Sample records for leu-phe knockdown resistance

  1. Characterization of Gly-D-Phe, Gly-L-Leu, and D-Phe as affinity ligands to thermolysin.

    PubMed

    Yasukawa, Kiyoshi; Kusano, Masayuki; Nakamura, Koji; Inouye, Kuniyo

    2006-04-01

    In this study, glycyl-D-phenylalanine (Gly-D-Phe), glycyl-L-leucine (Gly-L-Leu), and D-phenylalanine (D-Phe) were characterized for their abilities as affinity ligands to thermolysin. Each of the ligands was immobilized to the resin. The optimum pH for adsorption of thermolysin is 5.0-6.0 for each of the ligands. By the affinity column chromatography in which 2mg thermolysin was applied onto 4 ml volume of the resins at pH 5.5, the adsorption ratios based on casein hydrolysis activity were 100% for each of the ligands. However, the adsorption ratios of the resins containing Gly-L-Leu and D-Phe, unlike that of Gly-D-Phe, were progressively decreased with increasing the amounts of thermolysin applied to the column. Measurement of adsorption isotherms showed that the association constant to thermolysin at pH 5.5 of the resins containing Gly-D-Phe was (3.3+/-0.8)x10(5)M(-1), while those of Gly-L-Leu and D-Phe were approximately ten times less. This result is coincident with the observations of performances in affinity column chromatography. On the other hand, maximum thermolysin binding capacities were almost the same among the resins examined. These results indicate that Gly-D-Phe is more suitable than Gly-L-Leu and D-Phe as an affinity ligand for purification of thermolysin.

  2. X-ray diffraction studies of enkephalins. Crystal structure of [(4'-bromo) Phe4,Leu5]enkephalin.

    PubMed Central

    Ishida, T; Kenmotsu, M; Mino, Y; Inoue, M; Fujiwara, T; Tomita, K; Kimura, T; Sakakibara, S

    1984-01-01

    In order to investigate the structure-activity relationship of [Leu5]- and [Met5]enkephalins, [(4'-bromo)Phe4, Leu5]-, [(4'-bromo)Phe4, Met5]- and [Met5] enkephalins were synthesized and crystallized. The crystal structure of [(4'-bromo) Phe4, Leu5]- enkephalin was determined by X-ray diffraction method using the heavy atom method and refined to R = 0.092 by the least-squares method. The molecule in this crystal took essentially the same type I' beta-turn conformation found in [Leu5]enkephalin [Smith & Griffin (1978) Science 199, 1214-1216). On the other hand, the preliminary three-dimensional Patterson analyses showed that the most probable conformations of [(4'-bromo)Phe4,Met5]- and [Met5]enkephalins are both the dimeric extended forms. Based on these insights, the biologically active conformation of enkephalin was discussed in relation to the mu- and delta-receptors. PMID:6721829

  3. Synergistic effect with Phe-Gly-Leu-Met-NH2 of the C-terminal of substance P and insulin-like growth factor-1 on epithelial wound healing of rabbit cornea

    PubMed Central

    Nakamura, Masatsugu; Chikama, Tai-ichiro; Nishida, Teruo

    1999-01-01

    We previously reported that substance P and insulin-like growth factor-1 (IGF-1) synergistically stimulate corneal epithelial wound healing in vitro and in vivo. We wished to identify which portion of the amino acid sequence of substance P might be responsible for this synergism.Corneal epithelial migration was not affected by the addition of any one of the following factors: substance P; Phe-Gly-Leu-Met-NH2 (C-terminal of substance P); Val-Gly-Leu-Met-NH2 (C-terminal of neurokinin A, neurokinin B, and kassinin); Tyr-Gly-Leu-Met-NH2 (C-terminal of physalaemin); Ile-Gly-Leu-Met-NH2 (C-terminal of eledoisin); or Gly-Leu-Met-NH2 (common C-terminal of tachykinins).In the presence of IGF-1, only substance P and Phe-Gly-Leu-Met-NH2 were synergistic in stimulating corneal epithelial migration in a dose-dependent fashion.The combination of Phe-Gly-Leu-Met-NH2 and IGF-1 did not affect the incorporation of [3H]-thymidine into corneal epithelial cells.Treatment with Phe-Gly-Leu-Met-NH2 and IGF-1, but not with Phe-Gly-Leu-Met-NH2 or IGF-1 alone, increased attachment of corneal epithelial cells to a fibronectin matrix.The levels of α5 and β1 integrin were not affected by Phe-Gly-Leu-Met-NH2 or IGF-1 alone, but they were significantly increased by the combination of Phe-Gly-Leu-Met-NH2 and IGF-1.Topical application of the same combination facilitated corneal epithelial wound closure in vivo.These results demonstrated that Phe-Gly-Leu-Met-NH2, a sequence of 4 amino-acids of the C-terminal of substance P, is the minimum sequence necessary to produce the synergistic effects of substance P and IGF-1 on corneal epithelial wound healing. PMID:10385250

  4. Introduction of a mutation in the shutter region of antithrombin (Phe77 --> Leu) increases affinity for heparin and decreases thermal stability.

    PubMed

    Quinsey, Noelene S; Fitton, Hazel L; Coughlin, Paul; Whisstock, James C; Dafforn, Timothy R; Carrell, Robin W; Bottomley, Stephen P; Pike, Robert N

    2003-09-02

    The shutter region of serpins consists of a number of highly conserved residues that are critical for both stability and function. Several variants of antithrombin with substitutions in this region are unstable and predispose the carrier to thrombosis. Although most mutations in the shutter region investigated to date are deleterious with respect to serpin stability and function, the substitution of Phe51 by Leu in alpha(1)-antitrypsin results in enhanced stability. Here, we have investigated the effects of introducing an analogous mutation into antithrombin (Phe 77 to Leu). The mutation did not affect the kinetics of interaction with proteases. Strikingly, however, the thermostability of the protein was markedly decreased, with the serpin displaying a 13 degrees C decrease in melting temperature as compared to wild-type recombinant antithrombin. Further studies revealed that in contrast to wild-type antithrombin, the mutant adopted the latent (inactive) conformation upon mild heating. Previous studies on shutter region mutations that destabilize antithrombin revealed that such variants possess enhanced affinity for both heparin pentasaccharide and full-length heparin. The N135A/F77L mutant had unchanged affinity for heparin pentasaccharide, but the affinity for full-length heparin was increased. We suggest that the Phe77Leu mutation causes conformational changes around the top of the D-helix in antithrombin, in particular, to the arginine 132 and 133 residues that may mediate additional antithrombin/heparin interactions. This paper also demonstrates that there are major differences between the shutter regions of antithrombin and alpha(1)-antitrypsin since a stabilizing mutation in antitrypsin has the converse effect in antithrombin.

  5. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection.

    PubMed

    Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes

    2011-03-14

    Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.

  6. Metabolism of the broad-spectrum neuropeptide growth factor antagonist: [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P.

    PubMed Central

    Jones, D. A.; Cummings, J.; Langdon, S. P.; Maclellan, A. J.; Higgins, T.; Rozengurt, E.; Smyth, J. F.

    1996-01-01

    Broad-spectrum neuropeptide growth factor antagonists, such as [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P (antagonist D) and [Arg6, D-Trp7,9, NmePhe8]substance P(6-11) (antagonist G), are currently being investigated as possible anti-tumour agents. These compounds are hoped to be effective against neuropeptide-driven cancers such as small-cell lung cancer. Antagonist D possesses a broader antagonistic spectrum than antagonist G and hence may be of greater therapeutic use. The in vitro metabolism of antagonist D has been characterised and the structures of two major metabolites have been elucidated by amino acid analysis and mass spectrometry. Metabolism was confined to the C-terminus where serine carboxypeptidase action produced [deamidated]-antagonist D (metabolite 1) and [des-Leu11]-antagonist D (metabolite 2) as the major metabolites. Biological characterisation of the metabolites demonstrated that these relatively minor changes in structure resulted in a loss of antagonist activity. These results provide some of the first structure-activity information on the factors that determine which neuropeptides these compounds inhibit and on the relative potency of that inhibition. PMID:8611370

  7. Phe317 Is Essential for Rubber Oxygenase RoxA Activity

    PubMed Central

    Birke, Jakob; Hambsch, Nadja; Schmitt, Georg; Altenbuchner, Josef

    2012-01-01

    RoxA is an extracellular c-type diheme cytochrome secreted by Xanthomonas sp. strain 35Y during growth on rubber. RoxA cleaves poly(cis-1,4-isoprene) to 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). Analysis of the RoxA structure revealed that Phe317 is located in close proximity (≈5 Å) to the N-terminal heme that presumably represents the active site. To find evidence of whether Phe317 is important for catalysis, we changed it to tyrosine, tryptophan, leucine, histidine, or alanine. All five RoxA muteins were expressed after integration of the respective gene into the chromosome of a Xanthomonas sp. ΔroxA strain. Residual clearing zone formation on opaque latex agar was found for Xanthomonas sp. strains expressing the Phe317Leu, Phe317Ala, or Phe317His variant (wild type > Leu > Ala > His). Strains in which Phe317 was changed to tyrosine or tryptophan were inactive. Phe317Ala and Phe312Leu RoxA muteins were purified, and polyisoprene cleavage activities were reduced to ≈3% and 10%, respectively. UV-visible spectroscopy of RoxA muteins confirmed that both heme groups were present in an oxidized form, but spectral responses to the addition of low-molecular-weight (inhibitory) ligand molecules such as imidazole and pyridine were different from those of wild-type RoxA. Our results show that residue 317 is involved in interaction with substrates. This is the first report on structure-function analysis of a polyisoprene-cleaving enzyme and on the identification of an amino acid that is essential for polyisoprene cleavage activity. PMID:22941074

  8. Vibrio cholerae ToxR downregulates virulence factor production in response to cyclo(Phe-Pro).

    PubMed

    Bina, X Renee; Taylor, Dawn L; Vikram, Amit; Ante, Vanessa M; Bina, James E

    2013-08-27

    Vibrio cholerae is an aquatic organism that causes the severe acute diarrheal disease cholera. The ability of V. cholerae to cause disease is dependent upon the production of two critical virulence determinants, cholera toxin (CT) and the toxin-coregulated pilus (TCP). The expression of the genes that encode for CT and TCP production is under the control of a hierarchical regulatory system called the ToxR regulon, which functions to activate virulence gene expression in response to in vivo stimuli. Cyclic dipeptides have been found to be produced by numerous bacteria, yet their biological function remains unknown. V. cholerae has been shown to produce cyclo(Phe-Pro). Previous studies in our laboratory demonstrated that cyclo(Phe-Pro) inhibited V. cholerae virulence factor production. For this study, we report on the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We have demonstrated that exogenous cyclo(Phe-Pro) activated the expression of leuO, a LysR-family regulator that had not been previously associated with V. cholerae virulence. Increased leuO expression repressed aphA transcription, which resulted in downregulation of the ToxR regulon and attenuated CT and TCP production. The cyclo(Phe-Pro)-dependent induction of leuO expression was found to be dependent upon the virulence regulator ToxR. Cyclo(Phe-Pro) did not affect toxR transcription or ToxR protein levels but appeared to enhance the ToxR-dependent transcription of leuO. These results have identified leuO as a new component of the ToxR regulon and demonstrate for the first time that ToxR is capable of downregulating virulence gene expression in response to an environmental cue. The ToxR regulon has been a focus of cholera research for more than three decades. During this time, a model has emerged wherein ToxR functions to activate the expression of Vibrio cholerae virulence factors upon host entry. V. cholerae and other enteric bacteria produce cyclo(Phe-Pro), a cyclic dipeptide

  9. Kinetic studies on the oxidation of cytochrome b(5) Phe35 mutants with cytochrome c, plastocyanin and inorganic complexes.

    PubMed

    Yao, Ping; Wang, Yun-Hua; Sun, Bing-Yun; Xie, Yi; Hirota, Shun; Yamauchi, Osamu; Huang, Zhong-Xian

    2002-04-01

    To illustrate the functions of the aromatic residue Phe35 of cytochrome b(5) and to give further insight into the roles of the Phe35-containing hydrophobic patch and/or aromatic channel of cytochrome b(5), we studied electron transfer reactions of cytochrome b(5) and its Phe35Tyr and Phe35Leu variants with cytochrome c, with the wild-type and Tyr83Phe and Tyr83Leu variants of plastocyanin, and with the inorganic complexes [Fe(EDTA)](-), [Fe(CDTA)](-) and [Ru(NH(3))(6)](3+). The changes at Phe35 of cytochrome b(5) and Tyr83 of plastocyanin do not affect the second-order rate constants for the electron transfer reactions. These results show that the invariant aromatic residues and aromatic patch/channel are not essential for electron transfer in these systems.

  10. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene.

    PubMed

    Singh, Ashutosh; Masih, Aradhana; Khurana, Ananta; Singh, Pradeep Kumar; Gupta, Meenakshi; Hagen, Ferry; Meis, Jacques F; Chowdhary, Anuradha

    2018-03-25

    In the last few years, infections caused by dermatophytes along with a concomitant increase in the number of difficult to treat cases have increasingly been recognised, indicating that dermatophytosis remains a challenging public health problem. The majority of infections are caused by Trichophyton rubrum and Trichophyton mentagrophytes complex. Terbinafine, an allylamine antifungal used orally and topically is considered to be a first-line drug in the therapy of dermatophyte infections. Terbinafine resistance has been predominately attributed to point mutations in the squalene epoxidase (SQLE) target gene a key enzyme in the ergosterol biosynthetic pathway leading to single amino acid substitutions. Here, we report the largest series of 20 terbinafine-resistant Trichophyton interdigitale isolates obtained predominately from cases of tinea corporis/cruris in three hospitals in Delhi, India exhibiting elevated MICs (4 to ≥32 μg/mL) to terbinafine and all harbouring single-point mutations Leu393Phe or Phe397Leu in the SQLE gene. In 12 (60%) T. interdigitale isolates, the Phe397Leu substitution was observed, whereas in the remaining 8 (40%) isolates the substitution Leu393Phe was reported for the first time in T. interdigitale. Furthermore, 10 susceptible T. interdigitale isolates (0.125-2 μg/mL) had a wild-type genotype. Remarkably, considerably high terbinafine resistance rate of 32% was observed among 63 T. interdigitale isolates identified by sequencing of the internal transcribed spacer region. This high level of terbinafine resistance of Indian dermatophyte isolates is worrisome warranting antifungal susceptibility testing and mutation analysis for monitoring this emerging resistance. © 2018 Blackwell Verlag GmbH.

  11. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites.

    PubMed

    Chen, Chen; Lei, Wenrui; Lu, Min; Zhang, Jianan; Zhang, Zhou; Luo, Chunling; Chen, Yahua; Hong, Qing; Shen, Zhenguo

    2016-04-01

    Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites.

  12. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides. 2: The Proline Effect in Collision-Induced Dissociation of Protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp)

    NASA Astrophysics Data System (ADS)

    Bleiholder, Christian; Suhai, Sándor; Harrison, Alex G.; Paizs, Béla

    2011-06-01

    The product ion spectra of proline-containing peptides are commonly dominated by y n ions generated by cleavage at the N-terminal side of proline residues. This proline effect is investigated in the current work by collision-induced dissociation (CID) of protonated Ala-Ala-Xxx-Pro-Ala (Xxx includes Ala, Ser, Leu, Val, Phe, and Trp) in an electrospray/quadrupole/time-of-flight (QqTOF) mass spectrometer and by quantum chemical calculations on protonated Ala-Ala-Ala-Pro-Ala. The CID spectra of all investigated peptides show a dominant y 2 ion (Pro-Ala sequence). Our computational results show that the proline effect mainly arises from the particularly low threshold energy for the amide bond cleavage N-terminal to the proline residue, and from the high proton affinity of the proline-containing C-terminal fragment produced by this cleavage. These theoretical results are qualitatively supported by the experimentally observed y 2 / b 3 abundance ratios for protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). In the post-cleavage phase of fragmentation the N-terminal oxazolone fragment with the Ala-Ala-Xxx sequence and Pro-Ala compete for the ionizing proton for these peptides. As the proton affinity of the oxazolone fragment increases, the y 2 / b 3 abundance ratio decreases.

  13. Towards understanding the tandem mass spectra of protonated oligopeptides. 2: The proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp).

    PubMed

    Bleiholder, Christian; Suhai, Sándor; Harrison, Alex G; Paizs, Béla

    2011-06-01

    The product ion spectra of proline-containing peptides are commonly dominated by y(n) ions generated by cleavage at the N-terminal side of proline residues. This proline effect is investigated in the current work by collision-induced dissociation (CID) of protonated Ala-Ala-Xxx-Pro-Ala (Xxx includes Ala, Ser, Leu, Val, Phe, and Trp) in an electrospray/quadrupole/time-of-flight (QqTOF) mass spectrometer and by quantum chemical calculations on protonated Ala-Ala-Ala-Pro-Ala. The CID spectra of all investigated peptides show a dominant y(2) ion (Pro-Ala sequence). Our computational results show that the proline effect mainly arises from the particularly low threshold energy for the amide bond cleavage N-terminal to the proline residue, and from the high proton affinity of the proline-containing C-terminal fragment produced by this cleavage. These theoretical results are qualitatively supported by the experimentally observed y(2)/b(3) abundance ratios for protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). In the post-cleavage phase of fragmentation the N-terminal oxazolone fragment with the Ala-Ala-Xxx sequence and Pro-Ala compete for the ionizing proton for these peptides. As the proton affinity of the oxazolone fragment increases, the y(2)/b(3) abundance ratio decreases.

  14. Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor.

    PubMed

    Elliott, Karen L; Chan, Kuen Kuen; Stay, Barbara

    2010-03-01

    The allatostatins (ASTs) with Phe-Gly-Leu-amide C-terminal sequence are multifunctional neuropeptides discovered as inhibitors of juvenile hormone (JH) synthesis by corpora allata (CA) of cockroaches. Although these ASTs inhibit JH synthesis only in cockroaches, crickets, termites and locusts, isolation of peptides or of cDNA/genomic DNA or analysis of genomes indicates their occurrence in many orders of insects with the exception of coleopterans. The gene for these ASTs has not been found in the genome of the red flour beetle Tribolium castaneum (Family Tenebrionidae). Yet, in view of widespread occurrence of these peptides in insects, crustaceans and nematodes, they would be expected to occur in beetles. This study provides evidence for the presence of FGLa-like ASTs in the tenebrionid beetle, Tenebrio molitor, and scarabid beetle, Popillia japonica. Extract of brain from both beetles inhibited JH synthesis by cockroach CA dose dependently and reversibly. 20 brain equivalents of T. molitor and P. japonica extracts inhibited JH synthesis 64+/-5 and 65+/-0.6% respectively. Antibody against cockroach allatostatin (Diploptera punctata AST-7) used in an enzyme-linked immunosorbent assay reacted with brain extract of these beetles. Antibody against D. punctata AST-5 localized FGLa-like ASTs in the brain and subesophageal ganglion of T. molitor and P. japonica. In addition, pretreatment of T. molitor brain extract with anti-D. punctata AST-5 reduced the inhibition of JH synthesis and pretreatment of anti-D. punctata AST-5 with D. punctata AST-5 diminished the immunoreactivity of the antibody. Thus we predict that FGLa-like allatostatins will be found in beetles. (c) 2009 Elsevier Inc. All rights reserved.

  15. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival

    PubMed Central

    Princiotta, Michael F.; Schubert, Ulrich; Chen, Weisan; Bennink, Jack R.; Myung, Jayhyuk; Crews, Craig M.; Yewdell, Jonathan W.

    2001-01-01

    The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases. PMID:11149939

  16. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival.

    PubMed

    Princiotta, M F; Schubert, U; Chen, W; Bennink, J R; Myung, J; Crews, C M; Yewdell, J W

    2001-01-16

    The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases.

  17. Identification of Dmt-D-Lys-Phe-Phe-OH as a highly antinociceptive tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20.

    PubMed

    Kleczkowska, Patrycja; Bojnik, Engin; Leśniak, Anna; Kosson, Piotr; Van den Eynde, Isabelle; Ballet, Steven; Benyhe, Sandor; Tourwé, Dirk; Lipkowski, Andrzej W

    2013-01-01

    Recently, we presented a novel compound (PK20, Dmt-D-Lys-Phe-Phe-Lys-Lys-Pro-Phe-Tle-Leu-OH) that targets single entity opioid and neurotensin pharmacophores. This endomorphin-2-like opioid peptide was introduced as a highly active analgesic because it elicited a strong dose- and time-dependent antinociceptive response when administered centrally and peripherally. Its pain-relieving activity was observed as rapidly as 5 min after drug injection. Such promising results led us to perform further studies, such as determining the resistance to enzymatic degradation, which resulted in obtaining a very stable opioid pharmacore PK20 metabolite. The synthesis of PK20 and its N-terminal tetrapeptide fragment has been accomplished using solid phase peptide chemistry. The biological stability of peptides has been measured in human serum and analyzed by HPLC/MS. Peptides were pharmacologically characterized in in vitro MOP and DOP receptor binding as well as [(35)S]GTPγS receptor binding assays. Antinociceptive properties of compounds were measured by in vivo assays in C57Bl6 mice after intravenous or intrathecal applications. Dmt-D-Lys-Phe-Phe-OH (PK20M), an N-terminal tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20, is characterized by a long duration of action, as demonstrated by a preserved, long-lasting analgesic effect even 2 h post-injection (average % MPE = 69.33). In rat brain membranes, PK20M efficiently displaced both the MOP and DOP receptor selective radioprobes [(3)H]DAMGO and [(3)H]DIDI (pKi of 9.52 and 7.86, respectively) and potently stimulated [(35)S]GTPγS binding, proving full agonism at both receptor types. In the [(35)S]GTPγS assay, which measured the agonist-mediated G protein activation, PK20M together with PK20 and Met-enkephalin were potent stimulators of the regulatory G proteins. The relative affinities of PK20M for the μ and δ receptor subtypes revealed μ-receptor selectivity. The novel MOP receptor selective metabolite

  18. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    PubMed

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  19. Specific patterns of gyrA mutations determine the resistance difference to ciprofloxacin and levofloxacin in Klebsiella pneumoniae and Escherichia coli

    PubMed Central

    2013-01-01

    Background Wide use of ciprofloxacin and levofloxacin has often led to increased resistance. The resistance rate to these two agents varies in different clinical isolates of Enterobacteriaceae. Mutations of GyrA within the quinolone resistance-determining regions have been found to be the main mechanism for quinolone resistance in Enterobacteriaceae. It has been shown that only some of the mutations in the gyrA gene identified from clinical sources were involved in fluoroquinolone resistance. Whether different patterns of gyrA mutation are related to antimicrobial resistance against ciprofloxacin and levofloxacin is unclear. Methods The minimum inhibitory concentration (MIC) of ciprofloxacin and levofloxacin were determined by the agar dilution method followed by PCR amplification and sequencing of the quinolone resistance determining region of gyrA to identify all the mutation types. The correlation between fluoroquinolone resistance and the individual mutation type was analyzed. Results Resistance differences between ciprofloxacin and levofloxacin were found in 327 isolates of K. pneumoniae and E. coli in Harbin, China and in the isolates reported in PubMed publications. GyrA mutations were found in both susceptible and resistant isolates. For the isolates with QRDR mutations, the resistance rates to ciprofloxacin and levofloxacin were also statistically different. Among the 14 patterns of alterations, two single mutations (Ser83Tyr and Ser83Ile), and three double mutations (Ser83Leu+Asp87Asn, Ser83Leu+Asp87Tyr and Ser83Phe+Asp87Asn) were associated with both ciprofloxacin and levofloxacin resistance. Two single mutations (Ser83Phe and Ser83Leu) were related with ciprofloxacin resistance but not to levofloxacin. Resistance difference between ciprofloxacin and levofloxacin in isolates harboring mutation Ser83Leu+Asp87Asn were of statistical significance among all Enterobacteriaceae (P<0.001). Conclusions Resistance rate to ciprofloxacin and levofloxacin were

  20. Insecticide susceptibility status of Anopheles gambiae s.l. (Diptera: Culicidae) in the Republic of Cameroon.

    PubMed

    Etang, Josiane; Manga, Lucien; Chandre, Fabrice; Guillet, Pierre; Fondjo, Etienne; Mimpfoundi, Remy; Toto, Jean-Claude; Fontenille, Didier

    2003-07-01

    A large-scale survey of Anopheles gambiae Giles, 1902 susceptibility to DDT, dieldrin, permethrin, and deltamethrin was conducted in the Republic of Cameroon. 15 field populations from various geographical areas were tested using World Health Organization test kits for adult mosquitoes. The laboratory Kisumu susceptible reference strain was tested as a control. Results showed that dieldrin and DDT resistance was still present in some populations, and indicated permethrin or deltamethrin resistance. Within the Anopheles gambiae complex, resistant individuals belonged to An. gambiae s.s. and An. arabiensis species. Both M and S molecular forms of An. gambiae s.s. were found resistant. In most of resistant populations, the knockdown times were 2-5-folds increased. However, none of the surviving mosquitoes was positive to the kdr "Leu-Phe" mutation using polymerase chain reaction (PCR) diagnostic test. These results likely suggested involvement of other resistance mechanism(s), such as enzyme detoxification or kdr "Leu-Ser" mutation. Researches on An. gambiae s.l. resistance should be promoted in Cameroon, to improve malaria vector control programs and to implement resistance management strategies.

  1. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages.

    PubMed

    Nagasawa, Masahiro; Nakagawa, Yuko; Tanaka, Shigeyasu; Kojima, Itaru

    2007-03-01

    The present study was conducted to characterize the regulation and function of TRPV2 in macrophages. Among six members of the TRPV family channels, only the expression of TRPV2 was detected in macrophages. We then determined localization of TRPV2 using TtT/M87 macrophages transfected with TRPV2-EGFP. In serum-free condition, most of the TRPV2 signal was located in the cytoplasm and colocalized with the endoplasmic reticulum marker. Treatment with serum induced translocation of some of the TRPV2-EGFP to the plasma membrane. Serum-induced translocation was blocked by transfection of short-form TRPV2 (s-TRPV2) lacking a pore-forming region and the sixth transmembrane domain. Addition of a chemotactic peptide formyl Met-Leu-Phe (fMLP) also induced translocation of TRPV2-EGFP to the plasma membrane. The fMLP-induced translocation was blocked by an inhibitor of PI 3-kinase, LY294002, and pertussis toxin. Whole-cell patch clamp analysis showed a Cs+ current in the TtT/M87 cell, which was blocked by an addition of ruthenium red and transfection of either s-TRPV2 or siRNA for TRPV2. fMLP increased the Cs+ current. fMLP induced a rapid and sustained elevation of cytoplasmic Ca2+ ([Ca2+]C), the sustained phase of which was abolished by removal of extracellular calcium. The sustained elevation of [Ca2+]C was also blocked by ruthenium red, and transfection of either s-TRPV2 or siRNA. Finally, fMLP-induced migration of macrophage was blocked by ruthenium red or transfection of s-TRPV2. These results suggest that fMLP induces translocation of TRPV2 from intracellular compartment to the plasma membrane, and this translocation is critical for fMLP-induced calcium entry. Copyright 2006 Wiley-Liss, Inc.

  2. The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish

    PubMed Central

    2014-01-01

    Background Functionality of the tetrameric hemoglobin molecule seems to be determined by a few amino acids located in key positions. Oxygen binding encompasses structural changes at the interfaces between the α1β2 and α2β1 dimers, but also subunit interactions are important for the oxygen binding affinity and stability. The latter packing contacts include the conserved Arg B12 interacting with Phe GH5, which is replaced by Leu and Tyr in the αA and αD chains, respectively, of birds and reptiles. Results Searching all known hemoglobins from a variety of gnathostome species (jawed vertebrates) revealed the almost invariant Arg B12 coded by the AGG triplet positioned at an exon-intron boundary. Rare substitutions of Arg B12 in the gnathostome β globins were found in pig, tree shrew and scaled reptiles. Phe GH5 is also highly conserved in the β globins, except for the Leu replacement in the β1 globin of five marine gadoid species, gilthead seabream and the Comoran coelacanth, while Cys and Ile were found in burbot and yellow croaker, respectively. Atlantic cod β1 globin showed a Leu/Met polymorphism at position GH5 dominated by the Met variant in northwest-Atlantic populations that was rarely found in northeast-Atlantic cod. Site-specific analyses identified six consensus codons under positive selection, including 122β(GH5), indicating that the amino acid changes identified at this position may offer an adaptive advantage. In fact, computational mutation analysis showed that the replacement of Phe GH5 with Leu or Cys decreased the number of van der Waals contacts essentially in the deoxy form that probably causes a slight increase in the oxygen binding affinity. Conclusions The almost invariant Arg B12 and the AGG codon seem to be important for the packing contacts and pre-mRNA processing, respectively, but the rare mutations identified might be beneficial. The Leu122β1(GH5)Met and Met55β1(D6)Val polymorphisms in Atlantic cod hemoglobin modify the

  3. The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei

    PubMed Central

    Koh, Hazel X.; Aye, Htay M.; Tan, Kevin S. W.; He, Cynthia Y.

    2015-01-01

    Background: Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabilization. Methods: We measured drug concentrations that inhibit cell proliferation by 50% (IC50) for several compounds, chosen based on their lysosomotropic effects previously reported in Plasmodium falciparum. The lysosomal effects and cell death induced by L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) were further analyzed by flow cytometry and immunofluorescence analyses of different lysosomal markers. The effect of autophagy in LeuLeu-OMe-induced lysosome destabilization and cytotoxicity was also investigated in control and autophagy-deficient cells. Results: LeuLeu-OMe was selected for detailed analyses due to its strong inhibitory profile against T. brucei with minimal toxicity to human cell lines in vitro. Time-dependent immunofluorescence studies confirmed an effect of LeuLeu-OMe on the lysosome. LeuLeu-OMe-induced cytotoxicity was also found to be dependent on the acidic pH of the lysosome. Although an increase in autophagosomes was observed upon LeuLeu-OMe treatment, autophagy was not required for the cell death induced by LeuLeu-OMe. Necrosis appeared to be the main cause of cell death upon LeuLeu-OMe treatment. Conclusions: LeuLeu-OMe is a lysosomotropic agent capable of destabilizing lysosomes and causing necrotic cell death in bloodstream form of T. brucei. PMID:28357304

  4. Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model

    PubMed Central

    Cardoso, Ronie Cleverson; Lobão-Soares, Bruno; Bianchin, Marino Muxfeldt; Carlotti, Carlos Gilberto; Walz, Roger; Alvarez-Silva, Márcio; Trentin, Andréa Gonçalves; Nicolau, Mauro

    2004-01-01

    Background While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model. Results SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area. Conclusions Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study. PMID:15458573

  5. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa.

    PubMed

    Irving, Helen; Wondji, Charles S

    2017-08-09

    Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other

  6. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum

    PubMed Central

    Vila-Aiub, Martin M.; Yu, Qin; Han, Heping; Powles, Stephen B.

    2015-01-01

    The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed. PMID:26019257

  7. Multi-Leu PACE4 Inhibitor Retention within Cells Is PACE4 Dependent and a Prerequisite for Antiproliferative Activity

    PubMed Central

    Ly, Kévin; Levesque, Christine; Kwiatkowska, Anna; Ait-Mohand, Samia; Desjardins, Roxane; Guérin, Brigitte; Day, Robert

    2015-01-01

    The overexpression as well as the critical implication of the proprotein convertase PACE4 in prostate cancer progression has been previously reported and supported the development of peptide inhibitors. The multi-Leu peptide, a PACE4-specific inhibitor, was further generated and its capability to be uptaken by tumor xenograft was demonstrated with regard to its PACE4 expression status. To investigate whether the uptake of this inhibitor was directly dependent of PACE4 levels, uptake and efflux from cancer cells were evaluated and correlations were established with PACE4 contents on both wild type and PACE4-knockdown cell lines. PACE4-knockdown associated growth deficiencies were established on the knockdown HepG2, Huh7, and HT1080 cells as well as the antiproliferative effects of the multi-Leu peptide supporting the growth capabilities of PACE4 in cancer cells. PMID:26114115

  8. Arg-Phe-Phe D-Amino Acid Stereochemistry Scan in the Macrocyclic Agouti-Related Protein Antagonist Scaffold c[Pro-Arg-Phe-Phe-Xaa-Ala-Phe-DPro] Results in Unanticipated Melanocortin-1 Receptor Agonist Profiles.

    PubMed

    Ericson, Mark D; Koerperich, Zoe M; Freeman, Katie T; Fleming, Katlyn A; Haskell-Luevano, Carrie

    2018-06-20

    The melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R), endogenous agonists derived from the proopiomelanocortin gene transcript, and naturally-occurring antagonists agouti and agouti-related protein (AGRP) have been linked to biological pathways associated with energy homeostasis. The active tripeptide sequence of AGRP, Arg111-Phe112-Phe113, is located on a hypothesized β-hairpin loop. Herein, stereochemical modifications of the Arg-Phe-Phe sequence were examined in the octapeptide AGRP-derived macrocyclic scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was Asn or diaminopropionic acid (Dap). Macrocyclic peptides were synthesized with one, two, or three residues of the Arg-Phe-Phe sequence substituted with the corresponding D-isomer(s), generating a 14 compound library. While L-to-D inversions of the Arg-Phe-Phe sequence in a 20-residue AGRP-derived ligand previously resulted in agonist activity at the MC1R, MC3R, MC4R, and MC5R, only the MC1R was consistently stimulated by the macrocyclic ligands in the present study, with varying ligand potencies and efficacies observed at the MC1R. A general trend of increased MC4R antagonist potency was observed for Dap-containing compounds, while MC5R inverse agonist activity was observed for select ligands. It was observed that stereochemical modification of the Arg-Phe-Phe active tripeptide sequence was insufficient to convert melanocortin antagonist into agonists. Overall, these observations are important in the design of melanocortin ligands possessing potent and selective agonist and antagonist activities.

  9. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide

    PubMed Central

    Ha, Michael N.; Delpeut, Sébastien; Noyce, Ryan S.; Sisson, Gary; Black, Karen M.; Lin, Liang-Tzung; Bilimoria, Darius; Plemper, Richard K.; Privé, Gilbert G.

    2017-01-01

    ABSTRACT The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein. IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with Me

  10. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum.

    PubMed

    Vila-Aiub, Martin M; Yu, Qin; Han, Heping; Powles, Stephen B

    2015-08-01

    The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. A peptidases-resistant glycosylated analogue of substance P-(5-11). Specificity towards substance P receptors.

    PubMed

    Poujade, C; Lavielle, S; Torrens, Y; Beaujouan, J C; Glowinski, J; Marquet, A

    1984-09-01

    Glycosylated analogues of the C-terminal heptapeptide of substance P either free or blocked on the N-terminal glutamine were synthesized in order to develop a metabolically stable peptide that would have an increased specificity for one type of receptor. Of the analogue described, (N-alpha-Boc-beta-D-Glc-p (1----5) Gln) -Gln-Phe-Phe-Gly-Leu-Met-NH2 is highly resistant to degradation on exposure to rat hypothalamic slices. This glycosylated peptide is about one third as potent as substance P in eliciting contractions of the guinea-pig ileum and is almost devoided of affinity for the 125I-Bolton Hunter-SP specific binding sites on rat brain synaptosomes.

  12. Bcl-2-independent induction of apoptosis by neuropeptide receptor antagonist in human small cell lung carcinoma cells.

    PubMed

    Matsumoto, Y; Kawatani, M; Simizu, S; Tanaka, T; Takada, M; Imoto, M

    2000-01-01

    The broad-spectrum antagonist of neuropeptide receptor, [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P, induced apoptosis selectively in human small cell lung carcinoma (SCLC) cells, which express gastrin-releasing peptide receptor, but not in other types of tumor cells as well as normal cells. The addition of gastrin-releasing peptide or bombesin and the inhibitor of caspase-3 suppressed [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P-induced apoptosis. Moreover, [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P-induced apoptosis was not suppressed by Bcl-2 over-expression. Thus, blockage of gastrin-releasing peptide receptor-mediated signaling may provide a novel therapeutic option in SCLC which has become resistant to conventional chemotherapeutic agents.

  13. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines.

    PubMed

    Datta, Dhrubajyoti; Tiwari, Omshanker; Ganesh, Krishna N

    2018-02-15

    During the last two decades, the molecular self-assembly of the short peptide diphenylalanine (Phe-Phe) motif has attracted increasing focus due to its unique morphological structure and utility for potential applications in biomaterial chemistry, sensors and bioelectronics. Due to the ease of their synthetic modifications and a plethora of available experimental tools, the self-assembly of free and protected diphenylalanine scaffolds (H-Phe-Phe-OH, Boc-Phe-Phe-OH and Boc-Phe-Phe-OMe) has unfurled interesting tubular, vesicular or fibrillar morphologies. Developing on this theme, here we attempt to examine the effect of structure and properties (hydrophobic and H-bonding) modifying the functional C-terminus conjugated substituents on Boc-Phe-Phe on its self-assembly process. The consequent self-sorting due to H-bonding, van der Waals force and π-π interactions, generates monodisperse nano-vesicles from these peptides characterized via their SEM, HRTEM, AFM pictures and DLS experiments. The stability of these vesicles to different external stimuli such as pH and temperature, encapsulation of fluorescent probes inside the vesicles and their release by external trigger are reported. The results point to a new direction in the study and applications of the Phe-Phe motif to rationally engineer new functional nano-architectures.

  14. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    PubMed Central

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  15. Oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus.

    PubMed

    Anderson, Brian M; Jacobson, Lauren; Novakovic, Zachary M; Grasso, Patricia

    2017-06-01

    This study describes the localization of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics, in the hypothalamus of Swiss Webster and C57BL/6J wild-type mice, leptin-deficient ob/ob mice, and leptin-resistant diet-induced obese (DIO) mice. The mice were given [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in 0.3% dodecyl maltoside by oral gavage. Once peak serum concentrations were reached, the mice received a lethal dose of pentobarbital and were subjected to intracardiac perfusion fixation. The brains were excised, post-fixed in paraformaldehyde, and cryo-protected in sucrose. Free-floating frozen coronal sections were cut at 25-µm and processed for imaging by immunofluorescence microscopy. In all four strains of mice, dense staining was concentrated in the area of the median eminence, at the base and/or along the inner wall of the third ventricle, and in the brain parenchyma at the level of the arcuate nucleus. These results indicate that [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 cross the blood-brain barrier and concentrate in an area of the hypothalamus known to regulate energy balance and glucose homeostasis. Most noteworthy is the localization of [D-Leu-4]-OB3 immunoreactivity within the hypothalamus of DIO mice via a conduit that is closed to leptin in this rodent model, and in most cases of human obesity. Together with our previous studies describing the effects of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on energy balance, glucose regulation, and signal transduction pathway activation, these findings are consistent with a central mechanism of action for these synthetic peptide leptin mimetics, and suggest their potential usefulness in the management of leptin-resistant obesity and type 2 diabetes in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. L1014F-kdr Mutation in Indian Anopheles subpictus (Diptera: Culicidae) Arising From Two Alternative Transversions in the Voltage-Gated Sodium Channel and a Single PIRA-PCR for Their Detection

    PubMed Central

    Singh, O. P.; Dykes, C. L.; Sharma, G.; Das, M. K.

    2015-01-01

    Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis–polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. PMID:26336276

  17. Response of Two Heat Shock Genes to Selection for Knockdown Heat Resistance in Drosophila Melanogaster

    PubMed Central

    McColl, G.; Hoffmann, A. A.; McKechnie, S. W.

    1996-01-01

    To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance. PMID:8844150

  18. (D-Phe/sup 12/)bombesin analogues: a new class of bombesin receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz-Erian, P.; Coy, D.H.; Tamura, M.

    1987-03-01

    Previous attempts to develop analogues of bombesin that function as specific receptor antagonists have been unsuccessful. Alteration of the histidine in luteinizing hormone releasing factor has resulted in analogues that function as competitive antagonists. In the present study the authors have used a similar strategy and altered the histidine in bombesin. (D-Phe/sup 12/)bombesin, (D-Phe/sup 12/,Leu/sup 14/)bombesin, and (Try/sup 4/, D-)je/sup 12/) bombesin did not stimulate amylase release from guinea pig pancreatic acini when present alone, but each analog inhibited bombesin-stimulated secretion. For each analog, detectable inhibition occurred at 1 ..mu..M and half-maximal inhibition at 4 ..mu..M. Each analog inhibited amylasemore » release by bombesin and other agonists that stimulate secretion by interacting with bombesin receptors. The analogues of bombesin did not alter stimulation by substance P or other agonists that interact with other receptors. The inhibition of the action of bombesin was competitive with Schild plots having slopes of 1.0. Each analog also inhibited binding of /sup 125/I-labeled (Try/sup 4/) bombesin but not /sup 125/I-labeled substance P. These results demonstrate that (D-Phe/sup 12/) analogues of bombesin function as bombesin receptor antagonists and are the only bombesin receptor antagonists that interact only with the bombesin receptor. Because of their specificity, these analogues may prove useful for defining the role of bombesin in various physiological or pathological processes.« less

  19. Knockdown Resistance Mutations in Aedes aegypti (Diptera: Culicidae) From Puerto Rico.

    PubMed

    Ponce-García, Gustavo; Del Río-Galvan, Samantha; Barrera, Roberto; Saavedra-Rodriguez, Karla; Villanueva-Segura, Karina; Felix, Gilberto; Amador, Manuel; Flores, Adriana E

    2016-11-01

    Permethrin resistance is widespread in Aedes aegypti (L.), the main dengue, zika, and chikungunya virus vector in Latin America and the Caribbean. A common mechanism of resistance to pyrethroids-knockdown resistance (kdr)-is conferred through mutations in the insect's voltage-dependent sodium channel. In this mosquito, around 10 replacement substitutions in the voltage-gated sodium channel gene (vgsc) have been reported in pyrethroid-resistant strains. Two of these mutations, named Ile1,016 and Cys1,534, are widespread in mosquito populations from Latin America and the Caribbean. This study assessed the levels of permethrin resistance and the frequency of two kdr mutations in eight Ae. aegypti populations collected in Puerto Rico in 2013. Permethrin resistance factors ranged from 33-214-fold relative to the New Orleans reference strain. The frequency of kdr mutation Ile1,016 ranged from 0.65 to fixation (1.0), and for Cys1,534 frequencies varied from 0.8 to fixation. Alarmingly, two populations-Carolina and Caguas-reached fixation at both loci. Our results suggest that permethrin effectiveness for Ae. aegypti control is compromised in these collections from Puerto Rico. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Toxicity of leucine-containing peptides in Escherichia coli caused by circumvention of leucine transport regulation.

    PubMed Central

    Tavori, H; Kimmel, Y; Barak, Z

    1981-01-01

    A variety of leucine-containing peptides (LCP), Phe-Leu, Gly-Leu, Pro-Leu, Ala-Leu, Ala-Leu-Lys, Leu-Phe-Ala, Leu-Leu-Leu, and Leu-Gly-Gly, inhibited the growth of a prototrophic strain of Escherichia coli K-12 at concentrations between 0.05 and 0.28 mM. Toxicity requires normal uptake of peptides. When peptide transport was impaired by mutations, strains became resistant to the respective LCP. Inhibition of growth occurred immediately after the addition of LCP, and was relieved when 0.4 mM isoleucine was added. The presence of Gly-Leu in the medium correlated with the inhibition of growth, and the bacteria began to grow at the normal rate 70 min after Gly-Leu became undetectable. Disappearance of the peptide corresponded with the appearance of free leucine and glycine in the medium. The concentration of leucine inside the LCP-treated bacteria was higher than that in the leucine-treated and the control cultures. We suggest that entry of LCP into the cells via peptide transport systems circumvents the regulation of leucine transport, thereby causing abnormality high concentrations of leucine inside the cells. This accumulation of leucine interferes with the biosynthesis of isoleucine and inhibits the growth of the bacteria. Images PMID:7012134

  1. Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases

    NASA Astrophysics Data System (ADS)

    Maitarad, Phornphimon; Kamchonwongpaisan, Sumalee; Vanichtanankul, Jarunee; Vilaivan, Tirayut; Yuthavong, Yongyuth; Hannongbua, Supa

    2009-04-01

    Comparative molecular field analysis (CoMFA) and quantum chemical calculations were performed on cycloguanil (Cyc) derivatives of the wild type and the quadruple mutant (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) of Plasmodium falciparum dihydrofolate reductase ( PfDHFR). The represented CoMFA models of wild type ( r_{{cv}}2 = 0.727 and r 2 = 0.985) and mutant type ( r_{{cv}}2 = 0.786 and r 2 = 0.979) can describe the differences of the Cyc structural requirements for the two types of PfDHFR enzymes and can be useful to guide the design of new inhibitors. Moreover, the obtained particular interaction energies between the Cyc and the surrounding residues in the binding pocket indicated that Asn108 of mutant enzyme was the cause of Cyc resistance by producing steric clash with p-Cl of Cyc. Consequently, comparing the energy contributions with the potent flexible WR99210 inhibitor, it was found that the key mutant residue, Asn108, demonstrates attractive interaction with this inhibitor and some residues, Leu46, Ile112, Pro113, Phe116, and Leu119, seem to perform as second binding site with WR99210. Therefore, quantum chemical calculations can be useful for investigating residue interactions to clarify the cause of drug resistance.

  2. Characterizing the insecticide resistance of Anopheles gambiae in Mali.

    PubMed

    Cisse, Moussa B M; Keita, Chitan; Dicko, Abdourhamane; Dengela, Dereje; Coleman, Jane; Lucas, Bradford; Mihigo, Jules; Sadou, Aboubacar; Belemvire, Allison; George, Kristen; Fornadel, Christen; Beach, Raymond

    2015-08-22

    The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase

  3. Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum β-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China.

    PubMed

    Bi, Wenzi; Li, Bin; Song, Jiangning; Hong, Youliang; Zhang, Xiaoxiao; Liu, Haiyang; Lu, Hong; Zhou, Tieli; Cao, Jianming

    2017-07-01

    Fosfomycin in combination with various antibiotics represents an excellent clinically efficacious regimen for the treatment of urinary tract infections (UTIs) caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Underlying mechanisms of fosfomycin resistance remain largely uncharacterised. To investigate the antibacterial efficacy of fosfomycin against ESBL-producing E. coli, 356 non-repetitive ESBL-producing E. coli clinical isolates were collected from urine specimens from patients with UTI in Wenzhou, China, from January 2011 to December 2015. Antimicrobial sensitivity testing indicated that 6.7% (24/356) of the ESBL-producing E. coli strains were resistant to fosfomycin. The fosA3 gene encoding a fosfomycin-modifying enzyme was detected in 20 isolates by PCR and sequencing, alone or in combination with other ESBL determinants. Conjugation experiments and Southern blotting demonstrated that 70% (14/20) of the fosA3-positive isolates possessed transferable plasmids (ca. 54.2 kb) co-harbouring the ESBL resistance gene bla CTX-M and the fosfomycin resistance gene fosA3. Among the four fosfomycin-resistant fosA3-negative E. coli isolates, three contained amino acid substitutions (Ile28Asn and Phe30Leu in MurA and Leu297Phe in GlpT). The results indicate that presence of the fosA3 gene is the primary mechanism of fosfomycin resistance in ESBL-producing E. coli isolates in Wenzhou, China. In addition, a plasmid (ca. 54.2 kb) co-harbouring fosA3 and bla CTX-M genes is horizontally transferable. Furthermore, a low degree of homology in the fosfomycin-resistant E. coli was confirmed using multilocus sequence typing (MLST), suggesting that there is no obvious phenomenon of clonal dissemination. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Recurrent somnolence in a 17-month-old infant: late-onset ornithine transcarbamylase (OTC) deficiency due to the novel hemizygous mutation c.535C > T (p.Leu179Phe).

    PubMed

    Fantur, Michaela; Karall, Daniela; Scholl-Buergi, Sabine; Häberle, Johannes; Rauchenzauner, Markus; Fruehwirth, Martin

    2013-01-01

    Herein, we describe a case of a now 28-month-old boy who presented at the age of 17 months with four episodes of recurrent vomiting and somnolence during a period of four months with increasing severity. A comprehensive clinical and metabolic evaluation revealed normal blood pH and blood glucose, normal cerebral computed tomography and electroencephalogram but an elevated plasma ammonia concentration, which raised the suspicion of a urea cycle disorder. The combination of elevated urinary orotic acid and plasma glutamine with normal citrulline suggested the diagnosis of ornithine transcarbamylase (OTC) deficiency, which was confirmed by molecular genetic testing revealing the novel hemizygous mutation c.535C > T (p.Leu179Phe) of the OTC gene. After restitution of anabolism by administration of parenteral glucose, substitution of citrulline and detoxification of ammonia with sodium benzoate, the patient recovered rapidly and is in a stable metabolic and neurological state since then. This case underlines that the diagnosis of a urea cycle defect should be considered in the differential diagnosis of recurrent idiopathic vomiting in combination with unexplained neurological symptoms also beyond the neonatal period due to the possibility of mild or atypical late-onset presentation (e.g. OTC deficiency in hemizygous males). Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  5. Determination, mechanism and monitoring of knockdown resistance in permethrin-resistant human head lice, Pediculus humanus capitis

    PubMed Central

    Clark, J. Marshall

    2009-01-01

    Permethrin resistance has been reported worldwide and clinical failures to commercial pediculicides containing permethrin have likewise occurred. Permethrin resistance in head lice populations from the U.S. is widespread but is not yet uniform and the level of resistance is relatively low (~4–8 fold). Permethrin-resistant lice are cross-resistant to pyrethrins, PBO-synergized pyrethrins and to DDT. Nix®, when applied to human hair tufts following manufacture’s instructions, did not provide 100% control when assessed by the hair tuft bioassay in conjunction with the in vitro rearing system. Resistance to permethrin is due to knockdown resistance (kdr), which is the result of three point mutations within the α-subunit gene of the voltage-gated sodium channel that causes amino acid substitutions, leading to nerve insensitivity. A three-tiered resistance monitoring system has been established based on molecular resistance detection techniques. Quantitative sequencing (QS) has been developed to predict the kdr allele frequency in head lice at a population level. The speed, simplicity and accuracy of QS made it an ideal candidate for a routine primary resistance monitoring tool to screen a large number of louse populations as an alternative to conventional bioassay. As a secondary monitoring method, real-time PASA (rtPASA) has been devised for a more precise determination of low resistance allele frequencies. To obtain more detailed information on resistance allele zygosity, as well as allele frequency, serial invasive signal amplification reaction (SISAR) has been developed as an individual genotyping method. Our approach of using three tiers of molecular resistance detection should facilitate large-scale routine resistance monitoring of permethrin resistance in head lice using field-collected samples. PMID:20161186

  6. A new variation in the promoter region, the -604 C>T, and the Leu72Met polymorphism of the ghrelin gene are associated with protection to insulin resistance.

    PubMed

    Zavarella, S; Petrone, A; Zampetti, S; Gueorguiev, M; Spoletini, M; Mein, C A; Leto, G; Korbonits, M; Buzzetti, R

    2008-04-01

    Previous studies suggested that polymorphisms in the coding region of the preproghrelin were involved in the etiology of obesity and might modulate glucose-induced insulin secretion. We evaluated the association of a new variation, -604C>T, in the promoter region of the ghrelin gene, of Leu72Met (247C>A) and of Gln90Leu (265A>T), all haplotype-tagging single nucleotide polymorphisms (SNPs), with measures of insulin sensitivity in 1420 adult individuals. The three SNPs were genotyped using ABI PRISM 7900 HT Sequence Detection System. We used multiple linear regression analysis for quantitative traits and THESIAS software for haplotype analysis. We observed a protective effect exerted by Met72 variant of Leu72Met SNP on insulin resistance parameters; a significant decreasing trend from Leu/Leu to Leu/Met and to Met/Met homozygous subjects in triglycerides, fasting insulin levels and HOMA-IR index (P=0.02, 0.01 and 0.003, respectively), and, consistently, an increase in ghrelin levels (P=0.003) was found. A significant decrease from CC to TC and to TT genotypes in insulin levels and HOMA-IR index was also detected (P=0.00l for both), but only in subjects homozygous for Leu72, where the protective effect of Met72 was not present. The haplotype analysis results supported the data obtained by the evaluation of each single SNP, showing the highest value of insulin levels and HOMA-IR index in the -604(c)247(c) haplotype intermediate value in -604(T)247(C) and lowest value in -604(C)247(A). Our observations suggest a protective role of the Met72 variant and of -604 T allele in modulating insulin resistance. These SNPs or an unknown functional variant in linkage disequilibrium could increase ghrelin levels and probably insulin sensitivity.

  7. [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, small molecule synthetic peptide leptin mimetics, improve glycemic control in diet-induced obese (DIO) mice.

    PubMed

    Wang, Anke; Anderson, Brian M; Novakovic, Zachary M; Grasso, Patricia

    2018-03-01

    We have previously shown that following oral delivery in dodecyl maltoside (DDM), [D-Leu-4]-OB3 and its myristic acid conjugate, MA-[D-Leu-4]-OB3, improved energy balance and glucose homeostasis in genetically obese/diabetic mouse models. More recently, we have provided immunohistochemical evidence indicating that these synthetic peptide leptin mimetics cross the blood-brain barrier and concentrate in the area of the arcuate nucleus of the hypothalamus in normal C57BL/6J and Swiss Webster mice, in genetically obese ob/ob mice, and in diet-induced obese (DIO) mice. In the present study, we describe the effects of oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control in diet-induced (DIO) mice, a non-genetic rodent model of obesity and its associated insulin resistance, which more closely recapitulates common obesity and diabetes in humans. Male C57BL/6J and DIO mice, 17, 20, and 28 weeks of age, were maintained on a low-fat or high-fat diet and given vehicle (DDM) alone or [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in DDM by oral gavage for 12 or 14 days. Body weight gain, food and water intake, fasting blood glucose, oral glucose tolerance, and serum insulin levels were measured. Our data indicate that (1) [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 restore glucose tolerance in male DIO mice maintained on a high-fat diet to levels comparable to those of non-obese C57BL/6J wild-type mice of the same age and sex maintained on a low-fat diet; and (2) the influence of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control appears to be independent of their effects on energy balance. These results suggest that [D-Leu-4]-OB3 and/or MA-[D-Leu-4]-OB3 may have application to the management of the majority of cases of common obesity in humans, a state characterized at least in part, by leptin resistance resulting from a defect in leptin transport across the blood-brain barrier. They further suggest that these small molecule synthetic peptide leptin mimetics, through their

  8. Association of ghrelin Leu72Met polymorphism with type 2 diabetes mellitus in Chinese population.

    PubMed

    Liu, Jing; Liu, Jia; Tian, Li-min; Liu, Ju-xiang; Bing, Ya-jun; Zhang, Ji-ping; Wang, Yun-Fang; Zhang, Lu-yan

    2012-08-10

    Ghrelin, a novel endogenous ligand for the growth hormone secretagogue receptor, is considered to implicate the development of the type 2 diabetes mellitus (T2DM). The Leu72Met (+408C>A) polymorphism of the preproghrelin, has been linked to obesity, insulin resistance and diabetes. To investigate the distribution of ghrelin gene Leu72Met polymorphism and its association with the type 2 diabetes mellitus in Chinese population. We conducted a case-control study on 877 patients with T2DM and 864 controls, which were genotyped by the polymerase chain reaction (PCR) technique, denaturing high performance liquid chromatography (DHPLC) and DNA sequence analysis. Laboratory analyses were carried out in the hospital laboratory. No significant difference in the Leu72Met genotype distributions and allele frequency was observed between type 2 diabetes mellitus and controls (both P>0.05). The polymorphism was not associated with T2DM. However, among the T2DM group, the patients carrying Leu72Leu genotype had significantly increased levels of FPG and serum creatinine compared with variant genotypes (Leu72Met and Met72Met) (P<0.05). In the control group, the subjects with variant genotypes had significantly increased levels of FINS, HOMA-IR compared with Leu72Leu genotype (P<0.05). The Leu72Met polymorphism of the preproghrelin gene was not associated with T2DM in Chinese population. However, it may have some roles in the etiology of insulin resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Analysis of Distinct Roles of CaMKK Isoforms Using STO-609-Resistant Mutants in Living Cells.

    PubMed

    Fujiwara, Yuya; Hiraoka, Yuri; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2015-06-30

    To assess the isoform specificity of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-mediated signaling pathway using a CaMKK inhibitor (STO-609) in living cells, we have established A549 cell lines expressing STO-609-resistant mutants of CaMKK isoforms. Following serial mutagenesis studies, we have succeeded in obtaining an STO-609-resistant CaMKKα mutant (Ala292Thr/Leu233Phe) and a CaMKKβ mutant (Ala328Thr/Val269Phe), which showed sensitivity to STO-609 that was 2-3 orders of magnitude lower without an appreciable effect on kinase activity or CaM requirement. These results are consistent with the results obtained for CaMKK activities in the extracts of A549 cells stably expressing the mutants of CaMKK isoforms. Ionomycin-induced 5'-AMP-activated protein kinase (AMPK) phosphorylation at Thr172 in A549 cells expressing either the wild-type or the STO-609-resistant mutant of CaMKKα was completely suppressed by STO-609 treatment but resistant to the inhibitor in the presence of the CaMKKβ mutant (Ala328Thr/Val269Phe). This result strongly suggested that CaMKKβ is responsible for ionomycin-induced AMPK activation, which supported previous reports. In contrast, ionomycin-induced CaMKIV phosphorylation at Thr196 was resistant to STO-609 treatment in A549 cells expressing STO-609-resistant mutants of both CaMKK isoforms, indicating that both CaMKK isoforms are capable of phosphorylating and activating CaMKIV in living cells. Considering these results together, STO-609-resistant CaMKK mutants developed in this study may be useful for distinguishing CaMKK isoform-mediated signaling pathways in combination with the use of an inhibitor compound.

  10. Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration.

    PubMed

    Lynch, Joseph H; Orlova, Irina; Zhao, Chengsong; Guo, Longyun; Jaini, Rohit; Maeda, Hiroshi; Akhtar, Tariq; Cruz-Lebron, Junellie; Rhodes, David; Morgan, John; Pilot, Guillaume; Pichersky, Eran; Dudareva, Natalia

    2017-12-01

    Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non-oxidative deamination of Phe to trans-cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81-94% led to an 18-fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate-derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL-RNAi transgenic plants resulted in 1.6-fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Preparation and Evaluation at the Delta Opioid Receptor of a Series of Linear Leu-Enkephalin Analogues Obtained by Systematic Replacement of the Amides

    PubMed Central

    2013-01-01

    Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds. PMID:23650868

  12. Nucleotide sequencing analysis of a LEU gene of Candida maltosa which complements leuB mutation of Escherichia coli and leu2 mutation of Saccharomyces cerevisiae.

    PubMed

    Takagi, M; Kobayashi, N; Sugimoto, M; Fujii, T; Watari, J; Yano, K

    1987-01-01

    The expression of a LEU gene from Candida maltosa (designated as C-LEU2) isolated previously (Kawamura et al. 1983) was shown to be regulated, when transferred into Saccharomyces cerevisiae, by leucine and threonine in the medium, as in the case of LEU2 gene of S. cerevisiae. The coding region together with the regulatory region was subcloned and the nucleotide sequence was determined. When the sequence of the coding region was compared with that of LEU2, the homology was 72% for base pairs and 76% for deduced amino acids. Comparison of the regulatory region of C-LEU2 with those of LEU1 and LEU2 suggested a few short consensus sequences which are involved in regulation of gene expression by leucine and threonine in the medium.

  13. Surface-enhanced Raman difference between bombesin and its modified analogues on the colloidal and electrochemically roughen silver surfaces.

    PubMed

    Podstawka, Edyta; Ozaki, Yukihiro

    2008-10-01

    In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution. For example, the indole ring in all the peptides interacts with silver nanoparticles in a edge-on orientation. It is additionally coordinated to the silver through the N(1)--H bond for all the peptides, except [Phe(12)]BN. This is in contrary to the results obtained for the silver roughen electrode that show direct but not strong N(1)--H/Ag interaction for all peptides except [D-Phe(12),Leu(14)]BN and [Leu(13)-(R)-Leu(14)]BN. For BN only C==O is not involved in the chemical coordination with the colloidal surface. [Lys(3)]BN and BN also adsorb with the C--N bond of NH(2) group normal and horizontal, respectively, to the colloidal surface, whereas C--NH(2) in other peptides is tilted to this surface. Also, the Trp(8) --CH(2)-- moiety of only [Tyr(4)]BN, [Lys(3)]BN, and [Tyr(4),D-Phe(12)]BN coordinates to Ag, whereas the Phe(12) ring of [Phe(12)]BN, [Tyr(4),D-Phe(12)]BN, and [D-Phe(12),Leu(14)]BN assists in the peptides binding only on the colloidal silver. (c) 2008 Wiley Periodicals, Inc.

  14. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.

    PubMed

    Matsunaga, Toshiyuki; Hojo, Aki; Yamane, Yumi; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2013-02-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors. Copyright © 2012 Elsevier Ireland

  15. TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wanlu; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province; Tang, Zhuqi

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion ofmore » TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.« less

  16. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene

    PubMed Central

    Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina

    2017-01-01

    ABSTRACT Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu393, Phe397, Phe415, and His440) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. PMID:28416557

  17. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene.

    PubMed

    Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina; Monod, Michel

    2017-07-01

    Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu 393 , Phe 397 , Phe 415 , and His 440 ) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes ) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. Copyright © 2017 American Society for Microbiology.

  18. L1014F-kdr Mutation in Indian Anopheles subpictus (Diptera: Culicidae) Arising From Two Alternative Transversions in the Voltage-Gated Sodium Channel and a Single PIRA-PCR for Their Detection.

    PubMed

    Singh, O P; Dykes, C L; Sharma, G; Das, M K

    2015-01-01

    Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Ceftazidime-Resistant Enterobacteriaceae Isolates from Three Polish Hospitals: Identification of Three Novel TEM- and SHV-5-Type Extended-Spectrum β-Lactamases

    PubMed Central

    Gniadkowski, Marek; Schneider, Ines; Jungwirth, Renate; Hryniewicz, Waleria; Bauernfeind, Adolf

    1998-01-01

    Twelve ceftazidime-resistant isolates of the family Enterobacteriaceae (11 Klebsiella pneumoniae isolates and 1 Escherichia coli isolate) were collected in 1995 from three Polish hospitals located in different cities. All were identified as producers of extended-spectrum β-lactamases (ESBLs). Detailed analysis of their β-lactamase contents revealed that six of them expressed SHV-5-like ESBLs. The remaining six were found to produce three different TEM enzymes, each characterized by a pI value of 6.0 and specified by new combinations of amino acid substitutions. The amino acid substitutions compared to the TEM-1 β-lactamase sequence were Gly238Ser, Glu240Lys, and Thr265Met for TEM-47; Leu21Phe, Gly238Ser, Glu240Lys, and Thr265Met for TEM-48; and Leu21Phe, Gly238Ser, Glu240Lys, Thr265Met, and Ser268Gly for TEM-49. The new TEM β-lactamases, TEM-47, TEM-48, and TEM-49, belong to a subfamily of TEM-2-related enzymes. Genes coding for TEM-47 and TEM-49 could have originated from the TEM-48-encoding sequence by various single genetic events. The new TEM derivatives probably document the already advanced microevolution of ESBLs ongoing in Polish hospitals, in a majority of which no monitoring of ESBL producers was performed before 1996. PMID:9517925

  20. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity.

    PubMed

    Muramatsu, Tomonari; Takemoto, Chie; Kim, Yong-Tae; Wang, Hongfei; Nishii, Wataru; Terada, Takaho; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2016-11-15

    The 3C-like protease (3CL pro ) of severe acute respiratory syndrome coronavirus (SARS-CoV) cleaves 11 sites in the polyproteins, including its own N- and C-terminal autoprocessing sites, by recognizing P4-P1 and P1'. In this study, we determined the crystal structure of 3CL pro with the C-terminal prosequence and the catalytic-site C145A mutation, in which the enzyme binds the C-terminal prosequence of another molecule. Surprisingly, Phe at the P3' position [Phe(P3')] is snugly accommodated in the S3' pocket. Mutations of Phe(P3') impaired the C-terminal autoprocessing, but did not affect N-terminal autoprocessing. This difference was ascribed to the P2 residue, Phe(P2) and Leu(P2), in the C- and N-terminal sites, as follows. The S3' subsite is formed by Phe(P2)-induced conformational changes of 3CL pro and the direct involvement of Phe(P2) itself. In contrast, the N-terminal prosequence with Leu(P2) does not cause such conformational changes for the S3' subsite formation. In fact, the mutation of Phe(P2) to Leu in the C-terminal autoprocessing site abolishes the dependence on Phe(P3'). These mechanisms explain why Phe is required at the P3' position when the P2 position is occupied by Phe rather than Leu, which reveals a type of subsite cooperativity. Moreover, the peptide consisting of P4-P1 with Leu(P2) inhibits protease activity, whereas that with Phe(P2) exhibits a much smaller inhibitory effect, because Phe(P3') is missing. Thus, this subsite cooperativity likely exists to avoid the autoinhibition of the enzyme by its mature C-terminal sequence, and to retain the efficient C-terminal autoprocessing by the use of Phe(P2).

  1. Neurotensin analogs [D-TYR11] and [D-PHE11]neurotensin resist degradation by brain peptidases in vitro and in vivo.

    PubMed

    Checler, F; Vincent, J P; Kitabgi, P

    1983-12-01

    The present study was designed to compare the susceptibility of neurotensin (NT), [3H]NT, [D-Tyr11]NT and [D-Phe11]NT to degradation by 1) rat brain synaptic membranes in vitro and 2) after i.c.v. administration in the rat in vivo. Degradation was assessed by purifying the peptides using reverse phase high-performance liquid chromatography and by measuring the amount of radioactive or absorbing (OD 230) material under each peptide peak. In contrast to NT, [D-Tyr11]NT and [D-Phe11]NT were resistant to degradation by brain synaptic peptidases in vitro. Furthermore, NT was rapidly metabolized in brain tissues after i.c.v. administration, whereas [D-Tyr11]NT was metabolically stable. The present data confirm the central role of NT residue Tyr11 in the mechanisms of NT inactivation by brain synaptic peptidases. They account for the higher in vivo potency of [D-Tyr11]NT as compared with its in vitro potency. Finally, they explain, at least in part, the need to administer large doses of NT in the brain in order to observe neurobehavioral and neuropharmacological effects.

  2. Federal Public Health Actions - PHE

    Science.gov Websites

    and reload this page. Skip over global navigation links U.S. Department of Health and Human Services Health Emergency - Leading a Nation Prepared Search Search PHE Home > PHE Newsroom > Federal Public Health Actions Federal Public Health Actions Main Content April 20, 2018: Renewal of Determination that a

  3. In vitro antioxidant activities of the novel pentapeptides Ser-His-Glu-Cys-Asn and Leu-Pro-Phe-Ala-Met and the relationship between activity and peptide secondary structure.

    PubMed

    Yang, Ruiwen; Wang, Jia; Lin, Songyi; Ye, Haiqing; Chen, Feng

    2017-04-01

    Using high-performance liquid chromatography/tandem mass spectrometry, two novel antioxidant pentapeptides [Ser-His-Glu-Cys-Asn (SHECN) and Leu-Pro-Phe-Ala-Met (LPFAM)] were identified from 1-3-kDa soybean protein hydrolysates (SPH). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to evaluate cytotoxicity in HepG2 cells. Antioxidant activity was measured using in vitro assays, including the cellular antioxidant activity assay (CAA), 2,2-diphenyl-1-picrylhydrazyl or 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) inhibition, and oxygen radical absorbance capacity (ORAC) assays. Finally, the secondary structure was determined using circular dichroism (CD). The results revealed that two novel peptides were nontoxic and possessed antioxidant activity. SHECN had significantly higher antioxidant activity than LPFAM (P < 0.05). The CAA value of SHECN was 776.22 µmol QE 100 g -1 . SHECN also showed significant DPPH inhibition (70.18 ± 4.06%) and ABTS inhibition (88.16 ± 0.76%). It had normalized ORAC values of 0.3000 ± 0.0070 µmol GE mg -1 and 0.0900 ± 0.0020 µmol TE mg -1 , respectively. The results of the CD analysis demonstrated that, compared to LPFAM, which had much lower antioxidant activity, SHECN had a high β-sheet content and reduced α-helix content. The results indicated that SHECN possessed high antioxidant activity. A higher β-sheet content and lower content levels of α-helix appear to be correlated with antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Dietary tryptophan depletion in humans using a simplified two amino acid formula - a pilot study.

    PubMed

    Linden, Maike; Helmbold, Katrin; Kempf, Janina; Sippas, Shabnam; Filss, Christian; Langen, Karl-Josef; Eisert, Albrecht; Zepf, Florian Daniel

    2016-01-01

    Acute tryptophan depletion (ATD) is a well-established dietary method in translational brain research used to briefly lower central nervous serotonin (5-hydroxytryptamine (5-HT)) synthesis. A simplified two amino acid ATD formula (ATD PHE/LEU ) was developed while reducing the overall amount of amino acids (AAs), with the objective of administration especially in children and adolescents in future studies. This study investigated tryptophan (TRP) influx rates across the blood-brain barrier (BBB) after dietary ATD PHE/LEU administration relative to the ATD Moja-De protocol that has been established for use in children and adolescents. Seventy-two healthy adults (50% females) were randomized into four groups and administered ATD Moja-De, its TRP-balanced control condition (BAL), ATD PHE/LEU , or its respective control mixture (BAL PHE/LEU ) in a counterbalanced, double-blind, between-subjects design. Blood samples were collected at baseline and at hourly intervals for 6 h after AA intake. Questionnaires about mood, taste, and challenge tolerance were completed at fixed time points. Both challenge mixtures significantly reduced central nervous TRP influx as calculated by Michaelis-Menten kinetics relative to baseline and the respective control conditions with only mild and comparable side effects. A greater decline in TRP influx over the BBB after ATD PHE/LEU administration when compared with ATD Moja-De was detected without group effects for taste, challenge tolerance, and mood. There was unintended initial short increase in plasma TRP concentrations observed after ATD PHE/LEU intake, and a possible redistribution between free and protein-bound TRP triggered by protein synthesis stimulated by the ingested AAs may account for this finding. Moreover, a decline in TRP influx after BAL PHE/LEU administration over a 6-h period was observed, and the large amount of PHE in the BAL PHE/LEU mixture may be a possible explanation for this particular phenomenon, which could have

  5. Crystal structure of a complex formed between a snake venom phospholipase A(2) and a potent peptide inhibitor Phe-Leu-Ser-Tyr-Lys at 1.8 A resolution.

    PubMed

    Chandra, Vikas; Jasti, Jayasankar; Kaur, Punit; Dey, Sharmistha; Perbandt, M; Srinivasan, A; Betzel, Ch; Singh, T P

    2002-10-25

    Phospholipase A(2) is an important enzyme involved in the production of prostaglandins and their related compounds causing inflammatory disorders. Among the several peptides tested, the peptide Phe-Leu-Ser-Tyr-Lys (FLSYK) showed the highest inhibition. The dissociation constant (K(d)) for this peptide was calculated to be 3.57 +/- 0.05 x 10(-9) m. In order to further improve the degree of inhibition of phospholipase A(2), a complex between Russells viper snake venom phospholipase A(2) and a peptide inhibitor FLSYK was crystallized, and its structure was determined by crystallographic methods and refined to an R-factor of 0.205 at 1.8 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) (molecules A and B) and a peptide molecule specifically bound to molecule A only. The two molecules formed an asymmetric dimer. The dimerization caused a modification in the binding site of molecule A. The overall conformations of molecules A and B were found to be generally similar except three regions i.e. the Trp-31-containing loop (residues 25-34), the beta-wing consisting of two antiparallel beta-strands (residues 74-85) and the C-terminal region (residues 119-133). Out of the above three, the most striking difference pertains to the conformation of Trp-31 in the two molecules. The orientation of Trp-31 in molecule A was suitable for the binding of FLSYK, while it disallowed the binding of peptide to molecule B. The structure of the complex clearly shows that the peptide is so placed in the binding site of molecule A that the side chain of its lysine residue interacted extensively with the enzyme and formed several hydrogen bonds in addition to a strong electrostatic interaction with critical Asp-49. The C-terminal carboxylic group of the peptide interacted with the catalytic residue His-48.

  6. The Arrhythmogenic Calmodulin p.Phe142Leu Mutation Impairs C-domain Ca2+ Binding but Not Calmodulin-dependent Inhibition of the Cardiac Ryanodine Receptor*

    PubMed Central

    Liu, Yingjie; Larsen, Kamilla Taunsig; Nani, Alma; Tian, Xixi; Holt, Christian; Wang, Ruiwu; Fill, Michael

    2017-01-01

    A number of point mutations in the intracellular Ca2+-sensing protein calmodulin (CaM) are arrhythmogenic, yet their underlying mechanisms are not clear. These mutations generally decrease Ca2+ binding to CaM and impair inhibition of CaM-regulated Ca2+ channels like the cardiac Ca2+ release channel (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+ binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start-Met), which markedly reduces CaM Ca2+ binding. Surprisingly, CaM-F142L had little to no aberrant effect on RyR2-mediated store overload-induced Ca2+ release in HEK293 cells compared with CaM-WT. Furthermore, CaM-F142L enhanced CaM-dependent RyR2 inhibition at the single channel level compared with CaM-WT. This is in stark contrast to the actions of arrhythmogenic CaM mutations N54I, D96V, N98S, and D130G, which all diminish CaM-dependent RyR2 inhibition. Thermodynamic analysis showed that apoCaM-F142L converts an endothermal interaction between CaM and the CaM-binding domain (CaMBD) of RyR2 into an exothermal one. Moreover, NMR spectra revealed that the CaM-F142L-CaMBD interaction is structurally different from that of CaM-WT at low Ca2+. These data indicate a distinct interaction between CaM-F142L and the RyR2 CaMBD, which may explain the stronger CaM-dependent RyR2 inhibition by CaM-F142L, despite its reduced Ca2+ binding. Collectively, these results add to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+ release by manipulating the CaM-RyR2 interaction. PMID:27927985

  7. A DKP Cyclo(L-Phe-L-Phe) Found in Chicken Essence Is a Dual Inhibitor of the Serotonin Transporter and Acetylcholinesterase

    PubMed Central

    Tsuruoka, Nobuo; Beppu, Yoshinori; Koda, Hirofumi; Doe, Nobutaka; Watanabe, Hiroshi; Abe, Keiichi

    2012-01-01

    Diketopiperazines (DKPs) are naturally-occurring cyclic dipeptides with a small structure and are found in many organisms and in large amounts in some foods and beverages. We found that a chicken essence beverage, which is popular among Southeast Asians as a traditional remedy and a rich source of DKPs, inhibited the serotonin transporter (SERT) and suppressed serotonin uptake from rat brain synaptosomes, which prompted us to isolate and identify the active substance(s). We purified a SERT inhibitor from the chicken essence beverage and identified it as the DKP cyclo(L-Phe-L-Phe). Interestingly, it was a naturally occurring dual inhibitor that inhibited both SERT and acetylcholinesterase (AChE) in vitro. The DKP increased extracellular levels of the cerebral monoamines serotonin, norepinephrine, and dopamine in the medial prefrontal cortex and acetylcholine in the ventral hippocampus of freely moving rats when administered orally. Moreover, cyclo(L-Phe-L-Phe) significantly shortened escape latency in the water maze test in depressed mice previously subjected to a repeated open-space swimming task, which induces a depression-like state. Cyclo(L-Phe-L-Phe) also significantly improved accuracy rates in a radial maze test in rats and increased step-through latencies in a passive avoidance test in mice with scopolamine-induced amnesia. These animal test results suggest that cyclo(L-Phe-L-Phe), which is present abundantly in some foods such as chicken essence, may abrogate the onset of depression and, thus, contribute to preventing the development of Alzheimer’s disease and other dementia, because senile depression is a risk factor for dementia. PMID:23209830

  8. Comparison of L-selectin blood level and gene polymorphism in tuberculosis patients with healthy individuals.

    PubMed

    Eini, Peyman; Shirvani, Maria; Hajilooi, Mehrdad; Esna-Ashari, Farzaneh

    2018-02-12

    The inflammatory response to Mycobacterium tuberculosis bacilli influences tuberculosis (TB) progression. In this study, we aimed to identify the Phe206Leu polymorphism and serum L-selectin level in TB patients, compared to healthy individuals. Ninety patients with a diagnosis of TB and 90 healthy controls were selected in this study. The serum L-selectin level was determined, using ELISA. L-selectin polymorphism was also evaluated using PCR. For data analysis, SPSS was used at a significance level of 0.05. According to the findings, the mean±SD age of the participants was 57.5 ± 18.4 and 56.5 ± 17.5 years in the TB and healthy groups, respectively. The TB group showed a significantly higher serum L-selectin level (1721.1 ± 330.9) versus the healthy controls (1624 ± 279). The L-selectin Phe allele frequencies were higher than the Leu allele frequencies in the main population, whereas the patients and controls were not significantly different. Eight (0.04%) subjects had Leu/Leu genotypes, 84 (46.6%) carried Phe/Leu genotypes, and 88 (48.8%) had Phe/Phe genotypes. Our results showed that the groups were not significantly different regarding L-selectin genotypes. TB patients had a significantly higher serum L-selectin level, compared to the controls. Based on the findings, the incidence of TB and L-selectin polymorphism in the Phe206Leu gene had no significant association. © 2018 Wiley Periodicals, Inc.

  9. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation.

    PubMed

    Deng, Wei; Yang, Qian; Zhang, Yongzhi; Jiao, Hongtao; Mei, Yu; Li, Xuefeng; Zheng, Mingqi

    2017-03-01

    Acetolactate synthase (ALS) is the common target of ALS-inhibiting herbicides, and target-site ALS mutations are the main mechanism of resistance to ALS-inhibiting herbicides. In this study, ALS1 and ALS2 genes with full lengths of 2004bp and 1998bp respectively were cloned in individual plants of susceptible (S) or resistant (R) flixweed (Descurainia sophia L.) populations. Two ALS mutations of Pro-197-Thr and/or Trp-574-Leu were identified in plants of three R biotypes (HB24, HB30 and HB42). In order to investigate the function of ALS isozymes in ALS-inhibiting herbicide resistance, pHB24 (a Pro-197-Thr mutation in ALS1 and a wild type ALS2), pHB42 (a Trp-574-Leu mutation in ALS1 and a wild type ALS2) and pHB30 (a Trp-574-Leu mutation in ALS1 and a Pro-197-Thr mutation in ALS2) subpopulations individually homozygous for different ALS mutations were generated. Individuals of pHB30 had mutations in each isozyme of ALS and had higher resistance than pHB24 and pHB42 populations containing mutations in only one ALS isozyme. Moreover, the pHB24 had resistance to SU, TP and SCT herbicides, whereas pHB24 and pHB42 had resistance to these classes of herbicides as well as IMI and PTB herbicides. The sensitivity of isolated ALS enzyme to inhibition by herbicides in these populations correlated with whole plant resistance levels. Therefore, reduced ALS sensitivity resulting from the mutations in ALS was responsible for resistance to ALS-inhibiting herbicides in flixweed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Antinociceptive potency of a fluorinated cyclopeptide Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2.

    PubMed

    Piekielna-Ciesielska, Justyna; Mollica, Adriano; Pieretti, Stefano; Fichna, Jakub; Szymaszkiewicz, Agata; Zielińska, Marta; Kordek, Radzisław; Janecka, Anna

    2018-12-01

    Opioid peptides and opiate drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor. However, delta- and kappa-opioid receptors can also contribute to the analgesic effects of opioids. Recent findings showed that simultaneous activation of multiple opioid receptors may result in additional analgesia with fewer side effects. Here, we evaluated the pharmacological profile of our formerly developed mixed mu/kappa-opioid receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH 2 (C-36) and Dmt-c[D-Lys-Phe-p-CF 3 -Phe-Asp]NH 2 (F-81). The ability of these peptides to cross the blood-brain barrier was tested in the parallel artificial membrane permeability (PAMPA) assay. On the basis of the hot-plate test in mice after central and peripheral administration, analog F-81 was selected for the anti-nociceptive and anti-inflammatory activity assessment after peripheral administration.

  11. Metabolic signatures of insulin resistance in 7,098 young adults.

    PubMed

    Würtz, Peter; Mäkinen, Ville-Petteri; Soininen, Pasi; Kangas, Antti J; Tukiainen, Taru; Kettunen, Johannes; Savolainen, Markku J; Tammelin, Tuija; Viikari, Jorma S; Rönnemaa, Tapani; Kähönen, Mika; Lehtimäki, Terho; Ripatti, Samuli; Raitakari, Olli T; Järvelin, Marjo-Riitta; Ala-Korpela, Mika

    2012-06-01

    Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.

  12. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    PubMed

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  13. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides.

    PubMed

    Kasai, S; Sun, H; Scott, J G

    2017-02-01

    Insecticide use exerts a tremendous selection force on house fly populations, but the frequencies of the initial resistance mutations may not reach high levels if they have a significant fitness cost in the absence of insecticides. However, with the continued use of the same (or similar) insecticides, it is expected that new mutations (conferring equal or greater resistance, but less of a fitness cost) will evolve. Pyrethroid insecticides target the insect voltage sensitive sodium channel (VSSC) and have been widely used for control of house flies at animal production facilities for more than three decades. There are three Vssc mutations known that cause resistance to pyrethroids in house flies: knockdown resistance (kdr, L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Whether or not there are any new mutations in house fly populations has not been examined for decades. We collected house flies from a dairy in Kansas (USA) and selected this population for three generations. We discovered multiple new Vssc alleles, including two that give very high levels of resistance to most pyrethroids. The importance of these findings to understanding the evolution of insecticide resistance, designing appropriate resistance monitoring and management schemes, and the future of pyrethroids for house fly control are discussed. © 2016 The Royal Entomological Society.

  14. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Stott, Robert; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. PMID:26548743

  15. Guinea Pig Chymase Is Leucine-specific

    PubMed Central

    Caughey, George H.; Beauchamp, Jeremy; Schlatter, Daniel; Raymond, Wilfred W.; Trivedi, Neil N.; Banner, David; Mauser, Harald; Fingerle, Jürgen

    2008-01-01

    To explore guinea pigs as models of chymase biology, we cloned and expressed the guinea pig ortholog of human chymase. In contrast to rats and mice, guinea pigs appear to express just one chymase, which belongs to the α clade, like primate chymases and mouse mast cell protease-5. The guinea pig enzyme autolyzes at Leu residues in the loop where human chymase autolyzes at Phe. In addition, guinea pig α-chymase selects P1 Leu in a combinatorial peptide library and cleaves Ala-Ala-Pro-Leu-4-nitroanilide but has negligible activity toward substrates with P1 Phe and does not cleave angiotensin I. This contrasts with human chymase, which cleaves after Phe or Tyr, prefers P1 Phe in peptidyl 4-nitroanilides, and avidly hydrolyzes angiotensin I at Phe8 to generate bioactive angiotensin II. The guinea pig enzyme also is inactivated more effectively by α1-antichymotrypsin, which features P1 Leu in the reactive loop. Unlike mouse, rat, and hamster α-chymases, guinea pig chymase lacks elastase-like preference for P1 Val or Ala. Partially humanized A216G guinea pig chymase acquires human-like P1 Phe- and angiotensin-cleaving capacity. Molecular models suggest that the wild type active site is crowded by the Ala216 side chain, which potentially blocks access by bulky P1 aromatic residues. On the other hand, the guinea pig pocket is deeper than in Val-selective chymases, explaining the preference for the longer aliphatic side chain of Leu. These findings are evidence that chymase-like peptidase specificity is sensitive to small changes in structure and provide the first example of a vertebrate Leu-selective peptidase. PMID:18353771

  16. Detection of knockdown resistance mutations in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), in Australia.

    PubMed

    Dang, Kai; Toi, Cheryl S; Lilly, David G; Bu, Wenjun; Doggett, Stephen L

    2015-07-01

    Pyrethroid resistance in the common bed bug, Cimex lectularius L., has been reported worldwide. An important resistance mechanism is via knockdown resistance (kdr) mutations, notably V419L and L925I. Information regarding this kdr-type resistance mechanism is unknown in Australia. This study aims to examine the status of kdr mutations in Australian C. lectularius strains. Several modern field-collected strains and museum-preserved reference collections of Australian C. lectularius were examined. Of the field strains (2007-2013), 96% had the known kdr mutations (L925I or both V419L/L925I). The 'Adelaide' strain (2013) and samples from the preserved reference collections (1994-2002) revealed no known kdr mutations. A novel mutation I936F was apparent in the insecticide-resistant 'Adelaide' strain, one strain from Perth (with L925I) and the majority of the reference collection specimens. The laboratory insecticide-resistant 'Sydney' strain showed a mixture of no kdr mutations (20%) and L925I (80%). The novel mutation I936F may be a kdr mutation but appeared to contribute less resistance to the pyrethroids than the V419L and L925I mutations. The detection of high frequencies of kdr mutations indicates that kdr-type resistance is widespread across Australia. Hence, there should be a reduced reliance on pyrethroid insecticides and an integrated management approach for the control of C. lectularius infestations. © 2014 Society of Chemical Industry.

  17. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis.

    PubMed

    Ibrahim, Sulaiman S; Riveron, Jacob M; Stott, Robert; Irving, Helen; Wondji, Charles S

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Energy landscape of LeuT from molecular simulations

    NASA Astrophysics Data System (ADS)

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-12-01

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ˜40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

  19. Energy landscape of LeuT from molecular simulations.

    PubMed

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-12-28

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na(+) ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

  20. Energy landscape of LeuT from molecular simulations

    PubMed Central

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-01-01

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates. PMID:26723619

  1. First report of the Phe1534Cys kdr mutation in natural populations of Aedes albopictus from Brazil.

    PubMed

    Aguirre-Obando, Oscar Alexander; Martins, Ademir Jesus; Navarro-Silva, Mário Antônio

    2017-03-27

    Knockdown resistance (kdr), caused by alterations in the voltage-gated sodium channel (Na V ), is one of the mechanisms responsible for pyrethroid (PY) resistance. In the Asian tiger mosquito, Aedes albopictus, at least four different mutations were described in the IIIS6 Na V segment in populations from Asia, North America and Europe. In contrast, in Aedes aegypti at least 12 non-synonymous mutations have been reported at nine different codons, mostly in the IIS6 and IIIS6 Na V segments. The Phe1534Cys kdr mutation in the IIIS6 Na V segment is the most prevalent in populations of Ae. aegypti worldwide, also found in Ae. albopictus from Singapore. Herein, we investigated the DNA diversity corresponding to the IIS6 and IIIS6 Na V segments in natural populations of Ae. albopictus from Brazil. DNA from eight Brazilian Ae. albopictus natural populations were individually extracted and pooled by states of origin, amplified, cloned and sequenced for the corresponding IIS6 and IIIS6 Na V segments. Additionally, samples from each location were individually genotyped by an allelic specific PCR (AS-PCR) approach to obtain the genotypic and allelic frequencies for the 1534 Na V site. No non-synonymous substitutions were observed in the IIS6 sequences. However, the Phe1534Cys kdr mutation was evidenced in the Ae. albopictus Na V IIIS6 segment sequences from Paraná (PR) and Rondônia (RO) states, but not from Mato Grosso (MT) state. The 1534Cys kdr allele varied from 3% (Marilena/PR and Porto Velho/RO) to 10% (Foz do Iguaçu/PR). To our knowledge, this paper reports the first occurrence and provides distribution data of a possible kdr mutation in Ae. albopictus in South America. The emergence of a likely kdr mutation in Ae. albopitus natural populations is a signal of alert for vector control measures since PY are the most popular insecticides adopted by residents. Additionally, once the kdr allele is present, its frequency tends to increase faster under exposition to those

  2. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80.

    PubMed Central

    Chen, M X; Bouquin, N; Norris, V; Casarégola, S; Séror, S J; Holland, I B

    1991-01-01

    We have isolated several classes of spontaneous mutants resistant to the calmodulin inhibitor 48/80 which inhibits cell division in Escherichia coli K12. Several mutants were also temperature sensitive for growth and this property was exploited to clone a DNA fragment from an E. coli gene library restoring growth at 42 degrees C and drug sensitivity at 30 degrees C in one such mutant. Physical and genetic mapping confirmed that both the mutation and the cloned DNA were located at 15.5 min on the E. coli chromosome at a locus designated feeB. By subcloning, complementation analysis and sequencing, the feeB locus was identified as identical to the tRNA(CUALEU) gene. When the mutant locus was isolated and sequenced, the mutation was confirmed as a single base change, C to A, at position 77 in the acceptor stem of this rare Leu tRNA. In other studies we obtained evidence that this mutant tRNA, recognizing the rare Leu codon, CUA, was defective in translation at both permissive and non-permissive temperatures. The feeB1 mutant is defective in division and shows a reduced growth rate at non-permissive temperature. We discuss the possibility that the mutant tRNA(3Leu) is limiting for the synthesis of a polypeptide(s), requiring several CUA codons for translation which in turn regulates in some way the level or activity of the drug target, a putative cell cycle protein. Images PMID:1915285

  3. Transport of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide Ala-His-Leu-Leu Across Human Intestinal Epithelial Caco-2 Cells.

    PubMed

    Li, Ying; Zhao, Jiangtao; Liu, Xiaoli; Xia, Xiudong; Wang, Ying; Zhou, Jianzhong

    2017-03-01

    The transport behavior and absorption mechanism of Ala-His-Leu-Leu (AHLL) intestinal absorption in Caco-2 cell monolayers were clarified systemically. The safe absorptive concentration of AHLL was 200 μg/mL, which was determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. The permeation of AHLL was concentration dependent in a bidirectional transfer and reached a plateau at 90 min. The efflux ratio was above 0.5, suggesting that AHLL was absorbed by both active transport and passive diffusion. The apparent permeability coefficients (P app ) of AHLL both from the apical (AP) to basolateral (BL) side (P app AB) and from the BL to AP side (P app BA) decreased when the temperature was lowered from 37°C to 4°C.The uptake of AHLL was more at pH 7.4 than at other pHs. Both verapamil and (E)-3-[[[3-[2-(7-chloro-2- quinolinyl) ethenyl] phenyl]-[[(3-dimethyl amino)-3-oxopropyl]thio] methyl] thio]-propanoic acid (MK571) inhibited the absorption of AHLL, indicating that P-glycoprotein and multi-drug resistant proteins (MRPs) were all involved in AHLL secretion, especially multi-drug resistant protein 2 (MRP2). AHLL was transported through both trans- and paracellular pathways across the Caco-2 cell monolayer. This work first elucidates the AHLL absorption mechanism in Caco-2 cells and provides the basis for future studies on the improvement of bioavailability.

  4. Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation.

    PubMed

    Vincent, B; Jiracek, J; Noble, F; Loog, M; Roques, B; Dive, V; Vincent, J P; Checler, F

    1997-06-01

    1. We have examined a series of novel phosphinic peptides as putative potent and selective inhibitors of endopeptidase 3.4.24.16. 2. The most selective inhibitor, Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2 displayed a Ki value of 12 nM towards endopeptidase 3.4.24.16 and was 5540 fold less potent on its related peptidase endopeptidase 3.4.24.15. Furthermore, this inhibitor was 12.5 less potent on angiotensin-converting enzyme and was unable to block endopeptidase 3.4.24.11, aminopeptidases B and M, dipeptidylaminopeptidase IV and proline endopeptidase. 3. The effect of Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2, in vitro and in vivo, on neurotensin metabolism in the central nervous system was examined. 4. Pro-Phe-psi(PO2CHH2)-Leu-Pro-NH2 dose-dependently inhibited the formation of neurotensin 1-10 and concomittantly protected neurotensin from degradation by primary cultured neurones from mouse embryos. 5. Intracerebroventricular administration of Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2 significantly potentiated the neurotensin-induced antinociception of mice in the hot plate test. 6. Altogether, our study has established Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2 as a fully selective and highly potent inhibitor of endopeptidase 3.4.24.16 and demonstrates, for the first time, the contribution of this enzyme in the central metabolism of neurotensin.

  5. Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation

    PubMed Central

    Vincent, Bruno; Jiracek, Jirì; Noble, Florence; Loog, Mart; Roques, Bernard; Dive, Vincent; Vincent, Jean-Pierre; Checler, Frédéric

    1997-01-01

    We have examined a series of novel phosphinic peptides as putative potent and selective inhibitors of endopeptidase 3.4.24.16. The most selective inhibitor, Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2 displayed a Ki value of 12 nM towards endopeptidase 3.4.24.16 and was 5540 fold less potent on its related peptidase endopeptidase 3.4.24.15. Furthermore, this inhibitor was 12.5 less potent on angiotensin-converting enzyme and was unable to block endopeptidase 3.4.24.11, aminopeptidases B and M, dipeptidylaminopeptidase IV and proline endopeptidase. The effect of Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2, in vitro and in vivo, on neurotensin metabolism in the central nervous system was examined. Pro-Phe-Ψ(PO2CHH2)-Leu-Pro-NH2 dose-dependently inhibited the formation of neurotensin 1-10 and concomittantly protected neurotensin from degradation by primary cultured neurones from mouse embryos. Intracerebroventricular administration of Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2 significantly potentiated the neurotensin-induced antinociception of mice in the hot plate test. Altogether, our study has established Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2 as a fully selective and highly potent inhibitor of endopeptidase 3.4.24.16 and demonstrates, for the first time, the contribution of this enzyme in the central metabolism of neurotensin. PMID:9208137

  6. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    PubMed

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Purification and identification of corn peptides that facilitate alcohol metabolism by semi-preparative high-performance liquid chromatography and nano liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Ma, Zhi-Li; Hou, Tao; Shi, Wen; Liu, Wei-Wei; Ibrahim, Salam A; He, Hui

    2016-11-01

    In this study, peptides that facilitate alcohol metabolism were purified and identified from corn protein hydrolysates. The ultra-filtered fraction with a molecular weight < 3 kDa (F3) potential activity was separated into six fractions (F3-H1-F3-H6) by semi-preparative high-performance liquid chromatography. Among the resultant six fractions, F3-H4 and F3-H5 exhibited the highest ability to eliminate alcohol in vivo. A total of 16 peptides with strong signal values were identified from F3-H4 and F3-H5 fractions by nano liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Several identified peptides were then selected and synthesized to determine their potential to facilitate alcohol metabolism. We found that Leu-Leu and Pro-Phe were the key structure units in Gln-Leu-Leu-Pro-Phe responsible for this peptide's ability to facilitate alcohol metabolism. However, the role of Leu-Leu and Pro-Phe may be affected by peptide chain length and hydrophobic properties. Our results have thus provided some insight into the study of the structure-activity relationships of corn peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metal-Catalyzed Cleavage of tRNA[superscript Phe

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students assay metal-catalyzed hydrolysis of tRNA[superscript Phe]…

  9. Structure and receptor-binding activity of insulin from a holostean fish, the bowfin (Amia calva).

    PubMed

    Conlon, J M; Youson, J H; Whittaker, J

    1991-05-15

    The holostean fishes are the extant representatives of the primitive ray-finned fishes from which the present-day teleosts may have evolved. The primary structure of insulin from a holostean fish, the bowfin (Amia calva), was established as: A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Leu-Lys-Pro-Cys-Thr-Ile-Tyr-Glu-Met-Glu- Lys-Tyr-Cys-Asn B-chain: Ala-Ala-Ser-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Phe-Leu- Val-Cys-Gly-Glu-Ser-Gly-Phe-Phe-Tyr-Asn-Pro-Asn-Lys-Ser This amino acid sequence contains several substitutions (methionine at A16, phenylalanine at B16 and serine at B22) at sites that have been strongly conserved in other vertebrate species and that may be expected to influence biological activity. Consistent with this prediction, bowfin insulin was approx. 14-fold less potent than pig insulin in inhibiting the binding of [125I-Tyr-A14](human insulin) to transfected mouse NIH 3T3 cells expressing the human insulin receptor.

  10. Structure and receptor-binding activity of insulin from a holostean fish, the bowfin (Amia calva).

    PubMed Central

    Conlon, J M; Youson, J H; Whittaker, J

    1991-01-01

    The holostean fishes are the extant representatives of the primitive ray-finned fishes from which the present-day teleosts may have evolved. The primary structure of insulin from a holostean fish, the bowfin (Amia calva), was established as: A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Leu-Lys-Pro-Cys-Thr-Ile-Tyr-Glu-Met-Glu- Lys-Tyr-Cys-Asn B-chain: Ala-Ala-Ser-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Phe-Leu- Val-Cys-Gly-Glu-Ser-Gly-Phe-Phe-Tyr-Asn-Pro-Asn-Lys-Ser This amino acid sequence contains several substitutions (methionine at A16, phenylalanine at B16 and serine at B22) at sites that have been strongly conserved in other vertebrate species and that may be expected to influence biological activity. Consistent with this prediction, bowfin insulin was approx. 14-fold less potent than pig insulin in inhibiting the binding of [125I-Tyr-A14](human insulin) to transfected mouse NIH 3T3 cells expressing the human insulin receptor. PMID:2039477

  11. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti.

    PubMed

    Chang, Cheng; Shen, Wen-Kai; Wang, Tzu-Ting; Lin, Ying-Hsi; Hsu, Err-Lieh; Dai, Shu-Mei

    2009-04-01

    To identify pertinent mutations associated with knockdown resistance to permethrin, the entire coding sequence of the voltage-gated sodium channel gene Aa-para was sequenced and analyzed from a Per-R strain with 190-fold resistance to permethrin and two susceptible strains of Aedes aegypti. The longest transcript, a 6441bp open reading frame, encodes 2147 amino acid residues with an estimated molecular mass of 241kDa. A total of 33 exons were found in the Aa-para gene over 293kb of genomic DNA. Three previously unreported optional exons were identified. The first two exons, m and n, were located within the intracellular domain I/II, and the third, f', was found within the II/III linkers. The two mutually exclusive exons, d and l, were the only alternative exons in all the cDNA clones sequenced in this study. The most distinct finding was a novel amino acid substitution mutation, D1794Y, located within the extracellular linker between IVS5 and IVS6, which is concurrent with the known V1023G mutation in Aa-para of the Per-R strain. The high frequency and coexistence of the two mutations in the Per-R strain suggest that they might exert a synergistic effect to provide the knockdown resistance to permethrin. Furthermore, both cDNA and genomic DNA data from the same individual mosquitoes have demonstrated that RNA editing was not involved in amino acid substitutions of the Per-R strain.

  12. Active site-directed double mutants of dihydrofolate reductase.

    PubMed

    Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R

    1996-09-15

    Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.

  13. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid.

    PubMed

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.

  14. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  15. Enabling phenotypic big data with PheNorm.

    PubMed

    Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi

    2018-01-01

    Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using (3H)phenylalanine (Phe) and (14C)leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release ofmore » Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action.« less

  17. Purification and structural characterization of insulin and glucagon from the bichir Polypterus senegalis (Actinopterygii: Polypteriformes).

    PubMed

    Conlon, J M; Fan, H; Fritzsch, B

    1998-01-01

    The Polypteriformes (bichirs and reedfish) are a family of ray-finned fishes of ancient lineage. Insulin has been isolated from an extract of the pancreas and upper gastrointestinal tract of the bichir Polypterus senegalis and its primary structure established as A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Asp-Thr-Pro10-Cys-Ser- Leu-Tyr-Asp-Leu-Glu-Asn-Tyr-Cys20-Asn: B-chain: Ala-Ala-Asn-Arg-His-Leu-Cys-Gly-Ser-His10-Leu-Val- Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly20-Asn-Arg-Gly-Phe- Phe-Tyr-Ile-Pro-Ser-Lys30-Met. Despite the fact that Polypterus insulin contains several unusual structural features that are not found in insulins from other jawed fish (Asp at A-8, Thr at A-9, Arg at B-4, Asn at B-21, Ile at B-27, Met at B-31), all the residues in human insulin that are involved in receptor binding, dimerization, and hexamerization have been conserved. A comparison of the structures of insulins from a range of species indicates that Polypterus insulin most closely resembles paddlefish insulin II (seven amino acid substitutions). In contrast, Polypterus glucagon (His-Ser- Gln-Gly-Thr-Phe-Thr-Asn-Asp-Tyr10-Thr-Lys-Tyr- Gln-Asp-Ser-Arg-Arg-Ala-Gln20-Asp-Phe-Val-Gln- Trp-Leu-Met-Ser-Asn) most closely resembles the glucagons from the gar Lepisosteus spatula and the bowfin Amia calva (four amino acid substitutions). The data are consistent with the conclusion based on comparison of morphological characteristics that the Polypterids are the most basal living group of the Actinopterygians with evolutionary connections to both the Acipenserids and the Neopterygians.

  18. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene.

    PubMed

    Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley

    2014-06-01

    Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.

  19. RNA interference-mediated knockdown of the hydroxyacid-oxoacid transhydrogenase gene decreases thiamethoxam resistance in adults of the whitefly Bemisia tabaci

    PubMed Central

    Yang, Xin; Xie, Wen; Li, Ru-mei; Zhou, Xiao-mao; Wang, Shao-li; Wu, Qing-jun; Yang, Ni-na; Xia, Ji-xing; Yang, Ze-zong; Guo, Li-tao; Liu, Ya-ting; Zhang, You-jun

    2017-01-01

    Bemisia tabaci has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we investigated whether hydroxyacid-oxoacid transhydrogenase (HOT) is involved in resistance to the neonicotinoid insecticide thiamethoxam in the whitefly. We cloned the full-length gene that encodes HOT in B. tabaci. Its cDNA contains a 1428-bp open reading frame encoding 475 amino acid residues. Then we evaluated the mRNA expression level of HOT in different developmental stages, and found HOT expression was significantly greater in thiamethoxam resistance adults than in thiamethoxam susceptible adults. Subsequently, seven field populations of B. tabaci adults were sampled, the expression of mRNA level of HOT significant positive correlated with thiamethoxam resistance level. At last, we used a modified gene silencing system to knock-down HOT expression in B. tabaci adults. The results showed that the HOT mRNA levels decreased by 57% and thiamethoxam resistance decreased significantly after 2 days of feeding on a diet containing HOT dsRNA. The results indicated that down-regulation of HOT expression decreases thiamethoxam resistance in B. tabaci adults. PMID:28117358

  20. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia.

    PubMed

    Hamid, Penny Humaidah; Prastowo, Joko; Widyasari, Anis; Taubert, Anja; Hermosilla, Carlos

    2017-06-05

    Aedes aegypti is the main vector of several arthropod-borne viral infections in the tropics profoundly affecting humans, such as dengue fever (DF), West Nile (WN), chikungunya and more recently Zika. Eradication of Aedes still largely depends on insecticides, which is the most cost-effective strategy, and often inefficient due to resistance development in exposed Aedes populations. We here conducted a study of Ae. aegypti resistance towards several insecticides regularly used in the city of Denpasar, Bali, Indonesia. Aedes aegypti egg samples were collected with ovitraps and thereafter hatched in the insectary of the Gadjah Mada University. The F0 generation was used for all bioassay-related experiments and knockdown resistance (kdr) assays. Results clearly showed resistance development of Ae. aegypti against tested insecticides. Mortalities of Ae. aegypti were less than 90% with highest resistance observed against 0.75% permethrin. Mosquitoes from the southern parts of Denpasar presented high level of resistance pattern in comparison to those from the western and northern parts of Denpasar. Kdr analysis of voltage-gated sodium channel (Vgsc) gene showed significant association to S989P and V1016G mutations linked to resistance phenotypes against 0.75% permethrin. Conversely, Ae. aegypti F1534C gene mutation did not result in any significant correlation to resistance development. Periodically surveillance of insecticide resistances in Ae. aegypti mosquitoes will help local public health authorities to set better goals and allow proper evaluation of on-going mosquito control strategies. Initial detection of insecticide resistance will contribute to conduct proper actions in delaying mosquito resistance development such as insecticide rotation or combination of compounds in order to prolong chemical efficacy in combating Ae. aegypti vectors in Indonesia.

  1. HR-TEM and FT-Raman dataset of the caffeine interacted Phe-Phe peptide nanotube for possible sensing applications.

    PubMed

    Narayanan, A Lakshmi; Dhamodaran, M; Solomon, J Samu; Karthikeyan, B; Govindhan, R

    2018-02-01

    Sensing ability of caffeine interaction with Phe-Phe annotates (PNTs), is presented (Govindhan et al., 2017; Karthikeyan et al., 2014; Tavagnacco et al., 2013; Kennedy et al., 2011; Wang et al., 2017) [1-5] in this data set. Investigation of synthesized caffeine carrying peptide nanotubes are carried out by FT-Raman spectral analysis and high resolution transmission electron microscopy (HR-TEM). Particle size of the caffeine loaded PNTs is < 40 nm. The FT-Raman spectrum signals are enhanced in the region of 400-1700 cm -1 . These data are ideal tool for the applications like biosensing and drug delivery research (DDS).

  2. No association of the neuropeptide Y (Leu7Pro) and ghrelin gene (Arg51Gln, Leu72Met, Gln90Leu) single nucleotide polymorphisms with eating disorders.

    PubMed

    Kindler, Jochen; Bailer, Ursula; de Zwaan, Martina; Fuchs, Karoline; Leisch, Friedrich; Grün, Bettina; Strnad, Alexandra; Stojanovic, Mirjana; Windisch, Julia; Lennkh-Wolfsberg, Claudia; El-Giamal, Nadja; Sieghart, Werner; Kasper, Siegfried; Aschauer, Harald

    2011-06-01

    Genetic factors likely contribute to the biological vulnerability of eating disorders. Case-control association study on one neuropeptide Y gene (Leu7Pro) polymorphism and three ghrelin gene (Arg51Gln, Leu72Met and Gln90Leu) polymorphisms. 114 eating disorder patients (46 with anorexia nervosa, 30 with bulimia nervosa, 38 with binge eating disorder) and 164 healthy controls were genotyped. No differences were detected between patients and controls for any of the four polymorphisms in allele frequency and genotype distribution (P > 0.05). Allele frequencies and genotypes had no significant influence on body mass index (P > 0.05) in eating disorder patients. Positive findings of former case-control studies of associations between ghrelin gene polymorphisms and eating disorders could not be replicated. Neuropeptide Y gene polymorphisms have not been investigated in eating disorders before.

  3. Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and Its Complexes with Moxalactam and Imipenem

    PubMed Central

    Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria

    2016-01-01

    BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower Km values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. PMID:27671060

  4. Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and Its Complexes with Moxalactam and Imipenem.

    PubMed

    Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela; Poirel, Laurent; Nordmann, Patrice; Rossolini, Gian Maria; Mangani, Stefano; Docquier, Jean-Denis

    2016-12-01

    BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower K m values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Knockdown Resistance Allele Frequencies in North American Head Louse (Anoplura: Pediculidae) Populations

    PubMed Central

    Yoon, Kyong Sup; Previte, Domenic J.; Hodgdon, Hilliary E.; Poole, Bryan C.; Kwon, Deok Ho; El-Ghar, Gamal E. Abo; Lee, Si Hyeock; Clark, J. Marshall

    2014-01-01

    The study examines the extent and frequency of a knockdown-type resistance allele (kdr type) in North American populations of human head lice. Lice were collected from 32 locations in Canada and the United States. DNA was extracted from individual lice and used to determine their zygosity using the serial invasive signal amplification technique to detect the kdr-type T917I (TI) mutation, which is most responsible for nerve insensitivity that results in the kdr phenotype and permethrin resistance. Previously sampled sites were resampled to determine if the frequency of the TI mutation was changing. The TI frequency was also reevaluated using a quantitative sequencing method on pooled DNA samples from selected sites to validate this population genotyping method. Genotyping substantiated that TI occurs at high levels in North American lice (88.4%). Overall, the TI frequency in U.S. lice was 84.4% from 1999 to 2009, increased to 99.6% from 2007 to 2009, and was 97.1% in Canadian lice in 2008. Genotyping results using the serial invasive signal amplification reaction (99.54%) and quantitative sequencing (99.45%) techniques were highly correlated. Thus, the frequencies of TI in North American head louse populations were found to be uniformly high, which may be due to the high selection pressure from the intensive and widespread use of the pyrethrins- or pyrethroid-based pediculicides over many years, and is likely a main cause of increased pediculosis and failure of pyrethrins- or permethrin-based products in Canada and the United States. Alternative approaches to treatment of head lice infestations are critically needed. PMID:24724296

  6. Versatile Picklocks To Access All Opioid Receptors: Tuning the Selectivity and Functional Profile of the Cyclotetrapeptide c[Phe-d-Pro-Phe-Trp] (CJ-15,208).

    PubMed

    De Marco, Rossella; Bedini, Andrea; Spampinato, Santi; Cavina, Lorenzo; Pirazzoli, Edoardo; Gentilucci, Luca

    2016-10-13

    Recently, the tryptophan-containing noncationizable opioid peptides emerged with atypical structure and unexpected in vivo activity. Herein, we describe analogs of the naturally occurring mixed κ/μ-ligand c[Phe-d-Pro-Phe-Trp] 1 (CJ-15,208). Receptor affinity, selectivity, and agonism/antagonism varied upon enlarging macrocycle size, giving the μ-agonist 9 or the δ-antagonist 10 characterized by low nanomolar affinity. In particular, the μ-agonist c[β-Ala-d-Pro-Phe-Trp] 9 was shown to elicit potent antinociception in a mouse model of visceral pain upon systemic administration.

  7. Validation of amino-acids measurement in dried blood spot by FIA-MS/MS for PKU management.

    PubMed

    Bruno, C; Dufour-Rainfray, D; Patin, F; Vourc'h, P; Guilloteau, D; Maillot, F; Labarthe, F; Tardieu, M; Andres, C R; Emond, P; Blasco, H

    2016-09-01

    Phenylketonuria (PKU) is a metabolic disorder leading to high concentrations of phenylalanine (Phe) and low concentrations of tyrosine (Tyr) in blood and brain that may be neurotoxic. This disease requires a regular monitoring of plasma Phe and Tyr as well as branched-chain amino-acids concentrations to adapt the Phe-restricted diet and other therapy that may be prescribed in PKU. We validated a Flow Injection Analysis tandem Mass Spectrometry (FIA-MS/MS) to replace the enzymatic method routinely used for neonatal screening in order to monitor in parallel to Phe, Tyr and branched-chain amino-acids not detected by the enzymatic method. We ascertained the performances of the method: linearity, detection and quantification limits, contamination index, accuracy. We cross validated the FIA-MS/MS and enzymatic methods and we evaluated our own reference ranges to monitor Phe, Tyr, Leu, Val on 59 dried blood spots of normal controls. We also evaluated Tyr, Leu and Val concentrations in PKU patients to detect some potential abnormalities, not evaluated by the enzymatic method. We developed a rapid method with excellent performances including precision and accuracy <15%. We noted an excellent correlation of Phe concentrations between FIA-MS/MS and enzymatic methods (p<0.0001) based on our database which are similar to references ranges published. We observed that 50% of PKU patients had lower concentrations of Tyr, Leu and/or Val that could not be detected by the enzymatic method. Based on laboratory accreditation recommendations, we validated a robust, rapid and reliable FIA-MS/MS method to monitor plasma Phe concentrations but also Tyr, Leu and Val concentrations, suitable for PKU management. We evaluated our own reference ranges of concentration for a routine application of this method. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Fascin-1 knock-down of human glioma cells reduces their microvilli/filopodia while improving their susceptibility to lymphocyte-mediated cytotoxicity

    PubMed Central

    Hoa, Neil T; Ge, Lisheng; Erickson, Kate L; Kruse, Carol A; Cornforth, Andrew N; Kuznetsov, Yurii; McPherson, Alex; Martini, Filippo; Jadus, Martin R

    2015-01-01

    Cancer cells derived from Glioblastoma multiforme possess membranous protrusions allowing these cells to infiltrate surrounding tissue, while resisting lymphocyte cytotoxicity. Microvilli and filopodia are supported by actin filaments cross-linked by fascin. Fascin-1 was genetically silenced within human U251 glioma cells; these knock-down glioma cells lost their microvilli/filopodia. The doubling time of these fascin-1 knock-down cells was doubled that of shRNA control U251 cells. Fascin-1 knock-down cells lost their transmigratory ability responding to interleukin-6 or insulin-like growth factor-1. Fascin-1 silenced U251 cells were more easily killed by cytolytic lymphocytes. Fascin-1 knock-down provides unique opportunities to augment glioma immunotherapy by simultaneously targeting several key glioma functions: like cell transmigration, cell division and resisting immune responses. PMID:25901196

  9. Mechanism behind Resistance against the Organophosphate Azamethiphos in Salmon Lice (Lepeophtheirus salmonis)

    PubMed Central

    Kaur, Kiranpreet; Helgesen, Kari Olli; Bakke, Marit Jørgensen; Horsberg, Tor Einar

    2015-01-01

    Acetylcholinesterase (AChE) is the primary target for organophosphates (OP). Several mutations have been reported in AChE to be associated with the reduced sensitivity against OP in various arthropods. However, to the best of our knowledge, no such reports are available for Lepeophtheirus salmonis. Hence, in the present study, we aimed to determine the association of AChE(s) gene(s) with resistance against OP. We screened the AChE genes (L. salmonis ace1a and ace1b) in two salmon lice populations: one sensitive (n=5) and the other resistant (n=5) for azamethiphos, a commonly used OP in salmon farming. The screening led to the identification of a missense mutation Phe362Tyr in L. salmonis ace1a, (corresponding to Phe331 in Torpedo californica AChE) in all the samples of the resistant population. We confirmed the potential role of the mutation, with reduced sensitivity against azamethiphos in L. salmonis, by screening for Phe362Tyr in 2 sensitive and 5 resistant strains. The significantly higher frequency of the mutant allele (362Tyr) in the resistant strains clearly indicated the possible association of Phe362Tyr mutation in L. salmonis ace1a with resistance towards azamethiphos. The 3D modelling, short term survival experiments and enzymatic assays further supported the imperative role of Phe362Tyr in reduced sensitivity of L. salmonis for azamethiphos. Based on all these observations, the present study, for the first time, presents the mechanism of resistance in L. salmonis against azamethiphos. In addition, we developed a rapid diagnostic tool for the high throughput screening of Phe362Tyr mutation using High Resolution Melt analysis. PMID:25893248

  10. Synthesis and biological properties of enzyme-resistant analogues of substance P.

    PubMed

    Sandberg, B E; Lee, C M; Hanley, M R; Iversen, L L

    1981-02-01

    Six analogues of substance P were synthesized with the aim of developing a metabolically stable peptide that would retain the biological activity of substance P. A recently isolated and characterized substance-P-degrading enzyme from human brain with a high specificity for substance P described in the preceding paper in this journal was used as a model for the enzymatic inactivation of substance P. The synthetic analogues were designed to protect the peptide bonds on the carboxyl side of residues 6, 7 and 8 of substance P, which represent the sites of cleavage by substance-P-degrading enzyme. To test for increased enzymatic resistance, the analogues were incubated with the enzyme, the digests were separated on a high-performance liquid chromatography reverse-phase column and the peptide fragments were collected and identified by amino acid analysis. Of the analogues described, an heptapeptide analogue of residues 5-11, less than Glu-Gln-Phe-MePhe-MeGly-Leu-MetNH2, showed almost complete resistance both towards substance-P-degrading enzyme and to degradation on exposure to rat hypothalamic slices. This analogue was about a third as potent as substance P in competing for binding to receptor sites for this peptide in rat brain membranes and a tenth as potent in eliciting contractions of the guinea pig ileum. The peptides were synthesized using the solid-phase technique with polydimethylacrylamide as a solid support and the coupling was achieved with pre-formed symmetrical anhydrides in dimethylacetamide. Fluorenylmethyloxycarbonyl was used as an alpha-amino protecting group in conjunction with t-butyloxycarbonyl as an epsilon-amino protecting group. Ammoniolytic cleavage from the resin was followed by stepwise elution from an SP-Sephadex column, deprotection with trifluoroacetic acid and chromatography on a Bio-Rex 70 ion-exchanger. The peptides were finally purified on a semi-preparative reverse-phase column.

  11. Purification and characterisation of a novel antistaphylococcal peptide (ASP-1) from Bacillus sp. URID 12.1.

    PubMed

    Chalasani, Ajay Ghosh; Roy, Utpal; Nema, Sushma

    2018-01-01

    A strong antistaphylococcal peptide (ASP-1) from Bacillus subtilis URID 12.1 strain that is active against cefoxitin- and methicillin-resistant Staphylococcus aureus clinical isolates was purified to homogeneity by solvent extraction, silica gel-based adsorption chromatography and reversed-phase high-performance liquid chromatography. The peptide sequence of ASP-1 as determined by MALDI-TOF/MS and ESI-FTICR-MS was acetylated Phe-Thr-Ala-Val-Dhb-Phe-Ile/Leu. The peptide was further analysed by alkaline hydrolysis, ESI-Q-TOF-MS and an ion mobility assay, which detected the presence of a lactone ring in the intact peptide and a cyclic nature, subsequently revealing the linearised peptide sequence as acPhe-Leu-Phe-Thr-Val-Ala-Dhb. Based on the molecular mass (804.5 Da), peptide sequence and amino acid composition, ASP-1 was identified as a lactone ring-containing peptide similar to TL-119, a poorly studied cyclic depsipeptide. Circular dichroism spectroscopy revealed its predominantly random structure in aqueous solution and its β-sheet conformation in methanol. Minimum inhibitory concentrations (MICs) of the purified peptide against S. aureus and methicillin-resistant S. aureus (MRSA) ranged from 2 µg/mL to 64 µg/mL. At sub-MICs and 1× MIC, ASP-1 showed a strong antibiofilm characteristic. ASP-1 at a concentration of 128 µg/mL did not show haemolytic activity, and no cytotoxicity was observed against hepatic carcinoma and breast carcinoma cell lines at the same concentration. Peptide ASP-1 with anti-MRSA and antibiofilm abilities and non-haemolytic and non-cytotoxic properties has not been reported previously. These findings suggest that it may serve as a lead molecule for developing alternative topical antibacterial agents. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  13. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  14. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  15. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  16. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  17. Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins.

    PubMed

    Jacob, Jaison; Louis, John M; Nesheiwat, Issa; Torchia, Dennis A

    2002-11-01

    Analysis of 2D [(13)C,(1)H]-HSQC spectra of biosynthetic fractionally (13)C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional (13)C labeling yields aromatic rings in which some of the (13)C-(13)C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the delta-, epsilon- and zeta-carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the (13)C constant-time period in 2D [(13)C,(1)H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic (13)C CSA and (13)C-(1)H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution (13)C constant-time spectra with good sensitivity.

  18. Cyclopeptide Dmt-[D-Lys-p-CF3-Phe-Phe-Asp]NH2, a novel G protein-biased agonist of the mu opioid receptor.

    PubMed

    Piekielna-Ciesielska, Justyna; Ferrari, Federica; Calo', Girolamo; Janecka, Anna

    2018-03-01

    Opioid peptides and alkaloid drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor which belongs to the G protein-coupled receptor (GPCR) family. A new important pharmacological concept in the field of GPCRs is biased agonism. Two mu receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH 2 (C-36) and Dmt-c[D-Lys-Phe-p-CF 3 -Phe-Asp]NH 2 (F-81), were evaluated in terms of their ability to promote or block mu receptor/G protein and mu receptor/β-arrestin interactions. Using the bioluminescence resonance energy transfer (BRET) assay it was shown that C-36 activated both, G protein and β-arrestin pathways. Incorporation of trifluoromethyl group into the aromatic ring of phenylalanine in the sequence of F-81 led to activation of G-protein pathway rather than β-arrestin recruitment. Opioid cyclopeptide F-81 turned out to be a biased G protein mu receptor agonist. Such biased ligands are able to separate the biological actions of an activated receptor and have the potential to become more effective drug candidates with fewer side effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Analysis of the TREAT LEU Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less

  20. Monitoring pyrethroid insecticide resistance in major malaria vector Anopheles culicifacies: comparison of molecular tools and conventional susceptibility test.

    PubMed

    Djadid, Navid Dinparast; Forouzesh, Flora; Karimi, Mohsen; Raeisi, Ahmad; Hassan-Zehi, Abdoulghaffar; Zakeri, Sedigheh

    2007-07-01

    Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. In current study, along with WHO routine susceptibility test with DDT (4%), dieldrin (0.4%), malathion (5%), permethrin (0.25%), lambadacyhalothrin (0.1%), and deltamethrin 0.025, we cloned and sequenced segment VI of domain II (SII6) in voltage-gated sodium channel (vgsc) gene of An. culicifacies specimens collected in Sistan and Baluchistan province (Iran). A 221-bp amplified fragment showed 91% and 93% similarity with exon I and exon II of An. gambiae. The size of intron II in An. culicifacies is 62 bp, while in An. gambiae is 57 bp. The major difference within An. culicifacies specimens and also with An. gambiae is in position 29 of exon I, which led to substitution of Leu to His amino acid. This data will act as first report on partial sequence of vgsc gene and its polymorphism in An. culicifacies. A Leu to His amino acid substitution detected upstream the formerly known knockdown resistance (kdr) mutation site could be an indication for other possible mutations related to insecticide resistance. However, the result of WHO susceptibility test carried out in Baluchistan of Iran revealed a level of tolerance to DDT and dieldrin, but almost complete susceptibility to pyrethroids in An. culicifacies. We postulate that the molecular diagnostic tool developed for detection and identification of kdr-related mutations in An. culicifacies, could be useful in monitoring insecticide resistance in Iran and neighbouring countries such as Pakistan and Afghanistan. A phylogenetic tree also constructed based on the sequence of exon I and II, which readily separated An. culicifacies populations from An. stephensi, An. fluviatilis and An. gambiae.

  1. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins.

    PubMed

    Li, Chengwen; Xiao, Pingjie; Gray, Steven James; Weinberg, Marc Scott; Samulski, R Jude

    2011-08-23

    Molecular knockdown of disease proteins and restoration of wild-type activity represent a promising but challenging strategy for the treatment of diseases that result from the accumulation of misfolded proteins (i.e., Huntington disease, amyotrophic lateral sclerosis, and α-1 antitrypsin deficiency). In this study we used alpha-1 antitrypsin (AAT) deficiency with the piZZ mutant phenotype as a model system to evaluate the efficiency of gene-delivery approaches that both silence the piZZ transcript (e.g., shRNA) and restore circulating wild-type AAT expression from resistant codon-optimized AAT (AAT-opt) transgene cassette using adeno-associated virus (AAV) vector delivery. After systemic injection of a self-complimentary AAV serotype 8 (scAAV8) vector encoding shRNA in piZZ transgenic mice, both mutant AAT mRNA in the liver and defected serum protein level were inhibited by 95%, whereas liver pathology, as monitored by dPAS and fibrosis staining, reversed. To restore blood AAT levels in AAV8/shRNA-treated mice, several strategies to restore functional AAT levels were tested, including using AAV AAT-opt transgene cassettes targeted to muscle and liver, or combination vectors carrying piZZ shRNA and AAT-opt transgenes separately, or a single bicistronic AAV vector. With these molecular approaches, we observed over 90% knockdown of mutant AAT with a 13- to 30-fold increase of circulating wild-type AAT protein from the shRNA-resistant AAT-opt cassette. The molecular approaches applied in this study can simultaneously prevent liver pathology and restore blood AAT concentration in AAT deficiencies. Based on these observations, similar gene-therapy strategies could be considered for any diseases caused by accumulation of misfolded proteins.

  2. Cloning and sequence analysis of the LEU2 homologue gene from Pichia anomala.

    PubMed

    De la Rosa, J M; Pérez, J A; Gutiérrez, F; González, J M; Ruiz, T; Rodríguez, L

    2001-11-01

    The Pichia anomala LEU2 gene (PaLEU2) was isolated by complementation of a leu2 Saccharomyces cerevisiae mutant. The cloned gene also allowed growth of a Escherichia coli leuB mutant in leucine-lacking medium, indicating that it encodes a product able to complement the beta-isopropylmalate dehydrogenase deficiency of the mutants. The sequenced DNA fragment contains a complete ORF of 1092 bp, and the deduced polypeptide shares significant homologies with the products of the LEU2 genes from S. cerevisiae (84% identity) and other yeast species. A sequence resembling the GC-rich palindrome motif identified in the 5' region of S. cerevisiae LEU2 gene as the binding site for the transcription activating factor encoded by the LEU3 gene was found at the promoter region. In addition, upstream of the PaLEU2 the 3'-terminal half of a gene of the same orientation, encoding a homologue of the S. cerevisiae NFS1/SPL1 gene that encodes a mitochondrial cysteine desulphurase involved in both tRNA processing and mitochondrial metabolism, was found. The genomic organization of the PaNFS1-PaLEU2 gene pair is similar to that found in several other yeast species, including S. cerevisiae and Candida albicans, except that in some of them the LEU2 gene appears in the reverse orientation. Copyright 2001 John Wiley & Sons, Ltd.

  3. Recombinant Brucella abortus gene expressing immunogenic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, J.E.; Tabatabai, L.B.

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  4. Superactive amidated COOH-terminal glucagon analogues with no methionine or tryptophan.

    PubMed

    Murphy, W A; Coy, D H; Lance, V A

    1986-01-01

    The functions of the Trp-25 and Met-27 residues and the free carboxy terminus of glucagon have been debated for many years. Despite some semi-synthetic data to the contrary, comparison of the glucagon sequence with the other 5 members of this family of peptides, all of them amides and particularly growth hormone-releasing factor(1-29) amide and its recently described analogues, suggests that alterations to these positions should be quite well tolerated in terms of biological activity. To test this prediction, [Phe-25,Leu-27]-glucagon amide was synthesized in high yield and was found to actually have superior glycogenolytic activity (196%) to glucagon in the rat. Replacement of Gly-4 by D-Phe, which has been shown to give much enhanced glycogenolytic activity than glucagon itself, also increased the activity of [D-Phe-4,Phe-25,Leu-27]-glucagon amide (518%). The L-Phe-4-analogue, [Phe-4,25,Leu-27]-glucagon amide, in contrast, was 20 times less active (30%), strongly suggesting the presence of a beta-bend in this N-terminal region of glucagon. This was supported by Chou-Fasman structural predictions which indicate extensive folding in the 1-15 region. Indeed, additional conformational restriction by substitution of D-Ser in position 2 of glucagon also increased activity to 226%. [D-Gln-3]-glucagon was slightly less active (74%) than glucagon. Chou-Fasman calculations on glucagon were compared to similar treatments of the VIP, secretin, PHI, and GRF(1-29) sequences.

  5. Ile-1781-Leu and Asp-2078-Gly Mutations in ACCase Gene, Endow Cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico

    PubMed Central

    Cruz-Hipolito, Hugo; Fernandez, Pablo; Alcantara, Ricardo; Gherekhloo, Javid; Osuna, Maria Dolores; De Prado, Rafael

    2015-01-01

    Herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) are commonly used in Mexico to control weedy grasses such as little seed canarygrass (Phalaris minor). These herbicides are classified into three major families (ariloxyphenoxypropionates (APP), cyclohexanodiones (CHD), and, recently, phenylpyrazolines (PPZ)). In this work, the resistance to ACCase (APP, CHD, and PPZ) inhibiting herbicides was studied in a biotype of Phalaris minor (P. minor) from Mexico, by carrying out bioassays at the whole-plant level and investigating the mechanism behind this resistance. Dose-response and ACCase in vitro activity assays showed cross-resistance to all ACCase herbicides used. There was no difference in the absorption, translocation, and metabolism of the 14C-diclofop-methyl between the R and S biotypes. The PCR generated CT domain fragments of ACCase from the R biotype and an S reference were sequenced and compared. The Ile-1781-Leu and Asp-2078-Gly point mutations were identified. These mutations could explain the loss of affinity for ACCase by the ACCase-inhibing herbicides. This is the first report showing that this substitution confers resistance to APP, CHD, and PPZ herbicides in P. minor from Mexico. The mutations have been described previously only in a few cases; however, this is the first study reporting on a pattern of cross-resistance with these mutations in P. minor. The findings could be useful for better management of resistant biotypes carrying similar mutations. PMID:26370967

  6. Knockdown of angiopoietin-like 2 mimics the benefits of intermittent fasting on insulin responsiveness and weight loss.

    PubMed

    Martel, Cécile; Pinçon, Anthony; Bélanger, Alexandre Maxime; Luo, Xiaoyan; Gillis, Marc-Antoine; de Montgolfier, Olivia; Thorin-Trescases, Nathalie; Thorin, Éric

    2018-01-01

    Angiopoietin-like 2 (ANGPTL2) is an inflammatory adipokine linking obesity to insulin resistance. Intermittent fasting, on the other hand, is a lifestyle intervention able to prevent obesity and diabetes but difficult to implement and maintain. Our objectives were to characterize a link between ANGPTL2 and intermittent fasting and to investigate whether the knockdown of ANGPTL2 reproduces the benefits of intermittent fasting on weight gain and insulin responsiveness in knockdown and wild-type littermates mice. Intermittent fasting, access to food ad libitum once every other day, was initiated at the age of three months and maintained for four months. Intermittent fasting decreased by 63% (p < 0.05) gene expression of angptl2 in adipose tissue of wild-type mice. As expected, intermittent fasting improved insulin sensitivity (p < 0.05) and limited weight gain (p < 0.05) in wild-type mice. Knockdown mice fed ad libitum, however, were comparable to wild-type mice following the intermittent fasting regimen: insulin sensitivity and weight gain were identical, while intermittent fasting had no additional impact on these parameters in knockdown mice. Energy intake was similar between both wild-type fed intermittent fasting and ANGPTL2 knockdown mice fed ad libitum, suggesting that intermittent fasting and knockdown of ANGPTL2 equally lower feeding efficiency. These results suggest that the reduction of ANGPTL2 could be a useful and promising strategy to prevent obesity and insulin resistance, although further investigation of the mechanisms linking ANGPTL2 and intermittent fasting is warranted. Impact statement Intermittent fasting is an efficient diet pattern to prevent weight gain and improve insulin sensitivity. It is, however, a difficult regimen to follow and compliance is expected to be very low. In this work, we demonstrate that knockdown of ANGPTL2 in mice fed ad libitum mimics the beneficial effects of intermittent fasting on weight gain and insulin

  7. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  8. Identification of TCT, a novel knockdown resistance allele mutation and analysis of resistance detection methods in the voltage-gated Na⁺ channel of Culex pipiens pallens from Shandong Province, China.

    PubMed

    Liu, Hong-Mei; Cheng, Peng; Huang, Xiaodan; Dai, Yu-Hua; Wang, Hai-Fang; Liu, Li-Juan; Zhao, Yu-Qiang; Wang, Huai-Wei; Gong, Mao-Qing

    2013-02-01

    The present study aimed to investigate deltamethrin resistance in Culex pipiens pallens (C. pipiens pallens) mosquitoes and its correlation with knockdown resistance (kdr) mutations. In addition, mosquito‑resistance testing methods were analyzed. Using specific primers in polymerase chain reaction (PCR) and allele-specific (AS)-PCR, kdr gene sequences isolated from wild C. pipiens pallens mosquitoes were sequenced. Linear regression analysis was used to determine the correlation between the mutations and deltamethrin resistance. A kdr allelic gene was cloned and sequenced. Analysis of the DNA sequences revealed the presence of two point mutations at the L1014 residue in the IIS6 transmembrane segment of the voltage‑gated sodium channel (VGSC): L1014F, TTA→TTT, replacing a leucine (L) with a phenylalanine (F); L1014S, TTA→TCA, replacing leucine (L) with serine (S). Two alternative kdr-like mutations, L1014F and L1014S, were identified to be positively correlated with the deltamethrin-resistant phenotype. In addition a novel mutation, TCT, was identified in the VGSC of C. pipiens pallens. PCR and AS-PCR yielded consistent results with respect to mosquito resistance. However, the detection rate of PCR was higher than that of AS-PCR. Further studies are required to determine the specific resistance mechanism. PCR and AS-PCR demonstrated suitability for mosquito resistance field tests, however, the former method may be superior to the latter.

  9. The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica).

    PubMed

    Pessina, Stefano; Angeli, Dario; Martens, Stefan; Visser, Richard G F; Bai, Yuling; Salamini, Francesco; Velasco, Riccardo; Schouten, Henk J; Malnoy, Mickael

    2016-10-01

    Varieties resistant to powdery mildew (PM; caused by Podosphaera leucotricha) are a major component of sustainable apple production. Resistance can be achieved by knocking-out susceptibility S-genes to be singled out among members of the MLO (Mildew Locus O) gene family. Candidates are MLO S-genes of phylogenetic clade V up-regulated upon PM inoculation, such as MdMLO11 and 19 (clade V) and MdMLO18 (clade VII). We report the knock-down through RNA interference of MdMLO11 and 19, as well as the complementation of resistance with MdMLO18 in the Arabidopsis thaliana triple mlo mutant Atmlo2/6/12. The knock-down of MdMLO19 reduced PM disease severity by 75%, whereas the knock-down of MdMLO11, alone or in combination with MdMLO19, did not result in any reduction or additional reduction of susceptibility compared with MdMLO19 alone. The test in A. thaliana excluded a role for MdMLO18 in PM susceptibility. Cell wall appositions (papillae) were present in both PM-resistant and PM-susceptible plants, but were larger in resistant lines. No obvious negative phenotype was observed in plants with mlo genes knocked down. Apparently, MdMLO19 plays the pivotal role in apple PM susceptibility and its knock-down induces a very significant level of resistance. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Preproghrelin Leu72Met polymorphism in obese Korean children.

    PubMed

    Jo, Dae-Sun; Kim, Se-Lim; Kim, Sun-Young; Hwang, Pyoung Han; Lee, Kee-Hyoung; Lee, Dae-Yeol

    2005-11-01

    Ghrelin is a novel gut-brain peptide that has somatotropic, orexigenic, and adipogenic effects. We examined the preproghrelin Leu72Met polymorphism in 222 obese Korean children to determine whether it is associated with obesity. The frequencies of the Leu72Met polymorphism were 29.3% in obese, 32.3% in overweight, and 32.5% in lean Korean children. No significant difference was found between Met72 carrier and non-carrier obese children with respect to BMI, total body fat, serum triglycerides, total cholesterol, or LDL-cholesterol levels. Our data suggest that the preproghrelin Leu72Met polymorphism is not associated with obesity in children.

  11. Emergency Preparedness & Recovery News Releases - PHE

    Science.gov Websites

    and reload this page. Skip over global navigation links U.S. Department of Health and Human Services Health Emergency - Leading a Nation Prepared Search Search PHE Home > Emergency Emergency Preparedness necesitan medicamentos HHS Acting Secretary Declares Public Health Emergency to Address National Opioid

  12. [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, augments the effects of orally delivered exenatide and pramlintide acetate on energy balance and glycemic control in insulin-resistant male C57BLK/6-m db/db mice.

    PubMed

    Leinung, Matthew C; Grasso, Patricia

    2012-11-10

    The escalation predicted for the incidence of both type 2 diabetes mellitus and obesity has prompted investigators to search for additional pharmacotherapeutic approaches to their treatment. Two of these approaches, combination pharmacotherapy and utilization of leptin-related bioactive synthetic peptides as anti-diabetes/anti-obesity agents, were used in the present study. Exenatide or pramlintide acetate was reconstituted in dodecyl maltoside (DDM) in the absence or presence of [D-Leu-4]-OB3, and delivered orally by gavage to insulin-resistant male C57BLK/6-m db/db mice twice daily for 14 days. Body weight gain, food and water intake, blood glucose, and serum insulin levels were measured. Mice given DDM alone for 14 days were 19.7% heavier than they were at the beginning of the study, while oral delivery of exenatide or [D-Leu-4]-OB3 in DDM reduced body weight gain to only 13.9% and 11.5%, respectively, of initial body weight. Mice receiving exenatide and [D-Leu-4]-OB3 were 4.2% lighter than they were at the beginning of the study. In another study, Intravail® treated control mice gained 38.2% of their initial body weight, while mice receiving pramlintide acetate or [D-Leu-4]-OB3 were only 26.8% and 25.4% heavier, respectively, at the end of the study, Co-administration of pramlintide acetate and [D-Leu-4]-OB3 did not further enhance the effect of pramlintide acetate on body weight gain. Food intake was reduced by exenatide, pramlintide acetate, and [D-Leu-4]-OB3 alone, and co-delivery with [D-Leu-4]-OB3 did not induce a further decrease. Water intake was not affected by exenatide, pramlintide acetate, or [D-Leu-4]-OB3 alone, but co-delivery of exenatide or pramlintide acetate with [D-Leu-4]-OB3 resulted in a significant reduction in water intake. Oral delivery of exenatide or pramlintide acetate in DDM significantly lowered blood glucose levels by 20.4% and 30.2%, respectively. Co-delivery with [D-Leu-4]-OB3 further reduced blood glucose by 38.3% and 50

  13. Identification of pyroglutamyl peptides in Japanese rice wine (sake): presence of hepatoprotective pyroGlu-Leu.

    PubMed

    Kiyono, Tamami; Hirooka, Kiyoo; Yamamoto, Yoshihiro; Kuniishi, Sunao; Ohtsuka, Maho; Kimura, Shikou; Park, Eun Young; Nakamura, Yasushi; Sato, Kenji

    2013-11-27

    Japanese rice wine, sake, is made from steamed rice, water, and lactic acid by "multiple parallel fermentation" with mold (Aspergillus oryzae) and yeast (Saccharomyces cerevisiae). Nineteen pyroglutamyl peptides were identified in commercially available sake. Among them, pyroGlu-Leu and pyroGlu-Gln were the major constituents. PyroGlu-Leu has been demonstrated to attenuate hepatitis and colitis in animal models. Commercial products (n = 5) contained pyroGlu-Leu at concentrations ranging from 40 to 60 μM (10-15 mg/L). The pyroGlu-Leu content in sake mash increased during the fermentation processes. However, no pyroGlu-Leu was produced by yeast inoculated into preheated mash. Furthermore, addition of (13)C-Leu to the mash did not increase the ratio of pyroGlu-(13)C-Leu to pyroGlu-(12)C-Leu. On the other hand, digestion of steamed rice with A. oryzae proteases increased the pyroGlu-Leu content. These results indicate that pyroGlu-Leu in sake is produced from rice proteins by digestion with A. oryzae proteases.

  14. The manufacture of LEU fuel elements at Dounreay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  15. Preproghrelin Leu72Met polymorphism in patients with type 2 diabetes mellitus.

    PubMed

    Ukkola, O; Kesäniemi, Y A

    2003-10-01

    The association between the Leu72Met polymorphism of the preproghrelin gene and diabetic complications was examined in patients with type 2 diabetes mellitus. A total of 258 patients with type 2 diabetes mellitus and 522 control subjects were screened. Genotypes were determined by polymerase chain reaction technique. The diagnosis of coronary heart disease was based on clinical and ECG criteria. Laboratory analyses were carried out in the hospital laboratory. No differences in the genotype distributions and allele frequencies of the preproghrelin Leu72Met polymorphism were found between type 2 diabetes mellitus patients and controls. The polymorphism was not associated with macro- or micro-angiopathy or hypertension. However, Leu72Met polymorphism was associated with serum creatinine (P = 0.006) and lipoprotein(a) [Lp(a)] levels (P = 0.006) with Leu72Leu subjects showing the highest values. This association was observed only amongst diabetic group. The Leu72Met polymorphism of the preproghrelin gene was not related to cardiovascular disease in type 2 diabetes mellitus patients. Leu72Met polymorphism was, however, associated with serum creatinine and Lp(a) levels in diabetic patients. The mechanism might be associated with a possible change in ghrelin product and its somatotropic effect.

  16. Hydrolysis of substance P in the presence of the osteosarcoma cell line SaOS-2: release of free amino acids.

    PubMed

    Cavazza, Antonella; Marini, Mario; Roda, L Giorgio; Tarantino, Umberto; Valenti, Angela

    2011-12-01

    The possible hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met) in presence of the osteoblastic cell line SaOS-2 was measured by capillary electrophoresis coupled to mass detection. The results obtained indicate that a very rapid disappearance of the intact undecapeptide was associated to a slower appearance of seven of its eight component amino acids. These results can be interpreted as indicating that an extremely fast hydrolysis of substance P by endopeptidases, which released peptidic by-products, was followed by a noticeably slower secondary degradation which released free amino acids. In decreasing quantitative importance, these phenomena appear to originate by the hydrolysis of the Pro(4)-Gln(5) bond, followed by C-terminal sequential degradation of the Arg(1)-Pro(4) tetrapeptide; by the hydrolysis of or Phe(7)-Phe(8) bond (or, possibly, of Gln(6)-Phe(7)) leading to release of free Phe and Gln; by hydrolysis of the Gly(9)-Leu(10) bond with subsequent release of Met and Leu. Results obtained appear to be compatible with the expression by SaOS-2 cells of enzymes already known to catalyze substance P hydrolysis, together with an apparent low efficiency of aminopeptidases. Because of the activity of C-terminal fragments on NK1 receptors, the delay between primary hydrolysis of substance P and secondary hydrolysis of its peptidic fragments indicated by the data shown implies a possible persistence of substance P physiological effects even after degradation of the intact peptide.

  17. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, G.; Pond, R.; Hanan, N.

    1995-02-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.

  18. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli.

    PubMed

    Ponmani, Thangaraj; Munavar, M Hussain

    2014-06-01

    The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28. In the fourth case, the very pheS5 lesion itself has got changed from A293 → T293 (named pheS40). Cloning of pheS(+), pheS5, pheS5-pheS19, pheS5-pheS28 alleles into pBR322 and introduction of these clones into pheS5 mutant revealed that excess of double mutant protein is not at all good for the survival of cells at 42°C. These results clearly indicate a pivotal role for Gly225 in the structural/functional integrity of alpha subunit of E. coli PheRS enzyme and it is proposed that G673 might define a hot spot for intragenic suppressors of pheS5. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Application of 2-chlorotrityl resin in solid phase synthesis of (Leu15)-gastrin I and unsulfated cholecystokinin octapeptide. Selective O-deprotection of tyrosine.

    PubMed

    Barlos, K; Gatos, D; Kapolos, S; Poulos, C; Schäfer, W; Yao, W Q

    1991-12-01

    The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.

  20. Salmonella typhimurium gyrA mutations associated with fluoroquinolone resistance.

    PubMed Central

    Reyna, F; Huesca, M; González, V; Fuchs, L Y

    1995-01-01

    Spontaneous quinolone-resistant mutants obtained from Salmonella typhimurium Su694 were screened for mutations by direct DNA sequencing of an amplified PCR gyrA fragment. Substitutions Ser-83-->Phe (Ser83Phe), Ser83Tyr, Asp87Tyr, and Asp87Asn and double mutation Ala67Pro-Gly81Ser, which resulted in decreased sensitivities to ciprofloxacin, enoxacin, pefloxacin, norfloxacin, ofloxacin, and nalidixic acid, were found. The levels of resistance to quinolones for each mutant were determined. PMID:7492118

  1. Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A. L.; Diamond, D.

    2013-10-31

    The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposedmore » LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.« less

  2. Preproghrelin Leu72Met polymorphism in Chinese subjects with coronary artery disease and controls.

    PubMed

    Tang, Na-Ping; Wang, Lian-Sheng; Yang, Li; Gu, Hai-Juan; Zhu, Huai-Jun; Zhou, Bo; Sun, Qing-Min; Cong, Ri-Hong; Wang, Bin

    2008-01-01

    Ghrelin, a novel endogenous ligand for the growth hormone secretagogue receptor, is considered to exert a protective effect against atherosclerosis. The Leu72Met (+408C>A) polymorphic variant of the preproghrelin, the gene for the ghrelin precursor, has been linked to obesity, diabetes and metabolic syndrome. However, it is unclear whether this polymorphism is associated with coronary artery disease (CAD). We conducted a case-control study with 317 CAD patients and 323 controls to investigate the potential association of the Leu72Met polymorphism with the occurrence of CAD and CAD-related phenotypes in Chinese population. No significant difference in the Leu72Met genotype frequency was observed between CAD patients and controls (P=NS). The Leu72Met polymorphism was not associated with hypertension, diabetes, dyslipidemia, the number of diseased vessels, plasma total cholesterol, triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol or fasting glucose levels in CAD patients. However, among CAD patients, those with variant genotypes (Leu72Met and Met72Met) had lower BMI (24.4+/-0.3 kg/m(2)) than Leu72Leu carriers (25.4+/-0.2 kg/m(2), adjusted P=0.033). Our data indicate that the preproghrelin Leu72Met polymorphism is not associated with CAD in Chinese population. However, the Leu72Met variant is associated with BMI among CAD patients.

  3. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase.

    PubMed

    Skidgel, R A; Engelbrecht, S; Johnson, A R; Erdös, E G

    1984-01-01

    Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat.

    PubMed

    Abed, Raeid M M; Dobretsov, Sergey; Al-Fori, Marwan; Gunasekera, Sarath P; Sudesh, Kumar; Paul, Valerie J

    2013-07-01

    In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.

  5. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships.

    PubMed

    Conlon, J M

    2001-07-01

    The conformation of insulin in the crystalline state has been known for more than 30 years but there remains uncertainty regarding the biologically active conformation and the structural features that constitute the receptor-binding domain. The primary structure of insulin has been determined for at least 100 vertebrate species. In addition to the invariant cysteines, only ten amino acids (GlyA1, IleA2, ValA3, TyrA19, LeuB6, GlyB8, LeuB11, ValB12, GlyB23 and PheB24) have been fully conserved during vertebrate evolution. This observation supports the hypothesis derived from alanine-scanning mutagenesis studies that five of these invariant residues (IleA2, ValA3, TyrA19, GlyB23, and Phe24) interact directly with the receptor and five additional conserved residues (LeuB6, GlyB8, LeuB11, GluB13 and PheB25) are important in maintaining the receptor-binding conformation. With the exception of the hagfish, only conservative substitutions are found at B13 (Glu --> Asp) and B25(Phe --> Tyr). In contrast, amino acid residues that were also considered to be important in receptor binding based upon the crystal structure of insulin (GluA4, GlnA5, AsnA21, TyrB16, TyrB26) have been much less well conserved and are probably not components of the receptor-binding domain. The hypothesis that LeuA13 and LeuB17 form part of a second receptor-binding site in the insulin molecule finds some support in terms of their conservation during vertebrate evolution, although the site is probably absent in some hystricomorph insulins. In general, the amino acid sequences of insulins are not useful in cladistic analyses especially when evolutionary distant taxa are compared but, among related species in a particular order or family, the presence of unusual structural features in the insulin molecule may permit a meaningful phylogenetic inference. For example, analysis of insulin sequences supports monophyletic status for Dipnoi, Elasmobranchii, Holocephali and Petromyzontiformes.

  6. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    PubMed

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    PubMed

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  8. Substrate-modulated unwinding of transmembrane helices in the NSS transporter LeuT.

    PubMed

    Merkle, Patrick S; Gotfryd, Kamil; Cuendet, Michel A; Leth-Espensen, Katrine Z; Gether, Ulrik; Loland, Claus J; Rand, Kasper D

    2018-05-01

    LeuT, a prokaryotic member of the neurotransmitter:sodium symporter (NSS) family, is an established structural model for mammalian NSS counterparts. We investigate the substrate translocation mechanism of LeuT by measuring the solution-phase structural dynamics of the transporter in distinct functional states by hydrogen/deuterium exchange mass spectrometry (HDX-MS). Our HDX-MS data pinpoint LeuT segments involved in substrate transport and reveal for the first time a comprehensive and detailed view of the dynamics associated with transition of the transporter between outward- and inward-facing configurations in a Na + - and K + -dependent manner. The results suggest that partial unwinding of transmembrane helices 1/5/6/7 drives LeuT from a substrate-bound, outward-facing occluded conformation toward an inward-facing open state. These hitherto unknown, large-scale conformational changes in functionally important transmembrane segments, observed for LeuT in detergent-solubilized form and when embedded in a native-like phospholipid bilayer, could be of physiological relevance for the translocation process.

  9. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis

    PubMed Central

    Liu, Dong-Xin; Fan, Chang-Sheng; Tao, Ju-Hong; Liang, Guo-Xin; Gao, Shan-E; Wang, Hai-Jiao; Li, Xin; Song, Da-Xin

    2004-01-01

    AIM: To study the effect of integration of tandem aroG-pheA genes into the tyrA locus of Corynebacterium glutamicum (C. glutamicum) on the production of L-phenylalanine. METHODS: By nitrosoguanidine mutagenesis, five p-fluorophenylalanine (FP)-resistant mutants of C.glutamicum FP were selected. The tyrA gene encoding prephenate dehydrogenase (PDH) of C.glutamicum was amplified by polymerase chain reaction (PCR) and cloned on the plasmid pPR. Kanamycin resistance gene (Km) and the PBF-aroG-pheA-T (GA) fragment of pGA were inserted into tyrA gene to form targeting vectors pTK and pTGAK, respectively. Then, they were transformed into C.glutamicum FP respectively by electroporation. Cultures were screened by a medium containing kanamycin and detected by PCR and phenotype analysis. The transformed strains were used for L-phenylalanine fermentation and enzyme assays. RESULTS: Engineering strains of C.glutamicum (Tyr-) were obtained. Compared with the original strain, the transformed strain C. glutamicum GAK was observed to have the highest elevation of L-phenylalanine production by a 1.71-fold, and 2.9-, 3.36-, and 3.0-fold in enzyme activities of chorismate mutase, prephenate dehydratase and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, respectively. CONCLUSION: Integration of tandem aroG-pheA genes into tyrA locus of C. glutamicum chromosome can disrupt tyrA gene and increase the yield of L-phenylalanine production. PMID:15534933

  10. A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti.

    PubMed

    Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya

    2017-10-10

    Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.

  11. Expansion of the Knockdown Resistance Frequency Map for Human Head Lice (Phthiraptera: Pediculidae) in the United States Using Quantitative Sequencing

    PubMed Central

    Gellatly, Kyle J.; Krim, Sarah; Palenchar, Daniel J.; Shepherd, Katie; Yoon, Kyong Sup; Rhodes, Christopher J.; Lee, Si Hyeock; Marshall Clark, J.

    2016-01-01

    Pediculosis is a prevalent parasitic infestation of humans, which is increasing due, in part, to the selection of lice resistant to either the pyrethrins or pyrethroid insecticides by the knockdown resistance (kdr) mechanism. To determine the extent and magnitude of the kdr-type mutations responsible for this resistance, lice were collected from 138 collection sites in 48 U.S. states from 22 July 2013 to 11 May 2015 and analyzed by quantitative sequencing. Previously published data were used for comparisons of the changes in the frequency of the kdr-type mutations over time. Mean percent resistance allele frequency (mean % RAF) values across the three mutation loci were determined from each collection site. The overall mean % RAF (±SD) for all analyzed lice was 98.3 ± 10%. 132/138 sites (95.6%) had a mean % RAF of 100%, five sites (3.7%) had intermediate values, and only a single site had no mutations (0.0%). Forty-two states (88%) had a mean % RAF of 100%. The frequencies of kdr-type mutations did not differ regardless of the human population size that the lice were collected from, indicating a uniformly high level of resistant alleles. The loss of efficacy of the Nix formulation (Prestige Brand, Tarrytown, NY) from 1998 to 2013 was correlated to the increase in kdr-type mutations. These data provide a plausible reason for the decrease in the effectiveness of permethrin in the Nix formulation, which is the parallel increase of kdr-type mutations in lice over time. PMID:27032417

  12. A Novel Mutation in the XLRS1 Gene in a Korean Family with X-linked Retinoschisis

    PubMed Central

    Jwa, Nam Soo; Kim, Sung Soo; Lee, Sung Chul; Kwon, Oh Woong

    2006-01-01

    Purpose To report a novel missense mutation in the XLRS1 gene in a Korean family with X-linked retinoschisis. Methods Observation case report of a family with a proband with X-linked retinoschisis underwent complete ophthalmologic examination. Genomic DNA was excluded from the family's blood and all exons of the XLRS1 gene were amplified by polymerase chain reaction and analyzed using a direct sequencing method. Results A novel Leu103Phe missense mutation was identified. Conclusions A novel Leu103Phe mutation is an additional missense mutation which is responsible for the pathogenesis of X-linked retinoschisis. PMID:16768192

  13. Effects of simultaneous knockdown of HER2 and PTK6 on malignancy and tumor progression in human breast cancer cells.

    PubMed

    Ludyga, Natalie; Anastasov, Natasa; Rosemann, Michael; Seiler, Jana; Lohmann, Nadine; Braselmann, Herbert; Mengele, Karin; Schmitt, Manfred; Höfler, Heinz; Aubele, Michaela

    2013-04-01

    Breast cancer is the most common malignancy in women of the Western world. One prominent feature of breast cancer is the co- and overexpression of HER2 and protein tyrosine kinase 6 (PTK6). According to the current clinical cancer therapy guidelines, HER2-overexpressing tumors are routinely treated with trastuzumab, a humanized monoclonal antibody targeting HER2. Approximately, 30% of HER2-overexpressing breast tumors at least initially respond to the anti-HER2 therapy, but a subgroup of these tumors develops resistance shortly after the administration of trastuzumab. A PTK6-targeted therapy does not yet exist. Here, we show for the first time that the simultaneous knockdown in vitro, compared with the single knockdown of HER2 and PTK6, in particular in the trastuzumab-resistant JIMT-1 cells, leads to a significantly decreased phosphorylation of crucial signaling proteins: mitogen-activated protein kinase 1/3 (MAPK 1/3, ERK 1/2) and p38 MAPK, and (phosphatase and tensin homologue deleted on chromosome ten) PTEN that are involved in tumorigenesis. In addition, dual knockdown strongly reduced the migration and invasion of the JIMT-1 cells. Moreover, the downregulation of HER2 and PTK6 led to an induction of p27, and the dual knockdown significantly diminished cell proliferation in JIMT-1 and T47D cells. In vivo experiments showed significantly reduced levels of tumor growth following HER2 or PTK6 knockdown. Our results indicate a novel strategy also for the treatment of trastuzumab resistance in tumors. Thus, the inhibition of these two signaling proteins may lead to a more effective control of breast cancer. ©2013 AACR.

  14. Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS.

    PubMed

    Hu, Hankun; Xiao, Ling; Zheng, Baogen; Wei, Xin; Ellis, Alexis; Liu, Yi-Ming

    2015-10-01

    Authentication and quality assessment of Cordyceps sinensis, a precious and pricey natural product that offers a variety of health benefits, is highly significant. To identify effective chemical markers, authentic C. sinensis was thoroughly screened by using HPLC-MS/MS. In addition to many previously reported ingredients, two glycosides, i.e., cyclo-Ala-Leu-rhamnose and Phe-o-glucose, were detected for the first time in this material. Six ingredients detected, including cordycepin, D-mannitol, Phe, Phe-o-glucose, cyclo-Gly-Pro, and cyclo-Ala-Leu-rhamnose, were selected as a collection of chemical markers. An HPLC-MS/MS method was developed to simultaneously quantify them with sensitivity and specificity. The method had limits of detection ranging from 0.008 μg mL(-1) for cordycepin to 0.75 μg mL(-1) for cyclo-Gly-Pro. Recovery was found between 96 and 103 % in all tests. To evaluate the effectiveness of the marker collection proposed, five authentic C. sinensis samples and five samples of its substitutes were analyzed. Cordycepin, D-mannitol, and Phe were found present in all samples. The contents ranged from 0.0076 to 0.029 % (w/w) for cordycepin, 0.33 to 18.9 % for mannitol, and 0.0013 to 0.642 % for Phe. Interestingly, the two glycosides, Phe-o-glucose and cyclo-Ala-Leu-rhamnose, were detected only in authentic C. sinensis samples. These results indicated that the proposed protocol based on HPLC-MS/MS quantification of the markers might have a great potential in authentication and quality assessment of C. sinensis. Graphical abstract Chemical markers of C. sinensis identified in this work.

  15. Albumin Redhill (-1 Arg, 320 Ala----Thr): a glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site.

    PubMed

    Brennan, S O; Myles, T; Peach, R J; Donaldson, D; George, P M

    1990-01-01

    Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind 63Ni2+ and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni2+ was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation (since proalbumin contains adjacent Arg residues at -1 and -2) or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala----Thr. This introduces an Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg----Cys. This introduces a prepro sequence, Met-Lys-Trp-Val-Thr-Phe-Ile-Ser-Leu-Leu-Phe-Leu-Phe-Ser-Ser-Ala-Tyr- Ser-Arg-Gly-Val-Phe-Cys-Arg (cf.-Tyr-Ser-Arg-Gly-Val-Phe-Arg-Arg- in normal human pre-proalbumin). We propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase.

  16. Purification and characterization of enantioselective N-acetyl-β-Phe acylases from Burkholderia sp. AJ110349.

    PubMed

    Imabayashi, Yuki; Suzuki, Shun'ichi; Kawasaki, Hisashi; Nakamatsu, Tsuyoshi

    2016-01-01

    For the production of enantiopure β-amino acids, enantioselective resolution of N-acyl β-amino acids using acylases, especially those recognizing N-acetyl-β-amino acids, is one of the most attractive methods. Burkholderia sp. AJ110349 had been reported to exhibit either (R)- or (S)-enantiomer selective N-acetyl-β-Phe amidohydrolyzing activity, and in this study, both (R)- and (S)-enantioselective N-acetyl-β-Phe acylases were purified to be electrophoretically pure and determined the sequences, respectively. They were quite different in terms of enantioselectivities and in their amino acids sequences and molecular weights. Although both the purified acylases were confirmed to catalyze N-acetyl hydrolyzing activities, neither of them show sequence similarities to the N-acetyl-α-amino acid acylases reported thus far. Both (R)- and (S)-enantioselective N-acetyl-β-Phe acylase were expressed in Escherichia coli. Using these recombinant strains, enantiomerically pure (R)-β-Phe (>99% ee) and (S)-β-Phe (>99% ee) were obtained from the racemic substrate.

  17. A Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Yadav, Jagjit S.

    2011-01-01

    The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3–4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp129 and Leu324 in the oxidation mechanism of CYP5136A3. Replacing Trp129 with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83–90%) was observed for the W129L mutation as compared to W129F (28–41%). However, the two mutations showed a comparable loss (60–67%) in C9-AP oxidation. Replacement of Leu324 with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20–58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp129 and Leu324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  18. Future U.S. supply of Mo-99 production through fission based LEU/LEU technology.

    PubMed

    Welsh, James; Bigles, Carmen I; Valderrabano, Alejandro

    Coquí RadioPharmaceuticals Corp. (Coquí) has the goal of establishing a medical isotope production facility for securing a continuous domestic supply of the radioisotope molybdenum-99 for U.S. citizens. Coquí will use an LEU/LEU proven and implemented open pool, light-water, 10 MW, reactor design. The facility is being designed with twin reactors for reliability an on-site hot lab chemical processing and a waste conditioning area and a possible generator producing radio-chemistry lab. Coquí identified a 25 acre site adjacent to an existing industrial park in northern central Florida. This land was gifted and transferred to Coquí by the University of Florida Foundation. We are in the process of developing licensing documents related to the facility. The construction permit application for submission to the U.S. Nuclear Regulatory Commission is currently being prepared. Submission is scheduled for mid to late 2015. Community reaction to the proposed development has been positive. We expect to create 220 permanent jobs and we have an anticipated to be operational by 2020.

  19. Chromium (D-phenylalanine)3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice.

    PubMed

    Dong, Feng; Kandadi, Machender Reddy; Ren, Jun; Sreejayan, Nair

    2008-10-01

    Chromium has gained popularity as a nutritional supplement for diabetic and insulin-resistant subjects. This study was designed to evaluate the effect of chronic administration of a novel chromium complex of d-phenylalanine [Cr(D-phe)(3)] in insulin-resistant, sucrose-fed mice. Whole-body insulin resistance was generated in FVB mice by 9 wk of sucrose feeding, following which they were randomly assigned to be unsupplemented (S group) or to receive oral Cr(D-phe)(3) in drinking water (SCr group) at a dose of 45 mug.kg(-1).d(-1) ( approximately 3.8 mug of elemental chromium.kg(-1).d(-1)). A control group (C) did not consume sucrose and was not supplemented. Sucrose-fed mice had an elevated serum insulin concentration compared with controls and this was significantly lower in sucrose-fed mice that received Cr(D-phe)(3), which did not differ from controls. Impaired glucose tolerance in sucrose-fed mice, evidenced by the poor glucose disposal rate following an intraperitoneal glucose tolerance test, was significantly improved in mice receiving Cr(D-phe)(3). Chromium supplementation significantly enhanced insulin-stimulated Akt phosphorylation and membrane-associated glucose transporter-4 in skeletal muscles of sucrose-fed mice. In cultured adipocytes rendered insulin resistant by chronic exposure to high concentrations of glucose and insulin, Cr(D-phe)(3) augmented Akt phosphorylation and glucose uptake. These results indicate that dietary supplementation with Cr(D-phe)(3) may have potential beneficial effects in insulin-resistant, prediabetic conditions.

  20. Rifaximin Resistance in Escherichia coli Associated with Inflammatory Bowel Disease Correlates with Prior Rifaximin Use, Mutations in rpoB, and Activity of Phe-Arg-β-Naphthylamide-Inhibitable Efflux Pumps

    PubMed Central

    Kothary, Vishesh; Scherl, Ellen J.; Bosworth, Brian; Jiang, Zhi-Dong; DuPont, Herbert L.; Harel, Josee

    2013-01-01

    Escherichia coli is implicated in the pathogenesis of inflammatory bowel disease (IBD). Rifaximin, a nonabsorbable derivative of rifampin effective against E. coli, improves symptoms in mild-to-moderate IBD. However, rifaximin resistance can develop in a single step in vitro. We examined the prevalence and mechanisms of rifaximin resistance in 62 strains of E. coli isolated from the ileal mucosa of 50 patients (19 with ileal Crohn's disease [L1+L3], 6 with colonic Crohn's disease [L2], 13 with ulcerative colitis [UC], 4 with symptomatic non-IBD diagnoses [NI], and 8 healthy [H]). Resistance (MIC > 1,024 mg/liter) was present in 12/48 IBD-associated ileal E. coli strains. Resistance correlated with prior rifaximin treatment (P < 0.00000001) but not with the presence of ileal inflammation (P = 0.73) or E. coli phylogroup. Mutations in a 1,057-bp region of rpoB, which encodes the bacterial target of rifaximin, were identified in 10/12 resistant strains versus 0/50 sensitive strains (P < 0.000000001) and consisted of seven amino acid substitutions. The efflux pump inhibitor Phe-Arg-β-naphthylamide (PAβN) lowered the MIC of 9/12 resistant strains 8- to 128-fold. Resistance was stable in the absence of rifaximin in 10/12 resistant strains after 30 passages. We conclude that IBD-associated ileal E. coli frequently manifest resistance to rifaximin that correlates with prior rifaximin use, amino acid substitutions in rpoB, and activity of PAβN-inhibitable efflux pumps, but not with the presence of ileal inflammation or E. coli phylogroup. These findings have significant implications for treatment trials targeting IBD-associated E. coli. PMID:23183443

  1. A mathematical model of tumour and blood pHe regulation: The HCO3-/CO2 buffering system.

    PubMed

    Martin, Natasha K; Gaffney, Eamonn A; Gatenby, Robert A; Gillies, Robert J; Robey, Ian F; Maini, Philip K

    2011-03-01

    Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the HCO3-/CO2 buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Expansion of the Knockdown Resistance Frequency Map for Human Head Lice (Phthiraptera: Pediculidae) in the United States Using Quantitative Sequencing.

    PubMed

    Gellatly, Kyle J; Krim, Sarah; Palenchar, Daniel J; Shepherd, Katie; Yoon, Kyong Sup; Rhodes, Christopher J; Lee, Si Hyeock; Marshall Clark, J

    2016-05-01

    Pediculosis is a prevalent parasitic infestation of humans, which is increasing due, in part, to the selection of lice resistant to either the pyrethrins or pyrethroid insecticides by the knockdown resistance (kdr) mechanism. To determine the extent and magnitude of the kdr-type mutations responsible for this resistance, lice were collected from 138 collection sites in 48 U.S. states from 22 July 2013 to 11 May 2015 and analyzed by quantitative sequencing. Previously published data were used for comparisons of the changes in the frequency of the kdr-type mutations over time. Mean percent resistance allele frequency (mean % RAF) values across the three mutation loci were determined from each collection site. The overall mean % RAF (±SD) for all analyzed lice was 98.3 ± 10%. 132/138 sites (95.6%) had a mean % RAF of 100%, five sites (3.7%) had intermediate values, and only a single site had no mutations (0.0%). Forty-two states (88%) had a mean % RAF of 100%. The frequencies of kdr-type mutations did not differ regardless of the human population size that the lice were collected from, indicating a uniformly high level of resistant alleles. The loss of efficacy of the Nix formulation (Prestige Brand, Tarrytown, NY) from 1998 to 2013 was correlated to the increase in kdr-type mutations. These data provide a plausible reason for the decrease in the effectiveness of permethrin in the Nix formulation, which is the parallel increase of kdr-type mutations in lice over time. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  3. Peptides as modifiers of Na+-induced pinocytosis in starved Amoeba proteus.

    PubMed

    Josefsson, J O; Johansson, P

    1985-01-01

    Low concentrations of six peptide hormones; glucagon, vasoactive intestinal peptide, substance P, angiotensin II, lysine-vasopressin, arginine-vasopressin, and the chemotactic peptide fMet-Leu-Phe, activated the capacity for pinocytosis in starved Amoeba proteus. Competitive inhibitors of the chemotactic peptide in leucocytes inhibited activation by fMet-Leu-Phe, suggesting that its action in the amoeba is mediated by specific receptors. The opioid peptides, beta-endorphin, dynorphin (1-13) and leu-enkephalin abolished through a naloxone-sensitive mechanism activation by hormones and several other activating agents. Also, low concentrations of beef and pork insulin inhibited activation by peptide hormones. An insulin analogue of low potency in mammalian cells was inactive in the amoeba. These results support the hypothesis that besides opioid receptors, there may be insulin receptors and possibly receptors for several other peptide hormones in Amoeba proteus.

  4. Simple and rapid analytical method for detection of amino acids in blood using blood spot on filter paper, fast-GC/MS and isotope dilution technique.

    PubMed

    Kawana, Shuichi; Nakagawa, Katsuhiro; Hasegawa, Yuki; Yamaguchi, Seiji

    2010-11-15

    A simple and rapid method for quantitative analysis of amino acids, including valine (Val), leucine (Leu), isoleucine (Ile), methionine (Met) and phenylalanine (Phe), in whole blood has been developed using GC/MS. In this method, whole blood was collected using a filter paper technique, and a 1/8 in. blood spot punch was used for sample preparation. Amino acids were extracted from the sample, and the extracts were purified using cation-exchange resins. The isotope dilution method using ²H₈-Val, ²H₃-Leu, ²H₃-Met and ²H₅-Phe as internal standards was applied. Following propyl chloroformate derivatization, the derivatives were analyzed using fast-GC/MS. The extraction recoveries using these techniques ranged from 69.8% to 87.9%, and analysis time for each sample was approximately 26 min. Calibration curves at concentrations from 0.0 to 1666.7 μmol/l for Val, Leu, Ile and Phe and from 0.0 to 333.3 μmol/l for Met showed good linearity with regression coefficients=1. The method detection limits for Val, Leu, Ile, Met and Phe were 24.2, 16.7, 8.7, 1.5 and 12.9 μmol/l, respectively. This method was applied to blood spot samples obtained from patients with phenylketonuria (PKU), maple syrup urine disease (MSUD), hypermethionine and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), and the analysis results showed that the concentrations of amino acids that characterize these diseases were increased. These results indicate that this method provides a simple and rapid procedure for precise determination of amino acids in whole blood. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Enhanced activity of human serotonin transporter variants associated with autism.

    PubMed

    Prasad, Harish C; Steiner, Jennifer A; Sutcliffe, James S; Blakely, Randy D

    2009-01-27

    Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.

  6. Preproghrelin Leu72Met polymorphism is not associated with type 2 diabetes mellitus.

    PubMed

    Kim, Sun-Young; Jo, Dae-Sun; Hwang, Pyoung Han; Park, Ji Hyun; Park, Sung Kwang; Yi, Ho Keun; Lee, Dae-Yeol

    2006-03-01

    Ghrelin is a novel gut-brain peptide, which exerts somatotropic, orexigenic, and adipogenic effects. Genetic variants of ghrelin have been associated with both obesity and insulin metabolism. In this study, we determined a role of preproghrelin Leu72Met polymorphism on type 2 diabetes mellitus and its relationship to variables studied. Genotypes were assessed by polymerase chain reaction. Frequencies of the Leu72Met polymorphism were found to be 35.4% in the type 2 diabetic patients and 32.5% in the normal controls. The Leu72Met polymorphism was not associated with hypertension, macroangiopathy, retinopathy, serum cholesterol, triglyceride, blood urea nitrogen, HbA(1c), lipoprotein (a), fasting insulin, or 24-hour urinary protein levels in the type 2 diabetic group. However, the Leu72Met polymorphism was clearly associated with serum creatinine levels in the diabetic group, as the Met72 carriers exhibited lower serum creatinine levels than the Met72 noncarriers. Our data indicate that the preproghrelin Leu72Met polymorphism is not associated with type 2 diabetes mellitus. However, the Leu72Met polymorphism is associated with serum creatinine levels. These data suggest that Met72 carrier status may be a predictable marker for diabetic nephropathy or renal impairment in type 2 diabetes mellitus.

  7. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.

    PubMed

    Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi

    2012-03-01

    Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Leu-9 (CD 7) positivity in acute leukemias: a marker of T-cell lineage?

    PubMed

    Ben-Ezra, J; Winberg, C D; Wu, A; Rappaport, H

    1987-01-01

    Monoclonal antibody Leu-9 (CD 7) has been reported to be a sensitive and specific marker for T-cell lineage in leukemic processes, since it is positive in patients whose leukemic cells fail to express other T-cell antigens. To test whether Leu-9 is indeed specific for T-cell leukemias, we examined in detail 10 cases of acute leukemia in which reactions were positive for Leu-9 and negative for other T-cell-associated markers including T-11, Leu-1, T-3, and E-rosettes. Morphologically and cytochemically, 2 of these 10 leukemias were classified as lymphoblastic, 4 as myeloblastic, 2 as monoblastic, 1 as megakaryoblastic, and 1 as undifferentiated. The case of acute megakaryoblastic leukemia is the first reported case to be Leu-9 positive. None of the 10 were TdT positive. Of six cases (two monoblastic, one lymphoblastic, one myeloblastic, one megakaryoblastic, and one undifferentiated) in which we evaluated for DNA gene rearrangements, only one, a peroxidase-positive leukemia, showed a novel band on study of the T-cell-receptor beta-chain gene. We therefore conclude that Leu-9 is not a specific marker to T-cell lineage and that, in the absence of other supporting data, Leu-9 positivity should not be used as the sole basis of classifying an acute leukemia as being T-cell derived.

  9. PheProb: probabilistic phenotyping using diagnosis codes to improve power for genetic association studies.

    PubMed

    Sinnott, Jennifer A; Cai, Fiona; Yu, Sheng; Hejblum, Boris P; Hong, Chuan; Kohane, Isaac S; Liao, Katherine P

    2018-05-17

    Standard approaches for large scale phenotypic screens using electronic health record (EHR) data apply thresholds, such as ≥2 diagnosis codes, to define subjects as having a phenotype. However, the variation in the accuracy of diagnosis codes can impair the power of such screens. Our objective was to develop and evaluate an approach which converts diagnosis codes into a probability of a phenotype (PheProb). We hypothesized that this alternate approach for defining phenotypes would improve power for genetic association studies. The PheProb approach employs unsupervised clustering to separate patients into 2 groups based on diagnosis codes. Subjects are assigned a probability of having the phenotype based on the number of diagnosis codes. This approach was developed using simulated EHR data and tested in a real world EHR cohort. In the latter, we tested the association between low density lipoprotein cholesterol (LDL-C) genetic risk alleles known for association with hyperlipidemia and hyperlipidemia codes (ICD-9 272.x). PheProb and thresholding approaches were compared. Among n = 1462 subjects in the real world EHR cohort, the threshold-based p-values for association between the genetic risk score (GRS) and hyperlipidemia were 0.126 (≥1 code), 0.123 (≥2 codes), and 0.142 (≥3 codes). The PheProb approach produced the expected significant association between the GRS and hyperlipidemia: p = .001. PheProb improves statistical power for association studies relative to standard thresholding approaches by leveraging information about the phenotype in the billing code counts. The PheProb approach has direct applications where efficient approaches are required, such as in Phenome-Wide Association Studies.

  10. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance.

    PubMed

    Yang, Wei; Wei, Jing; Guo, Tiantian; Shen, Yueming; Liu, Fenju

    2014-08-01

    Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Measuring patient engagement: development and psychometric properties of the Patient Health Engagement (PHE) Scale

    PubMed Central

    Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea; Lozza, Edoardo

    2015-01-01

    Beyond the rhetorical call for increasing patients' engagement, policy makers recognize the urgency to have an evidence-based measure of patients' engagement and capture its effect when planning and implementing initiatives aimed at sustaining the engagement of consumers in their health. In this paper, authors describe the Patient Health Engagement Scale (PHE-scale), a measure of patient engagement that is grounded in rigorous conceptualization and appropriate psychometric methods. The scale was developed based on our previous conceptualization of patient engagement (the PHE-model). In particular, the items of the PHE-scale were developed based on the findings from the literature review and from interviews with chronic patients. Initial psychometric analysis was performed to pilot test a preliminary version of the items. The items were then refined and administered to a national sample of chronic patients (N = 382) to assess the measure's psychometric performance. A final phase of test-retest reliability was performed. The analysis showed that the PHE Scale has good psychometric properties with good correlation with concurrent measures and solid reliability. Having a valid and reliable measure to assess patient engagement is the first step in understanding patient engagement and its role in health care quality, outcomes, and cost containment. The PHE Scale shows a promising clinical relevance, indicating that it can be used to tailor intervention and assess changes after patient engagement interventions. PMID:25870566

  12. Measuring patient engagement: development and psychometric properties of the Patient Health Engagement (PHE) Scale.

    PubMed

    Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea; Lozza, Edoardo

    2015-01-01

    Beyond the rhetorical call for increasing patients' engagement, policy makers recognize the urgency to have an evidence-based measure of patients' engagement and capture its effect when planning and implementing initiatives aimed at sustaining the engagement of consumers in their health. In this paper, authors describe the Patient Health Engagement Scale (PHE-scale), a measure of patient engagement that is grounded in rigorous conceptualization and appropriate psychometric methods. The scale was developed based on our previous conceptualization of patient engagement (the PHE-model). In particular, the items of the PHE-scale were developed based on the findings from the literature review and from interviews with chronic patients. Initial psychometric analysis was performed to pilot test a preliminary version of the items. The items were then refined and administered to a national sample of chronic patients (N = 382) to assess the measure's psychometric performance. A final phase of test-retest reliability was performed. The analysis showed that the PHE Scale has good psychometric properties with good correlation with concurrent measures and solid reliability. Having a valid and reliable measure to assess patient engagement is the first step in understanding patient engagement and its role in health care quality, outcomes, and cost containment. The PHE Scale shows a promising clinical relevance, indicating that it can be used to tailor intervention and assess changes after patient engagement interventions.

  13. Proteolytic inactivation of substance P and neurokinin A in the longitudinal muscle layer of guinea pig small intestine.

    PubMed

    Nau, R; Schäfer, G; Deacon, C F; Cole, T; Agoston, D V; Conlon, J M

    1986-09-01

    Membrane vesicles, showing a 21 +/- 2-fold enrichment in the activity of 5'-nucleotidase and a 11 +/- 4-fold enrichment in the activity of angiotensin-converting enzyme relative to homogenate, were prepared from the myenteric plexus-containing longitudinal muscle layer of guinea pig ileum. Incubation of the vesicles with substance P and neurokinin A led to degradation of the peptides, and metabolites were isolated by reverse-phase HPLC and identified by amino acid composition. Cleavages of substance P between Glu6-Phe7, Phe7-Phe8, and Gly9-Leu10 and of neurokinin A between Gly8-Leu9 were observed and could be inhibited in a dose-dependent manner by phosphoramidon, an inhibitor of neutral endopeptidase 24.11. Formation of these metabolites was not completely inhibited by this agent, indicating that a phosphoramidon-insensitive form of endopeptidase 24.11 was present in the gut. Substance P was resistant to degradation by aminopeptidases, but neurokinin A was a substrate for bestatin-sensitive aminopeptidase(s), so that the neurokinin A (3-10) fragment represented the predominant metabolite in the chromatograms. The rate of formation of all the metabolites was not inhibited by enalapril and not enhanced by an increased Cl- concentration, indicating that angiotensin-converting enzyme was unimportant in the degradation process. Degradation of neurokinin A by the vesicles (Km 30 microM; Vmax 7.2 +/- 0.8 nmol min-1 mg of protein-1) was more rapid than degradation of substance P (Km 25 microM; Vmax 4.4 +/- 0.4 nmol min-1 mg of protein-1).

  14. UV Thermal Melting Curves of tRNA[superscript Phe] in the Presence of Ligands

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which the thermal unfolding of tRNA[superscript Phe] is studied with…

  15. Utilization of deep-sea microbial esterase PHE21 to generate chiral sec-butyl acetate through kinetic resolutions.

    PubMed

    Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng

    2018-06-08

    We previously identified and characterized 1 novel deep-sea microbial esterase PHE21 and used PHE21 as a green biocatalyst to generate chiral ethyl (S)-3-hydroxybutyrate, 1 key chiral chemical, with high enantiomeric excess and yield through kinetic resolution. Herein, we further explored the potential of esterase PHE21 in the enantioselective preparation of secondary butanol, which was hard to be resolved by lipases/esterases. Despite the fact that chiral secondary butanols and their ester derivatives were hard to prepare, esterase PHE21 was used as a green biocatalyst in the generation of (S)-sec-butyl acetate through hydrolytic reactions and the enantiomeric excess, and the conversion of (S)-sec-butyl acetate reached 98% and 52%, respectively, after process optimization. Esterase PHE21 was also used to generate (R)-sec-butyl acetate through asymmetric transesterification reactions, and the enantiomeric excess and conversion of (R)-sec-butyl acetate reached 64% and 43%, respectively, after process optimization. Deep-sea microbial esterase PHE21 was characterized to be a useful biocatalyst in the kinetic resolution of secondary butanol and other valuable chiral secondary alcohols. © 2018 Wiley Periodicals, Inc.

  16. High plasma ghrelin protects from coronary heart disease and Leu72Leu polymorphism of ghrelin gene from cancer in healthy adults during the 19 years follow-up study.

    PubMed

    Laurila, M; Santaniemi, M; Kesäniemi, Y A; Ukkola, O

    2014-11-01

    The aim of our investigation was to find out if ghrelin concentrations or polymorphisms predict the future risk for cardiovascular diseases and cancer in a population-based cohort initiated in 1991 (491 hypertensive and 513 control subjects). Total mortality and hospital events were followed up for 19 years. Fasting total ghrelin concentrations were determined and Arg51Gln, Leu72Met and -501 A > C polymorphisms identified. Cox regression analysis was performed. The mean value in the control cohort was 674 pg/ml whereas in the hypertensive cohort it was 661 pg/ml. The associations found suggest that in the controls the highest ghrelin quartile protected from CHD (coronary heart disease). The results were significant without or with adjustments for age, sex, smoking, systolic blood pressure and LDL cholesterol, BMI, type 2 diabetes or QUICK index. C/C variant of the promoter associated with the prevention of IHD (ischemic heart disease) in the hypertensive group (p<0.05). The controls with the Leu72Leu genotype had less cancer (p<0.05). In conclusion, high plasma ghrelin concentration was related to protection from CHD and Leu72Leu genotype to prevention of cancer in healthy adults during the 19 years follow-up. C/C promoter protects from IHD in the hypertensive subjects. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Lactose carrier mutants of Escherichia coli with changes in sugar recognition (lactose versus melibiose).

    PubMed

    Varela, M F; Brooker, R J; Wilson, T H

    1997-09-01

    The purpose of this research was to identify amino acid residues that mediate substrate recognition in the lactose carrier of Escherichia coli. The lactose carrier transports the alpha-galactoside sugar melibiose as well as the beta-galactoside sugar lactose. Mutants from cells containing the lac genes on an F factor were selected by the ability to grow on succinate in the presence of the toxic galactoside beta-thio-o-nitrophenylgalactoside. Mutants that grew on melibiose minimal plates but failed to grow on lactose minimal plates were picked. In sugar transport assays, mutant cells showed the striking result of having low levels of lactose downhill transport but high levels of melibiose downhill transport. Accumulation (uphill) of melibiose was completely defective in all of the mutants. Kinetic analysis of melibiose transport in the mutants showed either no change or a greater than normal apparent affinity for melibiose. PCR was used to amplify the lacY DNA of each mutant, which was then sequenced by the Sanger method. The following six mutations were found in the lacY structural genes of individual mutants: Tyr-26-->Asp, Phe-27-->Tyr, Phe-29-->Leu, Asp-240-->Val, Leu-321-->Gln, and His-322-->Tyr. We conclude from these experiments that Tyr-26, Phe-27, Phe-29 (helix 1), Asp-240 (helix 7), Leu-321, and His-322 (helix 10) either directly or indirectly mediate sugar recognition in the lactose carrier of E. coli.

  18. RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal reactive gliosis is an important pathological feature of diabetic retinopathy. Identifying the underlying mechanisms causing reactive gliosis will be important for developing new therapeutic strategies for treating diabetic retinopathy. Herein, we show that long noncoding RNA-RNCR3 knockdown significantly inhibits retinal reactive gliosis. RNCR3 knockdown leads to a marked reduction in the release of several cytokines. RNCR3 knockdown alleviates diabetes mellitus-induced retinal neurodegeneration, as shown by less apoptotic retinal cells and ameliorative visual function. RNCR3 knockdown could also decrease Müller glial cell viability and proliferation, and reduce the expression of glial reactivity-related genes including GFAP and vimentin in vitro. Collectively, thismore » study shows that RNCR3 knockdown may be a promising strategy for the prevention of diabetes mellitus-induced retinal neurodegeneration. - Highlights: • RNCR3 knockdown inhibits retinal reactive gliosis. • RNCR3 knockdown causes a significant change in cytokine profile. • RNCR3 knockdown alleviates diabetes mellitus-induced retinal neurodegeneration. • RNCR3 knockdown affects Müller glial cell function in vitro.« less

  19. Metabolic stability of some tachykinin analogues to cell-surface peptidases: roles for endopeptidase-24.11 and aminopeptidase N.

    PubMed

    Medeiros, M D; Turner, A J

    1995-01-01

    The metabolism of several tachykinin antagonists by membrane peptidases has been examined. [beta Ala8]NKA(4-10) was not stabilized against degradation by endopeptidase-24.11 and this was the major activity in renal brush border membranes hydrolyzing this peptide. The antagonist MEN 10263 was much more resistant to hydrolysis by endopeptidase-24.11, although hydrolysis of the C-terminal Leu-Phe bond was detectable. Three other tachykinin receptor antagonists (MEN 10208, MEN 10207, and MEN 10376), by virtue of D-Trp substitutions, were rendered resistant to endopeptidase-24.11 but were still susceptible to aminopeptidase action. These studies provide further insight into design features necessary to produce metabolically stable peptide analogues.

  20. Transcription attenuation is the major mechanism by which the leu operon of Salmonella typhimurium is controlled.

    PubMed

    Searles, L L; Wessler, S R; Calvo, J M

    1983-01-25

    Three mutations, each causing constitutive expression of the Salmonella typhimurium leu operon, were cloned into phage vector lambda gt4 on EcoRI DNA fragments carrying all of that operon except for part of the promoter-distal last gene. Sequence analysis of DNA from these phage demonstrated that each contains a single base change in the leu attenuator. Transcription of mutant DNA in vitro resulted in transcription beyond the usual site of termination. The level of beta-IPM dehydrogenase, the leuB enzyme, was elevated 40-fold in a strain carrying one of these mutations, and starvation of this strain for leucine had little effect on the amount of activity expressed. Using a strain with a wild-type promoter-leader region of the leu operon, the rates of synthesis and degradation of leu leader RNA and readthrough RNA (leu mRNA) were measured by DNA-RNA hybridizations with specific DNA probes. The rate of synthesis of the leu leader was about the same in cells grown with excess or with limiting leucine. On the other hand, the rate of synthesis of leu mRNA was 12-fold higher for cells grown in limiting leucine as opposed to excess leucine. The rate of degradation of these RNA species was the same under both conditions of growth. Thus, the variation in expression of the leu operon observed for cells grown in minimal medium is, for the most part, not caused by control over the frequency of initiation or by the differential stability of these RNA species. Rather, the variation is a direct result of the frequency of transcription termination at an attenuator site. These results taken together suggest that transcription attenuation is the major mechanism by which leucine regulates expression of the leu operon of S. typhimurium for cells growing in a minimal medium.

  1. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    PubMed

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  2. Rise of multidrug-resistant non-vaccine serotype 15A Streptococcus pneumoniae in the United Kingdom, 2001 to 2014

    PubMed Central

    Sheppard, Carmen; Fry, Norman K.; Mushtaq, Shazad; Woodford, Neil; Reynolds, Rosy; Janes, Regina; Pike, Rachel; Hill, Robert; Kimuli, Maimuna; Staves, Peter; Doumith, Michel; Harrison, Timothy; Livermore, David M

    2016-01-01

    Conjugate vaccines have reduced pneumococcal disease in vaccinated children and unvaccinated adults, but non-vaccine serotypes are of concern, particularly if antibiotic resistant. We reviewed Streptococcus pneumoniae collected via: (i) the British Society for Antimicrobial Chemotherapy (BSAC) surveillances from 2001–2014; (ii) Public Health England’s (PHE) invasive isolate surveillance from 2005–2014 and (iii) referral to PHE for resistance investigation from 2005–2014. Serotype 15A increased in all series, with many representatives showing triple resistance to macrolides, tetracyclines and penicillin. 15A was consistently among the 10 most prevalent serotypes from 2011 in PHE and BSAC invasive isolate/bacteraemia surveillance but never previously; 26–33% of these invasive 15A isolates had triple resistance. BSAC respiratory isolates were only serotyped in 2013/14 and 2014/15 (October to September); 15A was most prevalent serotype in both periods, comprising 9–11% of isolates, 38–48% of them with triple resistance. Serotype 15A represented 0–4% of S. pneumoniae referred to PHE for reference investigation annually until 2008 but rose to 29% (2013) and 32% (2014). Almost all multidrug-resistant 15A isolates were sequence type (ST) 63 variants, whereas susceptible 15A isolates were clonally diverse. The rise of serotype 15A suggests that pneumococcal conjugate vaccines will need ongoing adaptation. PMID:28006650

  3. Oligopeptides and copeptides of homochiral sequence, via beta-sheets, from mixtures of racemic alpha-amino acids, in a one-pot reaction in water; relevance to biochirogenesis.

    PubMed

    Illos, Roni A; Bisogno, Fabricio R; Clodic, Gilles; Bolbach, Gerard; Weissbuch, Isabelle; Lahav, Meir

    2008-07-09

    As part of our studies on the biochirogenesis of peptides of homochiral sequence during early evolution, the formation of oligopeptides composed of 14-24 residues of the same handedness in the polymerization of dl-leucine (Leu), dl-phenylalanine (Phe), and dl-valine (Val) in aqueous solutions, by activation with N, N'-carbonyldiimidazole and then initiation with a primary amine, in a one-pot reaction, was demonstrated by MALDI-TOF MS using deuterium enantio-labeled alpha-amino acids. The formation of long isotactic peptides is rationalized by the following steps occurring in tandem: (i) creation of a library of short diasteroisomeric oligopeptides containing isotactic peptides in excess in comparison to a binomial kinetics, as a result of an asymmetric induction exerted by the N-terminal residue of a given handedness; (ii) precipitation of the less soluble racemic isotactic penta- and hexapeptides in the form of beta-sheets that are delineated by homochiral rims; (iii) regio-enantiospecific chain elongation occurring heterogeneously at the beta-sheets/solution interface. Polymerization of l-Leu with l-isoleucine (Ile) or l-Phe with l- (1) N-Me-histidine yielded mixtures of copeptides containing both residues. In contrast, in the polymerization of the corresponding mixtures of l- + d-alpha-amino acids, the long oligopeptides were composed mainly from oligo- l-Leu and oligo- d-Ile in the first system and oligo- d-Phe in the second. Furthermore, in the polymerization of mixtures of hydrophobic racemic alpha-amino acids dl-Leu, dl-Val, and dl-Phe and with added racemic dl-alanine and dl-tyrosine, copeptides of homochiral sequences are most dominantly represented. Possible routes for a spontaneous "mirror-symmetry breaking" process of the racemic mixtures of homochiral peptides are presented.

  4. Leprosy Drug Resistance Surveillance in Colombia: The Experience of a Sentinel Country

    PubMed Central

    Beltrán-Alzate, Camilo; López Díaz, Fernando; Romero-Montoya, Marcela; Sakamuri, Rama; Li, Wei; Kimura, Miyako; Brennan, Patrick

    2016-01-01

    An active search for Mycobacterium leprae drug resistance was carried out, 243 multibacillary patients from endemic regions of Colombia were included from 2004 to 2013 in a surveillance program. This program was a World Health Organization initiative for drug resistance surveillance in leprosy, where Colombia is a sentinel country. M. leprae DNA from slit skin smear and/or skin biopsy samples was amplified and sequenced to identify mutations in the drug resistance determining region (DRDR) in rpoB, folP1, gyrA, and gyrB, the genes responsible for rifampicin, dapsone and ofloxacin drug-resistance, respectively. Three isolates exhibited mutations in the DRDR rpoB gene (Asp441Tyr, Ser456Leu, Ser458Met), two in the DRDR folP1 gene (Thr53Ala, Pro55Leu), and one isolate exhibited mutations in both DRDR rpoB (Ser456Met) and DRDR folP1 (Pro55Leu), suggesting multidrug resistance. One isolate had a double mutation in folP1 (Thr53Ala and Thr88Pro). Also, we detected mutations outside of DRDR that required in vivo evaluation of their association or not with drug resistance: rpoB Arg505Trp, folP1 Asp91His, Arg94Trp, and Thr88Pro, and gyrA Ala107Leu. Seventy percent of M. leprae mutations were related to drug resistance and were isolated from relapsed patients; the likelihood of relapse was significantly associated with the presence of confirmed resistance mutations (OR range 20.1–88.7, p < 0.05). Five of these relapsed patients received dapsone monotherapy as a primary treatment. In summary, the current study calls attention to M. leprae resistance in Colombia, especially the significant association between confirmed resistance mutations and relapse in leprosy patients. A high frequency of DRDR mutations for rifampicin was seen in a region where dapsone monotherapy was used extensively. PMID:27706165

  5. Association of the F13A1 Val34Leu polymorphism and recurrent pregnancy loss: A meta-analysis.

    PubMed

    Jung, Jae Hyun; Kim, Jae-Hoon; Song, Gwan Gyu; Choi, Sung Jae

    2017-08-01

    Factor XIII (FXIII) plays role in stabilizing the linkage between fibrins during blood clotting and has been implicated in recurrent pregnancy loss (RPL). The relationship between the Val34Leu polymorphism in F13A1, which encodes the enzymatic subunit of FXIII, and RPL is unclear. The aim of this meta-analysis was to evaluate the association betweenF13A1 Val34Leu and the risk of RPL. We performed a meta-analysis of 11 studies involving 1092 cases and 678 controls using published literature from PubMed and Embase. We detected an association in recessive (Val/Val vs. Val/Leu+Leu/Leu; OR=0.71, 95% CI=0.51-0.99, P=0.04), and one of the two co-dominant (Val/Val vs. Val/Leu; OR=0.71, 95% CI=0.52-0.98, P=0.03) models of in heritance. Subgroup analysis revealed that the F13A1 Val34Leu polymorphism was associated with RPL in Asians (Val vs. Leu; OR=0.53, CI=0.33-0.85, P=0.01). However, there was no association between F13A1 Val34Leu and RPL in Europeans and South Americans. Our meta-analysis supports an association between F13A1 Val34Leu and RPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Probing Changes in the Conformation of tRNA[superscript Phe]: An Integrated Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.; Taylor, Buck L. H.

    2008-01-01

    We have designed a new guided-inquiry laboratory for an advanced biochemistry course. This integrated laboratory focuses on the biomolecule tRNA[superscript Phe] and combines elements of bioorganic and bioinorganic chemistry with biochemistry. Throughout the semester students work together to study tRNA[superscript Phe] structure and ligand…

  7. Spanish adaptation of the Patient Health Engagement scale (S.PHE-s)in patients with chronic diseases.

    PubMed

    Magallares, Alejandro; Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea; Lozza, Edoardo

    2017-08-01

    The Patient Health Engagement scale is an instrument based on evidence about the experiences and preferences of patients with chronic diseases regarding their engagement with the treatment they receive. The main goal of this study was to adapt the Patient Health Engagement scale to the Spanish population (S.PHE-s) following the guidelines for cross-cultural adaptations. The sample comprised 413 patients with different chronic diseases. The confirmatory factor analysis showed a one factor model corresponding to the structure proposed by the original authors. The factor structure was invariant by gender. Furthermore, a Rasch Model showed that the S.PHE-s was unidimensional. In addition, every polychoric correlation coefficient was higher than .60. The Ordinal Alpha of the S.PHE-s was .85. Finally, the S.PHE-s was found to be positively related to life satisfaction, positive affect, and treatment adherence and negatively correlated to negative affect, depression, and anxiety. In light of these results, it may be concluded that the S.PHE-s has good psychometric properties and it may be used by the Spanish-speaking scientific community to measure patient engagement.

  8. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective

  9. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.

    PubMed

    Pauli, Andrea; Montague, Tessa G; Lennox, Kim A; Behlke, Mark A; Schier, Alexander F

    2015-01-01

    Antisense oligonucleotides (ASOs) are synthetic, single-strand RNA-DNA hybrids that induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse model systems. To test their effectiveness in zebrafish, we targeted 20 developmental genes and compared the morphological changes with mutant and morpholino (MO)-induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as well as the long noncoding RNA (lncRNA) MALAT1. ASOs were only effective within a narrow concentration range and were toxic at higher concentrations. Despite this drawback, quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a useful knockdown reagent in zebrafish.

  10. Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy.

    PubMed

    Sultana, A; Sridhar, M S; Klintworth, G K; Balasubramanian, D; Kannabiran, C

    2005-11-01

    Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy. Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by grayish white opacities in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, which codes for the enzyme corneal N-acetylglucosamine-6-sulfotransferase. This enzyme catalyzes the sulfation of keratan sulfate, an important component of corneal proteoglycans. We screened 31 patients from 26 families with MCD for mutations in the coding region of the CHST6 gene. Twenty-six different mutations were identified, of which 14 mutations are novel. The novel mutations are one nonsense mutation found in one patient (Trp2Ter), one frameshift (insertion plus deletion) mutation in two patients (His335fs), and 12 missense mutations (Leu3Met, Ser54Phe, Val56Arg, Ala73Thr, Ser98Leu, Cys165Trp, Ser167Phe, Phe178Cys, Leu193Pro, Pro204Arg, Arg272Ser, and Arg334Cys) in 11 patients. These data demonstrate a high degree of allelic heterogeneity of the CHST6 gene in patient populations with MCD from Southern India, where this disease may have a relatively higher prevalence than in outbred communities.

  11. Novel adipokinetic hormones in the kissing bugs Rhodnius prolixus, Triatoma infestans, Dipetalogaster maxima and Panstrongylus megistus.

    PubMed

    Marco, Heather G; Simek, Petr; Clark, Kevin D; Gäde, Gerd

    2013-03-01

    Peptides of the adipokinetic hormone (AKH)/red pigment-concentrating hormone (RPCH) family were isolated and sequenced from the retrocerebral corpora cardiaca of four kissing bugs which are all vectors of the protozoan Trypanosoma cruzi responsible for Chagas' disease. The sequence of three novel AKHs were deduced from the multiple MS(N) electrospray mass data: the octapeptide pGlu-Leu-Thr-Phe-Ser-Thr-Asp-Trp amide (denoted Rhopr-AKH) in Rhodnius prolixus and Panstrongylus megistus, the nonapeptide pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-Gly amide (denoted Triin-AKH) in Triatoma infestans and the decapeptide pGlu-Leu-Thr-Phe-Ser-Asp-Gly-Trp-Gly-Asn amide (denoted Dipma-AKH) in Dipetalogaster maxima. The sequences were confirmed by identical behavior of natural and synthetic forms in reversed-phase HPLC and by CID-MS mass spectra. Conspecific injections of a dose of 10 pmol of the respective synthetic peptides resulted in a small but significant increase of the lipid concentration in the hemolymph. These experiments suggest that AKHs in kissing bugs act to regulate lipid metabolism, possibly during dispersal flights which is one of the mechanisms whereby the insects reach new outbreak areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Prosomatostatin-I is processed to somatostatin-26 and somatostatin-14 in the pancreas of the bowfin, Amia calva.

    PubMed

    Wang, Y; Youson, J H; Conlon, J M

    1993-08-13

    With the exception of the Agnatha (lampreys and hagfishes), somatostatin-14 is the predominant molecular form of somatostatin in the pancreas of species from all classes of vertebrates yet studied. The pancreas of the holostean fish, Amia calva (bowfin; order Amiiformes) contained somatostatin-like immunoreactivity that was resolved by reversed phase HPLC in two components. The primary structure of the more abundant peptide (somatostatin-26) was established as: Ser-Ala-Asn-Pro-Ala5-Leu-Ala-Pro-Arg-Glu10-Arg-Lys-Ala-Gly-+ ++Cys15-Lys-Asn-Phe- Phe-Trp20-Lys-Thr-Phe-Thr-Ser25-Cys. This amino acid sequence shows one substitution (Leu for Met at position 6) and two deletions compared with mammalian somatostatin-28. The minor component was identical to somatostatin-14. The data show that the pathway of post-translational processing of prosomatostatin-I in the bowfin pancreas is appreciably different from the corresponding pathway in teleost fish and higher vertebrates.

  13. Secondary Structures in Phe-Containing Isolated Dipeptide Chains: Laser Spectroscopy vs Quantum Chemistry.

    PubMed

    Loquais, Yohan; Gloaguen, Eric; Habka, Sana; Vaquero-Vara, Vanesa; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel

    2015-06-11

    The intrinsic conformational landscape of two phenylalanine-containing protein chain models (-Gly-Phe- and -Ala-Phe- sequences) has been investigated theoretically and experimentally in the gas phase. The near UV spectroscopy (first ππ* transition of the Phe ring) is obtained experimentally under jet conditions where the conformational features can be resolved. Single-conformation IR spectroscopy in the NH stretch region is then obtained by IR/UV double resonance in the ground state, leading to resolved vibrational spectra that are assigned in terms of conformation and H-bonding content from comparison with quantum chemistry calculations. For the main conformer, whose UV spectrum exhibits a significant Franck-Condon activity in low frequency modes involving peptide backbone motions relative to the Phe chromophore, excited state IR spectroscopy has also been recorded in a UV/IR/UV experiment. The NH stretch spectral changes observed in such a ππ* labeling experiment enable us to determine those NH bonds that are coupled to the phenyl ring; they are compared to CC2 excited state calculations to quantify the geometry change upon ππ* excitation. The complete and consistent series of data obtained enable us to propose an unambiguous assignment for the gallery of conformers observed and to demonstrate that, in these two sequences, three conceptually important local structural motifs of proteins (β-strands, 27 ribbons, and β-turns) are represented. The satisfactory agreement between the experimental conformational distribution and the predicted landscape anticipated from the DFT-D approach demonstrates the capabilities of a theoretical method that accounts for dispersive interactions. It also shows that the flaws, inherent to a resonant two-photon ionization detection scheme, often evoked for aromatic chromophores, do not seem to be significant in the case of Phe.

  14. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Meng; He, Hong-wei; Sun, Huan-xing

    2009-09-18

    Hepatocellular carcinoma (HCC) is a major challenge because of its resistance to conventional cytotoxic chemotherapy and radiotherapy. Multi-targeted therapy might be a new option for HCC treatment. Our previous study showed that N-ras gene was activated in HCC and was inhibited by RNA interference. In the present study, we investigated the alternation of gene expression by microarray in N-Ras-siRNA-treated HepG2 cells. The results revealed that the EREG gene, encoding epiregulin, was dramatically up-regulated in response to silence of N-ras. We speculated that the up-regulation of epiregulin was involved in the compensatory mechanism of N-ras knockdown for cell growth. Therefore, wemore » evaluated whether dual silence of N-ras and epiregulin display a greater suppression of cell growth. The results confirmed that dual knockdown of N-ras and epiregulin synergistically inhibited cell growth. Our results also showed that dual knockdown of N-ras and epiregulin significantly induced cell arrest at G0/G1 phase. Furthermore, Western blot assay showed that dual knockdown of N-ras and epiregulin markedly reduced the phosphorylations of ERK1/2, Akt and Rb, and inhibited the expression of cyclin D1. Our findings imply that multi-targeted silence of oncogenes might be an effective treatment for HCC.« less

  15. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells.

    PubMed

    Popp, Oliver; Larraillet, Vincent; Kettenberger, Hubert; Gorr, Ingo H; Hilger, Maximiliane; Lipsmeier, Florian; Zeck, Anne; Beaucamp, Nicola

    2015-06-01

    In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention. © 2014 Wiley Periodicals, Inc.

  16. Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL

    PubMed Central

    Gurvich, Olga L.; Näsvall, S. Joakim; Baranov, Pavel V.; Björk, Glenn R.; Atkins, John F.

    2011-01-01

    The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5′-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNAPro mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting. PMID:21177642

  17. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations.

    PubMed

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-14

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ(17-42) protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ(17-42) protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ(17-42) are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ(17-42) protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  18. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  19. A molecular dynamics simulation study of amino acid selectivity of LeuRS editing domain from Thermus thermophilus.

    PubMed

    Rayevsky, Alexey; Sharifi, Mohsen; Tukalo, Michael

    2018-06-18

    The accuracy of protein synthesis is provided by the editing functions of aminoacyl-tRNA synthetases (aaRSs), a mechanism that eliminates misactivated amino acids or mischarged tRNAs. Despite research efforts, some molecular bases of these mechanisms are still unclear. The post-transfer editing pathway of leucyl-tRNA synthetase (LeuRS) carried out in a special insertion domain (the Connective Polypeptide 1 or CP1), as editing domain. Recently, it was shown by in vivo studies and was supported by mutagenesis, and the kinetics approaches that the CP1 domain of LeuRS has discriminatory power for different substrates. The goal of this work is to investigate the structural basis for amino acid recognition of LeuRS post-transfer editing processes with molecular dynamics (MD) simulation method. To pursue this aim, the molecular modeling studies on Thermus thermophiles LeuRS (LeuRSTT) with two post-transfer substrates (norvalyl-tRNA Leu and isoleucyl-tRNA Leu ) was performed. Our results revealed that post-transfer substrate norvalyl-tRNA Leu is more favorable. Moreover, the MD simulations show that branched side chain of Ile-A76 cannot allow water molecules to get close, which leads to a significant decrease in the rate of hydrolysis. Finally, the study showed that site mutation Asp347Ala has elucidated a number of fine structural differences in the binding mode of two post-transfer substrates to the active centre of LeuRS editing domain and two conserved threonines, namely Thr247 and Thr248, are responsible for the amino acid selection through the interaction with substrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. [The metabolites of cyclic peptides from three endophytic mangrove fungi].

    PubMed

    Guo, Zhi-yong; Huang, Zhong-jing; Wen, Lu; Wan, Qiao; Liu, Fan; She, Zhi-gang; Lin, Yong-cheng; Zhou, Shi-ning

    2007-12-01

    Nine secondary metaboites of cyclic peptide were isolated from three mangrove endophytic fungi Paecilomyces sp. (treel-7), 4557,ZZF65. They were viscumamide(1),cyclo(Pro-Iso)(2),cyclo(Phe-Gly)(3),cyclo(Phe-Ana)(4),cyclo(Gly-Pro) (5),cyclo(Gly-Leu)(6), cyclo(Trp-Ana)(7),neoechinulin A(8),cyclo(Pro-Thr)(9). The compounds 1,7,8,9 were firstly isolated from marine fungus.

  1. Resistance mutations of Pro197, Asp376 and Trp574 in the acetohydroxyacid synthase (AHAS) affect pigments, growths, and competitiveness of Descurainia sophia L.

    PubMed

    Zhang, Yongzhi; Xu, Yufang; Wang, Shipeng; Li, Xuefeng; Zheng, Mingqi

    2017-11-27

    D. Sophia is one of the most problematic weed species infesting winter wheat in China, and has evolved high resistance to tribenuron-methyl. Amino acid substitutions at site of Pro197, Asp376 and Trp574 in acetohydroxyacid synthase (AHAS) were mainly responsible for D. sophia resistance to tribenuron-methyl. In this study, D. sophia plant individually homozygous for specific AHAS mutation (Pro197Leu, Pro197His, Pro197Ser, Pro197Thr, Asp376Glu and Trp574Leu) were generated. In addition, the effects of resistance mutations on pigments, growths and competitiveness of susceptible (S) and resistant (R) plants of D. sophia were investigated. The results indicated the R plants carrying Pro197Leu or Pro197His or Asp376Glu or Trp574Leu displayed stronger competitiveness than S plants. The adverse effects on R plants aggravated with the increase of R plants proportion, which made the R plants against domination the weed community in absent of herbicide selection. Therefore, these resistance mutation have no obvious adverse effects on the pigments (chlorophyll a, chlorophyll b and carotenoid), relative growth rates (RGR), leaf area ratio (LAR) and net assimilation rate (NAR) of R plants.

  2. One amino acid in mouse activated factor VII defines its endothelial protein C receptor (EPCR) binding and modulates its EPCR-dependent hemostatic activity in vivo.

    PubMed

    Pavani, G; Zintner, S M; Ivanciu, L; Small, J C; Stafford, K A; Szeto, J H; Margaritis, P

    2017-03-01

    Essentials The lack of factor (F) VIIa-endothelial protein C receptor (EPCR) binding in mice is unresolved. A single substitution of Leu4 to Phe in mouse FVIIa (mFVIIa) enables its interaction with EPCR. mFVIIa with a Phe4 shows EPCR binding-dependent enhanced hemostatic function in vivo vs. mFVIIa. Defining the FVIIa-EPCR interaction in mice allows for further investigating its biology in vivo. Background Human activated factor VII (hFVIIa), which is used in hemophilia treatment, binds to the endothelial protein C (PC) receptor (EPCR) with unclear hemostatic consequences. Interestingly, mice lack the activated FVII (FVIIa)-EPCR interaction. Therefore, to investigate the hemostatic consequences of this interaction in hemophilia, we previously engineered a mouse FVIIa (mFVIIa) molecule that bound mouse EPCR (mEPCR) by using three substitutions from mouse PC (mPC), i.e. Leu4→Phe, Leu8→Met, and Trp9→Arg. The resulting molecule, mFVIIa-FMR, modeled the EPCR-binding properties of hFVIIa and showed enhanced hemostatic capacity in hemophilic mice versus mFVIIa. These data implied a role of EPCR in the action of hFVIIa in hemophilia treatment. However, the substitutions in mFVIIa-FMR only broadly defined the sequence determinants for its mEPCR interaction and enhanced function in vivo. Objectives To determine the individual contributions of mPC Phe4, Met8 and Arg9 to the in vitro/in vivo properties of mFVIIa-FMR. Methods The mEPCR-binding properties of single amino acid variants of mFVIIa or mPC at position 4, 8 or 9 were investigated. Results and conclusions Phe4 in mFVIIa or mPC was solely critical for interaction with mEPCR. In hemophilic mice, administration of mFVIIa harboring a Phe4 resulted in a 1.9-2.5-fold increased hemostatic capacity versus mFVIIa that was EPCR binding-dependent. This recapitulated previous observations made with triple-mutant mFVIIa-FMR. As Leu8 is crucial for hFVIIa-EPCR binding, we describe the sequence divergence of this interaction in

  3. Mullinamides A and B, New Cyclopeptides Produced by the Ruth Mullins Coal Mine Fire Isolate Streptomyces sp. RM-27-46

    PubMed Central

    Wang, Xiachang; Shaaban, Khaled A.; Elshahawi, Sherif I.; Ponomareva, Larissa V.; Sunkara, Manjula; Copley, Gregory C.; Hower, James C.; Morris, Andrew J.; Kharel, Madan K.; Thorson, Jon S.

    2014-01-01

    Two new cyclopeptides, mullinamides A [cyclo-(-l-Gly-l-Glu-l-Val-l-Ile-l-Pro-)] and B [cyclo-(-l-Glu-l-Met-l-Pro-)] were isolated from the crude extract of terrestrial Streptomyces sp. RM-27-46 along with the three known cyclopeptides surugamide A [cyclo-(-l-Ile-d-Ile-l-Lys-l-Ile-d-Phe-d-Leu-l-Ile-d-Ala-)], cyclo-(-l-Pro-l-Phe-) and cyclo-(-l-Pro-l-Leu-). The structures of the new compounds were elucidated by the cumulative analyses of NMR spectroscopy and high resolution mass spectrometry. While mullinamides A and B displayed no appreciable antimicrobial/fungal activity or cytotoxicity, this study highlights the first reported antibacterial activity of surugamide A. PMID:24713874

  4. LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis

    PubMed Central

    Hannan, Thomas J.; Mysorekar, Indira U.; Chen, Swaine L.; Walker, Jennifer N.; Jones, Jennifer M.; Pinkner, Jerome S.; Hultgren, Scott J.; Seed, Patrick C.

    2013-01-01

    Summary Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we examined the mechanisms by which a conserved PAI contributes to UPEC pathogenesis in acute cystitis. In the human UPEC strain UTI89, spontaneous excision of PAI IIUTI89 disrupts the adjacent leuX tRNA locus. Loss of wild-type leuX-encoded tRNA5Leu significantly delayed, but did not eliminate, FimB recombinase-mediated phase variation of type 1 pili. FimX, an additional FimB-like, leuX-independent recombinase, was also found to mediate type 1 pili phase variation. However, whereas FimX activity is relatively slow in vitro, it is rapid in vivo as a non-piliated strain lacking the other fim recombinases rapidly expressed type 1 pili upon experimental infection. Finally, we found that disruption of leuX, but not loss of PAI IIUTI89 genes, reduced bladder epithelial invasion and intracellular proliferation, independent of type 1 piliation. These findings indicate that the predominant mechanism for preservation of PAI IIUTI89 during the establishment of acute cystitis is maintenance of wild-type leuX, and not PAI IIUTI89 gene content. PMID:18036139

  5. Synthesis and Sensory Characteristics of Kokumi γ-[Glu]n-Phe in the Presence of Glutamine and Phenylalanine: Glutaminase from Bacillus amyloliquefaciens or Aspergillus oryzae as the Catalyst.

    PubMed

    Yang, Juan; Sun-Waterhouse, Dongxiao; Cui, Chun; Dong, Keming; Wang, Wei

    2017-10-04

    The transpeptidase activity of glutaminase from Bacillus amyloliquefaciens (GBA) and Aspergillus oryzae (GAO) to yield γ-[Glu] n -Phe peptides were verified for the first time. In the presence of Gln and Phe, γ-Glu-Phe and γ-Glu-γ-Glu-Phe were synthesized by GAO, and γ-Glu-Phe, γ-Glu-γ-Glu-Phe, γ-Glu-γ-Glu-γ-Glu-Phe, γ-Glu-γ-Glu-γ-Glu-γ-Glu-Phe, and γ-Glu-γ-Glu-γ-Glu-γ-Glu-γ-Glu-Phe were synthesized by GBA. The K m values for the transpeptidation catalyzed by GBA and GAO were 47.88 and 153.92 mM (Phe as the acceptor), 84.89 and 236.47 mM (γ-Glu-Phe as the acceptor), indicating that GBA had a greater affinity than GAO for Phe and γ-Glu-Phe in the transpeptidation reaction. The K m values for the transpeptidation catalyzed by GBA against acceptors, Phe and γ-[Glu] (1≤n<5) -Phe (47.88-206.47 mM), increased with an elevated number of γ-glutamyl residue within the acceptor. The optimal conditions for γ-[Glu] n -Phe synthesis were pH 10 and 37 °C for 3 h, 300 mM Gln, 100 mM Phe, 0.05 U/mL GBA. All the γ-[Glu] (1≤n≤5) -Phe exhibited astringency in water and imparted a kokumi taste to commercial soy sauce and model chicken broth. The astringent threshold values (2.5-3.92 mM) were approximately 3-fold of the kokumi threshold concentrations (0.78-1.53 mM). γ-[Glu] n -Phe or the post-enzymatic reaction mixture enhanced the umami intensity of commercial soy sauce and model chicken broth.

  6. Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin*

    PubMed Central

    Aerbajinai, Wulin; Liu, Lunhua; Zhu, Jianqiong; Kumkhaek, Chutima; Chin, Kyung; Rodgers, Griffin P.

    2016-01-01

    Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane

  7. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues

    PubMed Central

    Zhu, Xuezhu; Jin, Li; Sun, Kai; Li, Shuang; Ling, Wanting; Li, Xuelin

    2016-01-01

    Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0–8.0, temperature of 30 °C–42 °C, initial phenanthrene concentration less than 100 mg·L−1, and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants. PMID:27347988

  8. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies.

    PubMed

    Skidgel, Randal A; Erdös, Ervin G

    2004-03-01

    Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes

  9. ACE-like hydrolysis of gastrin analogs and CCK-8 by fundic mucosal cells of different species with release of the amidated C-terminal dipeptide.

    PubMed

    Dubreuil, P; Fulcrand, P; Rodriguez, M; Laur, J; Bali, J P; Martinez, J

    1990-06-19

    Various gastrin analogues and CCK-8 (Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2) are hydrolyzed in vitro by angiotensin-converting enzyme (ACE), the main and initial cleavage occurring at the Met-Asp (or Leu-Asp) bond, releasing the C-terminal dipeptide amide Asp-Phe-NH2. Tetragastrin analogues (e.g., Boc-Trp-Leu-Asp-Phe-NH2) are degraded by a vesicular membrane fraction from rat gastric mucosa, yielding the C-terminal dipeptide Asp-Phe-NH2. We report here on the degradation of gastrin analogues and CCK-8 by a gastric mucosal cell preparation containing specific gastrin receptors. We have shown that gastrin analogues were specifically degraded by gastric mucosal cells from different species (e.g., rabbit and dog) at 37 degrees C (pH 7.4), releasing the C-terminal dipeptide Asp-Phe-NH2, similarly to ACE. This cleavage was found to be temperature and pH sensitive, and was inhibited by metalloproteinase inhibitors and by captopril, strongly suggesting that this enzymatic system closely resembles ACE. We have also demonstrated that a close correlation seems to exist between the apparent affinity of the gastrin analogues for gastrin receptors on gastric mucosal cells, and their ability of being hydrolyzed by this cell preparation. Moreover, all gastrin analogues which have been demonstrated to act as gastrin antagonists remained unaffected in the incubation conditions.

  10. A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability.

    PubMed

    Wellhauser, Leigh; Kim Chiaw, Patrick; Pasyk, Stan; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E

    2009-06-01

    The deletion of Phe-508 (DeltaPhe508) constitutes the most prevalent of a number of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that cause cystic fibrosis (CF). This mutation leads to CFTR misfolding and retention in the endoplasmic reticulum, as well as impaired channel activity. The biosynthetic defect can be partially overcome by small-molecule "correctors"; once at the cell surface, small-molecule "potentiators" enhance the channel activity of DeltaPhe508-CFTR. Certain compounds, such as VRT-532, exhibit both corrector and potentiator functions. In the current studies, we confirmed that the inherent chloride channel activity of DeltaPhe508-CFTR (after biosynthetic rescue) is potentiated in studies of intact cells and membrane vesicles. It is noteworthy that we showed that the ATPase activity of the purified and reconstituted mutant protein is directly modulated by binding of VRT-532 [4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol] ATP turnover by reconstituted DeltaPhe508-CFTR is decreased by VRT-532 treatment, an effect that may account for the increase in channel open time induced by this compound. To determine whether the modification of DeltaPhe508-CFTR function caused by direct VRT-532 binding is associated with structural changes, we evaluated the effect of VRT-532 binding on the protease susceptibility of the major mutant. We found that binding of VRT-532 to DeltaPhe508-CFTR led to a minor but significant decrease in the trypsin susceptibility of the full-length mutant protein and a fragment encompassing the second half of the protein. These findings suggest that direct binding of this small molecule induces and/or stabilizes a structure that promotes the channel open state and may underlie its efficacy as a corrector of DeltaPhe508-CFTR.

  11. Stereochemical studies of the monocyclic agouti-related protein (103-122) Arg-Phe-Phe residues: conversion of a melanocortin-4 receptor antagonist into an agonist and results in the discovery of a potent and selective melanocortin-1 agonist.

    PubMed

    Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-12-30

    The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.

  12. Comparison of ALS functionality and plant growth in ALS-inhibitor susceptible and resistant Myosoton aquaticum L.

    PubMed

    Liu, Weitang; Bai, Shuang; Jia, Sisi; Guo, Wenlei; Zhang, Lele; Li, Wei; Wang, Jinxin

    2017-10-01

    Herbicide target-site resistance mutations may cause pleiotropic effects on plant ecology and physiology. The effect of several known (Pro197Ser, Pro197Leu Pro197Ala, and Pro197Glu) target-site resistance mutations of the ALS gene on both ALS functionality and plant vegetative growth of weed Myosoton aquaticum L. (water chickweed) have been investigated here. The enzyme kinetics of ALS from four purified water chickweed populations that each homozygous for the specific target-site resistance-endowing mutations were characterized and the effect of these mutations on plant growth was assessed via relative growth rate (RGR) analysis. Plants homozygous for Pro197Ser and Pro197Leu exhibited higher extractable ALS activity than susceptible (S) plants, while all ALS mutations with no negative change in ALS kinetics. The Pro197Leu mutation increased ALS sensitivity to isoleucine and valine, and Pro197Glu mutation slightly increased ALS sensitivity to isoleucine. RGR results indicated that none of these ALS resistance mutations impose negative pleiotropic effects on relative growth rate. However, resistant (R) seeds had a lowed germination rate than S seeds. This study provides baseline information on ALS functionality and plant growth characteristics associated with ALS inhibitor resistance-endowing mutations in water chickweed. Copyright © 2017. Published by Elsevier Inc.

  13. Tyrocidine A Analogues Bearing the Planar d-Phe-2-Abz Turn Motif: How Conformation Impacts Bioactivity.

    PubMed

    Cameron, Alan J; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2017-12-14

    The d-Phe-Pro β-turn of the cyclic β-hairpin antimicrobial decapeptide tyrocidine A, (Tyrc A) was substituted with the d-Phe-2-aminobenzoic acid (2-Abz) motif in a synthetic analogue (1). The NMR structure of 1 demonstrated that compound 1 retained the β-hairpin structure of Tyrc A with additional planarity, resulting in approximately 30-fold reduced hemolysis than Tyrc A. Although antibacterial activity was partially compromised, a single Gln to Lys substitution (2) restored activity equivalent to Tyrc A against S. aureus, enhanced activity against two Gram negative strains and maintained the reduced hemeloysis of 1. Analysis by transmission electron microscopy (TEM) suggested a membrane lytic mechanism of action for these peptides. Compound 2 also exhibits nanomolar antifungal activity in synergy with amphotericin B. The d-Phe-2-Abz turn may serve as a tool for the synthesis of structurally predictable β-hairpin libraries. Unlike traditional β-turn motifs such as d-Pro-Gly, both the 2-Abz and d-Phe rings may be further functionalized.

  14. Evidence for differential activation of arachidonic acid metabolism in formylpeptide- and macrophage-activation-factor-stimulated guinea-pig macrophages.

    PubMed Central

    Homma, Y; Hashimoto, T; Nagai, Y; Takenawa, T

    1985-01-01

    Alterations of phospholipid and arachidonic acid metabolism were studied by treatment of guinea-pig peritoneal-exudate macrophages with chemotactic peptide, formylmethionyl-leucylphenylalanine (fMet-Leu-Phe) and macrophage activation factor (MAF). The chemotactic peptide caused a rapid rearrangement in inositol phospholipids, including a breakdown of polyphosphoinositides within 30s, followed by a resultant formation of phosphatidylinositol (PI), diacylglycerol, phosphatidic acid and non-esterified arachidonic acid within 5 min. In addition to these sequential alterations, arachidonic acid was released mainly from PI. On the other hand, MAF induced a slow liberation of arachidonic acid, mainly from phosphatidylethanolamine (PE) and phosphatidylcholine (PC) by phospholipase A2 after the incubation period of 30 min, but not any rapid changes in phospholipids. Treatment of macrophages for 15 min with fMet-Leu-Phe produced the leukotrienes (LTs) B4, C4 and D4, prostaglandins (PG) E2 and F2 alpha and thromboxane (TX) B2. In contrast, MAF could not stimulate the production of arachidonic acid metabolites during the incubation period of 15 min, but could enhance that of PGE2, PGF2 alpha, TXB2 and hydroxyeicosatetraenoic acids at 6 h. However, the stimulated formation of LTs was not detected at any time. These results indicate that the effects of fMet-Leu-Phe on both phospholipid and arachidonic acid metabolism are very different from those mediated by MAF. PMID:3931627

  15. Interaction of hemoglobin Grey Lynn (Vientiane) with a non-deletional α(+)-thalassemia in an adult Thai proband.

    PubMed

    Singha, Kritsada; Fucharoen, Goonnapa; Fucharoen, Supan

    2014-01-01

    Hemoglobin (Hb) Grey Lynn is a Hb variant caused by a substitution of Phe for Leu at position 91 of α1-globin chain, originally described in individual of unknown ethnic background. This article addresses the interaction of Hb Grey Lynn with a non-deletional α(+)-thalassemia found in Thailand, a hitherto un-described condition. The proband was adult Thai woman referred for investigation of mild anemia with Hb 90 g/L. Hb analyses using low pressure liquid chromatography raised a suspicion of abnormal Hb presence, which was failed to demonstrate by cellulose acetate electrophoresis and capillary electrophoresis. DNA sequencing identified a CTT (Leu) to TTT (Phe) mutation at codon 91 corresponding to the Hb Grey Lynn (Vientiane) [α91(FG3)Leu>Phe (α1) on α1-globin gene and a C deletion between codons 36 and 37 on α2-globin gene causing α(+)-thalassemia. As compared to those observed in a compound heterozygote for Hb Grey Lynn / α(0)-thalassemia reported previously, higher MCV (81.7 fL) and MCH (26.3 pg) values with a lower level of Hb Grey Lynn (19.7%) were observed in the proband. The normochromic normocytic anemia observed could be due to the interaction of Hb Grey Lynn with α(+)-thalassemia. The two mutations could be identified using PCR-RFLP and allele-specific PCR assays developed.

  16. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae

    PubMed Central

    Lynd, Amy; Ranson, Hilary; McCall, P J; Randle, Nadine P; Black, William C; Walker, Edward D; Donnelly, Martin J

    2005-01-01

    Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR) which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA) was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA) technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles in the homozygous and

  17. SAFARI-1: Achieving conversion to LEU - A local challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piani, C.S.B.

    2008-07-15

    Two years have passed since the South African Department of Minerals and Energy authorised the conversion from High Enriched Uranium (HEU) to Low Enriched Uranium (LEU) of the South African Research Reactor (SAFARI-1) and the associated fuel manufacturing at Pelindaba. The scheduling, as originally proposed, allowed approximately three years for the full conversion of the reactor, anticipating simultaneous manufacturing ability from the fuel production plant. Due to technical difficulties experienced in the conversion of the local manufacturing plant from HEU (UAl alloy) to LEU (U Silicide) and the uncertainty as to costing and scheduling of such an achievement, the conversionmore » of SAFARI-1 based on local supply has been allocated a lower priority. The acquisition in mid-2006 of 2 LEU silicide elements of SA design, manufactured by AREVA- CERCA and irradiated as test elements in SAFARI-1 to burn-ups of {approx}65% each; was successfully accomplished within 9 cycles of irradiation each. Furthermore, four 'Hybrid' elements (AREVA-CERCA plates assembled locally at Pelindaba) are ready for irradiation and have received regulatory authorisation to load. This will enable the SAFARI-1 conversion program to continue systematically according to an agreed schedule. This paper will trace the developments of the above and reflect the current status and the rescheduled conversion phases of the reactor according to latest expectations. (author)« less

  18. Experiments of the origins of optical activity.

    PubMed

    Bonner, W A; Flores, J J

    1975-01-01

    Two recent reports claim that (1) aqueous L-aspartic acid polymerizes faster than D-Asp in the presence of kaolin at 90 degrees, and (2) L-phenylalanine is adsorbed by kaolin more extensively than D-Phe at pH 4(the reverse being true at pH2). The novelty of these observations and their potential significance for the origin of optical activity has prompted us to duplicate these experiments using more sensitive methods. L- and D, L-Asp in 0.01 M solution were incubated with kaolin at 90 degrees for 8 days. Careful examination of the aqueous residues from such experiments failed to demonstrate any preferential polymerization of L-Asp over D-Asp, or indeed any significant gross polymerization of Asp at all. In other experiments 0.001 M solutions of D, L-Phe at pH 6 and pH 2 were stirred with large excesses of kaolin for 24 hr, and the aqueous extracts from these mixtures were examined for gross adsorption using the amino acid analyzer. No significant gross adsorption was noted. We then looked for asymmetric adsorption in the aqueous residues using optical rotatory dispersion, gas chromatography and thin layer chromatography. By none of these analytical criteria could we find any evidence whatsoever for the preferential adsorption of D- versus L-Phe from either pH 6 or pH 2 solutions. Finally, in experiments bearing on the origin of optical activity by parity violation during beta-decay, we have irradiated solid samples of D-, L- and D,L-leucine in a 61700 Ci Sr-90 source at Oak Ridge National Lab. for 1.34 yr (total dose: 4.2 x 10(8) rad). Gas chromatographic examination of the (appropriately derivitized) recovered samples showed that the L-Leu was 16.7% decomposed, the D-Leu 11.4% and theD,L-Leu 13.8% decomposed. The recovered D,L-Leu sample had a gas-chromatographically determined enantiomeric composition of 50.8% D-leu and 49.2% L-Leu. These data, though very close to experimental error, may indicate a slight preferential radiolysis of L-Leu compared to D-Leu by the

  19. ATR LEU fuel and burnable absorber neutronics performance optimization by fuel meat thickness variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, G.S.

    2008-07-15

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess

  20. ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang

    2007-09-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner

  1. Conformational analysis of α-helical polypeptide included L-proline residue by high-resolution solid-state NMR measurement and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Souma, Hiroyuki; Shoji, Akira; Kurosu, Hiromichi

    2008-10-01

    We challenged the problem about the stabilization mechanism of an α-helix formation for polypeptides containing L-proline (Pro) residue. We computed the optimized structure of α-helical poly( L-alanine) molecules including a Pro residue, H-(Ala) 8-Pro-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory, B3LYP/6-31G(d) and the 13C and 15N chemical shift values based on the GIAO-CHF method with B3LYP/6-311G(d,p), respectively. It was found that two kinds of optimized structures, 'Bent structure' and 'Included α-helix structure', were preferred structures in H-(Ala) 8-Pro-(Ala) 9-OH. In addition, based on the precise 13C and 15N chemical shift data of the simple model, we successfully analyzed the secondary structure of well-defined synthetic polypeptide H-(Phe-Leu-Ala) 3-Phe C-Pro-Ala N-(Phe-Leu-Ala) 2-OH (FLA-11P), the secondary structure of which was proven to the 'Included α-helix structure'.

  2. Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death

    PubMed Central

    Cook, Katherine L.; Clarke, Pamela A. G.; Parmar, Jignesh; Hu, Rong; Schwartz-Roberts, Jessica L.; Abu-Asab, Mones; Wärri, Anni; Baumann, William T.; Clarke, Robert

    2014-01-01

    Approximately 70% of all newly diagnosed breast cancers express estrogen receptor (ER)-α. Although inhibiting ER action using targeted therapies such as fulvestrant (ICI) is often effective, later emergence of antiestrogen resistance limits clinical use. We used antiestrogen-sensitive and -resistant cells to determine the effect of antiestrogens/ERα on regulating autophagy and unfolded protein response (UPR) signaling. Knockdown of ERα significantly increased the sensitivity of LCC1 cells (sensitive) and also resensitized LCC9 cells (resistant) to antiestrogen drugs. Interestingly, ERα knockdown, but not ICI, reduced nuclear factor (erythroid-derived 2)-like (NRF)-2 (UPR-induced antioxidant protein) and increased cytosolic kelch-like ECH-associated protein (KEAP)-1 (NRF2 inhibitor), consistent with the observed increase in ROS production. Furthermore, autophagy induction by antiestrogens was prosurvival but did not prevent ERα knockdown–mediated death. We built a novel mathematical model to elucidate the interactions among UPR, autophagy, ER signaling, and ROS regulation of breast cancer cell survival. The experimentally validated mathematical model explains the counterintuitive result that knocking down the main target of ICI (ERα) increased the effectiveness of ICI. Specifically, the model indicated that ERα is no longer present in excess and that the effect on proliferation from further reductions in its level by ICI cannot be compensated for by increased autophagy. The stimulation of signaling that can confer resistance suggests that combining autophagy or UPR inhibitors with antiestrogens would reduce the development of resistance in some breast cancers.—Cook, K. L., Clarke, P. A. G., Parmar, J., Hu, R., Schwartz-Roberts, J. L., Abu-Asab, M., Wärri, A., Baumann, W. T., Clarke, R. Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death

  3. Purification and structural characterization of vasoactive intestinal polypeptide from the trout and bowfin.

    PubMed

    Wang, Y; Conlon, J M

    1995-04-01

    Vasoactive intestinal polypeptide (VIP) was purified from extracts of the stomachs of the rainbow trout, Oncorhynchus mykiss, and the bowfin, Amia calva. The primary structure of VIP from both species was the same: His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Asn-Tyr10- Ser-Arg-Phe-Arg-Lys-Gln-Met-Ala-Val-Lys20-Lys-Tyr-Leu-Asn-Ser-Val- Leu-Thr. This amino acid sequence shows only one amino acid substitution (Val5-->Ile) compared with the common sequence of VIP from the chicken, alligator, and European green frog. The structural identity of VIP from the trout and bowfin is consistent with the close phylogenetic relationship between the Salmoniformes and the Amiiformes and the data indicate that pressure to conserve the complete primary structure of VIP during vertebrate evolution has been very strong.

  4. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua.

    PubMed

    Kobbi, Sabrine; Nedjar, Naima; Chihib, Nourdine; Balti, Rafik; Chevalier, Mickael; Silvain, Amandine; Chaabouni, Semia; Dhulster, Pascal; Bougatef, Ali

    2018-02-01

    In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene and polycystic ovary syndrome.

    PubMed

    Wang, Kehua; Wang, Leiguang; Zhao, Yueran; Shi, Yuhua; Wang, Laicheng; Chen, Zi-Jiang

    2009-02-01

    Ghrelin plays a role in regulating glucose metabolism and energy balance. Polymorphisms in preproghrelin and ghrelin gene could be responsible for obesity, insulin resistance and low ghrelin levels observed in some individuals. The objective of this study was to evaluate the influence of two single-nucleotide polymorphisms (SNPs) of ghrelin gene on the clinical, the hormonal and metabolic features in women with polycystic ovary syndrome (PCOS) in a Chinese population. A large sample of Chinese PCOS (n = 271) women and a control group (n = 296) of healthy women matched for age were studied. Hormone and metabolic profiles were measured and blood samples were collected for genotype and allelic frequency analysis. Non-synonymous SNPs in the coding region (exon 2) of the preproghrelin gene (Arg51Gln (346 G>A) and Leu72Met (408 C>A) were studied using PCR and restriction fragment length polymorphism analysis. The polymorphism Arg51Gln was not found in the cohorts studied. The distribution of Leu72Met was similar in PCOS group and in healthy controls. There was no significant difference in age, BMI, waist-hip-ratio and levels of FSH, LH, estradiol, testosterone and prolactin between PCOS patients with different genotypes, and the level of plasma glucose and insulin was also similar. No association was found between Leu72Met and Arg51Gln polymorphisms in the ghrelin gene and PCOS in Chinese population.

  6. Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics

    PubMed Central

    Frost, Dustin C.; Greer, Tyler; Xiang, Feng; Liang, Zhidan; Li, Lingjun

    2015-01-01

    Rationale Relative quantification of proteins via their enzymatically digested peptide products determines disease biomarker candidate lists in discovery studies. Isobaric label-based strategies using TMT and iTRAQ allow for up to 10 samples to be multiplexed in one experiment, but their expense limits their use. The demand for cost-effective tagging reagents capable of multiplexing many samples led us to develop an 8-plex version of our isobaric labeling reagent, DiLeu. Methods The original 4-plex DiLeu reagent was extended to an 8-plex set by coupling isotopic variants of dimethylated leucine to an alanine balance group designed to offset the increasing mass of the label’s reporter group. Tryptic peptides from a single protein digest, a protein mixture digest, and Saccharomyces cerevisiae lysate digest were labeled with 8-plex DiLeu and analyzed via nanoLC-MS2 on a Q-Exactive Orbitrap mass spectrometer. Characteristics of 8-plex DiLeu-labeled peptides, including quantitative accuracy and fragmentation, were examined. Results An 8-plex set of DiLeu reagents with 1 Da-spaced reporters was synthesized at a yield of 36%. The average cost to label eight 100 μg peptide samples was calculated to be approximately $15. Normalized collision energy tests on the Q-Exactive revealed that a higher-energy collisional dissociation value of 27 generated the optimum number of high-quality spectral matches. Relative quantification of DiLeu-labeled peptides yielded normalized median ratios accurate to within 12% of their expected values. Conclusions Cost-effective 8-plex DiLeu reagents can be synthesized and applied to relative peptide and protein quantification. These labels increase the multiplexing capacity of our previous 4-plex implementation without requiring high-resolution instrumentation to resolve reporter ion signals. PMID:25981542

  7. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex.

    PubMed

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-07-11

    MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively.

  8. Knockdown of Lmo7 inhibits chick myogenesis.

    PubMed

    Possidonio, Ana C B; Soares, Carolina P; Fontenele, Marcio; Morris, Eduardo R; Mouly, Vincent; Costa, Manoel L; Mermelstein, Claudia

    2016-02-01

    The multifunctional protein Lmo7 has been implicated in some aspects of myogenesis in mammals. Here we studied the distribution and expression of Lmo7 and the effects of Lmo7 knockdown in primary cultures of chick skeletal muscle cells. Lmo7 was localized within the nuclei of myoblasts and at the perinuclear region of myotubes. Knockdown of Lmo7 using siRNA specific to chick reduces the number and width of myotubes and the number of MyoD positive-myoblasts. Both Wnt3a enriched medium and Bio, activators of the Wnt/beta-catenin pathway, could rescue the effects of the Lmo7 knockdown suggesting a crosstalk between the Wnt/beta-catenin and Lmo7-mediated signaling pathways. Our data shows a role of Lmo7 during the initial events of chick skeletal myogenesis, particularly in myoblast survival. © 2016 Federation of European Biochemical Societies.

  9. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bsebsu, F.M.; Abotweirat, F.; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulicmore » design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)« less

  10. [Fluoroquinolone resistance mutations in topoisomerase genes of Salmonella typhimurium isolates].

    PubMed

    Guo, Yunchang; Pei, Xiaoyan; Liu, Xiumei

    2004-09-01

    Mutations in topoisomerase genes were main cause of the resistence of Salmonella typhimurium to fluoroquinolone. The MICs of three Salmonella typhimurium isolates X2, X7, X11 to ciprofloxacin were above 32 microg/ml, 0.38 microg/ml and 0.023 microg/ml, respectively. The genetic alterations in four topoisomerase genes, gyrA, gyrB, parC, and parE were detected by multiplex PCR amplimer conformation analysis in these three strains. X2 isolate showed both gyrA mutations (Ser83-->Phe, Asp87-->Asn) and parC mutation (Ser80-->Arg). X7 isolate showed a single gyrA mutation (Ser83-->Phe) and X11 isolate had no changes in all of the four quinolone resistance genes, gyrA, gyrB, parC, and parE. X7 isolate with a single gyrA mutation was less resistant to ciprofloxacin than X2 with double gyrA mutations and an additional parC mutation. GyrA and parC genes play important role of the resistance of Salmonella typhimurium to ciprofloxacin.

  11. A mutational analysis and molecular dynamics simulation of quinolone resistance proteins QnrA1 and QnrC from Proteus mirabilis.

    PubMed

    Guo, Qinglan; Weng, Jingwei; Xu, Xiaogang; Wang, Minghua; Wang, Xiaoying; Ye, Xinyu; Wang, Wenning; Wang, Minggui

    2010-10-08

    The first report on the transferable, plasmid-mediated quinolone-resistance determinant qnrA1 was in 1998. Since then, qnr alleles have been discovered worldwide in clinical strains of Gram-negative bacilli. Qnr proteins confer quinolone resistance, and belong to the pentapeptide repeat protein (PRP) family. Several PRP crystal structures have been solved, but little is known about the functional significance of their structural arrangement. We conducted random and site-directed mutagenesis on qnrA1 and on qnrC, a newly identified quinolone-resistance gene from Proteus mirabilis. Many of the Qnr mutants lost their quinolone resistance function. The highly conserved hydrophobic Leu or Phe residues at the center of the pentapeptide repeats are known as i sites, and loss-of-function mutations included replacement of the i site hydrophobic residues with charged residues, replacing the i-2 site, N-terminal to the i residues, with bulky side-chain residues, introducing Pro into the β-helix coil, deletion of the N- and C-termini, and excision of a central coil. Molecular dynamics simulations and homology modeling demonstrated that QnrC overall adopts a stable β-helix fold and shares more similarities with MfpA than with other PRP structures. Based on homology modeling and molecular dynamics simulation, the dysfunctional point mutations introduced structural deformations into the quadrilateral β-helix structure of PRPs. Of the pentapeptides of QnrC, two-thirds adopted a type II β-turn, while the rest adopted type IV turns. A gap exists between coil 2 and coil 3 in the QnrC model structure, introducing a structural flexibility that is similar to that seen in MfpA. The hydrophobic core and the β-helix backbone conformation are important for maintaining the quinolone resistance property of Qnr proteins. QnrC may share structural similarity with MfpA.

  12. Association of Amino Acid Substitutions in Penicillin-Binding Protein 3 with β-Lactam Resistance in β-Lactamase-Negative Ampicillin-Resistant Haemophilus influenzae

    PubMed Central

    Ubukata, Kimiko; Shibasaki, Yumi; Yamamoto, Kentarou; Chiba, Naoko; Hasegawa, Keiko; Takeuchi, Yasuo; Sunakawa, Keisuke; Inoue, Matsuhisa; Konno, Masatoshi

    2001-01-01

    The affinity of [3H]benzylpenicillin for penicillin-binding protein (PBP) 3A was reduced in 25 clinical isolates of β-lactamase-negative ampicillin (AMP)-resistant (BLNAR) Haemophilus influenzae for which the AMP MIC was ≥1.0 μg/ml. The affinities of PBP 3B and PBP 4 were also reduced in some strains. The sequences of the ftsI gene encoding the transpeptidase domain of PBP 3A and/or PBP 3B and of the dacB gene encoding PBP 4 were determined for these strains and compared to those of AMP-susceptible Rd strains. The BLNAR strains were classified into three groups on the basis of deduced amino acid substitutions in the ftsI gene, which is thought to be involved in septal peptidoglycan synthesis. His-517, near the conserved Lys-Thr-Gly (KTG) motif, was substituted for Arg-517 in group I strains (n = 9), and Lys-526 was substituted for Asn-526 in group II strains (n = 12). In group III strains (n = 4), three residues (Met-377, Ser-385, and Leu-389), positioned near the conserved Ser-Ser-Asn (SSN) motif, were replaced with Ile, Thr, and Phe, respectively, in addition to the replacement with Lys-526. The MICs of cephem antibiotics with relatively high affinities for PBP 3A and PBP 3B were higher than those of AMP and meropenem for group III strains. The MICs of β-lactams for H. influenzae transformants into which the ftsI gene from BLNAR strains was introduced were as high as those for the donors, and PBP 3A and PBP 3B showed decreased affinities for β-lactams. There was no clear relationship between 7-bp deletions in the dacB gene and AMP susceptibility. Even though mutations in another gene(s) may be involved in β-lactam resistance, these data indicate that mutations in the ftsI gene are the most important for development of resistance to β-lactams in BLNAR strains. PMID:11353613

  13. The Leu72Met polymorphism of the GHRL gene prevents the development of diabetic nephropathy in Chinese patients with type 2 diabetes mellitus.

    PubMed

    Zhuang, Langen; Li, Ming; Yu, Changhua; Li, Can; Zhao, Mingming; Lu, Ming; Zheng, Taishan; Zhang, Rong; Zhao, Weijing; Bao, Yuqian; Xiang, Kunsan; Jia, Weiping; Wang, Niansong; Liu, Limei

    2014-02-01

    The preproghrelin (GHRL) Leu72Met polymorphism (rs 696217) is associated with obesity, reduced glucose-induced insulin secretion in healthy or diabetic subjects, and reduced serum creatinine (Scr) levels in type 2 diabetes. We evaluated the association of the Leu72Met polymorphism with measures of insulin sensitivity in non-diabetic control individuals and type 2 diabetics, and whether this variation contributes to the development of diabetic nephropathy (DN) in type 2 diabetes. A case-control study was performed of 291 non-diabetic control subjects and 466 patients with type 2 diabetes, of whom 238 had DN with overt albuminuria (DN group; albuminuric excretion rate [AER] ≥ 300 mg/24 h) and 228 did not have DN, but had diabetes for more than 10 years (non-DN group). Genotyping was performed using a TaqMan PCR assay. The Leu/Leu, Leu/Met, and Met/Met genotype frequencies were significantly different between the non-DN and DN groups (p = 0.011). The frequency of the variant genotypes (Leu/Met, Met/Met) was significantly lower in the DN group than the non-DN group (23.5 vs. 36.0 %, p = 0.003). Met/Met non-diabetic control subjects had lower BMI and Scr levels and higher eGFR level than Leu/Leu or Leu/Met individuals (p < 0.05). Leu/Met and Met/Met type 2 diabetics had significantly lower AER and Scr levels and higher eGFR level than Leu/Leu type 2 diabetics (all p < 0.001). The GHRL Leu72Met polymorphism may help to maintain normal renal function and may protect against the development of DN by reducing albuminuria and improving renal function in Chinese patients with type 2 diabetes.

  14. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.

    PubMed

    Li, Jing-Ya; Cui, Yong-Mei; Chen, Ling-Ling; Gu, Min; Li, Jia; Nan, Fa-Jun; Ye, Qi-Zhuang

    2004-05-14

    Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.

  15. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation.

    PubMed

    Milkereit, Ruth; Persaud, Avinash; Vanoaica, Liviu; Guetg, Adriano; Verrey, Francois; Rotin, Daniela

    2015-05-22

    Mammalian target of rapamycin 1 (mTORC1), a master regulator of cellular growth, is activated downstream of growth factors, energy signalling and intracellular essential amino acids (EAAs) such as Leu. mTORC1 activation occurs at the lysosomal membrane, and involves V-ATPase stimulation by intra-lysosomal EAA (inside-out activation), leading to activation of the Ragulator, RagA/B-GTP and mTORC1 via Rheb-GTP. How Leu enters the lysosomes is unknown. Here we identified the lysosomal protein LAPTM4b as a binding partner for the Leu transporter, LAT1-4F2hc (SLC7A5-SLAC3A2). We show that LAPTM4b recruits LAT1-4F2hc to lysosomes, leading to uptake of Leu into lysosomes, and is required for mTORC1 activation via V-ATPase following EAA or Leu stimulation. These results demonstrate a functional Leu transporter at the lysosome, and help explain the inside-out lysosomal activation of mTORC1 by Leu/EAA.

  16. Catalytic in vivo protein knockdown by small-molecule PROTACs

    PubMed Central

    Bondeson, Daniel P; Mares, Alina; Smith, Ian E D; Ko, Eunhwa; Campos, Sebastien; Miah, Afjal H; Mulholland, Katie E; Routly, Natasha; Buckley, Dennis L; Gustafson, Jeffrey L; Zinn, Nico; Grandi, Paola; Shimamura, Satoko; Bergamini, Giovanna; Faelth-Savitski, Maria; Bantscheff, Marcus; Cox, Carly; Gordon, Deborah A; Willard, Ryan R; Flanagan, John J; Casillas, Linda N; Votta, Bartholomew J; den Besten, Willem; Famm, Kristoffer; Kruidenier, Laurens; Carter, Paul S; Harling, John D; Churcher, Ian; Crews, Craig M

    2015-01-01

    The current predominant theapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target’s ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR. PMID:26075522

  17. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki

    2006-02-01

    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB hasmore » been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.« less

  18. Novel phenanthridine (PHE-4i) derivative inhibits carrageenan-induced rat hind paw oedema through suppression of hydrogen sulfide.

    PubMed

    George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya

    2016-08-01

    This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.

  19. Factor XIII Val34Leu polymorphism and the risk of myocardial infarction under the age of 36 years.

    PubMed

    Rallidis, Loukianos S; Politou, Marianna; Komporozos, Christoforos; Panagiotakos, Demosthenes B; Belessi, Chrisoula I; Travlou, Anthi; Lekakis, John; Kremastinos, Dimitrios T

    2008-06-01

    There are limited and controversial data regarding the impact of factor XIII (FXIII) Val34Leu polymorphism in the pathogenesis of premature myocardial infarction (MI). We examined whether FXIII Val34Leu polymorphism is associated with the development of early MI. We recruited 159 consecutive patients who had survived their first acute MI under the age of 36 years (mean age = 32.1 +/- 3.6 years, 138 were men). The control group consisted of 121 healthy individuals matched with cases for age and sex, without a family history of premature coronary heart disease (CHD). FXIII Val34Leu polymorphism was tested with polymerase chain reaction and reverse hybridization. There was a lower prevalence of carriers of the Leu34 allele in patients than in controls (30.2 vs. 47.1%, p = 0.006). FXIII Val34Leu polymorphism was associated with lower risk for acute MI after adjusting for major cardiovascular risk factors (odds ratio [OR] = 0.51, 95% confidence interval [CI] 0.27-0.95, p = 0.03). Subgroup analysis according to angiographic findings ("normal" coronary arteries [n = 29] or significant CHD [n = 130]) showed that only patients with MI and significant CHD had lower prevalence of carriers of the Leu34 allele compared to controls after adjusting for major cardiovascular risk factors (OR = 0.42, 95% CI 0.22-0.83, p = 0.01). Our data indicate that FXIII Val34Leu polymorphism has a protective effect against the development of MI under the age of 36 years, particularly in the setting of significant CHD.

  20. Key metrics for HFIR HEU and LEU models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R.; Chandler, David

    This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less

  1. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viger, Jean-Francois; Mohammadi, Mahmood; Barriault, Diane

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE{sub LB400}) metabolizes PCBs. Black-Right-Pointing-Pointer Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. Black-Right-Pointing-Pointer We tested how the mutations affect the PCB-degrading abilities of BphAE{sub LB400} variants. Black-Right-Pointing-Pointer The same mutations also broaden the PCB substrate range of BphAE{sub LB400} variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE{sub RR41}, a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE{submore » LB400}, metabolized a broader range of PCBs than BphAE{sub LB400}. Hence, BphAE{sub RR41} was able to metabolize 2,6,2 Prime ,6 Prime -, 3,4,3 Prime ,5 Prime - and 2,4,3 Prime ,4 Prime -tetrachlorobiphenyl that BphAE{sub LB400} is unable to metabolize. BphAE{sub RR41} was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE{sub LB400} to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.« less

  2. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide.

    PubMed Central

    Dubreuil, P; Fulcrand, P; Rodriguez, M; Fulcrand, H; Laur, J; Martinez, J

    1989-01-01

    ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments. PMID:2554881

  3. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats.

    PubMed

    Faria, Thaís de Oliveira; Targueta, Gabriel Pelegrineti; Angeli, Jhuli Keli; Almeida, Edna Aparecida Silveira; Stefanon, Ivanita; Vassallo, Dalton Valentim; Lizardo, Juliana Hott de Fúcio

    2010-09-01

    The aim of the present study was to assess the effects of acute dynamic resistance exercise on resting blood pressure (BP) and on endothelial function of vascular bed of spontaneously hypertensive rats. Hemodynamic measurements were performed before and after acute dynamic resistance exercise in conscious animals. After exercise, the tail artery was cannulated for mean perfusion pressure with constant flow measurement and for performing concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) and dose-response curves to phenylephrine (PHE). PHE protocol was also repeated with damaged endothelium and after L-NAME and indomethacin perfusion on the tail. The maximal response (E(max)) and sensitivity (pD(2)) were evaluated to these drugs. Exercise reduced resting systolic and diastolic BP (Delta -79 +/- 1.8; -23 +/- 2.3 mmHg, respectively; P < 0.05). ACh-induced relaxation increased in the exercise group (pD(2) = 9.8 +/- 0.06, P < 0.05) when compared with control rats (pD(2) = 8.7 +/- 0.1). The E(max) to PHE with intact endothelium decreased following exercise condition (439 +/- 18 mmHg, P < 0.05) when compared with control rats (276 +/- 22 mmHg). This response was abolished after L-NAME and indomethacin administration. After damage of the endothelium, PHE responses were not significantly different between the groups; however, E(max) and pD(2) increased when compared with responses obtained with intact endothelium. The results demonstrated that acute dynamic resistance exercise decreased resting BP and reactivity to PHE and increased endothelium-dependent relaxation. Nitric oxide and vasodilators prostanoids appear to be involved in post-exercise endothelial and pressor responses.

  4. Frequency of the AGT Pro11Leu polymorphism in humans: Does diet matter?

    PubMed

    Ségurel, Laure; Lafosse, Sophie; Heyer, Evelyne; Vitalis, Renaud

    2010-01-01

    The Pro11Leu substitution in the AGXT gene, which causes primary hyperoxaluria type 1, is found with high frequency in some human populations (e.g., 5-20% in Caucasians). It has been suggested that this detrimental mutation could have been positively selected in populations with a meat-rich diet. In order to test this hypothesis, we investigated the occurrence of Pro11Leu in both herder and agriculturalist populations from Central Asia. We found a lower frequency of this detrimental mutation in herders, whose diet is more meat-rich, as compared to agriculturalists, which therefore challenges the universality of the previous claim. Furthermore, when combining our original data with previously published results, we could show that the worldwide genetic differentiation measured at the Pro11Leu polymorphism does not depart from neutrality. Hence, the distribution of the variation observed in the AGXT gene could be due to demographic history, rather than local adaptation to diet.

  5. Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli.

    PubMed Central

    Pi, J; Wookey, P J; Pittard, A J

    1991-01-01

    The phenylalanine-specific permease gene (pheP) of Escherichia coli has been cloned and sequenced. The gene was isolated on a 6-kb Sau3AI fragment from a chromosomal library, and its presence was verified by complementation of a mutant lacking the functional phenylalanine-specific permease. Subcloning from this fragment localized the pheP gene on a 2.7-kb HindIII-HindII fragment. The nucleotide sequence of this 2.7-kb region was determined. An open reading frame was identified which extends from a putative start point of translation (GTG at position 636) to a termination signal (TAA at position 2010). The assignment of the GTG as the initiation codon was verified by site-directed mutagenesis of the initiation codon and by introducing a chain termination mutation into the pheP-lacZ fusion construct. A single initiation site of transcription 30 bp upstream of the start point of translation was identified by the primer extension analysis. The pheP structural gene consists of 1,374 nucleotides specifying a protein of 458 amino acid residues. The PheP protein is very hydrophobic (71% nonpolar residues). A topological model predicted from the sequence analysis defines 12 transmembrane segments. This protein is highly homologous with the AroP (general aromatic transport) system of E. coli (59.6% identity) and to a lesser extent with the yeast permeases CAN1 (arginine), PUT4 (proline), and HIP1 (histidine) of Saccharomyces cerevisiae. Images PMID:1711024

  6. Anesthetic-resistant spontaneous mutant of Drosophila melanogaster: intensified response to /sup 60/Cobalt radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.

    1985-02-25

    Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at themore » eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.« less

  7. The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae).

    PubMed

    Conlon, J Michael; Demandt, Anni; Nielsen, Per F; Leprince, Jérôme; Vaudry, Hubert; Woodhams, Douglas C

    2009-06-01

    Two families of structurally related C-terminally alpha-amidated antimicrobial peptides have been identified in norepinephrine-stimulated skin secretions of the midwife toad Alytes obstetricans (Alytidae). The alyteserin-1 peptides (Gly-Leu-Lys-(Asp/Glu)-Ile-Phe-Lys-Ala-Gly-Leu-Gly-Ser-Leu-Val-Lys-(Gly/Asn)-Ile-Ala-Ala-His-Val-Ala-(Asn/Ser).NH(2)) show limited structural similarity to the ascaphins from the skins of frogs of the family Leiopelmatidae. Alyteserin-2a (Ile-Leu-Gly-Lys-Leu-Leu-Ser-Thr-Ala-Ala-Gly-Leu-Leu-Ser-Asn-Leu.NH(2)) and alyteserin-2b and -2c (Ile-Leu-Gly-Ala-Ile-Leu-Pro-Leu-Val-Ser-Gly-Leu-Leu-Ser-(Asn/Ser)-Lys-Leu x NH(2)) show limited sequence identity with bombinin H6, present in the skins of frogs of the family Bombinatoridae. The alyteserin-1 peptides show selective growth inhibitory activity against the Gram-negative bacteria Escherichia coli (MIC=25 microM) whereas alyteserin-2a is more potent against the Gram-positive bacteria Staphylococcus aureus (MIC=50 microM). The hemolytic activity against human erythrocytes of all peptides tested is relatively weak (LC(50)>100 microM). The data demonstrate that the frogs belonging to the family Alytidae are among those producing dermal antimicrobial peptides that may represent a component of the animal's system of innate immunity.

  8. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex

    PubMed Central

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-01-01

    MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively. PMID:28423356

  9. Quantifying the relative contributions of different solute carriers to aggregate substrate transport

    PubMed Central

    Taslimifar, Mehdi; Oparija, Lalita; Verrey, Francois; Kurtcuoglu, Vartan; Olgac, Ufuk; Makrides, Victoria

    2017-01-01

    Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B0AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB0,+ and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity. PMID:28091567

  10. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    PubMed Central

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  11. Preproghrelin Leu72Met polymorphism predicts a lower rate of developing renal dysfunction in type 2 diabetic nephropathy.

    PubMed

    Lee, Dae-Yeol; Kim, Sun-Young; Jo, Dae-Sun; Hwang, Pyoung Han; Kang, Kyung Pyo; Lee, Sik; Kim, Won; Park, Sung Kwang

    2006-07-01

    Ghrelin is a novel peptide hormone, which exerts somatotropic, orexigenic and adipogenic effects. Recent studies have shown that the preproghrelin Leu72Met polymorphism is associated with serum creatinine (Scr) concentration in type 2 diabetes; 72Met carriers exhibited lower Scr levels as compared with the 72Met non-carriers. We hypothesized that the preproghrelin Leu72Met polymorphism is associated with a lower rate of developing renal dysfunction in patients with type 2 diabetic nephropathy. The preproghrelin Leu72Met polymorphism was investigated using PCR techniques in 138 patients with diabetic nephropathy divided into two groups, one with normal renal function and the other with renal dysfunction. Determination of the frequency of the preproghrelin Leu72Met polymorphism was the main outcome measure. The frequency of the Leu72Met polymorphism in diabetic nephropathy was significantly lower in patients with renal dysfunction (15.9%, P < 0.01) than in patients with normal renal function (42.0%) or in the diabetes control group (40.6%). The Leu72Met polymorphism was also associated with serum total cholesterol levels in diabetic nephropathy patients with renal dysfunction; the 72Met carriers had lower total cholesterol levels than the 72Met non-carriers (P < 0.05). These data suggest that 72Met carrier status may be used as a marker predicting a lower chance of developing renal dysfunction in diabetic nephropathy.

  12. Frequent topoisomerase IV mutations associated with fluoroquinolone resistance in Ureaplasma species.

    PubMed

    Song, Jingjuan; Qiao, Yingli; Kong, Yingying; Ruan, Zhi; Huang, Jun; Song, Tiejun; Zhang, Jun; Xie, Xinyou

    2015-11-01

    This study aimed to investigate the role of quinolone resistance-determining regions (QRDRs) of DNA gyrase (encoded by gyrA and gyrB) and topoisomerase IV (encoded by parC and parE) associated with fluoroquinolone resistance. A total of 114 Ureaplasma spp. strains, isolated from clinical female patients with symptomatic infection, were tested for species distribution and susceptibility to four fluoroquinolones. Moreover, we analysed the QRDRs and compared these with 14 ATCC reference strains of Ureaplasma spp. serovars to identify mutations that caused antimicrobial resistance. Our study indicated that moxifloxacin was the most effective fluoroquinolone against Ureaplasma spp. (MIC range: 0.125-32 μg ml⁻¹). However, extremely high MICs were estimated for ciprofloxacin (MIC range: 1-256 μg ml⁻¹) and ofloxacin (MIC range: 0.5-128 μg ml⁻¹), followed by levofloxacin (MIC range: 0.5-64 μg ml⁻¹). Seven amino acid substitutions were discovered in GyrB, ParC and ParE, but not in GyrA. Ser-83 → Leu/Trp (C248T/G) in ParC and Arg-448 → Lys (G1343A) in ParE, which were potentially responsible for fluoroquinolone resistance, were observed in 89 (77.2 %) and three (2.6 %) strains, respectively. Pro-462 → Ser (C1384T), Asn-481 → Ser (A1442G) and Ala-493 → Val (C1478T) in GyrB and Met-105 → Ile (G315T) in ParC seemed to be neutral polymorphisms, and were observed and occurred along with the amino acid change of Ser-83 → Leu (C248T) in ParC. Interestingly, two novel mutations of ParC and ParE were independently found in four strains. These observations suggest that amino acid mutation in topoisomerase IV appears to be the leading cause of fluoroquinolone resistance, especially the mutation of Ser-83 → Leu (C248T) in ParC. Moxifloxacin had the best activity against strains with Ser-83 → Leu mutation.

  13. GABAA receptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines

    PubMed Central

    Chandra, Dev; Korpi, Esa R; Miralles, Celia P; De Blas, Angel L; Homanics, Gregg E

    2005-01-01

    Background Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably reduced the amount of γ2

  14. Status of pyrethroid resistance in Anopheles gambiae sensu lato.

    PubMed Central

    Chandre, F.; Darrier, F.; Manga, L.; Akogbeto, M.; Faye, O.; Mouchet, J.; Guillet, P.

    1999-01-01

    The present study confirms the presence of pyrethroid resistance among Anopheles gambiae s.l mosquitos in Côte d'Ivoire and reports the observation of such resistance in two other countries in West Africa (Benin and Burkina Faso). Malaria vector populations from Cameroon (Central Africa), Senegal (West Africa) and Botswana (southern Africa) were found to be susceptible to pyrethroids. In the most resistant mosquito populations, resistance to permethrin was associated with reduced mortality, not only with respect to this compound but also towards deltamethrin. Moreover, a significant increase in knockdown time was observed in some mosquito populations before any decrease in mortality, suggesting that knockdown time could be a good indicator for the early detection of pyrethroid resistance. In view of the current extension of such resistance, there is an urgent need to set up a network in Africa to evaluate its development. It is also vital that the impact of this resistance on pyrethroid-impregnated bednets be assessed. PMID:10212513

  15. Alterations in Topoisomerase IV and DNA Gyrase in Quinolone-Resistant Mutants of Mycoplasma hominis Obtained In Vitro

    PubMed Central

    Bébéar, Cécile M.; Renaudin, Hélène; Charron, Alain; Bové, Joseph M.; Bébéar, Christiane; Renaudin, Joel

    1998-01-01

    Mycoplasma hominis mutants were selected stepwise for resistance to ofloxacin and sparfloxacin, and their gyrA, gyrB, parC, and parE quinolone resistance-determining regions were characterized. For ofloxacin, four rounds of selection yielded six first-, six second-, five third-, and two fourth-step mutants. The first-step mutants harbored a single Asp426→Asn substitution in ParE. GyrA changes (Ser83→Leu or Trp) were found only from the third round of selection. With sparfloxacin, three rounds of selection generated 4 first-, 7 second-, and 10 third-step mutants. In contrast to ofloxacin resistance, GyrA mutations (Ser83→Leu or Ser84→Trp) were detected in the first-step mutants prior to ParC changes (Glu84→Lys), which appeared only after the second round of selection. Further analysis of eight multistep-selected mutants of M. hominis that were previously described (2) revealed that they carried mutations in ParE (Asp426→Asn), GyrA (Ser83→Leu) and ParE (Asp426→Asn), GyrA (Ser83→Leu) and ParC (Ser80→Ile), or ParC (Ser80→Ile) alone, depending on the fluoroquinolone used for selection, i.e., ciprofloxacin, norfloxacin, ofloxacin, or pefloxacin, respectively. These data indicate that in M. hominis DNA gyrase is the primary target of sparfloxacin whereas topoisomerase IV is the primary target of pefloxacin, ofloxacin, and ciprofloxacin. PMID:9736554

  16. Pharmacoinformatics approach for the identification of Polo-like kinase-1 inhibitors from natural sources as anti-cancer agents.

    PubMed

    AlAjmi, Mohamed F; Rehman, Md Tabish; Hussain, Afzal; Rather, Gulam Mohmad

    2018-05-05

    Polo-like kinase-1 (PLK-1) plays a key role in cell cycle progression during mitosis. Overexpression/dysfunction of PLK-1 is directly associated with cancerous transformation and has been reported in different cancer types. Here, we employed high throughput virtual screening and molecular docking to screen Selleck's natural compound library against PLK-1 kinase domain. We have identified eight bioactive compounds (Apigenin, Dihydromyricetin, Diosmetin, Hesperidin, Hesperitin, Naringenin, Phlorizi, and Quercetin) as the potential inhibitors of PLK-1. Further investigation through Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations and 15 ns molecular dynamics simulation revealed that hesperidin formed the most stable complex with PLK-1 kinase domain. Altogether, our results indicate that hesperidin interacted strongly with the key residues of the PLK-1 active site (such as Leu59, Lys61, Lys82, Cys133, Asn181, Asp194, Leu59, Cys67, Ala80, Val114, Leu130, Leu132, Cys133, Leu139, Phe183, and Phe195) through hydrogen bonding and hydrophobic interactions. The Hesperidin-PLK-1 complex was stabilized by Gibb's free energy of -13.235 kcal/mol which corresponded to the binding affinity of 5.095 × 10 9  M -1 . This is the first study wherein hesperidin has been identified as a potential inhibitor of PLK-1. Further design and optimization of the hesperidin scaffold as an inhibitor of PLK-1 kinase domain is highly recommended. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. First detection of multiple knockdown resistance (kdr)-like mutations in voltage-gated sodium channel using three new genotyping methods in Anopheles sinensis from Guangxi Province, China.

    PubMed

    Tan, Wei L; Li, Chun X; Wang, Zhong M; Liu, Mei D; Dong, Yan D; Feng, Xiang Y; Wu, Zhi M; Guo, Xiao X; Xing, Dan; Zhang, Ying M; Wang, Zhong C; Zhao, Tong Y

    2012-09-01

    To investigate knockdown resistance (kdr)-like mutations associated with pyrethroid resistance in Anopheles sinensis (Wiedemann, 1828), from Guangxi province, southwest China, a segment of a sodium channel gene was sequenced and genotyped using three new genotyping assays. Direct sequencing revealed the presence of TTG-to-TCG and TG-to-TTT mutations at allele position L1014, which led to L1014S and L1014F substitutions in a few individual and two novel substitutions of N1013S and L1014W in two DNA templates. A low frequency of the kdr allele mostly in the heterozygous state of L1014S and L1014F was observed in this mosquito population. In this study, the genotyping of An. sinensis using three polymerase chain reaction-based methods generated consistent results, which agreed with the results of DNA sequencing. In total, 52 mosquitoes were genotyped using a direct sequencing assay. The number of mosquitoes and their genotypes were as follows: L/L = 24, L/S = 19, L/F = 8, and F/W = 1. The allelic frequency of L1014, 1014S, and 1014F were 72, 18, and 9%, respectively.

  18. Leu7Pro polymorphism of PreproNPY associated with an increased risk for type II diabetes in middle-aged subjects.

    PubMed

    Ukkola, O; Kesäniemi, Y A

    2007-09-01

    Neuropeptide Y (NPY) plays a central in energy homeostasis and potentially in the development of obesity-related comorbidities, like type II diabetes. As the PreproNPY Leu7Pro polymorphism probably changes the intracellular processing of the synthesized preproNPY peptide, we assessed the hypothesis that PreproNPY Leu7Pro polymorphism is a risk factor for type II diabetes, impaired glucose tolerance and hypertension. Blood pressure recordings and oral glucose tolerance test were performed in the hypertensive (n=515) and control cohorts (n=525) of our well-defined Oulu Project Elucidating Risk of Atherosclerosis (OPERA) study. The prevalence of type II diabetes was 9% (n=93). The genotypes, insulin and glucose metabolism indexes and plasma ghrelin of the subjects were determined. Pro7 allele frequencies were 5.9, 5.3 and 11.3% in the total cohort, in subjects without and with type II diabetes, respectively. The PreproNPY Pro7 carrier status was a significant risk factor for type II diabetes, and the effect remained significant after adjustment for age, sex, waist circumference and study group (odds ratio=3.02, confidence interval: 1.67-5.44 and P<0.001). Pro7 carriers were more insulin resistant and showed lower ghrelin levels compared to non-carriers. The PreproNPY Pro7 allele is associated with an increased risk for type II diabetes. The risk seems to be associated with a higher insulin resistance among Pro7 carriers whereas low ghrelin concentrations in Pro7 carriers are possibly a consequence of high insulin levels.

  19. Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network

    PubMed Central

    Pendergrass, Sarah A.; Brown-Gentry, Kristin; Dudek, Scott; Frase, Alex; Torstenson, Eric S.; Goodloe, Robert; Ambite, Jose Luis; Avery, Christy L.; Buyske, Steve; Bůžková, Petra; Deelman, Ewa; Fesinmeyer, Megan D.; Haiman, Christopher A.; Heiss, Gerardo; Hindorff, Lucia A.; Hsu, Chu-Nan; Jackson, Rebecca D.; Kooperberg, Charles; Le Marchand, Loic; Lin, Yi; Matise, Tara C.; Monroe, Kristine R.; Moreland, Larry; Park, Sungshim L.; Reiner, Alex; Wallace, Robert; Wilkens, Lynn R.; Crawford, Dana C.; Ritchie, Marylyn D.

    2013-01-01

    Using a phenome-wide association study (PheWAS) approach, we comprehensively tested genetic variants for association with phenotypes available for 70,061 study participants in the Population Architecture using Genomics and Epidemiology (PAGE) network. Our aim was to better characterize the genetic architecture of complex traits and identify novel pleiotropic relationships. This PheWAS drew on five population-based studies representing four major racial/ethnic groups (European Americans (EA), African Americans (AA), Hispanics/Mexican-Americans, and Asian/Pacific Islanders) in PAGE, each site with measurements for multiple traits, associated laboratory measures, and intermediate biomarkers. A total of 83 single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) were genotyped across two or more PAGE study sites. Comprehensive tests of association, stratified by race/ethnicity, were performed, encompassing 4,706 phenotypes mapped to 105 phenotype-classes, and association results were compared across study sites. A total of 111 PheWAS results had significant associations for two or more PAGE study sites with consistent direction of effect with a significance threshold of p<0.01 for the same racial/ethnic group, SNP, and phenotype-class. Among results identified for SNPs previously associated with phenotypes such as lipid traits, type 2 diabetes, and body mass index, 52 replicated previously published genotype–phenotype associations, 26 represented phenotypes closely related to previously known genotype–phenotype associations, and 33 represented potentially novel genotype–phenotype associations with pleiotropic effects. The majority of the potentially novel results were for single PheWAS phenotype-classes, for example, for CDKN2A/B rs1333049 (previously associated with type 2 diabetes in EA) a PheWAS association was identified for hemoglobin levels in AA. Of note, however, GALNT2 rs2144300 (previously associated with high

  20. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein.

    PubMed

    Li, Guan-Hong; Wan, Ju-Zhen; Le, Guo-Wei; Shi, Yong-Hui

    2006-08-01

    Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC(50) value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC(50) values of 26.5 microM, 82.4 microM and 13.4 microM, respectively. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.

  1. Peptide inhibitor modified magnetic particles for pepsin separation.

    PubMed

    Filuszová, Michaela; Kucerová, Zdenka; Tichá, Marie

    2009-06-01

    Synthetic heptapeptide containing D-amino acid residues (Val-D-Leu-Pro-Phe-Phe-Val-D-Leu) was coupled to glyoxal-activated magnetic agarose particles via the free peptide amino group. The peptide-modified magnetic particles were used for the separation of pepsins. Porcine pepsin A and human pepsin A were adsorbed to the magnetic peptide-modified affinity carrier, while the rat pepsin C and human pepsin C did not interact with the immobilized ligand. Conditions of pepsin adsorption to peptide-modified magnetic particles, as well as elution buffers were optimized. Porcine pepsin A did not interact with the immobilized peptide in the presence of pepsin inhibitor pepstatin A, indicating that the enzyme binding site is involved in the studied interaction. The elaborated method represents a rapid and simple technique not only for the separation of pepsins but also, in combination with MS, for the enzyme detection and determination.

  2. Knockdown of Fruit Flies by Imidacloprid Nanoaerosol.

    PubMed

    Morozov, Victor N; Kanev, Igor L

    2015-10-20

    This report describes the effects of nanoaerosol particles (NAPs) from imidacloprid (IMI) on fruit flies. NAPs were produced using a newly developed generator which employs electro-hydrodynamic atomization of IMI solution in ethanol. Exposure of Drosophila melanogaster to the IMI NAPs at a concentration of C = 2.7 ± 0.1 ng/cm(3) caused knockdown in half of the flies in T50 = 88 ± 14 min at 22 °C and in T50 = 36 ± 2 min at 33 °C. A number of special experiments precluded IMI volatilization and contact or oral action of IMI upon exposure to the NAPs. It was shown that only the fraction of NAPs in the size range of 7-300 nm is responsible for the knockdown and that dependence of T50 on the NAPs' fraction mass follows Haber's rule, C × T50 = const. Comparison with the oral doses obtained when flies were fed an IMI-sucrose mixture revealed that the inhaled doses that caused knockdown were 2 orders of magnitude lower than the oral ones. This new technology may be used to quickly eliminate insects with nanoaerosols of nonvolatile insecticides in greenhouses and other closed environments.

  3. Auger Spectroscopy Analysis of Spalled LEU-10Mo Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Samantha Kay; Schulze, Roland K.

    2017-08-03

    Presentation includes slides on Surface Science used to probe LEU-10Mo Spall; Auger highlights graphitic-like inclusions and Mo-deficient oxide on base metal; Higher C concentration detected within spall area Images Courtesy; Depth profiling reveals thick oxide; Mo concentration nears nominal only at depths ~400 nm; and lastly Key Findings.

  4. Unravelling the pathogenic role and genotype-phenotype correlation of the USH2A p.(Cys759Phe) variant among Spanish families.

    PubMed

    Pérez-Carro, Raquel; Blanco-Kelly, Fiona; Galbis-Martínez, Lilián; García-García, Gema; Aller, Elena; García-Sandoval, Blanca; Mínguez, Pablo; Corton, Marta; Mahíllo-Fernández, Ignacio; Martín-Mérida, Inmaculada; Avila-Fernández, Almudena; Millán, José M; Ayuso, Carmen

    2018-01-01

    Mutations in USH2A cause both isolated Retinitis Pigmentosa (RP) and Usher syndrome (that implies RP and hearing impairment). One of the most frequent variants identified in this gene and among these patients is the p.(Cys759Phe) change. However, the pathogenic role of this allele has been questioned since it was found in homozygosity in two healthy siblings of a Spanish family. To assess the causative role of USH2A p.(Cys759Phe) in autosomal recessive RP (ARRP) and Usher syndrome type II (USH2) and to establish possible genotype-phenotype correlations associated with p.(Cys759Phe), we performed a comprehensive genetic and clinical study in patients suffering from any of the two above-mentioned diseases and carrying at least one p.(Cys759Phe) allele. Diagnosis was set according to previously reported protocols. Genetic analyses were performed by using classical molecular and Next-Generation Sequencing approaches. Probands of 57 unrelated families were molecularly studied and 63 patients belonging to these families were phenotypically evaluated. Molecular analysis characterized 100% of the cases, identifying: 11 homozygous patients for USH2A p.(Cys759Phe), 42 compound heterozygous patients (12 of them with another missense USH2A pathogenic variant and 30 with a truncating USH2A variant), and 4 patients carrying the p.(Cys759Phe) allele and a pathogenic variant in another RP gene (PROM1, CNGB1 or RP1). No additional causative variants were identified in symptomatic homozygous patients. Statistical analysis of clinical differences between zygosity states yielded differences (p≤0.05) in age at diagnosis of RP and hypoacusis, and progression of visual field loss. Homozygosity of p.(Cys759Phe) and compound heterozygosity with another USH2A missense variant is associated with ARRP or ARRP plus late onset hypoacusis (OR = 20.62, CI = 95%, p = 0.041). The present study supports the role of USH2A p.(Cys759Phe) in ARRP and USH2 pathogenesis, and demonstrates the clinical

  5. Cathepsin D immobilized capillary reactors for on-flow screening assays.

    PubMed

    Cornelio, Vivian Estevam; de Moraes, Marcela Cristina; Domingues, Vanessa de Cassia; Fernandes, João Batista; da Silva, Maria Fátima das Gracas Fernandes; Cass, Quezia Bezerra; Vieira, Paulo Cezar

    2018-03-20

    The treatment of diseases using enzymes as targets has called for the development of new and reliable methods for screening. The protease cathepsin D is one such target involved in several diseases such as tumors, degenerative processes, and vital processes of parasites causing schistosomiasis. Herein, we describe the preparation of a fused silica capillary, cathepsin D (CatD)-immobilized enzyme reactor (IMER) using in a multidimensional High Performance Liquid Chromatography-based method (2D-HPLC) and zonal affinity chromatography as an alternative in the search for new ligands. The activity and kinetic parameters of CatD-IMER were evaluated by monitoring the product MOCAc-Gly-Lys-Pro-Ile-Leu-Phe (P-MOCAc) (K M  = 81.9 ± 7.49 μmol/L) generated by cleavage of the fluorogenic substrate MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-d-Arg-NH2 (S-MOCAc). Stability studies have indicated that CatD-IMER retained 20% of activity after 5 months, a relevant result, because proteases are susceptible to autoproteolysis in solution assays with free enzyme. In the search for inhibitors, 12 crude natural product extracts were analyzed using CatD-IMER as the target, resulting in the isolation of different classes of natural products. In addition, 26 compounds obtained from different species of plants were also screened, demonstrating the efficiency and reproducibility of the herein reported assay even in the case of complex matrices such as plant crude extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid).

    PubMed

    Shima, Fumiaki; Akagi, Takami; Akashi, Mitsuru

    2015-05-20

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. Adjuvants that can control the balance and induction level of cellular and humoral immunities are urgently required for the treatment of and/or protection from infectious diseases and cancers. However, there are no adjuvants which can achieve these requirements. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA) with various kinds of hydrophobic amino acid ethyl esters (AAE) was synthesized (γ-PGA-AAE) and used to prepare antigen-encapsulated nanoparticles (NPs). γ-PGA-graft-Leu (γ-PGA-Leu, where Leu = leucine ethyl ester), γ-PGA-graft-Phe (γ-PGA-Phe, where Phe = phenylalanine ethyl ester), and γ-PGA-graft-Trp (γ-PGA-Trp, where Trp = tryptophan ethyl ester) formed monodispersed NPs that encapsulated ovalbumin (OVA). The type and the induction level of the antigen-specific cellular and humoral immunities could be controlled by the kinds of hydrophobic segments and vaccine formulation (encapsulation or mixture) used. When OVA was encapsulated into NPs, the cellular immunity was dominantly induced, while humoral immunity was dominant when OVA was mixed with NPs. These results are a first report to demonstrate that the balance and induction level of cellular and humoral immunities could be controlled by modifying compositions of NPs and vaccine formulation. Our results suggest that γ-PGA-AAE NPs can provide safe and efficient nanoparticle-based vaccine adjuvants, and the results also provide guidelines in the rational design of amphiphilic polymers as vaccine adjuvants which can control the balance of immune responses.

  7. A diurnal component to the variation in sieve tube amino acid content in wheat.

    PubMed

    Gattolin, Stefano; Newbury, H John; Bale, Jeffrey S; Tseng, Hua-Ming; Barrett, David A; Pritchard, Jeremy

    2008-06-01

    We have used high-sensitivity capillary electrophoresis coupled to a laser-induced fluorescence detection method to quantify 16 amino acids in wheat (Triticum aestivum) sieve tube (ST) samples as small as 2 nL collected by severing the stylets of feeding aphids. The sensitivity of the method was sufficient to determine a quantitative amino acid profile of individual STs without the need to bulk samples to produce larger volumes for analysis. This allowed the observation of the full range of variation that exists in individual STs. Some of the total concentrations of amino acids recorded are higher than those reported previously. The results obtained show variation in the concentrations of phenylalanine (Phe), histidine/valine (His/Val), leucine/isoleucine (Leu/Ile), arginine, asparagine, glutamine, tyrosine (Tyr), and lysine (Lys) across the ST samples. These could not be explained by plant-to-plant variation. Statistical analyses revealed five analytes (Tyr, Lys, Phe, His/Val, and Leu/Ile) that showed striking covariation in their concentrations across ST samples. A regression analysis revealed a significant relationship between the concentrations of Tyr, Lys, Phe, Leu/Ile, His/Val, asparagine, arginine, and proline and the time of collection of ST samples, with these amino acids increasing in concentration during the afternoon. This increase was confirmed to occur in individual STs by analyzing samples obtained from stylet bundles exuding for many hours. Finally, an apparent relationship between the exudation rate of ST sap and its total amino acid concentration was observed: samples containing higher total amino acid concentrations were observed to exude from the severed stylet bundles more slowly.

  8. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    PubMed Central

    Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes

    2009-01-01

    Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non

  9. PTEN knockdown alters dendritic spine/protrusion morphology, not density

    PubMed Central

    Haws, Michael E.; Jaramillo, Thomas C.; Espinosa-Becerra, Felipe; Widman, Allie; Stuber, Garret D.; Sparta, Dennis R.; Tye, Kay M.; Russo, Scott J.; Parada, Luis F.; Kaplitt, Michael; Bonci, Antonello; Powell, Craig M.

    2014-01-01

    Mutations in phosphatase and tensin homolog deleted on chromosome ten (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology using fluorescent dye confocal imaging. Contrary to previous studies in dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory post-synaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors. PMID:24264880

  10. Genotype-phenotype correlation and functional studies in patients with cystic fibrosis bearing CFTR complex alleles.

    PubMed

    Terlizzi, Vito; Castaldo, Giuseppe; Salvatore, Donatello; Lucarelli, Marco; Raia, Valeria; Angioni, Adriano; Carnovale, Vincenzo; Cirilli, Natalia; Casciaro, Rosaria; Colombo, Carla; Di Lullo, Antonella Miriam; Elce, Ausilia; Iacotucci, Paola; Comegna, Marika; Scorza, Manuela; Lucidi, Vincenzina; Perfetti, Anna; Cimino, Roberta; Quattrucci, Serena; Seia, Manuela; Sofia, Valentina Maria; Zarrilli, Federica; Amato, Felice

    2017-04-01

    The effect of complex alleles in cystic fibrosis (CF) is poorly defined for the lack of functional studies. To describe the genotype-phenotype correlation and the results of either in vitro and ex vivo studies performed on nasal epithelial cells (NEC) in a cohort of patients with CF carrying cystic fibrosis transmembrane conductance regulator ( CFTR ) complex alleles. We studied 70 homozygous, compound heterozygous or heterozygous for CFTR mutations: p.[Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr;Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe], n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p.[Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p.Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we analysed the CFTR gating activity on NEC in comparison with patients with CF (n=8) and carriers (n=4). Finally, we analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. The p.[Ile148Thr;Ile1023_Val1024del] caused severe CF in five compound heterozygous with a class I-II mutation. Their CFTR activity on NEC was comparable with patients with two class I-II mutations (mean 7.3% vs 6.9%). The p.[Arg74Trp;Asp1270Asn] and the p.Asp1270Asn have scarce functional effects, while p.[Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four of five subjects carrying a class I-II mutation in trans , or CFTR-related disorders (CFTR-RD) in three having in trans a class IV-V mutation. The p.[Arg74Trp;Val201Met;Asp1270Asn] causes significantly (p<0.001) higher CFTR activity compared with compound heterozygous for class I-II mutations. Furthermore, five of six compounds heterozygous with the p.[Arg117Leu;Leu997Phe] had mild CF, whereas the p.Leu997Phe, in trans with a class I-II CFTR mutation, caused CFTR-RD or a healthy status (CFTR activity: 21.3-36.9%). Finally, compounds heterozygous for the c.[1210-34TG[12];1210-12T[5];2930C>T] and a class I-II mutation had mild CF or CFTR-RD (gating activity: 18.5-19.0%). The effect of complex alleles partially depends on the

  11. The influence of experimental inflammation and axotomy on leucine enkephalin (leuENK) distribution in intramural nervous structures of the porcine descending colon.

    PubMed

    Gonkowski, Slawomir; Makowska, Krystyna; Calka, Jaroslaw

    2018-05-24

    The enteric nervous system (ENS), located in the intestinal wall and characterized by considerable independence from the central nervous system, consists of millions of cells. Enteric neurons control the majority of functions of the gastrointestinal tract using a wide range of substances, which are neuromediators and/or neuromodulators. One of them is leucine-enkephalin (leuENK), which belongs to the endogenous opioid family. It is known that opioids in the gastrointestinal tract have various functions, including visceral pain conduction, intestinal motility and secretion and immune processes, but many aspects of distribution and function of leuENK in the ENS, especially during pathological states, remain unknown. During this experiment, the distribution of leuENK - like immunoreactive (leuENK-LI) nervous structures using the immunofluorescence technique were studied in the porcine colon in physiological conditions, during chemically-induced inflammation and after axotomy. The study included the circular muscle layer, myenteric (MP), outer submucous (OSP) and inner submucous plexus (ISP) and the mucosal layer. In control animals, the number of leuENK-LI neurons amounted to 4.86 ± 0.17%, 2.86 ± 0.28% and 1.07 ± 0.08% in the MP, OSP and ISP, respectively. Generally, both pathological stimuli caused an increase in the number of detected leuENK-LI cells, but the intensity of the observed changes depended on the factor studied and part of the ENS. The percentage of leuENK-LI perikarya amounted to 11.48 ± 0.96%, 8.71 ± 0.13% and 9.40 ± 0.76% during colitis, and 6.90 ± 0.52% 8.46 ± 12% and 4.48 ± 0.44% after axotomy in MP, OSP and ISP, respectively. Both processes also resulted in an increase in the number of leuENK-LI nerves in the circular muscle layer, whereas changes were less visible in the mucosa during inflammation and axotomy did not change the number of leuENK-LI mucosal fibers. LeuENK in the ENS takes part in

  12. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  13. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  14. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  15. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  16. [New antibiotics produced by Bacillus subtilis strains].

    PubMed

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  17. Processing of the Escherichia coli leuX tRNA transcript, encoding tRNA(Leu5), requires either the 3'-->5' exoribonuclease polynucleotide phosphorylase or RNase P to remove the Rho-independent transcription terminator.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2010-01-01

    Here we report a unique processing pathway in Escherichia coli for tRNA(Leu5) in which the exoribonuclease polynucleotide phosphorylase (PNPase) removes the Rho-independent transcription terminator from the leuX transcript without requiring the RhlB RNA helicase. Our data demonstrate for the first time that PNPase can efficiently degrade an RNA substrate containing secondary structures in vivo. Furthermore, RNase P, an endoribonuclease that normally generates the mature 5'-ends of tRNAs, removes the leuX terminator inefficiently independent of PNPase activity. RNase P cleaves 4-7 nt downstream of the CCA determinant generating a substrate for RNase II, which removes an additional 3-4 nt. Subsequently, RNase T completes the 3' maturation process by removing the remaining 1-3 nt downstream of the CCA determinant. RNase E, G and Z are not involved in terminator removal. These results provide further evidence that the E. coli tRNA processing machinery is far more diverse than previously envisioned.

  18. Establishment of conditional vectors for hairpin siRNA knockdowns

    PubMed Central

    Matsukura, Shiro; Jones, Peter A.; Takai, Daiya

    2003-01-01

    Small interference RNA (siRNA) is an emerging methodology in reverse genetics. Here we report the development of a new tetracycline-inducible vector-based siRNA system, which uses a tetracycline-responsive derivative of the U6 promoter and the tetracycline repressor for conditional in vivo transcription of short hairpin RNA. This method prevents potential lethality immediately after transfection of a vector when the targeted gene is indispensable, or the phenotype of the knockdown is lethal or results in a growth abnormality. We show that the controlled knockdown of DNA methyltransferase 1 (DNMT1) in human cancer resulted in growth arrest. Removal of the inducer, doxycycline, from treated cells led to re-expression of the targeted gene. Thus the method allows for a highly controlled approach to gene knockdown. PMID:12888529

  19. Beta-methyl substitution of cyclohexylalanine in Dmt-Tic-Cha-Phe peptides results in highly potent delta opioid antagonists.

    PubMed

    Tóth, Géza; Ioja, Eniko; Tömböly, Csaba; Ballet, Steven; Tourwé, Dirk; Péter, Antal; Martinek, Tamás; Chung, Nga N; Schiller, Peter W; Benyhe, Sándor; Borsodi, Anna

    2007-01-25

    The opioid peptide TIPP (H-Tyr-Tic-Phe-Phe-OH, Tic:1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was substituted with Dmt (2',6'-dimethyltyrosine) and a new unnatural amino acid, beta-MeCha (beta-methyl-cyclohexylalanine). This double substitution led to a new series of opioid peptides displaying subnanomolar delta antagonist activity and mu agonist or antagonist properties depending on the configuration of the beta-MeCha residue. The most promising analog, H-Dmt-Tic-(2S,3S)-beta-MeCha-Phe-OH was a very selective delta antagonist both in the mouse vas deferens (MVD) assay (Ke = 0.241 +/- 0.05 nM) and in radioligand binding assay (K i delta = 0.48 +/- 0.05 nM, K i mu/K i delta = 2800). The epimeric peptide H-Dmt-Tic-(2S,3R)-beta-MeCha-Phe-OH and the corresponding peptide amide turned out to be mixed partial mu agonist/delta antagonists in the guinea pig ileum and MVD assays. Our results constitute further examples of the influence of Dmt and beta-methyl substitution as well as C-terminal amidation on the potency, selectivity, and signal transduction properties of TIPP related peptides. Some of these compounds represent valuable pharmacological tools for opioid research.

  20. Improving the selection efficiency of the counter-selection marker pheS* for the genetic engineering of Bacillus amyloliquefaciens.

    PubMed

    Kharchenko, Maria S; Teslya, Petr N; Babaeva, Maria N; Zakataeva, Natalia P

    2018-05-01

    Bacillus subtilis pheS was genetically modified to obtain a counter-selection marker with high selection efficiency in Bacillus amyloliquefaciens. The application of the new replication-thermosensitive integrative vector pNZTM1, containing this marker, pheS BsT255S/A309G , with a two-step replacement recombination procedure provides an effective tool for the genetic engineering of industrially important Bacillus species. Copyright © 2018. Published by Elsevier B.V.

  1. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  2. Monte Carlo Shielding Comparative Analysis Applied to TRIGA HEU and LEU Spent Fuel Transport

    NASA Astrophysics Data System (ADS)

    Margeanu, C. A.; Margeanu, S.; Barbos, D.; Iorgulis, C.

    2010-12-01

    The paper is a comparative study of LEU and HEU fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for HEU spent fuel, available from the last stage of spent fuel repatriation fulfilled in the summer of 2008, is also presented. All geometrical and material data for the shipping cask were considered according to NAC-LWT Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface, and in air at 1 m and 2 m, respectively, from the cask, by means of 3D Monte Carlo MORSE-SGC code. Before loading into the shipping cask, TRIGA spent fuel source terms and spent fuel parameters have been obtained by means of ORIGEN-S code. Both codes are included in ORNL's SCALE 5 programs package. The actinides contribution to total fuel radioactivity is very low in HEU spent fuel case, becoming 10 times greater in LEU spent fuel case. Dose rates for both HEU and LEU fuel contents are below regulatory limits, LEU spent fuel photon dose rates being greater than HEU ones. Comparison between HEU spent fuel theoretical and measured dose rates in selected measuring points shows a good agreement, calculated values being greater than the measured ones both to cask wall surface (about 34% relative difference) and in air at 1 m distance from cask surface (about 15% relative difference).

  3. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the coldmore » source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation

  4. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus.

    PubMed

    Hsieh, Pei-Wen; Chang, Fang-Rong; Wu, Ching-Chung; Wu, Kuen-Yuh; Li, Chien-Ming; Chen, Su-Li; Wu, Yang-Chang

    2004-09-01

    Four new cyclic peptides, dianthins C-F (1-4), and a new dianthramide, 4-methoxydianthramide B (5), were isolated from the MeOH extract of the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1-4 were elucidated as cyclo(Gly(1)-Pro(2)-Phe(3)-Tyr(4)-Val(5)-Ile(6)-), cyclo(Gly(1)-Ser(2)-Leu(3)-Pro(4)-Pro(5)-Ile(6)-Phe(7)-), cyclo(Gly(1)-Pro(2)-Ile(3)-Ser(4)-Phe(5)-Val(6)-), and cyclo(Gly(1)-Pro(2)-Phe(3)-Val(4)-Phe(5)-) on the basis of ESI tandem mass fragmentation analysis, chemical evidence, and extensive 2D NMR methods. The conformation of compound 1 was established as an alpha-helix by CD analysis. Furthermore, compounds 3 and 5 showed cytotoxicities toward the Hep G2 cancer cell line with IC(50) values of 2.37 and 4.08, respectively.

  5. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.

    PubMed

    Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle

    2004-08-01

    Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.

  6. Associations of Leu72Met Polymorphism of Preproghrelin with Ratios of Plasma Lipids Are Diversified by a High-Carbohydrate Diet in Healthy Chinese Adolescents.

    PubMed

    Su, Mi; Qiu, Li; Wang, Qian; Jiang, Zhen; Liu, Xiao Juan; Lin, Jia; Fang, Ding Zhi

    2015-01-01

    The association of preproghrelin Leu72Met polymorphism with plasma lipids profile was inconsistently reported and needs more studies to be confirmed. Our study was to investigate the changes of plasma lipids ratios after a high-carbohydrate (high-CHO) diet in healthy Chinese adolescents with different genotypes of this polymorphism. Fifty-three healthy university students were given a washout diet of 54.1% carbohydrate for 7 days, followed by a high-CHO diet of 70.1% carbohydrate for 6 days. The anthropometric and biological parameters were analyzed at baseline and before and after the high-CHO diet. When compared with those before the high-CHO diet, body mass index (BMI) decreased in the male and female Met72 allele carriers. Decreased low-/high-density lipoprotein cholesterol (LDL-C/HDL-C) was observed in all participants except the female subjects with the Leu72Leu genotype. TG/HDL-C and log (TG/HDL-C) were increased only in the female subjects with the Leu72Leu genotype. These results suggest that the Met72 allele of preproghrelin Leu72Met polymorphism may be associated with decreased BMI induced by the high-CHO diet in male and female adolescents, while the Leu72 allele with increased TG/HDL-C and log (TG/HDL-C) in the female adolescents only. Furthermore, the decreasing effect of the high-CHO diet on LDL/HDL-C may be eliminated in the female Leu72Leu homozygotes. © 2015 S. Karger AG, Basel.

  7. Broad resistance to acetohydroxyacid-synthase-inhibiting herbicides in feral radish (Raphanus sativus L.) populations from Argentina.

    PubMed

    Pandolfo, Claudio E; Presotto, Alejandro; Moreno, Florencia; Dossou, Ida; Migasso, Juan P; Sakima, Ernesto; Cantamutto, Miguel

    2016-02-01

    Soon after the commercial release of sunflower cultivars resistant to imidazolinone herbicides, several uncontrolled feral radish (Raphanus sativus L.) populations were found in south-eastern Buenos Aires, Argentina. These populations were studied in field, glasshouse and laboratory experiments aiming to characterise their resistance profile and to develop management tools. Three feral radish accessions were highly resistant to ten active ingredients of five families of acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Sequence analysis of the AHAS gene detected a Trp574Leu mutation in all resistant accessions. One accession with an intermediate level of resistance was heterozygous for this mutation, probably owing to gene exchange with a susceptible subpopulation located in the field margin. Herbicide-resistant and herbicide-susceptible radish could be controlled in sunflower by alternative herbicides. This is the first report of feral radish with resistance to herbicides belonging to all the AHAS-inhibiting herbicide families, conferred by Trp574Leu mutation in the AHAS gene. An appropriate herbicide rotation with alternative herbicides such as fluorochloridone or aclonifen and an increase in the diversity of cropping systems are important for minimising the prevalence of these biotypes. © 2015 Society of Chemical Industry.

  8. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  9. Controlling Pu behavior on Titania: Implications for LEU Fission-Based Mo-99 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Brown, M. Alex; Heltemes, Thad A.

    Molybdenum-99 is the parent isotope of the most widely used isotope, technetium-99m, in all diagnostic nuclear medicine procedures. Due to proliferation concerns associated with the use of highly enriched uranium (HEU), the preferred method of fission-based Mo-99 production uses low enriched uranium (LEU) targets. Using LEU versus HEU for Mo-99 production produces similar to 30 times more Pu-239, due to neutron capture on U-238 to produce Np-239, which ultimately decays to Pu-239 (t(1/2) = 24,110 yr). Argonne National Laboratory is supporting a potential US Mo-99 producer in their efforts to produce Mo-99 from an LEU solution. In order to mitigatemore » the generation of large volumes of greater-than-class-C (GTCC) low level waste (Pu-239 concentrations greater than 1 nCi/g), we have focused our efforts on the separation chemistry of Pu and Mo with a titania sorbent in sulfate media. Results from batch and column experiments show that temperature and acid wash concentration can be used to control Pu behavior on titania.« less

  10. Amino Acids Inhibitory Effects and Mechanism on 2-Amino-1-Methyl-6-Phenylimidazo [4,5-b]Pyridine (PhIP) Formation in the Maillard Reaction Model Systems.

    PubMed

    Linghu, Ziyi; Karim, Faris; Smith, J Scott

    2017-12-01

    This study was to investigate the inhibitory effects of amino acids (AAs) on the formation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and to evaluate the inhibition mechanism of PhIP in Maillard model systems. Different AAs were individually added into model systems heat-treated at 180 °C/1 h. The PhIP, phenylacetaldehyde (PheAce), and pyrazines derivatives were determined using HPLC and GC-MS. AAs significantly reduced (P < 0.05) PhIP levels in a dose-dependent response, ranking as: Trp = Lys > Pro > Leu > Met > Val > Ile > Thr > Phe > Asp, at the highest molar ratio. The PheAce content was gradually reduced with increasing AAs levels, suggesting that AAs may inhibit PhIP formation through scavenging the available PheAce. A correlation between PhIP inhibition and PheAce-scavenging activity of AAs was observed when PheAce and AAs were heated. The variety and quantity of pyrazines formed are highly depending on the type of AAs. © 2017 Institute of Food Technologists®.

  11. Transformation of Candida albicans with a synthetic hygromycin B resistance gene.

    PubMed

    Basso, Luiz R; Bartiss, Ann; Mao, Yuxin; Gast, Charles E; Coelho, Paulo S R; Snyder, Michael; Wong, Brian

    2010-12-01

    Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2-containing plasmids or single-copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT-1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild-type C. albicans. We used PCR to fuse CaHygB or SAT-1 to approximately 1 kb of 5' and 3' noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild-type C. albicans strains. Homologous targeting frequencies were approximately 50-70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Leu72Met and Other Intronic Polymorphisms in the GHRL and GHSR Genes Are Not Associated with Type 2 Diabetes Mellitus, Insulin Resistance, or Serum Ghrelin Levels in a Saudi Population

    PubMed Central

    Joatar, Faris Elbahi; Al Qarni, Ali Ahmed; Ali, Muhalab E.; Al Masaud, Abdulaziz; Shire, Abdirashid M.; Das, Nagalla; Gumaa, Khalid

    2017-01-01

    Background Ghrelin (GHRL), a gastric peptide encoded by the GHRL gene, is known to be involved in energy homeostasis via its G protein receptor, encoded by the growth hormone secretagogue receptor (GHSR) gene. Some studies have shown associations between plasma GHRL levels and GHRL single-nucleotide polymorphisms (SNPs), namely the Leu72Met polymorphism (rs696217 TG), with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), while others have not. The controversies in these associations raise the issue of ‘which SNPs in which populations.’ The aim of this study was to investigate whether SNPs in GHRL and/or GHSR genes were associated with T2DM, IR, or plasma GHRL levels among Arab Saudis. Methods Blood was collected from 208 Saudi subjects with (n=107) and without (n=101) T2DM. DNA samples from these subjects were analyzed by real-time polymerase chain reaction to genotype five intronic SNPs in the GHRL (rs696217 TG, rs27647 CT, rs2075356 CT, and rs4684677 AT) and GHSR (rs509030 GC) genes. In addition, plasma GHRL levels were measured by a radioimmunoassay. Results None of the SNPs were associated with T2DM, IR, or plasma GHRL levels. The frequencies of the alleles, genotypes, and haplotypes of the five SNPs were comparable between the T2DM patients and the non-diabetic subjects. A large number of the GHRL haplotypes indicates the molecular heterogeneity of the preproghrelin gene in this region. Conclusion Neither the Leu72Met polymorphism nor the other intronic GHRL and GHSR SNPs were associated with T2DM, IR, or GHRL levels. Further investigations should be carried out to explain the molecular basis of the association of the GHRL peptide with T2DM and IR. PMID:28956366

  13. Leu72Met and Other Intronic Polymorphisms in the GHRL and GHSR Genes Are Not Associated with Type 2 Diabetes Mellitus, Insulin Resistance, or Serum Ghrelin Levels in a Saudi Population.

    PubMed

    Joatar, Faris Elbahi; Al Qarni, Ali Ahmed; Ali, Muhalab E; Al Masaud, Abdulaziz; Shire, Abdirashid M; Das, Nagalla; Gumaa, Khalid; Giha, Hayder A

    2017-09-01

    Ghrelin (GHRL), a gastric peptide encoded by the GHRL gene, is known to be involved in energy homeostasis via its G protein receptor, encoded by the growth hormone secretagogue receptor (GHSR) gene. Some studies have shown associations between plasma GHRL levels and GHRL single-nucleotide polymorphisms (SNPs), namely the Leu72Met polymorphism (rs696217 TG), with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), while others have not. The controversies in these associations raise the issue of 'which SNPs in which populations.' The aim of this study was to investigate whether SNPs in GHRL and/or GHSR genes were associated with T2DM, IR, or plasma GHRL levels among Arab Saudis. Blood was collected from 208 Saudi subjects with (n=107) and without (n=101) T2DM. DNA samples from these subjects were analyzed by real-time polymerase chain reaction to genotype five intronic SNPs in the GHRL (rs696217 TG, rs27647 CT, rs2075356 CT, and rs4684677 AT) and GHSR (rs509030 GC) genes. In addition, plasma GHRL levels were measured by a radioimmunoassay. None of the SNPs were associated with T2DM, IR, or plasma GHRL levels. The frequencies of the alleles, genotypes, and haplotypes of the five SNPs were comparable between the T2DM patients and the non-diabetic subjects. A large number of the GHRL haplotypes indicates the molecular heterogeneity of the preproghrelin gene in this region. Neither the Leu72Met polymorphism nor the other intronic GHRL and GHSR SNPs were associated with T2DM, IR, or GHRL levels. Further investigations should be carried out to explain the molecular basis of the association of the GHRL peptide with T2DM and IR. Copyright © 2017 Korean Endocrine Society

  14. Increased Migration of Monocytes in Essential Hypertension Is Associated with Increased Transient Receptor Potential Channel Canonical Type 3 Channels

    PubMed Central

    Chen, Jing; Zhong, Jian; Yu, Hao; Xu, Xingsen; He, Hongbo; Yan, Zhencheng; Scholze, Alexandra; Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2012-01-01

    Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed in a microchemotaxis chamber using chemoattractants formylated peptide Met-Leu-Phe (fMLP) and tumor necrosis factor-α (TNF-α). Proteins were identified by immunoblotting and quantitative in-cell Western assay. The effects of TRP channel-inhibitor 2–aminoethoxydiphenylborane (2-APB) and small interfering RNA knockdown of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246±14% vs 151±10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased compared to normotensive control subjects (221±20% vs 138±18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients compared to normotensive control subjects. The fMLP-induced monocyte migration was significantly reduced in the presence of inhibitors of tyrosine kinase and phosphoinositide 3-kinase. We conclude that increased monocyte migration in patients with essential hypertension is associated with increased TRPC3 channels. PMID:22438881

  15. Chromium (d-Phenylalanine)3 Alleviates High Fat-Induced Insulin Resistance and Lipid Abnormalities

    PubMed Central

    Kandadi, Machender Reddy; Unnikrishnan, MK; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair

    2010-01-01

    High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (d-phenylalanine)3 [Cr(d-Phe)3] on -glucose and -insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(d-Phe)3 (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body -glucose and- insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up- take in the gastrocnemius muscles, assessed as 2-[3H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-32P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)3. These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. PMID:21134603

  16. Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae).

    PubMed

    Al-Ayedh, Hassan; Rizwan-Ul-Haq, Muhammad; Hussain, Abid; Aljabr, Ahmed M

    2016-11-01

    Palm trees around the world are prone to notorious Rhynchophorus ferrugineus, which causes heavy losses of palm plantations. In Middle Eastern countries, this pest is a major threat to date palm orchards. Conventional pest control measures with the major share of synthetic insecticides have resulted in insect resistance and environmental issues. Therefore, in order to explore better alternatives, the RNAi approach was employed to knock down the catalase gene in fifth and tenth larval instars with different dsRNA application methods, and their insecticidal potency was studied. dsRNA of 444 bp was prepared to knock down catalase in R. ferrugineus. Out of the three dsRNA application methods, dsRNA injection into larvae was the most effective, followed by dsRNA application by artificial feeding. Both methods resulted in significant catalase knockdown in various tissues, especially the midgut. As a result, the highest growth inhibition of 123.49 and 103.47% and larval mortality of 80 and 40% were observed in fifth-instar larvae, whereas larval growth inhibition remained at 86.83 and 69.08% with larval mortality at 30 and 10% in tenth-instar larvae after dsRNA injection and artificial diet treatment. The topical application method was the least efficient, with the lowest larval growth inhibition of 57.23 and 45.61% and 0% mortality in fifth- and tenth-instar larvae. Generally, better results were noted at the high dsRNA dose of 5 µL. Catalase enzyme is found in most insect body tissues, and thus its dsRNA can cause broad-scale gene knockdown within the insect body, depending upon the application method. Significant larval mortality and growth inhibition after catalase knockdown in R. ferrugineus confirms its insecticidal potency and suggests a bright future for RNAi-based bioinsecticides in pest control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm.

    PubMed

    Davis-Vogel, Courtney; Ortiz, Angel; Procyk, Lisa; Robeson, Jonathan; Kassa, Adane; Wang, Yiwei; Huang, Emily; Walker, Carl; Sethi, Amit; Nelson, Mark E; Sashital, Dipali G

    2018-05-18

    Western corn rootworm (Diabrotica virgifera virgifera) is a serious agricultural pest known for its high adaptability to various management strategies, giving rise to a continual need for new control options. Transgenic maize expressing insecticidal RNAs represents a novel mode of action for rootworm management that is dependent on the RNA interference (RNAi) pathways of the insect for efficacy. Preliminary evidence suggests that western corn rootworm could develop broad resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the likelihood of field-evolved resistance occurring through this mechanism remains unclear. In the current study, eight key genes involved in facilitating interference in the microRNA and small interfering RNA pathways were targeted for knockdown in order to evaluate impact on fitness of western corn rootworm. These genes include drosha, dicer-1, dicer-2, pasha, loquacious, r2d2, argonaute 1, and argonaute 2. Depletion of targeted transcripts in rootworm larvae led to changes in microRNA expression, decreased ability to pupate, reduced adult beetle emergence, and diminished reproductive capacity. The observed effects do not support evolution of resistance through changes in expression of these eight genes due to reduced insect fitness.

  18. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand.

    PubMed

    Cowan, Phil E; Gleeson, Dianne M; Howitt, Robyn Lj; Ramón-Laca, Ana; Esther, Alexandra; Pelz, Hans-Joachim

    2017-01-01

    Anticoagulant toxins are used globally to control rats. Resistance of Rattus species to these toxins now occurs in at least 18 countries in Europe, America and Asia. Resistance is often associated with single nucleotide polymorphisms (SNPs) in the Vkorc1 gene. This study gives a first overview of the distribution and frequency of Vkorc1 SNPs in rats in New Zealand. New Zealand is unusual in having no native rodents but three species of introduced Rattus - norvegicus Berk., rattus L. and exulans Peale. Sequence variants occurred in at least one species of rat at all 30 of the sites sampled. Three new SNPs were identified, one in kiore and two in ship rats. No SNPs previously associated with resistance were found in Norway rats or kiore, but seven ship rats were heterozygous and one homozygous for the A74T variant. Its resultant Tyr25Phe mutation has previously been associated with resistance to both first- and second-generation anticoagulants in ship rats in Spain. This is the first evidence of potential resistance to anticoagulant toxins in rats in New Zealand. Further testing using blood clotting response times in dosed rats is needed to confirm resistance potentially conferred by the Tyr25Phe mutation. Assessment is also needed of the potential of the other non-synonymous variants (Ala14Val, Ala26Val) recorded in this study to confer resistance to anticoagulant toxins. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Catabolism of gastrin releasing peptide and substance P by gastric membrane-bound peptidases.

    PubMed

    Bunnett, N W; Kobayashi, R; Orloff, M S; Reeve, J R; Turner, A J; Walsh, J H

    1985-01-01

    The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.

  20. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2more » tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.« less

  1. Mitochondrial transfer RNA(Phe) mutation associated with a progressive neurodegenerative disorder characterized by psychiatric disturbance, dementia, and akinesia-rigidity.

    PubMed

    Young, Tim M; Blakely, Emma L; Swalwell, Helen; Carter, Janet E; Kartsounis, Luke D; O'Donovan, Dominic G; Turnbull, Douglass M; Taylor, Robert W; de Silva, Rajith N

    2010-11-01

    Mitochondrial diseases are characterized by wide phenotypic and genetic variability, but presentations in adults with akinetic rigidity and hyperkinetic movement disorders are rare. To describe clinically a subject with progressive neurodegeneration characterized by psychosis, dementia, and akinesia-rigidity, and to associate this phenotype with a novel mitochondrial transfer RNA(Phe) (tRNA(Phe)) (MTTF) mutation. Case description and detailed laboratory investigations of a 57-year-old woman at a university teaching hospital and a specialist mitochondrial diagnostic laboratory. Histopathological findings indicated that an underlying mitochondrial abnormality was responsible for the subject's progressive neurological disorder, with mitochondrial genome sequencing revealing a novel m.586G>A MTTF mutation. The clinical phenotypes associated with mitochondrial disorders may include akinesia-rigidity and psychosis. Our findings further broaden the spectrum of neurological disease associated with mitochondrial tRNA(Phe) mutations.

  2. Differential Effects of Histone Acetyltransferase GCN5 or PCAF Knockdown on Urothelial Carcinoma Cells

    PubMed Central

    Koutsogiannouli, Evangelia A.; Hader, Christiane; Pinkerneil, Maria; Hoffmann, Michèle J.; Schulz, Wolfgang A.

    2017-01-01

    Disturbances in histone acetyltransferases (HATs) are common in cancers. In urothelial carcinoma (UC), p300 and CBP are often mutated, whereas the GNAT family HATs GCN5 and PCAF (General Control Nonderepressible 5, p300/CBP-Associated Factor) are often upregulated. Here, we explored the effects of specific siRNA-mediated knockdown of GCN5, PCAF or both in four UC cell lines (UCCs). Expression of various HATs and marker proteins was measured by qRT-PCR and western blot. Cellular effects of knockdowns were analyzed by flow cytometry and ATP-, caspase-, and colony forming-assays. GCN5 was regularly upregulated in UCCs, whereas PCAF was variable. Knockdown of GCN5 or both GNATs, but not of PCAF alone, diminished viability and inhibited clonogenic growth in 2/4 UCCs, inducing cell cycle changes and caspase-3/7 activity. PCAF knockdown elicited GCN5 mRNA upregulation. Double knockdown increased c-MYC and MDM2 (Mouse Double Minute 2) in most cell lines. In conclusion, GCN5 upregulation is especially common in UCCs. GCN5 knockdown impeded growth of specific UCCs, whereas PCAF knockdown elicited minor effects. The limited sensitivity towards GNAT knockdown and its variation between the cell lines might be due to compensatory effects including HAT, c-MYC and MDM2 upregulation. Our results predict that developing drugs targeting individual HATs for UC treatment may be challenging. PMID:28678170

  3. Behavioural and biochemical responses following activation of midbrain dopamine pathways by receptor selective neurokinin agonists.

    PubMed

    Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M

    1991-06-01

    Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.

  4. Effects of phenylalanine, histidine, and leucine on basal and GHRH-stimulated GH secretion and on PRL, insulin, and glucose levels in short children. Comparison with the effects of arginine.

    PubMed

    Bellone, J; Valetto, M R; Aimaretti, G; Segni, M; Volta, C; Cardimale, G; Baffoni, C; Pasquino, A M; Bernasconi, S; Bartolotta, E; Mucci, M; Ghigo, E

    1996-01-01

    Of the amino acids arginine is the most potent GH secretagogue in man. It potentiates the GH response to GHRH, exerts a weaker PRL-releasing effect, stimulates insulin and glucagon and induces a biphasic glucose variation. The potency and effects of other amino acids on pituitary and pancreatic hormones need to be clarified. In 43 children with normal short stature (5.3-14.0 yr; 30 M and 13 F) the effects of the infusion of phenylalanine (Phe, 0.08 g/kg), histidine (His, 0.1 g/kg), and leucine (Leu, 0.08 g/kg) on basal and GHRH-stimulated GH secretion and on PRL, insulin and glucose levels were studied and compared with those of arginine at high (hArg, 0.5 g/kg) or low dose (lArg, 0.2 g/kg). Phe increased basal (p < 0.05) but not GHRH-stimulated GH levels, induced PRL and insulin rises (p < 0.03 and p < 0.03), and did not change glycemia. Though a trend toward an increase in basal GH levels was found after His, His and Leu did not significantly modify either basal or GHRH-induced GH secretion nor basal PRL, insulin and glucose levels. Both hArg and lArg increased basal (p < 0.0001 and p < 0.05, respectively) and GHRH-stimulated GH levels (p < 0.006 and p < 0.006). hArg increased both PRL (p < 0.002) and insulin levels (p < 0.005) more (p < 0.0005 and p < 0.004) than lArg (p < 0.005 and p < 0.005), while glucose levels showed a similar increase followed by a similar decrease. We conclude that in childhood: a) Phe significantly increases GH secretion but, differently from Arg, does not potentiate the response to GHRH, suggesting different mechanisms of action of these amino acids; b) differently from His and Leu, Phe is a PRL and insulin secretagogue but is less potent than Arg; c) Arg has the highest stimulatory effect on pituitary and pancreatic hormones.

  5. Half-life of leu-enkephalin in the serum of infants of the first year of life on different types of feeding: relationship with temperament.

    PubMed

    Sokolov, O Yu; Kurasova, O B; Kost, N V; Gabaeva, M V; Korneeva, E V; Mikheeva, I G; Zozulya, A A

    2004-04-01

    The half-life of leu-enkephalin in the serum of infants aged under 1 year is significantly shorter than in adults. In girls leu-enkephalin half-life is significantly longer than in boys. The half-life of leu-enkephalin is different in infants on breast and formula feeding. Nine characteristics of temperament in infants of the first year of life were determined using EITQ and ITQ questionnaires. Serum leu-enkephalin half-life directly correlated with temperament characteristics (activity, perception, threshold), but not with the level psychomotor development.

  6. Single amino acid substitutions at 2 of 14 positions in an ultra-conserved region of the androgen receptor yield an androgen-binding domain that is reversibly thermolabile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliou, M.; Lumbroso, R.; Alvarado, C.

    1994-09-01

    The stereochemistry of the androgen receptor (AR) that is responsible for androgen-specific binding and for its contribution to the transregulatory attributes of an androgen-receptor complex are unknown. Our objective is to define structure-function relations of the human AR by correlating germline missense mutations at its X-linked locus with its resultant misbehavior. Subjects with Arg773Cys have complete androgen insensitivity. We and several other laboratories have reported that their genital skin fibroblasts (GSF) have negligible androgen-binding activity at 37{degrees}. We have found that Phe763Leu also causes CAI, but with approximately 10 fmol/mg protein androgen-binding activity at 37{degrees} (R-deficient). Within COS-1 cells transfectedmore » with each mutant AR cDNA, Phe763Leu and Arg773Cys androgen-binding activities are reversibly thermolabile, by a factor of 2, at 37{degrees} versus 22{degrees}, only in the presence of androgen; in the absence of androgen they are thermostable at 37{degrees}. We have discovered that (for a reason yet unknown) the GSF from a third family with Arg773Cys (and no other coding sequence mutation) have 20-40 mol/mg protein of androgen-binding activity at 37{degrees} when measured with 3-6 nFM androgen. This activity reversibly doubles at 22{degrees}. The reversible thermolability of an AR with Arg773Cys (and probably with Phe763Leu) is demonstrable within GSF. Ligand-dependence of this thermolability implies that ligand induces these mutant AR to undergo a deviant conformational change in, or near, a 14-aa region that shares 90% identity/similarity with its closest receptor relatives.« less

  7. Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea.

    PubMed Central

    Davis, M T; Vakharia, V N; Henry, J; Kempe, T G; Raina, A K

    1992-01-01

    Pheromone biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone biosynthesis in female Helicoverpa (Heliothis) zea. Two oligonucleotide probes representing two overlapping amino acid regions of PBAN were used to screen 2.5 x 10(5) recombinant plaques, and a positive recombinant clone was isolated. Sequence analysis of the isolated clone showed that the PBAN gene is interrupted after the codon encoding amino acid 14 by a 0.63-kilobase (kb) intron. Preceding the PBAN amino acid sequence is a 10-amino acid sequence containing a pentapeptide Phe-Thr-Pro-Arg-Leu, which is followed by a Gly-Arg-Arg processing site. Immediately after the PBAN amino acid sequence is a Gly-Arg processing site and a short stretch of 10 amino acids. This 10-amino acid sequence contains a repeat of the PBAN C-terminal pentapeptide Phe-Ser-Pro-Arg-Leu and is terminated by another Gly-Arg processing site. It is suggested that the PBAN gene in H. zea might carry, besides PBAN, a 7- and an 8-residue amidated peptide, which share with PBAN the core C-terminal pentapeptide Phe-(Ser or Thr)-Pro-Arg-Leu-NH2. The C-terminal pentapeptide sequence of PBAN represents the minimum sequence required for pheromonotropic activity in H. zea and also bears a high degree of homology to the pyrokinin family of insect peptides with myotropic activity. It is possible that the putative heptapeptide and octapeptide might be new members of the pyrokinin family, with pheromonotropic and/or myotropic activities. Thus, the PBAN gene products, besides affecting sexual behavior, might have broad influence on many biological processes in H. zea. Images PMID:1729680

  8. Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.

    2015-10-01

    Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the powermore » coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.« less

  9. Processing of LEU targets for {sup 99}Mo production--testing and modification of the Cintichem process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, D.; Landsberger, S.; Buchholz, B.

    1995-09-01

    Recent experimental results on testing and modification of the Cintichem process to allow substitution of low enriched uranium (LEU) for high enriched uranium (HEU) targets are presented in this report. The main focus is on {sup 99}Mo recovery and purification by its precipitation with {alpha}-benzoin oxime. Parameters that were studied include concentrations of nitric and sulfuric acids, partial neutralization of the acids, molybdenum and uranium concentrations, and the ratio of {alpha}-benzoin oxime to molybdenum. Decontamination factors for uranium, neptunium, and various fission products were measured. Experiments with tracer levels of irradiated LEU were conducted for testing the {sup 99}Mo recoverymore » and purification during each step of the Cintichem process. Improving the process with additional processing steps was also attempted. The results indicate that the conversion of molybdenum chemical processing from HEU to LEU targets is possible.« less

  10. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa; Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21more » and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.« less

  11. 40 CFR 721.7620 - Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative (generic name). 721.7620 Section 721... Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative...) derivative (PMN P-86-136) is subject to reporting under this section for the significant new uses described...

  12. 40 CFR 721.7620 - Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative (generic name). 721.7620 Section 721... Alkyl(heterocyclicyl) phe-nyl-azohetero monocyclic polyone, ((alkylimidazolyl) methyl) derivative...) derivative (PMN P-86-136) is subject to reporting under this section for the significant new uses described...

  13. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability

    PubMed Central

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A

    2016-01-01

    Objective Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems. Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. Results As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). Discussion These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. Conclusion By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. PMID:27026615

  14. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil.

    PubMed

    Macoris, Maria de Lourdes; Martins, Ademir Jesus; Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise

    2018-03-01

    Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a strong integrated vector control strategy and the conceptual

  15. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Song, Yajun; Roumagnac, Philippe; Weill, François-Xavier; Wain, John; Dolecek, Christiane; Mazzoni, Camila J.; Holt, Kathryn E.; Achtman, Mark

    2010-01-01

    Objectives Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. Methods By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (NalR) and/or decreased susceptibility to fluoroquinolones. Results This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (NalR = 223 and NalS = 69) and 106 isolates of Salmonella Paratyphi A (NalR = 24 and NalS = 82). All of the 247 NalR Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143/223 for Salmonella Typhi and 18/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight NalS Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. Conclusions The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes. PMID:20511368

  16. Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants

    PubMed Central

    Gomes, Cláudia; Martínez-Puchol, Sandra; Ruiz-Roldán, Lidia; Pons, Maria J.; del Valle Mendoza, Juana; Ruiz, Joaquim

    2016-01-01

    The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-β-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 → Lys or Gly-70 → Arg; L4 deletion Δ62–65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 → Val and Asp-95 → Gly and GyrB Glu474 → Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 → Arg, His-540 → Tyr and Ser-545 → Phe plus Ser-588 → Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments. PMID:27667026

  17. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  18. Analytical analyses of startup measurements associated with the first use of LEU fuel in Romania`s 14-MW TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M.M.; Snelgrove, J.L.; Ciocanescu, M.

    1992-12-01

    The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% 235U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, eachmore » containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration. In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and themocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.« less

  19. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  20. The Leu72Met Polymorphism of the Prepro-ghrelin Gene is Associated With Alcohol Consumption and Subjective Responses to Alcohol: Preliminary Findings

    PubMed Central

    Suchankova, Petra; Yan, Jia; Schwandt, Melanie L.; Stangl, Bethany L.; Jerlhag, Elisabet; Engel, Jörgen A.; Hodgkinson, Colin A.; Ramchandani, Vijay A.; Leggio, Lorenzo

    2017-01-01

    Abstract Aims The orexigenic peptide ghrelin may enhance the incentive value of food-, drug- and alcohol-related rewards. Consistent with preclinical findings, human studies indicate a role of ghrelin in alcohol use disorders (AUD). In the present study an a priori hypothesis-driven analysis was conducted to investigate whether a Leu72Met missense polymorphism (rs696217) in the prepro-ghrelin gene (GHRL), is associated with AUD, alcohol consumption and subjective responses to alcohol. Method Association analysis was performed using the National Institute on Alcohol Abuse and Alcoholism (NIAAA) clinical sample, comprising AUD individuals and controls (N = 1127). Then, a post-hoc analysis using data from a human laboratory study of intravenous alcohol self-administration (IV-ASA, N = 144) was performed to investigate the association of this SNP with subjective responses following a fixed dose of alcohol (priming phase) and alcohol self-administration (ad libitum phase). Results The case-control study revealed a trend association (N = 1127, OR = 0.665, CI = 0.44–1.01, P = 0.056) between AUD diagnosis and Leu72Met. In AUD subjects, the SNP was associated with significantly lower average drinks per day (n = 567, β = −2.49, 95% CI = −4.34 to −0.64, P = 0.008) and significantly fewer heavy drinking days (n = 567, β = −12.00, 95% CI = −19.10 to −4.89, P < 0.001). The IV-ASA study further revealed that 72Met carriers had greater subjective responses to alcohol (P < 0.05) when compared to Leu72Leu both at priming and during ad lib self-administration. Conclusion Although preliminary, these findings suggest that the Leu72Leu genotype may lead to increased risk of AUD possibly via mechanisms involving a lower response to alcohol resulting in excessive alcohol consumption. Further investigations are warranted. Short Summary We investigated whether a Leu72Met missense polymorphism in the prepro-ghrelin gene, is associated with alcohol use disorder, alcohol

  1. The Leu72Met Polymorphism of the Prepro-ghrelin Gene is Associated With Alcohol Consumption and Subjective Responses to Alcohol: Preliminary Findings.

    PubMed

    Suchankova, Petra; Yan, Jia; Schwandt, Melanie L; Stangl, Bethany L; Jerlhag, Elisabet; Engel, Jörgen A; Hodgkinson, Colin A; Ramchandani, Vijay A; Leggio, Lorenzo

    2017-07-01

    The orexigenic peptide ghrelin may enhance the incentive value of food-, drug- and alcohol-related rewards. Consistent with preclinical findings, human studies indicate a role of ghrelin in alcohol use disorders (AUD). In the present study an a priori hypothesis-driven analysis was conducted to investigate whether a Leu72Met missense polymorphism (rs696217) in the prepro-ghrelin gene (GHRL), is associated with AUD, alcohol consumption and subjective responses to alcohol. Association analysis was performed using the National Institute on Alcohol Abuse and Alcoholism (NIAAA) clinical sample, comprising AUD individuals and controls (N = 1127). Then, a post-hoc analysis using data from a human laboratory study of intravenous alcohol self-administration (IV-ASA, N = 144) was performed to investigate the association of this SNP with subjective responses following a fixed dose of alcohol (priming phase) and alcohol self-administration (ad libitum phase). The case-control study revealed a trend association (N = 1127, OR = 0.665, CI = 0.44-1.01, P = 0.056) between AUD diagnosis and Leu72Met. In AUD subjects, the SNP was associated with significantly lower average drinks per day (n = 567, β = -2.49, 95% CI = -4.34 to -0.64, P = 0.008) and significantly fewer heavy drinking days (n = 567, β = -12.00, 95% CI = -19.10 to -4.89, P < 0.001). The IV-ASA study further revealed that 72Met carriers had greater subjective responses to alcohol (P < 0.05) when compared to Leu72Leu both at priming and during ad lib self-administration. Although preliminary, these findings suggest that the Leu72Leu genotype may lead to increased risk of AUD possibly via mechanisms involving a lower response to alcohol resulting in excessive alcohol consumption. Further investigations are warranted. We investigated whether a Leu72Met missense polymorphism in the prepro-ghrelin gene, is associated with alcohol use disorder, alcohol consumption and subjective responses to alcohol. Although preliminary

  2. Chromium (D-phenylalanine)3 alleviates high fat-induced insulin resistance and lipid abnormalities.

    PubMed

    Kandadi, Machender Reddy; Unnikrishnan, M K; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair

    2011-01-01

    High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (D-phenylalanine)(3) [Cr(D-Phe)(3)] on glucose and insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(D-Phe)(3) (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body-glucose and -insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up-take in the gastrocnemius muscles, assessed as 2-[(3)H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-(32)P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)(3). These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Protective effects of diketopiperazines from Moslae Herba against influenza A virus-induced pulmonary inflammation via inhibition of viral replication and platelets aggregation.

    PubMed

    Zhang, Huan-Huan; Yu, Wen-Ying; Li, Lan; Wu, Fang; Chen, Qin; Yang, Yang; Yu, Chen-Huan

    2018-04-06

    Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B 2 (TXB 2 ) and 6-keto-PGF 1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells

  4. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen; Yang, Xi-fei

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we exploremore » the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.« less

  5. Investigation of TRPV1 loss-of-function phenotypes in TRPV1 Leu206Stop mice generated by N-ethyl-N-nitrosourea mutagenesis.

    PubMed

    Christoph, Thomas; Kögel, Babette; Schiene, Klaus; Peters, Thomas; Schröder, Wolfgang

    2018-06-02

    N-ethyl-N-nitrosourea (ENU) random mutagenesis was used to generate a mouse model for the analysis of the transient receptor potential vanilloid 1 (TRPV1) cation channel. A transversion from T→A in exon 4 led to a Leu206Stop mutation generating a loss-of-function mutant. The TRPV1 agonist capsaicin was used to analyze functional and nociceptive parameters in vitro and in vivo in TRPV1 Leu206Stop mice and congenic C3HeB/FeJ controls. Capsaicin-induced [Ca 2+ ] i changes in small diameter DRG neurons were significantly diminished in TRPV1 Leu206Stop mice and administration of capsaicin induced neither hypothermia nor nocifensive behaviour in vivo. TRPV1 Leu206Stop mice were tested in the spinal nerve ligation of mononeuropathic pain and developed mechanical hypersensitivity two weeks after nerve injury. In the open field test, a significant increase in spontaneous locomotion was detected in TRPV1 Leu206Stop mice as compared to wildtype controls. TRPV1 knockout mice have been reported to carry a similar phenotype regarding capsaicin-evoked responses in vitro and in vivo. However, in contrast to TRPV1 Leu206Stop mice, TRPV1 knockout mice did not differ in spontaneous locomotion as compared to congenic C57BL/6 mice, suggesting subtle ENU-dependent or independent strain differences between TRPV1 Leu206Stop mice and their wildtype controls. In summary, these data revealed a target-related (i.e. capsaicin-evoked) phenotype of TRPV1 Leu206Stop mice closely resembling that of published TRPV1 knockout mice. However, since ENU-mutant mice are congenic with the mouse strain initially used in random mutagenesis, direct phenotypic comparison with the respective wildtype controls is possible, and the time-consuming backcrossing in lines with targeted mutations is avoided. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability.

    PubMed

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A; Denny, Joshua C

    2016-11-01

    Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems.Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. [Study on the secondary metabolites from the marine sponge Phakellia fusca fungi PF18].

    PubMed

    Tang, Li-Dan; Liang, Yuan-Wei; Liao, Xiao-Jian; Liang, Qiu; Xu, Shi-Hai; Li, Zhi-Yong

    2011-12-01

    To study the secondary metabolites from the marine sponge Phakellia fusca epiphytic fungi. The compounds were isolated by column chromatography over silica gel and purified by Sephadex LH-20 column chromatography and preparative TLC. The structures were elucidated by means of physiochemical properties and spectroscopic analyses. Four compounds were separated and identified as: cyclo-(L-Val-L-Pro) (1), cyclo-(L-Phe-L-Pro) (2), cyclo-(L-Tyr-L-Pro) (3), cyclo-(3-hydroxy-4-methyldecanoyl-Gly-L-Val-D-Leu-L-Ala-L-Phe) (4). Compounds 1-4 are obtained from the marine sponge Phakellia fusca epiphytic fungi for the first time.

  8. The Leu72Met polymorphism of the ghrelin gene is associated with a decreased risk for type 2 diabetes.

    PubMed

    Berthold, Heiner K; Giannakidou, Eleni; Krone, Wilhelm; Mantzoros, Christos S; Gouni-Berthold, Ioanna

    2009-01-01

    Ghrelin is involved in several metabolic and cardiovascular processes. The Leu72Met polymorphism of its gene was associated with an increased risk of type 2 diabetes (DM2) in some, but not all studies. Its association with atherosclerosis is not known. We investigated 420 Caucasian subjects with DM2 and 430 controls without diabetes (56.6% male, age 62+/-10 years). The Leu72Leu genotype frequencies were 89.76/84.65%, the Leu72Met 9.52/15.12% and the Met72Met 0.71/0.23% (P=0.029) in the DM2 and controls groups, respectively. In subjects with Met72+ genotypes the risk of DM2 was significantly decreased (univariate OR 0.63, 95% CI 0.42-0.95, P=0.026). In a logistic regression model, body mass index, hypertension and a positive family history for diabetes were predictors of diabetes while the polymorphism remained negatively associated with the disease (OR 0.62, 95% CI 0.40-0.97, P=0.036). After adjusting for known risk factors for atherosclerosis, the Met72+ variant was not associated with atherosclerotic disease (OR 1.41, 95% CI 0.78-2.54, P=0.25). Ghrelin concentrations were not associated with the polymorphism, DM2 or atherosclerotic disease. The Leu72Met polymorphism of the ghrelin gene is associated with a decreased risk for DM2. There is no association between the variant and atherosclerotic disease or ghrelin concentrations.

  9. Antagonists of substance P. Further modifications of substance P antagonists obtained by replacing either positions 7, 9 or 7, 8 and 11 of SP with D-amino acid residues.

    PubMed

    Dutta, A S; Gormley, J J; Graham, A S; Briggs, I; Growcott, J W; Jamieson, A

    1986-07-01

    Antagonists of SP and the C-terminal (6-11)-hexapeptide have been obtained by multiple D-amino acid substitutions in various positions of SP and by protecting the N alpha-Arg1 and N epsilon Lys3 amino groups with benzyloxycarbonyl groups. On the guinea pig ileum a number of these antagonized both SP and the hexapeptide. Except [N alpha-Z-Arg1,D-Pro2,N epsilon-Z-Lys3,Asn5,Arg6,D-Phe7,D-Trp9]-SP-OMe (4) and the corresponding amide 7, which were more potent antagonists of SP than the hexapeptide, all the others, e.g., [N alpha-Z-Arg1,D-Pro2,4,N epsilon-Z-Lys3,D-Phe7,8,Sar9,D-Met11]-SP-OMe (9), [N alpha-Z-Arg1,D-Pro2,4,N epsilon-Z-Lys3,D-Phe7,8,Sar9,MeLeu10,D-Met11]-SP -OMe (11), were more potent antagonists of the hexapeptide. On the rat spinal cord preparation, most of the antagonists were only active against the hexapeptide. A few antagonized SP, but these also reduced carbachol or both carbachol and glutamate responses. Two of the antagonists, [D-Pro2,Asn5,Lys6,D-Phe7,D-Trp9]-SP-OMe (2) and [Boc-D-Pro4,D-Phe7,8,Sar9,D-Met11]-SP(4-11)-OMe (10), were inactive on the ileum but still antagonized the hexapeptide on the spinal cord. The smallest peptides to antagonize SP and the hexapeptide were two heptapeptides, 6 and 21, [Z-Asn5,Arg6,D-Phe7,8,Gly9 psi (CH2S)D-Leu10,D-Met11]-SP(5-11)-OMe (21) being more potent than 6. None of the antagonists showed significant analgesic activity without side effects. Some of the antagonists were shown to release histamine from isolated rat peritoneal cells.

  10. Wide-Field Variability Survey of the Globular Cluster M 79 and a New Period-Luminosity Relation for SX Phe Stars

    NASA Astrophysics Data System (ADS)

    Kopacki, G.

    2015-03-01

    We present the results of a search for variable stars in a 26×39 arcmin2 field around globular cluster M 79 (NGC 1904). The search was made by means of an extended version of image subtraction, which allows us to analyze in a uniform manner CCD frames obtained with different telescopes and cameras of different sizes and resolutions. The search resulted in finding 20 new variable stars, among which 13 are cluster members. The members include one new RR Lyr star of subtype c, three SX Phe stars, and nine variable red giants. We also show that V7 is a W Vir star with a period of 13.985 d. Revised mean periods of RRab and RRc stars, ab=0.71 d and c=0.34 d, respectively, and relative percentage of RRc stars, Nc/(Nab+Nc)=45% confirm that M 79 belongs to the Oosterhoff II group of globular clusters. The mean V magnitude of the horizontal branch of M 79 based on ten RR Lyr stars has been estimated to be VHB=RR=16.11±0.03 mag. In one RRc star, V9, light changes with three close frequencies were detected, indicating excitation of nonradial modes. An SX Phe star, V18, is a double-mode pulsator with two radial modes excited, fundamental and first overtone. Moreover, we have discovered two SX Phe or δ Sct stars and one W UMa type system, all likely field objects. We also studied the period-luminosity relation for SX Phe stars. Using 62 fundamental and fundamentalized periods of radial double-mode and high-amplitude SX Phe stars known in Galactic globular clusters, we have derived the slope and zero point of this relation to be, -3.3±0.27 and 2.68±0.03 mag (at log(P/d)=-1.24), respectively.

  11. Analyses of insulin-potentiating fragments of human growth hormone by computative simulation; essential unit for insulin-involved biological responses.

    PubMed

    Ohkura, K; Hori, H

    2000-07-01

    We analyzed the structural features of insulin-potentiating fragments of human growth hormone by computative simulations. The peptides were designated from the N-terminus sequences of the hormone positions at 1-15 (hGH(1-15); H2N-Phe1-Pro2-Thr3-Ile4-Pro5-Leu6-Ser7-Arg8-L eu9-Phe10-Asp11-Asn12-Ala13-Met14-Leu15 -COOH), 6-13 (hGH(6-13)), 7-13 (hGH(7-13)) and 8-13 (hGH(8-13)), which enhanced insulin-producing hypoglycemia. In these peptide molecules, ionic bonds were predicted to form between 8th-arginyl residue and 11th-aspartic residue, and this intramolecular interaction caused the formation of a macrocyclic structure containing a tetrapeptide Arg8-Leu9-Phe10-Asp11. The peptide positions at 6-10 (hGH(6-10)), 9-13 (hGH(9-13)) and 10-13 (hGH(10-13)) did not lead to a macrocyclic formation in the molecules, and had no effect on the insulin action. Although beta-Ala13hGH(1-15), in which the 13th-alanine was replaced by a beta-alanyl residue, had no effect on insulin-producing hypoglycemia, the macrocyclic region (Arg8-Leu9-Phe10-Asp11) was observed by the computative simulation. An isothermal vibration analysis of both of beta-Ala13hGH(1-15) and hGH(1-15) peptide suggested that beta-Ala13hGH(1-15) is molecule was more flexible than hGH(1-15); C-terminal carboxyl group of Leu15 easily accessed to Arg8 and inhibited the ionic bond formation between Arg8 and Asp11 in beta-Ala13hGH(1-15). The peptide of hGH(8-13) dose-dependently enhanced the insulin-involved fatty acid synthesis in rat white adipocytes, and stabilized the C6-NBD-PC (1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]-sn- glycero-3-phosphatidylcholine) model membranes. In contrast, hGH(9-13) had no effect both on the fatty acid synthesis and the membrane stability. In the same culture conditions as the fatty acid synthesis assay, hGH(8-13) had no effect on the transcript levels of glucose transporter isoforms (GLUT 1, 4) and hexokinase isozymes (HK I, II) in rat white adipocytes. Judging from

  12. Synthesis and Pharmacology of α/β(3)-Peptides Based on the Melanocortin Agonist Ac-His-dPhe-Arg-Trp-NH2 Sequence.

    PubMed

    Singh, Anamika; Tala, Srinivasa R; Flores, Viktor; Freeman, Katie; Haskell-Luevano, Carrie

    2015-05-14

    The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β(3)-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β(3)-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β(3)hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands.

  13. Synthesis and Pharmacology of α/β3-Peptides Based on the Melanocortin Agonist Ac-His-dPhe-Arg-Trp-NH2 Sequence

    PubMed Central

    2015-01-01

    The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β3-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β3-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β3hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands. PMID:26005535

  14. A Study of the Long Term Behavior of the SX Phe Star KZ Hya1

    NASA Astrophysics Data System (ADS)

    Peña, J. H.; Piña, D. S.; Rentería, A.; Villarreal, C.; Soni, A. A.; Guillen, J.; Calderón, J.

    2018-04-01

    From the newly determined times of maximum light of the SX Phe star KZ Hya and others from the literature, as well as from uvby - β photoelectric photometry, we determined the nature of this star and its physical parameters.

  15. Dysregulated autophagy in restrictive cardiomyopathy due to Pro209Leu mutation in BAG3.

    PubMed

    Schänzer, A; Rupp, S; Gräf, S; Zengeler, D; Jux, C; Akintürk, H; Gulatz, L; Mazhari, N; Acker, T; Van Coster, R; Garvalov, B K; Hahn, A

    2018-03-01

    Myofibrillary myopathies (MFM) are hereditary myopathies histologically characterized by degeneration of myofibrils and aggregation of proteins in striated muscle. Cardiomyopathy is common in MFM but the pathophysiological mechanisms are not well understood. The BAG3-Pro209Leu mutation is associated with early onset MFM and severe restrictive cardiomyopathy (RCM), often necessitating heart transplantation during childhood. We report on a young male patient with a BAG3-Pro209Leu mutation who underwent heart transplantation at eight years of age. Detailed morphological analyses of the explanted heart tissue showed intracytoplasmic inclusions, aggregation of BAG3 and desmin, disintegration of myofibers and Z-disk alterations. The presence of undegraded autophagosomes, seen by electron microscopy, as well as increased levels of p62, LC3-I and WIPI1, detected by immunohistochemistry and western blot analyses, indicated a dysregulation of autophagy. Parkin and PINK1, proteins involved in mitophagy, were slightly increased whereas mitochondrial OXPHOS activities were not altered. These findings indicate that altered autophagy plays a role in the pathogenesis and rapid progression of RCM in MFM caused by the BAG3-Pro209Leu mutation, which could have implications for future therapeutic strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study.

    PubMed

    Martin, N K; Robey, I F; Gaffney, E A; Gillies, R J; Gatenby, R A; Maini, P K

    2012-03-27

    Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts. We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies. The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1-7.2. Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1-7.2 is most promising.

  17. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study

    PubMed Central

    Martin, N K; Robey, I F; Gaffney, E A; Gillies, R J; Gatenby, R A; Maini, P K

    2012-01-01

    Background: Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts. Methods: We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies. Results: The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1–7.2. Conclusion: Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1–7.2 is most

  18. Transforming growth factor beta1 gene variation Leu10Pro affects secretion and function in hepatic cells.

    PubMed

    Gu, Xing; Ji, Xin; Shi, Le-Hua; Yi, Chang-Hong; Zhao, Yun-Peng; Wang, Ai-Hua; Lu, Lun-Gen; Yu, Wen-Bo; Gao, Chun-Fang

    2012-11-01

    Our previous work revealed transforming growth factor beta1 (TGFβ1) gene polymorphisms are associated with susceptibility to hepatocellular carcinoma and liver cirrhosis. However, no further study of functional substitution in hepatic cells has yet been reported. This study was designed to uncover the functional mechanisms of TGFβ1 gene polymorphisms in the pathogenesis of liver diseases. Two recombinant TGFβ1 expression plasmids containing TGFβ1 codon 10 Leu/Pro variation were constructed with CMV promoter and transfected into human hepatoma cell lines (HepG2 and SMMU 7721), hepatic stellate cells (LX-2), and immortalized hepatocytes (L02). The secretion capacities of TGFβ1 protein in the transfected cells were determined by ELISA. Apoptosis, proliferative activity, and expression of CD 105, CD83, and CD80 were also measured by use of flow cytometry. The ELISA results showed that cells transfected with CMV-Pro10 were more capable of TGFβ1 secretion than those transfected with CMV-Leu10. Functionally, CMV-Pro10 was more apoptosis-protective and induced more proliferation than CMV-Leu10 in transfected hepatic cells. Pro10 up-regulated expression of CD105 and down-regulated expression of CD83. TGFβ1 gene Leu10Pro variation in signal peptide has significant effects on TGFβ1 secretion and functions in hepatic cells.

  19. Therapeutic index of gramicidin S is strongly modulated by D-phenylalanine analogues at the beta-turn.

    PubMed

    Solanas, Concepción; de la Torre, Beatriz G; Fernández-Reyes, María; Santiveri, Clara M; Jiménez, M Angeles; Rivas, Luis; Jiménez, Ana I; Andreu, David; Cativiela, Carlos

    2009-02-12

    Analogues of the cationic antimicrobial peptide gramicidin S (GS), cyclo(Val-Orn-Leu-D-Phe-Pro)2, with d-Phe residues replaced by different (restricted mobility, mostly) surrogates have been synthesized and used in SAR studies against several pathogenic bacteria. While all D-Phe substitutions are shown by NMR to preserve the overall beta-sheet conformation, they entail subtle structural alterations that lead to significant modifications in biological activity. In particular, the analogue incorporating D-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) shows a modest but significant increase in therapeutic index, mostly due to a sharp decrease in hemolytic effect. The fact that NMR data show a shortened distance between the D-Tic aromatic ring and the Orn delta-amino group may help explain the improved antibiotic profile of this analogue.

  20. Therapeutic index of gramicidin S is strongly modulated by d-phenylalanine analogues at the β-turn

    PubMed Central

    Solanas, Concepción; de la Torre, Beatriz G.; Fernández-Reyes, María; Santiveri, Clara M.; Jiménez, M. Ángeles; Rivas, Luis; Jiménez, Ana I.; Andreu, David; Cativiela, Carlos

    2009-01-01

    Analogues of the cationic antimicrobial peptide gramicidin S (GS), cyclo(Val-Orn-Leu-d-Phe-Pro)2, with d-Phe residues replaced by different (restricted mobility, mostly) surrogates have been synthesized and used in SAR studies against several pathogenic bacteria. While all d-Phe substitutions are shown by NMR to preserve the overall β-sheet conformation, they entail subtle structural alterations that lead to significant modifications in biological activity. In particular, the analogue incorporating d-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) shows a modest but significant increase in therapeutic index, mostly due to a sharp decrease in hemolytic effect. The fact that NMR data show a shortened distance between the d-Tic aromatic ring and the Orn δ-amino group may help explain the improved antibiotic profile of this analogue. PMID:19132829

  1. Knockdown of CAVEOLIN-1 Sensitizes Human Basal-Like Triple-Negative Breast Cancer Cells to Radiation.

    PubMed

    Zou, Man; Li, Yanhui; Xia, Shu; Chu, Qian; Xiao, Xiaoguang; Qiu, Hong; Chen, Yu; Zheng, Zu'an; Liu, Fei; Zhuang, Liang; Yu, Shiying

    2017-01-01

    Triple-negative breast cancer (TNBC) is a high-risk breast cancer phenotype without specific targeted therapy options and is significantly associated with increased local recurrence in patients treated with radiotherapy. CAVEOLIN-1 (CAV-1)-mediated epidermal growth factor receptor (EGFR) nuclear translocation following irradiation promotes DNA repair and thus induces radiation resistance. In this study, we aimed to determine whether knockdown of CAV-1 enhances the radiosensitivity of basal-like TNBC cell lines and to explore the possible mechanisms. Western blotting was used to compare protein expression in a panel of breast cancer cell lines. Nuclear accumulation of EGFR as well as DNA repair and damage at multiple time points following irradiation with or without CAV-1 siRNA pretreatment were investigated using western blotting and confocal microscopy. The radiosensitizing effect of CAV-1 siRNA was evaluated using a clonogenic assay. Flowcytometry was performed to analyse cell apoptosis and cell cycle alteration. We found that CAV-1 is over-expressed in basal-like TNBC cell lines and barely expressed in HER-2-positive cells; additionally, we observed that HER-2-positive cell lines are more sensitive to irradiation than basal-like TNBC cells. Our findings revealed that radiation-induced EGFR nuclear translocation was impaired by knockdown of CAV-1. In parallel, radiation-induced elevation of DNA repair proteins was also hampered by pretreatment with CAV-1 siRNA before irradiation. Silencing of CAV-1 also promoted DNA damage 24 h after irradiation. Colony formation assays verified that cells could be radiosensitized after knockdown of CAV-1. Furthermore, G2/M cell cycle arrest and apoptosis enhancement may also contribute to the radiosensitizing effect of CAV-1 siRNA. Our results support the hypothesis that CAV-1 knockdown by siRNA causes increased radiosensitivity in basal-like TNBC cells. The mechanisms associated with this effect are reduced DNA repair through

  2. Adapted Resistance to the Knockdown Effect of shRNA-Derived Srsf3 siRNAs in Mouse Littermates | Center for Cancer Research

    Cancer.gov

    Gene silencing techniques are widely used to control gene expression and have potential for RNAi-based therapeutics. In this report, transgenic mouse lines were created for conditional knockdown of Srsf3 (SRp20) expression in liver and mammary gland tissues by expressing Srsf3-specific shRNAs driven by a U6 promoter.

  3. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment.

    PubMed

    Pagar, Kunal P; Vavia, Pradeep R

    2014-06-01

    The poly[La-(Glc-Leu)] copolymer was applied in the present investigation as polymeric carrier to fabricate naltrexone (NTX)-loaded poly[La-(Glc-Leu)] microspheres in the single emulsion solvent evaporation technique for the long-term treatment of alcohol dependence. Newly synthesized poly[La-(Glc-Leu)] copolymer exhibited diminished crystallanity, good biocompatibility and favorable biodegradability to be explored for drug delivery application. Scanning Electron Microscopy study revealed smooth and spherical-shaped NTX-loaded polymeric microspheres with a mean size of 10-90 µm. Influence of various decisive formulation variables such as amount of polymer, stabilizer concentration, homogenization speed, homogenization time, drug loading and organic-to-aqueous phase ratio on particle size, and entrapment efficiency was studied. Differential scanning calorimeter and X-ray diffractometry study confirmed the drug entrapment within polymer matrix into the microsphere environment. In vitro drug release showed the sustained drug release of formulation for the period of 28 d giving biphasic release pattern. Histological examination of NTX-loaded poly[La-(Glc-Leu)] microspheres injected intramuscularly into the thigh muscle of Wistar rats showed minimal inflammatory reaction, demonstrating that NTX-loaded microspheres were biocompatible. Insignificant increase in the serum creatine phosphokinase level (p < 0.05) as compared with the normal value revealed good muscle compatibility of the poly[La-(Glc-Leu)] microsphere system. Biocompatible nature and sustained drug-release action of poly[La-(Glc-Leu)] microspheres may have potential application in depot therapy.

  4. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    PubMed

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Close Hidden Stellar Companion to the SX Phe-Type Variable Star DW Psc

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q.

    2015-01-01

    DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion ({{M}2}sin i˜ 0.45(+/- 0.03) {{M}⊙ }). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ˜ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.

  6. Effects of cholera toxin on the potential difference and motor responses induced by distension in the rat proximal small intestine in vivo.

    PubMed

    Kordasti, Shirin; Sapnara, Maria; Thomas, Evan A; Lindstrom, Erik; Forsman, Mikael; Bornstein, Joel C; Sjövall, Henrik

    2006-05-01

    Cholera toxin (CT) may induce uncontrolled firing in recurrent networks of secretomotor neurons in the submucous plexus. This hypothesis was tested in chloralose-anesthetized rats in vivo. The secretory reflex response to graded intestinal distension was measured with or without prior exposure to luminal CT. The transmural potential difference (PD) was used as a marker for electrogenic chloride secretion. In controls, distension increased PD, and this response was reduced by the neural blocker tetrodotoxin given serosally and the vasoactive intestinal peptide (VIP) receptor antagonist [4Cl-d-Phe(6),Leu(17)]VIP (2 mug.min(-1).kg(-1) iv) but unaffected by the serotonin 5-HT(3) receptor antagonist granisetron, by the nicotinic receptor antagonist hexamethonium, by the muscarinic receptor antagonist atropine, or by the cyclooxygenase inhibitor indomethacin. Basal PD increased significantly with time in CT-exposed segments, an effect blocked by granisetron, by indomethacin, and by [4Cl-d-Phe(6),Leu(17)]VIP but not by hexamethonium or atropine. In contrast, once the increased basal PD produced by CT was established, [4Cl-d-Phe(6),Leu(17)]VIP and indomethacin had no significant effect, whereas granisetron and hexamethonium markedly depressed basal PD. CT significantly reduced the increase in PD produced by distension, an effect reversed by granisetron, indomethacin, and atropine. CT also activated a specific motility response to distension, repeated cluster contractions, but only in animals pretreated with granisetron, indomethacin, or atropine. These data are compatible with the hypothesis that CT induces uncontrolled activity in submucous secretory networks. Development of this state depends on 5-HT(3) receptors, VIP receptors, and prostaglandin synthesis, whereas its maintenance depends on 5-HT(3) and nicotinic receptors but not VIP receptors. The motility effects of CT (probably reflecting myenteric activity) are partially suppressed via a mechanism involving 5-HT(3

  7. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

    PubMed

    Sooman, Linda; Wennman, Anneli; Hamberg, Mats; Hoffmann, Inga; Oliw, Ernst H

    2016-02-01

    The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions.

    PubMed

    Tu, Ling-Hsien; Young, Lydia M; Wong, Amy G; Ashcroft, Alison E; Radford, Sheena E; Raleigh, Daniel P

    2015-01-27

    The process of amyloid formation by the normally soluble hormone islet amyloid polypeptide (IAPP) contributes to β-cell death in type 2 diabetes and in islet transplants. There are no clinically approved inhibitors of islet amyloidosis, and the mode of action of existing inhibitors is not well-understood. Resveratrol, a natural polyphenol, has been reported to inhibit amyloid formation by IAPP and by the Alzheimer's disease Aβ peptide. The mechanism of action of this compound is not known, nor is its mode of interaction with IAPP. In this study, we use a series of IAPP variants to examine possible interactions between resveratrol and IAPP. Fluorescence assays, transmission electron microscopy, and mass spectrometry demonstrate that resveratrol is much less effective as an inhibitor of IAPP amyloid formation than the polyphenol (-)-epigallocatechin 3-gallate (EGCG) and, unlike EGCG, does not significantly disaggregate preformed IAPP amyloid fibrils. Resveratrol is also shown to interfere with thioflavin-T assays. His-18 mutants, a truncation mutant, mutants of each of the aromatic residues, and mutants of Arg-11 of IAPP were examined. Mutation of His to Gln or Leu weakens the ability of resveratrol to inhibit amyloid formation by IAPP, as do mutations of Arg-11, Phe-15, or Tyr-37 to Leu, and truncation to form the variant Ac 8-37-IAPP, which removes the first seven residues to eliminate Lys-1 and the N-terminal amino group. In contrast, replacement of Phe-23 with Leu has a smaller effect. The data highlight Phe-15, His-18, and Tyr-37 as being important for IAPP-resveratrol interactions and are consistent with a potential role of the N-terminus and Arg-11 in polypeptide-resveratrol interactions.

  9. Knockdown of KPNA2 inhibits autophagy in oral squamous cell carcinoma cell lines by blocking p53 nuclear translocation.

    PubMed

    Lin, Feng; Gao, Li; Su, Zhenyu; Cao, Xiaofang; Zhan, Yuanbo; Li, Ying; Zhang, Bin

    2018-07-01

    Oral squamous cell carcinoma (OSCC), one of the 10 most common types of neoplasms in the US, constitutes ~90% of all cases of oral malignancies. Chemoresistance and metastasis are difficult to avoid during the course of treatment, leading to a poor prognosis and a high mortality rate for patients with OSCC. Autophagy, a critical conserved cellular process, has been reported to be highly associated with the regulation of chemoresistance and metastasis of cancer cells. The present study investigated the role of karyopherin α2 (KPNA2), a member of the importin α family, which may serve an important role in p53 nucleocytoplasmic transport in the process of OSCC autophagy. In the CAL‑27, SCC‑15 and Tca8113 OSCC cell lines, we observed that the downregulation of KPNA2 suppressed cell migration and cisplatin resistance, using wound‑healing, Transwell and CCK‑8 assays. Additionally, the results of western blot analysis and transmission electron microscopy (TEM) analysis indicated that the knockdown of KPNA2 inhibited autophagy. We confirmed that the inhibition of autophagy with anti‑autophagy agents decreased the migration and cisplatin resistance of OSCC cells. We hypothesized that the suppression of cell migration and cisplatin resistance induced by KPNA2 knockdown may be associated with the inhibition of autophagy. To identify the underlying mechanism, further experiments determined that KPNA2 affects the level of autophagy via regulating the p53 nuclear import. Thus, the present study demonstrated that the function of KPNA2 in the process of autophagy may be p53‑dependent, and by regulating the translocation of p53, KPNA2 can support autophagy to promote the chemoresistance and metastasis of OSCC cells.

  10. Biological findings from the PheWAS catalog: focus on connective tissue-related disorders (pelvic floor dysfunction, abdominal hernia, varicose veins and hemorrhoids).

    PubMed

    Salnikova, Lyubov E; Khadzhieva, Maryam B; Kolobkov, Dmitry S

    2016-07-01

    Pelvic floor dysfunction, specifically genital prolapse (GP) and stress urinary inconsistency (SUI) presumably co-occur with other connective tissue disorders such as hernia, hemorrhoids, and varicose veins. Observations on non-random coexistence of these disorders have never been summarized in a meta-analysis. The performed meta-analysis demonstrated that varicose veins and hernia are associated with GP. Disease connections on the molecular level may be partially based on shared genetic susceptibility. A unique opportunity to estimate shared genetic susceptibility to disorders is provided by a PheWAS (phenome-wide association study) designed to utilize GWAS data concurrently to many phenotypes. We searched the PheWAS Catalog, which includes the results of the PheWAS study with P value < 0.05, for genes associated with GP, SUI, abdominal hernia, varicose veins and hemorrhoids. We found pronounced signals for the associations of the SLC2A9 gene with SUI (P = 6.0e-05) and the MYH9 gene with varicose veins of lower extremity (P = 0.0001) and hemorrhoids (P = 0.0007). The comparison of the PheWAS Catalog and the NHGRI Catalog data revealed enrichment of genes associated with bone mineral density in GP and with activated partial thromboplastin time in varicose veins of lower extremity. In cross-phenotype associations, genes responsible for peripheral nerve functions seem to predominate. This study not only established novel biologically plausible associations that may warrant further studies but also exemplified an effective use of the PheWAS Catalog data.

  11. Formation of vesicles through solvent assisted self-assembly of hydrophobic pentapeptides: encapsulation and pH responsive release of dyes by the vesicles.

    PubMed

    Kar, Sudeshna; Drew, Michael G B; Pramanik, Animesh

    2011-09-01

    In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe (I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: α-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while β-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated β-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.

  12. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    PubMed

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  13. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia.

    PubMed

    Ngo, The D; Krishnan, Mahima; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Chloris virgata is a warm-season, C 4 , annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the rate of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. This report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield.more » This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.« less

  15. Translocation of calcium-permeable TRPV2 channel to the podosome: Its role in the regulation of podosome assembly.

    PubMed

    Nagasawa, Masahiro; Kojima, Itaru

    2012-02-01

    The present study was conducted to investigate localization and function of TRPV2 channel in a mouse macrophage cell line, TtT/M87. We infected an adenovirus vector encoding TRPV2 tagged with c-Myc in the extracellular domain. Immunoreactivity of c-Myc epitope exposed to the cell surface formed a ring structure, which was colocalized with markers of the podosome, namely β-integrin, paxillin and Pyk2. The ring structure was also observed in TRPV2-GFP-expressing cells using total internal reflection fluorescent microscopy. Addition of formyl-Met-Leu-Phe (fMLP) increased the number of podosome and increased the intensity of the TRPV2 signal associated with the podosome. Measurement of subplasmalenmal free calcium concentration ([Ca(2+)](pm)) revealed that [Ca(2+)](pm) was elevated around the podosome. fMLP further increased [Ca(2+)](pm) in this region, which was abolished by a TRPV2 inhibitor ruthenium red. Phosphorylated Pyk2 was detected in fMLP-treated cells, and knockdown of TRPV2 reduced the expression of phospho-Pyk2. Introduction of dominant-negative Pyk2 or knockdown of TRPV2 increased the number of podosome. Conversely, elevation of [Ca(2+)](pm) by the addition of ionomycin reduced the number of podosome. These results indicate that TRPV2 is localized abundantly in the podosome and increases [Ca(2+)](pm) by the podosome. The elevation of [Ca(2+)](pm) is critical to regulate assembly of the podosome. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The millimagnitude variability of the HgMn star φ Phe

    NASA Astrophysics Data System (ADS)

    Prvák, M.; Krtička, J.; Korhonen, H.

    2018-01-01

    The horizontally inhomogeneous chemical composition of the atmospheres of the chemically peculiar stars causes wavelength redistribution of the spectral energy in areas with increased abundance of heavier elements. Due to the rotation of the star, this usually leads to strictly periodic photometric variability in some spectral regions. We used abundance maps of the HgMn star φ Phe (HD 11753), obtained by means of the Doppler imaging, to model its photometric variability. Comparing the light curves derived from abundance maps obtained at different times, we also study how the time evolution of the surface spots affects this variability.

  17. Characterisation of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management.

    PubMed

    Scarabel, Laura; Locascio, Antonella; Furini, Antonella; Sattin, Maurizio; Varotto, Serena

    2010-03-01

    The polyploid weed Schoenoplectus mucronatus (L.) Palla has evolved target-site resistance to ALS-inhibiting herbicides in Italian rice crops. Molecular and genetic characterisation of the resistance mechanism is relevant to the evolution and management of herbicide resistance. The authors aimed (a) to study the organisation of the target-site loci in two field-selected S. mucronatus populations with different cross-resistance patterns, (b) to identify the mutations endowing resistance to ALS inhibitors and determine the role of these mutations by using transgenesis and (c) to analyse the implications for the management of the S. mucronatus populations. Two complete ALS genes (ALS1 and ALS2) having an intron and a third partial intronless ALS gene (ALS3) were identified. The presence of multiple ALS genes was confirmed by Southern blot analyses, and ALS loci were characterised by examining cytosine methylation. In S. mucronatus leaves, the transcripts of ALS1, ALS2 and ALS3 were detected. Two mutations endowing resistance (Pro(197) to His and Trp(574) to Leu) were found in both resistant populations, but at different frequencies. Tobacco plants transformed with the two resistant alleles indicated that the Pro(197)-to-His substitution conferred resistance to SU and TP herbicides, while the allele with the Trp(574)-to-Leu substitution conferred cross-resistance to SU, TP, IMI and PTB herbicides. Schoenoplectus mucronatus has multiple ALS genes characterised by methylated sites that can influence the expression profile. The two mutated alleles proved to be responsible for ALS resistance. At population level, the resistance pattern depends on the frequency of various resistant genotypes, and this influences the efficacy of various ALS-inhibiting herbicides.

  18. [Knockdown of DNA-PKcs inhibits cell cycle and its mechanism of drug-resistant Bel7402/5-Fu hepatocellular carcinoma cells].

    PubMed

    Li, Dayu; Liu, Yun; Yu, Chunbo; Liu, Xiping; Fan, Fang

    2017-12-01

    Objective To study the effect of the knock-down of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on the cell cycle of the multidrug-resistant (MDR) Bel7402/5-Fu hepatocellular carcinoma cells and its MDR mechanism. Methods After cationic liposome-mediated siDNA-PKcs oligonucleotide transfection, the drug sensitivity of Bel7402/5-Fu cells to 5-fluorouracil (5-Fu) and adriamycin (ADM) was determined by MTT assay; the cell cycle were detected by flow cytometry; meanwhile, the protein expressions of cell cycle-related proteins P21, cell cycle protein B1 (cyclin B1), cell cycle division protein 2 (CDC2) were tested by Western blotting; the expressions of ataxia telangiectasia mutated (ATM) and p53 at both mRNA and protein levels were detected by real-time PCR and Western blot analysis. Results The MTT results showed siDNA-PKcs increased the chemotherapeutic sensitivity of Bel7402/5-Fu cells to 5-Fu and ADM. The flow cytometric analysis showed siDNA-PKcs decreased the percentage of S-phase cells but increased the percentage of G2/M phase cells. Western blotting showed siDNA-PKcs increased the protein expression of P21 but decreased cyclinB1 and CDC2 proteins. In addition, siDNA-PKcs also increased the expressions of ATM and p53. Conclusion DNA-PKcs silencing increases P21 while decreases cyclin B1 and CDC2 expressions, and finally induces G2/M phase arrest in Bel7402/5-Fu cells, which may be related to ATM-p53 signaling pathway.

  19. Pyrethroid insecticides maintain repellent effect on knock-down resistant populations of Aedes aegypti mosquitoes.

    PubMed

    Bowman, Natalie M; Akialis, Kristin; Cave, Grayson; Barrera, Roberto; Apperson, Charles S; Meshnick, Steven R

    2018-01-01

    Pyrethroid-treated clothing is commonly worn for protection against mosquitoes; pyrethroids are both insecticides and repellents. Pyrethroid resistance has become increasingly common in Aedes aegypti, the vector of dengue, Zika, and other arboviruses, but it is not clear whether resistance is associated with reductions in repellency. In order to determine whether long-lasting permethrin impregnated (LLPI) clothing is protective, we used Aedes aegypti from New Orleans, LA (pyrethroid-sensitive) and San Juan, PR (resistant) to measure both lethality and repellency. PCR and Sanger sequencing were used to confirm resistance status by detecting mutations in the kdr gene at positions 1016 and 1534. Arm-in-cage trials of 100 Aedes aegypti females from both populations were performed for 10 minutes to bare arm or an arm clothed in untreated military camouflage or military camouflage impregnated with deltamethrin, permethrin, or etofenprox. Trials were repeated 4-5 times on different days. Number of landings, number of blood meals, and immediate and 24-hour mortality were recorded. Mortality was extremely low in all trials. Compared to untreated cloth, mosquitoes demonstrated a trend towards a 2%-63% reduction in landings and a statistically significant 78-100% reduction in blood feeding on pyrethroid-treated cloth for most insecticides. Effects were observed in both pyrethroid-sensitive and pyrethroid-resistant mosquito populations. Our data show that kdr mutations are associated with pyrethroid resistance but are likely not the only contributors. Pyrethroids appear to maintain repellent effect against resistant mosquitoes. This finding suggests that even in places where pyrethroid resistance is widespread, permethrin still has a role for use as a repellent on clothing to protect against mosquito bites.

  20. Knockdown of Akt1 promotes Akt2 upregulation and resistance to oxidative-stress-induced apoptosis through control of multiple signaling pathways.

    PubMed

    Zhang, Lan; Sun, Shuming; Zhou, Jie; Liu, Jiao; Lv, Jia-Han; Yu, Xiang-Qiang; Li, Chi; Gong, Lili; Yan, Qin; Deng, Mi; Xiao, Ling; Ma, Haili; Liu, Jin-Ping; Peng, Yun-Lei; Wang, Dao; Liao, Gao-Peng; Zou, Li-Jun; Liu, Wen-Bin; Xiao, Ya-Mei; Li, David Wan-Cheng

    2011-07-01

    The Akt signaling pathway plays a key role in promoting the survival of various types of cells from stress-induced apoptosis, and different members of the Akt family display distinct physiological roles. Previous studies have shown that in response to UV irradiation, Akt2 is sensitized to counteract the induced apoptosis. However, in response to oxidative stress such as hydrogen peroxide, it remains to be elucidated what member of the Akt family would be activated to initiate the signaling cascades leading to resistance of the induced apoptosis. In the present study, we present the first evidence that knockdown of Akt1 enhances cell survival under exposure to 50 μM H(2)O(2). This survival is derived from selective upregulation and activation of Akt2 but not Akt3, which initiates 3 major signaling cascades. First, murine double minute 2 (MDM2) is hyperphosphorylated, which promotes p53 degradation and attenuates its Ser-15 phosphorylation, significantly attenuating Bcl-2 homologous antagonist killer (Bak) upregulation. Second, Akt2 activation inactivates glycogen synthase kinase 3 beta (GSK-3β) to promote stability of myeloid leukemia cell differentiation protein 1 (MCL-1). Finally, Akt2 activation promotes phosphorylation of FOXO3A toward cytosolic export and thus downregulates Bim expression. Overexpression of Bim enhances H(2)O(2)-induced apoptosis. Together, our results demonstrate that among the Akt family members, Akt2 is an essential kinase in counteracting oxidative-stress-induced apoptosis through multiple signaling pathways.

  1. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    PubMed

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  2. The Dual Regulatory Role of Amino Acids Leu480 and Gln481 of Prothrombin*

    PubMed Central

    Wiencek, Joesph R.; Hirbawi, Jamila; Yee, Vivien C.; Kalafatis, Michael

    2016-01-01

    Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473–487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser478–Val479–Leu480–Gln481–Val482. Single, double, and triple point mutations within this stretch of rFII allowed for the identification of Leu480 and Gln481 as the two essential amino acids responsible for the enhanced activation of FII by prothrombinase. Unanticipated results demonstrated that although recombinant wild type α-thrombin and rIIaS478A were able to induce clotting and activate factor V and factor VIII with rates similar to the plasma-derived molecule, rIIaSLQ→AAA with mutations S478A/L480A/Q481A was deficient in clotting activity and unable to efficiently activate the pro-cofactors. This molecule was also impaired in protein C activation. Similar results were obtained with rIIaΔSLQ (where rIIaΔSLQ is recombinant human α-thrombin with amino acids Ser478/Leu480/Gln481 deleted). These data provide new evidence demonstrating that amino acid sequence Leu480–Gln481: 1) is crucial for proper recognition of the fVa-dependent site(s) for fXa within prothrombinase on FII, required for efficient initial cleavage of FII at Arg320; and 2) is compulsory for appropriate tethering of fV, fVIII, and protein C required for their timely activation by IIa. PMID:26601957

  3. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.

    PubMed

    Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen

    2012-01-01

    A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. Sequence-specific, nanomolar peptide binding via cucurbit[8]uril-induced folding and inclusion of neighboring side chains.

    PubMed

    Smith, Lauren C; Leach, David G; Blaylock, Brittney E; Ali, Omar A; Urbach, Adam R

    2015-03-18

    This paper describes the molecular recognition of the tripeptide Tyr-Leu-Ala by the synthetic receptor cucurbit[8]uril (Q8) in aqueous buffer with nanomolar affinity and exceptional specificity. This combination of characteristics, which also applies to antibodies, is desirable for applications in biochemistry and biotechnology but has eluded supramolecular chemists for decades. Building on prior knowledge that Q8 binds to peptides with N-terminal aromatic residues, a library screen of 105 peptides was designed to test the effects of residues adjacent to N-terminal Trp, Phe, or Tyr. The screen used tetramethylbenzobis(imidazolium) (MBBI) as a fluorescent indicator and resulted in the unexpected discovery that MBBI can serve not only as a turn-off sensor via the simultaneous inclusion of a Trp residue but also as a turn-on sensor via the competitive displacement of MBBI upon binding of Phe- or Tyr-terminated peptides. The unusual fluorescence response of the Tyr series prompted further investigation by (1)H NMR spectroscopy, electrospray ionization mass spectrometry, and isothermal titration calorimetry. From these studies, a novel binding motif was discovered in which only 1 equiv of peptide binds to Q8, and the side chains of both the N-terminal Tyr residue and its immediate neighbor bind within the Q8 cavity. For the peptide Tyr-Leu-Ala, the equilibrium dissociation constant value is 7.2 nM, whereas that of its sequence isomer Tyr-Ala-Leu is 34 μM. The high stability, recyclability, and low cost of Q8 combined with the straightforward incorporation of Tyr-Leu-Ala into recombinant proteins should make this system attractive for the development of biological applications.

  5. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Ira N.; Adelfang, Pablo; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Viennamore » and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)« less

  6. Propellant Handler's Ensemble (PHE) Aka Self-Contained Atmospheric Protective Ensemble (SCAPE), Ventilator Improvement Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The overall objective for this project is to evaluate two candidate alternatives for the existing Propellant Handler's Ensemble (PHE) escape ventilator. The new candidate ventilators use newer technology with similar quantities of air at approximately half the weight of the current ventilator. Ventilators are typically used to ingress/egress a hazardous work area when hard line air is provided at the work area but the hose is not long enough to get the operator to and from the staging area to the work area. The intent of this test is to verify that the new ventilators perform as well as or better than the current ventilators in maintaining proper oxygen (O2) and carbon dioxide (CO2) levels in the PHE during a typical use for the rated time period (10 minutes). We will evaluate two new units comparing them to the existing unit. Subjects will wear the Category I version of the Propellant Handler's Ensemble with the rear suit pouch snapped.

  7. Control of Ion Selectivity in LeuT: Two Na+ Binding Sites with two different mechanisms

    PubMed Central

    Noskov, Sergei Y.; Roux, Benoît

    2016-01-01

    The x-ray structure of LeuT, a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporter, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion-binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In site NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In site NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the poly-peptide chain surrounding the ion according to a snug-fit mechanism. PMID:18280500

  8. Fatty acids increase neuronal hypertrophy of Pten knockdown neurons

    PubMed Central

    Fricano, Catherine J.; DeSpenza, Tyrone; Frazel, Paul W.; Li, Meijie; O'Malley, A. James; Westbrook, Gary L.; Luikart, Bryan W.

    2014-01-01

    Phosphatase and tensin homolog (Pten) catalyzes the reverse reaction of PI3K by dephosphorylating PIP3 to PIP2. This negatively regulates downstream Akt/mTOR/S6 signaling resulting in decreased cellular growth and proliferation. Co-injection of a lentivirus knocking Pten down with a control lentivirus allows us to compare the effects of Pten knockdown between individual neurons within the same animal. We find that knockdown of Pten results in neuronal hypertrophy by 21 days post-injection. This neuronal hypertrophy is correlated with increased p-S6 and p-mTOR in individual neurons. We used this system to test whether an environmental factor that has been implicated in cellular hypertrophy could influence the severity of the Pten knockdown-induced hypertrophy. Implantation of mini-osmotic pumps delivering fatty acids results in increased neuronal hypertrophy and p-S6/p-mTOR staining. These hypertrophic effects were reversed in response to rapamycin treatment. However, we did not observe a similar increase in hypertrophy in response to dietary manipulations of fatty acids. Thus, we conclude that by driving growth signaling with fatty acids and knocking down a critical regulator of growth, Pten, we are able to observe an additive morphological phenotype of increased soma size mediated by the mTOR pathway. PMID:24795563

  9. The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism.

    PubMed

    Adachi, Kazuhiko; Ding, Min; Surrey, Saul; Rotter, Maria; Aprelev, Alexey; Zakharov, Mikhail; Weng, Weijun; Ferrone, Frank A

    2006-09-22

    Polymerization of a 1:1 mixture of hemoglobin S (Hb S) and the artificial mutant HbAbeta73Leu produces a dramatic morphological change in the polymer domains in 1.0 M phosphate buffer that are a characteristic feature of polymer formation. Instead of feathery domains with quasi 2-fold symmetry that characterize polymerization of Hb S and all previously known mixtures such as Hb A/S and Hb F/S mixtures, these domains are compact structures of quasi-spherical symmetry. Solubility of Hb S/Abeta73Leu mixtures was similar to that of Hb S/F mixtures. Kinetics of polymerization indicated that homogeneous nucleation rates of Hb S/Abeta73Leu mixtures were the same as those of Hb S/F mixtures, while exponential polymer growth (B) of Hb S/Abeta73Leu mixtures were about three times slower than those of Hb S/F mixtures. Differential interference contrast (DIC) image analysis also showed that fibers in the mixture appear to elongate between three and five times more slowly than in equivalent Hb S/F mixtures by direct measurements of exponential growth of mass of polymer in a domain. We propose that these results of Hb S/Abeta73Leu mixtures arise from a non-productive binding of the hybrid species of this mixture to the end of the growing polymer. This "cap" prohibits growth of polymers, but by nature is temporary, so that the net effect is a lowered growth rate of polymers. Such a cap is consistent with known features of the structure of the Hb S polymer. Domains would be more spherulitic because slower growth provides more opportunity for fiber bending to spread domains from their initial 2-fold symmetry. Moreover, since monomer depletion proceeds more slowly in this mixture, more homogeneous nucleation events occur, and the resulting gel has a far more granular character than normally seen in mixtures of non-polymerizing hemoglobins with Hb S. This mixture is likely to be less stiff than polymerized mixtures of other hybrids such as Hb S with HbF, potentially providing a novel

  10. Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice

    PubMed Central

    De Souza, Angus T.; Dai, Xudong; Spencer, Andrew G.; Reppen, Tom; Menzie, Ann; Roesch, Paula L.; He, Yudong; Caguyong, Michelle J.; Bloomer, Sherri; Herweijer, Hans; Wolff, Jon A.; Hagstrom, James E.; Lewis, David L.; Linsley, Peter S.; Ulrich, Roger G.

    2006-01-01

    RNA interference (RNAi) has great potential as a tool for studying gene function in mammals. However, the specificity and magnitude of the in vivo response to RNAi remains to be fully characterized. A molecular and phenotypic comparison of a genetic knockout mouse and the corresponding knockdown version would help clarify the utility of the RNAi approach. Here, we used hydrodynamic delivery of small interfering RNA (siRNA) to knockdown peroxisome proliferator activated receptor alpha (Ppara), a gene that is central to the regulation of fatty acid metabolism. We found that Ppara knockdown in the liver results in a transcript profile and metabolic phenotype that is comparable to those of Ppara−/− mice. Combining the profiles from mice treated with the PPARα agonist fenofibrate, we confirmed the specificity of the RNAi response and identified candidate genes proximal to PPARα regulation. Ppara knockdown animals developed hypoglycemia and hypertriglyceridemia, phenotypes observed in Ppara−/− mice. In contrast to Ppara−/− mice, fasting was not required to uncover these phenotypes. Together, these data validate the utility of the RNAi approach and suggest that siRNA can be used as a complement to classical knockout technology in gene function studies. PMID:16945951

  11. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    PubMed

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the

  12. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Sujun; Southern Medical University, Guangzhou, Guangdong 510515; Wu, Binwen, E-mail: wubinwengd@aliyun.com

    2014-02-14

    Highlights: • AEG-1 expression in CRC cell lines and down-regulation or upregulation of AEG-1 in vitro. • Knockdown of AEG-1 inhibits cell proliferation, colony formation and invasion. • Upregulation of AEG-1 enhances proliferation, invasion and colony formation. • Knockdown of AEG-1 accumulates G0/G1-phase cells and promotes apoptosis in CRC cells. • AEG-1 knockdown increases 5-FU cytotoxicity. - Abstract: Astrocyte elevated gene-1 (AEG-1), upregulated in various types of malignancies including colorectal cancer (CRC), has been reported to be associated with the carcinogenesis. MicroRNAs (miRNAs) are widely involved in the initiation and progression of cancer. However, the functional significance of AEG-1 andmore » the relationship between AEG-1 and microRNAs in human CRC remains unclear. The aim of this study was to investigate whether AEG-1 could serve as a potential therapeutic target of human CRC and its possible mechanism. We adopted a strategy of ectopic overexpression or RNA interference to upregulate or downregulate expression of AEG-1 in CRC models. Their phenotypic changes were analyzed by Western blot, MTT and transwell matrix penetration assays. MicroRNAs expression profiles were performed using microarray analysis followed by validation using qRT-PCR. Knockdown of AEG-1 could significantly inhibit colon cancer cell proliferation, colony formation, invasion and promotes apoptosis. Conversely, upregulation of AEG-1 could significantly enhance cell proliferation, invasion and reduced apoptisis. AEG-1 directly contributes to resistance to chemotherapeutic drug. Targeted downregulation of AEG-1 might improve the expression of miR-181a-2{sup ∗}, -193b and -193a, and inversely inhibit miR-31 and -9{sup ∗}. Targeted inhibition of AEG-1 can lead to modification of key elemental characteristics, such as miRNAs, which may become a potential effective therapeutic strategy for CRC.« less

  13. The Leu72Met polymorphism of the ghrelin gene is significantly associated with binge eating disorder.

    PubMed

    Monteleone, Palmiero; Tortorella, Alfonso; Castaldo, Eloisa; Di Filippo, Carmela; Maj, Mario

    2007-02-01

    The pathophysiological mechanisms underlying binge eating disorder are poorly understood. Evidence exists for the fact that abnormalities in peptides involved in the regulation of appetite, including ghrelin, may play a role in binge eating behavior. Genes involved in the ghrelin physiology may therefore contribute to the biological vulnerability to binge eating disorder. We examined whether two polymorphisms of the ghrelin gene, the G152A (Arg51Gln) and C214A (Leu72Met), were associated with binge eating disorder. Ninety obese or nonobese women with binge eating disorder and 119 normal weight women were genotyped at the ghrelin gene. Statistical analyses showed that the Leu72Met ghrelin gene variant was significantly more frequent in binge eating disorder patients (chi2=5.940; d.f.=1, P=0.01) and was associated with a moderate, but significant risk to develop binge eating disorder (odds ratio=2.725, 95% confidence interval: 1.168-6.350). Although these data should be regarded as preliminary because of the small sample size, they suggest that the Leu72Met ghrelin gene variant may contribute to the genetic susceptibility to binge eating disorder.

  14. Association between the ghrelin Leu72Met polymorphism and type 2 diabetes risk: a meta-analysis.

    PubMed

    Liao, Ning; Xie, Zi-Kang; Huang, Jian; Xie, Zheng-Fu

    2013-04-01

    Data on the association between the ghrelin Leu72Met polymorphism and type 2 diabetes are conflicting. A meta-analysis was performed on this topic. We searched for case-control studies using electronic databases (Medline and PubMed) and reference lists of studies. Odds ratios (OR) and 95% confidence intervals (CI) assuming dominant, recessive and homozygote comparison genetic models were calculated. Six case-control studies involving a total of 3417 cases and 3081 controls were included in this meta-analysis. No association was found between the ghrelin Leu72Met polymorphism and type 2 diabetes risk in the overall population in dominant, recessive and homozygote comparison models. However, in subgroup analyses stratified by ethnicity, we found that the risk for type 2 diabetes was decreased in subjects with Met72+ genotypes in Caucasians (OR=0.79, 95% CI: 0.64-0.98, P(z)=0.030). The ghrelin Leu72Met polymorphism was protective against type 2 diabetes in Caucasians. Future studies performed in larger sample size are needed to allow a more definitive conclusion. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae)

    PubMed Central

    Lilly, David G.; Latham, Sharissa L.; Webb, Cameron E.; Doggett, Stephen L.

    2016-01-01

    Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest’s resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects. PMID:27073871

  16. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae).

    PubMed

    Lilly, David G; Latham, Sharissa L; Webb, Cameron E; Doggett, Stephen L

    2016-01-01

    Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest's resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects.

  17. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    PubMed Central

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  18. FOXO4-Knockdown Suppresses Oxidative Stress-Induced Apoptosis of Early Pro-Angiogenic Cells and Augments Their Neovascularization Capacities in Ischemic Limbs

    PubMed Central

    Nakayoshi, Takaharu; Sasaki, Ken-ichiro; Kajimoto, Hidemi; Koiwaya, Hiroshi; Ohtsuka, Masanori; Ueno, Takafumi; Chibana, Hidetoshi; Itaya, Naoki; Sasaki, Masahiro; Yokoyama, Shinji; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2014-01-01

    The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stress. Accordingly, we assessed whether FOXO4-knockdown EPCs (FOXO4KD-EPCs) could suppress the oxidative stress-induced apoptosis and augment the neovascularization capacity in ischemic limbs. We transfected small interfering RNA targeted against FOXO4 of human EPCs to generate FOXO4KD-EPCs and confirmed a successful knockdown. FOXO4KD-EPCs gained resistance to apoptosis in response to hydrogen peroxide in vitro. Oxidative stress stained by dihydroethidium was stronger for the immunodeficient rat ischemic limb tissue than for the rat non-ischemic one. Although the number of apoptotic EPCs injected into the rat ischemic limb was greater than that of apoptotic EPCs injected into the rat non-ischemic limb, FOXO4KD-EPCs injected into the rat ischemic limb brought less apoptosis and more neovascularization than EPCs. Taken together, the use of FOXO4KD-EPCs with resistance to oxidative stress-induced apoptosis may be a new strategy to augment the effects of therapeutic angiogenesis by intramuscular injection of EPCs. PMID:24663349

  19. Insulin-Like Growth Factor 2 Silencing Restores Taxol Sensitivity in Drug Resistant Ovarian Cancer

    PubMed Central

    Brouwer-Visser, Jurriaan; Lee, Jiyeon; McCullagh, KellyAnne; Cossio, Maria J.; Wang, Yanhua; Huang, Gloria S.

    2014-01-01

    Drug resistance is an obstacle to the effective treatment of ovarian cancer. We and others have shown that the insulin-like growth factor (IGF) signaling pathway is a novel potential target to overcome drug resistance. The purpose of this study was to validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and to determine the efficacy of targeting IGF2 in vivo. An analysis of The Cancer Genome Atlas (TCGA) data in the serous ovarian cancer cohort showed that high IGF2 mRNA expression is significantly associated with shortened interval to disease progression and death, clinical indicators of drug resistance. In a genetically diverse panel of ovarian cancer cell lines, the IGF2 mRNA levels measured in cell lines resistant to various microtubule-stabilizing agents including Taxol were found to be significantly elevated compared to the drug sensitive cell lines. The effect of IGF2 knockdown on Taxol resistance was investigated in vitro and in vivo. Transient IGF2 knockdown significantly sensitized drug resistant cells to Taxol treatment. A Taxol-resistant ovarian cancer xenograft model, developed from HEY-T30 cells, exhibited extreme drug resistance, wherein the maximal tolerated dose of Taxol did not delay tumor growth in mice. Blocking the IGF1R (a transmembrane receptor that transmits signals from IGF1 and IGF2) using a monoclonal antibody did not alter the response to Taxol. However, stable IGF2 knockdown using short-hairpin RNA in HEY-T30 effectively restored Taxol sensitivity. These findings validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and show that directly targeting IGF2 may be a preferable strategy compared with targeting IGF1R alone. PMID:24932685

  20. Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy.

    PubMed

    Simmons, Aaron B; Bretz, Colin A; Wang, Haibo; Kunz, Eric; Hajj, Kassem; Kennedy, Carson; Yang, Zhihong; Suwanmanee, Thipparat; Kafri, Tal; Hartnett, M Elizabeth

    2018-05-05

    Inhibition of vascular endothelial growth factor (VEGF) in retinopathy of prematurity (ROP) raises concerns for premature infants because VEGF is essential for retinovascular development as well as neuronal and glial health. This study tested the hypothesis that endothelial cell-specific knockdown of VEGF receptor 2 (VEGFR2), or downstream STAT3, would inhibit VEGF-induced retinopathy without delaying physiologic retinal vascular development. We developed an endothelial cell-specific lentiviral vector that delivered shRNAs to VEGFR2 or STAT3 and a green fluorescent protein reporter under control of the VE-cadherin promoter. The specificity and efficacy of the lentiviral vector-driven shRNAs were validated in vitro and in vivo. In the rat oxygen-induced retinopathy model highly representative of human ROP, the effects of endothelial cell knockdown of VEGFR2 or STAT3 were determined on intravitreal neovascularization (IVNV), physiologic retinal vascular development [assessed as area of peripheral avascular/total retina (AVA)], retinal structure, and retinal function. Targeted knockdown of VEGFR2 or STAT3 specifically in retinal endothelial cells by subretinal injection of lentiviral vectors into postnatal day 8 rat pup eyes efficiently inhibited IVNV, and knockdown of VEGFR2 also reduced AVA and increased retinal thickness without altering retinal function. Taken together, our results support specific knockdown of VEGFR2 in retinal endothelial cells as a novel therapeutic method to treat retinopathy.

  1. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    PubMed

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  2. Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in Adipocytes

    PubMed Central

    Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  3. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    PubMed

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  4. Purification and characterization of galanin and scyliorhinin I from the hybrid sturgeon, Scaphirhynchus platorynchus x Scaphirhynchus albus (Acipenseriformes).

    PubMed

    Wang, Y; Barton, B A; Thim, L; Nielsen, P F; Conlon, J M

    1999-01-01

    The sturgeons (order Acipenseriformes) are extant representatives of a group of ancient Actinopterygian (ray-finned) fish. Galanin and scyliorhinin I (a tachykinin with limited structural similarity to mammalian substance P) have been isolated from an extract of the gastrointestinal tract of a sturgeon (an F1 hybrid between the shovelnose sturgeon, Scaphirhynchus platorynchus, and the pallid sturgeon, Scaphirhynchus albus). The primary structure of sturgeon galanin (Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu10-Leu-Gly-Pro-His-Ala-Val -As p-Gly-His-Arg20-Ser-Leu-Ser-Asp-Lys-His-Gly-Leu-Pro.NH2) contains only two amino acid substitutions (Ser23 --> Asn and Pro29 --> Ala) compared with galanin from the bowfin, Amia calva (Amiiformes), but five amino acid substitutions compared with galanin from the trout (Teleostei). Similarly, the sturgeon tachykinin (Ser-Lys-Tyr-His-Gln-Phe-Tyr-Gly-Leu-Met.NH2) contains only one amino acid substitution (Tyr3 --> Ser) compared with scyliorhinin I previously isolated from bowfin stomach but five amino acid substitutions compared with trout substance P. The data support the hypothesis that the Acipenseriformes and the basal Neopterygians (gars and bowfin) share a close phylogenetic relationship. Copyright 1999 Academic Press.

  5. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOEpatents

    Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  6. Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Zhen, J; Karpowich, N

    2009-01-01

    Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP)more » in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.« less

  7. The novel endomorphin degradation blockers Tyr-Pro-DClPhe-Phe-NH (EMDB-1) and Tyr-Pro-Ala-NH (EMDB-2) prolong endomorphin-2 action in rat ileum in vitro.

    PubMed

    Fichna, Jakub; Perlikowska, Renata; Gach, Katarzyna; do-Rego, Jean-Claude; Cravezic, Aurore; Janecka, Anna; Storr, Martin A

    2010-07-01

    The endogenous opioid system is involved in the control of gastrointestinal (GI) motility. The potential use of endogenous MOR ligands, endomorphins (EMs), as therapeutics is limited because of their rapid enzymatic degradation and short duration of action. Targeting enzymatic degradation is an approach to prolong EM activity. In the present study, we characterized the effects of novel blockers of EM degradation in GI tissue preparation in vitro. The effects of actinonin, diprotin A (DIP) and the novel peptide EM degradation blockers Tyr-Pro-DClPhe-Phe-NH(2) (EMDB-1), Tyr-Pro-Ala-NH(2) (EMDB-2) and Tyr-Pro-Ala-OH (EMDB-3) on EM-2-mediated inhibition of electrically induced cholinergic twitch contractions were compared in rat ileum in vitro using an organ bath. EMDB-1 and EMDB-2 significantly prolonged the inhibitory effect of EM-2 on smooth muscle contractility in rat ileum. EMDB-2 extended the EM-2 action for up to 60 min compared to 10 min in controls and was more potent than the conventional peptidase inhibitor DIP. EMDB-1 and EMDB-2 are potent EM degradation blockers, which prolong the inhibitory effects of EM-2 on smooth muscle contractility in rat ileum. These novel compounds may be of future use when targeting the endogenous opioid system in the treatment of GI motility disorders such as diarrhea.

  8. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer

    PubMed Central

    Matsushima, Hiroshi; Mori, Taisuke; Ito, Fumitake; Yamamoto, Takuro; Akiyama, Makoto; Kokabu, Tetsuya; Yoriki, Kaori; Umemura, Shiori; Akashi, Kyoko; Kitawaki, Jo

    2016-01-01

    Estrogen-related receptor (ERR)α presents structural similarities with estrogen receptor (ER)α. However, it is an orphan receptor not binding to naturally occurring estrogens. This study was designed to investigate the role of ERRα in endometrial cancer progression. Immunohistochemistry analysis on 50 specimens from patients with endometrial cancer showed that ERRα was expressed in all examined tissues and the elevated expression levels of ERRα were associated with advanced clinical stages and serous histological type (p < 0.01 for each). ERRα knockdown with siRNA suppressed angiogenesis via VEGF and cell proliferation in vitro (p < 0.01). Cell cycle and apoptosis assays using flow cytometry and western blot revealed that ERRα knockdown induced cell cycle arrest during the mitotic phase followed by apoptosis initiated by caspase-3. Additionally, ERRα knockdown sensitized cells to paclitaxel. A significant reduction of tumor growth and angiogenesis was also observed in ERRα knockdown xenografts (p < 0.01). These findings indicate that ERRα may serve as a novel molecular target for the treatment of endometrial cancer. PMID:27153547

  9. Association of the Leu72Met polymorphism of the ghrelin gene with the risk of Type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study.

    PubMed

    Mager, U; Lindi, V; Lindström, J; Eriksson, J G; Valle, T T; Hämäläinen, H; Ilanne-Parikka, P; Keinänen-Kiukaanniemi, S; Tuomilehto, J; Laakso, M; Pulkkinen, L; Uusitupa, M

    2006-06-01

    Ghrelin is a gut-brain regulatory peptide stimulating appetite and controlling energy balance. In previous studies, the Leu72Met polymorphism of the ghrelin gene has been associated with obesity and impaired insulin secretion. We investigated whether the Leu72Met polymorphism is associated with the incidence of Type 2 diabetes in subjects with impaired glucose tolerance (IGT) participating in the Finnish Diabetes Prevention Study (DPS). DPS was a longitudinal intervention study carried out in five participating centres in Finland. A total of 522 subjects with IGT were randomized into either an intervention or a control group and DNA was available from 507 subjects. The Leu72Met polymorphism was screened by the restriction fragment length polymorphism method. There were no differences in clinical and anthropometric characteristics among the genotypes at baseline. IGT subjects with the Met72 allele were at higher risk of developing Type 2 diabetes than subjects with the Leu72Leu genotype (P = 0.046). Our data also demonstrated that IGT subjects with the common Leu72Leu genotype developed Type 2 diabetes less frequently under intervention circumstances than subjects with the Met72 allele (OR = 0.28, 95% CI 0.10-0.79; P = 0.016). Subjects with the Leu72Leu genotype had a lower risk for the development of Type 2 diabetes. This was observed particularly in the study subjects who underwent an intensive diet and exercise intervention. Defective first-phase insulin secretion related to the Met72 allele might be one factor contributing to the conversion to Type 2 diabetes.

  10. Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Li, Wencheng; Peng, Hua; Cao, Theresa; Sato, Ryosuke; McDaniels, Sarah. J.; Kobori, Hiroyuki; Navar, L. Gabriel; Feng, Yumei

    2012-01-01

    The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice. PMID:22526255

  11. High frequency of Neuropeptide Y Leu7Pro polymorphism in an Iranian population and its association with coronary artery disease.

    PubMed

    Masoudi-Kazemabad, Ali; Jamialahmadi, Khadijeh; Moohebati, Mohsen; Mojarrad, Majid; Dehghan-Manshadi, Raheleh; Forghanifard, Mohammad Mahdi; Akhlaghi, Saeed; Ferns, Gordon A; Ghayour-Mobarhan, Majid

    2012-03-15

    Neuropeptide Y (NPY), a 36-amino acid peptide, is widely expressed in the central and peripheral nervous systems as well as in the heart. A relationship has been reported between NPY gene variants and coronary artery disease (CAD) in some populations. However, there are few data on the NPY gene polymorphism and CAD in the Persian population. In the current study we have investigated the relationship between the NPY Leu7Pro polymorphism and CAD within a population from Iran. A total of 1061 subjects were recruited; 609 patients and 452 healthy subjects. Four hundred and twenty eight of the patients had >50% stenosis; with the remaining 181 patients having <50% stenosis based on angiography. Angiography positive patients were divided into three groups: those with single (n=115), double (n=140), and triple vessel (n=173) disease. DNA analysis for the Leu7Pro polymorphism was performed using a PCR-RFLP technique. A significantly higher frequency of the Leu7Pro genotype was observed in CAD patients compared with the control group (P<0.05). Patients with the Pro7 had significantly higher values for weight (P=0.027), BMI (P=0.001), hip circumference (P=0.003) and prevalence of diabetes mellitus (P=0.018) but reduced prevalence of a history of myocardial infarction (P=0.017). The frequency of Leu7Pro polymorphism of NPY was 5.9% in our Iranian population; higher than reported for other Asian populations. The Leu7Pro polymorphism was associated with CAD in an Iranian population. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae).

    PubMed

    Dang, Kai; Doggett, Stephen L; Veera Singham, G; Lee, Chow-Yang

    2017-06-29

    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

  13. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil

    PubMed Central

    Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise

    2018-01-01

    Background Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. Methodology/Principal findings We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. Conclusions/Significance These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a

  14. Influence of the Envelope gp120 Phe 43 Cavity on HIV-1 Sensitivity to Antibody-Dependent Cell-Mediated Cytotoxicity Responses

    PubMed Central

    Prévost, Jérémie; Zoubchenok, Daria; Richard, Jonathan; Veillette, Maxime; Pacheco, Beatriz; Coutu, Mathieu; Brassard, Nathalie; Parsons, Matthew S.; Ruxrungtham, Kiat; Bunupuradah, Torsak; Tovanabutra, Sodsai; Hwang, Kwan-Ki; Moody, M. Anthony; Haynes, Barton F.; Bonsignori, Mattia; Sodroski, Joseph; Kaufmann, Daniel E.; Shaw, George M.; Chenine, Agnès L.

    2017-01-01

    ABSTRACT HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cellular-mediated cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to avoid the exposure of Env ADCC epitopes by downregulating CD4 and by limiting the overall amount of Env on the cell surface. In HIV-1, substitution of large residues such as histidine or tryptophan for serine 375 (S375H/W) in the gp120 Phe 43 cavity, where Phe 43 of CD4 contacts gp120, results in the spontaneous sampling of an Env conformation closer to the CD4-bound state. While residue S375 is well conserved in the majority of group M HIV-1 isolates, CRF01_AE strains have a naturally occurring histidine at this position (H375). Interestingly, CRF01_AE is the predominant circulating strain in Thailand, where the RV144 trial took place. In this trial, which resulted in a modest degree of protection, ADCC responses were identified as being part of the correlate of protection. Here we investigate the influence of the Phe 43 cavity on ADCC responses. Filling this cavity with a histidine or tryptophan residue in Env with a natural serine residue at this position (S375H/W) increased the susceptibility of HIV-1-infected cells to ADCC. Conversely, the replacement of His 375 by a serine residue (H375S) within HIV-1 CRF01_AE decreased the efficiency of the ADCC response. Our results raise the intriguing possibility that the presence of His 375 in the circulating strain where the RV144 trial was held contributed to the observed vaccine efficacy. IMPORTANCE HIV-1-infected cells presenting Env in the CD4-bound conformation on their surface are preferentially targeted by ADCC mediated by HIV-positive (HIV+) sera. Here we show that the gp120 Phe 43 cavity modulates the propensity of Env to sample this conformation and therefore affects the susceptibility of infected cells to ADCC. CRF01_AE HIV-1 strains have an unusual Phe 43

  15. The action of a synthetic derivative of Met5-enkephalin-Arg6-Phe7 on behavioral and endocrine responses.

    PubMed

    Csabafi, Krisztina; Jászberényi, Miklós; Bagosi, Zsolt; Tóth, Géza; Wollemann, Mária; Telegdy, Gyula

    2011-08-01

    The neuroendocrine and behavioral effects of Tyr-D-Ala-Gly-Phe-D-Nle-Arg-Phe (DADN), a more stable derivative of the endogenous opiate Met-enkephalin related peptide Met(5)-enkephalin-Arg(6)-Phe(7) were investigated in mice. The behavioral experiments consisted of monitoring the horizontal (square crossing) and vertical (rearing) locomotion in the open field system. To evaluate the effect of the heptapeptide on the hypothalamo-pituitary-adrenal (HPA) axis, the plasma corticosterone level was measured. DADN induced dose-dependent increases in locomotion and rearing 30 min after intracerebroventricular injection and also elicited marked activation of the hormonal stress response. To elucidate the receptors involved in the mediation of these actions, animals were pretreated with the nonselective opioid antagonist naloxone, the selective κ-receptor antagonist nor-binaltorphimine or the μ(1)-receptor blocker naloxonazine. Both the HPA activation and the behavioral responses were diminished by the preadministration of naloxone. Nor-binaltorphimine did not display a significant effect, while naloxonazine completely abolished the hyperactivity and the corticosterone elevation elicited by the analog. These findings suggest that μ-receptors predominate in the mediation of the neuroendocrine actions of DADN, while κ-receptors do not play a significant role. Copyright © 2011. Published by Elsevier Inc.

  16. N-AC-l-Leu-PEI-mediated miR-34a delivery improves osteogenic differentiation under orthodontic force.

    PubMed

    Yu, Wenwen; Zheng, Yi; Yang, Zhujun; Fei, Hongbo; Wang, Yang; Hou, Xu; Sun, Xinhua; Shen, Yuqin

    2017-12-15

    Rare therapeutic genes or agents are reported to control orthodontic bone remodeling. MicroRNAs have recently been associated with bone metabolism. Here, we report the in vitro and in vivo effects of miR-34a on osteogenic differentiation under orthodontic force using an N -acetyl-L-leucine-modified polyethylenimine ( N -Ac-l-Leu-PEI) carrier. N -Ac-l-Leu-PEI exhibited low cytotoxicity and high miR-34a transfection efficiency in rat bone mineral stem cells and local alveolar bone tissue. After transfection, miR-34a enhanced the osteogenic differentiation of Runx2 and ColI , Runx2 and ColI protein levels, and early osteogenesis function under orthodontic strain in vitro . MiR-34a also enhanced alveolar bone remodeling under orthodontic force in vivo , as evidenced by elevated gene and protein expression, upregulated indices of alveolar bone anabolism, and diminished tooth movement. We determined that the mechanism miR-34a in osteogenesis under orthodontic force may be associated with GSK-3β. These results suggested that miR-34a delivered by N -Ac-l-Leu-PEI could be a potential therapeutic target for orthodontic treatment.

  17. Analysis of Accidents at the Pakistan Research Reactor-1 Using Proposed Mixed-Fuel (HEU and LEU) Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokhari, Ishtiaq H.

    2004-12-15

    The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried outmore » at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.« less

  18. Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90.

    PubMed Central

    Conconi, M; Petropoulos, I; Emod, I; Turlin, E; Biville, F; Friguet, B

    1998-01-01

    Heat-shock protein 90 (Hsp 90) has been implicated in both protection against oxidative inactivation and inhibition of the multicatalytic proteinase (MCP, also known as 20 S proteasome). We report here that the protective and inhibitory effects of Hsp 90 depend on the activation state of the proteasome. Hsp 90 (and also alpha-crystallin) inhibits the N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activity (Cbz=benzyloxycarbonyl; MCA=7-amido-4-methylcoumarin) when the rat liver MCP is in its latent form, but no inhibitory effects are observed when the MCP is in its active form. Metal-catalysed oxidation of the active MCP inactivates the Ala-Ala-Phe-MCA-hydrolysing (chymotrypsin-like), N-Boc-Leu-Ser-Thr-Arg-MCA-hydrolysing (trypsin-like; Boc=t-butyloxycarbonyl), N-Cbz-Leu-Leu-Glu-beta-naphthylamine-hydrolysing (peptidylglutamyl-peptide hydrolase) and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities, whereas these activities are actually increased when the MCP is in its latent form. Hsp 90 protects against oxidative inactivation of the trypsin-like and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities of the MCP active form, and alpha-crystallin protects the trypsin-like activity. The specificity of the Hsp 90-mediated protection was assessed by a quantitative analysis of the two-dimensional electrophoretic pattern of MCP subunits before and after oxidation of the MCP, in the presence or absence of Hsp 90. Treatment of the FAO hepatoma cell line with iron and ascorbate was found to inactivate the MCP. Hsp 90 overexpression obtained by challenging the cells with iron was associated with a decreased susceptibility to oxidative inactivation of the MCP trypsin-like activity. Depletion of Hsp 90 by using antisense oligonucleotides resulted in an increased susceptibility to oxidative inactivation of the MCP trypsin-like activity, providing evidence for the physiological relevance of Hsp 90-mediated protection of the MCP. PMID:9657982

  19. Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90.

    PubMed

    Conconi, M; Petropoulos, I; Emod, I; Turlin, E; Biville, F; Friguet, B

    1998-07-15

    Heat-shock protein 90 (Hsp 90) has been implicated in both protection against oxidative inactivation and inhibition of the multicatalytic proteinase (MCP, also known as 20 S proteasome). We report here that the protective and inhibitory effects of Hsp 90 depend on the activation state of the proteasome. Hsp 90 (and also alpha-crystallin) inhibits the N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activity (Cbz=benzyloxycarbonyl; MCA=7-amido-4-methylcoumarin) when the rat liver MCP is in its latent form, but no inhibitory effects are observed when the MCP is in its active form. Metal-catalysed oxidation of the active MCP inactivates the Ala-Ala-Phe-MCA-hydrolysing (chymotrypsin-like), N-Boc-Leu-Ser-Thr-Arg-MCA-hydrolysing (trypsin-like; Boc=t-butyloxycarbonyl), N-Cbz-Leu-Leu-Glu-beta-naphthylamine-hydrolysing (peptidylglutamyl-peptide hydrolase) and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities, whereas these activities are actually increased when the MCP is in its latent form. Hsp 90 protects against oxidative inactivation of the trypsin-like and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities of the MCP active form, and alpha-crystallin protects the trypsin-like activity. The specificity of the Hsp 90-mediated protection was assessed by a quantitative analysis of the two-dimensional electrophoretic pattern of MCP subunits before and after oxidation of the MCP, in the presence or absence of Hsp 90. Treatment of the FAO hepatoma cell line with iron and ascorbate was found to inactivate the MCP. Hsp 90 overexpression obtained by challenging the cells with iron was associated with a decreased susceptibility to oxidative inactivation of the MCP trypsin-like activity. Depletion of Hsp 90 by using antisense oligonucleotides resulted in an increased susceptibility to oxidative inactivation of the MCP trypsin-like activity, providing evidence for the physiological relevance of Hsp 90-mediated protection of the MCP.

  20. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes.

    PubMed

    Thompson, R C; Dix, D B; Gerson, R B; Karim, A M

    1981-01-10

    The characteristics of a GTPase reaction between poly(U)-programmed ribosomes, EFTu . GTP, and the near-cognate aminoacyl (aa)-tRNA, Leu-tRNA Leu 2, have been studied to assess the role of this reaction in proofreading of the codon-anticodon interaction. The reaction resembles the GTPase reaction with cognate aa-tRNAs and EFTu . GTP in its substrate requirements, in its involving EFTu . GTP . aa-tRNA ternary complexes, and in its requiring a free ribosomal A-site. The noncognate reaction differs from the cognate one in that aa-tRNA becomes stably bound to the ribosomes only 5% of the time; it therefore seems best characterized as an abortive enzymatic binding reaction. The rate of reaction is a significant fraction (4%) of that of the cognate aa-tRNA, indicating that recognition of ternary complexes by ribosomes involves a level of error greater than that of translation as a whole. The rejection of the noncognate aa-tRNA following GTP hydrolysis is therefore a vital step in the translation process and fulfills the criteria set for a proofreading reaction. Leu-tRNA Leu 2 which escapes rejection through proofreading, forms a stable complex with the ribosomal A-site, so it appears that the Leu-tRNA2 which was rejected never reached the A-site and that proofreading precedes full A-site binding.

  1. RNA editing in the anticodon of tRNA Leu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue.

    PubMed

    Miyata, Y; Sugita, C; Maruyama, K; Sugita, M

    2008-03-01

    RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.

  2. Knockdown of BAG3 sensitizes bladder cancer cells to treatment with the BH3 mimetic ABT-737.

    PubMed

    Mani, Jens; Antonietti, Patrick; Rakel, Stefanie; Blaheta, Roman; Bartsch, Georg; Haferkamp, Axel; Kögel, Donat

    2016-02-01

    BAG3 is overexpressed in several malignancies and mediates a non-canonical, selective form of (macro)autophagy. By stabilizing pro-survival Bcl-2 proteins in complex with HSP70, BAG3 can also exert an apoptosis-antagonizing function. ABT-737 is a high affinity Bcl-2 inhibitor that fails to target Mcl-1. This failure may confer resistance in various cancers. Urothelial cancer cells were treated with the BH3 mimetics ABT-737 and (-)-gossypol, a pan-Bcl-2 inhibitor which inhibits also Mcl-1. To clarify the importance of the core autophagy regulator ATG5 and BAG3 in ABT-737 treatment, cell lines carrying a stable lentiviral knockdown of ATG5 and BAG3 were created. The synergistic effect of ABT-737 and pharmaceutical inhibition of BAG3 with the HSF1 inhibitor KRIBB11 or sorafenib was also evaluated. Total cell death and apoptosis were quantified by FACS analysis of propidium iodide, annexin. Target protein analysis was conducted by Western blotting. Knockdown of BAG3 significantly downregulated Mcl-1 protein levels and sensitized urothelial cancer cells to apoptotic cell death induced by ABT-737, while inhibition of bulk autophagy through depletion of ATG5 had no discernible effect on cell death. Similar to knockdown of BAG3, pharmacological targeting of the BAG3/Mcl-1 pathway with KRIBB11 was capable to sensitize both cell lines to treatment with ABT-737. Our results show that BAG3, but not bulk autophagy has a major role in the response of bladder cancer cells to BH3 mimetics. They also suggest that BAG3 is a suitable target for combined therapies aimed at synergistically inducing apoptosis in bladder cancer.

  3. A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence

    PubMed Central

    Délye, Christophe; Menchari, Yosra; Michel, Séverine; Cadet, Émilie; Le Corre, Valérie

    2013-01-01

    Background and Aims Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed's life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. Methods In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. Key Results Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. Conclusions Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance

  4. A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence.

    PubMed

    Délye, Christophe; Menchari, Yosra; Michel, Séverine; Cadet, Emilie; Le Corre, Valérie

    2013-04-01

    Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed's life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should

  5. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR.

    PubMed

    Wainwright, Claire E; Elborn, J Stuart; Ramsey, Bonnie W; Marigowda, Gautham; Huang, Xiaohong; Cipolli, Marco; Colombo, Carla; Davies, Jane C; De Boeck, Kris; Flume, Patrick A; Konstan, Michael W; McColley, Susanna A; McCoy, Karen; McKone, Edward F; Munck, Anne; Ratjen, Felix; Rowe, Steven M; Waltz, David; Boyle, Michael P

    2015-07-16

    Cystic fibrosis is a life-limiting disease that is caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Phe508del is the most common CFTR mutation. We conducted two phase 3, randomized, double-blind, placebo-controlled studies that were designed to assess the effects of lumacaftor (VX-809), a CFTR corrector, in combination with ivacaftor (VX-770), a CFTR potentiator, in patients 12 years of age or older who had cystic fibrosis and were homozygous for the Phe508del CFTR mutation. In both studies, patients were randomly assigned to receive either lumacaftor (600 mg once daily or 400 mg every 12 hours) in combination with ivacaftor (250 mg every 12 hours) or matched placebo for 24 weeks. The primary end point was the absolute change from baseline in the percentage of predicted forced expiratory volume in 1 second (FEV1) at week 24. A total of 1108 patients underwent randomization and received study drug. The mean baseline FEV1 was 61% of the predicted value. In both studies, there were significant improvements in the primary end point in both lumacaftor-ivacaftor dose groups; the difference between active treatment and placebo with respect to the mean absolute improvement in the percentage of predicted FEV1 ranged from 2.6 to 4.0 percentage points (P<0.001), which corresponded to a mean relative treatment difference of 4.3 to 6.7% (P<0.001). Pooled analyses showed that the rate of pulmonary exacerbations was 30 to 39% lower in the lumacaftor-ivacaftor groups than in the placebo group; the rate of events leading to hospitalization or the use of intravenous antibiotics was lower in the lumacaftor-ivacaftor groups as well. The incidence of adverse events was generally similar in the lumacaftor-ivacaftor and placebo groups. The rate of discontinuation due to an adverse event was 4.2% among patients who received lumacaftor-ivacaftor versus 1.6% among those who received placebo. These data show that lumacaftor in

  6. Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles.

    PubMed

    LeVine, Michael V; Khelashvili, George; Shi, Lei; Quick, Matthias; Javitch, Jonathan A; Weinstein, Harel

    2016-02-16

    Recent work has shown that the choice of the type and concentration of detergent used for the solubilization of membrane proteins can strongly influence the results of functional experiments. In particular, the amino acid transporter LeuT can bind two substrate molecules in low concentrations of n-dodecyl β-d-maltopyranoside (DDM), whereas high concentrations reduce the molar binding stoichiometry to 1:1. Subsequent molecular dynamics (MD) simulations of LeuT in DDM proteomicelles revealed that DDM can penetrate to the extracellular vestibule and make stable contacts in the functionally important secondary substrate binding site (S2), suggesting a potential competitive mechanism for the reduction in binding stoichiometry. Because annular lipids can be retained during solubilization, we performed MD simulations of LeuT proteomicelles at various stages of the solubilization process. We find that at low DDM concentrations, lipids are retained around the protein and penetration of detergent into the S2 site does not occur, whereas at high concentrations, lipids are displaced and the probability of DDM binding in the S2 site is increased. This behavior is dependent on the type of detergent, however, as we find in the simulations that the detergent lauryl maltose-neopentyl glycol, which is approximately twice the size of DDM and structurally more closely resembles lipids, does not penetrate the protein even at very high concentrations. We present functional studies that confirm the computational findings, emphasizing the need for careful consideration of experimental conditions, and for cautious interpretation of data in gathering mechanistic information about membrane proteins.

  7. Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles

    PubMed Central

    2016-01-01

    Recent work has shown that the choice of the type and concentration of detergent used for the solubilization of membrane proteins can strongly influence the results of functional experiments. In particular, the amino acid transporter LeuT can bind two substrate molecules in low concentrations of n-dodecyl β-d-maltopyranoside (DDM), whereas high concentrations reduce the molar binding stoichiometry to 1:1. Subsequent molecular dynamics (MD) simulations of LeuT in DDM proteomicelles revealed that DDM can penetrate to the extracellular vestibule and make stable contacts in the functionally important secondary substrate binding site (S2), suggesting a potential competitive mechanism for the reduction in binding stoichiometry. Because annular lipids can be retained during solubilization, we performed MD simulations of LeuT proteomicelles at various stages of the solubilization process. We find that at low DDM concentrations, lipids are retained around the protein and penetration of detergent into the S2 site does not occur, whereas at high concentrations, lipids are displaced and the probability of DDM binding in the S2 site is increased. This behavior is dependent on the type of detergent, however, as we find in the simulations that the detergent lauryl maltose-neopentyl glycol, which is approximately twice the size of DDM and structurally more closely resembles lipids, does not penetrate the protein even at very high concentrations. We present functional studies that confirm the computational findings, emphasizing the need for careful consideration of experimental conditions, and for cautious interpretation of data in gathering mechanistic information about membrane proteins. PMID:26811944

  8. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells.

    PubMed

    Armstrong, Cameron M; Liu, Chengfei; Lou, Wei; Lombard, Alan P; Evans, Christopher P; Gao, Allen C

    2017-06-01

    Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response

  10. A High Affinity Adenosine Kinase from Anopheles gambiae

    PubMed Central

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  11. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Cassera; M Ho; E Merino

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactionsmore » for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.« less

  12. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cellmore » lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.« less

  13. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  14. Co-occurrence and distribution of East (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania

    PubMed Central

    Kabula, Bilali; Kisinza, William; Tungu, Patrick; Ndege, Chacha; Batengana, Benard; Kollo, Douglas; Malima, Robert; Kafuko, Jessica; Mohamed, Mahdi; Magesa, Stephen

    2014-01-01

    Objective Insecticide resistance molecular markers can provide sensitive indicators of resistance development in Anopheles vector populations. Assaying these makers is of paramount importance in the resistance monitoring programme. We investigated the presence and distribution of knock-down resistance (kdr) mutations in Anopheles gambiae s.l. in Tanzania. Methods Indoor-resting Anopheles mosquitoes were collected from 10 sites and tested for insecticide resistance using the standard WHO protocol. Polymerase chain reaction-based molecular diagnostics were used to genotype mosquitoes and detect kdr mutations. Results The An. gambiae tested were resistance to lambdacyhalothrin in Muheza, Arumeru and Muleba. Out of 350 An. gambiae s.l. genotyped, 35% were An. gambiae s.s. and 65% An. arabiensis. L1014S and L1014F mutations were detected in both An. gambiae s.s. and An. arabiensis. L1014S point mutation was found at the allelic frequency of 4–33%, while L1014F was at the allelic frequency 6–41%. The L1014S mutation was much associated with An. gambiae s.s. (χ2 = 23.41; P < 0.0001) and L1014F associated with An. arabiensis (χ2 = 11.21; P = 0.0008). The occurrence of the L1014S allele was significantly associated with lambdacyhalothrin resistance mosquitoes (Fisher exact P < 0.001). Conclusion The observed co-occurrence of L1014S and L1014F mutations coupled with reports of insecticide resistance in the country suggest that pyrethroid resistance is becoming a widespread phenomenon among our malaria vector populations. The presence of L1014F mutation in this East African mosquito population indicates the spreading of this gene across Africa. The potential operational implications of these findings on malaria control need further exploration. Objectif Les marqueurs moléculaires de la résistance aux insecticides peuvent fournir des indicateurs sensibles du développement de la résistance dans les populations de vecteurs Anopheles. Le test de ces

  15. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET.

    PubMed

    Vugts, Danielle J; Klaver, Chris; Sewing, Claudia; Poot, Alex J; Adamzek, Kevin; Huegli, Seraina; Mari, Cristina; Visser, Gerard W M; Valverde, Ibai E; Gasser, Gilles; Mindt, Thomas L; van Dongen, Guus A M S

    2017-02-01

    All clinical 89 Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of 89 Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its 89 Zr-DFO*-mAb complex with 89 Zr-DFO-mAb. The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. In 0.9 % NaCl 89 Zr-DFO*-trastuzumab was more stable than 89 Zr-DFO-trastuzumab; after 72 h incubation at 2-8 °C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for 89 Zr-DFO*-trastuzumab and 89 Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for 89 Zr-DFO*-trastuzumab compared to 89 Zr-DFO-trastuzumab. At 144 h p.i. for 89 Zr-DFO*-trastuzumab and 89 Zr-DFO-trastuzumab, the uptake in sternum was 0.92 ± 0.16 and 3.33 ± 0.32 % ID

  16. 2'-O-methyl-5-formylcytidine (f5Cm), a new modified nucleotide at the 'wobble' of two cytoplasmic tRNAs Leu (NAA) from bovine liver.

    PubMed Central

    Païs de Barros, J P; Keith, G; El Adlouni, C; Glasser, A L; Mack, G; Dirheimer, G; Desgrès, J

    1996-01-01

    The nucleotide analysis of a cytoplasmic tRNA(Leu) isolated from bovine liver revealed the presence of an unknown modified nucleotide N. The corresponding N nucleoside was isolated by different enzymatic and chromatographic protocols from a partially purified preparation of this tRNA(Leu). Its chemical characterization was determined from its chromatographic properties, UV-absorption spectroscopy and mass spectrometric measurements, as well as from those of the borohydride reduced N nucleoside and its etheno-trimethylsilyl derivative. The structure of N was established as 2'-O-methyl-5-formylcytidine (f5CM), and its reduced derivative as 2'-O-methyl-5-hydroxy-methylcytidine (om5Cm). By sequencing the bovine liver tRNA(Leu), the structure of the anticodon was determined as f5CmAA. In addition, the nucleotide sequence showed two primary structures differing only by the nucleotide 47c which is either uridine or adenosine. The two slightly differing bovine liver tRNAs-Leu(f5CmAA) are the only tRNAs so far sequenced which contain f5Cm. The role of such a modified cytidine at the first position of the anticodon is discussed in terms of decoding properties for the UUG and UUA leucine codons. Recently, precise evidence was obtained for the presence of f5Cm at the same position in tRNAs(Leu)(NAA) isolated from rabbit and lamb liver. Therefore, the 2'-O-methyl-5-formyl modification of cytidine at position 34 could be a general feature of cytoplasmic tRNAs(Leu)(NAA) in mammals. PMID:8628682

  17. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less

  18. Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown.

    PubMed

    Kim, Su-Hyeong; Hahm, Eun-Ryeong; Arlotti, Julie A; Samanta, Suman K; Moura, Michelle B; Thorne, Stephen H; Shuai, Yongli; Anderson, Carolyn J; White, Alexander G; Lokshin, Anna; Lee, Joomin; Singh, Shivendra V

    2016-05-01

    The present study offers novel insights into the molecular circuitry of accelerated in vivo tumor growth by Notch2 knockdown in triple-negative breast cancer (TNBC) cells. Therapeutic vulnerability of Notch2-altered growth to a small molecule (withaferin A, WA) is also demonstrated. MDA-MB-231 and SUM159 cells were used for the xenograft studies. A variety of technologies were deployed to elucidate the mechanisms underlying tumor growth augmentation by Notch2 knockdown and its reversal by WA, including Fluorescence Molecular Tomography for measurement of tumor angiogenesis in live mice, Seahorse Flux analyzer for ex vivo measurement of tumor metabolism, proteomics, and Luminex-based cytokine profiling. Stable knockdown of Notch2 resulted in accelerated in vivo tumor growth in both cells reflected by tumor volume and/or latency. For example, the wet tumor weight from mice bearing Notch2 knockdown MDA-MB-231 cells was about 7.1-fold higher compared with control (P < 0.0001). Accelerated tumor growth by Notch2 knockdown was highly sensitive to inhibition by a promising steroidal lactone (WA) derived from a medicinal plant. Molecular underpinnings for tumor growth intensification by Notch2 knockdown included compensatory increase in Notch1 activation, increased cellular proliferation and/or angiogenesis, and increased plasma or tumor levels of growth stimulatory cytokines. WA administration reversed many of these effects providing explanation for its remarkable anti-cancer efficacy. Notch2 functions as a tumor growth suppressor in TNBC and WA offers a novel therapeutic strategy for restoring this function.

  19. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  20. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less

  1. Polymorphism of intron-1 in the voltage-gated sodium channel gene of Anopheles gambiae s.s. populations from Cameroon with emphasis on insecticide knockdown resistance mutations.

    PubMed

    Etang, Josiane; Vicente, Jose L; Nwane, Philippe; Chouaibou, Mouhamadou; Morlais, Isabelle; Do Rosario, Virgilio E; Simard, Frederic; Awono-Ambene, Parfait; Toto, Jean Claude; Pinto, Joao

    2009-07-01

    Sequence variation at the intron-1 of the voltage-gated sodium channel gene in Anopheles gambiae M- and S-forms from Cameroon was assessed to explore the number of mutational events originating knockdown resistance (kdr) alleles. Mosquitoes were sampled between December 2005 and June 2006 from three geographical areas: (i) Magba in the western region; (ii) Loum, Tiko, Douala, Kribi, and Campo along the Atlantic coast; and (iii) Bertoua, in the eastern continental plateau. Both 1014S and 1014F kdr alleles were found in the S-form with overall frequencies of 14% and 42% respectively. Only the 1014F allele was found in the M-form at lower frequency (11%). Analysis of a 455 bp region of intron-1 upstream the kdr locus revealed four independent mutation events originating kdr alleles, here named MS1 -1014F, S1-1014S and S2-1014S kdr-intron-1 haplotypes in S-form and MS3-1014F kdr-intron-1 haplotype in the M-form. Furthermore, there was evidence for mutual introgression of kdr 1014F allele between the two molecular forms, MS1 and MS3 being widely shared by them. Although no M/S hybrid was observed in analysed samples, this wide distribution of haplotypes MS1 and MS3 suggests inter-form hybridizing at significant level and emphasizes the rapid diffusion of the kdr alleles in Africa. The mosaic of genetic events found in Cameroon is representative of the situation in the West-Central African region and highlights the importance of evaluating the spatial and temporal evolution of kdr alleles for a better management of insecticide resistance.

  2. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  3. Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females.

    PubMed

    Coelho, Roberta R; de Souza Júnior, José Dijair Antonino; Firmino, Alexandre A P; de Macedo, Leonardo L P; Fonseca, Fernando C A; Terra, Walter R; Engler, Gilbert; de Almeida Engler, Janice; da Silva, Maria Cristina M; Grossi-de-Sa, Maria Fatima

    2016-09-01

    Vitellogenin (Vg), a yolk protein precursor, is the primary egg nutrient source involved in insect reproduction and embryo development. The Cotton Boll weevil (CBW) Anthonomus grandis Boheman, the most important cotton pest in Americas, accumulates large amounts of Vg during reproduction. However, the precise role of this protein during embryo development in this insect remains unknown. Herein, we investigated the effects of vitellogenin (AgraVg) knockdown on the egg-laying and egg viability in A. grandis females, and also characterized morphologically the unviable eggs. AgraVg transcripts were found during all developmental stages of A. grandis, with highest abundance in females. Silencing of AgraVg culminated in a significant reduction in transcript amount, around 90%. Despite this transcriptional reduction, egg-laying was not affected in dsRNA-treated females but almost 100% of the eggs lost their viability. Eggs from dsRNA-treated females showed aberrant embryos phenotype suggesting interference at different stages of embryonic development. Unlike for other insects, the AgraVg knockdown did not affect the egg-laying ability of A. grandis, but hampered A. grandis reproduction by perturbing embryo development. We concluded that the Vg protein is essential for A. grandis reproduction and a good candidate to bio-engineer the resistance against this devastating cotton pest.

  4. Knockdown of HDAC1 expression suppresses invasion and induces apoptosis in glioma cells.

    PubMed

    Wang, Xiao-Qiang; Bai, Hong-Min; Li, Shi-Ting; Sun, Hui; Min, Ling-Zhao; Tao, Bang-Bao; Zhong, Jun; Li, Bin

    2017-07-18

    Glioma is the most common malignant tumor of the central nervous system, with a low survival rate of five years worldwide. Although high expression and prognostic value of histone deacetylase 1 (HDAC1) have been recently reported in various types of human tumors, the molecular mechanism underlying the biological function of HDAC1 in glioma is still unclear. We found that HDAC1 was elevated in glioma tissues and cell lines. HDAC1 expression was closely related with pathological grade and overall survival of patients with gliomas. Downregulation of HDAC1 inhibited cell proliferation, prevented invasion of glioma cell lines, and induced cell apoptosis. The expression of apoptosis and metastasis related molecules were detected by RT-PCR and Western blot, respectively, in U251 and T98G cells with HDAC1 knockdown. We found that HDAC1 knockdown upregulated expression of BIM, BAX, cleaved CASPASE3 and E-CADHERIN, and decreased expression of TWIST1, SNAIL and MMP9 in U251 and T98G cells with HDAC1 knockdown. In vivo data showed that knockdown of HDAC1 inhibited tumor growth in nude mice. In summary, HDAC1 may therefore be considered an unfavorable progression indicator for glioma patients, and may also serve as a potential therapeutic target.

  5. Brain gene expression changes elicited by peripheral vitellogenin knockdown in the honey bee.

    PubMed

    Wheeler, M M; Ament, S A; Rodriguez-Zas, S L; Robinson, G E

    2013-10-01

    Vitellogenin (Vg) is best known as a yolk protein precursor. Vg also functions to regulate behavioural maturation in adult honey bee workers, but the underlying molecular mechanisms by which it exerts this novel effect are largely unknown. We used abdominal vitellogenin (vg) knockdown with RNA interference (RNAi) and brain transcriptomic profiling to gain insights into how Vg influences honey bee behavioural maturation. We found that vg knockdown caused extensive gene expression changes in the bee brain, with much of this transcriptional response involving changes in central biological functions such as energy metabolism. vg knockdown targeted many of the same genes that show natural, maturation-related differences, but the direction of change for the genes in these two contrasts was not correlated. By contrast, vg knockdown targeted many of the same genes that are regulated by juvenile hormone (JH) and there was a significant correlation for the direction of change for the genes in these two contrasts. These results indicate that the tight coregulatory relationship that exists between JH and Vg in the regulation of honey bee behavioural maturation is manifest at the genomic level and suggest that these two physiological factors act through common pathways to regulate brain gene expression and behaviour. © 2013 Royal Entomological Society.

  6. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).

    PubMed

    Rodriguez, Alejandro; Canto, Josep; Corcho, Francesc J; Perez, Juan J

    2009-01-01

    The present report regards a computational study aimed at assessing the conformational profile of the four stereoisomers of the peptide Ace-Pro-c3Phe-NMe, previously reported to exhibit beta-turn structures in dichloromethane with different type I/type II beta-turn profiles. Molecular systems were represented at the molecular mechanics level using the parm96 parameterization of the AMBER force field. Calculations were carried out in dichloromethane using an implicit solvent approach. Characterization of the conformational features of the peptide analogs was carried out using simulated annealing (SA), molecular dynamics (MD) and replica exchange molecular dynamics (REMD). Present results show that MD calculations do not provide a reasonable sampling after 300 ns. In contrast, both SA and REMD provide similar results and agree well with experimental observations. Copyright 2009 Wiley Periodicals, Inc.

  7. Determinants of quinolone resistance in Escherichia coli causing community-acquired urinary tract infection in Bejaia, Algeria.

    PubMed

    Betitra, Yanat; Teresa, Vinuesa; Miguel, Viñas; Abdelaziz, Touati

    2014-06-01

    To investigate the mechanisms of quinolone resistance and the association with other resistance markers among Esherichia coli (E. coli) strains isolated from outpatient with urinary tract infection in north of Algeria. A total of 30 nalidixic acid-resistant E. coli isolates from outpatient with urinary tract infections from January 2010 to April 2011 in north of Algeria (Bejaia) were studied. Antimicrobial susceptibility was determined by disc diffusion assay, minimal inhibitory concentrations (MIC) of quinolone were determined by microdilution. Mutations in the Quinolone Resistance-Determining Region (QRDR) of gyrA and parC genes and screening for qnr (A, B and S) and bla genes were done by PCR and DNA sequencing. Most of the E. coli isolates (56.66%) were shown to carry mutations in gyrA and parC (gyrA: Ser83Leu + Asp87Asn and parC:Ser80Ile). While, 16.66% had only an alteration in gyrA: Ser83Leu. One isolate produced qnrB-like and two qnrS-like. Four isolates were CTX-M-15 producers associated with TEM-1 producing in one case. Co-expression of blaCTX-M-15 and qnrB was determined in one E. coli isolate. Our findings suggested the community emergence of gyrA and parC alterations and Qnr determinants that contributed to the development and spread of fluoroquinolone resistance in Algerian E. coli isolates. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus.

    PubMed

    Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan

    2014-09-29

    G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.

  9. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems.

    PubMed

    Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon

    2005-09-01

    Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.

  10. Regulation of the yjjQ-bglJ Operon, Encoding LuxR-Type Transcription Factors, and the Divergent yjjP Gene by H-NS and LeuO▿ †

    PubMed Central

    Stratmann, Thomas; Madhusudan, S.; Schnetz, Karin

    2008-01-01

    The yjjQ and bglJ genes encode LuxR-type transcription factors conserved in several enterobacterial species. YjjQ is a potential virulence factor in avian pathogenic Escherichia coli. BglJ counteracts the silencing of the bgl (β-glucoside) operon by H-NS in E. coli K-12. Here we show that yjjQ and bglJ form an operon carried by E. coli K-12, whose expression is repressed by the histone-like nucleoid structuring (H-NS) protein. The LysR-type transcription factor LeuO counteracts this repression. Furthermore, the yjjP gene, encoding a membrane protein of unknown function and located upstream in divergent orientation to the yjjQ-bglJ operon, is likewise repressed by H-NS. Mapping of the promoters as well as the H-NS and LeuO binding sites within the 555-bp intergenic region revealed that H-NS binds to the center of the AT-rich regulatory region and distal to the divergent promoters. LeuO sites map to the center and to positions distal to the yjjQ promoters, while one LeuO binding site overlaps with the divergent yjjP promoter. This latter LeuO site is required for full derepression of the yjjQ promoters. The arrangement of regulatory sites suggests that LeuO restructures the nucleoprotein complex formed by H-NS. Furthermore, the data support the conclusion that LeuO, whose expression is likewise repressed by H-NS and which is a virulence factor in Salmonella enterica, is a master regulator that among other loci, also controls the yjjQ-bglJ operon and thus indirectly the presumptive targets of YjjQ and BglJ. PMID:18055596

  11. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Charles R.

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less

  12. Kin5 Knockdown in Tetrahymena thermophila Using RNAi Blocks Cargo Transport of Gef1

    PubMed Central

    Awan, Aashir; Bell, Aaron J.; Satir, Peter

    2009-01-01

    A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2, Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs). Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1 and knockdown of Kin5 results in cell lethality. PMID:19290045

  13. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides.

    PubMed

    Cameron, Alan J; Squire, Christopher J; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2017-12-14

    Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H 2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Leu72Met408 Polymorphism of the Ghrelin Gene Is Associated With Early Phase of Gastric Emptying in the Patients With Functional Dyspepsia in Japan

    PubMed Central

    Yamawaki, Hiroshi; Futagami, Seiji; Shimpuku, Mayumi; Shindo, Tomotaka; Maruki, Yuuta; Nagoya, Hiroyuki; Kodaka, Yasuhiro; Sato, Hitomi; Gudis, Katya; Kawagoe, Tetsuro; Sakamoto, Choitsu

    2015-01-01

    Background/Aims There are no available data about the relationship between ghrelin gene genotypes and early phase of gastric emptying in functional dyspepsia (FD) as defined by Rome III classification. Methods We enrolled 74 patients presenting with typical symptoms of FD and 64 healthy volunteers. Gastric motility was evaluated using the 13C-acetate breath test. We used Rome III criteria to evaluate upper abdominal symptoms and self-rating questionnaires for depression (SRQ-D) scores to determine status of depression. The Arg51Gln (346G>A), preproghrelin (3056T>C), Leu72Met (408C>A), Gln90Leu (3412T>A) and G-protein β3 (825C>T) polymorphisms were analyzed in the DNA from blood samples of enrolled subjects. Genotyping was performed by polymerase chain reaction. Results There was a significant relationship between the Gln90Leu3412 genotype and SRQ-D score in FD patients (P = 0.009). Area under the curve at 15 minutes (AUC15) value was significantly associated with the Leu72Met408 genotype (P = 0.015) but not with entire gastric emptying. Conclusions The Leu72Met (408C>A) single nucleotide polymorphism was significantly associated with early phase of gastric emptying in FD patients. Further studies will be necessary to clarify the association between ghrelin gene single nucleotide polymorphisms and early phase of gastric emptying in FD patients. PMID:25540946

  15. Leu72Met408 Polymorphism of the Ghrelin Gene Is Associated With Early Phase of Gastric Emptying in the Patients With Functional Dyspepsia in Japan.

    PubMed

    Yamawaki, Hiroshi; Futagami, Seiji; Shimpuku, Mayumi; Shindo, Tomotaka; Maruki, Yuuta; Nagoya, Hiroyuki; Kodaka, Yasuhiro; Sato, Hitomi; Gudis, Katya; Kawagoe, Tetsuro; Sakamoto, Choitsu

    2015-01-01

    There are no available data about the relationship between ghrelin gene genotypes and early phase of gastric emptying in functional dyspepsia (FD) as defined by Rome III classification. We enrolled 74 patients presenting with typical symptoms of FD and 64 healthy volunteers. Gastric motility was evaluated using the 13C-acetate breath test. We used Rome III criteria to evaluate upper abdominal symptoms and self-rating questionnaires for depression (SRQ-D) scores to determine status of depression. The Arg51Gln (346G->A), preproghrelin (3056T->C), Leu72Met (408C->A), Gln90Leu (3412T->A) and G-protein 3 (825C->T) polymorphisms were analyzed in the DNA from blood samples of enrolled subjects. Genotyping was performed by polymerase chain reaction. There was a significant relationship between the Gln90Leu3412 genotype and SRQ-D score in FD patients (P = 0.009). Area under the curve at 15 minutes (AUC15) value was significantly associated with the Leu72Met408 genotype (P = 0.015) but not with entire gastric emptying. The Leu72Met (408C->A) single nucleotide polymorphism was significantly associated with early phase of gastric emptying in FD patients. Further studies will be necessary to clarify the association between ghrelin gene single nucleotide polymorphisms and early phase of gastric emptying in FD patients.

  16. A module located at a chromosomal integration hot spot is responsible for the multidrug resistance of a reference strain from Escherichia coli clonal group A.

    PubMed

    Lescat, Mathilde; Calteau, Alexandra; Hoede, Claire; Barbe, Valérie; Touchon, Marie; Rocha, Eduardo; Tenaillon, Olivier; Médigue, Claudine; Johnson, James R; Denamur, Erick

    2009-06-01

    Escherichia coli clonal group A (CGA) commonly exhibits a distinctive multidrug antimicrobial resistance phenotype-i.e., resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, and trimethoprim (ACSSuTTp)-and has accounted for up to 50% of trimethoprim-sulfamethoxazole-resistant E. coli urinary tract infections in some locales. Annotation of the whole-genome sequencing of UMN026, a reference CGA strain, clarified the genetic basis for this strain's ACSSuTTp antimicrobial resistance phenotype. Most of the responsible genes were clustered in a unique 23-kbp chromosomal region, designated the genomic resistance module (GRM), which occurred within a 105-kbp genomic island situated at the leuX tRNA. The GRM is characterized by numerous remnants of mobilization and rearrangement events suggesting multiple horizontal transfers. Additionally, comparative genomic analysis of the leuX tRNA genomic island in 14 sequenced E. coli genomes showed that this region is a hot spot of integration, with the presence/absence of specific subregions being uncorrelated with either the phylogenetic group or the pathotype. Our data illustrate the importance of whole-genome sequencing in the detection of genetic elements involved in antimicrobial resistance. Additionally, this is the first documentation of the bla(TEM) and dhfrVII genes in a chromosomal location in E. coli strains.

  17. Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation.

    PubMed

    Cáceres, Tamar B; Thakur, Abhishek; Price, Owen M; Ippolito, Nicole; Li, Jun; Qu, Jun; Acevedo, Orlando; Hevel, Joan M

    2018-02-27

    Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal S N 2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.

  18. Unexpected combined effects of NADH dehydrogenase subunit-2 237 Leu/Met polymorphism and green tea consumption on renal function in male Japanese health check-up examinees: a cross-sectional study.

    PubMed

    Kokaze, Akatsuki; Ishikawa, Mamoru; Matsunaga, Naomi; Karita, Kanae; Yoshida, Masao; Ohtsu, Tadahiro; Ochiai, Hirotaka; Shirasawa, Takako; Nanri, Hinako; Hoshino, Hiromi; Takashima, Yutaka

    2013-11-20

    NADH dehydrogenase subunit-2 237 leucine/methionine (ND2-237 Leu/Met) polymorphism is associated with longevity in Japanese. A previous study has shown that ND2-237 Leu/Met polymorphism modulates the effects of green tea consumption on risk of hypertension. For men with ND2-237Leu, habitual green tea consumption may reduce the risk of hypertension. Moreover, there is a combined effect of ND2-237 Leu/Met polymorphism and alcohol consumption on risk of mildly decreased estimated glomerular filtration rate (eGFR) (<90 ml/min/1.73 m2). Several beneficial effects of green tea on the kidney have been reported. The objective of this study was to investigate whether ND2-237 Leu/Met polymorphism modifies the effects of green tea consumption on risk of mildly decreased eGFR in male Japanese health check-up examinees. For ND2-237Leu genotypic men, after adjustment for confounding factors, green tea consumption may increase the risk of mildly decreased eGFR (P for trend = 0.016). The adjusted odds ratio (OR) for mildly decreased eGFR was significantly higher in subjects with ND2-237Leu who consume ≥6 cups of green tea per day than those who consume ≤1 cup of green tea per day (adjusted OR = 5.647, 95% confidence interval: 1.528-20.88, P = 0.009). On the other hand, for ND2-237Met genotypic men, green tea consumption does not appear to determine the risk of mildly decreased eGFR. The present results suggest that ND2-237 Leu/Met polymorphism unexpectedly modifies the effects of green tea consumption on eGFR and the risk of mildly decreased eGFR in male Japanese subjects.

  19. Unexpected combined effects of NADH dehydrogenase subunit-2 237 Leu/Met polymorphism and green tea consumption on renal function in male Japanese health check-up examinees: a cross-sectional study

    PubMed Central

    2013-01-01

    Background NADH dehydrogenase subunit-2 237 leucine/methionine (ND2-237 Leu/Met) polymorphism is associated with longevity in Japanese. A previous study has shown that ND2-237 Leu/Met polymorphism modulates the effects of green tea consumption on risk of hypertension. For men with ND2-237Leu, habitual green tea consumption may reduce the risk of hypertension. Moreover, there is a combined effect of ND2-237 Leu/Met polymorphism and alcohol consumption on risk of mildly decreased estimated glomerular filtration rate (eGFR) (<90 ml/min/1.73 m2). Several beneficial effects of green tea on the kidney have been reported. The objective of this study was to investigate whether ND2-237 Leu/Met polymorphism modifies the effects of green tea consumption on risk of mildly decreased eGFR in male Japanese health check-up examinees. Results For ND2-237Leu genotypic men, after adjustment for confounding factors, green tea consumption may increase the risk of mildly decreased eGFR (P for trend = 0.016). The adjusted odds ratio (OR) for mildly decreased eGFR was significantly higher in subjects with ND2-237Leu who consume ≥6 cups of green tea per day than those who consume ≤1 cup of green tea per day (adjusted OR = 5.647, 95% confidence interval: 1.528-20.88, P = 0.009). On the other hand, for ND2-237Met genotypic men, green tea consumption does not appear to determine the risk of mildly decreased eGFR. Conclusion The present results suggest that ND2-237 Leu/Met polymorphism unexpectedly modifies the effects of green tea consumption on eGFR and the risk of mildly decreased eGFR in male Japanese subjects. PMID:24252463

  20. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    PubMed Central

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  1. A conformation-selective IR-UV study of the dipeptides Ac-Phe-Ser-NH2 and Ac-Phe-Cys-NH2: probing the SH···O and OH···O hydrogen bond interactions.

    PubMed

    Yan, Bin; Jaeqx, Sander; van der Zande, Wim J; Rijs, Anouk M

    2014-06-14

    The conformational preferences of peptides are mainly controlled by the stabilizing effect of intramolecular interactions. In peptides with polar side chains, not only the backbone but also the side chain interactions determine the resulting conformations. In this paper, the conformational preferences of the capped dipeptides Ac-Phe-Ser-NH2 (FS) and Ac-Phe-Cys-NH2 (FC) are resolved under laser-desorbed jet cooling conditions using IR-UV ion dip spectroscopy and density functional theory (DFT) quantum chemistry calculations. As serine (Ser) and cysteine (Cys) only differ in an OH (Ser) or SH (Cys) moiety; this subtle alteration allows us to study the effect of the difference in hydrogen bonding for an OH and SH group in detail, and its effect on the secondary structure. IR absorption spectra are recorded in the NH stretching region (3200-3600 cm(-1)). In combination with quantum chemical calculations the spectra provide a direct view of intramolecular interactions. Here, we show that both FS as FC share a singly γ-folded backbone conformation as the most stable conformer. The hydrogen bond strength of OH···O (FS) is stronger than that of SH···O (FC), resulting in a more compact gamma turn structure. A second conformer is found for FC, showing a β turn interaction.

  2. Multidrug-resistant Staphylococcus haemolyticus isolates from infected eyes and healthy conjunctivae in India.

    PubMed

    Panda, Sasmita; Kar, Sarita; Sharma, Savitri; Singh, Durg V

    2016-09-01

    This study aimed to determine the presence of antibiotic resistance genes (ARGs), SCCmec elements and genetic relatedness among Staphylococcus haemolyticus isolated from patients with a variety of eye infections (n=11) and from healthy conjunctiva (n=7). Minimum inhibitory concentrations were determined for 14 antimicrobials according to BSAC guidelines. PCR was used to identify the presence of mecA, mecC, SCCmec type and ARGs. Sequencing was used to determine mutations in gyrA, gyrB, topoisomerase IVA and IVB genes. Genetic relatedness was determined by PFGE. Of the 18 isolates, 17 showed resistance to at least one antibiotic, but none showed resistance to vancomycin or rifampicin. Ten isolates were oxacillin-resistant and carried the mecA gene, eight of which belonged to SCCmec type V. The presence of non-mec SCC elements in two meticillin-susceptible isolates and untypeable SCC elements in meticillin-resistant isolates suggests the involvement of S. haemolyticus in the diversification of SCC elements. Sequence analysis revealed point mutations in gyrA (Ser-84→Leu) and topoisomerase IVA genes (Ser-80→Leu) in 13 isolates, and additional variation in the QRDR (Asp-84→Asn) of two isolates, showing good correlation between mutations in gyrA and topoisomerase IV genes and the level of resistance to fluoroquinolones. PFGE analysis showed distinct pulsotypes forming two major clusters, indicating the existence of diversity among isolates, irrespective of the source of isolation. This study suggests that S. haemolyticus isolates from infected eyes and healthy conjunctivae invariably carried ARGs and SCCmec elements and showed diversity in their genomic content, irrespective of the source of isolation. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  3. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-J.; Hsu, C.-C.; Department of Surgery, Chi-Mei Medical Center, Taipei, Taiwan

    2009-03-06

    CD133-expressing glioma cells play a critical role in tumor recovery after treatment and are resistant to radiotherapy. Herein, we demonstrated that glioblastoma-derived CD133-positive cells (GBM-CD133{sup +}) are capable of self-renewal and express high levels of embryonic stem cell genes and SirT1 compared to GBM-CD133{sup -} cells. To evaluate the role of SirT1 in GBM-CD133{sup +}, we used a lentiviral vector expressing shRNA to knock-down SirT1 expression (sh-SirT1) in GBM-CD133{sup +}. Silencing of SirT1 significantly enhanced the sensitivity of GBM-CD133{sup +} to radiation and increased the level of radiation-mediated apoptosis. Importantly, knock-down of SirT1 increased the effectiveness of radiotherapy in themore » inhibition of tumor growth in nude mice transplanted with GBM-CD133{sup +}. Kaplan-Meier survival analysis indicated that the mean survival rate of GBM-CD133{sup +} mice treated with radiotherapy was significantly improved by Sh-SirT1 as well. In sum, these results suggest that SirT1 is a potential target for increasing the sensitivity of GBM and glioblastoma-associated cancer stem cells to radiotherapy.« less

  4. Prevalence and characterisation of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008.

    PubMed

    Yang, Haiyan; Duan, Guangcai; Zhu, Jingyuan; Zhang, Weidong; Xi, Yuanlin; Fan, Qingtang

    2013-08-01

    A total of 293 Shigella isolates were isolated from patients with diarrhoea in four villages of Henan, China. This study investigated the prevalence of the plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qepA and aac(6')-Ib-cr and compared the polymorphic quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC and parE. Of the isolates, 292 were found to be resistant to nalidixic acid and pipemidic acid, whereas 77 were resistant to ciprofloxacin (resistance rate of 26.3%). Resistance of the Shigella isolates to ciprofloxacin significantly increased from 2001 to 2008 (P<0.05). A mutation in gyrA was present in 277 (94.5%) of the isolates and a mutation in parC was present in 19 (6.5%) of the isolates. Moreover, 168 (57.3%) of the isolates contained only the gyrA (Ser83Leu) mutation. In addition, 107 isolates had two gyrA point mutations (Ser83Leu and either Asp87Gly, Asp87Asn or Asp113Tyr) and 13 isolates had two gyrA point mutations (Ser83Leu and Asp87Gly or Gly214Ala) and one parC mutation (Ser80Ile). In addition, qepA and aac(6')-Ib-cr were present in 6 (2.05%) and 19 (6.48%) of the isolates, respectively. All but one of the PMQR-positive isolates with a ciprofloxacin minimum inhibitory concentration in the range 4-32μg/mL had a mutation in the QRDR. It is known that PMQR-positive Shigella isolates are common in China. This study found that there was a significant increase in mutation rates of the QRDR and the resistant rates to ciprofloxacin. Other mechanisms may be present in the isolates that also contribute to their resistance to ciprofloxacin. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. EDD enhances cell survival and cisplatin resistance and is a therapeutic target for epithelial ovarian cancer

    PubMed Central

    Bradley, Amber; Zheng, Hui; Eblen, Scott T.

    2014-01-01

    The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer. PMID:24379240

  6. Detection of Met-enkephalin and Leu-enkephalin in the posterior pituitary of the holostean fish, Amia calva.

    PubMed

    Dores, R M; McDonald, L K; Crim, J W

    1989-01-01

    Immunohistochemical analysis of the pituitary of the holostean fish, Amia calva, indicated that enkephalin-related immunoreactivity was restricted to the pars nervosa, and was not detected in other regions of the pituitary. Fractionation of acid extracts of posterior pituitaries by reverse phase HPLC followed by RIA analysis indicated the presence of immunoreactive Met-enkephalin and Leu-enkephalin. No immunoreactive forms were detected with RIAs specific for either Met-enkephalin-RF or Met-enkephalin-RGL. The molar ratio of Met- to Leu-enkephalin in this terminal field was 3:1 (n = 4). HPLC fractions were also digested with trypsin and carboxypeptidase B to test for C-terminally extended forms of Met-enkephalin. A novel modified form of Met-enkephalin was detected. Extracts of the posterior pituitary, forebrain, midbrain, hypothalamus and hindbrain were screened with RIAs specific for the Pro-dynorphin end products, alpha-neo-endorphin, dynorphin A(1-17), dynorphin A(1-8) and dynorphin B(1-13). The results of these analyses were negative. Collectively, these data suggest that a Pro-enkephalin-like molecule is present in holostean fish. The holostean enkephalin precursor contains at least Met-enkephalin and Leu-enkephalin. However, Pro-dynorphin-related end products with antigenic determinants similar to mammalian dynorphin A(1-17), dynorphin A(1-8), dynorphin B(1-13) and alpha-neo-endorphin could not be detected in the brain or pituitary of this species.

  7. Schwannoma-like tumor in the anterior cranial fossa immunonegative for Leu7 but immunopositive for Schwann/2E.

    PubMed

    Bohoun, Christian Aïssè; Terakawa, Yuzo; Goto, Takeo; Tanaka, Sayaka; Kuwae, Yuko; Ohsawa, Masahiko; Morisako, Hiroki; Nakajo, Kosuke; Sato, Hidetoshi; Ohata, Kenji; Yokoo, Hideaki

    2017-06-01

    Schwannoma arising from the olfactory system, often called olfactory groove schwannoma (OGS), is rare, as the olfactory bulb and tract, belonging to the central nervous system, should lack Schwann cells. Another rare entity called olfactory ensheathing cell tumor (OECT) has been reported, which mimics clinical and radiological characteristics of OGS. Here, we report two rare cases of schwannoma-like tumor in the anterior cranial fossa that showed negative staining for Leu7, but positive staining for Schwann/2E, and discuss their origin. Two cases of mass lesions in the anterior cranial fossa in a 26-year-old man and a 24-year-old woman were successfully removed. Morphological examination of these tumors was compatible with a diagnosis of schwannoma. Immunohistochemically, both cases were negative for Leu7, yielding a diagnosis of OECT, but were positive for the schwannoma-specific marker, Schwann/2E. Immunohistochemical staining results in our two cases question the current assumption that OGS and OECT can be distinguished only by Leu7 staining pattern. In conclusion, the origins of OGS and OECT remain to be determined, and further studies in larger numbers of cases are needed to characterize these rare tumors in the anterior cranial fossa. © 2016 Japanese Society of Neuropathology.

  8. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes.

    PubMed

    Cenarro, Ana; Etxebarria, Aitor; de Castro-Orós, Isabel; Stef, Marianne; Bea, Ana M; Palacios, Lourdes; Mateo-Gallego, Rocío; Benito-Vicente, Asier; Ostolaza, Helena; Tejedor, Teresa; Martín, César; Civeira, Fernando

    2016-05-01

    The p.Leu167del mutation in the APOE gene has been associated with hyperlipidemia. Our objective was to determine the frequency of p.Leu167del mutation in APOE gene in subjects with autosomal dominant hypercholesterolemia (ADH) in whom LDLR, APOB, and PCSK9 mutations had been excluded and to identify the mechanisms by which this mutant apo E causes hypercholesterolemia. The APOE gene was analyzed in a case-control study. The study was conducted at a University Hospital Lipid Clinic. Two groups (ADH, 288 patients; control, 220 normolipidemic subjects) were included. We performed sequencing of APOE gene and proteomic and cellular experiments. To determine the frequency of the p.Leu167del mutation and the mechanism by which it causes hypercholesterolemia. In the ADH group, nine subjects (3.1%) were carriers of the APOE c.500_502delTCC, p.Leu167del mutation, cosegregating with hypercholesterolemia in studied families. Proteomic quantification of wild-type and mutant apo E in very low-density lipoprotein (VLDL) from carrier subjects revealed that apo E3 is almost a 5-fold increase compared to mutant apo E. Cultured cell studies revealed that VLDL from mutation carriers had a significantly higher uptake by HepG2 and THP-1 cells compared to VLDL from subjects with E3/E3 or E2/E2 genotypes. Transcriptional down-regulation of LDLR was also confirmed. p.Leu167del mutation in APOE gene is the cause of hypercholesterolemia in the 3.1% of our ADH subjects without LDLR, APOB, and PCSK9 mutations. The mechanism by which this mutation is associated to ADH is that VLDL carrying the mutant apo E produces LDLR down-regulation, thereby raising plasma low-density lipoprotein cholesterol levels.

  9. Structural studies of α-melanocyte-stimulating hormone and a novel β-melanocyte-stimulating hormone from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias

    PubMed Central

    Bennett, Hugh P. J.; Lowry, Philip J.; McMartin, Colin; Scott, Alexander P.

    1974-01-01

    A melanocyte-stimulating hormone (MSH) has been isolated from extracts of the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias by gel-filtration and ion-exchange chromatography. It had approximately 1% of the potency of mammalian α-MSH on bioassays in vitro on frog skin and dogfish skin. Sequence analysis revealed it to be a hexadecapeptide with the following primary structure: Asp-Gly-Asp-Asp-Tyr-Lys-Phe-Gly-His-Phe-Arg-Trp-Ser-Val-Pro-Leu. It appears to be related to the β-MSH species of mammalian species but has only the sequence -His-Phe-Arg-Trp- in common with the heptapeptide core -Met-Glu-His-Phe-Arg-Trp-Gly- which is characteristic not only of the MSH peptides but also of the adrenocorticotrophins and lipotrophins studied so far. An α-MSH was also isolated, 50% of which was amidated at the C-terminus group. Sequence data from this study taken in conjunction with those from a previous study (Lowry & Chadwick, 1970b) revealed it to be a tridecapeptide which is identical with the N-terminal sequence of dogfish adrenocorticotrophin. PMID:4375978

  10. Genetic polymorphisms in extracellular superoxide dismutase Leu53Leu, Arg213Gly, and Ala40Thr and susceptibility to type 2 diabetes mellitus.

    PubMed

    Yang, Y M; Xie, X R; Jin, A L

    2016-12-02

    The most common type of endocrine disease is type 2 diabetes mellitus (T2DM); genetic factors contribute to the development to T2DM. In this study, we investigated the role of the Leu53Leu, Arg213Gly, and Ala40Thr polymorphisms in extracellular superoxide dismutase (EC-SOD) gene in the development of T2DM in a Chinese population. DNA was extracted from peripheral blood samples obtained from 256 T2DM patients and 324 control subjects recruited from our hospital between January 2013 and March 2015. DNA was genotyped by polymerase chain reaction-restriction fragment length polymorphism. The obtained data was then statistically analyzed. The chi-square test revealed a statistically significant difference in the genotype frequencies of EC-SOD Ala40Thr (χ 2 = 13.26, P = 0.001) between the patients and controls. Unconditional regression analysis indicated that the GA and AA genotypes of EC-SOD Ala40Thr were associated with an increased risk of T2DM compared to the GG genotype {adjusted odds ratio (OR) [95% confidence interval (CI)] = 1.46 (1.01-2.11) and 2.67 (1.48-4.85), respectively}. In the dominant model, the GA+AA genotype of EC-SOD Ala40Thr was correlated with a higher risk of T2DM, in comparison with the GG genotype (OR = 1.64, 95%CI = 1.16-2.33). In the recessive model, AA of EC-SOD Ala40Thr showed a 2.19-fold higher risk of developing T2DM than the GG+GA genotype. In conclusion, people with the Ala40Thr polymorphism in EC-SOD are at a higher risk of developing T2DM; therefore, this may be utilized as a biomarker for early screening of T2DM in a Chinese population.

  11. Involvement of RhoGDI2 in the resistance of colon cancer cells to 5-fluorouracil.

    PubMed

    Zheng, Zhong; Li, Jianfang; He, Xiangyi; Chen, Xuehua; Yu, Beiqin; Ji, Jun; Zhang, Jianian; Wang, Tingfeng; Gu, Qinlong; Zhu, Zhenggang; Liu, Bingya

    2010-01-01

    The acquisition of resistance to 5-FU is one of the most prominent obstacles to successful chemotherapy, and the mechanisms underlying the resistance are not fully understood. The aim of this study is to identify novel mediators of 5-FU resistance in colon cancer cells. LoVo colon cancer cells were induced to 5-FU resistance in vitro. The global protein profiles between LoVo and its 5-FU resistant derivative cell line LoVo/5-FU were analyzed by two dimensional gel electrophoresis-based comparative proteomics. The identified proteins expression was confirmed by Western blot analysis. The cytotoxicity of 5-FU was measured in LoVo/5-FU after knockdown of RhoGDI2 (one of the identified protien). Three differentially expressed proteins were identified. RhoGDI2 and CapG were upregulated, whereas proapoptotic protein Maspin was down-regulated in LoVo/5-FU and validated by Western blotting. Furthermore, knockdown of RhoGDI2 expression by transfection with the RhoGDI2-specific siRNA significantly reduced the resistance to 5-FU in LoVo/5-FU (p < 0.05). These novel data suggest that these differentially expressed proteins may contribute to the development of 5-FU resistance in colon cancer cells.

  12. Knockdown of Both Mitochondrial Isocitrate Dehydrogenase Enzymes In Pancreatic Beta Cells Inhibits Insulin Secretion

    PubMed Central

    MacDonald, Michael J.; Brown, Laura J.; Longacre, Melissa J.; Stoker, Scott W.; Kendrick, Mindy A.; Hasan, Noaman M.

    2013-01-01

    Background There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle. Methods With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%–90%) knockdown of the mitochondrial IDHs separately and together in the same cell line. Results With knockdown of both mitochondrial IDH’s mRNA, enzyme activity and protein level, but not with knockdown of one mitochondrial IDH, glucose- and BCH (an allosteric activator of glutamate dehydrogenase)-plus-glutamine-stimulated insulin release were inhibited. Cellular levels of citrate, α-ketoglutarate, malate and ATP were altered in patterns consistent with blockage at the mitochondrial IDH reactions. We were able to generate only 50% knockdown of Idh1 mRNA in multiple cell lines (without inhibition of insulin release) possibly because greater knockdown of IDH1 was not compatible with cell line survival. Conclusions The mitochondrial IDHs are redundant for insulin secretion. When both enzymes are severely knocked down, their low activities (possibly assisted by transport of IDH products and other metabolic intermediates from the cytosol into mitochondria) are sufficient for cell growth, but inadequate for insulin secretion when the requirement for intermediates is certainly more rapid. The results also indicate that IDH2 can support the citric acid cycle. General Significance As almost all mammalian cells possess substantial amounts of all three IDH enzymes, the biological principles suggested by these results are probably extrapolatable to many tissues. PMID:23876293

  13. The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance.

    PubMed

    Entin-Meer, Michal; Sevilya, Ziv; Hizi, Amnon

    2002-10-15

    Phe-119 in the reverse transcriptase (RT) of mouse mammary tumour virus (MMTV) is homologous with Tyr-115 in HIV type 1 (HIV-1) RT and to Phe-155 in murine leukaemia virus (MLV) RT. By mutating these residues in HIV-1 and MLV RTs (which are strict DNA polymerases) the enzymes were shown to function also as RNA polymerases. Owing to the uniqueness of MMTV as a type B retrovirus, we have generated a Phe-119-Val mutant of MMTV RT to study the involvement of this residue in affecting the catalytic features of this RT. The data presented here show that the mutant MMTV RT can incorporate both deoxyribonucleosides and ribonucleosides while copying either RNA or DNA. In addition, this mutant RT shows resistance to nucleoside analogues and an enhanced fidelity of DNA synthesis; all relative to the wild-type enzyme. The Phe-119-Val mutant is also different from the wild-type enzyme in its preference for most template primers tested and in its ability to synthesize DNA under non-processive and processive conditions. Overall, it is likely that the aromatic side chain of Phe-119 is located at the dNTP-binding site of MMTV RT and thus might be part of a putative "steric gate" that prevents the incorporation of nucleoside triphosphates. Since the only three-dimensional structures of RTs published so far are those of HIV-1 and MLV, it is likely that MMTV RT folds quite similarly to these RTs.

  14. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    PubMed Central

    Bass, Chris; Nikou, Dimitra; Donnelly, Martin J; Williamson, Martin S; Ranson, Hilary; Ball, Amanda; Vontas, John; Field, Linda M

    2007-01-01

    Background Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1) TaqMan probes and 2) high resolution melt (HRM) analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA) and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost), and safety (requirement for hazardous chemicals). Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions) and the most specific (with the lowest number of incorrect scores). Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS-PCR, SSOP-ELISA, PCR Dot

  15. Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity.

    PubMed

    Miraglia del Giudice, E; Santoro, N; Cirillo, G; Raimondo, P; Grandone, A; D'Aniello, A; Di Nardo, M; Perrone, L

    2004-03-01

    To test whether ghrelin variants could play a role in modulating some aspects of the obese phenotype during childhood. We screened the ghrelin gene in 300 Italian obese children and adolescents (mean age 10.5+/-3.2 y; range 4-19 y) and 200 controls by using the single-strand conformation polymorphism and the restriction fragment length polymoprhism analysis. No mutations were detected with the exception of two previously described polymorphisms, Arg51Gln and Leu72Met. For both variations, allelic frequencies were similar between patients and controls. Interestingly, we showed that the Leu72Met polymorphism was associated with differences in the age at obesity onset. Patients with the Met72 allele became obese earlier than homozygous patients for the wild Leu72 allele. The logrank test comparing the plots of the complement of Kaplan-Meier estimates between the two groups of patients was statistically significant (P<0.0001). It is unlikely that ghrelin variations cause the obesity due to single-gene mutations. The Leu72Met polymorphism of the ghrelin gene seems to play a role in anticipating the onset of obesity among children suggesting, therefore, that ghrelin may be involved in the pathophysiology of human adiposity.

  16. Substance-P antagonists: effect on spontaneous and drug-induced locomotor activity in the rat.

    PubMed

    Elliott, P J; Iversen, S D

    1987-05-01

    The substance P (SP) antagonists (D-Pro4, D-Trp7,9, Leu11) SP(4-11), (D-Pro4, D-Trp7,9, Phe11)SP(4-11) and (D-Pro4, D-Trp7,9,10, Leu11) SP (4-11) were infused into the lateral ventricles (i.c.v.) and their effects on spontaneous and drug-induced locomotor activity were investigated. The drug DiMeC7, the stable substance P agonist, was used to stimulate locomotor activity because of its prolonged action. Only (D-Pro4, D-Trp7,9,10) SP (4-11) was found to attenuate the drug-induced increases in motor activity, indicating that it is a substance P antagonist with activity in the CNS.

  17. Magnetic Activity and Period Variation Studies of the Short-period Eclipsing Binaries. II. V1101 Her, AD Phe, and NSV 455 (J011636.15-394955.7)

    NASA Astrophysics Data System (ADS)

    Pi, Qing-feng; Zhang, Li-yun; Bi, Shao-lan; Han, Xianming L.; Wang, Dai-mei; Lu, Hong-peng

    2017-12-01

    In this paper, we present new BVRI light curves of short-period contact eclipsing binaries V1101 Her and AD Phe from our observations carried out from 2014 to 2015 using the SARA KP and SARA CT telescopes. There is an eclipsing binary located at α(2000) = 01h16m36.ˢ15 and δ(2000) = -39°49‧55.″7 in the field of view of AD Phe. We derived an updated ephemeris and found there a cyclic variation overlaying a continuous period increase (V1101 Her) and decrease (AD Phe). This kind of cyclic variation may be attributed to the light time effect via the presence of the third body or magnetic activity cycle. The orbital period increase suggests that V1101 Her is undergoing a mass-transfer from the primary to the secondary component (dM 1/dt = 2.64(±0.11) × 10-6 M ⊙ yr-1) with the third body (P 3 = 13.9(±1.9) years), or 2.81(±0.07) × 10-6 M ⊙ yr-1 for an increase andmagnetic cycle (12.4(±0.5) years). The long-term period decrease suggests that AD Phe is undergoing a mass-transfer from the secondary component to the primary component at a rate of -8.04(±0.09) × 10-8 M ⊙ yr-1 for a period decrease and the third body (P 3 = 56.2(±0.8) years), or -7.11(±0.04) × 10-8 M ⊙ yr-1 for a decrease and magnetic cycle (50.3(±0.5) years). We determined their orbital and geometrical parameters. For AD Phe, we simultaneously analyzed our BVRI light curves and the spectroscopic observations obtained by Duerbeck & Rucinski. The spectral type of V1101 Her was classified as G0 ± 2V by LAMOST stellar spectra survey. The asymmetry of the R-band light curve of AD Phe obtained by McFarlane & Hilditch in 1987 is explained by a cool spot on the primary component.

  18. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release

    PubMed Central

    Sette, Paola; Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Snyder, Greg; Smith, Patrick; Xiao, Tsan. Sam; Bouamr, Fadila

    2011-01-01

    Summary Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects due to interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical “boomerang” folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently mutation of Phe105 and surrounding residues at the tip of the loop compromises the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix. PMID:21889351

  19. Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNA(Phe) gene.

    PubMed

    Zsurka, G; Hampel, K G; Nelson, I; Jardel, C; Mirandola, S R; Sassen, R; Kornblum, C; Marcorelles, P; Lavoué, S; Lombès, A; Kunz, W S

    2010-02-09

    To present 2 families with maternally inherited severe epilepsy as the main symptom of mitochondrial disease due to point mutations at position 616 in the mitochondrial tRNA(Phe) (MT-TF) gene. Histologic stainings were performed on skeletal muscle slices from the 2 index patients. Oxidative phosphorylation activity was measured by oxygraphic and spectrophotometric methods. The patients' complete mitochondrial DNA (mtDNA) and the relevant mtDNA region in maternal relatives were sequenced. Muscle histology showed only decreased overall COX staining, while a combined respiratory chain defect, most severely affecting complex IV, was noted in both patients' skeletal muscle. Sequencing of the mtDNA revealed in both patients a mutation at position 616 in the MT-TF gene (T>C or T>G). These mutations disrupt a base pair in the anticodon stem at a highly conserved position. They were apparently homoplasmic in both patients, and had different heteroplasmy levels in the investigated maternal relatives. Deleterious mutations in the mitochondrial tRNA(Phe) may solely manifest with epilepsy when segregating to homoplasmy. They may be overlooked in the absence of lactate accumulation and typical mosaic mitochondrial defects in muscle.

  20. Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade.

    PubMed

    Li, Ting; Liu, Nannan

    2017-12-01

    This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus , focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages.

  1. Glu-Phe from onion (Allium Cepa L.) attenuates lipogenesis in hepatocytes.

    PubMed

    Lee, Yu Geon; Cho, Jeong-Yong; Hwang, Eom Ji; Jeon, Tae-Il; Moon, Jae-Hak

    2017-07-01

    A Glu-Phe (EF) was isolated from onion (Allium cepa L. cv. Sunpower). The chemical structure of EF was determined by nuclear magnetic resonance and electrospray ionization-mass (ESI-MS) spectroscopy. We showed that EF reduced lipid accumulation in mouse hepatocytes by inhibiting the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its lipogenic target genes. We also found that AMP-activated protein kinase (AMPK) was required for the inhibitory effect of EF on lipid accumulation in mouse hepatocytes. Furthermore, EF was qualified in nine onion cultivars by selective multiple reaction-monitoring detection of liquid chromatography-ESI-MS. These results suggest that EF could contribute to the beneficial effect of onion supplement in maintaining hepatic lipid homeostasis.

  2. Propensities of Aromatic Amino Acids versus Leucine and Proline to Induce Residual Structure in the Denatured State Ensemble of Iso-1-cytochrome c

    PubMed Central

    Finnegan, Michaela L.; Bowler, Bruce E.

    2010-01-01

    Histidine-heme loop formation in the denatured state of a protein is a sensitive means to probe for residual structure under unfolding conditions. In this study, we use a host-guest approach to investigate the relative tendencies of different amino acids to promote residual structure under denaturing conditions. The host for this work is a 6 amino acid insert of five alanines followed by a lysine engineered immediately following a unique histidine near the N-terminus of yeast iso-1-cytochrome c. We substitute the 4th alanine in this sequence, HAAAXAK, with X = Trp, Phe, Tyr and Leu. The effects of proline are tested with substitutions at positions 1 and 5 in the insert, HPAAAAK and HAAAAPK, respectively. Thermodynamic studies on His-heme loop formation in 3 M guanidine hydrochloride reveal significant stabilization of residual structure by aromatic amino acids, particularly, Trp and Phe, and minimal stabilization of residual structure by Leu. Prolines disfavor His-heme loop formation slightly, presumably due to enhanced chain stiffness. Kinetic studies reveal that much of the change in His-heme loop stability for the aromatic amino acids is caused by a slowing of the rate of His-heme loop breakage, indicating that residual structure is preferentially stabilized in the closed-loop form of the denatured state. PMID:20850458

  3. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids.

    PubMed Central

    Hoaki, T; Nishijima, M; Kato, M; Adachi, K; Mizobuchi, S; Hanzawa, N; Maruyama, T

    1994-01-01

    Three hyperthermophilic sulfur-dependent heterotrophs were isolated from a shallow submarine hydrothermal system at an inlet of Kodakara-jima island, Kagoshima, Japan. The isolates grew at 60 to 97 degrees C, with the optimum temperatures at 85 to 90 degrees C. Sensitivity to rifampin and the existence of ether lipids indicated that the isolates are hyperthermophilic archaea. Partial sequencing of the genes coding for 16S rRNA showed that the three isolates are closely related to the genus Thermococcus. They grew on proteinaceous mixtures, such as yeast extract, Casamino Acids, and purified proteins (e.g., casein and gelatin), but not on carbohydrates or organic acids as sole carbon and energy sources. Nine amino acids were essential for growth of isolate KS-1 (Thr, Leu, Ile, Val, Met, Phe, His, Tyr, and Arg). Isolate KS-2 required Lys in addition to the nine amino acids, and KS-8 required Lys instead of Tyr. In comparative studies, it was shown that Thermococcus celer DSM 2476 required 10 amino acids (Thr, Leu, Ile, Val, Met, Phe, Tyr, Trp, Lys, and Arg) while Pyrococcus furiosus DSM 3638 required only Ile and Val. The hyperthermophilic fermentative eubacterium Thermotoga neapolitana DSM 4359 did not require any amino acids for growth. Images PMID:8085828

  4. Pten Knockdown in vivo Increases Excitatory Drive onto Dentate Granule Cells

    PubMed Central

    Luikart, Bryan W.; Schnell, Eric; Washburn, Eric K.; Bensen, AeSoon L.; Tovar, Kenneth R.; Westbrook, Gary L.

    2011-01-01

    Some cases of autism spectrum disorder (ASD) have mutations in the lipid phosphatase, Pten (phosphatase and tensin homolog on chromosome 10). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored. We used in vivo stereotaxic injections of lentivirus expressing an shRNA to knockdown Pten in mouse neonatal and young adult dentate granule cells. We then assessed the morphology and synaptic physiology between two weeks and four months later. Confocal imaging of the hippocampus revealed a marked increase in granule cell size and an increase in dendritic spine density. The onset of morphological changes occurred earlier in neonatal mice than in young adults. We used whole-cell recordings from granule cells in acute slices to assess synaptic function following Pten knockdown. Consistent with the increase in dendritic spines, the frequency of excitatory miniature and spontaneous postsynaptic currents increased. However, there was little or no effect on inhibitory postsynaptic currents. Thus Pten knockdown results in an imbalance between excitatory and inhibitory synaptic activity. Because reductions in Pten affected mature granule cells as well as developing granule cells, we suggest that the disruption of circuit function by Pten hypofunction may be ongoing well beyond early development. PMID:21411674

  5. Hereditary Lysozyme Amyloidosis Variant p.Leu102Ser Associates with Unique Phenotype

    PubMed Central

    Nasr, Samih H.; Dasari, Surendra; Mills, John R.; Theis, Jason D.; Zimmermann, Michael T.; Fonseca, Rafael; Vrana, Julie A.; Lester, Steven J.; McLaughlin, Brooke M.; Gillespie, Robert; Highsmith, W. Edward; Lee, John J.; Dispenzieri, Angela

    2017-01-01

    Lysozyme amyloidosis (ALys) is a rare form of hereditary amyloidosis that typically manifests with renal impairment, gastrointestinal (GI) symptoms, and sicca syndrome, whereas cardiac involvement is exceedingly rare and neuropathy has not been reported. Here, we describe a 40-year-old man with renal impairment, cardiac and GI symptoms, and peripheral neuropathy. Renal biopsy specimen analysis revealed amyloidosis with extensive involvement of glomeruli, vessels, and medulla. Amyloid was also detected in the GI tract. Echocardiographic and electrocardiographic findings were consistent with cardiac involvement. Proteomic analysis of Congo red–positive renal and GI amyloid deposits detected abundant lysozyme C protein. DNA sequencing of the lysozyme gene in the patient and his mother detected a heterozygous c.305T>C alteration in exon 3, which causes a leucine to serine substitution at codon 102 (Human Genome Variation Society nomenclature: p.Leu102Ser; legacy designation: L84S). We also detected the mutant peptide in the proband’s renal and GI amyloid deposits. PolyPhen analysis predicted that the mutation damages the encoded protein. Molecular dynamics simulations suggested that the pathogenesis of ALys p.Leu102Ser is mediated by shifting the position of the central β-hairpin coordinated with an antiparallel motion of the C-terminal helix, which may alter the native-state structural ensemble of the molecule, leading to aggregation-prone intermediates. PMID:28049649

  6. Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis.

    PubMed

    Kovacheva, Marineta; Zepp, Michael; Berger, Stefan M; Berger, Martin R

    2014-07-30

    Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-reg-ulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic le-sions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant de-creases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions.

  7. Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis

    PubMed Central

    Kovacheva, Marineta; Zepp, Michael; Berger, Stefan M.; Berger, Martin R.

    2014-01-01

    Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-regulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic lesions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant decreases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions. PMID:24980816

  8. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    PubMed

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  9. Effects of PHENYLALANINE AMMONIA LYASE ( PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    DOE PAGES

    Cass, Cynthia L.; Peraldi, Antoine; Dowd, Patrick F.; ...

    2015-06-19

    The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE ( PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plantsmore » had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. Lastly, the data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.« less

  10. Effects of PHENYLALANINE AMMONIA LYASE ( PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cass, Cynthia L.; Peraldi, Antoine; Dowd, Patrick F.

    The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE ( PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plantsmore » had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. Lastly, the data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.« less

  11. TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ.

    PubMed

    Qin, Xia; Qiu, Feng; Zou, Zhen

    2017-11-04

    Lung cancer, in particular, non-small cell lung cancer (NSCLC), is the leading cause of cancer-related mortality. Cis-Diamminedichloroplatinum (cisplatin, CDDP) as first-line chemotherapy for NSCLC, but resistance occurs frequently. We previously reported that Tripartite motif protein 25 (TRIM25) was highly expressed in cisplatin-resistant human lung adenocarcinoma A549 cells (A549/CDDP) in comparison with its parental A549 cells. Herein, we take a further step to demonstrate the association of TRIM25 and cisplatin resistance and also the underlying mechanisms. Knockdown of TRIM25 by RNA interference in A549/CDDP cells decreased half maximal inhibitory concentration (IC 50 ) values and promoted apoptosis in response to cisplatin, whereas overexpression of TRIM25 had opposite effects. More importantly, we found that concomitant knockdown of 14-3-3σ and TRIM25 absolutely reversed the decreased MDM2, increased p53, increased cleaved-Capsese3 and decreased IC 50 value induced by knockdown of TRIM25 individually, suggesting that TRIM25 mediated cisplatin resistance primarily through downregulation of 14-3-3σ. Our results indicate that TRIM25 is associated with cisplatin resistance and 14-3-3σ-MDM2-p53 signaling pathway is involved in this process, suggesting targeting TRIM25 may be a potential strategy for the reversal of cisplatin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer.

    PubMed

    Pawar, Aishwarya; Gollavilli, Paradesi Naidu; Wang, Shaomeng; Asangani, Irfan A

    2018-02-27

    BRD4 plays a major role in the transcription networks orchestrated by androgen receptor (AR) in castration-resistant prostate cancer (CRPC). Several BET inhibitors (BETi) that displace BRD4 from chromatin are being evaluated in clinical trials for CRPC. Here, we describe mechanisms of acquired resistance to BETi that are amenable to targeted therapies in CRPC. BETi-resistant CRPC cells displayed cross-resistance to a variety of BETi in the absence of gatekeeper mutations, exhibited reduced chromatin-bound BRD4, and were less sensitive to BRD4 degraders/knockdown, suggesting a BRD4-independent transcription program. Transcriptomic analysis revealed reactivation of AR signaling due to CDK9-mediated phosphorylation of AR, resulting in sensitivity to CDK9 inhibitors and enzalutamide. Additionally, increased DNA damage associated with PRC2-mediated transcriptional silencing of DDR genes was observed, leading to PARP inhibitor sensitivity. Collectively, our results identify the therapeutic limitation of BETi as a monotherapy; however, our BETi resistance data suggest unique opportunities for combination therapies in treating CRPC. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors

    PubMed Central

    Anastas, Jamie N.; Kulikauskas, Rima M.; Tamir, Tigist; Rizos, Helen; Long, Georgina V.; von Euw, Erika M.; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A.; Lucero, Olivia M.; Chien, Andy J.; Moon, Randall T.

    2014-01-01

    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance. PMID:24865425

  14. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less

  15. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template.

    PubMed

    Wilczynski, Andrzej; Wilson, Krista R; Scott, Joseph W; Edison, Arthur S; Haskell-Luevano, Carrie

    2005-04-21

    The melanocortin receptor system consists of endogenous agonists, antagonists, G-protein coupled receptors, and auxiliary proteins that are involved in the regulation of complex physiological functions such as energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. Herein, we report the structure-activity relationship (SAR) of a new chimeric hAGRP-melanocortin agonist peptide template Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that was characterized using amino acids previously reported in other melanocortin agonist templates. Twenty peptides were examined in this study, and six peptides were selected for (1)H NMR and computer-assisted molecular modeling structural analysis. The most notable results include the identification that modification of the chimeric template at the His position with Pro and Phe resulted in ligands that were nM mouse melanocortin-3 receptor (mMC3R) antagonists and nM mouse melanocortin-4 receptor (mMC4R) agonists. The peptides Tyr-c[beta-Asp-His-DPhe-Ala-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) and Tyr-c[beta-Asp-His-DNal(1')-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) resulted in 730- and 560-fold, respectively, mMC4R versus mMC3R selective agonists that also possessed nM agonist potency at the mMC1R and mMC5R. Structural studies identified a reverse turn occurring in the His-DPhe-Arg-Trp domain, with subtle differences observed that may account for the differences in melanocortin receptor pharmacology. Specifically, a gamma-turn secondary structure involving the DPhe(4) in the central position of the Tyr-c[beta-Asp-Phe-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) peptide may differentiate the mixed mMC3R antagonist and mMC4R agonist pharmacology.

  16. Structure-Function Relationships in Human Testis-determining Factor SRY

    PubMed Central

    Racca, Joseph D.; Chen, Yen-Shan; Maloy, James D.; Wickramasinghe, Nalinda; Phillips, Nelson B.; Weiss, Michael A.

    2014-01-01

    Human testis determination is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in SRY cause 46 XY gonadal dysgenesis with female somatic phenotype (Swyer syndrome) and confer a high risk of malignancy (gonadoblastoma). Such mutations cluster in the SRY high mobility group (HMG) box, a conserved motif of specific DNA binding and bending. To explore structure-function relationships, we constructed all possible substitutions at a site of clinical mutation (W70L). Our studies thus focused on a core aromatic residue (position 15 of the consensus HMG box) that is invariant among SRY-related HMG box transcription factors (the SOX family) and conserved as aromatic (Phe or Tyr) among other sequence-specific boxes. In a yeast one-hybrid system sensitive to specific SRY-DNA binding, the variant domains exhibited reduced (Phe and Tyr) or absent activity (the remaining 17 substitutions). Representative nonpolar variants with partial or absent activity (Tyr, Phe, Leu, and Ala in order of decreasing side-chain volume) were chosen for study in vitro and in mammalian cell culture. The clinical mutation (Leu) was found to markedly impair multiple biochemical and cellular activities as respectively probed through the following: (i) in vitro assays of specific DNA binding and protein stability, and (ii) cell culture-based assays of proteosomal degradation, nuclear import, enhancer DNA occupancy, and SRY-dependent transcriptional activation. Surprisingly, however, DNA bending is robust to this or the related Ala substitution that profoundly impairs box stability. Together, our findings demonstrate that the folding, trafficking, and gene-regulatory function of SRY requires an invariant aromatic “buttress” beneath its specific DNA-bending surface. PMID:25258310

  17. Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition.

    PubMed

    Koch, Heiner; Busto, M Estela Del Castillo; Kramer, Karl; Médard, Guillaume; Kuster, Bernhard

    2015-06-05

    Tyrosine kinase inhibitors (TKIs) have become an important therapeutic option for treating several forms of cancer. Gefitinib, an inhibitor of the epidermal growth factor receptor (EGFR), is in clinical use for treating non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. However, despite high initial response rates, many patients develop resistance to gefitinib. The molecular mechanisms of TKI resistance often remain unclear. Here, we describe a chemical proteomic approach comprising kinase affinity purification (kinobeads) and quantitative mass spectrometry for the identification of kinase inhibitor resistance mechanisms in cancer cells. We identified the previously described amplification of MET and found EPHA2 to be more than 10-fold overexpressed (p < 0.001) in gefitinib-resistant HCC827 cells suggesting a potential role in developing resistance. siRNA-mediated EPHA2 knock-down or treating cells with the multikinase inhibitor dasatinib restored sensitivity to gefitinib. Of all dasatinib targets, EPHA2 exhibited the most drastic effect (p < 0.001). In addition, EPHA2 knockdown or ephrin-A1 treatment of resistant cells decreased FAK phosphorylation and cell migration. These findings confirm EPHA2 as an actionable drug target, provide a rational basis for drug combination approaches, and indicate that chemical proteomics is broadly applicable for the discovery of kinase inhibitor resistance.

  18. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism

    PubMed Central

    Ai, Zhihong; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2016-01-01

    Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells towards mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer. PMID:26801746

  19. Insulin and proglucagon-derived peptides from the horned frog, Ceratophrys ornata (Anura:Leptodactylidae).

    PubMed

    White, A M; Secor, S M; Conlon, J M

    1999-07-01

    Insulin and peptides derived from the processing of proglucagon have been isolated from an extract of the pancreas of the South American horned frog, Ceratophrys ornata (Leptodactylidae). Ceratophrys insulin is identical to the insulin previously isolated from the toad, Bufo marinus (Bufonidae). Ceratophrys glucagon was isolated in two molecular forms with 29- and 36-amino acid residues in approximately equal amounts. Glucagon-29 is identical to glucagon from B. marinus and from the bullfrog, Rana catesbeiana (Ranidae) and contains only 1 amino acid substitution (Thr29 --> Ser) compared with glucagon from Xenopus laevis (Pipidae). Glucagon-36 comprises glucagon-29 extended from its C-terminus by Lys-Arg-Ser-Gly-Gly-Met-Ser. This extension is structurally dissimilar to the C-terminal octapeptide of mammalian oxyntomodulin and resembles more closely that found in C-terminally extended glucagons isolated from fish pancreata. Ceratophrys glucagon-like peptide-1 (GLP-1) (His-Ala-Asp-Gly-Thr-Tyr-Gln-Asn-Asp-Val10-Gln-Gln-Phe-Leu-Glu- Glu-Lys-Ala-Ala-Lys20-Glu-Phe-Ile-Asp-Trp-Leu-Ile-Lys-Gly- Lys30-Pro-Lys-Lys-Gln-Arg-Leu-Ser) contains 3 amino acid substitutions compared with the corresponding peptide from B. marinus, 8 substitutions compared with GLP-1 from R. catesbeiana, and between 4 and 11 substitutions compared with the three GLP-1 peptides identified in X. laevis proglucagon. GLP-2 was not identified in the extract of Ceratophrys pancreas. The data indicate that, despite its importance in the regulation of glucose metabolism, the primary structure of GLP-1 has been very poorly conserved during evolution, even among a single order such as the Anura. Copyright 1999 Academic Press.

  20. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells.

    PubMed

    Jin, Yue; Huo, Bo; Fu, Xueqi; Cheng, Zhongyi; Zhu, Jun; Zhang, Yu; Hao, Tian; Hu, Xin

    2017-08-01

    Histone lysine methylation, which plays an important role in the regulation of gene expression, genome stability, chromosome conformation and cell differentiation, is a dynamic process that is collaboratively regulated by lysine methyltransferases (KMTs) and lysine demethylases (KDMs). LSD1, the first identified KDMs, catalyzes the demethylation of mono- and di-methylated H3K4 and H3K9. Here, we systematically investigated the effects of LSD1 knockdown on histone methylations. Surprisingly, in addition to H3K4 and H3K9, the methylation level on other histone lysines, such as H3K27, H3K36 and H3K79, are also increased. The expression of SOX2, E-cadherin and FoxA2 are increased upon LSD1 knockdown, and the methylation level of H3K4, H3K27 and H3K36 in the promoter region of these genes are all changed after LSD1 knockdown. Our results show that LSD1 knockdown has a broad effect on histone lysine methylation, which indicates that LSD1 regulates histone lysine methylation in collaboration with other KMTs and KDMs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Effect of 8-week leucine supplementation and resistance exercise training on muscle hypertrophy and satellite cell activation in rats.

    PubMed

    Lim, Chang Hyun; Gil, Ju Hyun; Quan, Helong; Viet, Dang Ha; Kim, Chang Keun

    2018-06-01

    We investigated the effects of regular leucine intake and/or resistance exercise training on skeletal muscle hypertrophy and satellite cell activity after the administration of different doses of leucine. Ten-week-old Sprague-Dawley rats were assigned to six groups (n = 7 per group): a control group (Con), two groups receiving either 10% (0.135 g/kg.wt) (Leu10) or 50% (0.675 g/kg.wt) (Leu50) leucine supplementation, and three exercise groups receiving 0% (Ex), 10% (Leu10Ex), and 50% (Leu50Ex) leucine supplementation. The rats performed ladder climbing exercises thrice per week for 8 weeks, and received leucine supplements at the same time daily. Muscle phenotypes were assessed by immunohistochemistry. MyoD, myogenin, and IGF1 protein levels were determined by western blot. The Leu50Ex group displayed significantly higher numbers of positive embryonic myosin fibers (0.35 ± 0.08, 250%) and myonuclei (3.29 ± 0.3, 118.7%) than all other groups. And exercise training groups increased the cross-sectional area, the number of satellite cells and protein expression of MyoD, myogenin, and IGF1alpha relative to the Control group (P < 0.05). However, Only leucine supplementation group did not increase skeletal muscle hypertrophy and satellite cell activity, regardless of the dose (P > 0.05). Leucine intake accompanied by regular exercise training may increase satellite cell activation in skeletal muscles, and improve muscle quality more effectively than continuous leucine ingestion alone. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Oxalyl retro-peptide gelators. Synthesis, gelation properties and stereochemical effects

    PubMed Central

    Makarević, Janja; Jokić, Milan; Frkanec, Leo; Čaplar, Vesna; Šijaković Vujičić, Nataša

    2010-01-01

    Summary In this work we report on gelation properties, self-assembly motifs, chirality effects and morphological characteristics of gels formed by chiral retro-dipeptidic gelators in the form of terminal diacids (1a–5a) and their dimethyl ester (1b–5b) and dicarboxamide (1c–5c) derivatives. Terminal free acid retro-dipeptides (S,S)-bis(LeuLeu) 1a, (S,S)-bis(PhgPhg) 3a and (S,S)-bis(PhePhe) 5a showed moderate to excellent gelation of highly polar water/DMSO and water/DMF solvent mixtures. Retro-peptides incorporating different amino acids (S,S)-(LeuPhg) 2a and (S,S)-(PhgLeu) 4a showed no or very weak gelation. Different gelation effectiveness was found for racemic and single enantiomer gelators. The heterochiral (S,R)-1c diastereoisomer is capable of immobilizing up to 10 and 4 times larger volumes of dichloromethane/DMSO and toluene/DMSO solvent mixtures compared to homochiral (S,S)-1c. Based on the results of 1H NMR, FTIR, CD investigations, molecular modeling and XRPD studies of diasteroisomeric diesters (S,S)-1b/(S,R)-1b and diacids (S,S)-1b/(S,R)-1a, a basic packing model in their gel aggregates is proposed. The intermolecular hydrogen bonding between extended gelator molecules utilizing both, the oxalamide and peptidic units and layered organization were identified as the most likely motifs appearing in the gel aggregates. Molecular modeling studies of (S,S)- 1a/(S,R)-1a and (S,S)-1b/(S,R)- 1b diasteroisomeric pairs revealed a decisive stereochemical influence yielding distinctly different low energy conformations: those of (S,R)-diastereoisomers with lipophilic i-Bu groups and polar carboxylic acid or ester groups located on the opposite sides of the oxalamide plane resembling bola amphiphilic structures and those of (S,S)-diasteroisomers possessing the same groups located at both sides of the oxalamide plane. Such conformational characteristics were found to strongly influence both, gelator effectiveness and morphological characteristics of gel

  3. Oxalyl retro-peptide gelators. Synthesis, gelation properties and stereochemical effects.

    PubMed

    Makarević, Janja; Jokić, Milan; Frkanec, Leo; Caplar, Vesna; Sijaković Vujičić, Nataša; Zinić, Mladen

    2010-10-04

    In this work we report on gelation properties, self-assembly motifs, chirality effects and morphological characteristics of gels formed by chiral retro-dipeptidic gelators in the form of terminal diacids (1a-5a) and their dimethyl ester (1b-5b) and dicarboxamide (1c-5c) derivatives. Terminal free acid retro-dipeptides (S,S)-bis(LeuLeu) 1a, (S,S)-bis(PhgPhg) 3a and (S,S)-bis(PhePhe) 5a showed moderate to excellent gelation of highly polar water/DMSO and water/DMF solvent mixtures. Retro-peptides incorporating different amino acids (S,S)-(LeuPhg) 2a and (S,S)-(PhgLeu) 4a showed no or very weak gelation. Different gelation effectiveness was found for racemic and single enantiomer gelators. The heterochiral (S,R)-1c diastereoisomer is capable of immobilizing up to 10 and 4 times larger volumes of dichloromethane/DMSO and toluene/DMSO solvent mixtures compared to homochiral (S,S)-1c. Based on the results of (1)H NMR, FTIR, CD investigations, molecular modeling and XRPD studies of diasteroisomeric diesters (S,S)-1b/(S,R)-1b and diacids (S,S)-1b/(S,R)-1a, a basic packing model in their gel aggregates is proposed. The intermolecular hydrogen bonding between extended gelator molecules utilizing both, the oxalamide and peptidic units and layered organization were identified as the most likely motifs appearing in the gel aggregates. Molecular modeling studies of (S,S)-1a/(S,R)-1a and (S,S)-1b/(S,R)-1b diasteroisomeric pairs revealed a decisive stereochemical influence yielding distinctly different low energy conformations: those of (S,R)-diastereoisomers with lipophilic i-Bu groups and polar carboxylic acid or ester groups located on the opposite sides of the oxalamide plane resembling bola amphiphilic structures and those of (S,S)-diasteroisomers possessing the same groups located at both sides of the oxalamide plane. Such conformational characteristics were found to strongly influence both, gelator effectiveness and morphological characteristics of gel aggregates.

  4. Gene expression profiling of selenophosphate synthetase 2 knockdown in Drosophila melanogaster.

    PubMed

    Li, Gaopeng; Liu, Liying; Li, Ping; Chen, Luonan; Song, Haiyun; Zhang, Yan

    2016-03-01

    Selenium (Se) is an important trace element for many organisms and is incorporated into selenoproteins as selenocysteine (Sec). In eukaryotes, selenophosphate synthetase SPS2 is essential for Sec biosynthesis. In recent years, genetic disruptions of both Sec biosynthesis genes and selenoprotein genes have been investigated in different animal models, which provide important clues for understanding the Se metabolism and function in these organisms. However, a systematic study on the knockdown of SPS2 has not been performed in vivo. Herein, we conducted microarray experiments to study the transcriptome of fruit flies with knockdown of SPS2 in larval and adult stages. Several hundred differentially expressed genes were identified in each stage. In spite that the expression levels of other Sec biosynthesis genes and selenoprotein genes were not significantly changed, it is possible that selenoprotein translation might be reduced without impacting the mRNA level. Functional enrichment and network-based analyses revealed that although different sets of differentially expressed genes were obtained in each stage, they were both significantly enriched in the carbohydrate metabolism and redox processes. Furthermore, protein-protein interaction (PPI)-based network clustering analysis implied that several hub genes detected in the top modules, such as Nimrod C1 and regucalcin, could be considered as key regulators that are responsible for the complex responses caused by SPS2 knockdown. Overall, our data provide new insights into the relationship between Se utilization and several fundamental cellular processes as well as diseases.

  5. NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Modulates the Effects of Coffee Consumption on the Risk of Hypertension in Middle-Aged Japanese Men

    PubMed Central

    Kokaze, Akatsuki; Ishikawa, Mamoru; Matsunaga, Naomi; Karita, Kanae; Yoshida, Masao; Ohtsu, Tadahiro; Shirasawa, Takako; Sekii, Hideaki; Ito, Taku; Kawamoto, Teruyoshi; Takashima, Yutaka

    2009-01-01

    Background Habitual coffee consumption has been reported to lower blood pressure in the Japanese population. The NADH dehydrogenase subunit-2 237 leucine/methionine (ND2-237 Leu/Met) polymorphism is associated with longevity and modifies the effects of alcohol consumption on blood pressure in the Japanese population. The objective of this study was to determine whether this polymorphism also modifies the effects of coffee consumption on blood pressure or the risk of hypertension in middle-aged Japanese men. Methods A total of 398 men (mean age ± standard deviation, 53.8 ± 7.8 years) were selected from among individuals visiting the hospital for regular medical check-ups. Hypertension was defined as a systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or antihypertensive drug treatment. Polymerase chain reaction-restriction fragment length polymorphism using the restriction enzyme AluI was performed to determine ND2-237 Leu/Met genotype. Results In subjects with ND2-237Leu, coffee consumption was significantly and negatively associated with diastolic blood pressure (P = 0.007). The odds ratio (OR) for hypertension was significantly lower in subjects with ND2-237Leu who consumed 2 or 3 cups of coffee per day than in those who consumed less than 1 cup of coffee per day (OR, 0.517; 95% confidence interval [CI], 0.276 to 0.968; P = 0.039). After adjustment, the OR remained significant (OR = 0.399; 95% CI, 0.184 to 0.869; P = 0.020). Moreover, after adjustment, the OR was significantly lower in subjects with ND2-237Leu who consumed more than 4 cups of coffee per day than in those who consumed less than 1 cup of coffee per day (OR, 0.246; 95% CI, 0.062 to 0.975; P = 0.046). However, the association between ND2-237Met genotype and hypertension did not depend on coffee consumption. Conclusions The present results suggest that the ND2-237 Leu/Met polymorphism modulates the effects of coffee consumption on hypertension risk in middle-aged Japanese

  6. Estimate of radiation release from MIT reactor with un-finned LEU core during Maximum Hypothetical Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaichao; Hu, Lin-wen; Newton, Thomas

    2017-05-01

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less

  7. Insecticide susceptibility and vector status of natural populations of Anopheles arabiensis from Sudan.

    PubMed

    Abdalla, H; Matambo, T S; Koekemoer, L L; Mnzava, A P; Hunt, R H; Coetzee, M

    2008-03-01

    Species composition, blood meal source, sporozoite infection rate, insecticide resistance and the kdr mutations were investigated in the Anopheles gambiae complex from 13 sentinel sites in central Sudan. Species identification revealed that 89.5% of 960 specimens were A. arabiensis. Of 310 indoor resting females, 88.1% were found to have fed on humans, while 10.6% had fed on bovines. The overall sporozoite infection rate from the five localities tested was 2.3%, ranging from 0 to 5.5%. Insecticide susceptibility bioassay results showed 100% mortality on bendiocarb, 54.6-94.2% on permethrin, 55.4-99.1% on DDT and 76.8-100% on malathion. The kdr analysis by PCR and sequencing revealed the presence of the Leu-Phe mutation in both permethrin and DDT bioassays. There was no significant difference in the frequency of kdr (P>0.05) between dead and surviving specimens. These findings have serious implications for the malaria control programmes in Gezira and Sennar states.

  8. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    PubMed

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  9. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2015-12-01

    lifetime risk for breast cancer (King, Marks, & Mandell, 2003). PARP inhibitors (PARPi) have been tested with promising results for the treatment of...for Rad51 loading following PARPi treatment (Figure 5I-J). Additionally, this Rad51 loading in the PARPi resistant lines is necessary for resistance...as knockdown of either PALB2 or BRCA2 results in restored sensitivity to PARPi treatment (Figure 6A and B). b) Confirmation of targets with

  10. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).

    PubMed Central

    Przykorska, A; el Adlouni, C; Keith, G; Szarkowski, J W; Dirheimer, G

    1992-01-01

    A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions. Images PMID:1542562

  11. Agonist properties of a stable hexapeptide analog of neurotensin, N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1).

    PubMed

    Akunne, H C; Demattos, S B; Whetzel, S Z; Wustrow, D J; Davis, D M; Wise, L D; Cody, W L; Pugsley, T A; Heffner, T G

    1995-04-18

    The major signal transduction pathway for neurotensin (NT) receptors is the G-protein-dependent stimulation of phospholipase C, leading to the mobilization of intracellular free Ca2+ ([Ca2+]i) and the stimulation of cyclic GMP. We investigated the functional actions of an analog of NT(8-13), N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1), and other NT related analogs by quantitative measurement of the cytosolic free Ca2+ concentration in HT-29 (human colonic adenocarcinoma) cells using the Ca(2+)-sensitive dye fura-2/AM and by effects on cyclic GMP levels in rat cerebellar slices. The NT receptor binding affinities for these analogs to HT-29 cell membranes and newborn (10-day-old) mouse brain membranes were also investigated. Data obtained from HT-29 cell and mouse brain membrane preparations showed saturable single high-affinity sites and binding densities (Bmax) of 130.2 and 87.5 fmol/mg protein, respectively. The respective KD values were 0.47 and 0.39 nM, and the Hill coefficients were 0.99 and 0.92. The low-affinity levocabastine-sensitive site was not present (K1 > 10,000) in either membrane preparation. Although the correlation of binding between HT-29 cell membranes and mouse brain membranes was quite significant (r = 0.92), some of the reference agents had lower binding affinities in the HT-29 cell membranes. The metabolically stable compound NT1 plus other NT analogs and related peptides [NT, NT(8-13), xenopsin, neuromedin N, NT(9-13), kinetensin and (D-Trp11)-NT] increased intracellular Ca2+ levels in HT-29 cells, indicating NT receptor agonist properties. The effect of NT1 in mobilizing [Ca2+]i blocked by SR 48692, a non-peptide NT antagonist. Receptor binding affinities of NT analogs to HT-29 cell membranes were positively correlated with potencies for mobilizing intracellular calcium in the same cells. In addition, NT1 increased cyclic GMP levels in rat cerebellar slices, confirming the latter findings of its NT agonist action. These results substantiate

  12. Regulation of drug resistance by human pregnane X receptor in breast cancer

    PubMed Central

    Chen, Yakun; Tang, Yong; Chen, Shuqing; Nie, Daotai

    2012-01-01

    Drug resistance is a significant barrier to an effective treatment of breast cancer. Human pregnane X receptor (hPXR), an orphan nuclear receptor known for its activation by many important clinical drugs, is a major transcription factor of drug metabolism enzymes (DMEs), such as cytochrome P450 3A4 (CYP3A4), and efflux transporters such as multi-drug resistance gene (MDR1). hPXR has been detected in human breast cancers but its role in responses of cancers toward drugs remains unknown. In this study, hPXR expression was confirmed in breast cancer cell lines and in normal and cancerous human breast specimens. Preactivation of hPXR by SR12813 in MDA-MB-231 cells led to an increased resistance to Taxol at concentrations of 20 and 50 nmol/L. A significant increase in resistance toward tamoxifen was also observed in MCF-7 with hPXR preactivation. Activation of hPXR led to an increased expression of CYP3A4 and MDR1, two possible mediators for hPXR-mediated drug resistance in breast cancers. Furthermore, knockdown of hPXR via small hairpin RNA (shRNA) sensitized MDA-MB-231 and MCF-7 cells to the treatment of Taxol, vinblastine or tamoxifen. The reduction in resistance of hPXR knockdown cells was further confirmed by reduced colony formation under the pressure of cancer treatment drugs. Taken together, our data suggest a potential role of hPXR in breast cancer resistance to drug treatments. PMID:19746521

  13. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

    PubMed Central

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yan, Kun; Chen, Zhihao; Shang, Peng; Qian, Airong

    2015-01-01

    Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588] PMID:26277981

  14. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells.

    PubMed

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yan, Kun; Chen, Zhihao; Shang, Peng; Qian, Airong

    2015-10-01

    Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

  15. A Sordaria macrospora mutant lacking the leu1 gene shows a developmental arrest during fruiting body formation.

    PubMed

    Kück, Ulrich

    2005-10-01

    Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis ("cross-pathway control") have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body.

  16. White Paper – Use of LEU for a Space Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David Irvin; Mcclure, Patrick Ray

    Historically space reactors flown or designed for the U.S. and Russia used Highly Enriched Uranium (HEU) for fuel. HEU almost always produces a small and lighter reactor. Since mass increases launch costs or decreases science payloads, HEU was the natural choice. However in today’s environment, the proliferation of HEU has become a major concern for the U.S. government and hence a policy issue. In addition, launch costs are being reduced as the space community moves toward commercial launch vehicles. HEU also carries a heavy security cost to process, test, transport and launch. Together these issues have called for a re-investigationmore » into space reactors the use Low Enriched Uranium (LEU) fuel.« less

  17. Cyclo(dehydroala-L-Leu), an alpha-glucosidase inhibitor from Penicillium sp. F70614.

    PubMed

    Kwon, O S; Park, S H; Yun, B S; Pyun, Y R; Kim, C J

    2000-09-01

    A diketopiperazine (1) has been isolated from the culture broth of Penicillium sp. F70614 and its structure has been determined to be cyclo(dehydroala-L-Leu) by various spectroscopic analyses. This compound selectively inhibited yeast alpha-glucosidase and porcine intestinal alpha-glucosidase with IC50 values of 35 and 50 microg/ml, respectively. However, it did not show significant inhibitory effects against almond beta3-glucosidase, Aspergillus alpha-galactosidase, Escherichia coli beta-galactosidase and jack bean alpha-mannosidase.

  18. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    PubMed

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  19. Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress

    PubMed Central

    Denais, Celine; Chan, Maxine F.; Wang, Zhexiao; Lammerding, Jan

    2015-01-01

    Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs. PMID:26447202

  20. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance.

    PubMed

    Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C

    2010-08-01

    In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.