this high-throughput screening approach for understanding gene function and functional networks, approximately 100 wild-type plants and 13 known mutants representing a variety of phenotypes were analyzed by a broad range of assays including metabolite profiling, morphological analysis, and chlorophyll fluorescence kinetics. Data analysis using a variety of statistical approaches showed that such industrial approaches can reliably identify plant mutant phenotypes. More significantly, the study uncovered previously unreported phenotypes for these well-characterized mutants and unexpected associations between different physiological processes, demonstrating that this approach has strong advantages over traditional mutant screening approaches. Analysis of wild-type plants revealed hundreds of statistically robust phenotypic correlations, including metabolites that are not known to share direct biosynthetic origins, raising the possibility that these metabolic pathways have closer relationships than is commonly suspected. PMID:18263779

  15. High-throughput screening of FDA-approved drugs using oxygen biosensor plates reveals secondary mitofunctional effects

    PubMed Central

    Sahdeo, Sunil; Tomilov, Alexey; Komachi, Kelly; Iwahashi, Christine; Datta, Sandipan; Hughes, Owen; Hagerman, Paul; Cortopassi, Gino

    2014-01-01

    Repurposing of FDA-approved drugs with effects on mitochondrial function might shorten the critical path to mitochondrial disease drug development. We improved a biosensor-based assay of mitochondrial O2 consumption, and identified mitofunctional defects in cell models of LHON and FXTAS. Using this platform, we screened a 1600-compound library of clinically used drugs. The assay identified drugs known to affect mitochondrial function, such as metformin and decoquinate. We also identified several drugs not previously known to affect mitochondrial respiration including acarbose, metaraminol, gallamine triethiodide, and acamprosate. These previously unknown ‘mitoactives’ represent novel links to targets for mitochondrial regulation and potentially therapy, for mitochondrial disease. PMID:25034306

  16. Genome-Wide Small Interfering RNA Screens Reveal VAMP3 as a Novel Host Factor Required for Uukuniemi Virus Late Penetration

    PubMed Central

    Meier, Roger; Franceschini, Andrea; Horvath, Peter; Tetard, Marilou; Mancini, Roberta; von Mering, Christian; Helenius, Ari

    2014-01-01

    ABSTRACT The Bunyaviridae constitute a large family of enveloped animal viruses, many of which are important emerging pathogens. How bunyaviruses enter and infect mammalian cells remains largely uncharacterized. We used two genome-wide silencing screens with distinct small interfering RNA (siRNA) libraries to investigate host proteins required during infection of human cells by the bunyavirus Uukuniemi virus (UUKV), a late-penetrating virus. Sequence analysis of the libraries revealed that many siRNAs in the screens inhibited infection by silencing not only the intended targets but additional genes in a microRNA (miRNA)-like manner. That the 7-nucleotide seed regions in the siRNAs can cause a perturbation in infection was confirmed by using synthetic miRNAs (miRs). One of the miRs tested, miR-142-3p, was shown to interfere with the intracellular trafficking of incoming viruses by regulating the v-SNARE VAMP3, a strong hit shared by both siRNA screens. Inactivation of VAMP3 by the tetanus toxin led to a block in infection. Using fluorescence-based techniques in fixed and live cells, we found that the viruses enter VAMP3+ endosomal vesicles 5 min after internalization and that colocalization was maximal 15 min thereafter. At this time, LAMP1 was associated with the VAMP3+ virus-containing endosomes. In cells depleted of VAMP3, viruses were mainly trapped in LAMP1-negative compartments. Together, our results indicated that UUKV relies on VAMP3 for penetration, providing an indication of added complexity in the trafficking of viruses through the endocytic network. IMPORTANCE Bunyaviruses represent a growing threat to humans and livestock globally. Unfortunately, relatively little is known about these emerging pathogens. We report here the first human genome-wide siRNA screens for a bunyavirus. The screens resulted in the identification of 562 host cell factors with a potential role in cell entry and virus replication. To demonstrate the robustness of our approach, we

  17. A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae ▿ †

    PubMed Central

    Barreto, Lina; Canadell, David; Petrezsélyová, Silvia; Navarrete, Clara; Marešová, Lydie; Peréz-Valle, Jorge; Herrera, Rito; Olier, Iván; Giraldo, Jesús; Sychrová, Hana; Yenush, Lynne; Ramos, José; Ariño, Joaquín

    2011-01-01

    Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H+-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes. PMID:21724935

  18. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A

    PubMed Central

    Hubert, Christopher G.; Bradley, Robert K.; Ding, Yu; Toledo, Chad M.; Herman, Jacob; Skutt-Kakaria, Kyobi; Girard, Emily J.; Davison, Jerry; Berndt, Jason; Corrin, Philip; Hardcastle, Justin; Basom, Ryan; Delrow, Jeffery J.; Webb, Thomas; Pollard, Steven M.; Lee, Jeongwu; Olson, James M.; Paddison, Patrick J.

    2013-01-01

    To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3′ splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies. PMID:23651857

  19. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A.

    PubMed

    Hubert, Christopher G; Bradley, Robert K; Ding, Yu; Toledo, Chad M; Herman, Jacob; Skutt-Kakaria, Kyobi; Girard, Emily J; Davison, Jerry; Berndt, Jason; Corrin, Philip; Hardcastle, Justin; Basom, Ryan; Delrow, Jeffery J; Webb, Thomas; Pollard, Steven M; Lee, Jeongwu; Olson, James M; Paddison, Patrick J

    2013-05-01

    To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3' splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies. PMID:23651857

  20. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin

    PubMed Central

    Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.

    2012-01-01

    Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. PMID:22967486

  1. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria. PMID:25082352

  2. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition

    PubMed Central

    Sadaie, Mahito; Dillon, Christian; Narita, Masashi; Young, Andrew R. J.; Cairney, Claire J.; Godwin, Lauren S.; Torrance, Christopher J.; Bennett, Dorothy C.; Keith, W. Nicol; Narita, Masashi

    2015-01-01

    Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target. PMID:26133385

  3. High-throughput functional screening reveals low frequency of antibiotic resistance genes in DNA recovered from the Upper Mississippi River.

    PubMed

    Staley, Christopher; Gould, Trevor J; Wang, Ping; Phillips, Jane; Cotner, James B; Sadowsky, Michael J

    2015-09-01

    In this study, we determined the frequency of antibiotic resistance genes (ARGs) in the Upper Mississippi River using a high-throughput, functional, metagenomic screening procedure. Fosmid libraries containing ∼10,000 clones were screened for resistance to ampicillin, cephalothin, kanamycin, and tetracycline. We hypothesized that nutrient concentrations, land cover type, and taxonomic community composition may select for ARGs. Resistance to ampicillin, cephalothin, and kanamycin was low (<1.00%), and no resistance to tetracycline was detected. Ammonium and total dissolved solids (TDS) concentrations were correlated with kanamycin and cephalothin resistances (r=0.617 and -0.449, P=0.002 and 0.036, respectively). Cephalothin resistance was also positively correlated with the percentage of forested land cover (r=0.444, P=0.039). Only the candidate division OD1, among 35 phyla identified, was correlated with ampicillin resistance (r=0.456, P=0.033), suggesting that minority members of the community may be responsible for dissemination of ARGs in this ecosystem. Results of this study suggest that ammonium and TDS may be involved in a complex selection process for ARGs. Furthermore, we suggest that minority species, potentially contributed in low numbers from sediment and biofilm reservoirs, may be the primary carriers of ARGs in this riverine system. PMID:26322755

  4. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method.

    PubMed

    Rodea-Palomares, Ismael; Gonzalez-Pleiter, Miguel; Gonzalo, Soledad; Rosal, Roberto; Leganes, Francisco; Sabater, Sergi; Casellas, Maria; Muñoz-Carpena, Rafael; Fernández-Piñas, Francisca

    2016-09-01

    The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification. PMID:27617294

  5. A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells

    PubMed Central

    Gowen, Benjamin G; Chim, Bryan; Marceau, Caleb D; Greene, Trever T; Burr, Patrick; Gonzalez, Jeanmarie R; Hesser, Charles R; Dietzen, Peter A; Russell, Teal; Iannello, Alexandre; Coscoy, Laurent; Sentman, Charles L; Carette, Jan E; Muljo, Stefan A; Raulet, David H

    2015-01-01

    Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger. DOI: http://dx.doi.org/10.7554/eLife.08474.001 PMID:26565589

  6. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method

    PubMed Central

    Rodea-Palomares, Ismael; Gonzalez-Pleiter, Miguel; Gonzalo, Soledad; Rosal, Roberto; Leganes, Francisco; Sabater, Sergi; Casellas, Maria; Muñoz-Carpena, Rafael; Fernández-Piñas, Francisca

    2016-01-01

    The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of experimental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complex mixtures, and variable environmental conditions) supports the widespread perception that these effects are often unpredictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). We present a case study where GSA-QHTS allowed for the identification of the main pharmaceutical pollutants (and their interactions), driving biological effects of low-dose complex mixtures at the microbial population level. The QHTS experiments involved the integrated analysis of nearly 2700 observations from an array of 180 unique low-dose mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceutical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typical freshwater microbial community assemblages. Contrary to our expectations and challenging established scientific opinion, the bioactivity of the mixtures was not predicted by the null mixture models, and the main drivers that were identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants and introduce a new operational framework for their systematic identification. PMID:27617294

  7. High-Throughput 3D Screening Reveals Differences in Drug Sensitivities between Culture Models of JIMT1 Breast Cancer Cells

    PubMed Central

    Fey, Vidal; Mpindi, John-Patrick; Kleivi Sahlberg, Kristine; Kallioniemi, Olli; Perälä, Merja

    2013-01-01

    The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional monolayers on plastic. However, many cellular features are impaired in these artificial conditions, and large changes in gene expression compared to tumors have been reported. Three-dimensional cell culture models have become increasingly popular and are suggested to be better models than two-dimensional monolayers due to improved cell-to-cell contact and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput three-dimensional drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in two dimensions, in poly(2-hydroxyethyl methacrylate) induced anchorage-independent three-dimensional models, and in Matrigel three-dimensional cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating, or they were allowed to grow in three-dimensional cultures for 4 days before the drug treatment. Large variations in drug responses were observed between the models indicating that comparisons of culture model-influenced drug sensitivities cannot be made based on the effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in two-dimensional cultures, while the responses of cells grown in poly(2-hydroxyethyl methacrylate) resembled those of the two-dimensional cultures. Furthermore, comparing the gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study, we also suggest that three-dimensional cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode

  8. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development.

    PubMed Central

    Janody, Florence; Lee, Jeffrey D; Jahren, Neal; Hazelett, Dennis J; Benlali, Aude; Miura, Grant I; Draskovic, Irena; Treisman, Jessica E

    2004-01-01

    The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors. PMID:15020417

  9. Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair.

    PubMed

    Schmidt, Christine K; Galanty, Yaron; Sczaniecka-Clift, Matylda; Coates, Julia; Jhujh, Satpal; Demir, Mukerrem; Cornwell, Matthew; Beli, Petra; Jackson, Stephen P

    2015-11-01

    Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies. PMID:26502057

  10. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway.

    PubMed

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  11. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    PubMed Central

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  12. Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair

    PubMed Central

    Sczaniecka-Clift, Matylda; Coates, Julia; Jhujh, Satpal; Demir, Mukerrem; Cornwell, Matthew; Beli, Petra; Jackson, Stephen P

    2016-01-01

    Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumourigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2-enzymes for impacts on cellular DSB responses. Applying a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3-ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies. PMID:26502057

  13. A Chemical Screening Approach Reveals that Indole Flourescence is Quenched by Pre-Fibrillar But Not Fibrillar Amyloid-β

    PubMed Central

    Reinke, Ashley A.; Seh, Han Yiau; Gestwicki, Jason E.

    2009-01-01

    Aggregated amyloid-β (Aβ) peptide is implicated in the pathology of Alzheimer’s disease. In vitro and in vivo, these aggregates are found in a variety of morphologies, including globular oligomers and linear fibrils, which possess distinct biological activities. However, known chemical probes, including the dyes thioflavin T and Congo Red, appear to lack selectivity for specific amyloid structures. To identify molecules that might differentiate between these architectures, we employed a fluorescence-based interaction assay to screen a collection of 68 known Aβ ligands against pre-formed oligomers and fibrils. In these studies, we found that the fluorescence of five indole-based compounds was selectively quenched (~15%) in the presence of oligomers, but remained unchanged after addition of fibrils. These results suggest that indoles might be complementary to existing chemical probes for studying amyloid formation in vitro. PMID:19640715

  14. Lethal outcomes in Klippel-Trenaunay syndrome.

    PubMed

    Karunamurthy, Arivarasan; Pantanowitz, Liron; Lepe, Jorge Guzman; Reyes-Múgica, Miguel

    2013-01-01

    Klippel-Trenaunay syndrome (KTS) is an uncommon congenital angiodysplasia that manifests in infancy and is characterized by venous and lymphatic malformations of the skin, soft tissue, and bone causing limb hypertrophy. We report 2 patients with long-term KTS who developed lethal complications from uncommon and unusual manifestations. The 1st patient was a female with KTS who at 2 years of age underwent a below-the-knee amputation for a massively hypertrophied and malformed left foot. Two years later she required additional surgical removal of vascular malformations involving her left calf with extension to the groin, pubis, and ipsilateral abdomen. Fifteen years later she underwent splenectomy (400 g) revealing multifocal, cystically dilated vascular channels distorting the splenic architecture and died suddenly of massive intra-abdominal hemorrhage on the 2nd postoperative day. The 2nd patient was a 72-year-old male with long-standing KTS who presented with debilitating chronic penile and scrotal edema. Surgical excision of his lymphedematous scrotal and penile skin revealed a low-grade angiosarcoma arising in the setting of chronic lymphedema. The patient died shortly after surgery from massive hemorrhage due to traumatic rupture of malformed leg vessels. KTS may lead to significant morbidity and mortality, and pathologic consequences from long-term KTS have been rarely reported. These cases illustrate the risk of lethal hemorrhage, organomegaly from protracted vascular malformation, and development of vascular neoplasia associated with chronic lymphedema in KTS. PMID:23915076

  15. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    PubMed

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior. PMID:26060330

  16. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    PubMed

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence. PMID:21969025

  17. A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation.

    PubMed

    Candido, Thiago De Souza; Gonçalves, Rodrigo Duarte; Felício, Ana Paula; Freitas, Fernanda Zanolli; Cupertino, Fernanda Barbosa; De Carvalho, Ana Carolina Gomes Vieira; Bertolini, Maria Célia

    2014-12-15

    Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development. PMID:25253091

  18. A Zebrafish Drug-Repurposing Screen Reveals sGC-Dependent and sGC-Independent Pro-Inflammatory Activities of Nitric Oxide

    PubMed Central

    Wittmann, Christine; Reischl, Markus; Shah, Asmi H.; Kronfuss, Eva; Mikut, Ralf; Liebel, Urban; Grabher, Clemens

    2015-01-01

    Tissue injury and infection trigger innate immune responses. However, dysregulation may result in chronic inflammation and is commonly treated with corticosteroids and non-steroidal anti-inflammatory drugs. Unfortunately, long-term administration of both therapeutic classes can cause unwanted side effects. To identify alternative immune-modulatory compounds we have previously established a novel screening method using zebrafish larvae. Using this method we here present results of an in vivo high-content drug-repurposing screen, identifying 63 potent anti-inflammatory drugs that are in clinical use for other indications. Our approach reveals a novel pro-inflammatory role of nitric oxide. Nitric oxide affects leukocyte recruitment upon peripheral sensory nervous system or epithelial injury in zebrafish larvae both via soluble guanylate cyclase and in a soluble guanylate cyclase -independent manner through protein S-nitrosylation. Together, we show that our screening method can help to identify novel immune-modulatory activities and provide new mechanistic insights into the regulation of inflammatory processes. PMID:26444552

  19. The Rorschach Suicide Constellation: assessing various degrees of lethality.

    PubMed

    Fowler, J C; Piers, C; Hilsenroth, M J; Holdwick, D J; Padawer, J R

    2001-04-01

    In this article we examine the relation between the Rorschach Comprehensive System's Suicide Constellation (S-CON; Exner, 1993; Exner & Wiley, 1977) and lethality of suicide attempts during the course of patients' hospitalization at the Austen Riggs Center (Stockbridge, MA). Patient records were rated as nonsuicidal (n = 37), parasuicidal (n = 37), or near-lethal (n = 30) based on the presence and lethality of self-destructive acts. Diagnostic efficiency statistics utilizing a cutoff score of 7 or more positive indicators successfully predicted which patients would engage in near-lethal suicidal activity relative to parasuicidal patients (overall correct classification rate [OCC] = .79), nonsuicidal inpatients (OCC = .79), and college students (OCC = .89). Although these predictions were influenced by relatively high base rates in the hospital population (14.5%), base rate estimates were calculated for other hypothetical populations revealing different prediction estimates that should be considered when judging the relative efficacy of the S-CON. Logistic regression analysis revealed that an S-CON score of 7 or more was the sole predictor of near-lethal suicide attempts among 9 psychiatric and demographic variables. PMID:11393464

  20. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27.

    PubMed

    Puri, V; Virbasius, J V; Guilherme, A; Czech, M P

    2008-01-01

    Adipose tissue modulates whole body metabolism and insulin sensitivity by controlling circulating lipid levels and producing molecules that can regulate fatty acid metabolism in such tissues as muscle and liver. We have developed RNA interference (RNAi) screens to identify genes in cultured adipocytes that regulate insulin signalling and key metabolic pathways. These short interfering RNA (siRNA)-based screens identified the transcriptional corepressor receptor interacting protein 140 (RIP140) (J Clin Invest 116: 125, 2006) and the mitogen-activated protein kinase (MAP4k4) (Proc Natl Acad Sci USA 103: 2087, 2006) as negative regulators of insulin-responsive hexose uptake and oxidative metabolism. Gene expression profiling revealed that RIP140 depletion upregulates the expression of clusters of genes in the pathways of glucose uptake, glycolysis, tricarboxylic acid cycle, fatty acid oxidation, mitochondrial biogenesis and oxidative phosphorylation. RIP140-null mice resist weight gain on a high-fat diet and display enhanced glucose tolerance. MAP4k4 depletion in adipocytes increases many of the RIP140-sensitive genes, increases adipogenesis and mediates some actions of tumour necrosis factor-alpha (TNF-alpha). Remarkably, another hit in our RNAi screens was fat specific protein 27 (FSP27), a highly expressed isoform of Cidea. We discovered that FSP27 unexpectedly associates specifically with lipid droplets and regulates fat storage. We conclude that RIP140, MAP4k4 and the novel lipid droplet protein FSP27 are powerful regulators of adipose tissue metabolism and are potential therapeutic targets for controlling metabolic disease. The discovery of these novel proteins validates the power of RNAi screening for discovery of new therapeutic approaches to type 2 diabetes and obesity. PMID:18171433

  1. A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase

    PubMed Central

    Sabogal, Alex; Rio, Donald C

    2010-01-01

    Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site-specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP-binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP-binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP-binding residues in the central portion of the transposase coding region. This clone, amino acids 275–409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP-binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N-terminal THAP DNA-binding domain attached to an extended leucine zipper coiled-coil dimerization domain in the P element transposase, precisely delineating the DNA-binding and dimerization activities on the primary sequence. This study highlights the use of a GFP-based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions. PMID:20842711

  2. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production.

    PubMed

    Nazareth, Emanuel Joseph Paul; Rahman, Nafees; Yin, Ting; Zandstra, Peter William

    2016-05-10

    Human pluripotent stem cells (hPSCs) exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR) inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4) and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives. PMID:27132889

  3. An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication.

    PubMed

    Mauthe, Mario; Langereis, Martijn; Jung, Jennifer; Zhou, Xingdong; Jones, Alex; Omta, Wienand; Tooze, Sharon A; Stork, Björn; Paludan, Søren Riis; Ahola, Tero; Egan, Dave; Behrends, Christian; Mokry, Michal; de Haan, Cornelis; van Kuppeveld, Frank; Reggiori, Fulvio

    2016-08-29

    Autophagy is a catabolic process regulated by the orchestrated action of the autophagy-related (ATG) proteins. Recent work indicates that some of the ATG proteins also have autophagy-independent roles. Using an unbiased siRNA screen approach, we explored the extent of these unconventional functions of ATG proteins. We determined the effects of the depletion of each ATG proteome component on the replication of six different viruses. Our screen reveals that up to 36% of the ATG proteins significantly alter the replication of at least one virus in an unconventional fashion. Detailed analysis of two candidates revealed an undocumented role for ATG13 and FIP200 in picornavirus replication that is independent of their function in autophagy as part of the ULK complex. The high numbers of unveiled ATG gene-specific and pathogen-specific functions of the ATG proteins calls for caution in the interpretation of data, which rely solely on the depletion of a single ATG protein to specifically ablate autophagy. PMID:27573464

  4. A Genomic Screen Revealing the Importance of Vesicular Trafficking Pathways in Genome Maintenance and Protection against Genotoxic Stress in Diploid Saccharomyces cerevisiae Cells

    PubMed Central

    Krol, Kamil; Brozda, Izabela; Skoneczny, Marek; Bretne, Maria; Skoneczna, Adrianna

    2015-01-01

    The ability to survive stressful conditions is important for every living cell. Certain stresses not only affect the current well-being of cells but may also have far-reaching consequences. Uncurbed oxidative stress can cause DNA damage and decrease cell survival and/or increase mutation rates, and certain substances that generate oxidative damage in the cell mainly act on DNA. Radiomimetic zeocin causes oxidative damage in DNA, predominantly by inducing single- or double-strand breaks. Such lesions can lead to chromosomal rearrangements, especially in diploid cells, in which the two sets of chromosomes facilitate excessive and deleterious recombination. In a global screen for zeocin-oversensitive mutants, we selected 133 genes whose deletion reduces the survival of zeocin-treated diploid Saccharomyces cerevisiae cells. The screen revealed numerous genes associated with stress responses, DNA repair genes, cell cycle progression genes, and chromatin remodeling genes. Notably, the screen also demonstrated the involvement of the vesicular trafficking system in cellular protection against DNA damage. The analyses indicated the importance of vesicular system integrity in various pathways of cellular protection from zeocin-dependent damage, including detoxification and a direct or transitional role in genome maintenance processes that remains unclear. The data showed that deleting genes involved in vesicular trafficking may lead to Rad52 focus accumulation and changes in total DNA content or even cell ploidy alterations, and such deletions may preclude proper DNA repair after zeocin treatment. We postulate that functional vesicular transport is crucial for sustaining an integral genome. We believe that the identification of numerous new genes implicated in genome restoration after genotoxic oxidative stress combined with the detected link between vesicular trafficking and genome integrity will reveal novel molecular processes involved in genome stability in diploid cells

  5. An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina

    PubMed Central

    Visser, Jasper J; Cheng, Yolanda; Perry, Steven C; Chastain, Andrew Benjamin; Parsa, Bayan; Masri, Shatha S; Ray, Thomas A; Kay, Jeremy N; Wojtowicz, Woj M

    2015-01-01

    In the inner plexiform layer (IPL) of the mouse retina, ~70 neuronal subtypes organize their neurites into an intricate laminar structure that underlies visual processing. To find recognition proteins involved in lamination, we utilized microarray data from 13 subtypes to identify differentially-expressed extracellular proteins and performed a high-throughput biochemical screen. We identified ~50 previously-unknown receptor-ligand pairs, including new interactions among members of the FLRT and Unc5 families. These proteins show laminar-restricted IPL localization and induce attraction and/or repulsion of retinal neurites in culture, placing them in an ideal position to mediate laminar targeting. Consistent with a repulsive role in arbor lamination, we observed complementary expression patterns for one interaction pair, FLRT2-Unc5C, in vivo. Starburst amacrine cells and their synaptic partners, ON-OFF direction-selective ganglion cells, express FLRT2 and are repelled by Unc5C. These data suggest a single molecular mechanism may have been co-opted by synaptic partners to ensure joint laminar restriction. DOI: http://dx.doi.org/10.7554/eLife.08149.001 PMID:26633812

  6. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons.

    PubMed

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F; Korff, Wyatt; Naiman, Daniel Q; Strauss, Roland

    2016-01-01

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system. PMID:27255169

  7. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history

    PubMed Central

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts’ biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods. PMID:27291078

  8. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection

    PubMed Central

    Foo, Chwan Hong; Rootes, Christina L.; Gould, Cathryn M.; Grusovin, Julian; Monaghan, Paul; Lo, Michael K.; Tompkins, S. Mark; Adams, Timothy E.; Lowenthal, John W.; Simpson, Kaylene J.; Stewart, Cameron R.; Bean, Andrew G. D.; Wang, Lin-Fa

    2016-01-01

    Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections. PMID:27010548

  9. A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons

    PubMed Central

    Triphan, Tilman; Nern, Aljoscha; Roberts, Sonia F.; Korff, Wyatt; Naiman, Daniel Q.; Strauss, Roland

    2016-01-01

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system. PMID:27255169

  10. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history.

    PubMed

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts' biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods. PMID:27291078

  11. Functional mutagenesis screens reveal the ‘cap structure’ formation in disulfide-bridge free TASK channels

    PubMed Central

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K.; Ramírez, David; Netter, Michael F.; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-01

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels. PMID:26794006

  12. Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells

    PubMed Central

    Ma, Yanni; Yao, Nan; Liu, Guang; Dong, Lei; Liu, Yufang; Zhang, Meili; Wang, Fang; Wang, Bin; Wei, Xueju; Dong, He; Wang, Lanlan; Ji, Shaowei; Zhang, Junwu; Wang, Yangming; Huang, Yue; Yu, Jia

    2015-01-01

    MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation. PMID:25519956

  13. Genome-wide RNAi screen reveals a role for multipass membrane proteins in endosome-to-golgi retrieval.

    PubMed

    Breusegem, Sophia Y; Seaman, Matthew N J

    2014-12-11

    Endosome-to-Golgi retrieval is an essential membrane trafficking pathway required for many important physiological processes and linked to neurodegenerative disease and infection by bacterial and viral pathogens. The prototypical cargo protein for this pathway is the cation-independent mannose 6-phosphate receptor (CIMPR), which delivers lysosomal hydrolases to endosomes. Efficient retrieval of CIMPR to the Golgi requires the retromer complex, but other aspects of the endosome-to-Golgi retrieval pathway are poorly understood. Employing an image-based antibody-uptake assay, we conducted a genome-wide RNAi loss-of-function screen for novel regulators of this trafficking pathway and report ∼90 genes that are required for endosome-to-Golgi retrieval of a CD8-CIMPR reporter protein. Among these regulators of endosome-to-Golgi retrieval are a number of multipass membrane-spanning proteins, a class of proteins often overlooked with respect to a role in membrane trafficking. We further demonstrate a role for three multipass membrane proteins, SFT2D2, ZDHHC5, and GRINA, in endosome-to-Golgi retrieval. PMID:25464851

  14. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  15. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients.

    PubMed

    Streit, Elisabeth; Schwab, Christina; Sulyok, Michael; Naehrer, Karin; Krska, Rudolf; Schatzmayr, Gerd

    2013-03-01

    The development of liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS) methods for the simultaneous detection and quantification of a broad spectrum of mycotoxins has facilitated the screening of a larger number of samples for contamination with a wide array of less well-known "emerging" mycotoxins and other metabolites. In this study, 83 samples of feed and feed raw materials were analysed. All of them were found to contain seven to 69 metabolites. The total number of detected metabolites amounts to 139. Fusarium mycotoxins were most common, but a number of Alternaria toxins also occurred very often. Furthermore, two so-called masked mycotoxins (i.e., mycotoxin conjugates), namely deoxynivalenol-3-glucoside (75% positives) and zearalenone-4-sulfate (49% positives), were frequently detected. Although the observed median concentrations of the individual analytes were generally in the low μg/kg range, evaluating the toxicological potential of a given sample is difficult. Toxicity data on less well-known mycotoxins and other detected metabolites are notoriously scarce, as an overview on the available information on the most commonly detected metabolites shows. Besides, the possible synergistic effects of co-occurring substances have to be considered. PMID:23529186

  16. Screening of GNAL variants in Brazilian patients with isolated dystonia reveals a novel mutation with partial loss of function.

    PubMed

    Dos Santos, Camila Oliveira; Masuho, Ikuo; da Silva-Júnior, Francisco Pereira; Barbosa, Egberto Reis; Silva, Sonia Maria Cesar Azevedo; Borges, Vanderci; Ferraz, Henrique Ballalai; Rocha, Maria Sheila Guimarães; Limongi, João Carlos Papaterra; Martemyanov, Kirill A; de Carvalho Aguiar, Patricia

    2016-04-01

    GNAL was identified as a cause of dystonia in patients from North America, Europe and Asia. In this study, we aimed to investigate the prevalence of GNAL variants in Brazilian patients with dystonia. Ninety-one patients with isolated idiopathic dystonia, negative for THAP1 and TOR1A mutations, were screened for GNAL variants by Sanger sequencing. Functional characterization of the Gαolf protein variant was performed using the bioluminescence resonance energy transfer assay. A novel heterozygous nonsynonymous variant (p. F133L) was identified in a patient with cervical and laryngeal dystonia since the third decade of life, with no family history. This variant was not identified in healthy Brazilian controls and was not described in 63,000 exomas of the ExAC database. The F133L mutant exhibited significantly elevated levels of basal BRET and severely diminished amplitude of response elicited by dopamine, that both indicate substantial functional impairment of Gαolf in transducing receptor signals, which could be involved in dystonia pathophysiology. GNAL mutations are not a common cause of dystonia in the Brazilian population and have a lower prevalence than THAP1 and TOR1A mutations. We present a novel variant that results in partial Gαolf loss of function. PMID:26810727

  17. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya.

    PubMed

    Malik, Amarila; Radji, Maksum; Kralj, Slavko; Dijkhuizen, Lubbert

    2009-11-01

    Homopolysaccharide (glucan and fructan) synthesis from sucrose by sucrase enzymes in lactic acid bacteria (LAB) has been well studied in the genera Leuconostoc, Streptococcus and Lactobacillus. This study aimed to identify and characterize genes encoding glucansucrase/glucosyltransferase (GTF) and fructansucrases/fructosyltransferase (FTF) enzymes from genomic DNA of 'rare' Indonesian exopolysaccharide-producing LAB. From a total of 63 exopolysaccharide-producing LAB isolates obtained from foods, beverages and environmental samples, 18 isolates showing the most slimy and mucoid colony morphologies on sucrose were chosen for further study. By comparing bacterial growth on De Man, Rogosa and Sharpe (MRS)-sucrose with that on MRS-raffinose, and using the results of a previous PCR screening study with degenerate primer pairs targeting the conserved catalytic domain of GTFs, various strains were identified as producers of fructan (13), of glucan only (five) or as potential producers of both glucan and fructan (nine). Here, we report the characteristics of three gtf genes and one ftf gene obtained from Weissella confusa strains MBF8-1 and MBF8-2. Strain MBF8-1 harbored two putative gtf genes with high sequence similarity to GTFB of Lactobacillus reuteri 121 and GTF180 of L. reuteri 180, respectively. Strain MBF8-2 possessed single gtf and ftf genes with high sequence similarity to GTFKg3 of Lactobacillus fermentum Kg3 and DSRWC of Weissella cibaria, and FTF levansucrase of L. reuteri 121, respectively. PMID:19758326

  18. Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients

    PubMed Central

    Streit, Elisabeth; Schwab, Christina; Sulyok, Michael; Naehrer, Karin; Krska, Rudolf; Schatzmayr, Gerd

    2013-01-01

    The development of liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS) methods for the simultaneous detection and quantification of a broad spectrum of mycotoxins has facilitated the screening of a larger number of samples for contamination with a wide array of less well-known “emerging” mycotoxins and other metabolites. In this study, 83 samples of feed and feed raw materials were analysed. All of them were found to contain seven to 69 metabolites. The total number of detected metabolites amounts to 139. Fusarium mycotoxins were most common, but a number of Alternaria toxins also occurred very often. Furthermore, two so-called masked mycotoxins (i.e., mycotoxin conjugates), namely deoxynivalenol-3-glucoside (75% positives) and zearalenone-4-sulfate (49% positives), were frequently detected. Although the observed median concentrations of the individual analytes were generally in the low μg/kg range, evaluating the toxicological potential of a given sample is difficult. Toxicity data on less well-known mycotoxins and other detected metabolites are notoriously scarce, as an overview on the available information on the most commonly detected metabolites shows. Besides, the possible synergistic effects of co-occurring substances have to be considered. PMID:23529186

  19. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection.

    PubMed

    Deffrasnes, Celine; Marsh, Glenn A; Foo, Chwan Hong; Rootes, Christina L; Gould, Cathryn M; Grusovin, Julian; Monaghan, Paul; Lo, Michael K; Tompkins, S Mark; Adams, Timothy E; Lowenthal, John W; Simpson, Kaylene J; Stewart, Cameron R; Bean, Andrew G D; Wang, Lin-Fa

    2016-03-01

    Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections. PMID:27010548

  20. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity

    PubMed Central

    Virreira Winter, Sebastian; Zychlinsky, Arturo; Bardoel, Bart W.

    2016-01-01

    Staphylococcus aureus causes a wide variety of infections and antibiotic resistant strains are a major problem in hospitals. One of the best studied virulence factors of S. aureus is the pore-forming toxin alpha hemolysin (αHL) whose mechanism of action is incompletely understood. We performed a genome-wide loss-of-function screen using CRISPR/Cas9 technology to identify host targets required for αHL susceptibility in human myeloid cells. We found gRNAs for ten genes enriched after intoxication with αHL and focused on the top five hits. Besides a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), the host receptor for αHL, we identified three proteins, Sys1 golgi trafficking protein (SYS1), ADP-ribosylation factor 1 (ARFRP1), and tetraspanin-14 (TSPAN14) which regulate the presentation of ADAM10 on the plasma membrane post-translationally. Interestingly, we also showed that cells lacking sphingomyelin synthase 1 (SGMS1) resist αHL intoxication, but have only a slightly reduced ADAM10 surface expression. SGMS1 regulates lipid raft formation, suggesting that αHL requires these membrane microdomains for attachment and cytotoxicity. PMID:27066838

  1. Genome-wide RNAi Screen Reveals a Role for Multipass Membrane Proteins in Endosome-to-Golgi Retrieval

    PubMed Central

    Breusegem, Sophia Y.; Seaman, Matthew N.J.

    2014-01-01

    Summary Endosome-to-Golgi retrieval is an essential membrane trafficking pathway required for many important physiological processes and linked to neurodegenerative disease and infection by bacterial and viral pathogens. The prototypical cargo protein for this pathway is the cation-independent mannose 6-phosphate receptor (CIMPR), which delivers lysosomal hydrolases to endosomes. Efficient retrieval of CIMPR to the Golgi requires the retromer complex, but other aspects of the endosome-to-Golgi retrieval pathway are poorly understood. Employing an image-based antibody-uptake assay, we conducted a genome-wide RNAi loss-of-function screen for novel regulators of this trafficking pathway and report ∼90 genes that are required for endosome-to-Golgi retrieval of a CD8-CIMPR reporter protein. Among these regulators of endosome-to-Golgi retrieval are a number of multipass membrane-spanning proteins, a class of proteins often overlooked with respect to a role in membrane trafficking. We further demonstrate a role for three multipass membrane proteins, SFT2D2, ZDHHC5, and GRINA, in endosome-to-Golgi retrieval. PMID:25464851

  2. A Targeted Glycan-Related Gene Screen Reveals Heparan Sulfate Proteoglycan Sulfation Regulates WNT and BMP Trans-Synaptic Signaling

    PubMed Central

    Dani, Neil; Nahm, Minyeop; Lee, Seungbok; Broadie, Kendal

    2012-01-01

    A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects. PMID:23144627

  3. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    PubMed Central

    van der Ploeg, René; Goudelis, Spyridon Theodoros; den Blaauwen, Tanneke

    2015-01-01

    The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s) simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes) that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET) assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl) isothiourea (A22) or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors. PMID:26263980

  4. Screening the 3{prime} region of the polycystic kidney disease 1 (PKD1) gene reveals six novel mutations

    SciTech Connect

    Peral, B.; San Millan, J.L.; Ong, A.C.M.

    1996-01-01

    Recently, the gene for the most common form of autosomal dominant polycystic kidney disease (ADPKD), PKD1 (polycystic kidney disease 1), has been fully characterized and shown to encode an integral membrane protein, polycystin, involved in cell-cell and/or cell-matrix interactions. Study of the PKD1 gene has been complicated because most of the gene lies in a genomic region reiterated several times elsewhere on the same chromosome, and consequently only seven mutations have been described so far. Here we report a systematic screen covering {approximately}80% of the {approximately}-2.75 kb of translated transcript that is encoded by single-copy DNA. We have identified and characterized six novel mutations that, together with the previously described changes, amount to a detection rate of 10%-15% in the population studied. The newly described mutations are two deletions, an insertion of a T-nucleotide causing a frameshift, two single-base-pair substitutions resulting in premature stop codons, and a G{yields}C transversion that may be a missense mutation. These results have important implications for genetic diagnosis of PKD1 because they indicate that the majority of mutations lie within the duplicated area, which is difficult to study. The regions of polycystin removed in each mutation so far described are assessed for their functional significance; an area disrupted by two new small in-frame changes is highlighted. PKD1 mutations are contrasted with those in the PKD1/TSC2 contiguous-gene syndrome, and the likely mutational mechanism in PKD1 is considered. 36 refs., 6 figs., 2 tabs.

  5. Pharmacophore-based screening targeted at upregulated FN1, MMP-9, APP reveals therapeutic compounds for nasopharyngeal carcinoma.

    PubMed

    Lai, Catherine Jessica; Tay, Boon Hunt

    2016-02-01

    Nasopharyngeal carcinoma (NpC) is rare in the west but common in Southeast Asia and only a few other locations. With the limited geographic incidence, it is relatively under-studied. It also has as co-determinant the Epstein-Barr virus (EBV), which may adapt to NpC therapies, so not only must a therapeutic compound be found, the discovery process must be rapid, to cope with the changing basis of the EBV. An R-based computer workbench, Mendel, was developed so biologists could quickly upload genomic data, pre-process them, and identify upregulated and downregulated genes. Mendel was used on 10 control and 31 diseased cell lines to discover 3 differentially expressed genes (DEGs) that meet thresholds on fold-changes, 3-clique membership, pathway constraints, and druggability. From the DEGs, we conducted a pharmacophore-based screening of 22,723,923 compounds using protein-protein interaction anchor-residue clusters as binding sites. Of the 4 hits, 3 passed all the ADME-Tox tests. These 3 hit compounds, 6-(4-iminiocyclohexa-2,5-dien-1-ylidene)-4-(thiazol-2-ylcarbamoyl)-1H-pyrimidine-2-thiolate, 1-[4-[2-[(3R)-3-hydroxy-2-oxo-indolin-3-yl]acetyl]phenyl]-3-phenyl-urea, and (2R)-N4-[4-(1-piperidyl)cyclohexyl]morpholine-2,4-dicarboxamide have predicted pIC50 values superior to the current drugs fluorouracil (5-FU) and taxotere, which have side effects and face EBV drug resistance. PMID:26773938

  6. Synthetic antibodies with a human framework that protect mice from lethal Sudan ebolavirus challenge.

    PubMed

    Chen, Gang; Koellhoffer, Jayne F; Zak, Samantha E; Frei, Julia C; Liu, Nina; Long, Hua; Ye, Wei; Nagar, Kaajal; Pan, Guohua; Chandran, Kartik; Dye, John M; Sidhu, Sachdev S; Lai, Jonathan R

    2014-10-17

    The ebolaviruses cause severe and rapidly progressing hemorrhagic fever. There are five ebolavirus species; although much is known about Zaire ebolavirus (EBOV) and its neutralization by antibodies, little is known about Sudan ebolavirus (SUDV), which is emerging with increasing frequency. Here we describe monoclonal antibodies containing a human framework that potently inhibit infection by SUDV and protect mice from lethal challenge. The murine antibody 16F6, which binds the SUDV envelope glycoprotein (GP), served as the starting point for design. Sequence and structural alignment revealed similarities between 16F6 and YADS1, a synthetic antibody with a humanized scaffold. A focused phage library was constructed and screened to impart 16F6-like recognition properties onto the YADS1 scaffold. A panel of 17 antibodies were characterized and found to have a range of neutralization potentials against a pseudotype virus infection model. Neutralization correlated with GP binding as determined by ELISA. Two of these clones, E10 and F4, potently inhibited authentic SUDV and conferred protection and memory immunity in mice from lethal SUDV challenge. E10 and F4 were further shown to bind to the same epitope on GP as 16F6 with comparable affinities. These antibodies represent strong immunotherapeutic candidates for treatment of SUDV infection. PMID:25140871

  7. An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals

    PubMed Central

    2009-01-01

    Background Since the drastic reorganisation of the phylogeny of the animal kingdom into three major clades of bilaterians; Ecdysozoa, Lophotrochozoa and Deuterostomia, it became glaringly obvious that the selection of model systems with extensive molecular resources was heavily biased towards only two of these three clades, namely the Ecdysozoa and Deuterostomia. Increasing efforts have been put towards redressing this imbalance in recent years, and one of the principal phyla in the vanguard of this endeavour is the Annelida. Results In the context of this effort we here report our characterisation of an Expressed Sequence Tag (EST) screen in the serpulid annelid, Pomatoceros lamarckii. We have sequenced over 5,000 ESTs which consolidate into over 2,000 sequences (clusters and singletons). These sequences are used to build phylogenetic trees to estimate relative branch lengths amongst different taxa and, by comparison to genomic data from other animals, patterns of gene retention and loss are deduced. Conclusion The molecular phylogenetic trees including the P. lamarckii sequences extend early observations that polychaetes tend to have relatively short branches in such trees, and hence are useful taxa with which to reconstruct gene family evolution. Also, with the availability of lophotrochozoan data such as that of P. lamarckii, it is now possible to make much more accurate reconstructions of the gene complement of the ancestor of the bilaterians than was previously possible from comparisons of ecdysozoan and deuterostome genomes to non-bilaterian outgroups. It is clear that the traditional molecular model systems for protostomes (e.g. Drosophila melanogaster and Caenorhabditis elegans), which are restricted to the Ecdysozoa, have undergone extensive gene loss during evolution. These ecdysozoan systems, in terms of gene content, are thus more derived from the bilaterian ancestral condition than lophotrochozoan systems like the polychaetes, and thus cannot be used

  8. Screening of Metagenomic and Genomic Libraries Reveals Three Classes of Bacterial Enzymes That Overcome the Toxicity of Acrylate

    PubMed Central

    Curson, Andrew R. J.; Burns, Oliver J.; Voget, Sonja; Daniel, Rolf; Todd, Jonathan D.; McInnis, Kathryn; Wexler, Margaret; Johnston, Andrew W. B.

    2014-01-01

    Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again

  9. A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000

    PubMed Central

    Zeng, Weiqing; Brutus, Alexandre; Kremer, James M.; Withers, John C.; Gao, Xiaoli; Jones, A. Daniel; He, Sheng Yang

    2011-01-01

    Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate

  10. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species.

    PubMed

    Schroeder, Frank C; Taggi, Andrew E; Gronquist, Matthew; Malik, Rabia U; Grant, Jacqualine B; Eisner, Thomas; Meinwald, Jerrold

    2008-09-23

    Extensive chemical analyses of spider venoms from many species have revealed complex mixtures of biologically active compounds, of which several have provided important leads for drug development. We have recently shown that NMR spectroscopy can be used advantageously for a direct structural characterization of the small-molecule content of such complex mixtures. Here, we report the application of this strategy to a larger-scale analysis of a collection of spider venoms representing >70 species, which, in combination with mass spectrometric analyses, allowed the identification of a wide range of known, and several previously undescribed, small molecules. These include polyamines, common neurotransmitters, and amino acid derivatives as well as two additional members of a recently discovered family of natural products, the sulfated nucleosides. In the case of the well studied brown recluse spider, Loxosceles reclusa, sulfated guanosine derivatives were found to comprise the major small-molecule components of the venom. PMID:18794518

  11. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species

    PubMed Central

    Schroeder, Frank C.; Taggi, Andrew E.; Gronquist, Matthew; Malik, Rabia U.; Grant, Jacqualine B.; Eisner, Thomas; Meinwald, Jerrold

    2008-01-01

    Extensive chemical analyses of spider venoms from many species have revealed complex mixtures of biologically active compounds, of which several have provided important leads for drug development. We have recently shown that NMR spectroscopy can be used advantageously for a direct structural characterization of the small-molecule content of such complex mixtures. Here, we report the application of this strategy to a larger-scale analysis of a collection of spider venoms representing >70 species, which, in combination with mass spectrometric analyses, allowed the identification of a wide range of known, and several previously undescribed, small molecules. These include polyamines, common neurotransmitters, and amino acid derivatives as well as two additional members of a recently discovered family of natural products, the sulfated nucleosides. In the case of the well studied brown recluse spider, Loxosceles reclusa, sulfated guanosine derivatives were found to comprise the major small-molecule components of the venom. PMID:18794518

  12. iTRAQ-based chromatin proteomic screen reveals CHD4-dependent recruitment of MBD2 to sites of DNA damage.

    PubMed

    Sun, Yazhou; Yang, Yeran; Shen, Hongyan; Huang, Min; Wang, Zhifeng; Liu, Yang; Zhang, Hui; Tang, Tie-Shan; Guo, Caixia

    2016-02-26

    Many DNA repair proteins can be recruited to DNA damage sites upon genotoxic stress. In order to search potential DNA repair proteins involved in cellular response to mitomycin C treatment, we utilized a quantitative proteome to uncover proteins that manifest differentially enrichment in the chromatin fraction after DNA damage. 397 proteins were identified, among which many factors were shown to be involved in chromatin modification and DNA repair by GO analysis. Specifically, methyl-CpG-binding domain protein 2 (MBD2) is revealed to be recruited to DNA damage sites after laser microirradiation, which was mediated through MBD domain and MBD2 C-terminus. Additionally, the recruitment of MBD2 is dependent on poly (ADP-ribose) and chromodomain helicase DNA-binding protein 4 (CHD4). Moreover, knockdown of MBD2 by CRISPR-Cas9 technique results in MMC sensitivity in mammalian cells. PMID:26827827

  13. Virtual and In Vitro Screens Reveal a Potential Pharmacophore that Avoids the Fibrillization of Aβ1-42.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Nicolás-Vázquez, María Inés; Miranda-Ruvalcaba, René; Benítez-Cardoza, Claudia Guadalupe; Reséndiz-Albor, Aldo Arturo; Méndez-Méndez, Juan Vicente; Rosales-Hernández, Martha C

    2015-01-01

    Among the multiple factors that induce Alzheimer's disease, aggregation of the amyloid β peptide (Aβ) is considered the most important due to the ability of the 42-amino acid Aβ peptides (Aβ1-42) to form oligomers and fibrils, which constitute Aβ pathological aggregates. For this reason, the development of inhibitors of Aβ1-42 pathological aggregation represents a field of research interest. Several Aβ1-42 fibrillization inhibitors possess tertiary amine and aromatic moieties. In the present study, we selected 26 compounds containing tertiary amine and aromatic moieties with or without substituents and performed theoretical studies that allowed us to select four compounds according to their free energy values for Aβ1-42 in α-helix (Aβ-α), random coil (Aβ-RC) and β-sheet (Aβ-β) conformations. Docking studies revealed that compound 5 had a higher affinity for Aβ-α and Aβ-RC than the other compounds. In vitro, this compound was able to abolish Thioflavin T fluorescence and favored an RC conformation of Aβ1-42 in circular dichroism studies, resulting in the formation of amorphous aggregates as shown by atomic force microscopy. The results obtained from quantum studies allowed us to identify a possible pharmacophore that can be used to design Aβ1-42 aggregation inhibitors. In conclusion, compounds with higher affinity for Aβ-α and Aβ-RC prevented the formation of oligomeric species. PMID:26172152

  14. Virtual and In Vitro Screens Reveal a Potential Pharmacophore that Avoids the Fibrillization of Aβ1–42

    PubMed Central

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Nicolás-Vázquez, María Inés; Miranda-Ruvalcaba, René; Benítez-Cardoza, Claudia Guadalupe; Reséndiz-Albor, Aldo Arturo; Méndez-Méndez, Juan Vicente; Rosales-Hernández, Martha C.

    2015-01-01

    Among the multiple factors that induce Alzheimer’s disease, aggregation of the amyloid β peptide (Aβ) is considered the most important due to the ability of the 42-amino acid Aβ peptides (Aβ1–42) to form oligomers and fibrils, which constitute Aβ pathological aggregates. For this reason, the development of inhibitors of Aβ1–42 pathological aggregation represents a field of research interest. Several Aβ1–42 fibrillization inhibitors possess tertiary amine and aromatic moieties. In the present study, we selected 26 compounds containing tertiary amine and aromatic moieties with or without substituents and performed theoretical studies that allowed us to select four compounds according to their free energy values for Aβ1–42 in α-helix (Aβ-α), random coil (Aβ-RC) and β-sheet (Aβ-β) conformations. Docking studies revealed that compound 5 had a higher affinity for Aβ-α and Aβ-RC than the other compounds. In vitro, this compound was able to abolish Thioflavin T fluorescence and favored an RC conformation of Aβ1–42 in circular dichroism studies, resulting in the formation of amorphous aggregates as shown by atomic force microscopy. The results obtained from quantum studies allowed us to identify a possible pharmacophore that can be used to design Aβ1–42 aggregation inhibitors. In conclusion, compounds with higher affinity for Aβ-α and Aβ-RC prevented the formation of oligomeric species. PMID:26172152

  15. A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair

    PubMed Central

    Shahar, Or David; Kalousi, Alkmini; Eini, Lital; Fisher, Benoit; Weiss, Amelie; Darr, Jonatan; Mazina, Olga; Bramson, Shay; Kupiec, Martin; Eden, Amir; Meshorer, Eran; Mazin, Alexander V.; Brino, Laurent; Goldberg, Michal; Soutoglou, Evi

    2014-01-01

    DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy. PMID:24682826

  16. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma.

    PubMed

    Lock, Frances E; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M; Mager, Dixie L

    2014-08-26

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  17. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma

    PubMed Central

    Lock, Frances E.; Rebollo, Rita; Miceli-Royer, Katharine; Gagnier, Liane; Kuah, Sabrina; Babaian, Artem; Sistiaga-Poveda, Maialen; Lai, C. Benjamin; Nemirovsky, Oksana; Serrano, Isabel; Steidl, Christian; Karimi, Mohammad M.; Mager, Dixie L.

    2014-01-01

    Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences harbor multiple regulatory motifs and hence are capable of influencing expression of host genes. In response to environmental changes, TEs are known to be released from epigenetic repression and to become transcriptionally active. Such activation could also lead to lineage-inappropriate activation of oncogenes, as one study described in Hodgkin lymphoma. However, little further evidence for this mechanism in other cancers has been reported. Here, we reanalyzed whole transcriptome data from a large cohort of patients with diffuse large B-cell lymphoma (DLBCL) compared with normal B-cell centroblasts to detect genes ectopically expressed through activation of TE promoters. We have identified 98 such TE-gene chimeric transcripts that were exclusively expressed in primary DLBCL cases and confirmed several in DLBCL-derived cell lines. We further characterized a TE-gene chimeric transcript involving a fatty acid-binding protein gene (LTR2-FABP7), normally expressed in brain, that was ectopically expressed in a subset of DLBCL patients through the use of an endogenous retroviral LTR promoter of the LTR2 family. The LTR2-FABP7 chimeric transcript encodes a novel chimeric isoform of the protein with characteristics distinct from native FABP7. In vitro studies reveal a dependency for DLBCL cell line proliferation and growth on LTR2-FABP7 chimeric protein expression. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in cancer and suggest that LTR2-FABP7 may contribute to the pathogenesis of DLBCL in a subgroup of patients. PMID:25114248

  18. A novel mutation in the mitochondrial tRNA{sup Asn} gene associated with a lethal disease

    SciTech Connect

    Coulbault, Laurent; Herlicoviez, Danielle; Chapon, Francoise; Read, Marie-Helene; Penniello, Marie-Jose; Reynier, Pascal; Fayet, Guillemette; Lombes, Anne; Jauzac, Philippe; Allouche, Stephane . E-mail: allouche-s@chu-caen.fr

    2005-04-15

    We describe a lethal mitochondrial disease in a 10-month-old child who presented with encephalomyopathy. Histochemical and electron microscopy examinations of skeletal muscle biopsy revealed abnormal mitochondria associated with a combined deficiency of complexes I and IV. After excluding mitochondrial DNA deletions and depletion, direct sequencing was used to screen for mutation in all transfer RNA (tRNA) genes. A T-to-C substitution at position 5693 in the tRNA{sup Asn} gene was found in blood and muscle. Microdissection of muscle biopsy and its analysis revealed the highest level of this mutation in cytochrome c oxidase (COX)-negative fibres. We suggest that this novel mutation would affect the anticodon loop structure of the tRNA{sup Asn} and cause a fatal mitochondrial disease.

  19. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes

    PubMed Central

    Wang, Xiaosheng; Zhang, Yue; Han, Ze-Guang; He, Kun-Yan

    2016-01-01

    Abstract The mutation status of cancer driver genes may correlate with different degrees of malignancy of cancers. The doubling time and multidrug resistance are 2 phenotypes that reflect the degree of malignancy of cancer cells. Because most of cancer driver genes are hard to target, identification of their synthetic lethal partners might be a viable approach to treatment of the cancers with the relevant mutations. The genome-wide screening for synthetic lethal partners is costly and labor intensive. Thus, a computational approach facilitating identification of candidate genes for a focus synthetic lethal RNAi screening will accelerate novel anticancer drug discovery. We used several publicly available cancer cell lines and tumor tissue genomic data in this study. We compared the doubling time and multidrug resistance between the NCI-60 cell lines with mutations in some cancer driver genes and those without the mutations. We identified some candidate synthetic lethal genes to the cancer driver genes APC, KRAS, BRAF, PIK3CA, and TP53 by comparison of their gene phenotype values in cancer cell lines with the relevant mutations and wild-type background. Further, we experimentally validated some of the synthetic lethal relationships we predicted. We reported that mutations in some cancer driver genes mutations in some cancer driver genes such as APC, KRAS, or PIK3CA might correlate with cancer proliferation or drug resistance. We identified 40, 21, 5, 43, and 18 potential synthetic lethal genes to APC, KRAS, BRAF, PIK3CA, and TP53, respectively. We found that some of the potential synthetic lethal genes show significantly higher expression in the cancers with mutations of their synthetic lethal partners and the wild-type counterparts. Further, our experiments confirmed several synthetic lethal relationships that are novel findings by our methods. We experimentally validated a part of the synthetic lethal relationships we predicted. We plan to perform further

  20. Tasers--less than lethal!

    PubMed

    Sharma, Abiram; Theivacumar, Nada S; Souka, Hesham M

    2009-05-01

    We report a case of potentially lethal injury associated with the use of Taser. A 42-year-old man was stopped by police for potential detention. He held a large carving knife over his epigasrium threatening to stab himself. With a view to achieving immobilisation, a Taser gun was used. On activation of the Taser, the subject suffered a 7-cm wide and 10-cm deep stab injury to the upper abdomen. In this case, activation of the Taser resulted in the contraction of skeletal muscles, flexors more intensely than extensors, resulting in the stab injury. PMID:19416583

  1. Tasers – Less than Lethal!

    PubMed Central

    Sharma, Abiram; Theivacumar, Nada S; Souka, Hesham M

    2009-01-01

    We report a case of potentially lethal injury associated with the use of Taser. A 42-year-old man was stopped by police for potential detention. He held a large carving knife over his epigasrium threatening to stab himself.With a view to achieving immobilisation, a Taser gun was used. On activation of the Taser, the subject suffered a 7-cm wide and 10-cm deep stab injury to the upper abdomen. In this case, activation of the Taser resulted in the contraction of skeletal muscles, flexors more intensely than extensors, resulting in the stab injury. PMID:19416583

  2. Electroshock weapons can be lethal!

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2008-03-01

    Electroshock weapons (EWs)-stun guns, tasers, riot shields-are electroconductive devices designed to safely incapacitate healthy men neuromuscularly, so they are called nonlethal or less-lethal. EW firms seeking large nonmilitary markets targeted law enforcement and corrections personnel, who began using EWs in prisons/jails and on public patrol in 1980 in the USA. This shifted the EW-shocked population from healthy soldiers to a heterogeneous mix of both sexes, ages 6-92, in a wide variety of health conditions! An EW operates by disrupting normal physiological processes, producing transient effects in healthy people. But if a person's health is sufficiently compromised, the margin of safety can be lost, resulting in death or permanent health problems. 325 people have died after EW shock since 1980. Did the EW cause these deaths? Evidence indicates that EWs do play a causal role in most such deaths. EWs can be lethal for people in diabetic shock^1 (hypoglycemia), which may be why Robert Dziekanski-a Polish immigrant to Canada-died so quickly after he was tasered at Vancouver Airport: not having eaten for over 10 hours, he likely was severely hypoglycemic. The EW death rate in North America is 30 times higher than need be, because EW users have not been properly trained to use EWs on a heterogeneous population safely! ^1J. Clinical Engineering 30(3):111(2005).

  3. MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells.

    PubMed

    Kamat, Viraj; Paluru, Prasuna; Myint, Melissa; French, Deborah L; Gadue, Paul; Diamond, Scott L

    2014-05-01

    MicroRNAs (miRNAs) can control stem cell differentiation by targeting mRNAs. Using 96-well plate electroporation, we screened 466 human miRNA mimics by four-color flow cytometry to explore differentiation of common myeloid progenitors (CMP) derived from human embryonic stem cells (hESCs). The transfected cells were then cultured in a cytokine cocktail that supported multiple hematopoietic lineages. At 4-5 days post-transfection, flow cytometry of erythroid (CD235(+)CD41(-)), megakaryocyte (CD41(+)CD42(+)), and myeloid (CD18(+)CD235(-)) lineages revealed miR-105 as a novel enhancer of megakaryocyte production during in vitro primitive hematopoiesis. In hESC-derived CMPs, miR-105 caused a sixfold enhancement in megakaryocyte production. miR-513a, miR-571, and miR-195 were found to be less potent megakaryocyte enhancers. We confirmed the relevance of miR-105 in adult megakaryopoiesis by demonstrating increased megakaryocyte yield and megakaryocyte colony forming potential in human adult CD34(+) cells derived from peripheral blood. In addition, adult CD34(+) cells express endogenous miR-105 during megakaryocyte differentiation. siRNA knockdown of the hematopoietic transcription factor c-Myb caused a similar enhancement of megakaryocyte production as miR-105. Finally, a luciferase/c-Myb-3'UTR construct and Western blot analysis demonstrated that the hematopoietic transcription factor c-Myb mRNA was a target of miR-105. We report a novel hESC-based miR screening platform and demonstrate that miR-105 is an enhancer of megakaryopoiesis in both primitive and definitive hematopoiesis. PMID:24446170

  4. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405

  5. Identification of cetrimonium bromide and irinotecan as compounds with synthetic lethality against NDRG1 deficient prostate cancer cells

    PubMed Central

    Wissing, Michel D.; Mendonca, Janet; Kim, Eunice; Kim, Eugene; Shim, Joong S.; Kaelber, Nadine S.; Kant, Huub; Hammers, Hans; Commes, Therese; Van Diest, Paul J.; Liu, Jun O.; Kachhap, Sushant K.

    2013-01-01

    The N-myc downstream regulated gene 1 (NDRG1) has been identified as a metastasis-suppressor gene in prostate cancer (PCa). Compounds targeting PCa cells deficient in NDRG1 could potentially decrease invasion/metastasis of PCa. A cell based screening strategy was employed to identify small molecules that selectively target NDRG1 deficient PCa cells. DU-145 PCa cells rendered deficient in NDRG1 expression by a lentiviral shRNA-mediated knockdown strategy were used in the primary screen. Compounds filtered from the primary screen were further validated through proliferation and clonogenic survival assays in parental and NDRG1 knockdown PCa cells. Screening of 3360 compounds revealed irinotecan and cetrimonium bromide (CTAB) as compounds that exhibited synthetic lethality against NDRG1 deficient PCa cells. A three-dimensional (3-D) invasion assay was utilized to test the ability of CTAB to inhibit invasion of DU-145 cells. CTAB was found to remarkably decrease invasion of DU-145 cells in collagen matrix. Our results suggest that CTAB and irinotecan could be further explored for their potential clinical benefit in patients with NDRG1 deficient PCa. PMID:23377825

  6. Ethical language and decision-making for prenatally diagnosed lethal malformations.

    PubMed

    Wilkinson, Dominic; de Crespigny, Lachlan; Xafis, Vicki

    2014-10-01

    In clinical practice, and in the medical literature, severe congenital malformations such as trisomy 18, anencephaly, and renal agenesis are frequently referred to as 'lethal' or as 'incompatible with life'. However, there is no agreement about a definition of lethal malformations, nor which conditions should be included in this category. Review of outcomes for malformations commonly designated 'lethal' reveals that prolonged survival is possible, even if rare. This article analyses the concept of lethal malformations and compares it to the problematic concept of 'futility'. We recommend avoiding the term 'lethal' and suggest that counseling should focus on salient prognostic features instead. For conditions with a high chance of early death or profound impairment in survivors despite treatment, perinatal and neonatal palliative care would be ethical. However, active obstetric and neonatal management, if desired, may also sometimes be appropriate. PMID:25200733

  7. Gene essentiality and synthetic lethality in haploid human cells.

    PubMed

    Blomen, Vincent A; Májek, Peter; Jae, Lucas T; Bigenzahn, Johannes W; Nieuwenhuis, Joppe; Staring, Jacqueline; Sacco, Roberto; van Diemen, Ferdy R; Olk, Nadine; Stukalov, Alexey; Marceau, Caleb; Janssen, Hans; Carette, Jan E; Bennett, Keiryn L; Colinge, Jacques; Superti-Furga, Giulio; Brummelkamp, Thijn R

    2015-11-27

    Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase β adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology. PMID:26472760

  8. A Trans-Amazonian Screening of mtDNA Reveals Deep Intraspecific Divergence in Forest Birds and Suggests a Vast Underestimation of Species Diversity

    PubMed Central

    Milá, Borja; Tavares, Erika S.; Muñoz Saldaña, Alberto; Karubian, Jordan; Smith, Thomas B.; Baker, Allan J.

    2012-01-01

    The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys

  9. A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity.

    PubMed

    Milá, Borja; Tavares, Erika S; Muñoz Saldaña, Alberto; Karubian, Jordan; Smith, Thomas B; Baker, Allan J

    2012-01-01

    The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys

  10. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host.

    PubMed

    González-González, Angélica; Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C

    2016-01-01

    Hylamorpha elegans(Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs inH. elegans as well as six new volatiles released by its native host Nothofagus obliqua(Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. oblique revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies. PMID:27012867

  11. Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole.

    PubMed

    Winter, Gal; Cordente, Antonio G; Curtin, Chris

    2014-01-01

    Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S), are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase) as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes. PMID:25517415

  12. Formation of Hydrogen Sulfide from Cysteine in Saccharomyces cerevisiae BY4742: Genome Wide Screen Reveals a Central Role of the Vacuole

    PubMed Central

    Winter, Gal; Cordente, Antonio G.; Curtin, Chris

    2014-01-01

    Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S), are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase) as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes. PMID:25517415

  13. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast

    PubMed Central

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  14. Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats

    PubMed Central

    Dealtry, Simone; Ding, Guo-Chun; Weichelt, Viola; Dunon, Vincent; Schlüter, Andreas; Martini, María Carla; Papa, María Florencia Del; Lagares, Antonio; Amos, Gregory Charles Auton; Wellington, Elizabeth Margaret Helen; Gaze, William Hugo; Sipkema, Detmer; Sjöling, Sara; Springael, Dirk; Heuer, Holger; van Elsas, Jan Dirk; Thomas, Christopher; Smalla, Kornelia

    2014-01-01

    IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes. PMID:24587126

  15. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host

    PubMed Central

    Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C.

    2016-01-01

    Hylamorpha elegans (Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs in H. elegans as well as six new volatiles released by its native host Nothofagus obliqua (Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. obliqua revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies. PMID:27012867

  16. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.

    PubMed

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  17. Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats.

    PubMed

    Dealtry, Simone; Ding, Guo-Chun; Weichelt, Viola; Dunon, Vincent; Schlüter, Andreas; Martini, María Carla; Del Papa, María Florencia; Lagares, Antonio; Amos, Gregory Charles Auton; Wellington, Elizabeth Margaret Helen; Gaze, William Hugo; Sipkema, Detmer; Sjöling, Sara; Springael, Dirk; Heuer, Holger; van Elsas, Jan Dirk; Thomas, Christopher; Smalla, Kornelia

    2014-01-01

    IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are "hot spots" of plasmids potentially carrying catabolic genes. PMID:24587126

  18. Deep recombination centers in C u2ZnSnS e4 revealed by screened-exchange hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Yee, Ye Sheng; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.

    2015-11-01

    We present a comprehensive study of the thermodynamic and electronic properties of intrinsic point defects in the solar energy conversion materials C u2ZnSnS e4 and CuInS e2 based on the screened-exchange hybrid density functional theory. A comparison between the defect transition levels for C u2ZnSnS e4 and CuInS e2 reveals that in C u2ZnSnS e4 , the S nCu and S nZn antisite defects can be recombination centers with defect states close to midgap, while the I nCu antisite defect has a shallow defect level in CuInS e2 . The resultant higher Shockley-Read-Hall recombination rate in C u2ZnSnS e4 reduces the steady-state concentration of minority carriers and quasi-Fermi level separation under illumination. This may explain the origin of the low open-circuit voltage values for C u2ZnSnS e4 solar cells compared to CuInS e2 solar cells.

  19. The repair of sub-lethal damage and the stimulated repair of potentially lethal damage in Saintpaulia.

    PubMed

    Leenhouts, H P; Sijsma, M J; Litwiniszyn, M; Chadwick, K H

    1981-10-01

    The repair of sublethal and potentially lethal damage in stationary resting epidermal cells of Saintpaulia has been investigated. Fractionation experiments reveal an efficient repair of sublethal damage with a half-life of 1.9 hours. No repair of potentially lethal damage was noted when cultivation of the leaves was delayed for 24 hours after irradiation. At delay times of 2, 3 and 4 days some repair of potentially lethal damage has been found. A small pre-dose given 24 hours before a challenging dose improved the cells' chance to regenerate and the improvement has been shown to be compatible with an improved repair of potentially lethal damage induced by X-rays and fast neutrons. It hs been shown that the stimulated repair process takes 12 to 24 hours to develop, is dependent on the size of the pre-dose, has single-hit dose kinetics, and an r.b.e. of 1 for neutrons. With delayed cultivation of 2 days the stimulated repair process leads to an alteration in the shape of the regeneration (survival)-dose relationship which increases the low dose r.b.e. for neutrons from 10 to 35. PMID:6975252

  20. Alcohol Consumption and Nearly Lethal Suicide Attempts.

    ERIC Educational Resources Information Center

    Powell, Kenneth E.; Kresnow, Marcie-jo; Mercy, James A.; Potter, Lloyd B.; Swann, Alan C.; Frankowski, Ralph F.; Lee, Roberta K.; Bayer, Timothy L.

    2002-01-01

    Presents a case-control study of the association between nearly lethal suicide attempts and facets of alcohol consumption; namely, drinking frequency, drinking quantity, binge drinking, alcoholism, drinking within 3 hours of suicide attempt, and age began drinking. In bivariate analyses, all measures were associated with nearly lethal suicide…

  1. Lethality of Suicide Attempt Rating Scale.

    ERIC Educational Resources Information Center

    Smith, K.; And Others

    1984-01-01

    Presents an 11-point scale for measuring the degree of lethality of suicide attempts. The scale has nine example "anchors" and uses the relative lethality of an extensive table of drugs. The scale can be used reliably by nonmedical personnel with no prior training. (Author/BL)

  2. The flap by flap dissection in terminal ballistic applied to less lethal weapons.

    PubMed

    de Freminville, Humbert; Rongieras, Fréderic; Prat, Nicolas; Voiglio, Eric J

    2011-06-01

    Medical examiners often have to solve questions such as firing distance and bullet trajectory for lethal weapons. Knowledge in the field of terminal ballistics has increased during the last 30 years and layer by layer dissection reveals superficial wounds that can be linked with the permanent cavity. At the end of the 1990s, terminal ballistics also focused on less lethal weapons and their wounds. Here, 2 different less lethal weapons with single bullets were tested on nonembalmed and undressed cadavers (N = 26) at different ranges and speeds. We have developed a technique for dissection which we call flap by flap dissection that reveals the advantage of the bullet-skin-bone entity, the absence of wounds linking its components and range of less lethal weapons. PMID:20110799

  3. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  4. Lethal photosensitization of Helicobacter species

    NASA Astrophysics Data System (ADS)

    Millson, Charles E.; Wilson, Michael; MacRobert, Alexander J.; Thurrell, Wendy; Mlkvy, Peter; Davies, Claire; Bown, Stephen G.

    1995-01-01

    Helicobacter pylori (H. pylori) is associated with a large number of gastroduodenal disorders. Clearance of the bacteria has been shown to benefit patients with duodenal ulcers, gastric ulcers, and certain rare types of gastric tumors. Broad-spectrum antibiotics are the mainstay of current treatment strategies but side-effects, poor compliance, and drug resistance limit their usefulness. We sensitized H. pylori with toluidine blue, haematoporphyrin derivative, aluminum disulphonated phthalocyanine, methylene blue or protoporphyrin IX prior to exposure to low-power laser light from either a gallium aluminum arsenide laser or a helium neon gas laser. All 5 sensitizers caused reductions of greater than 1000-fold in the number of viable bacteria. Light alone had no effect and only HpD caused a significant decrease in bacterial numbers without laser light. Next, we sensitized H. mustelae on explanted ferret gastric mucosa (ex vivo) with the same sensitizers and exposed them to light from a copper vapor pumped dye laser tuned appropriately. MB caused significant reductions in bacterial counts. Successful lethal photosensitization of Helicobacter pylori both in vitro and ex vivo raises the possibility of a local method for eradicating the bacteria, especially as the bacteria are only found in those parts of the upper gastrointestinal tract that are accessible to the endoscope.

  5. A selective screening platform reveals unique global expression patterns of microRNAs in a cohort of human soft-tissue sarcomas.

    PubMed

    Yu, Peter Y; Balkhi, Mumtaz Y; Ladner, Katherine J; Alder, Hansjuerg; Yu, Lianbo; Mo, Xiaokui; Kraybill, William G; Guttridge, Denis C; Hans Iwenofu, O

    2016-04-01

    Sarcomas are malignant heterogenous tumors of mesenchymal derivation. Emerging data suggest that miRNA might have a causal role in sarcomagenesis. Herein, we used a selective miRNA screening platform to study the comparative global miRNA expression signatures in a cohort of human sarcomas with the caveat that comparisons between tumor and non-tumor cells were performed from the same patients using formalin-fixed paraffin-embedded tissue. Five histologic types were examined that included: myxoid liposarcoma, well-differentiated liposarcoma, dedifferentiated liposarcoma, pleomorphic rhabdomyosarcoma, and synovial sarcoma. In addition, soft-tissue lipomas and normal fat were included as a separate set of controls for the lipogenic tumors. Clustering analysis showed a distinct global difference in expression patterns between the normal and sarcoma tissues. Expression signatures in an unsupervised hierarchical clustering analysis revealed tight clustering in synovial and myxoid liposarcomas, and the least clustering was observed in the pleomorphic rhabdomyosarcoma subtype. MiR-145 showed underexpression in pleomorphic rhabdomyosarcoma, well-differentiated liposarcoma, and synovial sarcoma. Unexpectedly, we found that a set of muscle-specific microRNAs (miRNAs; myomiRs): miR-133, miR-1, and miR-206 was significantly underexpressed in well-differentiated liposarcoma and synovial sarcoma, suggesting that they may function as tumor suppressors as described in muscle-relevant rhabdomyosarcomas. In addition, a tight linear progression of miRNA expression was identified from normal fat to dedifferentiated liposarcoma. These results suggest that miRNA expression profiles could elucidate classes of miRNAs that may elicit tumor-relevant activities in specific sarcoma subtypes. PMID:26878133

  6. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families

    PubMed Central

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K.; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R.

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  7. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families.

    PubMed

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica's prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  8. Large Scale Screening of Digeneans for Neorickettsia Endosymbionts Using Real-Time PCR Reveals New Neorickettsia Genotypes, Host Associations and Geographic Records

    PubMed Central

    Greiman, Stephen E.; Tkach, Vasyl V.; Pulis, Eric; Fayton, Thomas J.; Curran, Stephen S.

    2014-01-01

    Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1–7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations. PMID

  9. Lethal methemoglobinemia and automobile exhaust inhalation.

    PubMed

    Vevelstad, Merete; Morild, Inge

    2009-05-30

    Inhalation of automobile exhaust gas often leads to death by CO intoxication. In some cases the measured carbon monoxide hemoglobin saturation level (COHb) is considerably below what is considered to be lethal. The death in such cases has been attributed to a combination of a high CO2 and a low O2 tension. In a recent case the deceased was found dead in a car equipped with a catalytic converter, with a hose leading exhaust from the engine to the interior of the car. Analysis revealed a moderately elevated COHb and a high methemoglobin saturation level (MetHb) in peripheral blood. No ethanol, narcotics or drugs were detected. Reports mentioning MetHb or methemoglobinemia in post-mortem cases are surprisingly scarce, and very few have related exhaust gas deaths to methemoglobinemia. High-degree methemoglobinemia causes serious tissue hypoxia leading to unconsciousness, arrhythmia and death. The existing literature in this field and the knowledge that exhaust fumes contain nitrogen oxide gases (NOx) that by inhalation and absorption can result in severe methemoglobinemia, led us to postulate that this death could possibly be attributed to a combination of methemoglobinemia and a moderately high COHb concentration. PMID:19261402

  10. [Pheochromocytoma: rare lethal challenging diagnosis that may be encountered by gynecologists and obstetricians].

    PubMed

    Choux, C; Vergès, B; Isnardon, J-P; Rousselet, J-M; Douvier, S; Sagot, P

    2012-06-01

    Pheochromocytomas are rare but potentially lethal tumors responsible for malignant hypertension. They may be encountered by gynecologists and obstetricians. The diagnosis is difficult because it can be mistaken for diseases more frequent like preeclampsia or other pelvic tumors. We report two cases highlighting clinical clues such as labile hypertension, headache, sweating, palpitations and failure to respond to conventional treatment should prompt physicians to screen patients for pheochromocytoma by measuring the 24-hour urinary catecholamines. The surgery must be performed after using an appropriate preoperative treatment, in order not to trigger lethal outcome. During pregnancy, C-section is recommended. PMID:22227233

  11. Crystallographic studies of the Anthrax lethal toxin. Annual report

    SciTech Connect

    Frederick, C.A.

    1996-07-01

    The lethal form of Anthrax results from the inhalation of anthrax spores. Death is primarily due to the effects of the lethal toxin (Protective Antigen (PA) + Lethal Factor) from the causative agent, Bacillus anthracis. All the Anthrax vaccines currently in use or under development contain or produce PA, the major antigenic component of anthrax toxin, and there is a clear need for an improved vaccine for human use. In the previous report we described the first atomic resolution structure of PA, revealing that the molecule is composed largely of beta-sheets organized into four domains. This information can be used in the design. of recombinant PA vaccines. In this report we describe additional features of the full-length PA molecule derived from further crystallographic refinement and careful examination of the structure. We compare two crystal forms of PA grown at different pH values and discuss the functional implications. A complete definition of the function of each domain must await the crystal structure of the PA63 heptamer. We have grown crystals of the heptamer under both detergent and detergent-free conditions, and made substantial progress towards the crystal structure. The mechanism of anthrax intoxication in the light of our results is reviewed.

  12. Structural basis for a lethal mutation in U6 RNA.

    PubMed

    Sashital, Dipali G; Allmann, Anne M; Van Doren, Steven R; Butcher, Samuel E

    2003-02-18

    U6 RNA is essential for nuclear pre-mRNA splicing and has been implicated directly in catalysis of intron removal. The U80G mutation at the essential magnesium binding site of the U6 3' intramolecular stem-loop region (ISL) is lethal in yeast. To further understand the structure and function of the U6 ISL, we have investigated the structural basis for the lethal U80G mutation by NMR and optical spectroscopy. The NMR structure reveals that the U80G mutation causes a structural rearrangement within the ISL resulting in the formation of a new Watson-Crick base pair (C67 x G80), and disrupts a protonated C67 x A79 wobble pair that forms in the wild-type structure. Despite the structural change, the accessibility of the metal binding site is unperturbed, and cadmium titration produces similar phosphorus chemical shift changes for both the U80G mutant and wild-type RNAs. The thermodynamic stability of the U80G mutant is significantly increased (Delta Delta G(fold) = -3.6 +/- 1.9 kcal/mol), consistent with formation of the Watson-Crick pair. Our structural and thermodynamic data, in combination with previous genetic data, suggest that the lethal basis for the U80G mutation is stem-loop hyperstabilization. This hyperstabilization may prevent the U6 ISL melting and rearrangement necessary for association with U4. PMID:12578359

  13. Lethal Effects of Helianthemum lippii (L.) on Acanthamoeba castellanii Cysts in Vitro

    PubMed Central

    Badria, F.A.; Hetta, M.H.; Sarhan, Rania M.; Ezz El-Din, M.H.

    2014-01-01

    Acanthamoeba spp. commonly cause Acanthamoeba keratitis which is typically associated with the wear of contact lenses. Therefore, finding an economic, efficient, and safe therapy of natural origin is of outmost importance. This study examined the in vitro lethal potential of ethyl acetate and methanol extracts of Helianthemum lippii (L.) (sun roses) against Acanthamoeba castellanii cysts isolated from patients with amoebic keratitis. Both extracts proved to be potent as regard to their lethal effects on A. castellanii cysts with comparable results to chlorhexidine. The ethyl acetate was more promising with cumulative lethality. It showed a highly significant lethal percentage along the duration of treatment. The analysis of the more potent ethyl acetate extract revealed the presence of 2.96 mg/100 g of total phenolics, 0.289 mg/100 ml of total flavonoids and 37 mg/100 mg of total tannins which highlighted their phytomedicinal role. PMID:25031463

  14. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  15. Enhancing the stability and ecological safety of mass-reared transgenic strains for field release by redundant conditional lethality systems.

    PubMed

    Handler, Alfred M

    2016-04-01

    The genetic manipulation of agriculturally important insects now allows the development of genetic sexing and male sterility systems for more highly efficient biologically-based population control programs, most notably the Sterile Insect Technique (SIT), for both plant and animal insect pests. Tetracycline-suppressible (Tet-off) conditional lethal systems may function together so that transgenic strains will be viable and fertile on a tetracycline-containing diet, but female-lethal and male sterile in tetracycline-free conditions. This would allow their most efficacious use in a unified system for sterile male-only production for SIT. A critical consideration for the field release of such transgenic insect strains, however, is a determination of the frequency and genetic basis of lethality revertant survival. This will provide knowledge essential to evaluating the genetic stability of the lethality system, its environmental safety, and provide the basis for modifications ensuring optimal efficacy. For Tet-off lethal survival determinations, development of large-scale screening protocols should also allow the testing of these modifications, and test the ability of other conditional lethal systems to fully suppress propagation of rare Tet-off survivors. If a dominant temperature sensitive (DTS) pupal lethality system proves efficient for secondary lethality in Drosophila, it may provide the safeguard needed to support the release of sexing/sterility strains, and potentially, the release of unisex lethality strains as a form of genetic male sterility. Should the DTS Prosβ2(1) mutation prove effective for redundant lethality, its high level of structural and functional conservation should allow host-specific cognates to be created for a wide range of insect species. PMID:26097098

  16. Comparative analysis of RNAi screening technologies at genome-scale reveals an inherent processing inefficiency of the plasmid-based shRNA hairpin.

    PubMed

    Bhinder, Bhavneet; Shum, David; Djaballah, Hakim

    2014-02-01

    RNAi screening in combination with the genome-sequencing projects would constitute the Holy Grail of modern genetics; enabling discovery and validation towards a better understanding of fundamental biology leading to novel targets to combat disease. Hit discordance at inter-screen level together with the lack of reproducibility is emerging as the technology's main pitfalls. To examine some of the underlining factors leading to such discrepancies, we reasoned that perhaps there is an inherent difference in knockdown efficiency of the various RNAi technologies. For this purpose, we utilized the two most popular ones, chemically synthesized siRNA duplex and plasmid-based shRNA hairpin, in order to perform a head to head comparison. Using a previously developed gain-of-function assay probing modulators of the miRNA biogenesis pathway, we first executed on a siRNA screen against the Silencer Select V4.0 library (AMB) nominating 1,273, followed by an shRNA screen against the TRC1 library (TRC1) nominating 497 gene candidates. We observed a poor overlap of only 29 hits given that there are 15,068 overlapping genes between the two libraries; with DROSHA as the only common hit out of the seven known core miRNA biogenesis genes. Distinct genes interacting with the same biogenesis regulators were observed in both screens, with a dismal cross-network overlap of only 3 genes (DROSHA, TGFBR1, and DIS3). Taken together, our study demonstrates differential knockdown activities between the two technologies, possibly due to the inefficient intracellular processing and potential cell-type specificity determinants in generating intended targeting sequences for the plasmid-based shRNA hairpins; and suggests this observed inefficiency as potential culprit in addressing the lack of reproducibility. PMID:24433414

  17. Comparative analysis of RNAi screening technologies at genome-scale reveals an inherent processing inefficiency of the plasmid-based shRNA hairpin

    PubMed Central

    Bhinder, Bhavneet; Shum, David; Djaballah, Hakim

    2014-01-01

    RNAi screening in combination with the genome-sequencing projects would constitute the Holy Grail of modern genetics; enabling discovery and validation towards a better understanding of fundamental biology leading to novel targets to combat disease. Hit discordance at inter-screen level together with the lack of reproducibility is emerging as the technology's main pitfalls. To examine some of the underlining factors leading to such discrepancies, we reasoned that perhaps there is an inherent difference in knockdown efficiency of the various RNAi technologies. For this purpose, we utilized the two most popular ones, chemically synthesized siRNA duplex and plasmid-based shRNA hairpin, in order to perform a head to head comparison. Using a previously developed gain-of-function assay probing modulators of the miRNA biogenesis pathway, we first executed on a siRNA screen against the Silencer Select V4.0 library (AMB) nominating 1,273, followed by an shRNA screen against the TRC1 library (TRC1) nominating 497 gene candidates. We observed a poor overlap of only 29 hits given that there are 15,068 overlapping genes between the two libraries; with DROSHA as the only common hit out of the seven known core miRNA biogenesis genes. Distinct genes interacting with the same biogenesis regulators were observed in both screens, with a dismal cross-network overlap of only 3 genes (DROSHA, TGFBR1, and DIS3). Taken together, our study demonstrates differential knockdown activities between the two technologies, possibly due to the inefficient intracellular processing and potential cell-type specificity determinants in generating intended targeting sequences for the plasmid-based shRNA hairpins; and suggests this observed inefficiency as potential culprit in addressing the lack of reproducibility. PMID:24433414

  18. ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

    PubMed Central

    Sullivan, Kelly D.; Padilla-Just, Nuria; Henry, Ryan E.; Porter, Christopher C.; Kim, Jihye; Tentler, John J.; Eckhardt, S. Gail; Tan, Aik Choon; DeGregori, James; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies. PMID:22660439

  19. New form of platyspondylic lethal chondrodysplasia.

    PubMed

    Akaba, K; Nishimura, G; Hashimoto, M; Wakabayashi, T; Kanasugi, H; Hayasaka, K

    1996-12-30

    We report on a sporadic case of hitherto unknown lethal skeletal dysplasia. The cardinal clinical manifestations consisted of frontal bossing, cloudy corneae, low nasal ridge, and micrognathia, hypoplastic thorax, and rhizomelic micromelia. Laryngoscopy and neck CT disclosed laryngeal stenosis, and brain CT demonstrated hypoplasia of the corpus callosum. Skeletal survey demonstrated hypoplasia of facial bones and short skull base, extremely severe platyspondyly, hypoplastic ilia, and delayed epiphyseal ossification and rhizomelic shortness of tubular bones. The long bones appeared overtubulated with exaggerated metaphyseal flaring. The humeri were particularly short and bowed. Bowing of the radii and ulnae with subluxation of radial heads presented as a Madelung-like deformity. Unlike the long bones, the short tubular bones were not short and normally modeled. The skeletal changes were superficially similar to those in a group of lethal platyspondylic chondrodysplasias, but were inconsistent with any known subtypes of this group or other lethal skeletal dysplasias. PMID:8989469

  20. Lethal Injection for Execution: Chemical Asphyxiation?

    PubMed Central

    Zimmers, Teresa A; Sheldon, Jonathan; Lubarsky, David A; López-Muñoz, Francisco; Waterman, Linda; Weisman, Richard; Koniaris, Leonidas G

    2007-01-01

    Background Lethal injection for execution was conceived as a comparatively humane alternative to electrocution or cyanide gas. The current protocols are based on one improvised by a medical examiner and an anesthesiologist in Oklahoma and are practiced on an ad hoc basis at the discretion of prison personnel. Each drug used, the ultrashort-acting barbiturate thiopental, the neuromuscular blocker pancuronium bromide, and the electrolyte potassium chloride, was expected to be lethal alone, while the combination was intended to produce anesthesia then death due to respiratory and cardiac arrest. We sought to determine whether the current drug regimen results in death in the manner intended. Methods and Findings We analyzed data from two US states that release information on executions, North Carolina and California, as well as the published clinical, laboratory, and veterinary animal experience. Execution outcomes from North Carolina and California together with interspecies dosage scaling of thiopental effects suggest that in the current practice of lethal injection, thiopental might not be fatal and might be insufficient to induce surgical anesthesia for the duration of the execution. Furthermore, evidence from North Carolina, California, and Virginia indicates that potassium chloride in lethal injection does not reliably induce cardiac arrest. Conclusions We were able to analyze only a limited number of executions. However, our findings suggest that current lethal injection protocols may not reliably effect death through the mechanisms intended, indicating a failure of design and implementation. If thiopental and potassium chloride fail to cause anesthesia and cardiac arrest, potentially aware inmates could die through pancuronium-induced asphyxiation. Thus the conventional view of lethal injection leading to an invariably peaceful and painless death is questionable. PMID:17455994

  1. Identification of a De Novo Heterozygous Missense FLNB Mutation in Lethal Atelosteogenesis Type I by Exome Sequencing

    PubMed Central

    Jeon, Ga Won; Lee, Mi-Na; Jung, Ji Mi; Hong, Seong Yeon; Kim, Young Nam; Sin, Jong Beom

    2014-01-01

    Background Atelosteogenesis type I (AO-I) is a rare lethal skeletal dysplastic disorder characterized by severe short-limbed dwarfism and dislocated hips, knees, and elbows. AO-I is caused by mutations in the filamin B (FLNB) gene; however, several other genes can cause AO-like lethal skeletal dysplasias. Methods In order to screen all possible genes associated with AO-like lethal skeletal dysplasias simultaneously, we performed whole-exome sequencing in a female newborn having clinical features of AO-I. Results Exome sequencing identified a novel missense variant (c.517G>A; p.Ala173Thr) in exon 2 of the FLNB gene in the patient. Sanger sequencing validated this variant, and genetic analysis of the patient's parents suggested a de novo occurrence of the variant. Conclusions This study shows that exome sequencing can be a useful tool for the identification of causative mutations in lethal skeletal dysplasia patients. PMID:24624349

  2. Genetic Panel Screening of Nearly 100 Mutations Reveals New Insights into the Breed Distribution of Risk Variants for Canine Hereditary Disorders

    PubMed Central

    Donner, Jonas; Möller, Fredrik; Kyöstilä, Kaisa; Sankari, Satu; Hytönen, Marjo; Giger, Urs; Lohi, Hannes

    2016-01-01

    Background The growing number of identified genetic disease risk variants across dog breeds challenges the current state-of-the-art of population screening, veterinary molecular diagnostics, and genetic counseling. Multiplex screening of such variants is now technologically feasible, but its practical potential as a supportive tool for canine breeding, disease diagnostics, pet care, and genetics research is still unexplored. Results To demonstrate the utility of comprehensive genetic panel screening, we tested nearly 7000 dogs representing around 230 breeds for 93 disease-associated variants using a custom-designed genotyping microarray (the MyDogDNA® panel test). In addition to known breed disease-associated mutations, we discovered 15 risk variants in a total of 34 breeds in which their presence was previously undocumented. We followed up on seven of these genetic findings to demonstrate their clinical relevance. We report additional breeds harboring variants causing factor VII deficiency, hyperuricosuria, lens luxation, von Willebrand’s disease, multifocal retinopathy, multidrug resistance, and rod-cone dysplasia. Moreover, we provide plausible molecular explanations for chondrodysplasia in the Chinook, cerebellar ataxia in the Norrbottenspitz, and familiar nephropathy in the Welsh Springer Spaniel. Conclusions These practical examples illustrate how genetic panel screening represents a comprehensive, efficient and powerful diagnostic and research discovery tool with a range of applications in veterinary care, disease research, and breeding. We conclude that several known disease alleles are more widespread across different breeds than previously recognized. However, careful follow up studies of any unexpected discoveries are essential to establish genotype-phenotype correlations, as is readiness to provide genetic counseling on their implications for the dog and its breed. PMID:27525650

  3. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish.

    PubMed

    Jiang, Faming; Chen, Jiehui; Ma, Xirui; Huang, Chao; Zhu, Shicheng; Wang, Fei; Li, Li; Luo, Lingfei; Ruan, Hua; Huang, Honghui

    2015-05-01

    Both the intestine and liver develop from the endoderm, yet little is known how these two digestive organs share and differ in their developmental programs, at the molecular level. A classical forward genetic screen, with no gene bias, is an effective way to address this question by examining the defects of the intestine and liver in obtained mutants to assess mutated genes responsible for the development of either organ or both. We report here such a screen in zebrafish. ENU was used as the mutagen because of its high mutagenic efficiency and no site preference. Embryos were collected at 3.5 dpf for RNA whole mount in situ hybridization with a cocktail probe of the intestine marker ifabp and the liver marker lfabp to check phenotypes and determine their parental heterozygosis. A total of 52 F2 putative mutants were identified, and those with general developmental defects were aborted. To rule out non-inheritable phenotypes caused by high mutation background, F2 putative mutants were outcrossed with wild type fish and a re-screen in F3 generations was performed. After complementation tests between F3 mutants with similar phenotypes originating from the same F2 families, a total of 37 F3 mutant lines originated from 22 F2 families were identified after screening 78 mutagenized genomes. Classification of mutant phenotypes indicated that 31 out of the 37 mutants showed defects in both the intestine and liver. In addition, four "intestine specific mutants" and two "liver specific mutants" showed selectively more severe phenotype in the intestine and liver respectively. These results suggested that the intestine and liver share a substantial number of essential genes during both organs development in zebrafish. Further studies of the mutants are likely to shed more insights into the molecular basis of the digestive system development in the zebrafish and vertebrate. PMID:25824031

  4. Preparation and characterization of cobalt-substituted anthrax lethal factor

    SciTech Connect

    Saebel, Crystal E.; Carbone, Ryan; Dabous, John R.; Lo, Suet Y.; Siemann, Stefan

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Cobalt-substituted anthrax lethal factor (CoLF) is highly active. Black-Right-Pointing-Pointer CoLF can be prepared by bio-assimilation and direct exchange. Black-Right-Pointing-Pointer Lethal factor binds cobalt tightly. Black-Right-Pointing-Pointer The electronic spectrum of CoLF reveals penta-coordination. Black-Right-Pointing-Pointer Interaction of CoLF with thioglycolic acid follows a 2-step mechanism. -- Abstract: Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl{sub 2}, and (ii) direct exchange by treatment of zinc-LF with CoCl{sub 2}. Independent of the method employed, the protein was found to contain one Co{sup 2+} per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co{sup 2+} ion to be five-coordinate, an observation similar to that reported for other Co{sup 2+}-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co{sup 2+}:TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.

  5. Live deaths online: internet suicide and lethality.

    PubMed

    Klein, Carolina A

    2012-01-01

    The Internet provides an infinite platform for the portrayal of lethal events. Beyond mere display, however, it dispenses information, allows for participation and sharing of content, and constitutes a virtual interactive forum. The Internet may ultimately shape society's approach to perceiving and dealing with death. Thus, psychiatrists may wish to be aware of these matters so that they may be considered in assessments and clinical care. In this article, the author attempts to identify key online locations where lethality is portrayed and how it may affect the individual patient and practitioner and the population at large. PMID:23233475

  6. Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa.

    PubMed

    Jonkman, Marcel F; Pasmooij, Anna M G; Pasmans, Suzanne G M A; van den Berg, Maarten P; Ter Horst, Henk J; Timmer, Albertus; Pas, Hendri H

    2005-10-01

    The cytoplasmic plaque protein desmoplakin (DP), which is located in desmosomes, plays a major role in epithelial and muscle cell adhesion by linking the transmembrane cadherins to the cytoplasmic intermediate filament network. Mutations of DP may cause striate palmoplantar keratoderma, arrhythmogenic right ventricular dysplasia, skin fragility/woolly hair syndrome, Naxos-like disease, and Carvajal syndrome. DP must be indispensable, because DP-/- mice are early abortive. Here, we report a patient with severe fragility of skin and mucous membranes caused by genetic truncation of the DP tail. The new phenotype is lethal in the neonatal period because of immense transcutaneous fluid loss. The phenotype also comprised universal alopecia, neonatal teeth, and nail loss. Histology showed suprabasal clefting and acantholysis throughout the spinous layer, mimicking pemphigus. Electron microscopy revealed disconnection of keratin intermediate filaments from desmosomes. Immunofluorescence staining of DP showed a distinct punctate intercellular pattern in the patient's skin. Protein analysis revealed expression of truncated DP polypeptides. Mutational analysis of the patient demonstrated compound heterozygosity for two DP mutations, 6079C-->T (R1934X) and 6370delTT, respectively. Aberrant mRNA transcripts that predict premature termination of translation with loss of the three intermediate filament-binding subdomains in the DP tail were detected by RT-PCR. The new dramatic phenotype, which we named "lethal acantholytic epidermolysis bullosa," underscores the paramount role of DP in epidermal integrity. PMID:16175511

  7. Lethal Malaria: Marchiafava and Bignami Were Right

    PubMed Central

    White, Nicholas J.; Turner, Gareth D. H.; Day, Nicholas P. J.; Dondorp, Arjen M.

    2013-01-01

    One hundred and twenty years ago, the Italian malariologists Marchiafava and Bignami proposed that the fundamental pathological process underlying lethal falciparum malaria was microvascular obstruction. Since then, several alternative hypotheses have been proposed. These formed the basis for adjunctive interventions, which have either been ineffective or harmful. Recent evidence strongly suggests that Marchiafava and Bignami were right. PMID:23585685

  8. The evolution of lethal intergroup violence

    PubMed Central

    Kelly, Raymond C.

    2005-01-01

    Recent findings and analyses in evolutionary biology, archaeology, and ethnology provide a favorable conjuncture for examining the evolution of lethal intergroup violence among hominids during the 2.9-million-year Paleolithic time span. Here, I seek to identify and investigate the main turning points in this evolutionary trajectory and to delineate the periodization that follows from this inquiry. PMID:16129826

  9. Deadly Lessons: Understanding Lethal School Violence.

    ERIC Educational Resources Information Center

    Moore, Mark H., Ed.; Petrie, Carol V., Ed.; Braga, Anthony A., Ed.; McLaughlin, Brenda L., Ed.

    This collection of papers is the outcome of the National Academies' effort to glean information from six different case studies of student-perpetrated school shootings. Part 1, "Case Studies of Lethal School Violence," includes: "The Copycat Factor: Mental Illness, Guns, and the Shooting Incident at Heritage High School, Rockdale County, Georgia"…

  10. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.

    PubMed

    Howes, Amy L; Richardson, Robyn D; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery. PMID:25247711

  11. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

    PubMed Central

    2010-01-01

    Background Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF) animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines). Results We screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. Conclusions We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future investigations of the

  12. Salicylic and jasmonic acid pathways are necessary for defence against Dickeya solani as revealed by a novel method for Blackleg disease screening of in vitro grown potato.

    PubMed

    Burra, D D; Mühlenbock, P; Andreasson, E

    2015-09-01

    Potato is major crop ensuring food security in Europe, and blackleg disease is increasingly causing losses in yield and during storage. Recently, one blackleg pathogen, Dickeya solani has been shown to be spreading in Northern Europe that causes aggressive disease development. Currently, identification of tolerant commercial potato varieties has been unsuccessful; this is confounded by the complicated etiology of the disease and a strong environmental influence on disease development. There is currently a lack of efficient testing systems. Here, we describe a system for quantification of blackleg symptoms on shoots of sterile in vitro potato plants, which saves time and space compared to greenhouse and existing field assays. We found no evidence for differences in infection between the described in vitro-based screening method and existing greenhouse assays. This system facilitates efficient screening of blackleg disease response of potato plants independent of other microorganisms and variable environmental conditions. We therefore used the in vitro screening method to increase understanding of plant mechanisms involved in blackleg disease development by analysing disease response of hormone- related (salicylic and jasmonic acid) transgenic potato plants. We show that both jasmonic (JA) and salicylic (SA) acid pathways regulate tolerance to blackleg disease in potato, a result unlike previous findings in Arabidopsis defence response to necrotrophic bacteria. We confirm this by showing induction of a SA marker, pathogenesis-related protein 1 (StPR1), and a JA marker, lipoxygenase (StLOX), in Dickeya solani infected in vitro potato plants. We also observed that tubers of transgenic potato plants were more susceptible to soft rot compared to wild type, suggesting a role for SA and JA pathways in general tolerance to Dickeya. PMID:25903921

  13. Cholesterol Metabolism and Prostate Cancer Lethality.

    PubMed

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R

    2016-08-15

    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR. PMID:27325648

  14. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR.

    PubMed

    Suh, Yoon Seok; Bhat, Shreelatha; Hong, Seung-Hyun; Shin, Minjung; Bahk, Suhyoung; Cho, Kyung Sang; Kim, Seung-Whan; Lee, Kyu-Sun; Kim, Young-Joon; Jones, Walton D; Yu, Kweon

    2015-01-01

    MicroRNAs (miRNAs) regulate many physiological processes including body growth. Insulin/IGF signalling is the primary regulator of animal body growth, but the extent to which miRNAs act in insulin-producing cells (IPCs) is unclear. Here we generate a UAS-miRNA library of Drosophila stocks and perform a genetic screen to identify miRNAs whose overexpression in the IPCs inhibits body growth in Drosophila. Through this screen, we identify miR-9a as an evolutionarily conserved regulator of insulin signalling and body growth. IPC-specific miR-9a overexpression reduces insulin signalling and body size. Of the predicted targets of miR-9a, we find that loss of miR-9a enhances the level of sNPFR1. We show via an in vitro binding assay that miR-9a binds to sNPFR1 mRNA in insect cells and to the mammalian orthologue NPY2R in rat insulinoma cells. These findings indicate that the conserved miR-9a regulates body growth by controlling sNPFR1/NPYR-mediated modulation of insulin signalling. PMID:26138755

  15. A high-throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from Pseudomonas syringae pv. actinidiae.

    PubMed

    McKellar, James L O; Minnell, Jordan J; Gerth, Monica L

    2015-05-01

    Chemoreceptors play a central role in chemotaxis, allowing bacteria to detect chemical gradients and bias their swimming behavior in order to navigate toward favorable environments. The genome of the kiwifruit pathogen, Pseudomonas syringae pv. actinidiae (Psa) strain NZ-V13 encodes 43 predicted chemoreceptors, none of which has been characterized. We developed a high-throughput fluorescence-based thermal shift assay for identifying the signal molecules that are recognized by a given chemoreceptor ligand binding domain (LBD). Using this assay, we characterized the ligand binding profiles of three Psa homologs of the P. aeruginosa PAO1 amino acid chemoreceptors PctA, PctB and PctC. Each recombinant LBD was screened against 95 potential ligands. The three Psa homologs, named pscA, pscB and pscC (Psa chemoreceptors A, B and C) bound 3, 10 and 3 amino acids respectively. In each case, their binding profiles were distinct from their P. aeruginosa PAO1 homologs. Notably, Psa PscA-LBD only bound the acidic amino acids l-aspartate, d-aspartate and l-glutamate, whereas P. aeruginosa PctA-LBD binds all of the l-proteinogenic amino acids except for l-aspartate and l-glutamate. A combination of homology modeling, site-directed mutagenesis and functional screening identified a single amino acid residue in the Psa PscA-LBD (Ala146) that is critically important for determining its narrow specificity. PMID:25656450

  16. An RNAi-based screen reveals PLK1, CDK1 and NDC80 as potential therapeutic targets in malignant pleural mesothelioma

    PubMed Central

    Linton, A; Cheng, Y Y; Griggs, K; Kirschner, M B; Gattani, S; Srikaran, S; Chuan-Hao Kao, S; McCaughan, B C; Klebe, S; van Zandwijk, N; Reid, G

    2014-01-01

    Background: Malignant pleural mesothelioma (MPM) is an aggressive tumour originating in the thoracic mesothelium. Prognosis remains poor with 9- to 12-month median survival, and new targets for treatments are desperately needed. Methods: Utilising an RNA interference (RNAi)-based screen of 40 genes overexpressed in tumours, including genes involved in the control of cell cycle, DNA replication and repair, we investigated potential therapeutic targets for MPM. Following in vitro characterisation of the effects of target silencing on MPM cells, candidates were assessed in tumour samples from 154 patients. Results: Gene knockdown in MPM cell lines identified growth inhibition following knockdown of NDC80, CDK1 and PLK1. Target knockdown induced cell-cycle arrest and increased apoptosis. Using small-molecule inhibitors specific for these three proteins also led to growth inhibition of MPM cell lines, and Roscovitine (inhibitor of CDK1) sensitised cells to cisplatin. Protein expression was also measured in tumour samples, with markedly variable levels of CDK1 and PLK1 noted. PLK1 expression in over 10% of cells correlated significantly with a poor prognosis. Conclusion: These results suggest that RNAi-based screening has utility in identifying new targets for MPM, and that inhibition of NDC80, CDK1 and PLK1 may hold promise for treatment of this disease. PMID:24327015

  17. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR

    PubMed Central

    Suh, Yoon Seok; Bhat, Shreelatha; Hong, Seung-Hyun; Shin, Minjung; Bahk, Suhyoung; Cho, Kyung Sang; Kim, Seung-Whan; Lee, Kyu-Sun; Kim, Young-Joon; Jones, Walton D.; Yu, Kweon

    2015-01-01

    MicroRNAs (miRNAs) regulate many physiological processes including body growth. Insulin/IGF signalling is the primary regulator of animal body growth, but the extent to which miRNAs act in insulin-producing cells (IPCs) is unclear. Here we generate a UAS-miRNA library of Drosophila stocks and perform a genetic screen to identify miRNAs whose overexpression in the IPCs inhibits body growth in Drosophila. Through this screen, we identify miR-9a as an evolutionarily conserved regulator of insulin signalling and body growth. IPC-specific miR-9a overexpression reduces insulin signalling and body size. Of the predicted targets of miR-9a, we find that loss of miR-9a enhances the level of sNPFR1. We show via an in vitro binding assay that miR-9a binds to sNPFR1 mRNA in insect cells and to the mammalian orthologue NPY2R in rat insulinoma cells. These findings indicate that the conserved miR-9a regulates body growth by controlling sNPFR1/NPYR-mediated modulation of insulin signalling. PMID:26138755

  18. 5-Lipoxygenase Deficiency Reduces Acetaminophen-Induced Hepatotoxicity and Lethality

    PubMed Central

    Hohmann, Miriam S. N.; Cardoso, Renato D. R.; Pinho-Ribeiro, Felipe A.; Crespigio, Jefferson; Cunha, Thiago M.; Alves-Filho, José C.; da Silva, Rosiane V.; Pinge-Filho, Phileno; Ferreira, Sergio H.; Cunha, Fernando Q.; Casagrande, Rubia; Verri, Waldiceu A.

    2013-01-01

    5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO−/−) mice and background wild type mice were challenged with APAP (0.3–6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO−/− mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α, IFN-γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91phox mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO−/− mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage. PMID:24288682

  19. The Spatial Concentration of Southern Whites and Argument-Based Lethal Violence

    ERIC Educational Resources Information Center

    Lee, Matthew R.; Shihadeh, Edward S.

    2009-01-01

    This analysis examines how the spatial concentration of Southern whites is associated with white argument-based lethal violence. Using a well-known measure of spatial segregation (V, the adjusted P* index) among Southern-born whites in U.S. counties in 2000, the results reveal that the spatial concentration of Southern-born whites is only…

  20. Functional Screening of the Cronobacter sakazakii BAA-894 Genome reveals a role for ProP (ESA_02131) in carnitine uptake

    PubMed Central

    Feeney, Audrey; Sleator, Roy D

    2015-01-01

    Cronobacter sakazakii is a neonatal pathogen responsible for up to 80% of fatalities in infected infants. Low birth weight infants and neonates infected with C. sakazakii suffer necrotizing enterocolitis, bacteraemia and meningitis. The mode of transmission most often associated with infection is powdered infant formula (PIF) which, with an aw of ∼0.2, is too low to allow most microorganisms to persist. Survival of C. sakazakii in environments subject to extreme hyperosmotic stress has previously been attributed to the uptake of compatible solutes including proline and betaine. Herein, we report the construction and screening of a C. sakazakii genome bank and the identification of ProP (ESA_02131) as a carnitine uptake system. PMID:25915804

  1. Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation

    PubMed Central

    Tang, Mei San; Poles, Jordan; Leung, Jacqueline M; Wolff, Martin J; Davenport, Michael; Lee, Soo Ching; Lim, Yvonne Al; Chua, Kek Heng; Loke, P'ng; Cho, Ilseung

    2015-01-01

    The mucosal microbiota lives in close proximity with the intestinal epithelium and may interact more directly with the host immune system than the luminal/fecal bacteria. The availability of nutrients in the mucus layer of the epithelium is also very different from the gut lumen environment. Inferred metagenomic analysis for microbial function of the mucosal microbiota is possible by PICRUSt. We recently found that by using this approach, actively inflamed tissue of ulcerative colitis (UC) patients have mucosal communities enriched for genes involved in lipid and amino acid metabolism, and reduced for carbohydrate and nucleotide metabolism. Here, we find that the same bacterial taxa (e.g. Acinetobacter) and predicted microbial pathways enriched in actively inflamed colitis tissue are also enriched in the mucosa of subjects undergoing routine screening colonoscopies, when compared with paired samples of luminal/fecal bacteria. These results suggest that the mucosa of healthy individuals may be a reservoir of aerotolerant microbial communities expanded during colitis. PMID:25559083

  2. A High-Throughput Fatty Acid Profiling Screen Reveals Novel Variations in Fatty Acid Biosynthesis in Chlamydomonas reinhardtii and Related Algae

    PubMed Central

    Pflaster, Erin L.; Schwabe, Michael J.; Becker, Joyanne; Wilkinson, Melissa S.; Parmer, Ashley; Clemente, Thomas E.; Cahoon, Edgar B.

    2014-01-01

    Analysis of fatty acid methyl esters (FAMEs) by gas chromatography (GC) is a common technique for the quantitative and qualitative analysis of acyl lipids. Methods for FAME preparation are typically time-consuming and labor-intensive and require multiple transfers of reagents and products between reaction tubes and autosampler vials. In order to increase throughput and lower the time and materials costs required for FAME preparation prior to GC analysis, we have developed a method in which 10-to-20-mg samples of microbial biomass are transferred to standard GC autosampler vials, transesterified using an emulsion of methanolic trimethylsulfonium hydroxide and hexane, and analyzed directly by GC without further sample handling. This method gives results that are essentially identical to those obtained by the more labor- and material-intensive FAME preparation methods, such as transmethylation with methanolic HCl. We applied this method to the screening of laboratory and environmental isolates of the green alga Chlamydomonas for variations in fatty acid composition. This screening method facilitated two novel discoveries. First, we identified a common laboratory strain of C. reinhardtii, CC-620, completely lacking all ω-3 fatty acids normally found in this organism and showed that this strain contains an inactivating mutation in the CrFAD7 gene, encoding the sole ω-3 desaturase activity in this organism. Second, we showed that some species of Chlamydomonas make Δ6-unsaturated polyunsaturated fatty acids (PUFA) rather than the Δ5 species normally made by the previously characterized laboratory strains of Chlamydomonas, suggesting that there is species-specific variation in the regiospecificity and substrate selectivity of front-end desaturases in this algal genus. PMID:25239975

  3. A Genome-wide In Vitro Bacterial-Infection Screen Reveals Human Variation in the Host Response Associated with Inflammatory Disease

    PubMed Central

    Ko, Dennis C.; Shukla, Kajal P.; Fong, Christine; Wasnick, Michael; Brittnacher, Mitchell J.; Wurfel, Mark M.; Holden, Tarah D.; O'Keefe, Grant E.; Van Yserloo, Brian; Akey, Joshua M.; Miller, Samuel I.

    2009-01-01

    Recent progress in cataloguing common genetic variation has made possible genome-wide studies that are beginning to elucidate the causes and consequences of our genetic differences. Approaches that provide a mechanistic understanding of how genetic variants function to alter disease susceptibility and why they were substrates of natural selection would complement other approaches to human-genome analysis. Here we use a novel cell-based screen of bacterial infection to identify human variation in Salmonella-induced cell death. A loss-of-function allele of CARD8, a reported inhibitor of the proinflammatory protease caspase-1, was associated with increased cell death in vitro (p = 0.013). The validity of this association was demonstrated through overexpression of alternative alleles and RNA interference in cells of varying genotype. Comparison of mammalian CARD8 orthologs and examination of variation among different human populations suggest that the increase in infectious-disease burden associated with larger animal groups (i.e., herds and colonies), and possibly human population expansion, may have naturally selected for loss of CARD8. We also find that the loss-of-function CARD8 allele shows a modest association with an increased risk of systemic inflammatory response syndrome in a small study (p = 0.05). Therefore, a by-product of the selected benefit of loss of CARD8 could be increased inflammatory diseases. These results demonstrate the utility of genome-wide cell-based association screens with microbes in the identification of naturally selected variants that can impact human health. PMID:19664744

  4. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    PubMed Central

    Karssen, Lennart C.; Laurila, Pirkka-Pekka P.; Middelberg, Rita P. S.; Tikkanen, Emmi; Ried, Janina S.; Lamina, Claudia; Mangino, Massimo; Igl, Wilmar; Hottenga, Jouke-Jan; Lagou, Vasiliki; van der Harst, Pim; Mateo Leach, Irene; Esko, Tõnu; Kutalik, Zoltán; Wainwright, Nicholas W.; Struchalin, Maksim V.; Sarin, Antti-Pekka; Kangas, Antti J.; Viikari, Jorma S.; Perola, Markus; Rantanen, Taina; Petersen, Ann-Kristin; Soininen, Pasi; Johansson, Åsa; Soranzo, Nicole; Heath, Andrew C.; Papamarkou, Theodore; Prokopenko, Inga; Tönjes, Anke; Kronenberg, Florian; Döring, Angela; Rivadeneira, Fernando; Montgomery, Grant W.; Whitfield, John B.; Kähönen, Mika; Lehtimäki, Terho; Freimer, Nelson B.; Willemsen, Gonneke; de Geus, Eco J. C.; Palotie, Aarno; Sandhu, Manj S.; Waterworth, Dawn M.; Metspalu, Andres; Stumvoll, Michael; Uitterlinden, André G.; Jula, Antti; Navis, Gerjan; Wijmenga, Cisca; Wolffenbuttel, Bruce H. R.; Taskinen, Marja-Riitta; Ala-Korpela, Mika; Kaprio, Jaakko; Kyvik, Kirsten O.; Boomsma, Dorret I.; Pedersen, Nancy L.; Gyllensten, Ulf; Wilson, James F.; Rudan, Igor; Campbell, Harry; Pramstaller, Peter P.; Spector, Tim D.; Witteman, Jacqueline C. M.; Eriksson, Johan G.; Salomaa, Veikko; Oostra, Ben A.; Raitakari, Olli T.; Wichmann, H.-Erich; Gieger, Christian; Järvelin, Marjo-Riitta; Martin, Nicholas G.; Hofman, Albert; McCarthy, Mark I.; van Duijn, Cornelia M.; Aulchenko, Yurii S.; Ripatti, Samuli

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ∼25% of the heritability of the phenotypes. To date, no unbiased screen for gene–environment interactions for circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA) data from 18 population-based cohorts with European ancestry (maximum N = 32,225). We collected 8 further cohorts (N = 17,102) for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79×10−9. There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation (sd) difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics are modified by the newly found locus. PMID:22028671

  5. A Screen for Dominant Negative Mutants of SEC18 Reveals a Role for the AAA Protein Consensus Sequence in ATP Hydrolysis

    PubMed Central

    Steel, Gregor J.; Harley, Carol; Boyd, Alan; Morgan, Alan

    2000-01-01

    An evolutionarily ancient mechanism is used for intracellular membrane fusion events ranging from endoplasmic reticulum–Golgi traffic in yeast to synaptic vesicle exocytosis in the human brain. At the heart of this mechanism is the core complex of N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). Although these proteins are accepted as key players in vesicular traffic, their molecular mechanisms of action remain unclear. To illuminate important structure–function relationships in NSF, a screen for dominant negative mutants of yeast NSF (Sec18p) was undertaken. This involved random mutagenesis of a GAL1-regulated SEC18 yeast expression plasmid. Several dominant negative alleles were identified on the basis of galactose-inducible growth arrest, of which one, sec18-109, was characterized in detail. The sec18-109 phenotype (abnormal membrane trafficking through the biosynthetic pathway, accumulation of a membranous tubular network, growth suppression, increased cell density) is due to a single A-G substitution in SEC18 resulting in a missense mutation in Sec18p (Thr394→Pro). Thr394 is conserved in most AAA proteins and indeed forms part of the minimal AAA consensus sequence that serves as a signature of this large protein family. Analysis of recombinant Sec18-109p indicates that the mutation does not prevent hexamerization or interaction with yeast α-SNAP (Sec17p), but instead results in undetectable ATPase activity that cannot be stimulated by Sec17p. This suggests a role for the AAA protein consensus sequence in regulating ATP hydrolysis. Furthermore, this approach of screening for dominant negative mutants in yeast can be applied to other conserved proteins so as to highlight important functional domains in their mammalian counterparts. PMID:10749934

  6. Cartilage matrix deficiency (cmd): a new autosomal recessive lethal mutation in the mouse.

    PubMed

    Rittenhouse, E; Dunn, L C; Cookingham, J; Calo, C; Spiegelman, M; Dooher, G B; Bennett, D

    1978-02-01

    A new autosomal recessive lethal mutation in the mouse designated cartilage matrix deficiency (cmd) is described. Homozygotes are dwarfed, and have abnormally short trunk, limbs, tail and snout, as well as a protruding tongue and cleft palate. The abdomen is distended because the foreshortened rib cage and spinal column forces the liver ventrad from its normal location. Histological and electron microscopic study reveals a deficiency of cartilage matrix in tracheal cartilage and in all cartilagenous bones examined. The syndrome closely resembles the rare lethal condition achondrogenesis, found in human infants, which is also believed to be due to an autosomal recessive gene. PMID:632744

  7. Structure-Based Systematic Isolation of Conditional-Lethal Mutations in the Single Yeast Calmodulin Gene

    PubMed Central

    Ohya, Y.; Botstein, D.

    1994-01-01

    Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089

  8. Prevalence of lethal osteochondrodysplasias in Denmark.

    PubMed

    Andersen, P E

    1989-04-01

    The point prevalence at birth of lethal osteochondrodysplasias in a subregion of Denmark was estimated by a study of all children born January 1970 through December 1983. Two cases of thanatophoric dysplasia, one case of thanatophoric dysplasia with cloverleaf skull, two cases of micromelic bone dysplasia with cloverleaf skull, two cases of achondrogenesis type III, and three cases of achondrogenesis type IV were found. Two cases were unclassifiable due to lack of radiographs. In total, the point prevalence at birth was 15.4 per 100,000. Thus lethal osteochondrodysplasias seem to be more common than is generally assumed. The clinical and radiographic findings in micromelic bone dysplasia with cloverleaf skull are discussed in relation to thanatophoric dysplasia and achondrogenesis type IV. PMID:2789000

  9. Henipaviruses-unanswered questions of lethal zoonoses.

    PubMed

    Field, Hume; Kung, Nina

    2011-12-01

    The highly lethal Hendra and Nipah viruses have been described for little more than a decade, yet within that time have been aetiologically associated with major livestock and human health impacts, albeit on a limited scale. Do these emerging pathogens pose a broader threat, or are they inconsequential 'viral chatter'. Given their lethality, and the evident multi-generational human-to-human transmission associated with Nipah virus in Bangladesh, it seems prudent to apply the precautionary principle. While much is known of their clinical, pathogenic and epidemiologic features in livestock species and humans, a number of fundamental questions regarding the relationship between the viruses, their natural fruit-bat host and the environment remain unanswered. In this paper, we pose and probe these questions in context, and offer perspectives based primarily on our experience with Hendra virus in Australia, augmented with Nipah virus parallels. PMID:22440924

  10. Synthetic lethal approaches to breast cancer therapy.

    PubMed

    Rehman, Farah L; Lord, Christopher J; Ashworth, Alan

    2010-12-01

    The promise of personalized therapy for breast cancer is that therapeutic efficacy will be increased while toxic effects are reduced to a minimum. To achieve this goal, there is now an emphasis on the design of therapies that are based not only on the clinical manifestations of the disease, but also on the underlying molecular and cellular biology of cancer. However, identifying targets for personalized therapies in breast cancer is challenging. Here, we describe how biological concepts such as synthetic lethality and oncogene addiction can be used to identify new therapeutic targets and approaches. We discuss the current clinical developments in implementing synthetic lethality therapies, and highlight new ways in which this approach could be used to target specific subsets of breast cancer. PMID:20956981

  11. Brine shrimp lethality assay of Bacopa monnieri.

    PubMed

    D'Souza, Prashanth; Deepak, Mundkinajeddu; Rani, Padmaja; Kadamboor, Sandhya; Mathew, Anjana; Chandrashekar, Arun P; Agarwal, Amit

    2002-03-01

    Successive petroleum ether, chloroform, ethanol and water extracts, a saponin rich fraction (SRF) and bacoside A isolated from Bacopa monnieri were tested for brine shrimp lethality. Successive ethanol extracts and SRF showed potent activity. Bacoside A showed the maximum activity with a LC(50) of 38.3 microg/mL. The results confirmed the previous reports of an anticancer effect of Bacopa monnieri and suggest bacoside A as the active constituent. PMID:11933129

  12. Specific ultrasonographic features of perinatal lethal hypophosphatasia.

    PubMed

    Zankl, Andreas; Mornet, Etienne; Wong, Shell

    2008-05-01

    Prenatal diagnosis of perinatal lethal hypophosphatasia (PL-HPH) by ultrasonography is difficult as PL-HPH must be differentiated from other skeletal dysplasias with short long bones and poor mineralization of the skeleton, such as osteogenesis imperfecta type II and achondrogenesis/hypochondrogenesis. Here we present a case of molecularly confirmed PL-HPH and illustrate specific ultrasonographic findings that help to distinguish PL-HPH from similar conditions. PMID:18386808

  13. Activation of budding yeast replication origins and suppression of lethal DNA damage effects on origin function by ectopic expression of the co-chaperone protein Mge1.

    PubMed

    Trabold, Peter A; Weinberger, Martin; Feng, Li; Burhans, William C

    2005-04-01

    Initiation of DNA replication in eukaryotes requires the origin recognition complex (ORC) and other proteins that interact with DNA at origins of replication. In budding yeast, the temperature-sensitive orc2-1 mutation alters these interactions in parallel with defects in initiation of DNA replication and in checkpoints that depend on DNA replication forks. Here we show that DNA-damaging drugs modify protein-DNA interactions at budding yeast replication origins in association with lethal effects that are enhanced by the orc2-1 mutation or suppressed by a different mutation in ORC. A dosage suppressor screen identified the budding yeast co-chaperone protein Mge1p as a high copy suppressor of the orc2-1-specific lethal effects of adozelesin, a DNA-alkylating drug. Ectopic expression of Mge1p also suppressed the temperature sensitivity and initiation defect conferred by the orc2-1 mutation. In wild type cells, ectopic expression of Mge1p also suppressed the lethal effects of adozelesin in parallel with the suppression of adozelesin-induced alterations in protein-DNA interactions at origins, stimulation of initiation of DNA replication, and binding of the precursor form of Mge1p to nuclear chromatin. Mge1p is the budding yeast homologue of the Escherichia coli co-chaperone protein GrpE, which stimulates initiation at bacterial origins of replication by promoting interactions of initiator proteins with origin sequences. Our results reveal a novel, proliferation-dependent cytotoxic mechanism for DNA-damaging drugs that involves alterations in the function of initiation proteins and their interactions with DNA. PMID:15647270

  14. A Genome-wide Small Interfering RNA (siRNA) Screen Reveals Nuclear Factor-κB (NF-κB)-independent Regulators of NOD2-induced Interleukin-8 (IL-8) Secretion*

    PubMed Central

    Warner, Neil; Burberry, Aaron; Pliakas, Maria; McDonald, Christine; Núñez, Gabriel

    2014-01-01

    NOD2 encodes an intracellular multidomain pattern recognition receptor that is the strongest known genetic risk factor in the pathogenesis of Crohn disease (CD), a chronic relapsing inflammatory disorder of the intestinal tract. NOD2 functions as a sensor for bacterial cell wall components and activates proinflammatory and antimicrobial signaling pathways. Here, using a genome-wide small interfering RNA (siRNA) screen, we identify numerous genes that regulate secretion of the proinflammatory cytokine IL-8 in response to NOD2 activation. Moreover, many of the identified IL-8 regulators are linked by protein-protein interactions, revealing subnetworks of highly connected IL-8 regulators implicated in processes such as vesicle formation, mRNA stability, and protein ubiquitination and trafficking. A TNFα counterscreen to induce IL-8 secretion in an NOD2-independent manner reveals that the majority of the identified regulators affect IL-8 secretion irrespective of the initiating stimuli. Using immortalized macrophages, we validate the ubiquitin protease, USP8, and the endosomal sorting protein, VPS28, as negative regulators of NOD2-induced cytokine secretion. Interestingly, several genes that affect NOD2-induced IL-8 secretion are present in loci associated with CD risk by genome-wide association studies, supporting a role for the NOD2/IL-8 pathway, and not just NOD2, in the pathogenesis of CD. Overall, this screen provides a valuable resource in the advancement of our understanding of the genes that regulate the secretion of IL-8. PMID:25170077

  15. A genome-wide small interfering RNA (siRNA) screen reveals nuclear factor-κB (NF-κB)-independent regulators of NOD2-induced interleukin-8 (IL-8) secretion.

    PubMed

    Warner, Neil; Burberry, Aaron; Pliakas, Maria; McDonald, Christine; Núñez, Gabriel

    2014-10-10

    NOD2 encodes an intracellular multidomain pattern recognition receptor that is the strongest known genetic risk factor in the pathogenesis of Crohn disease (CD), a chronic relapsing inflammatory disorder of the intestinal tract. NOD2 functions as a sensor for bacterial cell wall components and activates proinflammatory and antimicrobial signaling pathways. Here, using a genome-wide small interfering RNA (siRNA) screen, we identify numerous genes that regulate secretion of the proinflammatory cytokine IL-8 in response to NOD2 activation. Moreover, many of the identified IL-8 regulators are linked by protein-protein interactions, revealing subnetworks of highly connected IL-8 regulators implicated in processes such as vesicle formation, mRNA stability, and protein ubiquitination and trafficking. A TNFα counterscreen to induce IL-8 secretion in an NOD2-independent manner reveals that the majority of the identified regulators affect IL-8 secretion irrespective of the initiating stimuli. Using immortalized macrophages, we validate the ubiquitin protease, USP8, and the endosomal sorting protein, VPS28, as negative regulators of NOD2-induced cytokine secretion. Interestingly, several genes that affect NOD2-induced IL-8 secretion are present in loci associated with CD risk by genome-wide association studies, supporting a role for the NOD2/IL-8 pathway, and not just NOD2, in the pathogenesis of CD. Overall, this screen provides a valuable resource in the advancement of our understanding of the genes that regulate the secretion of IL-8. PMID:25170077

  16. The population genetics of synthetic lethals.

    PubMed

    Phillips, P C; Johnson, N A

    1998-09-01

    Synthetic lethals are variants at different loci that have little or no effect on viability singly but cause lethality in combination. The importance of synthetic lethals and, more generally, of synthetic deleterious loci (SDL) has been controversial. Here, we derive the expected frequencies for SDL under a mutation-selection balance for the complete haploid model and selected cases of the diploid model. We have also obtained simple approximations that demonstrate good fit to exact solutions based on numerical iterations. In the haploid case, equilibrium frequencies of carrier haplotypes (individuals with only a single mutation) are comparable to analogous single-locus results, after allowing for the effects of linkage. Frequencies in the diploid case, however, are much higher and more comparable to the square root of the single-locus results. In particular, when selection operates only on the double-mutant homozygote and linkage is not too tight, the expected frequency of the carriers is approximately the quartic root of the ratio between the mutation rate and the selection coefficient of the synthetics. For a reasonably wide set of models, the frequencies of carriers can be on the order of a few percent. The equilibrium frequencies of these deleterious alleles can be relatively high because, with SDL, both dominance and epistasis act to shield carriers from exposure to selection. We also discuss the possible role of SDL in maintaining genetic variation and in hybrid breakdown. PMID:9725860

  17. Lethal Interpersonal Violence in the Middle Pleistocene

    PubMed Central

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M.; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin. PMID:26018668

  18. Lethal interpersonal violence in the Middle Pleistocene.

    PubMed

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin. PMID:26018668

  19. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency.

    PubMed

    Mohni, Kareem N; Kavanaugh, Gina M; Cortez, David

    2014-05-15

    The DNA damage response kinase ATR and its effector kinase CHEK1 are required for cancer cells to survive oncogene-induced replication stress. ATR inhibitors exhibit synthetic lethal interactions, with deficiencies in the DNA damage response enzymes ATM and XRCC1 and with overexpression of the cell cycle kinase cyclin E. Here, we report a systematic screen to identify synthetic lethal interactions with ATR pathway-targeted drugs, rationalized by their predicted therapeutic utility in the oncology clinic. We found that reduced function in the ATR pathway itself provided the strongest synthetic lethal interaction. In addition, we found that loss of the structure-specific endonuclease ERCC1-XPF (ERCC4) is synthetic lethal with ATR pathway inhibitors. ERCC1-deficient cells exhibited elevated levels of DNA damage, which was increased further by ATR inhibition. When treated with ATR or CHEK1 inhibitors, ERCC1-deficient cells were arrested in S-phase and failed to complete cell-cycle transit even after drug removal. Notably, triple-negative breast cancer cells and non-small cell lung cancer cells depleted of ERCC1 exhibited increased sensitivity to ATR pathway-targeted drugs. Overall, we concluded that ATR pathway-targeted drugs may offer particular utility in cancers with reduced ATR pathway function or reduced levels of ERCC4 activity. PMID:24662920

  20. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency

    PubMed Central

    Mohni, Kareem N.; Kavanaugh, Gina M.; Cortez, David

    2014-01-01

    The DNA damage response kinase ATR and its effector kinase CHEK1 are required for cancer cells to survive oncogene-induced replication stress. ATR inhibitors exhibit synthetic lethal interactions with deficiencies in the DNA damage response enzymes ATM and XRCC1 and with overexpression of the cell cycle kinase Cyclin E. Here we report a systematic screen to identify synthetic lethal interactions with ATR-pathway targeted drugs, rationalized by their predicted therapeutic utility in the oncology clinic. We found that reduced function in the ATR pathway itself provided the strongest synthetic lethal interaction. In addition, we found that loss of the structure specific-endonuclease ERCC1-XPF (ERCC4) is synthetic lethal with ATR pathway inhibitors. ERCC1-deficient cells exhibited elevated levels of DNA damage, which was increased further by ATR inhibition. When treated with ATR or CHEK1 inhibitors, ERCC1-deficient cells arrested in S phase and failed to complete cell cycle transit even after drug removal. Notably, triple-negative breast cancer cells and non-small cell lung cancer cells depleted of ERCC1 exhibited increased sensitivity to ATR-pathway targeted drugs. Overall, we concluded that ATR pathway-targeted drugs may offer particular utility in cancers with reduced ATR pathway function or reduced levels of ERCC4 activity. PMID:24662920

  1. Yeast Three-Hybrid Screening of Rous Sarcoma Virus Mutants with Randomly Mutagenized Minimal Packaging Signals Reveals Regions Important for Gag Interactions

    PubMed Central

    Lee, Eun-Gyung; Linial, Maxine L.

    2000-01-01

    We previously showed that the yeast three-hybrid system provides a genetic assay of both RNA and protein components for avian retroviral RNA encapsidation. In the current study, we used this assay to precisely define cis-acting determinants involved in avian leukosis sarcoma virus packaging RNA binding to Gag protein. In vivo screening of Rous sarcoma virus mutants was performed with randomly mutated minimal packaging sequences (MΨ) made using PCR amplification after cotransformation with GagΔPR protein into yeast cells. Colonies with low β-galactosidase activity were analyzed to locate mutations in MΨ sequences affecting binding to Gag proteins. This genetic assay delineated secondary structural elements that are important for efficient RNA binding, including a single-stranded small bulge containing the initiation codon for uORF3, as well as adjacent stem structures. This implies a possible tertiary structure favoring the high-affinity binding sites for Gag. In most cases, results from the three-hybrid assay were well correlated with those from the viral RNA packaging assays. The results from random mutagenesis using the rapid three-hybrid binding assay are consistent with those from site-directed mutagenesis using in vivo packaging assays. PMID:10982363

  2. Screening of a kinase library reveals novel pro-senescence kinases and their common NF-κB-dependent transcriptional program

    PubMed Central

    Ferrand, Mylène; Kirsh, Olivier; Griveau, Audrey; Vindrieux, David; Martin, Nadine; Defossez, Pierre-Antoine; Bernard, David

    2015-01-01

    Cellular senescence results in proliferation arrest and acquisition of hallmarks such as the Senescence-Associated Secretory Phenotype (SASP). Senescence is involved in regulating numerous physio-pathological responses, including embryonic development, cancer, and several aging-related diseases. Only a few kinases, centered on the RAS signaling pathway, have been identified as inducing premature senescence. About possible other senescence-regulating kinases and signaling pathways, practically little is known. By screening a library of activated kinases, we identified 33 kinases whose constitutive expression decreases cell proliferation and induces expression of senescence markers; p16 and SASP components. Focusing on some kinases showing the strongest pro-senescence effects, we observed that they all induce expression of SASP-component genes through activation of an NF-κB-dependent transcriptional program. Furthermore, inhibition of the p53 or Rb pathway failed to prevent the SASP-inducing effect of pro-senescence kinases. Inhibition of the NF-κB, p53, or Rb pathway proved insufficient to prevent kinase-triggered cell cycle arrest. We have thus identified a repertoire of novel pro-senescence kinases and pathways. These results will open new perspectives in the understanding on the role of cellular senescence in various physio-pathological responses. PMID:26583757

  3. Screening of a kinase library reveals novel pro-senescence kinases and their common NF-κB-dependent transcriptional program.

    PubMed

    Ferrand, Mylène; Kirsh, Olivier; Griveau, Audrey; Vindrieux, David; Martin, Nadine; Defossez, Pierre-Antoine; Bernard, David

    2015-11-01

    Cellular senescence results in proliferation arrest and acquisition of hallmarks such as the Senescence-Associated Secretory Phenotype (SASP). Senescence is involved in regulating numerous physio-pathological responses, including embryonic development, cancer, and several aging-related diseases. Only a few kinases, centered on the RAS signaling pathway, have been identified as inducing premature senescence. About possible other senescence-regulating kinases and signaling pathways, practically little is known. By screening a library of activated kinases, we identified 33 kinases whose constitutive expression decreases cell proliferation and induces expression of senescence markers; p16 and SASP components. Focusing on some kinases showing the strongest pro-senescence effects, we observed that they all induce expression of SASP-component genes through activation of an NF-κB-dependent transcriptional program. Furthermore, inhibition of the p53 or Rb pathway failed to prevent the SASP-inducing effect of pro-senescence kinases. Inhibition of the NF-κB, p53, or Rb pathway proved insufficient to prevent kinase-triggered cell cycle arrest. We have thus identified a repertoire of novel pro-senescence kinases and pathways. These results will open new perspectives in the understanding on the role of cellular senescence in various physio-pathological responses. PMID:26583757

  4. In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts.

    PubMed

    Hostettler, Isabel; Müller, Joachim; Hemphill, Andrew

    2016-06-01

    Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leukocytes and thereby cause fatal diseases. The hydroxynaphthoquinone buparvaquone is currently the only option for the treatment of theileriosis, and resistance development has been reported. It is therefore tempting to investigate the repurposing of compounds effective against related apicomplexan parasites, such as Plasmodium Here, we present the results of a screen of 400 compounds included in the open-access Medicines for Malaria Venture (MMV) malaria box on TaC12 cells, a macrophage-derived cell line immortalized by T. annulata schizonts. Using a combination of the classical alamarBlue vitality assay and a recently developed quantitative reverse transcriptase real-time PCR method based on the Theileria TaSP gene, we have identified 5 compounds, characterized their effects on the ultrastructure of TaC12 cells, and investigated whether they easily induce resistance formation. Two compounds, the quinolinols MMV666022 and MMV666054, have 50% inhibitory concentrations (IC50s) of 0.5 and 0.2 μM on TaC12 cells and 5.3 and 5.2 μM on BoMac cells, respectively. Thus, with therapeutic indexes of 11 and 18, they represent promising leads for further development of antitheilerial chemotherapeutics. PMID:26976863

  5. Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen

    PubMed Central

    Cox, Clayton E.; Wright, Anita C.; McClelland, Michael

    2015-01-01

    Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB. PMID:26497459

  6. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer's disease

    PubMed Central

    Romberg, Carola; Horner, Alexa E.; Bussey, Timothy J.; Saksida, Lisa M.

    2013-01-01

    Transgenic mouse models of Alzheimer's disease (AD) with abundant β-amyloid develop memory impairments. However, multiple nonmnemonic cognitive domains such as attention and executive control are also compromised early in AD individuals, but have not been routinely assessed in animal models. Here, we assessed the cognitive abilities of TgCRND8 mice—a widely used model of β-amyloid pathology—with a touch screen-based automated test battery. The test battery comprises highly translatable tests of multiple cognitive constructs impaired in human AD, such as memory, attention, and response control, as well as appropriate control tasks. We found that familial AD mutations affect not only memory, but also cause significant alterations of sustained attention and behavioral flexibility. Because changes in attention and response inhibition may affect performance on tests of other cognitive abilities including memory, our findings have important consequences for the assessment of disease mechanisms and therapeutics in animal models of AD. A more comprehensive phenotyping with specialized, multicomponent cognitive test batteries for mice might significantly advance translation from preclinical mouse studies to the clinic. PMID:22959727

  7. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  8. The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA.

    PubMed Central

    Gebauer, F; Merendino, L; Hentze, M W; Valcárcel, J

    1998-01-01

    Male-specific expression of the protein male-specific-lethal 2 (MSL-2) controls dosage compensation in Drosophila. msl-2 gene expression is inhibited in females by Sex-lethal (SXL), an RNA binding protein known to regulate pre-mRNA splicing. An intron present at the 5' untranslated region (UTR) of msl-2 mRNA contains putative SXL binding sites and is retained in female flies. Here we show that SXL plays a dual role in the inhibition of msl-2 expression. Cotransfection of Drosophila Schneider cells with an SXL expression vector and a reporter containing the 5' UTR of msl-2 mRNA resulted in retention of the 5' UTR intron and efficient accumulation of the unspliced mRNA in the cytoplasm, where its translation was blocked by SXL, but not by the intron per se. Both splicing and translation inhibition by SXL were recapitulated in vitro and found to be dependent upon SXL binding to high-affinity sites within the intron, showing that SXL directly regulates these events. Our data reveal a coordinated mechanism for the regulation of msl-2 expression by the same regulatory factor: SXL enforces intron retention in the nucleus and subsequent translation inhibition in the cytoplasm. PMID:9570314

  9. Early Cytokine Dysregulation and Viral Replication Are Associated with Mortality During Lethal Influenza Infection

    PubMed Central

    Vogel, Alexander J.; Harris, Seth; Marsteller, Nathan; Condon, Shirley A.

    2014-01-01

    Abstract Infection with influenza A virus (IAV) leads to acute lung injury and possibly fatal complications, especially in immunocompromised, elderly, or chronically infected individuals. Therefore, it is important to study the factors that lead to pathology and mortality in infected hosts. In this report, we analyze immune responses to infection at a sublethal (0.1 LD50) and lethal (1 LD50) dose of the highly pathogenic IAV A/Puerto Rico/8/34 (PR8). Our experiments revealed that infection with a 1 LD50 dose induced peak viral titers at day 2 compared to day 4 in the 0.1 LD50 dose. Moreover, early cytokine dysregulation was observed in the lethal dose with significantly elevated levels of IFN-α, TNF-α, CXCL9, IL-6, and MCP-1 produced at day 2. Early inflammatory responses following infection with 1 LD50 correlated with a greater influx of neutrophils into the lung. However, depletion of neutrophils enhanced morbidity following IAV infection. Though no differences in CD8+ cell function were observed, CD4+ effector responses were impaired in the lungs 8 days after infection with 1 LD50. Histological analysis revealed significant pathology in lethally infected mice at day 2 and day 6 postinfection, when viral titers remained high. Treating lethally infected mice with oseltamivir inhibited viral titers to sublethal levels, and abrogated the pathology associated with the lethal dose. Together, these results suggest that early cytokine dysregulation and viral replication play a role in pulmonary damage and high mortality in lethally infected mice. PMID:24787235

  10. Lethal and Sub-lethal Effects of UVB on Juvenile Biomphalaria glabrata (Mollusca: Pulmonata)

    PubMed Central

    Ruelas, Debbie S.; Karentz, Deneb; Sullivan, John T.

    2007-01-01

    Although Schistosoma mansoni occurs mainly in the tropics, where intense levels of solar radiation are present, the impact of ultraviolet (UV) light on schistosome transmission is not known. The purpose of this study was to investigate potential effects of UVB (290–320 nm) on juvenile Biomphalaria glabrata, the snail intermediate host of S. mansoni. Albino and wild type snails were exposed to doses of UVB from UV-fluorescent lamps, and the following were measured: survival, photoreactivation (light-mediated DNA repair), effects on feeding behavior, and morphological tissue abnormalities. Irradiation with UVB is lethal to B. glabrata in a dose-dependent manner. Exposure to white light subsequent to UVB irradiation enhances survival, probably by photoreactivation. The shell offers some, but not complete, protection. Experiments in which UVB transmittance through the shell was blocked with black nail polish suggest that injury to both exposed (headfoot) and shell-enclosed (mantle and visceral mass) tissues contributes to mortality in lethally-irradiated snails. Wild-type (pigmented) snails are less susceptible to lethal effects of UVB than albino snails, and they may be more capable of photoreactivation. UVB exposure inhibits snail feeding behavior, and causes tentacle forks and growths on the headfoot. Thus, UVB may influence the life cycle of S. mansoni by both lethal and sub-lethal damage to the snail intermediate host. However, the ability of snails to photoreactivate may mitigate these effects. PMID:16996081

  11. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes

    PubMed Central

    2012-01-01

    Background Insecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Fungal entomopathogens formulated as biopesticides have received much attention and have shown considerable potential. This research has necessarily focused on relatively few fungal isolates in order to ‘prove concept’. Further, most attention has been paid to examining fungal virulence (lethality) and not the other properties of fungal infection that might also contribute to reducing transmission potential. Here, a range of fungal isolates were screened to examine variation in virulence and how this relates to additional pre-lethal reductions in feeding propensity. Methods The Asian malaria vector, Anopheles stephensi was exposed to 17 different isolates of entomopathogenic fungi belonging to species of Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Isaria farinosus. Each isolate was applied to a test substrate at a standard dose rate of 1×109 spores ml-1 and the mosquitoes exposed for six hours. Subsequently the insects were removed to mesh cages where survival was monitored over the next 14 days. During this incubation period the mosquitoes’ propensity to feed was assayed for each isolate by offering a feeding stimulant at the side of the cage and recording the number probing. Results and conclusions Fungal isolates showed a range of virulence to A. stephensi with some causing >80% mortality within 7 days, while others caused little increase in mortality relative to controls over the study period. Similarly, some isolates had a large impact on feeding propensity, causing >50% pre-lethal reductions in feeding rate, whereas other isolates had very little impact. There was clear correlation between fungal virulence and feeding reduction with virulence explaining nearly 70% of the variation in feeding reduction. However, there

  12. Screening of endocrine organ-specific humoral autoimmunity in 47,XXY Klinefelter's syndrome reveals a significant increase in diabetes-specific immunoreactivity in comparison with healthy control men.

    PubMed

    Panimolle, Francesca; Tiberti, Claudio; Granato, Simona; Semeraro, Antonella; Gianfrilli, Daniele; Anzuini, Antonella; Lenzi, Andrea; Radicioni, Antonio

    2016-04-01

    The aim of this study was to evaluate the frequency of humoral endocrine organ-specific autoimmunity in 47,XXY Klinefelter's syndrome (KS) by investigating the autoantibody profile specific to type 1 diabetes (T1DM), Addison's disease (AD), Hashimoto thyroiditis (HT), and autoimmune chronic atrophic gastritis (AG). Sixty-one adult Caucasian 47,XXY KS patients were tested for autoantibodies specific to T1DM (Insulin Abs, GAD Abs, IA-2 Abs, Znt8 Abs), HT (TPO Abs), AD (21-OH Abs), and AG (APC Abs). Thirty-five of these patients were not undergoing testosterone replacement therapy TRT (Group 1) and the remaining 26 patients started TRT before the beginning of the study (Group 2). KS autoantibody frequencies were compared to those found in 122 control men. Six of 61 KS patients (9.8 %) were positive for at least one endocrine autoantibody, compared to 6.5 % of controls. Interestingly, KS endocrine immunoreactivity was directed primarily against diabetes-specific autoantigens (8.2 %), with a significantly higher frequency than in controls (p = 0.016). Two KS patients (3.3 %) were TPO Ab positive, whereas no patients were positive for AD- and AG-related autoantigens. The autoantibody endocrine profile of untreated and treated KS patients was not significantly different. Our findings demonstrate for the first time that endocrine humoral immunoreactivity is not rare in KS patients and that it is more frequently directed against type 1 diabetes-related autoantigens, thus suggesting the importance of screening for organ-specific autoimmunity in clinical practice. Follow-up studies are needed to establish if autoantibody-positive KS patients will develop clinical T1DM. PMID:25935328

  13. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes.

    PubMed

    Li, Youguo; Wexler, Margaret; Richardson, David J; Bond, Philip L; Johnston, Andrew W B

    2005-12-01

    A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors. PMID:16309391

  14. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response.

    PubMed

    Rozanov, Dmitri; Cheltsov, Anton; Sergienko, Eduard; Vasile, Stefan; Golubkov, Vladislav; Aleshin, Alexander E; Levin, Trevor; Traer, Elie; Hann, Byron; Freimuth, Julia; Alexeev, Nikita; Alekseyev, Max A; Budko, Sergey P; Bächinger, Hans Peter; Spellman, Paul

    2015-01-01

    A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model. PMID:26075913

  15. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas

    PubMed Central

    Beauchamp, Roberta L.; James, Marianne F.; DeSouza, Patrick A.; Wagh, Vilas; Zhao, Wen-Ning; Jordan, Justin T.; Stemmer-Rachamimov, Anat; Plotkin, Scott R.; Gusella, James F.; Haggarty, Stephen J.; Ramesh, Vijaya

    2015-01-01

    Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas. PMID:26219339

  16. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response

    PubMed Central

    Rozanov, Dmitri; Cheltsov, Anton; Sergienko, Eduard; Vasile, Stefan; Golubkov, Vladislav; Aleshin, Alexander E.; Levin, Trevor; Traer, Elie; Hann, Byron; Freimuth, Julia; Alexeev, Nikita; Alekseyev, Max A.; Budko, Sergey P; Bächinger, Hans Peter; Spellman, Paul

    2015-01-01

    A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model. PMID:26075913

  17. Screening Respiratory Samples for Detection of Human Rhinoviruses (HRVs) and Enteroviruses: Comprehensive VP4-VP2 Typing Reveals High Incidence and Genetic Diversity of HRV Species C▿

    PubMed Central

    Wisdom, A.; Leitch, E. C. McWilliam; Gaunt, E.; Harvala, H.; Simmonds, P.

    2009-01-01

    Rhinovirus infections are the most common cause of viral illness in humans, and there is increasing evidence of their etiological role in severe acute respiratory tract infections (ARTIs). Human rhinoviruses (HRVs) are classified into two species, species A and B, which contain over 100 serotypes, and a recently discovered genetically heterogeneous third species (HRV species C). To investigate their diversity and population turnover, screening for the detection and the genetic characterization of HRV variants in diagnostic respiratory samples was performed by using nested primers for the efficient amplification of the VP4-VP2 region of HRV (and enterovirus) species and serotype identification. HRV species A, B, and C variants were detected in 14%, 1.8%, and 6.8%, respectively, of 456 diagnostic respiratory samples from 345 subjects (6 samples also contained enteroviruses), predominantly among children under age 10 years. HRV species A and B variants were remarkably heterogeneous, with 22 and 6 different serotypes, respectively, detected among 73 positive samples. Similarly, by using a pairwise distance threshold of 0.1, species C variants occurring worldwide were provisionally assigned to 47 different types, of which 15 were present among samples from Edinburgh, United Kingdom. There was a rapid turnover of variants, with only 5 of 43 serotypes detected during both sampling periods. By using divergence thresholds and phylogenetic analysis, several species A and C variants could provisionally be assigned to new types. An initial investigation of the clinical differences between rhinovirus species found HRV species C to be nearly twice as frequently associated with ARTIs than other rhinovirus species, which matches the frequencies of detection of respiratory syncytial virus. The study demonstrates the extraordinary genetic diversity of HRVs, their rapid population turnover, and their extensive involvement in childhood respiratory disease. PMID:19828751

  18. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  19. A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas

    PubMed Central

    Ng, Kimberly; Steed, Tyler; Nguyen, Thien; Futalan, Diahnn; Akers, Johnny C.; Sarkaria, Jann; Jiang, Tao; Chowdhury, Dipanjan; Carter, Bob S.; Chen, Clark C.

    2014-01-01

    MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs and characterized the top candidate, miR-603. Transfection of miR-603 suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. Moreover, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents. PMID:24994119

  20. Isotope-Assisted Screening for Iron-Containing Metabolites Reveals a High Degree of Diversity among Known and Unknown Siderophores Produced by Trichoderma spp.

    PubMed Central

    Lehner, Sylvia M.; Atanasova, Lea; Neumann, Nora K. N.; Krska, Rudolf; Lemmens, Marc; Druzhinina, Irina S.

    2013-01-01

    Due to low iron availability under environmental conditions, many microorganisms excrete iron-chelating agents (siderophores) to cover their iron demands. A novel screening approach for the detection of siderophores using liquid chromatography coupled to high-resolution tandem mass spectrometry was developed to study the production of extracellular siderophores of 10 wild-type Trichoderma strains. For annotation of siderophores, an in-house library comprising 422 known microbial siderophores was established. After 96 h of cultivation, 18 different iron chelators were detected. Four of those (dimerum acid, fusigen, coprogen, and ferricrocin) were identified by measuring authentic standards. cis-Fusarinine, fusarinine A and B, and des-diserylglycylferrirhodin were annotated based on high-accuracy mass spectral analysis. In total, at least 10 novel iron-containing metabolites of the hydroxamate type were found. On average Trichoderma spp. produced 12 to 14 siderophores, with 6 common to all species tested. The highest number (15) of siderophores was detected for the most common environmental opportunistic and strongly fungicidic species, Trichoderma harzianum, which, however, did not have any unique compounds. The tropical species T. reesei had the most distinctive pattern, producing one unique siderophore (cis-fusarinine) and three others that were present only in T. harzianum and not in other species. The diversity of siderophores did not directly correlate with the antifungal potential of the species tested. Our data suggest that the high diversity of siderophores produced by Trichoderma spp. might be the result of further modifications of the nonribosomal peptide synthetase (NRPS) products and not due to diverse NRPS-encoding genes. PMID:23064341

  1. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas.

    PubMed

    Beauchamp, Roberta L; James, Marianne F; DeSouza, Patrick A; Wagh, Vilas; Zhao, Wen-Ning; Jordan, Justin T; Stemmer-Rachamimov, Anat; Plotkin, Scott R; Gusella, James F; Haggarty, Stephen J; Ramesh, Vijaya

    2015-07-10

    Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas. PMID:26219339

  2. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design

    PubMed Central

    2013-01-01

    Background Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. Results We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. Conclusions This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries. PMID:23867016

  3. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4.

    PubMed

    Masyukova, Svetlana V; Landis, Dawn E; Henke, Scott J; Williams, Corey L; Pieczynski, Jay N; Roszczynialski, Kelly N; Covington, Jannese E; Malarkey, Erik B; Yoder, Bradley K

    2016-02-01

    Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit

  4. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4

    PubMed Central

    Williams, Corey L.; Pieczynski, Jay N.; Roszczynialski, Kelly N.; Covington, Jannese E.; Malarkey, Erik B.; Yoder, Bradley K.

    2016-01-01

    Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit

  5. Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement

    PubMed Central

    Katano, Mana; Takahashi, Kazuki; Hirano, Tomonari; Kazama, Yusuke; Abe, Tomoko; Tsukaya, Hirokazu; Ferjani, Ali

    2016-01-01

    Efficient use of seed nutrient reserves is crucial for germination and establishment of plant seedlings. Mobilizing seed oil reserves in Arabidopsis involves β-oxidation, the glyoxylate cycle, and gluconeogenesis, which provide essential energy and the carbon skeletons needed to sustain seedling growth until photoautotrophy is acquired. We demonstrated that H+-PPase activity is required for gluconeogenesis. Lack of H+-PPase in fugu5 mutants increases cytosolic pyrophosphate (PPi) levels, which partially reduces sucrose synthesis de novo and inhibits cell division. In contrast, post-mitotic cell expansion in cotyledons was unusually enhanced, a phenotype called compensation. Therefore, it appears that PPi inhibits several cellular functions, including cell cycling, to trigger compensated cell enlargement (CCE). Here, we mutagenized fugu5-1 seeds with 12C6+ heavy-ion irradiation and screened mutations that restrain CCE to gain insight into the genetic pathway(s) involved in CCE. We isolated A#3-1, in which cell size was severely reduced, but cell number remained similar to that of original fugu5-1. Moreover, cell number decreased in A#3-1 single mutant (A#3-1sm), similar to that of fugu5-1, but cell size was almost equal to that of the wild type. Surprisingly, A#3-1 mutation did not affect CCE in other compensation exhibiting mutant backgrounds, such as an3-4 and fugu2-1/fas1-6. Subsequent map-based cloning combined with genome sequencing and HRM curve analysis identified enoyl-CoA hydratase 2 (ECH2) as the causal gene of A#3-1. The above phenotypes were consistently observed in the ech2-1 allele and supplying sucrose restored the morphological and cellular phenotypes in fugu5-1, ech2-1, A#3-1sm, fugu5-1 ech2-1, and A#3-1; fugu5-1. Taken together, these results suggest that defects in either H+-PPase or ECH2 compromise cell proliferation due to defects in mobilizing seed storage lipids. In contrast, ECH2 alone likely promotes CCE during the post-mitotic cell

  6. MR-02A GENOME-WIDE miRNA SCREEN REVEALED MIR-603 AS A MGMT-REGULATING miRNA IN GLIOBLASTOMAS

    PubMed Central

    Kushwaha, Deepa; Ramakrishnan, Valya; Ng, Kimberly; Steed, Tyler; Nguyen, Thien; Futalan, Diahnn; Akers, Johnny; Tao, Jiang; Chowdhury, Dipanjan; Carter, Bob; Chen, Clark

    2014-01-01

    MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs. Comparison of these candidates to those predicted computational algorithms, including DIANA micro, Targetscan, miRanda, and microcosm showed poor agreement (3-22%), suggesting the need for empiric validation of in silico predictions. Transfection of miR-603, the top scoring candidate, suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. miR-603 cooperates with miR-181d to bind to the 3'UTR of MGMT to suppress MGMT expression. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. However, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Our results further suggest that these miRNA may regulate MGMT by direct binding of MGMT 3'UTR or through modulation of proteins that regulate MGMT stability/degradation. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents.

  7. Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement.

    PubMed

    Katano, Mana; Takahashi, Kazuki; Hirano, Tomonari; Kazama, Yusuke; Abe, Tomoko; Tsukaya, Hirokazu; Ferjani, Ali

    2016-01-01

    Efficient use of seed nutrient reserves is crucial for germination and establishment of plant seedlings. Mobilizing seed oil reserves in Arabidopsis involves β-oxidation, the glyoxylate cycle, and gluconeogenesis, which provide essential energy and the carbon skeletons needed to sustain seedling growth until photoautotrophy is acquired. We demonstrated that H(+)-PPase activity is required for gluconeogenesis. Lack of H(+)-PPase in fugu5 mutants increases cytosolic pyrophosphate (PPi) levels, which partially reduces sucrose synthesis de novo and inhibits cell division. In contrast, post-mitotic cell expansion in cotyledons was unusually enhanced, a phenotype called compensation. Therefore, it appears that PPi inhibits several cellular functions, including cell cycling, to trigger compensated cell enlargement (CCE). Here, we mutagenized fugu5-1 seeds with (12)C(6+) heavy-ion irradiation and screened mutations that restrain CCE to gain insight into the genetic pathway(s) involved in CCE. We isolated A#3-1, in which cell size was severely reduced, but cell number remained similar to that of original fugu5-1. Moreover, cell number decreased in A#3-1 single mutant (A#3-1sm), similar to that of fugu5-1, but cell size was almost equal to that of the wild type. Surprisingly, A#3-1 mutation did not affect CCE in other compensation exhibiting mutant backgrounds, such as an3-4 and fugu2-1/fas1-6. Subsequent map-based cloning combined with genome sequencing and HRM curve analysis identified enoyl-CoA hydratase 2 (ECH2) as the causal gene of A#3-1. The above phenotypes were consistently observed in the ech2-1 allele and supplying sucrose restored the morphological and cellular phenotypes in fugu5-1, ech2-1, A#3-1sm, fugu5-1 ech2-1, and A#3-1; fugu5-1. Taken together, these results suggest that defects in either H(+)-PPase or ECH2 compromise cell proliferation due to defects in mobilizing seed storage lipids. In contrast, ECH2 alone likely promotes CCE during the post

  8. Lethal and non-lethal violence against women in Australia: measurement challenges, conceptual frameworks, and limitations in knowledge.

    PubMed

    McPhedran, Samara; Baker, Jeanine

    2012-08-01

    Understanding pathways from non-lethal violence to lethal violence between intimate partners is a notable challenge for both policy and practice in partner violence prevention. Of particular interest is whether lethal violence represents an "escalation" of violence from "low" to "high" risk over time, or is best predicted by specific behavioral "typologies" of perpetrators. Testing the "escalation" and "typology" theories is hampered in Australia by limitations in knowledge about non-lethal and lethal violence against women. This article discusses data limitations, measurement problems, and conceptual shortcomings, and suggests approaches to improving evidence quality in the field of violence prevention and risk assessment. PMID:23008430

  9. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation.

    PubMed

    Wylie, C Scott; Shakhnovich, Eugene I

    2012-01-01

    Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate "semi-conservatively," e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U), and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N). However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ) in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i) features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii) is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of "lethal isolation." Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently large populations

  10. Disease screening of three breeding populations of adult exhibition budgerigars (Melopsittacus undulatus) in New Zealand reveals a high prevalence of a novel polyomavirus and avian malaria infection.

    PubMed

    Baron, Hamish R; Howe, Laryssa; Varsani, Arvind; Doneley, Robert J T

    2014-03-01

    Disease surveillance is vital to the management of New Zealand's endemic and threatened avian species. Three infectious agents that are potential threats to New Zealand's endemic birds include avian polyomavirus (APV), beak and feather disease virus (BFDV), and avian malaria. All three agents have been reported in New Zealand; however, possible reservoir populations have not been identified. In this communication, we report the first study of APV, BFDV, and avian malaria in introduced adult exhibition budgerigars (Melopsittacus undulatus) in New Zealand. Blood samples were collected from 90 living adult budgerigars from three breeding locations in the North Island of New Zealand. An overall APV prevalence of 22% was determined using a broad-spectrum nested PCR that amplified the major capsid protein VP1 gene of polyomavirus. Phylogenetic analysis of the VP1 gene revealed a unique isolate of APV, which had a sequence divergence of 32% to previously reported budgerigar fledgling disease strains and 33% to the recently reported New Zealand finch isolate. All of the budgerigars sampled were found to be PCR negative for BFDV, and an overall prevalence of 30% was detected by PCR for avian malaria. Sequencing revealed the presence of ubiquitous malarial strains and also the potentially destructive Plasmodium relictum strain. The results of this study suggest that both APV and avian malaria are present in New Zealand adult budgerigars, and our study highlights the need for further studies to determine whether these pathogens in captive bird populations may be a threat or spill over into New Zealand's endemic and threatened avifauna and whether prevention and control methods need to be implemented. PMID:24758122

  11. Low-coverage exome sequencing screen in formalin-fixed paraffin-embedded tumors reveals evidence of exposure to carcinogenic aristolochic acid

    PubMed Central

    Castells, Xavier; Karanović, Sandra; Ardin, Maude; Tomić, Karla; Xylinas, Evanguelos; Durand, Geoffroy; Villar, Stephanie; Forey, Nathalie; Le Calvez-Kelm, Florence; Voegele, Catherine; Karlović, Krešimir; Mišić, Maja; Dittrich, Damir; Dolgalev, Igor; McKay, James; Shariat, Shahrokh F.; Sidorenko, Viktoria S.; Fernandes, Andrea; Heguy, Adriana; Dickman, Kathleen G.; Olivier, Magali; Grollman, Arthur P.; Jelaković, Bojan; Zavadil, Jiri

    2015-01-01

    Background Dietary exposure to cytotoxic and carcinogenic aristolochic acid (AA) causes severe nephropathy typically associated with urological cancers. Monitoring of AA exposure uses biomarkers such as aristolactam-DNA adducts, detected by mass spectrometry in the kidney cortex, or the somatic A>T transversion pattern characteristic of exposure to AA, as revealed by previous DNA sequencing studies using fresh frozen tumors. Methods Here we report a low-coverage whole-exome sequencing method (LC-WES) optimized for multi-sample detection of the AA mutational signature, and demonstrate its utility in 17 formalin-fixed paraffin-embedded urothelial tumors obtained from 15 patients with endemic nephropathy, an environmental form of aristolochic acid nephropathy. Results LC-WES identified the AA signature, alongside signatures of age and APOBEC enzyme activity, in 15 samples sequenced at the average per-base coverage of ~10x. Analysis at 3–9x coverage revealed the signature in 91% of the positive samples. The exome-wide distribution of the predominant A>T transversions exhibited a stochastic pattern whereas 83 cancer driver genes were enriched for recurrent non-synonymous A>T mutations. In two patients, pairs of tumors from different parts of the urinary tract, including the bladder, harbored overlapping mutation patterns, suggesting tumor dissemination via cell seeding. Conclusion LC-WES analysis of archived tumor tissues is a reliable method applicable to investigations of both the exposure to AA and its biologic effects in human carcinomas. Impact By detecting cancers associated with AA exposure in high-risk populations, LC-WES can support future molecular epidemiology studies and provide evidence-base for relevant preventive measures. PMID:26383547

  12. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model

    PubMed Central

    Cheresiz, S. V.; Semenova, E. A.; Chepurnov, A. A.

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413

  13. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.

    PubMed

    Cheresiz, S V; Semenova, E A; Chepurnov, A A

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413

  14. Promoting screening mammography: insight or uptake?

    PubMed

    Keen, John D

    2010-01-01

    The US Preventive Services Task Force has emphasized individualized decision-making regarding participation in screening mammography for women ages 40 to 49. Positive public opinion regarding screening mammography is understandable given that screening advocates have heavily promoted the slogan "early detection saves lives" while ignoring screening harms. The goal of mammography screening advocates is to increase screening participation or uptake. The purpose of this paper is to promote physician and patient insight by presenting the age-related benefit and harms of screening. At age 50, routine screening saves approximately 1 woman per 1000 over 10 years. The life-saving proportion of screen-detected cancers is 5%, which means mammograms must detect 21 cancers to save one life. Almost half of screen-detected cancers represent pseudo-disease and would never become symptomatic yet alone lethal during a woman's lifetime. Consequently, 40- and 50-year-old women are 10 times more likely to experience overdiagnosis and overtreatment than to have their lives saved. Analysis of events and outcomes per single screening round for women ages 40 to 49 show that approximately 9600 screening mammograms, 960 diagnostic exams, and 90 to 140 biopsies are required to save one life. Given the substantial harms of screening, advocates should refocus their priority from promoting uptake to promoting insight. PMID:21057074

  15. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    PubMed

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C; Sellati, Timothy J; Harton, Jonathan A

    2016-03-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  16. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  17. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione

  18. Lethal predators: psychopathic, sadistic, and sane.

    PubMed

    Ochberg, Frank M; Brantley, Alan C; Hare, R D; Houk, Peter D; Ianni, Robert; James, Earl; O'Toole, Mary Ellen; Saathoff, Gregory

    2003-01-01

    The violent criminals defined in this article are a small, exceptionally dangerous group of offenders designated by the authors as "lethal predators." They have a history of sexual predation, have killed at least once, and are mentally abnormal but legally sane. They are highly likely to keep killing as long as they are free. Laws permitting civil commitment of dangerous and mentally abnormal sexual predators after they have completed criminal prison sentences have been upheld by the U.S. Supreme Court. Such laws can provide a legal means of keeping these highly dangerous killers confined so they cannot kill again. PMID:14608825

  19. Lethal mobilization of DDT by cowbirds

    USGS Publications Warehouse

    Van Velzen, A.C.; Stiles, W.B.; Stickel, L.F.

    1972-01-01

    This study is an experimental demonstration of lethal mobilization of DDT by brown-headed cowbirds (Molothrus ater) and the effects of food deprivation on the distribution and loss of DDT, DDD, and DDE. The principal experimental group consisted of 20 birds fed a dietary dosage of 100 ppm of DDT for 13 days. After 2 days of full rations of untreated food, they were subjected to food restriction. Food was reduced to 43 percent of normal. Seven of the 20 birds died within 4 days. No birds died in the three control groups, treated as follows: ( 1 ) 20 birds fed 100 ppm DDT for 13 days and full rations of untreated food thereafter, (2) 20 birds fed only untreated food but subjected to food restriction, and (3) 20 birds fed full rations of untreated food throughout. In a pilot study, birds were fed 100, 200, or 300 ppm of DDT and subjected to two periods of food restriction, the first of these immediately after dosage ceased and the second 4 months later. DDT-dosed birds from all dosage levels died in each period of food restriction. Before the weight loss that accompanied food restriction, the brains of DDT-dosed birds had concentrations of DDT and DDD that were far below the lethal range. Concentrations increased rapidly to lethal levels. In these birds, DDT in carcasses decreased while DDD increased. DDT-dosed birds that died during food restriction lost 16 percent of their total body burden of DDT + DDD + DDE, 21 percent of their weight, and 81 percent of their fat. The DDT-dosed birds that were subjected to food restriction but survived lost a significantly greater proportion of their body burden of residues than similarly dosed birds not subjected to weight loss. Brain levels of DDT and DDD in birds that died during food restriction soon after dosage did not differ significantly from brain levels of birds that died in a period of food restriction 4 months after dosage. Concentrations of DDE were significantly higher in the latter group, although they were lower

  20. A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528

    PubMed Central

    Studholme, David J; Ibanez, Selena Gimenez; MacLean, Daniel; Dangl, Jeffery L; Chang, Jeff H; Rathjen, John P

    2009-01-01

    Background Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of P. syringae strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host defences. P. syringae pathovar tabaci naturally causes disease on wild tobacco, the model member of the Solanaceae, a family that includes many crop species as well as on soybean. Results We used the 'next-generation' Illumina sequencing platform and the Velvet short-read assembly program to generate a 145X deep 6,077,921 nucleotide draft genome sequence for P. syringae pathovar tabaci strain 11528. From our draft assembly, we predicted 5,300 potential genes encoding proteins of at least 100 amino acids long, of which 303 (5.72%) had no significant sequence similarity to those encoded by the three previously fully sequenced P. syringae genomes. Of the core set of Hrp Outer Proteins that are conserved in three previously fully sequenced P. syringae strains, most were also conserved in strain 11528, including AvrE1, HopAH2, HopAJ2, HopAK1, HopAN1, HopI, HopJ1, HopX1, HrpK1 and HrpW1. However, the hrpZ1 gene is partially deleted and hopAF1 is completely absent in 11528. The draft genome of strain 11528 also encodes close homologues of HopO1, HopT1, HopAH1, HopR1, HopV1, HopAG1, HopAS1, HopAE1, HopAR1, HopF1, and HopW1 and a degenerate HopM1'. Using a functional screen, we confirmed that hopO1, hopT1, hopAH1, hopM1', hopAE1, hopAR1, and hopAI1' are part of the virulence-associated HrpL regulon, though the hopAI1' and hopM1' sequences were degenerate with premature stop codons. We also discovered two additional HrpL-regulated effector candidates and an HrpL-regulated distant homologue of avrPto1. Conclusion The draft genome sequence facilitates the continued development of P

  1. Two different forms of lethal chondrodysplasias caused by COL2A1 gene mutations

    SciTech Connect

    Winterpacht, A.; Hilbert, K.; Schwarze, U.

    1994-09-01

    Two bone dysplasia families seem to be due to mutations in the type II procollagen gene (COL2A1): the so-called spondyloepiphyseal dysplasia congenita (SEDC) group with achondrogenesis II, hypochondrogenesis, SEDC, osteoarthrosis and the Stickler-Kniest pattern that include different forms of Kniest and Stickler dysplasia. Both groups comprise a clinical spectrum ranging from lethal to mild. COL2A1-mutations have been identified in lethal forms of the SEDC family but not in lethal forms of the Stickler/Kniest group. We now report a COL2A-1 mutation in an additional case of hypochondrogenesis (patient S) and in a lethal case of Kniest dysplasia (patient B). We amplified all 54 exons of the COL2A1 gene in both patients and screened the PCR products for mutations by SSCP analysis and sequencing. In patient B, we identified an 18 bp deletion in exon 34 which removes 6 amino acids from the mature protein. In patient S, we were able to identify a two base pair exchange (GG to AT) in exon 31, which leads to the very unusual conversion of Gly to Ile. To our knowledge, this is the first report of a Gly to Ile conversion in the COL2A1 gene, and the first report of a COL2A1 gene mutation in a lethal form of Kniest dysplasia. On the basis of the known COL2A1 gene mutations and the genotype-phenotype correlations established so far, we provide molecular data (an in frame deletion in patient B and a Gly conversion in patient S) that support their clinical classification as Kniest dysplasia and hypochondrogenesis, respectively.

  2. mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer

    PubMed Central

    Penney, Kathryn L.; Sinnott, Jennifer A.; Fall, Katja; Pawitan, Yudi; Hoshida, Yujin; Kraft, Peter; Stark, Jennifer R.; Fiorentino, Michelangelo; Perner, Sven; Finn, Stephen; Calza, Stefano; Flavin, Richard; Freedman, Matthew L.; Setlur, Sunita; Sesso, Howard D.; Andersson, Swen-Olof; Martin, Neil; Kantoff, Philip W.; Johansson, Jan-Erik; Adami, Hans-Olov; Rubin, Mark A.; Loda, Massimo; Golub, Todd R.; Andrén, Ove; Stampfer, Meir J.; Mucci, Lorelei A.

    2011-01-01

    Purpose Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis. Patients and Methods Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases. Results We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006). Conclusion Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment. PMID:21537050

  3. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide.

    PubMed

    Alvarez-Sieiro, Patricia; Redruello, Begoña; Ladero, Victor; Martín, Maria Cruz; Fernández, María; Alvarez, Miguel A

    2016-05-01

    A selective culture medium containing acid-hydrolyzed gliadins as the sole nitrogen source was used in the search for sourdough-indigenous lactic acid bacteria (LAB) with gliadin-metabolizing activity. Twenty gliadin-degrading LAB strains were isolated from 10 sourdoughs made in different ways and from different geographical regions. Fifteen of the 20 isolated strains were identified as Lactobacillus casei, a species usually reported as subdominant in sourdough populations. The other 5 gliadin-degrading strains belonged to the more commonly encountered sourdough species Leuconostoc mesenteroides and Lactobacillus plantarum. All these strains were shown to be safe in terms of their resistance to antimicrobial agents. When individually incubated with the α2-gliadin-derived immunotoxic 33-mer peptide (97.5 ppm), half of the L. casei strains metabolized at least 50% of it within 24 h. One strain metabolized 82% of the 33-mer peptide within 8 h and made it fully disappear within 12 h. These results reveal for the first time the presence in sourdough of proteolytic L. casei strains with the capacity to individually metabolize the coeliac-disease-related 33-mer peptide. PMID:27021684

  4. Comparative chemical screening and genetic analysis reveal tentoxin as a new virulence factor in Cochliobolus miyabeanus, the causal agent of brown spot disease on rice.

    PubMed

    De Bruyne, Lieselotte; Van Poucke, Christof; Di Mavungu, Diana Jose; Zainudin, Nur Ain Izzati Mohd; Vanhaecke, Lynn; De Vleesschauwer, David; Turgeon, B Gillian; De Saeger, Sarah; Höfte, Monica

    2016-08-01

    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development. PMID:26456797

  5. Candidate Gene Screen in the Red Flour Beetle Tribolium Reveals Six3 as Ancient Regulator of Anterior Median Head and Central Complex Development

    PubMed Central

    Hein, Hendrikje Jeannette; Bucher, Gregor

    2011-01-01

    Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly. PMID:22216011

  6. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation.

    PubMed

    Gamero, Amparo; Quintilla, Raquel; Groenewald, Marizeth; Alkema, Wynand; Boekhout, Teun; Hazelwood, Lucie

    2016-12-01

    Saccharomyces yeast species are currently the most important yeasts involved in industrial-scale food fermentations. However, there are hundreds of other yeast species poorly studied that are highly promising for flavour development, some of which have also been identified in traditional food fermentations. This work explores natural yeast biodiversity in terms of aroma formation, with a particular focus on aromas relevant for industrial fermentations such as wine and beer. Several non-Saccharomyces species produce important aroma compounds such as fusel alcohols derived from the Ehrlich pathway, acetate esters and ethyl esters in significantly higher quantities than the well-known Saccharomyces species. These species are Starmera caribaea, Hanseniaspora guilliermondii, Galactomyces geotrichum, Saccharomycopsis vini and Ambrosiozyma monospora. Certain species revealed a strain-dependent flavour profile while other species were very homogenous in their flavour profiles. Finally, characterization of a selected number of yeast species using valine or leucine as sole nitrogen sources indicates that the mechanisms of regulation of the expression of the Ehrlich pathway exist amongst non-conventional yeast species. PMID:27554157

  7. Loss-of-function mutations in a glutathione S-transferase suppress the prune-Killer of prune lethal interaction.

    PubMed

    Provost, Elayne; Hersperger, Grafton; Timmons, Lisa; Ho, Wen Qi; Hersperger, Evelyn; Alcazar, Rosa; Shearn, Allen

    2006-01-01

    The prune gene of Drosophila melanogaster is predicted to encode a phosphodiesterase. Null alleles of prune are viable but cause an eye-color phenotype. The abnormal wing discs gene encodes a nucleoside diphosphate kinase. Killer of prune is a missense mutation in the abnormal wing discs gene. Although it has no phenotype by itself even when homozygous, Killer of prune when heterozygous causes lethality in the absence of prune gene function. A screen for suppressors of transgenic Killer of prune led to the recovery of three mutations, all of which are in the same gene. As heterozygotes these mutations are dominant suppressors of the prune-Killer of prune lethal interaction; as homozygotes these mutations cause early larval lethality and the absence of imaginal discs. These alleles are loss-of-function mutations in CG10065, a gene that is predicted to encode a protein with several zinc finger domains and glutathione S-transferase activity. PMID:16143620

  8. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function

    PubMed Central

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A.; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M.; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin

    2012-01-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness. PMID:23027535

  9. A differential screen for genes expressed in the extraembryonic endodermal layer of pre-primitive streak stage chick embryos reveals expression of Apolipoprotein A1 in hypoblast, endoblast and endoderm.

    PubMed

    Bertocchini, Federica; Stern, Claudio D

    2008-09-01

    The lower layer of the pre-gastrulating chick embryo is an extra-embryonic tissue made up of two different cell populations, the hypoblast and the endoblast. The hypoblast is characterized by the expression of inhibitory signalling molecules (e.g. Cerberus, Dickkopf1, Crescent) and others (e.g. Otx2, goosecoid, Hex, Hesx1/RPX, FGF8). However, no genes expressed in the endoblast have yet been found. We designed a differential screen to identify markers differentially expressed in these two cell populations. This only revealed one novel gene, Apolipoprotein A1 (APO A1) with restricted endodermal layer expression. Expression of APO A1 begins very early throughout the lower layer (both hypoblast and endoblast). At later stages it is also expressed in the endoderm and its derivatives, the anterior intestinal portal endoderm and the growing liver bud. PMID:18672094

  10. Gonadosomatic mosaicism for lethal mutations in Drosophila lethal mutations disturbing larval development

    SciTech Connect

    Ivanov, A.I.; Sakharova, N.Yu.

    1988-11-01

    Phenogenetic analysis of autonomous lethal mutations obtained by the method of gonadosomatic mosaicism which manifested during larval stages, established that the nuclei of hypodermal cells, salivary glands suprapharyngeal ganglion, pharynx, esophagus, gizzard, and hindgut are the derivatives of the same nucleus (from the first two nuclei of cleavage) as the nuclei of the cells of the imaginal-somatic tissues.

  11. [Acute lethal alcohol intoxication (author's transl)].

    PubMed

    Kringsholm, B

    1976-01-01

    In 14,744 autopsy cases from an 18-year period 92 cases (of which 7 were ruled out because of decomposition were observed in which death was supposed to be due to direct acute alcoholic intoxication. In the police reports 81 persons were designated as chronic alcoholics or abusers of spirits. The blood alcohol level ranged between 2.04 and 4.92 o/oo. The cases studied were divided into two groups, one with low and the other with high lethal alcohol level. Fatty liver and cirrhosis were found with identical frequency in the two groups, whereas cardiac hypertrophy of obscure origin occurred markedly more often in the group with low lethal blood alcohol level. On the basis the possible mechanism of death in the cases with cardiac hypertrophy is discussed. Finally, the relation between the blood and urine alcohol concentrations observed in 72 cases is discussed. On the assumption that the water phase of the blood was 75 per cent of the total blood, death occurred in the persons without cardiac hypertrophy with fairly identical frequency either in the phase of absorption or the phase of elimination, whereas in the persons with cardiac hypertrophy death most often occurred in the phase of absorption. These statements should, however, be taken with some reservation, partly because the water phase of the blood may vary considerably post mortem (60-90 per cent) and partly because the urine alcohol concentration depends on serval variable factors. PMID:137612

  12. Tityus serrulatus venom--A lethal cocktail.

    PubMed

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). PMID:26522893

  13. Antenatal diagnosis of lethal skeletal dysplasias.

    PubMed

    Tretter, A E; Saunders, R C; Meyers, C M; Dungan, J S; Grumbach, K; Sun, C C; Campbell, A B; Wulfsberg, E A

    1998-02-17

    Lethal skeletal dysplasias (LSD) are a heterogeneous group of rare but important genetic disorders characterized by abnormal growth and development of bone and cartilage. We describe the diagnosis and outcome of 29 cases of lethal skeletal dysplasias evaluated between January 1989 and December 1996 at the University of Maryland Medical Center and the Ultrasound Institute of Baltimore. Two cases presented at delivery with no prenatal care while the remaining 27 cases were identified by antenatal sonography. Final diagnoses included thanatophoric dysplasia (14), osteogenesis imperfecta, type II (6), achondrogenesis (2), short rib syndromes (3), campomelic syndrome (2), atelosteogenesis (1), and no evidence of a skeletal dysplasia (1). Twenty out of 27 pregnancies were terminated with an average at detection of 21.6 weeks. The other 7 pregnancies that went on to deliver had an average age at detection of 29.2 weeks. Fetal abnormalities in the terminated pregnancies were identified at a significantly earlier gestational age (P = 0.0016) than the pregnancies that continued. While the identification of LSD by sonography was excellent (26/27), only 13/27 (48%) were given an accurate specific antenatal diagnosis. In 8/14 (57%) cases with an inaccurate or nonspecific diagnosis there was a significant or crucial change in the genetic counseling. Thus, while antenatal sonography is an excellent method for discovering LSD, clinical examination, radiographs, and autopsy are mandatory for making a specific diagnosis. PMID:9489797

  14. Enhancing CHK1 inhibitor lethality in glioblastoma.

    PubMed

    Tang, Yong; Dai, Yun; Grant, Steven; Dent, Paul

    2012-04-01

    The present studies were initiated to determine whether inhibitors of MEK1/2 or SRC signaling, respectively, enhance CHK1 inhibitor lethality in primary human glioblastoma cells. Multiple MEK1/2 inhibitors (CI-1040 (PD184352); AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01, AZD7762) to kill multiple primary human glioma cell isolates that have a diverse set of genetic alterations typically found in the disease. Inhibition of SRC family proteins also enhanced CHK1 inhibitor lethality. Combined treatment of glioma cells with (MEK1/2 + CHK1) inhibitors enhanced radiosensitivity. Combined (MEK1/2 + CHK1) inhibitor treatment led to dephosphorylation of ERK1/2 and S6 ribosomal protein, whereas the phosphorylation of JNK and p38 was increased. MEK1/2 + CHK1 inhibitor-stimulated cell death was associated with the cleavage of pro-caspases 3 and 7 as well as the caspase substrate (PARP). We also observed activation of pro-apoptotic BCL-2 effector proteins BAK and BAX and reduced levels of pro-survival BCL-2 family protein BCL-XL. Overexpression of BCL-XL alleviated but did not completely abolish MEK1/2 + CHK1 inhibitor cytotoxicity in GBM cells. These findings argue that multiple inhibitors of the SRC-MEK pathway have the potential to interact with multiple CHK1 inhibitors to kill glioma cells. PMID:22313687

  15. Lethal domestic violence in eastern North Carolina.

    PubMed

    Gilliland, M G; Spence, P R; Spence, R L

    2000-01-01

    Strategies for preventing domestic violence can be tailored to a particular geographic or socioeconomic area if the patterns of domestic violence in the area are known. National statistics, although widely available, may not be applicable to a specific region. We reviewed homicide deaths in Eastern North Carolina between 1978 and 1999 to identify patterns in this rural area. Approximately 20% of the homicide deaths in eastern North Carolina are caused by intimate partners. Women accounted for 53% of the victims in 1976, similar to national figures but not rising to 72% as seen nationally in 1998. Latinos are an increasing presence in the area, but had only one recorded episode of lethal violence against an intimate partner. Gunshots accounted for most of the deaths (59% in men, 72% in women). Knowledge of such patterns can assist in selecting prevention strategies for this particular area. Over the last 25 years increasing attention has been devoted to domestic violence (DV), initially defined as abuse committed against a spouse, former spouse, fiancée, boy- or girlfriend, or cohabitant. As time has passed, the definition has been broadened to include other family members--elders, children, and siblings. The Centers for Disease Control and Prevention (CDC) now uses the term "intimate partner violence" for intentional emotional or physical abuse inflicted by a spouse, ex-spouse, a present or former boy- or girlfriend, or date. For the purposes of this paper, we consider DV interchangeable with intimate partner violence. There has been a national concern that abusive events are under-reported. The National Crime Victimization Survey, an anonymous household survey, indicated nearly 1 million incidents of non-lethal intimate partner violence per year between 1992 and 1996. The number decreased from 1.1 million in 1993 to 840,000 in 1996. Attempts to validate such data for a given geographic area often require subjects to violate anonymity--this may account for lower

  16. Apparent lethal concentrations of pyrolysis products of some polymeric materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Marcussen, W. H.; Furst, A.; Kourtides, D. A.; Parker, J. A.

    1976-01-01

    Thirty-nine samples of polymeric materials were evaluated to determine the apparent lethal concentrations of their pyrolysis products. The materials were compared on the basis of the apparent lethal concentration for 50 percent of the test animals. Relative toxicity rankings based o apparent lethal concentration values can differ significantly depending on whether they are based on weight of sample charged or weight of sample pyrolyzed. The ranking of polyphenylene sulfide is particularly sensitive to this difference.

  17. A multifactorial analysis of factors related to lethality after treatment of perforated gastroduodenal ulcer. 1935-1985.

    PubMed Central

    Svanes, C; Salvesen, H; Espehaug, B; Søreide, O; Svanes, K

    1989-01-01

    One thousand one hundred and twenty-eight patients treated for perforated gastroduodenal ulcer during the years 1935-1985 were studied at the Haukeland University Hospital. The majority of patients (97.7%) were treated surgically. The data was analyzed by contingency tables and chi square testing, and a stepwise logistic regression analysis was performed in order to reveal interactions between variables and to elucidate time trends in lethality rates. The total postperforation lethality was 7.4%, the postsurgical death rate was 6.6%, and the death rate among conservatively treated patients was 42.3%. Lethality was significantly influenced by year of hospital admission and increased markedly with the age of the patients. For all age groups, the lethality decreased markedly with time. Treatment delay was associated with a moderate but significant increase in lethality. In patients with gastric ulcer the lethality was 3.6 times higher than in those with duodenal ulcer. The death rate was similar in the duodenal and pyloric ulcer groups. Death rate decreased with time in both stomach ulcer, duodenal, and pyloric ulcer patients. There was no sex difference and no difference between patients treated with simple suture or gastric resection. PMID:2930287

  18. Airport Screening

    MedlinePlus

    ... 2011 Photo courtesy of Dan Paluska/Flickr Denver Airport Security Screening Introduction With air travel regaining popularity and increased secu- rity measures, airport security screening has become an area of interest for ...

  19. Health Screening

    MedlinePlus

    Screenings are tests that look for diseases before you have symptoms. Screening tests can find diseases early, when they're easier ... Overweight and obesity Prostate cancer in men Which tests you need depends on your age, your sex, ...

  20. MRSA Screening

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? MRSA Screening Share this page: Was this page helpful? Formal name: Methicillin resistant Staphylococcus aureus Screening Related tests: Wound Culture At a Glance ...

  1. ALC/50/ values for some polymeric materials. [Apparent Lethal Concentration fire toxicity

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Schneider, J. E.; Kourtides, D. A.; Parker, J. A.

    1978-01-01

    Apparent lethal concentrations for 50 per cent of the test animals within a 30-min exposure period (ALC/50/) were determined for seventeen samples of polymeric materials, using the screening test method. The materials evaluated included resin-glass composites, film composites, and miscellaneous resins. ALC(50) values, based on weight of original sample charged, ranged from 24 to 110 mg/l. Modified phenolic resins seemed to exhibit less toxicity than the baseline epoxy resins. Among the film composites evaluated, only flame modified polyvinyl fluoride appeared to exhibit less toxicity than the baseline polyvinyl fluoride film.

  2. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins.

    PubMed

    Silin, Vitalii; Kasianowicz, John J; Michelman-Ribeiro, Ariel; Panchal, Rekha G; Bavari, Sina; Robertson, Joseph W F

    2016-01-01

    Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects. PMID:27348008

  3. Lethal photosensitization of biofilm-grown bacteria

    NASA Astrophysics Data System (ADS)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  4. Ants defend aphids against lethal disease.

    PubMed

    Nielsen, Charlotte; Agrawal, Anurag A; Hajek, Ann E

    2010-04-23

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138

  5. Alleged lethal sorcery in East Timor.

    PubMed

    Pollanen, Michael S

    2004-01-01

    A wide range of cultural and social perspectives exists on the concept of sudden and unexpected death. In countries, without a formal system of death investigation, sudden death is shrouded in mysticism often based on traditional belief systems. This cultural perspective on sudden death is often at variance with medical and forensic concepts and may include explanations such as sorcery, magic, and voodoo. In this case report, the postmortem findings in an alleged victim of lethal 'black magic', known as ema halo by the indigenous people of East Timor, is described. The alleged victim died suddenly in front of witnesses. At autopsy, marked dilation of a bicuspid aortic valve with annuloaortic ectasia and a sinus of Valsalva aneurysm was found after exhumation of the body. The findings mitigated the local belief in witchcraft and established a natural manner of death. PMID:14687768

  6. Synthetic lethality for linking the mycophenolate mofetil mode of action with molecular disease and drug profiles.

    PubMed

    Söllner, Johannes; Mayer, Paul; Heinzel, Andreas; Fechete, Raul; Siehs, Christian; Oberbauer, Rainer; Mayer, Bernd

    2012-10-30

    Systematic study of the effect of mycophenolate mofetil (MMF) on the molecular level in the context of other drugs and molecular disease profiles became possible due to the availability of large scale molecular profiles on both disease characterization and drug mode of action. Such analysis is of particular value in elucidating alternative drug use for addressing clinically unmet needs, and the concept of synthetic lethality provides an alternative tool for such repositioning strategies. Resting on consolidation of transcriptomics data and literature mining, a MMF molecular footprint became available including a set of 170 genes specifically affected by the drug. Analysis of this profile on a molecular pathway level reveals a set of 14 pathways as affected. Next to assignment of molecular pathways and associated diseases synergistic drug combinations are proposed by utilizing the synthetic lethal interaction network. Of particular interest is the combination of MMF with adenosine deaminase inhibitors, sulfasalazine, and other selected drugs interfering with calcium-based regulatory pathways and metabolism. Indeed analysis of drugs in clinical trials positively identifies combinations with MMF in the context of synthetic lethality and affected pathways, particularly in diseases such as multiple sclerosis, vasculitis, GVHD and lupus nephritis. Importantly, the synthetic lethal interaction of the drug mode of action is an interesting basis for rational repositioning strategies by suggesting combinations which exhibit a synergistic rather than a mere additive effect, as for example is evident for the combination of tacrolimus and MMF. Inherent is also the assessment of possible adverse effects of drug combinations. PMID:23014771

  7. Tetracycline-suppressible female lethality and sterility in the Mexican fruit fly, Anastrepha ludens.

    PubMed

    Schetelig, M F; Targovska, A; Meza, J S; Bourtzis, K; Handler, A M

    2016-08-01

    The sterile insect technique (SIT) involves the mass release of sterile males to suppress insect pest populations. SIT has been improved for larval pests by the development of strains for female-specific tetracycline-suppressible (Tet-off) embryonic lethal systems for male-only populations. Here we describe the extension of this approach to the Mexican fruit fly, Anastrepha ludens, using a Tet-off driver construct with the Tet-transactivator (tTA) under embryo-specific Anastrepha suspensa serendipity α (As-sry-α) promoter regulation. In the absence of tetracycline, tTA acts upon a Tet-response element linked to the pro-apoptotic cell death gene lethal effector, head involuation defective (hid), from A. ludens (Alhid(Ala2) ) that contains a sex-specific intron splicing cassette, resulting in female-specific expression of the lethal effector. Parental adults double-homozygous for the driver/effector vectors were expected to yield male-only progeny when reared on Tet-free diet, but a complete lack of oviposited eggs resulted for each of the three strains tested. Ovary dissection revealed nonvitellogenic oocytes in all strains that was reversible by feeding females tetracycline for 5 days after eclosion, resulting in male-only adults in one strain. Presumably the sry-α promoter exhibits prezygotic maternal expression as well as zygotic embryonic expression in A. ludens, resulting in a Tet-off sterility effect in addition to female-specific lethality. PMID:27135433

  8. Whole-Transcriptome Shotgun Sequencing (RNA-seq) Screen Reveals Upregulation of Cellobiose and Motility Operons of Lactobacillus ruminis L5 during Growth on Tetrasaccharides Derived from Barley β-Glucan

    PubMed Central

    Lawley, Blair; Sims, Ian M.

    2013-01-01

    Lactobacillus ruminis is an inhabitant of human bowels and bovine rumens. None of 10 isolates (three from bovine rumen, seven from human feces) of L. ruminis that were tested could utilize barley β-glucan for growth. Seven of the strains of L. ruminis were, however, able to utilize tetrasaccharides (3-O-β-cellotriosyl-d-glucose [LDP4] or 4-O-β-laminaribiosyl-d-cellobiose [CDP4]) present in β-glucan hydrolysates for growth. The tetrasaccharides were generated by the use of lichenase or cellulase, respectively. To learn more about the utilization of tetrasaccharides by L. ruminis, whole-transcriptome shotgun sequencing (RNA-seq) was tested as a transcriptional screen to detect altered gene expression when an autochthonous human strain (L5) was grown in medium containing CDP4. RNA-seq results were confirmed and extended by reverse transcription-quantitative PCR assays of selected genes in two upregulated operons when cells were grown as batch cultures in medium containing either CDP4 or LDP4. The cellobiose utilization operon had increased transcription, particularly in early growth phase, whereas the chemotaxis/motility operon was upregulated in late growth phase. Phenotypic changes were seen in relation to upregulation of chemotaxis/flagellar operons: flagella were rarely seen by electron microscopy on glucose-grown cells but cells cultured in tetrasaccharide medium were commonly flagellated. Chemotactic movement toward tetrasaccharides was demonstrated in capillary cultures. L. ruminis utilized 3-O-β-cellotriosyl-d-glucose released by β-glucan hydrolysis due to bowel commensal Coprococcus sp., indicating that cross feeding of tetrasaccharide between bacteria could occur. Therefore, the RNA-seq screen and subsequent experiments had utility in revealing foraging attributes of gut commensal Lactobacillus ruminis. PMID:23851085

  9. In Silico Screening for Palmitoyl Substrates Reveals a Role for DHHC1/3/10 (zDHHC1/3/11)-mediated Neurochondrin Palmitoylation in Its Targeting to Rab5-positive Endosomes*

    PubMed Central

    Oku, Shinichiro; Takahashi, Naoki; Fukata, Yuko; Fukata, Masaki

    2013-01-01

    Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca2+/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting. PMID:23687301

  10. Whole-transcriptome shotgun sequencing (RNA-seq) screen reveals upregulation of cellobiose and motility operons of Lactobacillus ruminis L5 during growth on tetrasaccharides derived from barley β-glucan.

    PubMed

    Lawley, Blair; Sims, Ian M; Tannock, Gerald W

    2013-09-01

    Lactobacillus ruminis is an inhabitant of human bowels and bovine rumens. None of 10 isolates (three from bovine rumen, seven from human feces) of L. ruminis that were tested could utilize barley β-glucan for growth. Seven of the strains of L. ruminis were, however, able to utilize tetrasaccharides (3-O-β-cellotriosyl-d-glucose [LDP4] or 4-O-β-laminaribiosyl-d-cellobiose [CDP4]) present in β-glucan hydrolysates for growth. The tetrasaccharides were generated by the use of lichenase or cellulase, respectively. To learn more about the utilization of tetrasaccharides by L. ruminis, whole-transcriptome shotgun sequencing (RNA-seq) was tested as a transcriptional screen to detect altered gene expression when an autochthonous human strain (L5) was grown in medium containing CDP4. RNA-seq results were confirmed and extended by reverse transcription-quantitative PCR assays of selected genes in two upregulated operons when cells were grown as batch cultures in medium containing either CDP4 or LDP4. The cellobiose utilization operon had increased transcription, particularly in early growth phase, whereas the chemotaxis/motility operon was upregulated in late growth phase. Phenotypic changes were seen in relation to upregulation of chemotaxis/flagellar operons: flagella were rarely seen by electron microscopy on glucose-grown cells but cells cultured in tetrasaccharide medium were commonly flagellated. Chemotactic movement toward tetrasaccharides was demonstrated in capillary cultures. L. ruminis utilized 3-O-β-cellotriosyl-d-glucose released by β-glucan hydrolysis due to bowel commensal Coprococcus sp., indicating that cross feeding of tetrasaccharide between bacteria could occur. Therefore, the RNA-seq screen and subsequent experiments had utility in revealing foraging attributes of gut commensal Lactobacillus ruminis. PMID:23851085

  11. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    PubMed

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. PMID:24809668

  12. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours

    PubMed Central

    Costa-Cabral, Sara; Brough, Rachel; Konde, Asha; Aarts, Marieke; Campbell, James; Marinari, Eliana; Riffell, Jenna; Bardelli, Alberto; Torrance, Christopher; Lord, Christopher J.; Ashworth, Alan

    2016-01-01

    Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation. PMID:26881434

  13. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson).

    PubMed

    Morandin, Lora A; Winston, Mark L; Franklin, Michelle T; Abbott, Virginia A

    2005-07-01

    Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies. PMID:15880684

  14. Double screening

    NASA Astrophysics Data System (ADS)

    Gratia, Pierre; Hu, Wayne; Joyce, Austin; Ribeiro, Raquel H.

    2016-06-01

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  15. Chronic exposure of corals to fine sediments: lethal and sub-lethal impacts.

    PubMed

    Flores, Florita; Hoogenboom, Mia O; Smith, Luke D; Cooper, Timothy F; Abrego, David; Negri, Andrew P

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l(-1) TSS (25 mg cm(-2) day(-1)) for M. aequituberculata and 100 mg l(-1) TSS (83 mg cm(-2) day(-1)) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  16. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    PubMed Central

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  17. Screening for Panic Disorder

    MedlinePlus

    ... Membership Journal & Multimedia Resources Awards Consumers Screening for Panic Disorder Main navigation FAQs Screen Yourself Screening for Depression ... Screening for Obsessive-Compulsive Disorder (OCD) Screening for Panic Disorder Screening for Posttraumatic Stress Disorder (PTSD) Screening for ...

  18. Genetic Screening

    PubMed Central

    Burke, Wylie; Tarini, Beth; Press, Nancy A.; Evans, James P.

    2011-01-01

    Current approaches to genetic screening include newborn screening to identify infants who would benefit from early treatment, reproductive genetic screening to assist reproductive decision making, and family history assessment to identify individuals who would benefit from additional prevention measures. Although the traditional goal of screening is to identify early disease or risk in order to implement preventive therapy, genetic screening has always included an atypical element—information relevant to reproductive decisions. New technologies offer increasingly comprehensive identification of genetic conditions and susceptibilities. Tests based on these technologies are generating a different approach to screening that seeks to inform individuals about all of their genetic traits and susceptibilities for purposes that incorporate rapid diagnosis, family planning, and expediting of research, as well as the traditional screening goal of improving prevention. Use of these tests in population screening will increase the challenges already encountered in genetic screening programs, including false-positive and ambiguous test results, overdiagnosis, and incidental findings. Whether this approach is desirable requires further empiric research, but it also requires careful deliberation on the part of all concerned, including genomic researchers, clinicians, public health officials, health care payers, and especially those who will be the recipients of this novel screening approach. PMID:21709145

  19. Towards a compendium of essential genes – From model organisms to synthetic lethality in cancer cells

    PubMed Central

    Zhan, Tianzuo; Boutros, Michael

    2016-01-01

    Abstract Essential genes are defined by their requirement to sustain life in cells or whole organisms. The systematic identification of essential gene sets not only allows insights into the fundamental building blocks of life, but may also provide novel therapeutic targets in oncology. The discovery of essential genes has been tightly linked to the development and deployment of various screening technologies. Here, we describe how gene essentiality was addressed in different eukaryotic model organisms, covering a range of organisms from yeast to mouse. We describe how increasing knowledge of evolutionarily divergent genomes facilitate identification of gene essentiality across species. Finally, the impact of gene essentiality and synthetic lethality on cancer research and the clinical translation of screening results are highlighted. PMID:26627871

  20. Targeting cancer using KAT inhibitors to mimic lethal knockouts

    PubMed Central

    Brown, James A.L.; Bourke, Emer; Eriksson, Leif A.; Kerin, Michael J.

    2016-01-01

    Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies. PMID:27528742

  1. Targeting cancer using KAT inhibitors to mimic lethal knockouts.

    PubMed

    Brown, James A L; Bourke, Emer; Eriksson, Leif A; Kerin, Michael J

    2016-08-15

    Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies. PMID:27528742

  2. Tumor clone dynamics in lethal prostate cancer

    PubMed Central

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; de Bono, Johann S.; Demichelis, Francesca; Attard, Gerhardt

    2015-01-01

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers. PMID:25232177

  3. Lethal body burdens of polar narcotics: Chlorophenols

    SciTech Connect

    Wezel, A.P. van; Punte, S.S.; Opperhuizen, A.

    1995-09-01

    The goal of the present study was to measure in fathead minnow (Pimephales promelas) the lethal body burden (LBB) of three chlorophenols that are known as polar narcotic chemicals. The LBBs of the chlorophenols were compared to LBBs of nonpolar narcotic chemicals to consider if the two classes of narcotic chemicals differ on a body burden level. The LBB of the most acidic chlorophenol was measured at two different levels of pH exposure to determine the influence of the degree of ionization on the magnitude of the LBB. Both n-octanol/water partition coefficients and n-hexane/water partition coefficients of the chlorophenols were determined at different pH levels to consider the influence of ionization on the partition coefficient and to determine the importance of a polar group in the organic phase on the partitioning behavior. Partitioning to n-octanol and n-hexane was used as input in a model to simulate the equilibrium partitioning between hydrophobic and nonhydrophobic and target and nontarget compartments in the fish.

  4. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells.

    PubMed

    Scholl, Claudia; Fröhling, Stefan; Dunn, Ian F; Schinzel, Anna C; Barbie, David A; Kim, So Young; Silver, Serena J; Tamayo, Pablo; Wadlow, Raymond C; Ramaswamy, Sridhar; Döhner, Konstanze; Bullinger, Lars; Sandy, Peter; Boehm, Jesse S; Root, David E; Jacks, Tyler; Hahn, William C; Gilliland, D Gary

    2009-05-29

    An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with "undruggable" genetic alterations. PMID:19490892

  5. Auranofin Protects against Anthrax Lethal Toxin-Induced Activation of the Nlrp1b Inflammasome ▿

    PubMed Central

    Newman, Zachary L.; Sirianni, Nicole; Mawhinney, Christina; Lee, Margaret S.; Leppla, Stephen H.; Moayeri, Mahtab; Johansen, Lisa M.

    2011-01-01

    Anthrax lethal toxin (LT) is the major virulence factor for Bacillus anthracis. The lethal factor (LF) component of this bipartite toxin is a protease which, when transported into the cellular cytoplasm, cleaves mitogen-activated protein kinase kinase (MEK) family proteins and induces rapid toxicity in mouse macrophages through activation of the Nlrp1b inflammasome. A high-throughput screen was performed to identify synergistic LT-inhibitory drug combinations from within a library of approved drugs and molecular probes. From this screen we discovered that auranofin, an organogold compound with anti-inflammatory activity, strongly inhibited LT-mediated toxicity in mouse macrophages. Auranofin did not inhibit toxin transport into cells or MEK cleavage but inhibited both LT-mediated caspase-1 activation and caspase-1 catalytic activity. Thus, auranofin inhibited LT-mediated toxicity by preventing activation of the Nlrp1b inflammasome and the downstream actions that occur in response to the toxin. Idebenone, an analog of coenzyme Q, synergized with auranofin to increase its protective effect. We found that idebenone functions as an inhibitor of voltage-gated potassium channels and thus likely mediates synergy through inhibition of the potassium fluxes which have been shown to be required for Nlrp1b inflammasome activation. PMID:21149629

  6. Dominant Maternal-Effect Mutations Causing Embryonic Lethality in Caenorhabditis Elegans

    PubMed Central

    Mains, P. E.; Sulston, I. A.; Wood, W. B.

    1990-01-01

    We undertook screens for dominant, temperature-sensitive, maternal-effect embryonic-lethal mutations of Caenorhabditis elegans as a way to identify certain classes of genes with early embryonic functions, in particular those that are members of multigene families and those that are required in two copies for normal development. The screens have identified eight mutations, representing six loci. Mutations at three of the loci result in only maternal effects on embryonic viability. Mutations at the remaining three loci cause additional nonmaternal (zygotic) effects, including recessive lethality or sterility and dominant male mating defects. Mutations at five of the loci cause visible pregastrulation defects. Three mutations appear to be allelic with a recessive mutation of let-354. Gene dosage experiments indicate that one mutation may be a loss-of-function allele at a haploin sufficient locus. The other mutations appear to result in gain-of-function ``poison'' gene products. Most of these become less deleterious as the relative dosage of the corresponding wild-type allele is increased; we show that relative self-progeny viabilities for the relevant hermaphrodite genotypes are generally M/+/+ > M/+ > M/M/+ > M/Df > M/M, where M represents the dominant mutant allele. PMID:2379819

  7. Preparation and characterization of cobalt-substituted anthrax lethal factor.

    PubMed

    Säbel, Crystal E; Carbone, Ryan; Dabous, John R; Lo, Suet Y; Siemann, Stefan

    2011-12-01

    Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl(2), and (ii) direct exchange by treatment of zinc-LF with CoCl(2). Independent of the method employed, the protein was found to contain one Co(2+) per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co(2+) ion to be five-coordinate, an observation similar to that reported for other Co(2+)-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co(2+):TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions. PMID:22093822

  8. Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality.

    PubMed

    Khoury-Hanold, William; Yordy, Brian; Kong, Philip; Kong, Yong; Ge, William; Szigeti-Buck, Klara; Ralevski, Alexandra; Horvath, Tamas L; Iwasaki, Akiko

    2016-06-01

    Herpes simplex virus 1 (HSV-1), a leading cause of genital herpes, infects oral or genital mucosal epithelial cells before infecting the peripheral sensory nervous system. The spread of HSV-1 beyond the sensory nervous system and the resulting broader spectrum of disease are not well understood. Using a mouse model of genital herpes, we found that HSV-1-infection-associated lethality correlated with severe fecal and urinary retention. No inflammation or infection of the brain was evident. Instead, HSV-1 spread via the dorsal root ganglia to the autonomic ganglia of the enteric nervous system (ENS) in the colon. ENS infection led to robust viral gene transcription, pathological inflammatory responses, and neutrophil-mediated destruction of enteric neurons, ultimately resulting in permanent loss of peristalsis and the development of toxic megacolon. Laxative treatment rescued mice from lethality following genital HSV-1 infection. These results reveal an unexpected pathogenesis of HSV associated with ENS infection. PMID:27281569

  9. Synthetic lethality in ATM-deficient RAD50-mutant tumors underlie outlier response to cancer therapy

    PubMed Central

    Al-Ahmadie, Hikmat; Iyer, Gopa; Hohl, Marcel; Asthana, Saurabh; Inagaki, Akiko; Schultz, Nikolaus; Hanrahan, Aphrothiti J.; Scott, Sasinya N.; Brannon, A. Rose; McDermott, Gregory C.; Pirun, Mono; Ostrovnaya, Irina; Kim, Philip; Socci, Nicholas D.; Viale, Agnes; Schwartz, Gary K.; Reuter, Victor; Bochner, Bernard H.; Rosenberg, Jonathan E.; Bajorin, Dean F.; Berger, Michael F.; Petrini, John H.J.; Solit, David B.; Taylor, Barry S.

    2014-01-01

    Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small cell cancer to combined checkpoint kinase 1 (Chk1) inhibition and DNA damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of Chk1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy whereby checkpoint inhibition in combination with DNA damaging chemotherapy is synthetically lethal in tumor but not normal cells with somatic mutations that impair Mre11 complex function. PMID:24934408

  10. Ethical language and decision-making for prenatally diagnosed lethal malformations

    PubMed Central

    Wilkinson, Dominic; de Crespigny, Lachlan; Xafis, Vicki

    2014-01-01

    Summary In clinical practice, and in the medical literature, severe congenital malformations such as trisomy 18, anencephaly, and renal agenesis are frequently referred to as ‘lethal’ or as ‘incompatible with life’. However, there is no agreement about a definition of lethal malformations, nor which conditions should be included in this category. Review of outcomes for malformations commonly designated ‘lethal’ reveals that prolonged survival is possible, even if rare. This article analyses the concept of lethal malformations and compares it to the problematic concept of ‘futility’. We recommend avoiding the term ‘lethal’ and suggest that counseling should focus on salient prognostic features instead. For conditions with a high chance of early death or profound impairment in survivors despite treatment, perinatal and neonatal palliative care would be ethical. However, active obstetric and neonatal management, if desired, may also sometimes be appropriate. PMID:25200733

  11. Impact of the Timing of Morphine Administration on Lipopolysaccharide-Mediated Lethal Endotoxic Shock in Mice.

    PubMed

    Fukada, Tomoko; Kato, Hidehito; Ozaki, Makoto; Yagi, Junji

    2016-05-01

    Sepsis is a serious condition related to systemic inflammation, organ dysfunction, and organ failure. It is a subset of the cytokine storm caused by dysregulation of cytokine production. Morphine influences the severity of infection in vivo and in vitro because it regulates cytokine production. We investigated the immunological function of morphine using a mouse model of septic shock. We treated mice with α-galactosylceramide (2 μg/mouse) to induce lethal endotoxic shock following a challenge with lipopolysaccharide (LPS, 1.5 μg/mouse). This model represents acute lung injury and respiratory failure, and reflects the clinical features of severe septic shock. We evaluated the effect of the timing of morphine (0.8 mg/mouse) administration on the survival rate, cytokine production in vivo, and histological changes of mice with LPS-mediated lethal endotoxic shock. Morphine treatment before LPS challenge suppressed lethal endotoxic shock. In contrast, when we administered after LPS, morphine exacerbated lethal endotoxic shock; hematoxylin and eosin staining revealed a marked increase in the accumulation of infiltrates comprising polymorphonuclear leukocytes and mononuclear cells in the lung; and Elastica van Gieson staining revealed the destruction of alveoli. The plasma levels of tumor necrosis factor-α, interferon-γ, monocyte-chemotactic protein-1, and interleukin-12 in the group treated with morphine after LPS challenge were higher than those treated with morphine before LPS challenge. In conclusion, one of the factors that determine whether morphine exacerbates or inhibits infection is the timing of its administration. Morphine treatment before shock improved the survival rate, and morphine treatment after shock decreased the rate of survival. PMID:26682949

  12. A Chemical Genetic Screening Procedure for Arabidopsis thaliana Seedlings

    PubMed Central

    Bjornson, Marta; Song, Xingshun; Dandekar, Abhaya; Franz, Annaliese; Drakakaki, Georgia; Dehesh, Katayoon

    2016-01-01

    Unbiased screening approaches are powerful tools enabling identification of novel players in biological processes. Chemical genetic screening refers to the technique of using a reporter response, such as expression of luciferase driven by a promoter of interest, to discover small molecules that affect a given process when applied to plants. These chemicals then act as tools for identification of regulatory components that could not otherwise be detected by forward genetic screens due to gene family redundancy or mutant lethality. This protocol describes a chemical genetic screen using Arabidopsis thaliana seedlings, which has led to recognition of novel players in the plant general stress response.

  13. Factors Affecting Lethal Isotherms During Cryoablation Procedures

    PubMed Central

    Rau, Andrew C.; Siskey, Ryan; Ochoa, Jorge A.; Good, Tracy

    2016-01-01

    Background: Creating appropriately-sized, lethal isotherms during cryoablation of renal tumors is critical in order to achieve sufficiently-sized zones of cell death. To ensure adequate cell death in target treatment locations, surgeons must carefully select the type, size, location, and number of probes to be used, as well as various probe operating parameters. Objective: The current study investigates the effects of probe type, operating pressure, and clinical method on the resulting sizes of isotherms in an in vitro gelatin model. Method: Using a total of four cryoprobes from two manufacturers, freeze procedures were conducted in gelatin in order to compare resulting sizes of constant temperature zones (isotherms). The effects of certain procedural parameters which are clinically adjustable were studied. Results: Test results show that the sizes of 0 °C,-20 °C and -40 °C isotherms created by similarly-sized probes from two different manufacturers were significantly different for nearly all comparisons made, and that size differences resulting from changing the operating pressure were not as prevalent. Furthermore, isotherm sizes created using a multiple freeze procedure (a ten minute freeze, followed by a five minute passive thaw, followed by another ten minute freeze) did not result in statistically-significant differences when compared to those created using a single freeze procedure in all cases. Conclusion: These results indicate that selection of the probe manufacturer and probe size may be more important for dictating the size of kill zones during cryoablation than procedural adjustments to operating pressures or freeze times.

  14. A rational approach to prenatal screening and intervention.

    PubMed

    Yagel, S; Anteby, E

    1998-05-01

    Improved testing procedures now allow prenatal screening for a wide range of congenital defects, including cystic fibrosis and muscular dystrophy. An emerging technique also allows diagnosis of congenital anomalies during the pre-implantation stage of in vitro fertilization. Thus, clinicians need an established criteria to use as a guide when counseling parents about what prenatal testing is possible, feasible, and desirable. For example, there are limits to prenatal testing for conditions like mutations in the breast cancer gene because affected individuals do not necessary develop the condition and a cure may be found by the time the condition develops. It is even questionable if parents should be given this information until the child reaches an appropriate age. One approach to development of guidelines is to classify congenital abnormalities according to severity, age of onset, and type (structural-functional versus mental). This system reveals anomalies that are clearly lethal, lead to moderate or severe disability with little or no prospect of improvement or cure, are characterized by early onset, and/or involve obvious mental retardation. This approach is particularly relevant in cases of trisomy 21, and progressively invasive screening techniques are available to detect this most common pattern of malformation in humans. PMID:9647530

  15. Screens for piwi suppressors in Drosophila identify dosage-dependent regulators of germline stem cell division.

    PubMed Central

    Smulders-Srinivasan, Tora K; Lin, Haifan

    2003-01-01

    The Drosophila piwi gene is the founding member of the only known family of genes whose function in stem cell maintenance is highly conserved in both animal and plant kingdoms. piwi mutants fail to maintain germline stem cells in both male and female gonads. The identification of piwi-interacting genes is essential for understanding how stem cell divisions are regulated by piwi-mediated mechanisms. To search for such genes, we screened the Drosophila third chromosome ( approximately 36% of the euchromatic genome) for suppressor mutations of piwi2 and identified six strong and three weak piwi suppressor genes/sequences. These genes/sequences interact negatively with piwi in a dosage-sensitive manner. Two of the strong suppressors represent known genes--serendipity-delta and similar, both encoding transcription factors. These findings reveal that the genetic regulation of germline stem cell division involves dosage-sensitive mechanisms and that such mechanisms exist at the transcriptional level. In addition, we identified three other types of piwi interactors. The first type consists of deficiencies that dominantly interact with piwi2 to cause male sterility, implying that dosage-sensitive regulation also exists in the male germline. The other two types are deficiencies that cause lethality and female-specific lethality in a piwi2 mutant background, revealing the zygotic function of piwi in somatic development. PMID:14704180

  16. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats.

    PubMed

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage. PMID:26274957

  17. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats

    PubMed Central

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage. PMID:26274957

  18. Genetic screening

    PubMed Central

    Andermann, Anne; Blancquaert, Ingeborg

    2010-01-01

    Abstract OBJECTIVE To provide a primer for primary care professionals who are increasingly called upon to discuss the growing number of genetic screening services available and to help patients make informed decisions about whether to participate in genetic screening, how to interpret results, and which interventions are most appropriate. QUALITY OF EVIDENCE As part of a larger research program, a wide literature relating to genetic screening was reviewed. PubMed and Internet searches were conducted using broad search terms. Effort was also made to identify the gray literature. MAIN MESSAGE Genetic screening is a type of public health program that is systematically offered to a specified population of asymptomatic individuals with the aim of providing those identified as high risk with prevention, early treatment, or reproductive options. Ensuring an added benefit from screening, as compared with standard clinical care, and preventing unintended harms, such as undue anxiety or stigmatization, depends on the design and implementation of screening programs, including the recruitment methods, education and counseling provided, timing of screening, predictive value of tests, interventions available, and presence of oversight mechanisms and safeguards. There is therefore growing apprehension that economic interests might lead to a market-driven approach to introducing and expanding screening before program effectiveness, acceptability, and feasibility have been demonstrated. As with any medical intervention, there is a moral imperative for genetic screening to do more good than harm, not only from the perspective of individuals and families, but also for the target population and society as a whole. CONCLUSION Primary care professionals have an important role to play in helping their patients navigate the rapidly changing terrain of genetic screening services by informing them about the benefits and risks of new genetic and genomic technologies and empowering them to

  19. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster.

    PubMed Central

    Luschnig, Stefan; Moussian, Bernard; Krauss, Jana; Desjeux, Isabelle; Perkovic, Josip; Nüsslein-Volhard, Christiane

    2004-01-01

    Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning. PMID:15166158

  20. Fentanyl-Laced 'Norco' Is Lethal, Report Warns

    MedlinePlus

    ... fullstory_160158.html Fentanyl-Laced 'Norco' Is Lethal, Report Warns New street drug combines two synthetic opioids ... imprint and were beige instead of white. The report was published online July 27 in the journal ...

  1. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    PubMed

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications. PMID:27487988

  2. Perinatal-lethal Gaucher disease presenting as hydrops fetalis

    PubMed Central

    BenHamida, Emira; Ayadi, Imene; Ouertani, Ines; Chammem, Maroua; Bezzine, Ahlem; BenTmime, Riadh; Attia, Leila; Mrad, Ridha; Marrakchi, Zahra

    2015-01-01

    Perinatal-lethal Gaucher disease is very rare and is considered a variant of type 2 Gaucher disease that occurs in the neonatal period. The most distinct features of perinatal-lethal Gaucher disease are non-immune hydrops fetalis. Less common signs of the disease are hepatosplenomegaly, ichthyosis and arthrogryposis. We report a case of Gaucher's disease (type 2) diagnosed in a newborn who presented with Hydrops Fetalis. PMID:26327947

  3. Late-acting dominant lethal genetic systems and mosquito control

    PubMed Central

    Phuc, Hoang Kim; Andreasen, Morten H; Burton, Rosemary S; Vass, Céline; Epton, Matthew J; Pape, Gavin; Fu, Guoliang; Condon, Kirsty C; Scaife, Sarah; Donnelly, Christl A; Coleman, Paul G; White-Cooper, Helen; Alphey, Luke

    2007-01-01

    Background Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. Additionally, vector populations with strong density-dependent effects will tend to be resistant to SIT-based control as the population-reducing effect of induced sterility will tend to be offset by reduced density-dependent mortality. Results We investigated by mathematical modeling the effect of manipulating the stage of development at which death occurs (lethal phase) in an SIT program against a density-dependence-limited insect population. We found late-acting lethality to be considerably more effective than early-acting lethality. No such strains of a vector insect have been described, so as a proof-of-principle we constructed a strain of the principal vector of the dengue and yellow fever viruses, Aedes (Stegomyia) aegypti, with the necessary properties of dominant, repressible, highly penetrant, late-acting lethality. Conclusion Conventional SIT induces early-acting (embryonic) lethality, but genetic methods potentially allow the lethal phase to be tailored to the program. For insects with strong density-dependence, we show that lethality after the density-dependent phase would be a considerable improvement over conventional methods. For density-dependent parameters estimated from field data for Aedes aegypti, the critical release ratio for population elimination is modeled to be 27% to 540% greater for early-acting rather than late-acting lethality. Our success in developing a mosquito strain with the key features that the modeling indicated were desirable demonstrates the feasibility of this approach for improved SIT for disease

  4. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs.

    PubMed

    Jackson, Rebecca A; Chen, Ee Sin

    2016-06-01

    The recent advances in pharmacogenomics have made personalized medicine no longer a pipedream but a precise and powerful way to tailor individualized cancer treatment strategies. Cancer is a devastating disease, and contemporary chemotherapeutic strategies now integrate several agents in the treatment of some types of cancer, with the intent to block more than one target simultaneously. This constitutes the premise of synthetic lethality, an attractive therapeutic strategy already demonstrating clinical success in patients with breast and ovarian cancers. Synthetic lethal combinations offer the potential to also target the hitherto "undruggable" mutations that have challenged the cancer field for decades. However, synthetic lethality in clinical cancer therapy is very much still in its infancy, and selecting the most appropriate combinations-or synthetic lethal pairs-is not always an intuitive process. Here, we review some of the recent progress in identifying synthetic lethal combinations and their potential for therapy and highlight some of the tools through which synthetic lethal pairs are identified. PMID:26803999

  5. Method of reliable determination of minimal lethal antibiotic concentrations.

    PubMed Central

    Pearson, R D; Steigbigel, R T; Davis, H T; Chapman, S W

    1980-01-01

    The lack of a standardized, statistically reliable method for in vitro determinations of the minimal lethal or bactericidal concentrations of antibiotics has complicated analyses of isolates of Staphylococcus aureus which appear to be inhibited but not killed by the usual concentrations of cell wall-active antibiotics. We describe a method which identifies some of the covariants involved in determinations of minimal lethal concentrations. Lethality was defined as a 99.9% reduction in the initial inoculum of bacteria after 24 h of incubation. We limited the sample volume to 0.01 ml to minimize the inhibitory effect of antibiotic and corresponding rejection values, which detected lethality with a high degree of sensitivity and specificity. When the number of colonies on subculture was equal to or less than the rejection value, the antibiotic was considered lethal for the test organism. Rejection values encompassed initial inocula from 10(5) to 10(7) colony-forming units per ml for single and duplicate samples and allowed for 1 or 5% variability in pipette volumes and errors in initial inoculum determinations. This method was used to determine the minimal lethal concentrations of semi-synthetic penicillins for S. aureau isolates, one of which was tolerant to the killing action of penicillin. Images PMID:7447427

  6. Get Screened

    MedlinePlus

    ... Get Ready 3 of 4 sections Take Action: Cost and Insurance What about cost? Depending on your insurance plan, you may be able to get screening tests at no cost to you. Most insurance plans, including Medicaid and ...

  7. TORCH screen

    MedlinePlus

    ... different infections in a newborn. TORCH stands for toxoplasmosis , rubella , cytomegalovirus, herpes simplex, and HIV, but it ... used to screen infants for infections such as toxoplasmosis, cytomegalovirus, herpes simplex, syphilis and others. These infections ...

  8. Developmental Screening

    MedlinePlus

    Learn More about Your Child’s Development: Developmental Monitoring and Screening Taking a first step, waving “bye-bye,” and pointing to something interesting are all developmental milestones, ...

  9. Hypertension screening

    NASA Technical Reports Server (NTRS)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  10. TORCH Screen

    MedlinePlus

    ... different infections in a newborn. TORCH stands for toxoplasmosis , rubella , cytomegalovirus, herpes simplex, and HIV, but it ... used to screen infants for infections such as toxoplasmosis, cytomegalovirus, herpes simplex, syphilis and others. These infections ...

  11. Newborn Screening

    MedlinePlus

    ... Pulse Oximetry Screening for CCHDs Sickle Cell Disease Laboratory SCID Quality Assurance Training and Resources For Lab Professionals Data and Reports Laboratory Reports National Birth Defects Prevention Network (NBDPN) Resources ...

  12. Lethal protein produced in response to competition between sibling bacterial colonies

    PubMed Central

    Be’er, Avraham; Ariel, Gil; Kalisman, Oren; Helman, Yael; Sirota-Madi, Alexandra; Zhang, H.P.; Florin, E.-L.; Payne, Shelley M.; Ben-Jacob, Eshel; Swinney, Harry L.

    2010-01-01

    Sibling Paenibacillus dendritiformis bacterial colonies grown on low-nutrient agar medium mutually inhibit growth through secretion of a lethal factor. Analysis of secretions reveals the presence of subtilisin (a protease) and a 12 kDa protein, termed sibling lethal factor (Slf). Purified subtilisin promotes the growth and expansion of P. dendritiformis colonies, whereas Slf is lethal and lyses P. dendritiformis cells in culture. Slf is encoded by a gene belonging to a large family of bacterial genes of unknown function, and the gene is predicted to encode a protein of approximately 20 kDa, termed dendritiformis sibling bacteriocin. The 20 kDa recombinant protein was produced and found to be inactive, but exposure to subtilisin resulted in cleavage to the active, 12 kDa form. The experimental results, combined with mathematical modeling, show that subtilisin serves to regulate growth of the colony. Below a threshold concentration, subtilisin promotes colony growth and expansion. However, once it exceeds a threshold, as occurs at the interface between competing colonies, Slf is then secreted into the medium to rapidly reduce cell density by lysis of the bacterial cells. The presence of genes encoding homologs of dendritiformis sibling bacteriocin in other bacterial species suggests that this mechanism for self-regulation of colony growth might not be limited to P. dendritiformis. PMID:20308591

  13. The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency.

    PubMed

    Meng, Yan; Katsuma, Susumu; Daimon, Takaaki; Banno, Yutaka; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Mita, Kazuei; Shimada, Toru

    2009-04-24

    Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. An inherited defect in BH4 biosynthesis is caused by the deficiency of sepiapterin reductase (SPR), which catalyzes the biosynthesis of BH4 from guanosine triphosphate at the terminal step. The human SPR gene has been mapped at the PARK3 locus, which is related to the onset of Parkinson disease. In this study, we report that mutant strains, lemon (lem) and its lethal allele lemon lethal (lem(1)) with yellow body coloration, of the silkworm Bombyx mori could be used as the first insect model for human SPR deficiency diseases. We demonstrated that mutations in the SPR gene (BmSpr) were responsible for the irregular body coloration of lem and lem(l). Moreover, biochemical analysis revealed that SPR activity in lem(l) larvae was almost completely diminished, resulting in a lethal phenotype that the larvae cannot feed and that die immediately after the first ecdysis. Oral administration of BH4 and dopamine to lem(l) larvae effectively increased their survival rates and feeding abilities. Our data demonstrate that BmSPR plays a crucial role in the generation of BH4, and monoamine neurotransmitters in silkworms and the lem (lem(l)) mutant strains will be an invaluable resource to address many questions regarding SPR and BH4 deficiencies. PMID:19246455

  14. Lethality of Sortase Depletion in Actinomyces oris Caused by Excessive Membrane Accumulation of a Surface Glycoprotein

    PubMed Central

    Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung

    2014-01-01

    Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351

  15. Metabolic Response of Escherichia coli upon Treatment with Hypochlorite at Sub-Lethal Concentrations

    PubMed Central

    Winter, Jeannette; Eisenreich, Wolfgang

    2015-01-01

    Hypochlorite is a reactive oxygen species that is worldwide as an antibacterial disinfectant. Hypochlorite exposure is known to cause oxidative damage to DNA and proteins. As a response to these effects, the metabolite profiles of organisms treated with sub-lethal doses of hypochlorite are assumed to be severely modified; however, the nature of these changes is hardly understood. Therefore, using nuclear magnetic resonance spectroscopy and gas chromatography-coupled mass spectrometry, we analyzed the time-dependent impact of hypochlorite exposure with a sub-lethal concentration (50 µM) on the metabolite profile of the Escherichia coli strain MG1655. Principle component analysis clearly distinguished between the metabolite profiles of bacteria treated for 0, 5,10, 20, 40, or 60 min. Major changes in the relative amounts of fatty acids, acetic acid, and formic acid occurred within the first 5 min. Comparative gas chromatography-coupled mass spectrometry analyses revealed that the amounts of free methionine and alanine were significantly decreased in the treated cells, demonstrating their susceptibility to hypochlorite exposure. The concentrations of succinate, urea, orotic acid, 2-aminobutyric acid, and 2-hydroxybutyric acid were also severely affected, indicating general changes in the metabolic network by hypochlorite. However, most metabolite levels relaxed to the reference values of untreated cells after 40–60 min, reflecting the capability of E. coli to rapidly adapt to environmental stress factors such as the presence of sub-lethal oxidant levels. PMID:25932918

  16. Lethal mass mimicking myxoma in the heart.

    PubMed

    Soo, Wern Miin; Pang, Yin Huei; Poh, Kian-Keong

    2014-10-01

    A 70-year-old man presented in advanced heart failure with jaundice. Transthoracic echocardiography revealed a 21 × 24-mm mass in the left atrium attached to the posterior mitral valve leaflet. Surgical excision was attempted, but the tumor had infiltrated the entire left atrial wall and was deemed too extensive to be resectable. Histology confirmed a high-grade pleomorphic sarcoma with malignant fibrous histiocytoma-like features. Liver biopsy revealed a high-grade liver sarcoma. PMID:24887828

  17. Lethal and sub-lethal effects of faecal deltamethrin residues on dung-feeding insects.

    PubMed

    Mann, C M; Barnes, S; Offer, B; Wall, R

    2015-06-01

    Endectocides administered to livestock to facilitate pest and parasite control may be excreted in the faeces at concentrations that are toxic to coprophagous insects, including species of ecological importance. Although much research has focused on the effects of macrocyclic lactones, relatively less attention has been given to any similar impacts of the widely used pyrethroid insecticides. Here, the effects of faecal residues of the pyrethroid deltamethrin after application to Holstein-Friesian cattle in a proprietary pour-on formulation are examined. Freshly dropped dung was collected 1, 3, 5 and 7 days after treatment and from an untreated control group. In laboratory bioasssays, female Lucilia sericata (Diptera: Calliphoridae) blow flies matured significantly smaller egg batches and had a lower percentage of eggs hatch after feeding on dung collected for up to 5 days after treatment, compared with flies feeding on dung from untreated cattle. In the field, artificial dung pats were constructed from the collected dung and left on pastureland for 7 days before being retrieved and searched for insects. Significantly more adult Diptera emerged from the faeces of untreated cattle than from the dung of treated cattle collected on days 1 and 3 after treatment. Adult Coleoptera were found in lower numbers in the dung of treated animals compared with control dung, suggesting a repellent effect. The results indicate that deltamethrin residues in cattle faeces have a range of lethal and sub-lethal effects on dung-feeding insects for up to a week after treatment, but that the precise duration and nature of toxicity varies depending on the sensitivity of the insect in question. PMID:25594879

  18. TLR signaling controls lethal encephalitis in WNV-infected brain.

    PubMed

    Sabouri, Amir H; Marcondes, Maria Cecilia Garibaldi; Flynn, Claudia; Berger, Michael; Xiao, Nengming; Fox, Howard S; Sarvetnick, Nora E

    2014-07-29

    Toll-like receptors (TLRs) are known to be activated in Central Nervous System (CNS) viral infections and are recognized to be a critical component in innate immunity. Several reports state a role for particular TLRs in various CNS viral infections. However, excessive TLR activation was previously reported by us in correlation with a pathogenic, rather than a protective, outcome, in a model of SIV encephalitis. Here we aimed at understanding the impact of TLR-mediated pathways by evaluating the early course of pathogenesis in the total absence of TLR signaling during CNS viral infections. We utilized a mouse model of sublethal West Nile virus (WNV) infection. WNV is an emerging neurotropic flavivirus, and a significant global cause of viral encephalitis. The virus was peripherally injected into animals that simultaneously lacked two key adapter molecules of TLR signaling, MyD88 and TRIF. On day 2 pi (post infection), MyD88/Trif-/- mice showed an increased susceptibility to WNV infection, and revealed an impairment in innate immune cytokines, when compared to wild type mice (WT). By day 6 pi, there was an increase in viral burden and robust expression of inflammatory cytokines as well as higher cell infiltration into the CNS in MyD88/Trif-/-, when compared to infected WT. A drastic increase in microglia activation, astrogliosis, and inflammatory trafficking were also observed on day 6 pi in MyD88/Trif-/-. Our observations show a protective role for TLR signaling pathways in preventing lethal encephalitis at early stages of WNV infection. PMID:24928618

  19. 76 FR 6054 - Use of Less-Than-Lethal Force: Delegation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... proposed on June 25, 2008 (73 FR 39584), regarding the use of ] chemical agents and other less-than-lethal... of Prisons 28 CFR Part 552 RIN 1120-AB46 Use of Less-Than-Lethal Force: Delegation AGENCY: Bureau of... its proposed regulation on the use of chemical agents and other non-lethal (less-than-lethal) force...

  20. A Toxin-Antitoxin Module in Bacillus subtilis Can Both Mitigate and Amplify Effects of Lethal Stress

    PubMed Central

    Wu, Xiangli; Wang, Xiuhong; Drlica, Karl; Zhao, Xilin

    2011-01-01

    Background Bacterial type-2 (protein-protein) toxin-antitoxin (TA) modules are two-gene operons that are thought to participate in the response to stress. Previous work with Escherichia coli has led to a debate in which some investigators conclude that the modules protect from stress, while others argue that they amplify lethal stress and lead to programmed cell death. To avoid ambiguity arising from the presence of multiple TA modules in E. coli, the effect of the sole type-2 toxin-antitoxin module of Bacillus subtilis was examined for several types of lethal stress. Methodology/Principal Findings Genetic knockout of the toxin gene, ndoA (ydcE), conferred protection to lethal stressors that included kanamycin, moxifloxacin, hydrogen peroxide, and UV irradiation. However, at low doses of UV irradiation the ndoA deficiency increased lethality. Indeed, gradually increasing UV dose with the ndoA mutant revealed a crossover response – from the mutant being more sensitive than wild-type cells to being less sensitive. For high temperature and nutrient starvation, the toxin deficiency rendered cells hypersensitive. The ndoA deficiency also reduced sporulation frequency, indicating a role for toxin-antitoxin modules in this developmental process. In the case of lethal antimicrobial treatment, deletion of the toxin eliminated a surge in hydrogen peroxide accumulation observed in wild-type cells. Conclusions A single toxin-antitoxin module can mediate two opposing effects of stress, one that lowers lethality and another that raises it. Protective effects are thought to arise from toxin-mediated inhibition of translation based on published work. The enhanced, stress-mediated killing probably involves toxin-dependent accumulation of reactive oxygen species, since a deficiency in the NdoA toxin suppressed peroxide accumulation following antimicrobial treatment. The type and perhaps the level of stress appear to be important for determining whether this toxin will have a

  1. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway.

    PubMed

    Palumbo, T; Faucz, F R; Azevedo, M; Xekouki, P; Iliopoulos, D; Stratakis, C A

    2013-03-28

    MicroRNAs (miRNAs) have been involved in the pathogenesis of different types of cancer; however, their function in pituitary tumorigenesis remains poorly understood. Cyclic-AMP-dependent protein kinase-defective pituitaries occasionally form aggressive growth-hormone (GH)-producing pituitary tumors in the background of hyperplasia caused by haploinsufficiency of the protein kinase's main regulatory subunit, PRKAR1A. The molecular basis for this development remains unknown. We have identified a 17-miRNA signature of pituitary tumors formed in the background of hyperplasia (caused in half of the cases by PRKAR1A-mutations). We selected two miRNAs on the basis of their functional screen analysis: inhibition of miR-26b expression and upregulation of miR-128 suppressed the colony formation ability and invasiveness of pituitary tumor cells. Furthermore, we identified that miR-26b and miR-128 affected pituitary tumor cell behavior through regulation of their direct targets, PTEN and BMI1, respectively. In addition, we found that miR-128 through BMI1 direct binding on the PTEN promoter affected PTEN expression levels and AKT activity in the pituitary tumor cells. Our in vivo data revealed that inhibition of miR-26b and overexpression of miR-128 could suppress pituitary GH3 tumor growth in xenografts. Taken together, we have identified a miRNA signature for GH-producing pituitary tumors and found that miR-26b and miR-128 regulate the activity of the PTEN-AKT pathway in these tumors. This is the first suggestion of the possible involvement of miRNAs regulating the PTEN-AKT pathway in GH-producing pituitary tumor formation in the context of hyperplasia or due to germline PRKAR1A defects. MiR-26b suppression and miR-128 upregulation could have therapeutic potential in GH-producing pituitary tumor patients. PMID:22614013

  2. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor.

    PubMed

    Maize, Kimberly M; Kurbanov, Elbek K; Johnson, Rodney L; Amin, Elizabeth Ambrose; Finzel, Barry C

    2015-12-21

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'(∗) which might afford new opportunities to design selective inhibitors that target this subsite. PMID:26578066

  3. A new type of a lethal osteochondrodysplasia with angel-shaped brachyphalangy.

    PubMed

    Caduff, R; Giedion, A; Briner, J; Martin, E

    1994-01-01

    A hydropic stillborn female fetus of 22 weeks gestation with shortlimbed skeletal dysplasia and brachyphalangy is described. The markedly shortened phalanges of both hands had a most unusual angel-like configuration radiologically. Histological examination and comparison with a normal hand of the same gestational age revealed this appearance to be due to disturbed enchondral ossification with premature calcification of epiphyseal cartilage and thickening and outfolding of diaphyseal bone as wing-shaped appositions. Magnetic resonance imaging of the fetus demonstrated marked hyperplasia of cartilage, most impressive in the pelvis. This new type of lethal bone dysplasia may be placed in the group of metatropic dysplasias and similar disorders. PMID:7981898

  4. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    SciTech Connect

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C.

    2015-11-11

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  5. Interference from ordinarily used solvents in the outcomes of Artemia salina lethality test

    PubMed Central

    Geethaa, Sahgal; Thavamany, Priscilla Jayanthi; Chiew, Siah Poh; Thong, Ong Ming

    2013-01-01

    Methanol, ethanol, Tween 20 and dimethyl sulfoxide (DMSO) are widely used as dissolving agents in Artemia salina lethality test (aka brine shrimp lethality test [BSLT]) to screen the pharmaceutical properties of natural products. Nevertheless, there is lack of toxicity level of these solvents against brine shrimp. High concentration of these organic solvent might be toxic for this zoology invertebrate and interfere in the experimental outcomes. To avoid this, permissible concentration of the solvents used in BSLT was identified. BSLT was performed to evaluate the toxicity effect of Tween 20, methanol, ethanol and DMSO at 24 h post-treatment time point against A. salina. The suggested maximum working concentration (v/v) for DMSO, methanol, ethanol was found to be 1.25% and that for Tween 20 was 0.16%. LC50 for the solvents were 8.5% (DMSO), 6.4% (methanol), 3.4% (ethanol) and 2.5% (Tween 20). The findings have shown a toxicity level among the solvents in descending order as Tween 20 > ethanol > methanol > DMSO. DMSO is a safer solvent to be used in BSLT compared with other tested solvents, whereas Tween 20 has been shown to be the most stringent solvent among the tested solvents. The findings are resourcefully useful to avoid interference of solvents in the assessment of natural products using BSLT. PMID:24350047

  6. Colon cancer screening

    MedlinePlus

    ... screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test ... death and complications caused by colorectal cancer. SCREENING TESTS There are several ways to screen for colon ...

  7. Screening for cancer

    SciTech Connect

    Miller, A.B.

    1985-01-01

    This book contains three sections: Fundamentals of Screening, Screening Tests, and Screening for Specific Cancer Sites. Each section consists of several chapters. Some of the chapter titles are: Principles of Screening and of the Evaluation of Screening Programs; Economic Aspects of Screening; Cervical Cytology; Screening Tests for Bladder Cancer; Fecal Occult Blood Testing; Screening for Cancer of the Cervix; Screening for Gastric Cancer; and Screening for Oral Cancer.

  8. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  9. Phytochemical screening and anticonvulsant studies of ethyl acetate fraction of Globimetula braunii on laboratory animals

    PubMed Central

    Aliyu, Musa Mumammad; Musa, Abdullahi Isma'il; Kamal, Muhammad Ja'afar; Mohammed, Magaji Garba

    2014-01-01

    Objective To investigate the phytochemical properties and the anticonvulsant potential of the ethyl acetate soluble fraction of ethanol leaf extract of Globimetula braunii, a plant used in ethnomedicine for the treatment of epilepsy. Methods The phytochemical screening was carried out using standard protocol while the anticonvulsant activity was studied using maximal electroshock test in chicks, pentylenetetrazole and 4-aminopyridine-induced seizures in mice. Results The preliminary phytochemical screening carried out on the crude ethanol extract revealed the presence of saponins, carbohydrates, flavonoids, tannins, anthraquinones and steroids. Similarly, tannins, flavonoids and steroids/terpenes were found to be present in the ethyl acetate fraction. In the pharmacological screening, 150 mg/kg of the fraction protected 83.33% of animals against pentylenetetrazole-induced seizure in mice whereas sodium valproate a standard anti-epileptic drug offered 100% protection. In the 4-aminopyridine-induced seizure model, the fraction produced a significant (P<0.05) increase in the mean onset of seizure in unprotected animals. The fraction did not exhibit a significant activity against maximal electroshock convulsion. The median lethal dose of the fraction was found to be 1 261.91 mg/kg. Conclusions These results suggest that the ethyl acetate fraction of Globimetula braunii leaves extract possesses psychoactive compound that may be useful in the management of petit mal epilepsy and lend credence to the ethnomedical use of the plant in the management of epilepsy. PMID:25182552

  10. Cyclopeptide toxins of lethal amanitas: Compositions, distribution and phylogenetic implication.

    PubMed

    Tang, Shanshan; Zhou, Qian; He, Zhengmi; Luo, Tao; Zhang, Ping; Cai, Qing; Yang, Zhuliang; Chen, Jia; Chen, Zuohong

    2016-09-15

    Lethal amanitas (Amanita sect. Phalloideae) are responsible for 90% of all fatal mushroom poisonings. Since 2000, more than ten new lethal Amanita species have been discovered and some of them had caused severe mushroom poisonings in China. However, the contents and distribution of cyclopeptides in these lethal mushrooms remain poorly known. In this study, the diversity of major cyclopeptide toxins in seven Amanita species from Eastern Asia and three species from Europe and North America were systematically analyzed, and a new approach to inferring phylogenetic relationships using cyclopeptide profile was evaluated for the first time. The results showed that there were diversities of the cyclopeptides among lethal Amanita species, and cyclopeptides from Amanita rimosa and Amanita fuligineoides were reported for the first time. The amounts of amatoxins in East Asian Amanita species were significantly higher than those in European and North American species. The analysis of distribution of amatoxins and phallotoxins in various Amanita species demonstrated that the content of phallotoxins was higher than that of amatoxins in Amanita phalloides and Amanita virosa. In contrast, the content of phallotoxins was significantly lower than that of amatoxins in all East Asian lethal Amanita species tested. However, the distribution of amatoxins and phallotoxins in different tissues showed the same tendency. Eight cyclopeptides and three unknown compounds were identified using cyclopeptide standards and high-resolution MS. Based on the cyclopeptide profiles, phylogenetic relationships of lethal amanitas were inferred through a dendrogram generated by UPGMA method. The results showed high similarity to the phylogeny established previously based on the multi-locus DNA sequences. PMID:27476461

  11. Hearing Screening

    ERIC Educational Resources Information Center

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  12. Classroom Screening.

    ERIC Educational Resources Information Center

    Alpha Plus Corp., Piedmont, CA.

    This classroom screening device was developed by the Circle Preschool First Chance Project, a government-funded program to integrate handicapped children into regular classroom activities, for use in preschools, nursery schools, Head Start centers and other agencies working with young children. It is designed to give a gross measure of a child's…

  13. Prenatal diagnosis of lethal osteogenesis imperfecta in twin pregnancy.

    PubMed

    Morin, L R; Herlicoviez, M; Loisel, J C; Jacob, B; Feuilly, C; Stanescu, V

    1991-06-01

    Lethal osteogenesis imperfecta was diagnosed at 27 weeks amenorrea in one fetus of a bichorial twin pregnancy. Sonographic findings included: short-limb dwarfism, hypotrophy and hypoechoic bones. The affected fetus was so translucent that only the normal fetus could be seen on plain in utero radiography. The affected fetus died immediately after birth. Postmortem radiography and histology were typical of lethal osteogenesis imperfecta of type IIA. Aids to the etiological diagnosis of in utero dwarfism are presented. Sonographic features correlated with neonatal death are described. PMID:1863995

  14. Advantages of less-tech, less-than-lethal technologies

    NASA Astrophysics Data System (ADS)

    Marts, Donna J.; Overlin, Trudy K.

    1995-05-01

    This paper illustrates the advantages of developing less-tech technologies by reporting on two less-tech, less-than-lethal prototype law enforcement tools developed at the Idaho National Engineering Laboratory. The devices were developed for the National Institute of Justice, less- than-lethal weapons program: 1) an air bag restraint device for use in restraining suspects who become violent during transport in patrol vehicles, and 2) a retractable spiked barrier strip for stopping fleeing vehicles during high-speed pursuit. The success of both projects relied on developing design requirements in conjunction with the actual users of the devices.

  15. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis

    PubMed Central

    Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati

    2015-01-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980–2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013–1.053) and percentage urban population (OR 1.029, 95% CI 1.003–1.057). Deaths were more likely in the 2000–2012 period versus 1980–1989 (OR 3.708, 95% CI 1.615–8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG). PMID:26153115

  16. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis

    NASA Astrophysics Data System (ADS)

    Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati

    2015-07-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980-2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013-1.053) and percentage urban population (OR 1.029, 95% CI 1.003-1.057). Deaths were more likely in the 2000-2012 period versus 1980-1989 (OR 3.708, 95% CI 1.615-8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG).

  17. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis.

    PubMed

    Andrewin, Aisha N; Rodriguez-Llanes, Jose M; Guha-Sapir, Debarati

    2015-01-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980-2012. Lethality--deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013-1.053) and percentage urban population (OR 1.029, 95% CI 1.003-1.057). Deaths were more likely in the 2000-2012 period versus 1980-1989 (OR 3.708, 95% CI 1.615-8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG). PMID:26153115

  18. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease.

    PubMed

    Pillai, Padmini S; Molony, Ryan D; Martinod, Kimberly; Dong, Huiping; Pang, Iris K; Tal, Michal C; Solis, Angel G; Bielecki, Piotr; Mohanty, Subhasis; Trentalange, Mark; Homer, Robert J; Flavell, Richard A; Wagner, Denisa D; Montgomery, Ruth R; Shaw, Albert C; Staeheli, Peter; Iwasaki, Akiko

    2016-04-22

    Influenza A virus (IAV) causes up to half a million deaths worldwide annually, 90% of which occur in older adults. We show that IAV-infected monocytes from older humans have impaired antiviral interferon production but retain intact inflammasome responses. To understand the in vivo consequence, we used mice expressing a functional Mx gene encoding a major interferon-induced effector against IAV in humans. In Mx1-intact mice with weakened resistance due to deficiencies in Mavs and Tlr7, we found an elevated respiratory bacterial burden. Notably, mortality in the absence of Mavs and Tlr7 was independent of viral load or MyD88-dependent signaling but dependent on bacterial burden, caspase-1/11, and neutrophil-dependent tissue damage. Therefore, in the context of weakened antiviral resistance, vulnerability to IAV disease is a function of caspase-dependent pathology. PMID:27102485

  19. The Lethal "Femme Fatale" in the Noir Tradition.

    ERIC Educational Resources Information Center

    Boozer, Jack

    2000-01-01

    Traces the lethal seductress through Hollywood's "noir" history from "Double Indemnity" (1944) to "The Last Seduction" (1996). Examines how this figure largely abjures traditional romance and passive domesticity, choosing instead to apply her sexuality to homicidal plots toward greed. Argues that her narrative positioning serves as a barometer of…

  20. Lethal head entrapment--a problem characteristic of early childhood.

    PubMed

    Byard, Roger W; Charlwood, Cheryl

    2009-08-01

    Accidental deaths in infancy and early childhood often result from young childrens' lack of understanding of the dangers of certain situations and their physical inability to extricate themselves from potentially lethal circumstances. Two cases are reported to demonstrate an age-related susceptibility in the young to lethal head entrapment. Case 1: a 5-month-old girl smothered when she slipped down in her stroller, trapping her head beneath the frame and forcing her face into the soft material of the base. Case 2: a 14-month-old boy was hanged while exploring a filing cabinet when his head became caught between two lower drawers. Additional mental and physical characteristics that predispose young children and infants to lethal head entrapment include an inability to effectively problem solve once confronted with a hazardous situation, and relatively large heads and weak neck musculature. Because of these features lethal head entrapment represents a particular circumstance that may predispose to accidental asphyxial deaths in the very young. A combination of careful death scene and autopsy evaluations will be required to confirm the alleged circumstances of death in these cases, including mortuary re-enactments and assessment of the deceased infant's level of physical maturity and mobility. PMID:19573845

  1. Dominant-lethal mutations and heritable translocations in mice

    SciTech Connect

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  2. The Prevalence, Lethality and Intent of Suicide Attempts among Adolescents.

    ERIC Educational Resources Information Center

    Andrews, Judy A.; Lewinsohn, Peter M.

    Although suicide is the second leading cause of death among adolescents in the United States, little is known about the prevalence or characteristics of suicide attempts among adolescents. Data from 1,710 adolescents attending 9 high schools in 5 communities were examined to determine the prevalence of suicide attempts and the lethality and intent…

  3. The "Lethal Chamber": Further Evidence of the Euthanasia Option.

    ERIC Educational Resources Information Center

    Elks, Martin A.

    1993-01-01

    Historical discussions of the euthanasia or "lethal chamber" option in relation to people with mental retardation are presented. The paper concludes that eugenic beliefs in the primacy of heredity over environment and the positive role of natural selection may have condoned the poor conditions characteristic of large, segregated institutions and…

  4. Subcutaneous wounding postirradiation reduces radiation lethality in mice.

    PubMed

    Garrett, Joy; Orschell, Christie M; Mendonca, Marc S; Bigsby, Robert M; Dynlacht, Joseph R

    2014-06-01

    The detonation of an improvised nuclear device during a radiological terrorist attack could result in the exposure of thousands of civilians and first responders to lethal or potentially lethal doses of ionizing radiation (IR). There is a major effort in the United States to develop phamacological mitigators of radiation lethality that would be effective particularly if administered after irradiation. We show here that giving female C57BL/6 mice a subcutaneous surgical incision after whole body exposure to an LD50/30 X-ray dose protects against radiation lethality and increases survival from 50% to over 90% (P = 0.0001). The increase in survival, at least in part, appears to be due to enhanced recovery of hematopoiesis, notably red blood cells, neutrophils and platelets. While a definitive mechanism has yet to be elucidated, we propose that this approach may be used to identify potentially novel mechanisms and pathways that could aid in the development of novel pharmacological radiation countermeasures. PMID:24811864

  5. Small Molecule Inhibitors of Anthrax Lethal Factor Toxin

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Cardinale, Steven C.; Butler, Michelle M.; Bowlin, Terry L.; Peet, Norton P.

    2014-01-01

    This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds. PMID:24290062

  6. An overview of the future of non-lethal weapons.

    PubMed

    Alexander, J B

    2001-01-01

    During the past decade, vast changes have occurred in the geopolitical landscape and the nature of the types of conflicts in which technologically developed countries have been involved. While the threat of conventional war remains, forces have been more frequently deployed in situations that require great restraint. Adversaries are often likely to be elusive and commingled with noncombatants. There has been some shift in public opinion away from tolerance of collateral casualties. Therefore there is a need to be able to apply force while limiting casualties. Non-lethal weapons provide part of the solution. Among the changes that will influence the future have been studies by the US and NATO concerning the use of non-lethal weapons, coincidental with increased funding for their development and testing. New concepts and policies have recently been formalized. Surprisingly, the most strident objections to the implementation of non-lethal weapons have come from organizations that are ostensibly designed to protect non-combatants. These arguments are specious and, while technically and academically challenging, actually serve to foster an environment that will result in the deaths of many more innocent civilians. They misconstrue technology with human intent. The reasons for use of force will not abate. Alternatives to bombs, missiles, tanks and artillery must therefore be found. Non-lethal weapons are not a panacea but do offer the best hope of minimizing casualties while allowing nations or alliances the means to use force in protection of national or regional interests. PMID:11578037

  7. Conditional lethality strains for the biological control of Anastrepha species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...

  8. Moving ahead on harnessing synthetic lethality to fight cancer

    PubMed Central

    Jerby-Arnon, Livnat; Ruppin, Eytan

    2015-01-01

    We have recently developed a data-mining pipeline that comprehensively identifies cancer unique susceptibilities, following the concept of Synthetic Lethality (SL). The approach enables, for the first time, to identify and harness genome-scale SL-networks to accurately predict gene essentiality, drug response, and clinical prognosis in cancer. PMID:27308440

  9. Vision Screening

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  10. Vital Genes That Flank Sex-Lethal, an X-Linked Sex-Determining Gene of DROSOPHILA MELANOGASTER

    PubMed Central

    Nicklas, Janice A.; Cline, Thomas W.

    1983-01-01

    The X-chromosome:autosome balance in D. melanogaster appears to control both sex determination and dosage compensation through effects on a maternally influenced sex-linked gene called Sex-lethal (Sxl; 1-19.2). To facilitate molecular and genetic analysis of Sxl, we attempted to determine the locations of all ethyl methanesulfonate (EMS)-mutable genes vital to both sexes in the region between 6E1 and 7B1. This area includes approximately 1 cM of the genetic map on each side of Sxl and was reported by C. B. Bridges to contain 26 salivary gland polytene chromosome bands. The region appears rather sparsely populated with genes vital to both sexes, since the 122 recessive lethal mutations we recovered fell into only nine complementation groups. From one to 38 alleles of each gene were recovered. There was a preponderance of embryonic lethals in this area, although the lethal periods of loss-of-function mutations included larval, pupal and adult stages as well. Since the screen required that mutations be recessive and lethal to males, our failure to recover new Sxl alleles was the result expected for a gene with a female-specific function. An attempt was made to identify recessive male-specific lethals in this region, but none were found. Precise map positions were determined for eight of the nine vital genes. An interesting feature of the map is the location of Sxl in the middle of a 0.6- to 0.7-cM interval that appears to be devoid of genes vital to both sexes. The genetic location was determined of breakpoints near Sxl for all available chromosome rearrangements. Sxl is most likely located just to the left of band 7A1. We determined the relationship of our EMS-induced mutations in these nine genes to alleles induced by others. From this we conclude that the various genes appear to differ significantly from each other in their relative sensitivity to mutation by EMS vs. X rays. PMID:17246118

  11. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.

    PubMed

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  12. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants

    PubMed Central

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  13. A Multivariate Model of Stakeholder Preference for Lethal Cat Management

    PubMed Central

    Wald, Dara M.; Jacobson, Susan K.

    2014-01-01

    Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n = 1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI = 0.94, RMSEA = 0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (p<0.05) and negative cat-related impact beliefs (p<0.05) and support for management. These results supported the specificity hypothesis and the use of the cognitive hierarchy to assess stakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management. PMID:24736744

  14. Antibodies against recombinant catalytic domain of lethal toxin of Clostridium sordellii neutralize lethal toxin toxicity in HeLa cells.

    PubMed

    Arya, Preetika; Ponmariappan, S; Singh, Lokendra; Prasad, G B K S

    2013-02-01

    Lethal toxin of Clostridium sordellii (MLD 150 ng/kg) is one of the most potent Clostridial toxins and is responsible for most of the diseases including sudden death syndrome in cattle, sheep and toxic shock syndrome, necrotizing faciitis, neonatal omphalitis and gangrene in humans. Lethal toxin (TcsL) is a single chain protein of about 270 kDa. In the present study, 1.6 kb DNA fragment encoding for the catalytic domain of TcsL was PCR amplified, cloned in pQE30 UA vector and expressed in E. coli SG 13009. The expression of recombinant lethal toxin protein (rTcsL) was optimized and it was purified under native conditions using a single step Ni-NTA affinity chromatography. The purified recombinant protein was used for the production of polyclonal antibodies in mice and rabbit. The raised antibodies reacted specifically with the purified rTcsL and intact native lethal toxin on Western blot. The biological activity of the recombinant protein was tested in HeLa cells where it showed the cytotoxicity. Further, the polyclonal antibodies were used for in-vitro neutralization of purified rTcsL, acid precipitated C. sordellii and C. difficile native toxins in HeLa cells. Mice and rabbit anti-rTcsL sera effectively neutralized the cytotoxicity of rTcsL and C. sordellii native toxin but it did not neutralize the cytotoxicity of C. difficile toxin in HeLa cells. PMID:22894159

  15. Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids.

    PubMed

    McKenzie, D J; Shingles, A; Taylor, E W

    2003-08-01

    The proposal that plasma ammonia accumulation might impair the swimming performance of fish was first made over a decade ago, and has now proven to be the case for a number of salmonid species. The first experimental evidence was indirect, when a negative linear relationship between plasma ammonia concentrations and maximum sustainable swimming speed (U(crit)) was found following the exposure of brown trout (Salmo trutta) to sub-lethal concentrations of copper in soft acidic water. Since then, negative linear relationships between plasma ammonia concentration and U(crit) have been demonstrated following exposure of brown trout, rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) to elevated water ammonia. For brown trout, the relationships between plasma ammonia and U(crit) were remarkably similar following either exposure to elevated water ammonia or to sub-lethal copper. This indicates that the impairment of swimming performance resulting from exposure to sub-lethal concentrations of heavy metals may be attributable in large part to an accumulation of endogenous ammonia. The negative relationship between plasma ammonia concentration and U(crit) was similar in size-matched rainbow and brown trout but, under similar regimes of ammonia exposure, rainbow trout were able to maintain a significantly lower plasma ammonia concentration, revealing inter-specific differences in ammonia permeability and/or transport. One primary mechanism by which ammonia accumulation may impair exercise performance is a partial depolarisation of membrane potential in tissues such as the brain and white muscle. This may prejudice the co-ordination of swimming movements and reduce or abolish the development of muscle tension, thus, compromising swimming efficiency and performance at the top end of the range. PMID:12890542

  16. Quadruple screen test

    MedlinePlus

    ... screen; Multiple marker screening; AFP plus; Triple screen test; AFP maternal; MSAFP; 4-marker screen ... This test is most often done between the 15th and 22nd weeks of the pregnancy. It is most accurate ...

  17. Rapid, Optimized Interactomic Screening

    PubMed Central

    Hakhverdyan, Zhanna; Domanski, Michal; Hough, Loren; Oroskar, Asha A.; Oroskar, Anil R.; Keegan, Sarah; Dilworth, David J.; Molloy, Kelly R.; Sherman, Vadim; Aitchison, John D.; Fenyö, David; Chait, Brian T.; Jensen, Torben Heick; Rout, Michael P.; LaCava, John

    2015-01-01

    We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screen that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners and the elucidation of their functional interactions in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles even for well-studied proteins. Our approach is robust, economical and automatable, providing an inroad to the rigorous, systematic dissection of cellular interactomes. PMID:25938370

  18. [Sharing uncertainties of prostate cancer screening].

    PubMed

    Selby, Kevin; Auer, Reto; Valerio, Massimo; Jichlinski, Patrice; Cornuz, Jacques

    2015-11-25

    The decision of whether our patients should undergo prostate cancer screening with the prostate specifc antigen (PSA) test remains daunting. The role of the primary care doctor is to help men decide between a potential decrease in mortality from a slow evolving but sometimes lethal cancer, and the risk of diagnosing and treating cancers that would have otherwise been indolent and asymptomatic. We can structure our discussions with three steps: choice, option, and decision making. A decision aid, such as the one that we have adapted and simplifed from the Collège des médecins du Québec, can help with this complex decision. PMID:26742351

  19. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation.

    PubMed Central

    Costa, P J; Arndt, K M

    2000-01-01

    Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast. PMID:11014804

  20. Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn

    PubMed Central

    Apu, AS; Muhit, MA; Tareq, SM; Pathan, AH; Jamaluddin, ATM; Ahmed, M

    2010-01-01

    The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC50 of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC50 of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC50 values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the m