Science.gov

Sample records for leukemia hairy cell

  1. [Hairy cell leukemia].

    PubMed

    Dietrich, S; Andrulis, M; Zenz, T

    2015-04-01

    Hairy cell leukemia was initially described as a distinct entity in 1958. It is rare B-cell malignancy characterized by an indolent course. Advances in the treatment and understanding of the biology of hairy cell leukemia have made the disease exquisitely amenable to treatment. This review summarizes the present understanding of hairy cell leukemia with a particular focus on the development of novel and targeted approaches to treatment. PMID:25787322

  2. Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia

    MedlinePlus

    ... Leukemia: Introduction Request Permissions Print to PDF Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia: Introduction ... Research and Advocacy Survivorship Blog About Us Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia Guide ...

  3. Hairy Cell Leukemia Treatment Option Overview

    MedlinePlus

    ... ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional Version Key Points Hairy ...

  4. General Information About Hairy Cell Leukemia

    MedlinePlus

    ... Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. Hairy cell leukemia

    MedlinePlus

    ... 2014 Updated by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA. Also reviewed ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  6. Eliminating Hairy Cell Leukemia Minimal Residual Disease

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have disease-related symptoms that require treatment will be randomly assigned to receive cladribine with either concurrent rituximab or rituximab at least 6 months after completing cladribine therapy.

  7. Immunotoxin Therapy for Relapsed Hairy Cell Leukemia

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have relapsed multiple times or not responded to prior chemotherapy will be treated with an experimental immunotoxin called moxetumomab pasudotox given intravenously on days 1, 3, and 5 of 28-day cycles

  8. Hairy cell leukemia – immunotargets and therapies

    PubMed Central

    Basheer, Faisal; Bloxham, David M; Scott, Mike A; Follows, George A

    2014-01-01

    Hairy cell leukemia (HCL) is an indolent low-grade B-cell lymphoproliferative disorder that is reasonably sensitive to standard first-line purine analog therapy. However, in many cases, repeat relapses occur, requiring multiple courses of purine analog therapy, promoting eventual drug resistance. This, coupled with the concerning side effects of repeated purine analog exposure, has prompted the search for alternative targets and therapies that may provide deeper remissions. Novel strategies employing immune-mediated targeting via monoclonal antibody therapies and recombinant immunotoxins appear promising in HCL and are currently under investigation. More recently, the concept of targeted kinase inhibition using small-molecule inhibitors in HCL has emerged as another potentially viable option. As a deeper understanding of the aberrant molecular pathways contributing to the pathogenesis of HCL develops, the landscape of management for HCL, particularly in the relapse setting, may change significantly in the future as a result of these promising immunotargets and therapies. PMID:27471703

  9. Treating Multiply Relapsed or Refractory Hairy Cell Leukemia

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have not responded or relapsed after initial chemotherapy will be randomly assigned to receive rituximab combined with either pentostatin or bendamustine.

  10. BRAF MUTATIONS IN HAIRY CELL LEUKEMIA

    PubMed Central

    Tiacci, Enrico; Trifonov, Vladimir; Schiavoni, Gianluca; Holmes, Antony; Kern, Wolfgang; Martelli, Maria Paola; Pucciarini, Alessandra; Bigerna, Barbara; Pacini, Roberta; Wells, Victoria; Sportoletti, Paolo; Pettirossi, Valentina; Mannucci, Roberta; Elliott, Oliver; Liso, Arcangelo; Ambrosetti, Achille; Pulsoni, Alessandro; Forconi, Francesco; Trentin, Livio; Semenzato, Gianpietro; Inghirami, Giorgio; Capponi, Monia; Di Raimondo, Francesco; Patti, Caterina; Arcaini, Luca; Musto, Pellegrino; Pileri, Stefano; Haferlach, Claudia; Schnittger, Susanne; Pizzolo, Giovanni; Foà, Robin; Farinelli, Laurent; Haferlach, Torsten; Pasqualucci, Laura; Rabadan, Raul; Falini, Brunangelo

    2013-01-01

    Background Hairy cell leukemia (HCL) is a well defined clinico-pathological entity whose underlying genetic lesion is still obscure. Methods We searched for HCL-associated mutations by massively parallel sequencing of the whole exome of leukemic and matched normal mononuclear cells purified from the peripheral blood of one patient with HCL. Results Whole exome sequencing identified 5 missense somatic clonal mutations that were confirmed at Sanger sequencing, including a heterozygous V600E mutation involving the BRAF gene. Since the BRAF V600E mutation is oncogenic in other tumors, further analyses were focused on this genetic lesion. Sanger sequencing detected mutated BRAF in 46/46 additional HCL patients (47/47 including the index case; 100%). None of the 193 peripheral B-cell lymphomas/leukemias other than HCL that were investigated carried the BRAF V600E mutation, including 36 cases of splenic marginal zone lymphomas and unclassifiable splenic lymphomas/leukemias. Immunohistological and Western blot studies showed that HCL cells express phospho-MEK and phospho-ERK (the downstream targets of the BRAF kinase), indicating a constitutive activation of the RAF-MEK-ERK mitogen-activated protein kinase pathway in HCL. In vitro incubation of BRAF-mutated primary leukemic cells from 5 HCL patients with PLX-4720, a specific inhibitor of active BRAF, led to marked decrease of phosphorylated ERK and MEK. Conclusions The BRAF V600E mutation was present in all HCL patients investigated. This finding may have relevant implications for the pathogenesis, diagnosis and targeted therapy of HCL (Funded by the Associazione Italiana Ricerca Cancro and others). PMID:21663470

  11. [Lymphoid myelofibrosis or hairy cell leukemia].

    PubMed

    Lovisetto, P; Pellegrino, P; Tallone, M V; Biarese, V; La Rosa, G F

    1977-05-26

    By lymphoid myelofibrosis or hairy cell leukaemia or tricholeukaemia is meant an unusual haemopathic condition known only for the past few years. It is characterized pathognomonically by the presence of lymphocyte type cells with villous extroflexions, hence the name "hairy cell". Clinically the disease presents as an involutive myelopathy associated with splenomegaly, generally without any particular lymph gland involvement. The attention of students today is concentrated on the nature of the hairy cells; while some are inclined to admit their monocyte or histiocyte derivation, others consider that they derive from B lymphocytes. Therapeutically, almost everybody agrees that splenectomy is the only valid step. A case of H.C.L., which was typical from the clinical and laboratory viewpoints is reported. It is probable that certain haemopathic pictures once classified among atypical leucoses and lymphomas, would today be more correctly classed as hairy cell leukaemia. PMID:327348

  12. A Unique Hairy Cell Leukemia Variant.

    PubMed

    Jian, Charles; Hsia, Cyrus C

    2016-01-01

    A 65-year-old woman presented with easy bruising, left upper quadrant pain, decreased appetite, and weight loss. She had splenomegaly and lymphocytosis (lymphocyte count of 11.6 × 10(9)/l), with remarkably abnormal appearing morphology. Her hemoglobin and platelet counts were normal. Peripheral blood flow cytometry revealed a monoclonal B-cell population expressing CD11c, CD25, CD19, CD20, and CD103. An initial diagnosis of hairy cell leukemia (HCL) was made, and the patient was treated with a standard 5-day course of cladribine. However, her lymphocytosis improved transiently, with a relapse 4 months later. There was no improvement in her splenomegaly. An HCL variant (HCL-v) was considered based on her resistance to treatment with a purine nucleoside analog. A subsequent splenectomy improved symptoms. Two years after, the patient suffered a relapse and underwent 6 cycles of CHOP-R (cyclophosphamide, hydroxydaunomycin, oncovin, prednisone, and rituximab), achieving partial remission. While under observation, she progressed with lymphocytosis 6 months later and was treated with pentostatin. There was no significant improvement in her disease, and she died 8 weeks following treatment initiation. HCL-v is a clinically more aggressive mature B-cell lymphoma than HCL with worse splenomegaly, higher lymphocyte counts, and resistance to typical HCL therapy with purine nucleoside analogs. Early recognition of HCL-v in the history, physical examination, and investigations with morphology and flow cytometry is key to patient management. Further, as in our case of HCL-v, cell morphology can be distinctly atypical, with large nucleoli and extremely convoluted nuclei. The distinction between HCL and HCL-v is important as HCL-v patients require more aggressive therapy and closer follow-up. PMID:27462230

  13. [Novelties in the diagnostics and therapy of hairy cell leukemia].

    PubMed

    Sári, Eszter; Rajnai, Hajnalka; Dénes, Kitti; Bödör, Csaba; Csomor, Judit; Körösmezey, Gábor; Tárkányi, Ilona; Eid, Hanna; Nagy, Zsolt; Demeter, Judit

    2016-06-01

    Differential diagnosis of hairy cell leukemia (HCL) and related disorders (hairy cell leukemia variant and splenic marginal zone lymphoma) is of utmost importance since the treatment and prognosis of these lymphomas differ. Since 2011 diagnosis of hairy cell leukemia has been easier because of discovery of the disease defining somatic mutation BRAF V600E mutation, which has been also known as driver mutation in malignant melanoma. The presence of this mutation enabled targeted molecular therapy in HCL as well. As first line therapy purine nucleoside analogues are the gold standard, but refractory/relapsed patient are candidates for targeted BRAF-inhibitor therapy. This manuscript serves as guidance in making diagnosis and standard treatment of HCL, and summarizes newest data about molecular therapy, including our single center experience collected from 75 patients. PMID:27275640

  14. The importance of the tissue microenvironment in hairy cell leukemia.

    PubMed

    Sivina, Mariela; Burger, Jan A

    2015-12-01

    Hairy cell leukemia (HCL) cells engage in complex cellular and molecular interactions with accessory cells, matrix proteins, and various cytokines in the bone marrow and spleen, collectively referred to as the tissue microenvironment. Chemokine receptors and adhesion molecules are critical players for homing and retention within these microenvironments. Engagement of B cell antigen receptors and CD40 on HCL cells promote survival and proliferation. In this chapter, we summarize the current knowledge about the cellular and molecular interactions between HCL cells and their supportive tissue microenvironment, and provide insight into new therapeutic approaches targeting B cell receptor signaling in HCL. PMID:26614899

  15. 75 FR 54496 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Federal Register (75 FR 53202), an amendment to 38 CFR 3.309 to add hairy cell leukemia and other chronic B-cell leukemias, Parkinson's disease and ischemic heart disease to the list of diseases subject to... Cell Leukemia and Other Chronic B-Cell Leukemias, Parkinson's Disease and Ischemic Heart...

  16. Skeletal complications in hairy cell leukemia: diagnosis and therapy.

    PubMed

    Lembersky, B C; Ratain, M J; Golomb, H M

    1988-08-01

    We identified eight patients with skeletal complications associated with hairy cell leukemia (HCL). The median time from diagnosis of HCL to the diagnosis of skeletal complications was 20 months (range, 0 to 93). All patients complained of pain and all but one lesion were located in the axial skeleton, primarily the proximal femur. Lytic lesions were seen on radiographic examination in all but one patient, and one patient additionally had multiple osteoporotic vertebral compression fractures. Radionuclide technetium bone scan was abnormal in all patients examined. Although the peripheral blood counts were variable (only two patients had a leukemic phase of the disease), all patients examined had a hypercellular bone marrow biopsy with hairy cells comprising at least 90% of the hematopoietic elements. The skeletal abnormalities responded well to local radiation therapy. Seven patients were begun on systemic therapy with interferon alpha-2b after the diagnosis of the skeletal lesion. Four of five evaluable patients had a partial hematological response and a substantial improvement in the degree of hairy cell infiltration of the bone marrow. None of these patients has had a recurrence of skeletal complications at a median follow-up time of 29 months. One patient failed to respond hematologically and developed additional bone lesions after 1 year of treatment. Another patient developed a new skeletal lesion 3 months after the cessation of interferon therapy at which time the bone marrow was essentially packed with hairy cells. This retrospective study indicates that bone involvement is a rare complication of HCL and is associated with a high tumor burden in the bone marrow. In addition to local radiation therapy, systemic treatment with interferon should be considered. PMID:3411340

  17. Two Cases of Q-Fever in Hairy Cell Leukemia

    PubMed Central

    Iannitto, Emilio; Tick, Lidwine W.; Arents, Nicolaas L. A.; Kuijper, Philip H.; Nijziel, Marten R.

    2014-01-01

    Hairy cell leukemia (HCL) is a rare B-cell lymphoproliferative disorder accounting for about 2% of all leukemias. The clinical course is indolent, however HCL patients are particularly susceptible to infections. Here we report two cases of Q-fever as first manifestation of disease in two patients affected by HCL. Both patients described in this report showed an unusually sluggish clinical response to the antibiotic treatment with ciprofloxacin probably because of the marked immunodeficiency. However, treatment of HCL with cladribine administered soon after the resolution of QF pneumonitis was uneventful and led to a complete remission in both cases. Most probably the association of Coxiella burnetii (CB) infection and HCL that we observed in two patients is due to chance. However, a hairy cell resembling transformation of freshly isolated human peripheral blood lymphocytes upon CB has been showed. We think that the possibility of CB infection in febrile HCL patient should be always taken in mind, especially in endemic areas. In addition the potential for such infections to become chronic in HCL patients should not be overlooked and the reporting of further cases should be encouraged. PMID:25180111

  18. Hairy cell leukemia: clinical features and therapeutic advances.

    PubMed

    Lembersky, B C; Golomb, H M

    1987-01-01

    Hairy cell leukemia (HCL) is a rare chronic lymphoproliferative disorder which has been extensively studied over the past decade. Much has been learned regarding the diagnosis, natural history, biology, and treatment of this unique neoplasm. The disease most commonly affects middle aged men and characteristic clinical features include splenomegaly, cytopenias, and usually the presence in the peripheral blood of distinctive 'hairy cells' with irregular cytoplasmic projections. Diagnosis can usually be confirmed by bone marrow biopsy. Although the natural history can be extremely variable among patients, complications are usually referable to the cytopenias, with anemia and infection being most frequent. In addition to pyogenic infections, patients are susceptible to unusual organisms including atypical mycobacterium, legionella, and fungi. The requirement of red blood cell transfusion, severe granulocytopenia or thrombocytopenia, frequent infections, or painful splenomegaly are all indications for treatment. Splenectomy is the standard initial treatment of choice. However, in the past few years there have been exciting major advances in the therapeutic modalities for HCL. Recombinant alpha-interferon is highly effective, with beneficial responses occurring in close to 90% of patients. The Food and Drug Administration has recently approved the use of interferon for HCL. This represents the first time a biological response modifier has been approved for the treatment of human disease. In addition, preliminary results with the adenosine deaminase inhibitor, 2'deoxycoformycin (dcf), have been encouraging. Further clinical trials are required in order to determine the optimal sequential treatment strategy for HCL. The exact mechanisms of action of both interferon and dcf in HCL remain to be elucidated. A better understanding of the unusual features of the hairy cell and the underlying biological effect of these two agents in HCL may have important applications in other

  19. Current and emerging treatment options for hairy cell leukemia

    PubMed Central

    López-Rubio, Montserrat; Garcia-Marco, Jose Antonio

    2015-01-01

    Hairy cell leukemia (HCL) is a lymphoproliferative B-cell disorder characterized by pancytopenia, splenomegaly, and characteristic cytoplasmic hairy projections. Precise diagnosis is essential in order to differentiate classic forms from HCL variants, such as the HCL-variant and VH4-34 molecular variant, which are more resistant to available treatments. The current standard of care is treatment with purine analogs (PAs), such as cladribine or pentostatin, which provide a high rate of long-lasting clinical remissions. Nevertheless, ~30%–40% of the patients relapse, and moreover, some of these are difficult-to-treat refractory cases. The use of the monoclonal antibody rituximab in combination with PA appears to produce even higher responses, and it is often employed to minimize or eliminate residual disease. Currently, research in the field of HCL is focused on identifying novel therapeutic targets and potential agents that are safe and can universally cure the disease. The discovery of the BRAF mutation and progress in understanding the biology of the disease has enabled the scientific community to explore new therapeutic targets. Ongoing clinical trials are assessing various treatment strategies such as the combination of PA and anti-CD20 monoclonal antibodies, recombinant immunotoxins targeting CD22, BRAF inhibitors, and B-cell receptor signal inhibitors. PMID:26316784

  20. Evidence of canonical somatic hypermutation in hairy cell leukemia

    PubMed Central

    Arons, Evgeny; Roth, Laura; Sapolsky, Jeffrey; Suntum, Tara; Stetler-Stevenson, Maryalice

    2011-01-01

    To compare hairy cell leukemia (HCL) with chronic lymphocytic leukemia (CLL) and normal B cells with respect to their B-cell receptors, somatic hypermutation (SHM) features in HCL were examined in a series of 130 immunoglobulin gene heavy chain rearrangements, including 102 from 100 classic (HCLc) and 28 from 26 variant (HCLv) patients. The frequency of unmutated rearrangements in HCLc was much lower than that in HCLv (17% vs 54%, P < .001) or historically in CLL (17% vs 46%, P < .001), but HCLv and CLL were similar (P = .45). As previously reported for CLL, evidence of canonical SHM was observed in HCLc rearrangements, including: (1) a higher ratio of replacement to silent mutations in the complementarity determining regions than in the framework regions (2.83 vs 1.41, P < .001), (2) higher transition to transversion ratio than would be expected if mutations were random (1.49 vs 0.5, P < .001), and (3) higher than expected concentration of mutations within RGYW hot spots (13.92% vs 3.33%, P < .001). HCLv met these 3 criteria of canonical SHM to a lesser extent. These data suggest that, whereas HCLc cells may recognize antigen-like CLL and normal B cells before malignant transformation, HCLv cells from some patients may originate differently, possibly without undergoing antigen recognition. PMID:21368287

  1. Radiation exposure as a possible etiologic factor in hairy cell leukemia (leukemic reticuloendotheliosis).

    PubMed

    Stewart, D J; Keating, M J

    1980-10-01

    The frequency of prior occupational, accidental, or therapeutic radiation exposure was significantly higher for hairy cell leukemia patients than for a control group of solid tumor patients (8/23 vs. 4/56, P < 0.01). Hairy cell leukemia patients were also more frequently involved in occupations at high risk of radiation exposure such as chemist, engineer, physicist, and health care facility worker (7/23 vs. 4/56, P < 0.01). The observation that the incidence of thyroid disorders among hairy cell leukemia patients was also unusually high (5/23 vs. 2/56, P < 0.05) was interpreted as further indirect evidence of excessive radiation exposure. It appears that radiation exposure may be an important contribution factor in the development of some case of hairy cell leukemia. PMID:7417955

  2. Hairy cell leukemia: short review, today's recommendations and outlook

    PubMed Central

    Maevis, V; Mey, U; Schmidt-Wolf, G; Schmidt-Wolf, I G H

    2014-01-01

    Hairy cell leukemia (HCL) is part of the low-grade non-Hodgkin lymphoma family and represents approximately 2% of all leukemias. Treatment with splenectomy and interferon-α historically belonged to the first steps of therapeutic options, achieving partial responses/remissions (PR) in most cases with a median survival between 4 and 6 years in the 1980s. The introduction of the purine analogs (PA) pentostatin and cladribine made HCL a well-treatable disease: overall complete response rates (CRR) range from 76 to 98%, with a median disease-free survival (DFS) of 16 years a normal lifespan can be reached and HCL-related deaths are rare. However, insufficient response to PA with poorer prognosis and relapse rates of 30–40% after 5–10 years of follow-up may require alternative strategies. Minimal residual disease can be detected by additional examinations of bone marrow specimens after treatment with PA. The use of immunotherapeutic monoclonal antibodies (mAB) like rituximab as a single agent or in combination with a PA or more recently clinical trials with recombinant immunotoxins (RIT) show promising results to restrict these problems. Recently, the identification of the possible disease-defining BRAF V600E mutation may allow the development of new therapeutic targets. PMID:24531447

  3. Synchronous gastric and ampullary adenocarcinomas in a hairy cell leukemia patient treated with pentostatin eight years prior.

    PubMed

    Senatore, Frank J; Dasanu, Constantin A

    2016-06-01

    Hairy cell leukemia patients are at increased risk for second malignancies, including both solid and lymphoid neoplasms. Along with other factors, multiple immune defects present in hairy cell leukemia likely contribute to subsequent carcinogenesis. We report herein a case of synchronous high-grade gastric and ampullary adenocarcinomas in a patient with a history of hairy cell leukemia treated eight years prior with pentostatin. We include a review of immune alterations induced by both hairy cell leukemia and its therapies, and link them with the occurrence of second cancers in these patients. PMID:25712625

  4. CD27-positive hairy cell leukemia-Japanese variant.

    PubMed

    Tabata, Rie; Tabata, Chiharu; Iwama, Hideaki; Yasumizu, Ryoji; Kojima, Masaru

    2016-03-01

    We report a very rare case of a 45-year-old Japanese male patient with hairy cell leukemia-Japanese variant (HCL-JV) expressing CD27. The patient showed a high number of abnormal peripheral lymphocytes, thrombocytopenia, and severe splenomegaly but no lymphadenopathy. Histology of the resected spleen showed small-sized lymphoma cells diffusely infiltrating the red pulp without follicle formation. By immunohistochemistry, lymphoma cells were negative for CD3, CD5, CD8, CD10, CD34, cyclin-D1, and annexin A1 but positive for CD20 and BCL2. BRAF V600E mutation was not observed. Bone marrow aspirate showed preserved normal hematopoietic cells with invasion of lymphoma cells in an interstitial pattern without obvious nodules. The cells had abundant pale cytoplasm and round nuclei with inconspicuous nucleoli. After natural drying, the cells had unevenly distributed microvilli. Flow cytometric analysis demonstrated positivity for CD11a, CD11c, CD19, CD20, CD22, CD27, surface IgG, and λ but not for CD2, CD3, CD4, CD5, CD7, CD8, CD10, CD21, CD23, CD25, CD30, CD34, CD38, CD43, CD56, CD57, CD103, IgD, IgM, and κ. Monoclonal expansion of B cells was confirmed by an immunoglobulin heavy chain (IgH) rearrangement band as demonstrated by Southern blot hybridization. The lymphoma cells had unevenly distributed long, large, and broad-based microvilli, which resembled splenic diffuse red pulp small B cell lymphoma (SDRPL) cells. CD27 expression is extremely rare in HCL-JV, but the young age of the patient and high peripheral WBC counts were similar to HCL-JV, which suggests, in this case, an intermediate disease between SDRPL and HCL-JV. PMID:26868143

  5. Immunoconjugates in the management of hairy cell leukemia.

    PubMed

    Kreitman, Robert J; Pastan, Ira

    2015-12-01

    Hairy cell leukemia (HCL) is an indolent B-cell malignancy effectively treated but not often cured by purine analog therapy; after multiple courses of purine analogs, patients can become purine analog resistant and in need of alternative therapies. Complete remission to single-agent purine analog is often accompanied by minimal residual disease (MRD), residual HCL cells detectable by immunologic methods, considered a risk factor for eventual relapse. Several different non-chemotherapy approaches are being used to target relapsed and refractory HCL, including inhibitors of BRAF, but so far only monoclonal antibody (MAb)-based approaches have been reported to eliminate MRD in a high percentage of patients. One of the MAb-based options for HCL currently under clinical investigation involves recombinant immunotoxins, containing a fragment of a MAb and a bacterial toxin. The bacterial toxin, a highly potent fragment from Pseudomonas exotoxin, catalytically ADP-ribosylates elongation factor 2 (EF2), resulting in protein synthesis inhibition and apoptotic cell death. Recombinant immunotoxins tested in HCL patients include LMB-2, targeting CD25, and BL22, targeting CD22. An affinity matured version of BL22, termed moxetumomab pasudotox (formerly HA22 or CAT-8015) achieved high CR rates in phase I, and is currently undergoing multicenter Phase 3 testing. Phase I testing was without dose-limiting toxicity, although 2 patients had grade 2 hemolytic uremic syndrome (HUS) with transient grade 1 abnormalities in platelets and creatinine. Preclinical work is underway to identify residues on moxetumomab pasudotox leading to immunogenicity. Moxetumomab pasudotox is undergoing pivotal testing for relapsed and refractory HCL. PMID:26614902

  6. Epidemiology and environmental risk in hairy cell leukemia.

    PubMed

    Tadmor, Tamar; Polliack, Aaron

    2015-12-01

    Hairy cell leukaemia (HCL) is an orphan subtype of leukaemia which constitutes less than 2% of all leukaemia's, with an incidence of less than 1 per 100,000 persons per annum. Median age at presentation is 55 years and it is 3-4 times more frequent in males. It is also more frequently encountered in whites and less in Asians, Africans and Arabs. The epidemiologic data are multi-factorial and influenced by ethnicity and geographical factors. Other reported associations relate to some environmental exposures and possible occupational factors. Smoking appears to have an inverse correlation with the development of hairy cell leukaemia, while farming and exposure to pesticides, petroleum products, diesel and ionizing radiation have also been reported to be associated with an increased risk. National and international collaborative efforts are needed in order to undertake more extensive studies involving larger patient cohorts, aiming to determine the role of occupational and environmental risk factors in the development of this rare form of chronic leukaemia. PMID:26614895

  7. Targeting Mutant BRAF with Vemurafenib in Relapsed or Refractory Hairy Cell Leukemia

    PubMed Central

    Tiacci, Enrico; Park, Jae H.; De Carolis, Luca; Chung, Stephen S.; Broccoli, Alessandro; Scott, Sasinya; Zaja, Francesco; Devlin, Sean; Pulsoni, Alessandro; Chung, Young Rock; Cimminiello, Michele; Kim, Eunhee; Rossi, Davide; Stone, Richard M.; Motta, Giovanna; Saven, Alan; Varettoni, Marzia; Altman, Jessica K.; Anastasia, Antonella; Grever, Michael R.; Ambrosetti, Achille; Rai, Kanti R.; Fraticelli, Vincenzo; Lacouture, Mario E.; Carella, Angelo Michele; Levine, Ross L.; Leoni, Pietro; Rambaldi, Alessandro; Falzetti, Franca; Ascani, Stefano; Capponi, Monia; Martelli, Maria Paola; Park, Christopher Y.; Pileri, Stefano Aldo; Rosen, Neal; Foà, Robin; Berger, Michael F.; Zinzani, Pier Luigi; Abdel-Wahab, Omar; Falini, Brunangelo; Tallman, Martin S.

    2016-01-01

    BACKGROUND BRAF-V600E is the genetic lesion underlying hairy cell leukemia. We assessed the safety and activity of the oral BRAF inhibitor vemurafenib in patients with hairy cell leukemia who relapsed after or were refractory to purine analogues. METHODS We conducted in Italy and USA two phase-2 single-arm multicenter studies of vemurafenib (960 mg twice daily) given for a median of 16 and 18 weeks, respectively. Primary endpoints were complete remission rate and overall response rate. Patient enrollment was completed (n=28) in the Italian trial in April 2013 and is still open (n=26/36) in the American trial. RESULTS Drug-related adverse events were usually of grade 1-2, and those most frequently requiring dose reductions were rash and arthralgia/arthritis; secondary cutaneous tumors (treated with simple excision) developed in 6/50 patients. Overall response rates were 96% (25/26 evaluable Italian patients) and 100% (24/24 evaluable American patients), obtained after a median of 8 weeks and 12 weeks, respectively. Complete response rates were 34.6% (9/26) and 41.7% (10/24), respectively. In the Italian trial, after a median follow-up of 23 months, the median relapse-free and treatment-free survivals were respectively 19 and 25 months in complete responders, and 6 and 18 months in partial responders. In the American trial, 1-year progression-free and overall survival were 73% and 91%, respectively. Frequent persistence of phospho-ERK+ bone marrow leukemic cells at the end of treatment suggests bypass MEK-ERK reactivation as a resistance mechanism. CONCLUSIONS A short oral course of vemurafenib proved safe and highly effective in relapsed/refractory hairy cell leukemia patients (Funded by AIRC, ERC, Roche/Genentech and others; EudractCT number: 2011-005487-13, ClinicalTrials.gov number NCT01711632). PMID:26352686

  8. Rapid response to 2'-deoxycoformycin in advanced hairy cell leukemia after failure of interferons alpha and gamma.

    PubMed

    Lembersky, B C; Ratain, M J; Westbrook, C; Golomb, H M

    1988-01-01

    A patient with advanced hairy cell leukemia initially had a short-lived minor response to interferon alpha therapy and failed to respond to interferon gamma. Subsequent treatment with 2'-deoxycoformycin (dCF) administered biweekly for 12 wk resulted in a complete hematological remission which has continued for 16 months without additional therapy. PMID:3128105

  9. TGF-β1 induces bone marrow reticulin fibrosis in hairy cell leukemia

    PubMed Central

    Shehata, Medhat; Schwarzmeier, Josef D.; Hilgarth, Martin; Hubmann, Rainer; Duechler, Markus; Gisslinger, Heinz

    2004-01-01

    The mechanisms that lead to reticulin fibrosis of bone marrow (BM) in hairy cell leukemia (HCL) are not fully understood. We therefore investigated the involvement of TGF-β1, a potent fibrogenic cytokine, in this process. Immunoassays revealed that TGF-β1 is present at higher concentrations in BM, serum, and plasma of HCL patients in comparison with healthy donors (P < 0.001). RT-PCR and immunofluorescence studies showed that TGF-β1 is overexpressed at the mRNA and protein levels in peripheral blood, spleen, and BM mononuclear cells and that hairy cells (HCs) are the main source of TGF-β1. Active TGF-β1 correlated significantly with grades of BM fibrosis, infiltration with HCs, and serum procollagen type III aminoterminal propeptide (PIIINP). Ex vivo studies demonstrated that TGF-β1 significantly enhances the production and deposition of reticulin and collagen fibers by BM fibroblasts. In addition, BM plasma of HCL patients increased the synthesis of type I and type III procollagens, the main components of reticulin fibers, at the mRNA and protein levels. This fibrogenic activity of BM plasma was abolished by neutralizing anti–TGF-β1 antibodies. These results show, for the first time to our knowledge, that TGF-β1 is highly expressed in HCs and is directly involved in the pathogenesis of BM reticulin fibrosis in HCL. PMID:14991065

  10. Hairy Cell Leukemia with Systemic Lymphadenopathy: Detection of BRAF Mutations in Both Lymph Node and Peripheral Blood Specimens.

    PubMed

    Okada, Kazuya; Kunitomi, Akane; Sakai, Kazuya; Muranushi, Hiroyuki; Okamoto, Yusuke; Tsukamoto, Taku; Sugiura, Hiroyuki; Matsui, Hiroyuki; Jo, Tomoyasu; Ueda, Tomoaki; Onishi, Tatsuhito; Ide, Masaru; Kimura, Shinya; Notohara, Kenji; Ueda, Yasunori

    2015-01-01

    A 47-year-old woman with pancytopenia, excessive systemic lymphadenopathy and splenomegaly was referred to our hospital. The peripheral blood (PB) smear findings indicated neutropenia with lymphoid cells exhibiting hairy projections, while the histological findings of the cervical lymph node (LN) suggested hairy cell leukemia (HCL). In addition, the BRAF V600E mutation was detected, and the immunoglobulin gene rearrangement patterns were identical in both the cervical LN and PB specimens. Based on these findings, we diagnosed the patient with systemic lymphadenopathy due to HCL. This is the first report of a BRAF mutation detected in both the PB and LN at the onset of HCL. PMID:26027995

  11. Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

    PubMed Central

    Chung, Young Rock; Lito, Piro; Teruya-Feldstein, Julie; Hu, Wenhuo; Beguelin, Wendy; Monette, Sebastien; Duy, Cihangir; Rampal, Raajit; Telis, Leon; Patel, Minal; Kim, Min Kyung; Huberman, Kety; Bouvier, Nancy; Berger, Michael F.; Melnick, Ari M.; Rosen, Neal; Tallman, Martin S.

    2014-01-01

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells—all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs. PMID:24871132

  12. The microenvironment in hairy cell leukemia: pathways and potential therapeutic targets

    PubMed Central

    Burger, Jan A.; Sivina, Mariela; Ravandi, Farhad

    2014-01-01

    Hairy cell leukemia (HCL) cells accumulate and proliferate in the spleen and the bone marrow. In these tissue compartments, HCL cells interact with accessory cells, matrix proteins, and various cyctokines, collectively referred to as the ‘microenvironment.’ Surface receptors expressed on HCL cells and respective stromal ligands are critical for this cross-talk between HCL cells and the microenvironment. Chemokine receptors, adhesion molecules (integrins, CD44), the B cell antigen receptor (BCR), and CD40, expressed on the HCL cells, are likely to be critical for homing, retention, survival, and expansion of the neoplastic B cells. Some of these pathways are now targeted in first clinical trials in other mature B-cell malignancies. We summarize key aspects of the cellular and molecular interactions between HCL cells and their microenvironment. Also, we outline future prospects for therapeutic targeting of the microenvironment in HCL, focusing on CXCR4 and kinase inhibitors (Syk, Btk, phosphatidylinositol 3-kinase [PI3K]) that target B cell receptor signaling. PMID:21438839

  13. BRAF inhibition in hairy cell leukemia with low-dose vemurafenib.

    PubMed

    Dietrich, Sascha; Pircher, Andreas; Endris, Volker; Peyrade, Frédéric; Wendtner, Clemens-Martin; Follows, George A; Hüllein, Jennifer; Jethwa, Alexander; Ellert, Elena; Walther, Tatjana; Liu, Xiyang; Dyer, Martin J S; Elter, Thomas; Brummer, Tilman; Zeiser, Robert; Hermann, Michael; Herold, Michael; Weichert, Wilko; Dearden, Claire; Haferlach, Torsten; Seiffert, Martina; Hallek, Michael; von Kalle, Christof; Ho, Anthony D; Gaehler, Anita; Andrulis, Mindaugas; Steurer, Michael; Zenz, Thorsten

    2016-06-01

    The activating mutation of the BRAF serine/threonine protein kinase (BRAF V600E) is the key driver mutation in hairy cell leukemia (HCL), suggesting opportunities for therapeutic targeting. We analyzed the course of 21 HCL patients treated with vemurafenib outside of trials with individual dosing regimens (240-1920 mg/d; median treatment duration, 90 days). Vemurafenib treatment improved blood counts in all patients, with platelets, neutrophils, and hemoglobin recovering within 28, 43, and 55 days (median), respectively. Complete remission was achieved in 40% (6/15 of evaluable patients) and median event-free survival was 17 months. Response rate and kinetics of response were independent of vemurafenib dosing. Retreatment with vemurafenib led to similar response patterns (n = 6). Pharmacodynamic analysis of BRAF V600E downstream targets showed that vemurafenib (480 mg/d) completely abrogated extracellular signal-regulated kinase phosphorylation of hairy cells in vivo. Typical side effects also occurred at low dosing regimens. We observed the development of acute myeloid lymphoma (AML) subtype M6 in 1 patient, and the course suggested disease acceleration triggered by vemurafenib. The phosphatidylinositol 3-kinase hotspot mutation (E545K) was identified in the AML clone, providing a potential novel mechanism for paradoxical BRAF activation. These data provide proof of dependence of HCL on active BRAF signaling. We provide evidence that antitumor and side effects are observed with 480 mg vemurafenib, suggesting that dosing regimens in BRAF-driven cancers could warrant reassessment in trials with implications for cost of cancer care. PMID:26941398

  14. Durability of responses to interferon alfa-2b in advanced hairy cell leukemia.

    PubMed

    Ratain, M J; Golomb, H M; Bardawil, R G; Vardiman, J W; Westbrook, C A; Kaminer, L S; Lembersky, B C; Bitter, M A; Daly, K

    1987-03-01

    Previous studies have demonstrated that significant hematologic improvement occurs in the majority of patients with hairy cell leukemia (HCL) treated with partially purified or recombinant interferon (IFN). Fifty-three patients received IFN alfa-2b for at least 3 months in a dose of 2 X 10(6) U/m2 subcutaneously thrice weekly. Of the 49 patients evaluable for response (at least 6 months of IFN therapy), there were ten complete responses and 29 partial responses for a total response rate of 80%. The peripheral blood counts and bone marrow continued to improve over the course of a full year of therapy. IFN was well tolerated, with no patients discontinuing therapy because of toxicity. Transient myelosuppression occurred in most patients during the first 1 to 2 months of therapy, occasionally precipitating a transfusion requirement. After IFN treatment was discontinued, there was a marked decrease in normal marrow elements and a relative increase in marrow hairy cells. This was associated with a transient increase in normal elements in the peripheral blood. Only one of 24 patients followed after receiving IFN for a median of 8.5 months (range, 3 to 16 months) has required further therapy. We conclude that low-dose IFN alfa-2b is highly effective in advanced HCL; responding patients should be treated for at least 1 year. The decision to initiate a second course of IFN therapy should be based primarily on peripheral blood counts and the clinical status of the patient rather than on the bone marrow. PMID:3814819

  15. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment.

    PubMed

    Robak, Tadeusz

    2011-02-01

    Hairy-cell leukemia variant (HCl-V) is a district clinico-pathological entity with intermediate features between classical HCl (HCl-C) and B-cell prolymphocytic leukemia. HCl-V is now included in the World Health Organization (WHO) classification as a provisional entity. It is an uncommon disorder accounting for approximately 0.4% of chronic lymphoid malignancies and 10% of all HCl cases. In contrast to HCl-C, HCl-V is a more aggressive disease and according to the new WHO classification it is no longer considered to be biologically related to HCl-C. Patients with HCl-V have an elevated white blood count, easy-to-aspirate bone marrow and weak reactivity to tartrate - resistant acid phosphatase (TRAP). Immunophenotypically, HCl-V cells are positive for CD103 and CD11c and negative for CD25. The HCl-V cells express also the B-cell antigens, CD19, CD20 and CD22. The HCl-V patients have frequently an unmutated Ig gene configuration. Currently, the principles of therapy for this rare disease derive from uncontrolled single institutional studies, or even single case reports. In contrast to HCl-C, the HCl-V response to purine nucleoside analogs (PNA) is limited to partial responses in approximately 50% of patients. However, complete responses were observed in patients treated with rituximab and anti-CD22 immunotoxins. In Japan, a distinct subtype of HCl known as HCl-Japanese variant (HCl-JV) has been identified. As with HCl-V, patients with HCl-JV have leukocytosis, weak TRAP activity in leukemic cells, and lack of CD25 antigen. In this review, the biology, diagnostic criteria, and current therapeutic options in HCl-V and HCl-JV are presented. PMID:20558005

  16. High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias.

    PubMed

    Waterfall, Joshua J; Arons, Evgeny; Walker, Robert L; Pineda, Marbin; Roth, Laura; Killian, J Keith; Abaan, Ogan D; Davis, Sean R; Kreitman, Robert J; Meltzer, Paul S

    2014-01-01

    To understand the genetic mechanisms driving variant and IGHV4-34-expressing hairy-cell leukemias, we performed whole-exome sequencing of leukemia samples from ten affected individuals, including six with matched normal samples. We identified activating mutations in the MAP2K1 gene (encoding MEK1) in 5 of these 10 samples and in 10 of 21 samples in a validation set (overall frequency of 15/31), suggesting potential new strategies for treating individuals with these diseases. PMID:24241536

  17. Recurrent CDKN1B (p27) mutations in hairy cell leukemia.

    PubMed

    Dietrich, Sascha; Hüllein, Jennifer; Lee, Stanley Chun-Wei; Hutter, Barbara; Gonzalez, David; Jayne, Sandrine; Dyer, Martin J S; Oleś, Małgorzata; Else, Monica; Liu, Xiyang; Słabicki, Mikołaj; Wu, Bian; Troussard, Xavier; Dürig, Jan; Andrulis, Mindaugas; Dearden, Claire; von Kalle, Christof; Granzow, Martin; Jauch, Anna; Fröhling, Stefan; Huber, Wolfgang; Meggendorfer, Manja; Haferlach, Torsten; Ho, Anthony D; Richter, Daniela; Brors, Benedikt; Glimm, Hanno; Matutes, Estella; Abdel Wahab, Omar; Zenz, Thorsten

    2015-08-20

    Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations. PMID:26065650

  18. Is it really possible to cure hairy cell leukemia patients only with frontline therapy?

    PubMed

    Zinzani, Pier Luigi; Stefoni, Vittorio; Broccoli, Alessandro; Pellegrini, Cinzia; Gandolfi, Letizia; Casadei, Beatrice; Maglie, Roberto; Pileri, Stefano; Argnani, Lisa

    2014-09-01

    Hairy cell leukemia (HCL) patients could have an excellent prognosis with adequate treatment. Treatments are not generally curative but are extremely effective in inducing long-lasting clinical remissions. An observational retrospective study was conducted on a single-center registry of 144 patients with a median follow-up of 11.5 years, focusing on long-lasting continuous first complete remissions (CR) wondering if patients can be cured only with front-line approach. CR for more than 5 years after first-line therapy were found in 22.2 % cases. The median duration of response was 9.8 years, while for relapsed patients, the first response had a median duration of 2.4 years. Three different subsets of long-lasting first CR were identified: 15 patients are between 5 and 10 years with a median duration of CR of 6.5 years; 7 patients are between 10 and 15 years with a median duration of CR of 12.3 years; and 10 patients present a follow-up superior to 15 years with a median duration of CR of 20.0 years. There is a need for continuous study in this field to better define the optimal therapeutic regimen and, in particular, the biological issues since at least 20-25 % of HCL patients can be cured with only one treatment. PMID:24752417

  19. Variables in the Quantification of CD4 in Normals and Hairy Cell Leukemia Patients

    PubMed Central

    Wang, Lili; Abbasi, Fatima; Jasper, Gregory A; Kreitman, Robert J; Liewehr, David; Marti, Gerald E.; Stetler-Stevenson, Maryalice

    2010-01-01

    Background Quantitative flow cytometry (QFCM) is being applied in the clinical flow cytometry laboratory. Quantitative normal T-cell CD4 expression represents a biologic standard and quality control agent. However, low levels of CD4 expression were detected in normal T-cells in Hairy Cell Leukemia (HCL) samples. Methods The QuantiBrite System® was used to determine the level of CD4 expression (mean antibody bound per cell, ABC) in fresh and shipped HCL blood and fresh normal donor blood (NDB). The effects of shipping, lysing reagent, cell preparation method and antibody lot were evaluated. Results Shipped HCL specimens (n = 69) had a significantly lower mean CD4 ABC of 38,788 (CV = 9.1%) compared to fresh specimens (n = 105) CD4 value of 40,330 (CV = 8.4%) (p < 0 .05). In NDB, significant differences were seen for fresh versus shipped specimens using the stain/lyse method but not for lyse/stain method. Consistent differences in CD4 ABC based upon antibody lot were observed in fresh HCL and NDB samples. Stain/lyse and lyse/stain methods using NH4Cl lyse were compared in NDB using identical samples and antibodies. The NDB CD4 ABC values obtained with the lyse (NH4Cl )/stain method (45,562, 3.7% CV) were lower than those obtained with the stain/lyse (NH4Cl) method (49,955, 3.3% CV) with p<0.001. Conclusions CD4 expression in HCL patient samples is not inherently different from that observed in NDB and therefore may serve as a biological control in clinical QFCM. Technical variables impact significantly on QFCM of CD4. PMID:20687201

  20. Soluble CD22 as a tumor marker for hairy cell leukemia

    PubMed Central

    Matsushita, Kakushi; Margulies, Inger; Onda, Masanori; Nagata, Satoshi; Stetler-Stevenson, Maryalice

    2008-01-01

    CD22 is an important immunotherapeutic target on B-cell malignancies, particularly hairy cell leukemia (HCL), but its soluble extracellular domain, sCD22, has not yet been reported in the blood. By immunoaffinity and enzyme-linked immunosorbent assay techniques using anti-CD22 monoclonal antibodies, we identified the 100-kDa extracellular domain of CD22 and an 80-kDa processed form in serum of patients with HCL. The median sCD22 level measured by enzyme-linked immunosorbent assay was 18 ng/mL for 93 patients with HCL. sCD22 levels varied from 2.1 to 163 ng/mL and were higher (P < .001) than 23 normal donors (median, 0.6 ng/mL). More than 95% of normal donors had sCD22 levels less than 1.9 ng/mL. sCD22 levels were proportional to concentrations of circulating HCL cells (P = .002), and HCL spleen size (P < .001). sCD22 levels normalized with complete but not partial response to treatment. sCD22 levels up to 300 ng/mL had less than a 2-fold effect on the cytotoxicity of the anti-CD22 recombinant immunotoxin BL22. sCD22 levels may be useful to follow in patients with HCL and may be more specific than sCD25 in patients with CD22+/CD25− disease. Trials are listed on www.cancer.gov as NCT00002765, NCT00021983, NCT00074048, NCT00085085, NCT00337311, and NCT00462189. PMID:18596230

  1. Efficacy and Safety of Cladribine: Subcutaneous versus Intravenous Administration in Hairy Cell Leukemia Patients

    PubMed Central

    Khorshid, Ola; Namour, Alfred Elias; El-Gammal, Mosaad M; Mahmoud, Tarek Yakout; Fortpied, Catherine; Abdel-Malek, Raafat; Ramadan, Safaa

    2015-01-01

    Cladribine induces durable complete remission (CR) in approximately 85% of hairy cell leukemia (HCL) patients. In Egypt, cladribine is mainly used as IV continuous infusion at a dose of 0.1 mg/kg/day for 7 days and as SC bolus injection at a dose of 0.14 mg/kg/day for 5 days. We aimed to compare the outcome and toxicity between these two regimens. We retrospectively collected data from HCL patients treated at the National Cancer Institute and its affiliated center, Nasser Institute, Cairo, Egypt. Forty-nine patients were identified, 18 treated with the IV regimen (IV group) and 31 with the SC regimen (SC group). Forty-one patients were newly diagnosed. Patient characteristics were balanced across the two groups. The CR rates in the IV and the SC group were 94% and 97%, respectively. The main complications in the IV group and the SC were neutropenia G3–4 (67% vs. 87%), mucositis mainly G1–2 (67% vs 32%) and infections (mainly viral, 78% vs 34%). In the IV group, five patients died, three of progression and infection, one of unknown cause and one of late heart failure. In the SC group, one patient died of disease progression and one of second cancer. After 33.5 months, median follow-up, the 3-year event free survival was 60% and 96%, respectively (p=0.104). The 3-year overall survival was 81% and 100%, respectively (p=0.277). In conclusion, SC cladribine is an excellent alternative to the IV regimen for the treatment of HCL. PMID:26543527

  2. Central Role of Protein Kinase Cε in Constitutive Activation of ERK1/2 and Rac1 in the Malignant Cells of Hairy Cell Leukemia

    PubMed Central

    Slupsky, Joseph R.; Kamiguti, Aura S.; Harris, Robert J.; Cawley, John C.; Zuzel, Mirko

    2007-01-01

    We have previously identified the presence of Ras/Raf-independent constitutive activation of extracellular signal-regulated kinase (ERK) in the hairy cells (HCs) of hairy cell leukemia. The aim of the present study was to characterize the signaling components involved in this activation and their relationship to the reported activation of Rac1. We found that both Rac1 and ERK activation in HCs are downstream of active Src and protein kinase C (PKC). Inhibition with toxin B showed that Rac1 plays no role in ERK activation in HCs. However, toxin B inhibited p60src and the Rac1-GEF Vav, demonstrating a positive feedback/activation of p60src by Rac1. Treatment with specific small interfering RNA for various PKC isoforms, or with PKC isoform-specific inhibitors, demonstrated a central role for PKCε in the constitutive activation of Rac1 and ERK in HCs. PKCε and active ERK were mutually associated and co-localized with mitochondria in HCs. Furthermore, active PKCε was nitrated on tyrosine, pointing to a reactive oxygen species-dependent mechanism of activation. By being involved in activation of ERK and Rac1, PKCε plays roles in both the survival of HCs and in the cytoskeletal dynamics responsible for the distinctive morphology and tissue homing of these cells. Our study therefore describes novel aspects of signaling important for the pathogenesis of hairy cell leukemia. PMID:17255340

  3. Hairy Cell Leukemia Presenting with Isolated Skeletal Involvement Successfully Treated by Radiation Therapy and Cladribine: A Case Report and Review of the Literature

    PubMed Central

    Yonal-Hindilerden, Ipek; Hindilerden, Fehmi; Bulut-Dereli, Sanem; Yıldız, Eren; Dogan, Ibrahim Oner; Nalcaci, Meliha

    2015-01-01

    We describe an unusual case of hairy cell leukemia (HCL) in a 55-year-old male presenting with isolated skeletal disease as the initial manifestation without abnormal peripheral blood counts, bone marrow involvement, or splenomegaly. To the best of our knowledge, there have been only two previous reports of a similar case. The patient presented with pain in the right femur. Anteroposterior radiographs of both femurs revealed mixed lytic-sclerotic lesions. PET scan showed multiple metastatic lesions on axial skeleton, pelvis, and both femurs. Histopathological examination of the bone biopsy revealed an infiltrate of HCL. Localized radiation therapy to both proximal femurs and subsequently 4 weeks later, a 7-day course of 0.1 mg/kg/day cladribine provided complete remission with relief of symptoms and resolution of bone lesions. We addressed the manifestations and management of HCL patients with skeletal involvement. PMID:26788382

  4. Medical History, Lifestyle, and Occupational Risk Factors for Hairy Cell Leukemia: The InterLymph Non-Hodgkin Lymphoma Subtypes Project

    PubMed Central

    Slager, Susan L.; Hughes, Ann Maree; Smith, Alex; Glimelius, Bengt; Habermann, Thomas M.; Berndt, Sonja I.; Staines, Anthony; Norman, Aaron D.; Cerhan, James R.; Sampson, Joshua N.; Morton, Lindsay M.; Clavel, Jacqueline

    2014-01-01

    Background Little is known about the etiology of hairy cell leukemia (HCL), a rare B-cell lymphoproliferative disorder with marked male predominance. Our aim was to identify key risk factors for HCL. Methods A pooled analysis of individual-level data for 154 histologically confirmed HCL cases and 8834 controls from five case–control studies, conducted in Europe and Australia, was undertaken. Age-, race and/or ethnicity-, sex-, and study-adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using unconditional logistic regression. Results The usual patterns for age and sex in HCL were observed, with a median age of 55 years and sex ratio of 3.7 males to females. Cigarette smoking was inversely associated with HCL (OR = 0.51, 95% CI = 0.37 to 0.71) with dose–response relationships observed for duration, frequency, and lifetime cigarette smoking (P trend < .001). In contrast, occupation as a farmer was positively associated with HCL (OR = 2.34, 95% CI = 1.36 to 4.01), with a dose–response relationship observed for duration (OR = 1.82, 95% CI = 0.85 to 3.88 for ≤10 years vs never; and OR = 2.98, 95% CI = 1.50 to 5.93 for >10 years vs never; P trend = .025). Adult height was also positively associated with HCL (OR = 2.69, 95% CI = 1.39 to 5.29 for upper vs lower quartile of height). The observed associations remained consistent in multivariate analysis. Conclusions Our observations of an increased risk of HCL from farming exposures and decreased risk from smoking exposures, independent of one another, support a multifactorial origin and an etiological specificity of HCL compared with other non-Hodgkin lymphoma subtypes. The positive association with height is a novel finding that needs replication. PMID:25174032

  5. [Chronic B-cell lymphoproliferative disorders with hairy cells].

    PubMed

    Troussard, Xavier; Cornet, Édouard

    2015-01-01

    The standardized blood smear examination is the first step in the diagnosis of a B-cell chronic lymphoproliferative disorder and can guide further investigations. In the laboratory, the identification of hairy cells on blood smear is a matter of daily practice. Hairy cell proliferations represent heterogeneous entities and their respective diagnoses can be difficult. If hairy cell leukemia (HCL) and splenic marginal zone lymphoma (SMZL) represent separate entities, the variant form of HCL (HCLv) and splenic diffuse red pulp small B-cell lymphoma (SDRPL) remain provisional entities in the 2008 WHO classification. We discuss the main clinical and biological characteristics of these four entities and appropriate means to characterize, identify and distinguish from each other; standardized blood smear examination, multiparameter flow cytometry analysis, analysis of the repertoire of immunoglobulins heavy chains genes and their mutational status (mutated or unmutated profile), molecular analyses: BRAF gene V600E mutation in HCL and MAP2K1 gene mutations in HCLv. We also discuss the main therapeutic aspects with emphasis on the new targeted drugs that enter into force in the therapeutic arsenal. PMID:25858127

  6. RhoGTPases and p53 Are Involved in the Morphological Appearance and Interferon-α Response of Hairy Cells

    PubMed Central

    Chaigne-Delalande, Benjamin; Deuve, Lynda; Reuzeau, Edith; Basoni, Caroline; Lafarge, David; Varon, Christine; Tatin, Florence; Anies, Guerric; Garand, Richard; Kramer, Ijsbrand; Génot, Elisabeth

    2006-01-01

    Hairy cell leukemia is an uncommon B-cell lymphoproliferative disease of unknown etiology in which tumor cells display characteristic microfilamentous membrane projections. Another striking feature of the disease is its exquisite sensitivity to interferon (IFN)-α. So far, none of the known IFN-α regulatory properties have explained IFN-α responsiveness nor have they taken into account the morphological characteristics of hairy cells. IFN-α profoundly alters cytoskeletal organization of hairy cells and causes reversion of the hairy appearance into a rounded morphology. Because cytoskeletal rearrangements are controlled by the Rho family of GTPases, we investigated the GTPase activation status in hairy cells and their regulation by IFN-α. Using immunolocalization techniques and biochemical assays, we demonstrate that hairy cells display high levels of active Cdc42 and Rac1 and that IFN-α down-regulates these activities. In sharp contrast, RhoA activity was low in hairy cells but was increased by IFN-α treatment. Finally, IFN-α-mediated morphological changes also implicated a p53-induced response. These observations shed light on the mechanism of action of IFN-α in hairy cell leukemia and are of potential relevance for the therapeutical applications of this cytokine. PMID:16436670

  7. Replication of type I herpes simplex virus in primary cultures of hairy cell leukemic leukocytes.

    PubMed Central

    Pozner, L. H.; Daniels, C. A.; Cooper, J. A.; Cohen, H. J.; Logue, G. L.; Croker, B. P.

    1978-01-01

    The ability of leukemic leukocytes to support the replication of herpes simplex virus (HSV) was studied. Mononuclear leukocytes (MNL) from the peripheral blood of patients with a variety of lymphoid leukemias were isolated on Ficoll-Hypaque gradients and infected with HSV at a multiplicity of infection of 5 to 10. No virus growth was detected in cells from patients with chronic lymphocytic leukemia (9), acute lymphocytic leukemia (1), or lymphosarcoma cell leukemia (2), HSV replication did occur in hairy cell leukemic MNL from all of 4 patients studied. Maximal titers of 10(3.7) to 10(4.7) PFU/ml occurred 1 to 7 days after incubation. By electron microscopy, herpesvirus particles were seen in the nuclei of these infected cells after 3 days of culture, but none was seen in the cells not exposed to virus. Fluorescent antibody examination confirmed the presence of HSV antigens in the nuclei of infected hairy cells. No difference in the adsorption or penetration of the virus was found with the various MNL studied. Productive infection of the cells thus appeared to depend on the ability of the leukocyte ;o support a later stage of infection, either uncoating or replication of the virus. Images Figure 1 PMID:202167

  8. Oral hairy leukoplakia which occurred as a presenting sign of acute myeloid leukemia in a child.

    PubMed

    Cho, Hyun-Ho; Kim, Su-Han; Seo, Sang-Hee; Jung, Do-Sang; Ko, Hyun-Chang; Kim, Moon-Bum; Kwon, Kyung-Sool

    2010-02-01

    Oral hairy leukoplakia (OHL) is caused by the reactivation of a previous Epstein-Barr virus (EBV) infection in the epithelium of the tongue. Most lesions are characterized by corrugated whitish patches on the lateral border of the tongue. It is frequently associated with AIDS, but cases in patients with other immunosuppressed states have also been reported. In leukemia patients, OHL is rarely encountered, and appears only after chemotherapy. We report a case of OHL which occurred as a presenting sign of acute myeloid leukemia (AML) in a previously healthy 15-year-old child. A 15-year-old boy presented with a whitish patch on the left lateral border of the tongue. The biopsy specimen revealed papillomatosis, hyperkeratosis, acanthosis and ballooning degeneration in the stratum spinosum. The patient was EBV seropositive, and PCR analysis of EBV DNA in the lesional tissue was positive. After the diagnosis of OHL in dermatologic department, the patient was referred to pediatrics due to the abnormal peripheral blood smear, and was diagnosed with AML. PMID:20548888

  9. Leukemia

    MedlinePlus

    ... version of this page please turn Javascript on. Leukemia What Is Leukemia? Leukemia is a cancer of the blood cells. ... diagnosed with leukemia are over 50 years old. Leukemia Starts in Bone Marrow Click for more information ...

  10. Cellular Immunotherapy Following Chemotherapy in Treating Patients With Recurrent Non-Hodgkin Lymphomas, Chronic Lymphocytic Leukemia or B-Cell Prolymphocytic Leukemia

    ClinicalTrials.gov

    2016-07-29

    Post-transplant Lymphoproliferative Disorder; B-Cell Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classical Hodgkin Lymphoma; Recurrent Lymphoplasmacytic Lymphoma

  11. Childhood Leukemia--A Look at the Past, the Present and the Future.

    ERIC Educational Resources Information Center

    Findeisen, Regina; Barber, William H.

    1997-01-01

    Provides an overview of childhood leukemia. The causes, the survival period, different types (acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, and hairy cell leukemia), symptoms, treatment, side effects of treatment (including learning problems), and the expected future direction of…

  12. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  13. Leukemia -- Chronic T-Cell Lymphocytic

    MedlinePlus

    ... Chronic T-Cell Lymphocytic: Overview Print to PDF Leukemia - Chronic T-Cell Lymphocytic: Overview Approved by the ... Platelets that help the blood to clot About leukemia Types of leukemia are named after the specific ...

  14. Hairy cell leukaemia and occupational exposure to benzene.

    PubMed Central

    Clavel, J; Conso, F; Limasset, J C; Mandereau, L; Roche, P; Flandrin, G; Hémon, D

    1996-01-01

    OBJECTIVES: The role of occupational exposures in hairy cell leukaemia (HCL) was investigated through a multicentre, hospital based, case-control study. This paper analyses the role of exposure to benzene in HCL. METHODS: A population of 226 male cases of HCL and 425 matched controls were included in the study. Benzene exposure was evaluated by expert review of the detailed data on occupational exposures generated by case-control interviews. RESULTS: No association was found between HCL and employment in a job exposed to benzene (odds ratio (OR) 0.9 (95% confidence interval (95% CI) 0.6-1.3)). The sample included 125 subjects, 34 cases (15%), and 91 controls (21%) who had been exposed to benzene, as individually assessed by the experts, for at least one hour a month during one of their jobs. Benzene exposure was not associated with a risk of HCL (OR 0.8 (0.5-1.2)). No trend towards an increase in OR was detected for increasing exposures, the percentage of work time involving exposure to > 1 ppm, or the duration of exposure. No findings suggested a particular risk period, when the OR associated with the time since first or last exposure, or since the end of exposure, were examined. CONCLUSIONS: In conclusion, with the low exposures prevalent in the sample, the study did not show any association between benzene exposure and HCL. PMID:8983464

  15. Fludarabine Phosphate and Total-Body Irradiation Before Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-07-18

    B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  16. MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia

    ClinicalTrials.gov

    2014-04-28

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Leukemias of Ambiguous Lineage; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Aggressive NK-cell Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Noncutaneous Extranodal Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Unspecified Childhood

  17. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  18. Immune phenotype and some enzyme patterns in phorbol ester-induced chronic lymphocytic leukemia cells.

    PubMed

    Babusíková, O; Mesárosová, A; Kusenda, J; Koníková, E; Klobusická, M; Hrivnáková, A

    1995-01-01

    Leukemic cells from 10 patients with B-chronic lymphocytic leukemia (B-CLL) were isolated and cultured in the presence of 12-0-tetradecanoylphorbol 13-acetate (TPA) at a concentration of 8 x 10(-7) mol for 72 hours. Cells were analyzed before cultivation and after 72 h of cultivation with and without TPA for changes in surface membrane (Sm) and cytoplasmic (cyt) markers expression, presence of receptor for mouse rosette forming cells (MRFC) and some enzyme profiles. All B-CLL cases studied showed typical B-cell phenotype. TPA treatment induced hairy cell leukemia (HCL) characteristics, given by the membrane CD22 and CD25 expression and TRAP positivity in the majority of the cases tested. Cells had hairy cell-like morphology with more intensive cytoplasmic immunoglobulin (CIg) fluorescence staining, absent receptor for MRFC and increased activity of purine nucleosidephosphorylase. In common these changes indicate that TPA can induce hairy cell characteristics on B-CLL cells in vitro suggesting the more mature differentiation stage of HCL compared with CLL. Furthermore, we originally demonstrated that the CD22, present in the cell membrane after TPA, could be detected in the majority of unaffected B-CLL cells in their cytoplasm. From the technical point of view some intracellular CD markers and Igs of B-CLL cells in viable cells in suspension assayed by flow cytometry are described in this study. PMID:8552199

  19. Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  20. Plasma cell leukemia

    PubMed Central

    Albarracin, Flavio; Fonseca, Rafael

    2014-01-01

    Plasma cell leukemia (PCL) is a rare, yet aggressive plasma cell (PC) neoplasm, variant of multiple myeloma (MM), characterized by high levels of PCs circulating in the peripheral blood. PCL can either originate de novo (primary PCL) or as a secondary leukemic transformation of MM (secondary PCL). Presenting signs and symptoms are similar to those seen in MM such as renal insufficiency, hypercalcemia, lytic bone lesions, anemia, and thrombocytopenia, but can also include hepatomegaly and splenomegaly. The diagnostic evaluation of a patient with suspected PCL should include a review of the peripheral blood smear, bone marrow aspiration and biopsy, serum protein electrophoresis (SPEP) with immunofixation, and protein electrophoresis of an aliquot from a 24h urine collection (UPEP). The diagnosis is made when a monoclonal population of PCs is present in the peripheral blood with an absolute PC count exceeding 2000/μL and PC comprising 20% or more of the peripheral blood white cells. The prognosis of PCL is poor with a median survival of 7 to 11 months. Survival is even shorter (2 to 7 months) when PCL occurs in the context of refractory or relapsing MM. There have been no prospective randomized trials investigating the treatment of PCL. Recommendations are primarily based upon data from small retrospective series, case reports, and extrapolation of data from patients with MM. In general, patients are treated with induction therapy followed by hematopoietic cell transplantation (HCT) in those who are appropriate candidates for this approach. The best induction regimen for PCL is not known and there is great variability in clinical practice. Newer agents that are being incorporated into frontline and salvage therapy for MM have also demonstrated activity in PCL such as Immunomodulatory agents and the use of bortezomib with different combinations. PMID:21295388

  1. Massive retroperitoneal lymphadenopathy as a terminal event in hairy cell leukaemia.

    PubMed

    Mehta, A B; Catovsky, D; O'Brien, C J; Lott, M; Bowley, N; Hemmingway, A

    1983-01-01

    A case of hairy cell leukaemia complicated as a terminal event by massive retroperitoneal lymphadenopathy is described. The patient had recently been treated with lithium carbonate and had previously been demonstrated to suffer from a systemic vasculitis, either or both of which may have contributed to the development of this rare complication. PMID:6360496

  2. Myelosuppression in HCL: role of hairy cells, T cells and haematopoietic growth factors.

    PubMed

    Schwarzmeier, J D; Gasché, C G; Hilgarth, M F; Reinisch, W W; Göbl, S; Berger, R

    1994-05-01

    To elucidate mechanisms which may be responsible for the haematopoietic insufficiency in hairy cell leukaemia (HCL), we investigated in an autologous in vitro system the influence of haematopoietic growth factors (CSFs) and the effects of hairy cells (HCs) as well as T cells on the formation of haematopoietic colonies (CFU). Colony forming assays were performed using peripheral blood mononuclear cells (PBMC) of 6 HCL patients. To remove HCs, PBMCs were subjected to complement-mediated lysis, T cells were removed by E-rosette formation. Assays were done with and without recombinant human (rh) interleukin-3 (IL-3) and rh granulocyte-macrophage-colony-stimulating factor (GM-CSF). All 6 patients exhibited a severe reduction of their circulating progenitor cell (CPC) compartment. There was no correlation between the degree of colony reduction and the number of HCs. However, a correlation was found between the numbers of CPCs of HCL patients and healthy donors and the monocyte counts in these groups (r = 0.8573, p < 0.001). The removal of autologous HCs, but also of T cells, resulted in a significant increase in colony formation (BFU-E, CFU-GM, CFU-mix). In none of the experiments, however, did colony numbers come close to the normal range. This was only achieved by supplementation of the culture medium with rh IL-3 and rh GM-CSF. The results suggest that the haematopoietic failure observed in HCL patients is probably due to an inadequate supply of CSFs as well as to an inhibitory activity of HCs and T cells which might exert their effects in a synergistic fashion. There is also evidence that the lack of monocytes plays a role in the development of the haematopoietic insufficiency in HCL. PMID:8020624

  3. Plasma cell leukemia: A case series from South India with emphasis on rarer variants

    PubMed Central

    Rajeswari, G.; Paul, T. Roshni; Uppin, Megha S.; Uppin, Shantveer G.; Rao, D. Raghunadha; Raju D, D. Sree Bhushan; Sadashindu, G.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of plasma cell dyscrasia. They occur de novo (primary) or as a late manifestation of multiple myeloma (secondary). Patients present with anemia, thrombocytopenia, renal failure, organomegaly and extramedullary manifestations. We are presenting this series as it is the second largest series from India (16) with 4 young cases (under 40 years of age), more number of female patients and two having ‘hairy cell’ morphology. It is recommended that techniques like immunophenotyping and protein electrophoresis be performed, whenever the morphology is not characteristic of plasma cells. PMID:25336792

  4. Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.

    PubMed

    Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B

    1992-11-01

    S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias. PMID:1384316

  5. Hairy Math: Add Wnt-3a to Multiply Bulge Cells

    PubMed Central

    Hossain, M. Zulfiquer; Garza, Luis A.

    2015-01-01

    Canonical Wnt signals are important for activation of epithelial skin stem cells, but the role of individual Wnt ligands remains uncertain. Ouji et al. demonstrate a key role for Wnt-3a in partial maintenance and long-term expansion of epithelial skin stem cells in vitro. They also report a method for expanding these cells in vitro without feeder cells. PMID:25964269

  6. Sensory Cells of the Fish Ear: A Hairy Enigma

    NASA Technical Reports Server (NTRS)

    Popper, A. N.; Saidel, W. M.

    1995-01-01

    Analysis of the structure of the ears in teleost fishes has led to the tentative suggestion that otolithic endorgans may function differently, in different species. Recently, evidence has demonstrated different 'types' of sensory hair cells can be found in the ears of teleost fishes, and individual hair cell types are found in discrete regions of individual sensory, epithelia. The presence of multiple hair cell types in fishes provides strong support to the hypothesis of regional differences in the responses of individual otolithic sensory epithelia. The finding of hair cell types in fishes that closely resemble those found in amniote vestibular endorgans also suggests that hair cell heterogeneity arose earlier in the evolution of the vertebrate ear than previously thought.

  7. Adoptive T-cell therapy for Leukemia.

    PubMed

    Garber, Haven R; Mirza, Asma; Mittendorf, Elizabeth A; Alatrash, Gheath

    2014-01-01

    Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We

  8. RNAi Screening of Leukemia Cells Using Electroporation.

    PubMed

    Agarwal, Anupriya; Tyner, Jeffrey W

    2016-01-01

    RNAi-mediated screening has been an integral tool for biological discovery for the past 15 years. A variety of approaches have been employed for implementation of this technique, including pooled, depletion/enrichment screening with lentiviral shRNAs, and segregated screening of panels of individual siRNAs. The latter approach of siRNA panel screening requires efficient methods for transfection of siRNAs into the target cells. In the case of suspension leukemia cell lines and primary cells, many of the conventional transfection techniques using liposomal or calcium phosphate-mediated transfection provide very low efficiency. In this case, electroporation is the only transfection technique offering high efficiency transfection of siRNAs into the target leukemia cells. Here, we describe methods for optimization and implementation of siRNA electroporation into leukemia cell lines and primary patient specimens, and we further offer suggested electroporation settings for some commonly used leukemia cell lines. PMID:27581286

  9. Selective T-Cell Depletion to Reduce GVHD (Patients) Receiving Stem Cell Tx to Treat Leukemia, Lymphoma or MDS

    ClinicalTrials.gov

    2011-12-09

    Graft vs Host Disease; Myelodysplastic Syndromes; Leukemia; Leukemia, Myeloid; Leukemia, Myelomonocytic, Chronic; Leukemia, Lymphocytic; Lymphoma; Lymphoma, Mantle-cell; Lymphoma, Non-Hodgkin; Hodgkin Disease

  10. Lenalidomide With or Without Rituximab in Treating Patients With Progressive or Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, Prolymphocytic Leukemia, or Non-Hodgkin Lymphoma Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2014-04-03

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  11. Nivolumab in Treating Patients With HTLV-Associated T-Cell Leukemia/Lymphoma

    ClinicalTrials.gov

    2016-06-07

    Acute Adult T-Cell Leukemia/Lymphoma; Adult T-Cell Leukemia/Lymphoma; Chronic Adult T-Cell Leukemia/Lymphoma; HTLV-1 Infection; Lymphomatous Adult T-Cell Leukemia/Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Smoldering Adult T-Cell Leukemia/Lymphoma

  12. BRAF mutation detection in hairy cell leukaemia from archival haematolymphoid specimens.

    PubMed

    Thomas, Carla; Amanuel, Benhur; Finlayson, Jill; Grieu-Iacopetta, Fabienne; Spagnolo, Dominic V; Erber, Wendy N

    2015-06-01

    Hairy cell leukaemia (HCL) is a rare, indolent chronic B-cell leukaemia accounting for approximately 2% of all adult leukaemias. The recent association of the BRAF p.Val600Glu (V600E) mutation in HCL makes it a valuable molecular diagnostic marker. We compared the ability of Sanger sequencing, fluorescent single-strand conformational polymorphism (F-SSCP) and high resolution melting (HRM) analysis to detect BRAF mutations in 20 cases of HCL consisting of four archival Romanowsky stained air-dried peripheral blood and bone marrow aspirate smears, 12 mercury fixed decalcified bone marrow trephine biopsies, three formalin fixed, paraffin embedded (FFPE) splenectomy samples and one fresh peripheral blood sample. DNA was amplified and BRAF mutation status determined by the three methods above. V600E mutation was identified in 94%, 89% and 72% of HCL cases by F-SSCP, HRM and Sanger sequencing, respectively. In one case, in addition to the p.Val600Glu mutation, a p.Lys601Thr (K601T) mutation was identified. DNA from archival slide scrapings, mercury-fixed and FFPE tissue can be used to identify BRAF mutations with high sensitivity, especially using HRM/F-SSCP. The V600E mutation can be used as a supplementary molecular marker to aid in the diagnosis of HCL and the presence of the mutation may provide a target for therapy. PMID:25938346

  13. Chronic B-Cell Leukemias and Agent Orange

    MedlinePlus

    ... survivors' benefits . Research on B-cell leukemias and herbicides The Health and Medicine Division (HMD) (formally known ... sufficient evidence of an association between exposure to herbicides and chronic lymphocytic leukemia. In 2003, VA recognized ...

  14. Obatoclax Mesylate, Vincristine Sulfate, Doxorubicin Hydrochloride, and Dexrazoxane Hydrochloride in Treating Young Patients With Relapsed or Refractory Solid Tumors, Lymphoma, or Leukemia

    ClinicalTrials.gov

    2014-04-30

    Acute Leukemias of Ambiguous Lineage; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  15. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    SciTech Connect

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  16. Mast cell leukemia: an extremely rare disease.

    PubMed

    Lu, Dai-Yin; Gau, Jyh-Pyng; Hong, Ying-Chung; Liu, Chun-Yu; Yu, Yuan-Bin; Hsiao, Liang-Tsai; Liu, Jin-Hwang; Chen, Po-Min; Chiou, Tzeon-Jye; Tzeng, Cheng-Hwai

    2014-08-01

    Systemic mastocytosis is characterized by pathologic proliferation and accumulation of mast cells in at least one extracutaneous organ such as liver, spleen, bone marrow, or lymph nodes. The clinical features are highly variable depending on impairment of the involved organ systems. It often raises diagnostic challenges. Here we report a case of a 78-year-old patient with mast cell leukemia. The literature is reviewed regarding the diagnosis and updated management of this rare disease. PMID:25028296

  17. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  18. Survival regulation of leukemia stem cells.

    PubMed

    Hu, Yiguo; Li, Shaoguang

    2016-03-01

    Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss. PMID:26686687

  19. Targeting chronic myeloid leukemia stem cells.

    PubMed

    Kinstrie, Ross; Copland, Mhairi

    2013-03-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder that is characterized by the presence of the fusion oncogene BCR-ABL that encodes the tyrosine kinase BCR-ABL. Constitutive expression of BCR-ABL leads to the unregulated production of mature myeloid cells in the bone marrow and their subsequent release into the blood. Untreated, CML will progress from a chronic to accelerated phase over a number of years before quickly proceeding to a terminal blast crisis phase, reminiscent of acute leukemia. The advent of tyrosine kinase inhibitors has led to much improved management of the disease, but these drugs do not provide a cure as they are unable to eradicate the most primitive, quiescent fraction of CML stem cells. This review looks at recent research into targeting CML stem cells and focuses on major signalling pathways of interest. PMID:23264204

  20. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  1. An unusual indication for splenectomy in hairy cell leukaemia: a report of three cases with persistent splenomegaly after chemoimmunotherapy.

    PubMed

    Sarid, Nadav; Ahmad, Humayun N; Wotherspoon, Andrew; Dearden, Claire E; Else, Monica; Catovsky, Daniel

    2015-12-01

    We describe three cases of relapsed hairy cell leukaemia (HCL) treated with pentostatin plus rituximab. All three achieved bone marrow complete remission but had persistent splenomegaly and hypersplenism. Because of the clinical uncertainty of its significance, they were all splenectomized. The spleen histology showed no evidence of HCL, but a five-fold thickening of the splenic capsule and areas of fibrosis in the red pulp. This process may have contributed to the lack of elasticity and caused the persistent splenomegaly. We discuss the clinical implications for future patient management. The three patients remain in remission at 1 + , 5 + and 9 + years. PMID:26403440

  2. Molecular Hallmarks of Adult T Cell Leukemia

    PubMed Central

    Yamagishi, Makoto; Watanabe, Toshiki

    2012-01-01

    The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL. PMID:23060864

  3. Natural Killer Cells for Therapy of Leukemia.

    PubMed

    Suck, Garnet; Linn, Yeh Ching; Tonn, Torsten

    2016-03-01

    Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the third-party NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel 'off-the-shelf' product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed. PMID:27226791

  4. Natural Killer Cells for Therapy of Leukemia

    PubMed Central

    Suck, Garnet; Linn, Yeh Ching; Tonn, Torsten

    2016-01-01

    Summary Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the third-party NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel ‘off-the-shelf’ product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed. PMID:27226791

  5. Quantitative Proteomics Analysis of Leukemia Cells.

    PubMed

    Halbach, Sebastian; Dengjel, Jörn; Brummer, Tilman

    2016-01-01

    Chronic myeloid leukemia (CML) is driven by the oncogenic fusion kinase Bcr-Abl, which organizes its own signaling network with various proteins. These proteins, their interactions, and their role in relevant signaling pathways can be analyzed by quantitative mass spectrometry (MS) approaches in various models systems, e.g., in cell culture models. In this chapter, we describe in detail immunoprecipitations and quantitative proteomics analysis using stable isotope labeling by amino acids in cell culture (SILAC) of components of the Bcr-Abl signaling pathway in the human CML cell line K562. PMID:27581145

  6. CAR-pNK Cell Immunotherapy in CD7 Positive Leukemia and Lymphoma

    ClinicalTrials.gov

    2016-07-11

    Acute Myeloid Leukemia; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; T-cell Prolymphocytic Leukemia; T-cell Large Granular Lymphocytic Leukemia; Peripheral T-cell Lymphoma, NOS; Angioimmunoblastic T-cell Lymphoma; Extranodal NK/T-cell Lymphoma, Nasal Type; Enteropathy-type Intestinal T-cell Lymphoma; Hepatosplenic T-cell Lymphoma

  7. Immunological Analyses of Leukemia Stem Cells.

    PubMed

    Naka, Kazuhito; Takihara, Yoshihiro

    2016-01-01

    Traditionally, the intracellular localization and expression levels of specific proteins in CML Leukemia stem cells (LSCs) have been evaluated by fluorescence immunohistochemistry (FIHC). More recently, Duolink(®) in situ PLA technology has opened up a new and more quantitative way to evaluate signal transduction, posttranslational modification, and protein-protein interaction at the single-stem-cell level. This novel methodology, which employs two antibody-based probes, has already increased our understanding of the biology of the rare CML LSC population. In the future, the use of this approach may contribute to the development of novel therapeutics aimed at eradicating CML LSCs in CML patients. PMID:27581137

  8. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL. PMID:27149388

  9. Adult T-cell leukemia-lymphoma.

    PubMed

    Tsukasaki, Kunihiro

    2012-04-01

    Adult T-cell leukemia-lymphoma (ATL) was first described in 1977 as a distinct clinico-pathological entity with a suspected viral etiology. Subsequently, a novel RNA retrovirus, human T-cell leukemia/lymphotropic virus type 1 (HTLV-1) was isolated from a cell line established from the leukemic cells of an ATL patient, and the finding of a clear association with ATL led to its inclusion among human carcinogenic pathogens. The three major routes of HTLV-1 transmission are mother-to-child infections via breast milk, sexual intercourse, and blood transfusions. HTLV-1 infection early in life, presumably from breast feeding, is crucial in the development of ATL. The diversity in clinical features and prognosis of patients with this disease has led to its subtype-classification into four categories, acute, lymphoma, chronic, and smoldering types defined by organ involvement, and LDH and calcium values. In cases of acute, lymphoma, or unfavorable chronic subtypes (aggressive ATL), intensive chemotherapy such as VCAP-AMP-VECP is usually recommended. In cases of favorable chronic or smoldering ATL (indolent ATL), watchful waiting until disease progression has been recommended although the long term prognosis was inferior to those of, for instance, chronic lymphoid leukemia. Retrospective analysis suggested that the combination of interferon alpha and zidovudine was apparently promising for the treatment of ATL, especially for types with leukemic manifestation. Allogeneic hematopoietic stem cell transplantation is also promising for the treatment of aggressive ATL possibly reflecting graft vs. ATL effect. Several new agent-trials for ATL are ongoing and in preparation, including a defucosylated humanized anti-CC chemokine receptor 4 monoclonal antibody. Two steps should be considered for the prevention of HTLV-1-associated ATL. The first is the prevention of HTLV-1 infections and the second is the prevention of ATL among HTLV-1 carriers. So far, no agent has been found to be

  10. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  11. How I treat plasma cell leukemia

    PubMed Central

    Lokhorst, Henk M.; Anderson, Kenneth C.; Richardson, Paul G.

    2012-01-01

    Primary plasma cell leukemia (pPCL) is a rare and aggressive plasma cell proliferative disorder with a very poor prognosis and with distinct biologic, clinical, and laboratory features. Compared with multiple myeloma, pPCL presents more often with extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, elevated serum β2-microglobulin and lactate dehydrogenase levels, as well as impaired renal function. Many of the genetic aberrations observed in newly diagnosed pPCL are typically found in advanced multiple myeloma. These cytogenetic abnormalities and mutations lead to increased proliferation, enhanced inhibition of apoptosis, escape from immune surveillance, and independence from the BM microenvironment, with changes in expression of adhesion molecules or chemokine receptors. The outcome of pPCL has improved with the introduction of autologous stem cell transplantation and combination approaches with novel agents, including bortezomib and immunomodulatory drugs, such as lenalidomide. In this review, we provide an overview of currently available therapeutic options with recommendations of how these treatment modalities can best be used to improve outcome for plasma cell leukemia patients. PMID:22837533

  12. How I treat plasma cell leukemia.

    PubMed

    van de Donk, Niels W C J; Lokhorst, Henk M; Anderson, Kenneth C; Richardson, Paul G

    2012-09-20

    Primary plasma cell leukemia (pPCL) is a rare and aggressive plasma cell proliferative disorder with a very poor prognosis and with distinct biologic, clinical, and laboratory features. Compared with multiple myeloma, pPCL presents more often with extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, elevated serum β(2)-microglobulin and lactate dehydrogenase levels, as well as impaired renal function. Many of the genetic aberrations observed in newly diagnosed pPCL are typically found in advanced multiple myeloma. These cytogenetic abnormalities and mutations lead to increased proliferation, enhanced inhibition of apoptosis, escape from immune surveillance, and independence from the BM microenvironment, with changes in expression of adhesion molecules or chemokine receptors. The outcome of pPCL has improved with the introduction of autologous stem cell transplantation and combination approaches with novel agents, including bortezomib and immunomodulatory drugs, such as lenalidomide. In this review, we provide an overview of currently available therapeutic options with recommendations of how these treatment modalities can best be used to improve outcome for plasma cell leukemia patients. PMID:22837533

  13. Tax fingerprint in adult T-cell leukemia.

    PubMed

    Bazarbachi, Ali

    2016-04-01

    In this issue of Blood, Fujikawa et al demonstrate that the human T-cell leukemia virus type 1 (HTLV-1) oncoprotein Tax induces an epigenetic-dependent global modification of host gene expression in adult T-cell leukemia-lymphoma (ATL). Hence, the fingerprint of Tax is all over ATL and this may be used for finally capturing ATL. PMID:27056993

  14. Clearance of donor cell leukemia by means of graft versus leukemia effect: A case report.

    PubMed

    Ruiz-Delgado, Guillermo J; León Peña, Andrés A; Gómez-de-León, Andrés; Ruiz-Argüelles, Guillermo J

    2016-09-01

    Donor cell leukemia (DCL) is a rare complication of hematopoietic stem cell transplantation (HSCT). Its incidence has been reported between 0.12 and 5%, although the majority of cases are anecdotal. The mechanisms of leukemogenesis in DCL may be distinct from other types of leukemia. Here we describe a case of a 27-year-old woman with a diagnosis of biphenotypic acute leukemia who received a HSCT and developed a DCL. We briefly discuss the possible pathogenesis, diagnosis, and treatment of DCL. PMID:26914843

  15. Hodgkin's disease terminating in a T-cell immunoblastic leukemia.

    PubMed

    Dick, F R; Maca, R D; Hankenson, R

    1978-09-01

    A patient who developed an immunoblastic leukemia of T-cell type two and one half years after initial diagnosis of mixed cellularity Hodgkin's disease, stage IIIB, is described. The patient's course was characterized by an initial 15-months remission following radiation therapy. A relapse of Hodgkin's disease was treated with intensive chemotherapy. Thirteen months later the patient entered a rapid terminal course with multiple organ infiltrates and a leukemic peripheral blood. The leukemic phase was characterized by a 55,000 WGC with 48% immunoblasts, greater than 90% of which marked as T-cells. Although acute myelogenous leukemia, acute lymphocytic leukemia, lymphosarcoma cell leukemia and other tumors have been described in Hodgkin's disease after intensive therapy, this is the first report of the unusual association of a T-cell immunoblastic leukemia with Hodgkin's disease. PMID:308839

  16. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  17. The target cell of transformation is distinct from the leukemia stem cell in murine CALM/AF10 leukemia models.

    PubMed

    Dutta, S; Krause, A; Vosberg, S; Herold, T; Ksienzyk, B; Quintanilla-Martinez, L; Tizazu, B; Chopra, M; Graf, A; Krebs, S; Blum, H; Greif, P A; Vetter, A; Metzeler, K; Rothenberg-Thurley, M; Schneider, M R; Dahlhoff, M; Spiekermann, K; Zimber-Strobl, U; Wolf, E; Bohlander, S K

    2016-05-01

    The CALM/AF10 fusion gene is found in various hematological malignancies including acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia and malignant lymphoma. We have previously identified the leukemia stem cell (LSC) in a CALM/AF10-driven murine bone marrow transplant AML model as B220+ lymphoid cells with B-cell characteristics. To identify the target cell for leukemic transformation or 'cell of origin of leukemia' (COL) in non-disturbed steady-state hematopoiesis, we inserted the CALM/AF10 fusion gene preceded by a loxP-flanked transcriptional stop cassette into the Rosa26 locus. Vav-Cre-induced panhematopoietic expression of the CALM/AF10 fusion gene led to acute leukemia with a median latency of 12 months. Mice expressing CALM/AF10 in the B-lymphoid compartment using Mb1-Cre or CD19-Cre inducer lines did not develop leukemia. Leukemias had a predominantly myeloid phenotype but showed coexpression of the B-cell marker B220, and had clonal B-cell receptor rearrangements. Using whole-exome sequencing, we identified an average of two to three additional mutations per leukemia, including activating mutations in known oncogenes such as FLT3 and PTPN11. Our results show that the COL for CALM/AF10 leukemia is a stem or early progenitor cell and not a cell of B-cell lineage with a phenotype similar to that of the LSC in CALM/AF10+ leukemia. PMID:26686248

  18. Alvocidib in Treating Patients With B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-01

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  19. Pushing the Limits: Defeating Leukemia Stem Cells by Depleting Telomerase

    PubMed Central

    Kuo, Ya-Huei; Bhatia, Ravi

    2015-01-01

    Leukemia stem cells (LSCs), featuring unlimited self-renewal capacity and chemoresistance, are critical cellular targets for new treatments to improve outcomes for acute myeloid leukemia (AML). In this issue, Bruedigam et al. demonstrate that inhibition of telomerase is damaging to LSCs and may represent a promising therapeutic approach in AML. PMID:25479742

  20. Gossypol-Induced Differentiation in Human Leukemia HL-60 Cells

    PubMed Central

    Wang, Wen-Qing; Li, Rong; Bai, Qing-Xian; Liu, Yu-Hong; Zhang, Wei-Ping; Wang, Juan-Hong; Wang, Zhe; Li, Yuan-Fei; Chen, Xie-Qun; Huang, Gao-Sheng

    2006-01-01

    The main treatment of leukemia is traditional radiochemotherapy, which is associated with serious side effects. In the past twenty years, differentiation was found as an important effective measure to treat leukemia with fewer side effects. Gossypol, a natural compound which has been used as an effective contraceptive drug, has been proposed to be a potent drug to treat leukemia, but the differentiation effect has not been studied. In the present study, we investigated the pro-differentiated effects, in vitro, of gossypol on the classic human myeloid leukemia HL-60 cell line. The effects of gossypol were investigated by using morphological changes, nitroblue tetrazolium (NBT) reduction, surface markers, cell-cycle analysis and Western blot analysis, etc. When HL-60 cells were incubated with low concentrations of gossypol (2-5μM) for 48hr, a prominent G0/G1 arrest was observed. At 96 hr of treatment, 90% of HL-60 cells differentiated, as evidenced by morphological changes, NBT reduction, and increase in cell surface expression of some molecules were detected. This study is the first to identify gossypol’s pro-differentiated effects on the leukemia cell line, and it induced differentiation through the PBK (PDZ-binding kinase)/TOPK (T-LAKcell-originated protein kinase) (PBK/TOPK) pathway. It is concluded that gossypol could induce differentiation in the leukemia HL-60 cells, and it may be a potential therapeutic agent, chemoprevention or chemotherapeutic adjuvant especially in combination drug therapy for leukemia. PMID:23675007

  1. An Immunocompetent Mouse Model for MLL/AF9 Leukemia Reveals the Potential of Spontaneous Cytotoxic T-Cell Response to an Antigen Expressed in Leukemia Cells

    PubMed Central

    Hasegawa, Kana; Tanaka, Satomi; Fujiki, Fumihiro; Morimoto, Soyoko; Nakajima, Hiroko; Tatsumi, Naoya; Nakata, Jun; Takashima, Satoshi; Nishida, Sumiyuki; Tsuboi, Akihiro; Oka, Yoshihiro; Oji, Yusuke; Kumanogoh, Atsushi; Sugiyama, Haruo; Hosen, Naoki

    2015-01-01

    Leukemia differs substantially with respect to stromal milieu from tumors that progress locally as solid masses, and the physiological importance of immunosurveillance in leukemia remains unclear. However, currently available mouse leukemia models have critical limitations in the context of analyzing immunological regulation of leukemia development. In this study, we transferred mouse MLL/AF9 leukemia-initiating cells into immunocompetent recipient mice without any pre-conditioning such as irradiation, and then analyzed the spontaneous T cell response to an immunogenic antigen expressed in leukemia cells. When the minimum numbers of leukemia-initiating cells for engraftment were transferred, leukemia cells were eradicated by the adaptive immune response in most, if not all, wild-type mice, but not in Rag2-/- recipient mice, which lack adaptive immunity. By contrast, mice transplanted with larger numbers of leukemia cells always developed leukemia. In mice with advanced leukemia, antigen-specific CTLs were also expanded, but were unresponsive to antigen stimulation and expressed high levels of PD-1 and LAG-3. These results provide the first clear demonstration that the spontaneous CTL response to a tumor-cell antigen has the potential to eradicate leukemia, whereas antigen-specific CTLs are exhausted in animals with advanced leukemia. This immunocompetent mouse leukemia model provides a useful platform for developing effective immunotherapies against leukemia. PMID:26658107

  2. The BTK Inhibitor Ibrutinib (PCI-32765) Blocks Hairy Cell Leukaemia Survival, Proliferation and BCR Signalling: A New Therapeutic Approach

    PubMed Central

    Sivina, Mariela; Kreitman, Robert J.; Arons, Evgeny; Ravandi, Farhad; Burger, Jan A.

    2014-01-01

    B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins (A, G, and M) and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL. PMID:24697238

  3. 75 FR 14391 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... myocardial oxygen supply and demand. Therefore, for purposes of this regulation, the term ``IHD'' includes, but is not limited to, acute, subacute, and old myocardial infarction; atherosclerotic...

  4. 75 FR 53202 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... number.) SUPPLEMENTARY INFORMATION: On March 25, 2010, VA published in the Federal Register (75 FR 14391... between myocardial oxygen supply and demand.'' 75 FR 14393; See Harrison's Principles of Internal Medicine...; it typically occurs when there is an imbalance between myocardial oxygen supply and demand.'' 75...

  5. Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.

    PubMed

    Feng, Qian; Leong, Wa Seng; Liu, Liang; Chan, Wai-In

    2016-01-01

    Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34⁺CD38(-) leukemic stem-like cells, but not the more mature CD34⁺CD38⁺ leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G₂/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future. PMID:27110755

  6. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death.

    PubMed

    Lee, Eric A; Angka, Leonard; Rota, Sarah-Grace; Hanlon, Thomas; Mitchell, Andrew; Hurren, Rose; Wang, Xiao Ming; Gronda, Marcela; Boyaci, Ezel; Bojko, Barbara; Minden, Mark; Sriskanthadevan, Shrivani; Datti, Alessandro; Wrana, Jeffery L; Edginton, Andrea; Pawliszyn, Janusz; Joseph, Jamie W; Quadrilatero, Joe; Schimmer, Aaron D; Spagnuolo, Paul A

    2015-06-15

    Treatment regimens for acute myeloid leukemia (AML) continue to offer weak clinical outcomes. Through a high-throughput cell-based screen, we identified avocatin B, a lipid derived from avocado fruit, as a novel compound with cytotoxic activity in AML. Avocatin B reduced human primary AML cell viability without effect on normal peripheral blood stem cells. Functional stem cell assays demonstrated selectivity toward AML progenitor and stem cells without effects on normal hematopoietic stem cells. Mechanistic investigations indicated that cytotoxicity relied on mitochondrial localization, as cells lacking functional mitochondria or CPT1, the enzyme that facilitates mitochondria lipid transport, were insensitive to avocatin B. Furthermore, avocatin B inhibited fatty acid oxidation and decreased NADPH levels, resulting in ROS-dependent leukemia cell death characterized by the release of mitochondrial proteins, apoptosis-inducing factor, and cytochrome c. This study reveals a novel strategy for selective leukemia cell eradication based on a specific difference in mitochondrial function. PMID:26077472

  7. Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma

    ClinicalTrials.gov

    2015-10-30

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia

  8. Novel and Emerging Drugs for Acute Myeloid Leukemia

    PubMed Central

    Stein, E.M.; Tallman, M.S.

    2014-01-01

    Acute myeloid leukemia (AML) is a challenging disease to treat with the majority of patients dying from their illness. While overall survival has been markedly prolonged in acute promyelocytic leukemia (APL), survival in younger adults with other subtypes of AML has only modestly improved over the last twenty years. Physicians who treat AML eagerly await drugs like Imatinib for chronic myeloid leukemia, Cladribine for hairy cell leukemia, and Rituximab for non-Hodgkin Lymphoma which have had an important impact on improving outcome. Recent research efforts have focused on refining traditional chemotherapeutic agents to make them more active in AML, targeting specific genetic mutations in myeloid leukemia cells, and utilizing novel agents such as Lenalidomide that have shown activity in other hematologic malignancies. Here, we focus on reviewing the recent literature on agents that may assume a role in clinical practice for patients with AML over the next five years. PMID:22483153

  9. Alvocidib, Fludarabine Phosphate, and Rituximab in Treating Patients With Lymphoproliferative Disorders or Mantle Cell Lymphoma

    ClinicalTrials.gov

    2013-06-03

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Splenic Marginal Zone Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  10. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization

    PubMed Central

    Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-01

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the “verge of apoptosis”. When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways. PMID:26716897

  11. CML Mouse Model Generated from Leukemia Stem Cells.

    PubMed

    Hu, Yiguo

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder with a high number of well-differentiated neutrophils in peripheral blood and myeloid cells in bone marrow (BM). CML is derived from the hematopoietic stem cells (HSCs) with the Philadelphia chromosome (Ph(+), t(9;22)-(q34;q11)), resulting in generating a fusion oncogene, BCR/ABL1. HSCs with Ph(+) are defined as leukemia stem cells (LSCs), a subpopulation cell at the apex of hierarchies in leukemia cells and responsible for the disease continuous propagation. Several kinds of CML models have been developed to reveal the mechanism of CML pathogenesis and evaluate therapeutic drugs in the past three decades. Here, we describe the procedures to generate a CML mouse model by introducing BCR/ABL1 into Lin(-)Sca1(+) cKit(+) population cells purified from mouse bone marrow. In CML retroviral transduction/transplantation mouse models, this modified model can mimic CML pathogenesis on high fidelity. PMID:27581136

  12. Allogeneic Hematopoietic Cell Transplant for Prolymphocytic Leukemia

    PubMed Central

    Kalaycio, Matt E.; Kukreja, Manisha; Woolfrey, Ann E.; Szer, Jeffrey; Cortes, Jorge; Maziarz, Richard T.; Bolwell, Brian J.; Buser, Andreas; Copelan, Edward; Gale, Robert Peter; Gupta, Vikas; Maharaj, Dipnarine; Marks, David I; Pavletic, Steven Z.; Horowitz, Mary M.; Arora, Mukta

    2009-01-01

    The poor prognosis of patients with prolymphocytic leukemia (PLL) has led some clinicians to recommend allogeneic hematopoietic cell transplant (HCT). However, the data to support this approach is limited to case-reports and small case-series. We reviewed the database of the Center for International Blood & Marrow Transplant Research to determine outcomes after allotransplant for patients with PLL. We identified 47 patients with a median age of 54 years (range, 30–75). With a median follow-up of 13 months, progression-free survival was 33% (95% Confidence Interval 20–47%) at 2 years. The most common cause of death was relapse or progression in 49%. The cumulative incidence of treatment-related mortality at 1-year post transplant was 28%. The small patient population prohibited prognostic factor analysis but these data support consideration of allotransplant for PLL. Further study of a larger population of patients is needed to determine which patients are more likely to benefit. PMID:19961946

  13. Human T cell lymphotropic virus-associated leukemia/lymphoma

    PubMed Central

    Ratner, Lee

    2009-01-01

    Purpose of review This article summarizes the current pathophysiologic basis for human T cell lymphotropic virus-associated leukemia/lymphoma as well as past, present, and future therapeutic options. Recent findings New studies have been published on allogeneic stem cell transplantation, arsenic trioxide, and bortezomib for this condition. Summary Studies of the molecular biology of human T cell lymphotropic virus-1-induced T cell leukemia/lymphoma have defined a critical role for oncoprotein, Tax, and activation of nuclear factor κB transcription pathways, which have provided rational approaches to improved therapy for T cell leukemia/lymphoma as well as a model for other hematopoietic malignancies characterized by nuclear factor κB activation. PMID:16093798

  14. Potential of autologous NK cell therapy to eradicate leukemia

    PubMed Central

    Abdel-Azim, Hisham; Heisterkamp, Nora

    2015-01-01

    B-precursor acute lymphoblastic leukemia (BP-ALL) patients are immunocompromised. We recently reported that functional natural killer (NK) cells can be grown from patient bone marrow and blood samples at diagnosis. Surprisingly, such NK cells exhibit cytotoxicity against autologous BP-ALL cells. Here, we outline unanswered questions, challenges and possible applications associated with these findings. PMID:25949882

  15. Primary Plasma Cell Leukemia: Identity Card 2016.

    PubMed

    Musto, Pellegrino; Simeon, Vittorio; Todoerti, Katia; Neri, Antonino

    2016-04-01

    Primary plasma cell leukemia (PPCL) is an aggressive and rare variant of multiple myeloma (MM), characterized by peculiar adverse clinical and biological features. Though the poor outcome of PPCL has been slightly improved by novel treatments during the last 10 years, due to the limited number of available studies in this uncommon disease, optimal therapy remains a classic unmet clinical need. Anyway, in the real-life practice, induction with a bortezomib-based three-drug combination, including dexamethasone and, possibly, lenalidomide, or, alternatively, thalidomide, cyclophosphamide, or doxorubicin, is a reasonable first-line option. This approach may be particularly advisable for patients with adverse cytogenetics, hyperleucocytosis, and rapidly progressive disease, in whom a fast response is required, or for those with suboptimal renal function, where, however, lenalidomide should be used with caution until renal activity is restored. In younger subjects, leukemia/lymphoma-like more intensive regimens, including hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone or continue-infusion cisplatin, doxorubicin, cyclophosphamide, and etoposide, may be also combined with bortezomib +/- thalidomide. Treatment must be started immediately after a diagnosis of PPCL is made to avoid the risk of irreversible disease complications and, in such a context, the prevention of tumor lysis syndrome is mandatory. In patients eligible for autologous stem cell transplantation (AuSCT), other alkylating agents, in particular melphalan, should be initially avoided in order to allow adequate collections of CD34+ peripheral blood stem cells (PBSC). A combination of lenalidomide and dexamethasone may be a valuable alternative option to manage older or unfit patients or those with slower disease evolution or with signs of neuropathy, contraindicating the use of bortezomib. Patients not suitable for transplant procedures should continue the treatment, if a

  16. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Mosna, Federico

    2016-01-01

    Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987

  17. The prognostic impact of clinical and molecular features in hairy cell leukaemia variant and splenic marginal zone lymphoma.

    PubMed

    Hockley, Sarah L; Else, Monica; Morilla, Alison; Wotherspoon, Andrew; Dearden, Claire; Catovsky, Daniel; Gonzalez, David; Matutes, Estella

    2012-08-01

    Hairy cell leukaemia variant (HCL-variant) and splenic marginal zone lymphoma (SMZL) are disorders with overlapping features. We investigated the prognostic impact in these disorders of clinical and molecular features including IGH VDJ rearrangements, IGHV gene usage and TP 53 mutations. Clinical and laboratory data were collected before therapy from 35 HCL-variant and 68 SMZL cases. End-points were the need for treatment and overall survival. 97% of HCL-variant and 77% of SMZL cases required treatment (P = 0·009). Survival at 5 years was significantly worse in HCL-variant [57% (95% confidence interval 38-73%)] compared with SMZL [84% (71-91%); Hazard Ratio 2·25 (1·20-4·25), P = 0·01]. In HCL-variant, adverse prognostic factors for survival were older age (P = 0·04), anaemia (P = 0·01) and TP 53 mutations (P = 0·02). In SMZL, splenomegaly, anaemia and IGHV genes with >98% homology to the germline predicted the need for treatment; older age, anaemia and IGHV unmutated genes (100% homology) predicted shorter survival. IGHV gene usage had no impact on clinical outcome in either disease. The combination of unfavourable factors allowed patients to be stratified into risk groups with significant differences in survival. Although HCL-variant and SMZL share some features, they have different outcomes, influenced by clinical and biological factors. PMID:22594855

  18. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  19. [Hypercalcemia of T-cell leukemia in adults].

    PubMed

    Jean-Baptiste, G; Arfi, S; Plumelle, Y; Panelatti, G; Mangin, J L; Pascaline, N

    1993-04-01

    A retrospective study of 26 adults with acute T-cell leukemia showed that 14 patients (54%) had hypercalcemia at some point of the disease. Hypercalcemia was found at presentation in nine patients and revealed the disease in one. Eight patients had hypercalcemia at the time of death. Serum phosphorus and parathyroid hormone levels were normal. All patients with hypercalcemia tested positive for the HTLV-1 by Elisa and Western blot. Six patients had focalized or diffuse lytic roentgenographic bone lesions. Hypercalcemia in acute T-cell leukemia may involve production of interleukin-1-alpha and parathyroid hormone-related protein by HTLV-1-infected cells. PMID:8167627

  20. Genetic aberrations in small B-cell lymphomas and leukemias: molecular pathology, clinical relevance and therapeutic targets.

    PubMed

    Bogusz, Agata M; Bagg, Adam

    2016-09-01

    Small B-cell lymphomas and leukemias (SBCLs) are a clinically, morphologically, immunophenotypically and genetically heterogeneous group of clonal lymphoid neoplasms, including entities such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), lymphoplasmacytic lymphoma (LPL), marginal zone lymphoma (MZL) and hairy cell leukemia (HCL). The pathogenesis of some of these lymphoid malignancies is characterized by distinct translocations, for example t(11;14) in the majority of cases of MCL and t(14;18) in most cases of FL, whereas other entities are associated with a variety of recurrent but nonspecific numeric chromosomal abnormalities, as exemplified by del(13q14), del(11q22), and +12 in CLL, and yet others such as LPL and HCL that lack recurrent or specific cytogenetic aberrations. The recent surge in next generation sequencing (NGS) technology has shed more light on the genetic landscape of SBCLs through characterization of numerous driver mutations including SF3B1 and NOTCH1 in CLL, ATM and CCND1 in MCL, KMT2D and EPHA7 in FL, MYD88 (L265P) in LPL, KLF2 and NOTCH2 in splenic MZL (SMZL) and BRAF (V600E) in HCL. The identification of distinct genetic lesions not only provides greater insight into the molecular pathogenesis of these disorders but also identifies potential valuable biomarkers for prognostic stratification, as well as specific targets for directed therapy. This review discusses the well-established and recently identified molecular lesions underlying the pathogenesis of SBCLs, highlights their clinical relevance and summarizes novel targeted therapies. PMID:27121112

  1. A novel self-lipid antigen targets human T cells against CD1c+ leukemias

    PubMed Central

    Lepore, Marco; de Lalla, Claudia; Gundimeda, S. Ramanjaneyulu; Gsellinger, Heiko; Consonni, Michela; Garavaglia, Claudio; Sansano, Sebastiano; Piccolo, Francesco; Scelfo, Andrea; Häussinger, Daniel; Montagna, Daniela; Locatelli, Franco; Bonini, Chiara; Bondanza, Attilio; Forcina, Alessandra; Li, Zhiyuan; Ni, Guanghui; Ciceri, Fabio; Jenö, Paul; Xia, Chengfeng

    2014-01-01

    T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c+ acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c+ human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy. PMID:24935257

  2. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-16

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  3. Leukemia Stem Cells and Microenvironment: Biology and Therapeutic Targeting

    PubMed Central

    Konopleva, Marina Y.; Jordan, Craig T.

    2011-01-01

    Acute myelogenous leukemia is propagated by a subpopulation of leukemia stem cells (LSCs). In this article, we review both the intrinsic and extrinsic components that are known to influence the survival of human LSCs. The intrinsic factors encompass regulators of cell cycle and prosurvival pathways (such as nuclear factor kappa B [NF-κB], AKT), pathways regulating oxidative stress, and specific molecular components promoting self-renewal. The extrinsic components are generated by the bone marrow microenvironment and include chemokine receptors (CXCR4), adhesion molecules (VLA-4 and CD44), and hypoxia-related proteins. New strategies that exploit potentially unique properties of the LSCs and their microenvironment are discussed. PMID:21220598

  4. Fludarabine Phosphate, Radiation Therapy, and Rituximab in Treating Patients Who Are Undergoing Donor Stem Cell Transplant Followed by Rituximab for High-Risk Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-03-28

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia

  5. Inducible T-cell receptor expression in precursor T cells for leukemia control.

    PubMed

    Hoseini, S S; Hapke, M; Herbst, J; Wedekind, D; Baumann, R; Heinz, N; Schiedlmeier, B; Vignali, D A A; van den Brink, M R M; Schambach, A; Blazar, B R; Sauer, M G

    2015-07-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T-cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. As expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8(+) T-cell development was required to obtain a mature T-cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T-cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  6. Effects of lentivirus mediated STAT3 silencing on human chronic myeloid leukemia cells and leukemia mice

    PubMed Central

    Jia, Xinyan; Yang, Wenzhong; Han, Jia; Xiong, Hong

    2014-01-01

    Objective: To investigate the effects of lentivirus mediated STAT3 silencing on human chronic myeloid leukemia cells (K562) and the growth of chronic myeloid leukemia mice as well as to explore the potential mechanisms. Methods: Unbtreated K562 cells (CON), blank lentivirus transfected K562 cells (NC) and K562 cells expressing STAT3 siRNA (STAT3 siRNA) were injected into SCID mice to establish the chronic myeloid leukemia model in mice. The growth, peripheral white blood cell count and spleen index in these mice were determined. Results: In vitro experiment showed, when compared with control group, the interference efficiency of STAT3 expression was as high as 97.5% in K562 cells. Western blot assay revealed that the expression of c-Myc, Bcl-xL and Cyclin D1 reduced by 17.01%, 7.3% and 6.82%, respectively, showing significant difference when compared with control group (P < 0.01). These findings were consistent with those from fluorescence quantitative PCR. In vivo experiment showed the body weight of mice reduced progressively and the peripheral white blood cell count increased gradually in control group, accompanied by dragging hind limbs and progressive enlargement of the spleen. The body weight remained unchanged, peripheral white blood cell count reduced gradually and the spleen did not enlarge in mice treated with STAT3 siRNA expressing cells. Conclusion: Lentivirus mediated STAT3 silencing may inhibit the expression of its downstream genes (c-Myc, Bcl-xL and Cyclin D1) related to cell proliferation, apoptosis and cycle to suppress the malignant biological behaviors, and STAT3 silencing also inhibit the leukemogenic potency of K562 cells in mice. PMID:25550912

  7. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia.

    PubMed

    Zhou, Jianbiao; Chng, Wee-Joo

    2014-09-26

    Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC. PMID:25258669

  8. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Class II human leucocyte antigen DRB1*11 in hairy cell leukaemia patients with and without haemolytic uraemic syndrome

    PubMed Central

    Arons, Evgeny; Adams, Sharon; Venzon, Venzon, David J; Pastan, Ira; Kreitman, Robert J.

    2014-01-01

    Frequencies of human leucocyte antigens (HLA) were determined in 287 classic hairy cell leukaemia (HCL) patients. With respect to both population (n=287) and allele (2n=574) frequency, respectively, the most common HLA class I and II antigens expressed were HLA-A*02 (49.1% and 28.6%), HLA-B*07 (21.3% and 11.1%), HLA-C*07 (46.7 and 28.2%), HLA-DQB1*03 (62.7% and 37.3%), HLA-DRB1*11 (30.0% and 16.0%) and HLA-DRB4*01 (45.3% and 29.6%). In comparing 6–14 databases of control Caucasians to 267 Caucasian HCL patients, only HLA-DRB1*11 was consistently over-represented in HCL, 31.1% of patients vs 17–19.9% of controls (p=0.0055 to <0.0001) and 16.5% of alleles vs 6.5–12.3% of control alleles (p=0.022 to <0.0001). HLA-DRB1*11 is a known risk factor for acquired thrombotic microangiopathy. Anti-CD22 recombinant immunotoxin BL22 in HCL was associated with a 12% incidence of completely reversible grade 3–4 haemolytic uraemic syndrome (HUS), mainly during the second or third retreatment cycle. Of 49 HCL patients receiving ≥2 cycles of BL22, 7 (14%) had HUS and HLA-DRB1*11 was expressed in 71% of 7 with HUS compared with only 21% of 42 without (p=0.015). These data suggest that DBR1*11 may be a marker for increased susceptibility to HCL and, among HCL patients, could be a risk factor for BL22-induced HUS. PMID:24931452

  10. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy

    PubMed Central

    Thomas, Xavier

    2012-01-01

    Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph+). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph+ ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph+ leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph+ ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph+ ALL. PMID:22993661

  11. Rewired Metabolism in Drug-resistant Leukemia Cells

    PubMed Central

    Stäubert, Claudia; Bhuiyan, Hasanuzzaman; Lindahl, Anna; Broom, Oliver Jay; Zhu, Yafeng; Islam, Saiful; Linnarsson, Sten; Lehtiö, Janne; Nordström, Anders

    2015-01-01

    Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies. PMID:25697355

  12. Systemic mastocytosis: progressive evolution of an occult disease into fatal mast cell leukemia: unique findings on an unusual hematological neoplasm.

    PubMed

    Gülen, T; Sander, B; Nilsson, G; Palmblad, J; Sotlar, K; Horny, H-P; Hägglund, H

    2012-12-01

    Systemic mastocytosis (SM) may be associated with a clonal hematopoietic non-mast cell-lineage disease (AHNMD). SM and AHNMD even may be clonally related. This report contributes to a better understanding of the different morphological aspects of SM by demonstrating that various AHNMDs can be detected in one patient during the course of disease. Routinely processed biopsy specimens of bone marrow and spleen removed from a 63-year-old man were investigated including a broad panel of immunohistochemical stainings. KIT codon 816 mutation analysis was carried out by melting point analysis of nested PCR products amplified from DNA of pooled microdissected mast cells. The histomorphological features of the initial bone marrow showed diffuse infiltration by hairy cell leukemia (HCL). Occult SM was only detected retrospectively by demonstration of a slight diffuse increase in loosely scattered, spindle-shaped mast cells carrying the activating point mutation KIT ( D816V ). In the second bone marrow, core biopsy removed about two years later HCL had been completely eradicated, while a diagnosis of SM-AHNMD with multifocal compact mast cell infiltrates associated with a myeloproliferative neoplasm (MPN) and significant increase in eosinophilic granulocytes was established. The third and last bone marrow biopsy specimen lacked the features of both MPN and HCL but showed progression into a secondary mast cell leukemia (MCL) with a focal sarcomatous component. To the best of the authors' knowledge, this is the first description of a case of SM-AHNMD with coexisting hematological neoplasms of lymphatic and myeloid origin initially presenting as occult disease and terminating as secondary MCL. PMID:22661384

  13. Childhood Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. It is the most common type of childhood cancer. ... blood cells help your body fight infection. In leukemia, the bone marrow produces abnormal white blood cells. ...

  14. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells.

    PubMed

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y J; Thomson, James; Slukvin, Igor

    2015-11-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin(-)CD34(+) cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  15. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  16. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  17. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  18. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells

    PubMed Central

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido

    2016-01-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174

  19. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells.

    PubMed

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido; Tong, Wei; Bhatia, Ravi

    2016-03-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL-expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL-expressing CML stem cells are potential targets for therapy. PMID:26878174

  20. What Is Childhood Leukemia?

    MedlinePlus

    ... key statistics for childhood leukemia? What is childhood leukemia? Cancer starts when cells start to grow out ... start making antibodies to fight them. Types of leukemia in children Leukemia is often described as being ...

  1. Chronic lymphocytic leukemia: a disease of activated monoclonal B cells

    PubMed Central

    Damle, Rajendra N.; Calissano, Carlo; Chiorazzi, Nicholas

    2010-01-01

    B-cell type chronic lymphocytic leukemia (CLL) has long been considered a disease of resting lymphocytes. However cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the buildup of leukemic cells is due to an inherent defect in cell death. However, in vivo labeling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients. PMID:20620969

  2. Optimizing Management of Patients with Adult T Cell Leukemia-Lymphoma

    PubMed Central

    Yared, Jean A.; Kimball, Amy S.

    2015-01-01

    Adult T cell leukemia-lymphoma is a rare disease with a high mortality rate, and is challenging for the clinician. Early allogeneic stem cell transplant can confer durable remission. As novel therapeutic agents become available to treat T cell malignancies, it is increasingly important that medical oncologists, hematologists, and hematopathologists recognize and accurately diagnose adult T cell leukemia-lymphoma. There is no uniform standard of treatment of adult T cell leukemia-lymphoma, and clinical trials remain critical to improving outcomes. Here we present one management approach based on the recent advances in treatment for adult T cell leukemia-lymphoma patients. PMID:26610571

  3. Deregulated expression of TCL1 causes T cell leukemia in mice

    PubMed Central

    Virgilio, Laura; Lazzeri, Cristina; Bichi, Roberta; Nibu, Ken-ichi; Narducci, Maria Grazia; Russo, Giandomenico; Rothstein, Jay L.; Croce, Carlo M.

    1998-01-01

    The TCL1 oncogene on human chromosome 14q32.1 is involved in the development of T cell leukemia in humans. These leukemias are classified either as T prolymphocytic leukemias, which occur very late in life, or as T chronic lymphocytic leukemias, which often arise in patients with ataxia telangiectasia (AT) at a young age. The TCL1 oncogene is activated in these leukemias by juxtaposition to the α or β locus of the T cell receptor, caused by chromosomal translocations t(14:14)(q11:q32), t(7:14)(q35:q32), or by inversions inv(14)(q11:q32). To show that transcriptional alteration of TCL1 is causally involved in the generation of T cell neoplasia we have generated transgenic mice that carry the TCL1 gene under the transcriptional control of the p56lck promoter element. The lck-TCL1 transgenic mice developed mature T cell leukemias after a long latency period. Younger mice presented preleukemic T cell expansions expressing TCL1, and leukemias developed only at an older age. The phenotype of the murine leukemias is CD4−CD8+, in contrast to human leukemias, which are predominantly CD4+CD8−. These studies demonstrate that transcriptional activation of the TCL1 protooncogene can cause malignant transformation of T lymphocytes, indicating the role of TCL1 in the initiation of malignant transformation in T prolymphocytic leukemias and T chronic lymphocytic leukemias. PMID:9520462

  4. Targeting Leukemia Stem Cells in vivo with AntagomiR-126 Nanoparticles in Acute Myeloid Leukemia

    PubMed Central

    Dorrance, Adrienne M.; Neviani, Paolo; Ferenchak, Greg J.; Huang, Xiaomeng; Nicolet, Deedra; Maharry, Kati S.; Ozer, Hatice G; Hoellarbauer, Pia; Khalife, Jihane; Hill, Emily B.; Yadav, Marshleen; Bolon, Brad N.; Lee, Robert J.; Lee, L.James; Croce, Carlo M.; Garzon, Ramiro; Caligiuri, Michael A.; Bloomfield, Clara D.; Marcucci., Guido

    2015-01-01

    Current treatments for acute myeloid leukemia (AML) are designed to target rapidly dividing blast populations with limited success in eradicating the functionally distinct leukemia stem cell (LSC) population, which is postulated to be responsible for disease resistance and relapse. We have previously reported high miR-126 expression levels to be associated with a LSC-gene expression profile. Therefore, we hypothesized that miR-126 contributes to “stemness” and is a viable target for eliminating the LSC in AML. Here we first validate the clinical relevance of miR-126 expression in AML by showing that higher expression of this microRNA (miR) is associated with worse outcome in a large cohort of older (≥60 years) cytogenetically normal AML patients treated with conventional chemotherapy. We then show that miR-126 overexpression characterizes AML LSC-enriched cell subpopulations and contributes to LSC long-term maintenance and self-renewal. Finally, we demonstrate the feasibility of therapeutic targeting of miR-126 in LSCs with novel targeting nanoparticles (NP) containing antagomiR-126 resulting in in vivo reduction of LSCs likely by depletion of the quiescent cell subpopulation. Our findings suggest that by targeting a single miR, i.e., miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients. PMID:26055302

  5. Potential role of AKT/mTOR signalling proteins in hairy cell leukaemia: association with BRAF/ERK activation and clinical outcome

    PubMed Central

    Lakiotaki, Eleftheria; Levidou, Georgia; Angelopoulou, Maria K.; Adamopoulos, Christos; Pangalis, Gerassimos; Rassidakis, George; Vassilakopoulos, Theodoros; Gainaru, Gabriella; Flevari, Pagona; Sachanas, Sotirios; Saetta, Angelica A.; Sepsa, Athanasia; Moschogiannis, Maria; Kalpadakis, Christina; Tsesmetzis, Nikolaos; Milionis, Vassilios; Chatziandreou, Ilenia; Thymara, Irene; Panayiotidis, Panayiotis; Dimopoulou, Maria; Plata, Eleni; Konstantopoulos, Konstantinos; Patsouris, Efstratios; Piperi, Christina; Korkolopoulou, Penelope

    2016-01-01

    The potential role of AKT/mTOR signalling proteins and its association with the Raf-MEK-ERK pathway was investigated in hairy cell leukaemia (HCL). BRAFV600E expression and activated forms of AKT, mTOR, ERK1/2, p70S6k and 4E-BP1 were immunohistochemically assessed in 77 BM biopsies of HCL patients and correlated with clinicopathological and BM microvascular characteristics, as well as with c-Caspase-3 levels in hairy cells. Additionally, we tested rapamycin treatment response of BONNA-12 wild-type cells or transfected with BRAFV600E. Most HCL cases expressed p-p70S6K and p-4E-BP1 but not p-mTOR, being accompanied by p-ERK1/2 and p-AKT. AKT/mTOR activation was evident in BONNA-12 cells irrespective of the presence of BRAFV600E mutation and was implicated in cell proliferation enhancement. In multivariate analysis p-AKT/p-mTOR/p-4E-BP1 overexpression was an adverse prognostic factor for time to next treatment conferring earlier relapse. When p-AKT, p-mTOR and p-4E-BP1 were examined separately only p-4E-BP1 remained significant. Our findings indicate that in HCL, critical proteins up- and downstream of mTOR are activated. Moreover, the strong associations with Raf-MEK-ERK signalling imply a possible biologic interaction between these pathways. Most importantly, expression of p-4E-BP1 alone or combined with p-AKT and p-mTOR is of prognostic value in patients with HCL. PMID:26893254

  6. B-cell leukemia/lymphoma panel

    MedlinePlus

    B lymphocyte cell surface markers ... sample is needed. In some cases, white blood cells are removed during a bone marrow biopsy . The ... to a laboratory, where a specialist checks the cell type and characteristics. This procedure is called immunophenotyping. ...

  7. Chronic mast cell leukemia: a novel leukemia-variant with distinct morphological and clinical features

    PubMed Central

    Valent, Peter; Sotlar, Karl; Sperr, Wolfgang R.; Reiter, Andreas; Arock, Michel; Horny, Hans-Peter

    2016-01-01

    Summary Mast cell leukemia (MCL) is a rare form of systemic mastocytosis characterized by leukemic expansion of mostly immature mast cells, organ damage, drug-resistance, and a poor prognosis. Even when treated with chemotherapy, most patients have a life-expectancy of less than one year. However, there are rare patients with MCL in whom the condition is less aggressive and does not cause organ damage within a short time. In these patients, mast cells exhibit a more mature morphology when compared to acute MCL. A recently proposed classification suggests that these cases are referred to as chronic MCL. In the present article, we discuss clinical, histopathological and morphological aspects of acute and chronic MCL. PMID:25443885

  8. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    PubMed

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival. PMID:24488563

  9. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia

    PubMed Central

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F.; Shpall, Elizabeth J.; Barrett, A. John; Rezvani, Katayoun

    2014-01-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival. PMID:24488563

  10. Ruxolitinib induces autophagy in chronic myeloid leukemia cells.

    PubMed

    Bagca, Bakiye Goker; Ozalp, Ozgun; Kurt, Cansu Caliskan; Mutlu, Zeynep; Saydam, Guray; Gunduz, Cumhur; Avci, Cigir Biray

    2016-02-01

    Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 μM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction. PMID:26298727

  11. Preferential eradication of acute myelogenous leukemia stem cells by fenretinide

    PubMed Central

    Zhang, Hui; Mi, Jian-Qing; Fang, Hai; Wang, Zhao; Wang, Chun; Wu, Lin; Zhang, Bin; Minden, Mark; Yang, Wen-Tao; Wang, Huan-Wei; Li, Jun-Min; Xi, Xiao-Dong; Chen, Sai-Juan; Zhang, Ji; Chen, Zhu; Wang, Kan-Kan

    2013-01-01

    Leukemia stem cells (LSCs) play important roles in leukemia initiation, progression, and relapse, and thus represent a critical target for therapeutic intervention. However, relatively few agents have been shown to target LSCs, slowing progress in the treatment of acute myelogenous leukemia (AML). Based on in vitro and in vivo evidence, we report here that fenretinide, a well-tolerated vitamin A derivative, is capable of eradicating LSCs but not normal hematopoietic progenitor/stem cells at physiologically achievable concentrations. Fenretinide exerted a selective cytotoxic effect on primary AML CD34+ cells, especially the LSC-enriched CD34+CD38− subpopulation, whereas no significant effect was observed on normal counterparts. Methylcellulose colony formation assays further showed that fenretinide significantly suppressed the formation of colonies derived from AML CD34+ cells but not those from normal CD34+ cells. Moreover, fenretinide significantly reduced the in vivo engraftment of AML stem cells but not normal hematopoietic stem cells in a nonobese diabetic/SCID mouse xenotransplantation model. Mechanistic studies revealed that fenretinide-induced cell death was linked to a series of characteristic events, including the rapid generation of reactive oxygen species, induction of genes associated with stress responses and apoptosis, and repression of genes involved in NF-κB and Wnt signaling. Further bioinformatic analysis revealed that the fenretinide–down-regulated genes were significantly correlated with the existing poor-prognosis signatures in AML patients. Based on these findings, we propose that fenretinide is a potent agent that selectively targets LSCs, and may be of value in the treatment of AML. PMID:23513221

  12. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA.

    PubMed Central

    Seiki, M; Hattori, S; Hirayama, Y; Yoshida, M

    1983-01-01

    Human retrovirus adult T-cell leukemia virus (ATLV) has been shown to be closely associated with human adult T-cell leukemia (ATL) [Yoshida, M., Miyoshi, I. & Hinuma, Y. (1982) Proc. Natl. Acad. Sci. USA 79, 2031-2035]. The provirus of ATLV integrated in DNA of leukemia T cells from a patient with ATL was molecularly cloned and the complete nucleotide sequence of 9,032 bases of the proviral genome was determined. The provirus DNA contains two long terminal repeats (LTRs) consisting of 755 bases, one at each end, which are flanked by a 6-base direct repeat of the cellular DNA sequence. The nucleotides in the LTR could be arranged into a unique secondary structure, which could explain transcriptional termination within the 3' LTR but not in the 5' LTR. The nucleotide sequence of the provirus contains three large open reading frames, which are capable of coding for proteins of 48,000, 99,000, and 54,000 daltons. The three open frames are in this order from the 5' end of the viral genome and the predicted 48,000-dalton polypeptide is a precursor of gag proteins, because it has an identical amino acid sequence to that of the NH2 terminus of human T-cell leukemia virus (HTLV) p24. The open frames coding for 99,000- and 54,000-dalton polypeptides are thought to be the pol and env genes, respectively. On the 3' side of these three open frames, the ATLV sequence has four smaller open frames in various phases; these frames may code for 10,000-, 11,000-, 12,000-, and 27,000-dalton polypeptides. Although one or some of these open frames could be the transforming gene of this virus, in preliminary analysis, DNA of this region has no homology with the normal human genome. PMID:6304725

  13. Fludarabine Phosphate, Low-Dose Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies or Kidney Cancer

    ClinicalTrials.gov

    2015-10-13

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Chronic Lymphocytic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Renal Cell Carcinoma; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage III Renal Cell Cancer; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Waldenström Macroglobulinemia

  14. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia.

    PubMed

    Dolnikov, Alla; Shen, Sylvie; Klamer, Guy; Joshi, Swapna; Xu, Ning; Yang, Lu; Micklethwaite, Kenneth; O'Brien, Tracey A

    2015-12-01

    Adoptive therapy with chimeric antigen receptor (CAR) T cells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy. PMID:26384559

  15. PHF6 mutations in T-cell acute lymphoblastic leukemia

    PubMed Central

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-01-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer1,2. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males3. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is significantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease. PMID:20228800

  16. Safety and Tolerability Study of PCI-32765 in B Cell Lymphoma and Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-04-26

    B-cell Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Diffuse Well-differentiated Lymphocytic Lymphoma; B Cell Lymphoma; Follicular Lymphoma,; Mantle Cell Lymphoma; Non-Hodgkin's Lymphoma; Waldenstrom Macroglobulinemia; Burkitt Lymphoma; B-Cell Diffuse Lymphoma

  17. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia?

    PubMed Central

    Belmonte, M.; Hoofd, C.; Weng, A.P.; Giambra, V.

    2016-01-01

    T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called “cancer stem cells” or, in the case of hematopoietic malignancies, “leukemia stem cells” (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more “differentiated” progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell–directed therapies and lsc-targeted agents are also discussed. PMID:26966402

  18. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells.

    PubMed

    Birkenmeier, Gerd; Hemdan, Nasr Y A; Kurz, Susanne; Bigl, Marina; Pieroh, Philipp; Debebe, Tewodros; Buchold, Martin; Thieme, Rene; Wichmann, Gunnar; Dehghani, Faramarz

    2016-01-01

    Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors. PMID:27579985

  19. Reproductive fitness advantage of BCR-ABL expressing leukemia cells.

    PubMed

    Traulsen, Arne; Pacheco, Jorge M; Dingli, David

    2010-08-01

    Mutations in oncogenes and tumor suppressor genes confer a fitness advantage to cells that can lead to cancer. The tumor phenotype normally results from the interaction of many mutant genes making it difficult to estimate the fitness advantage provided by any oncogene, except when tumors depend on one oncogene only. We utilize a model of chronic myeloid leukemia (CML), to quantitate the fitness advantage conferred by expression of BCR-ABL in hematopoietic cells from in vivo patient data. We show that BCR-ABL expression provides a high fitness advantage, which explains why this single mutation drives the chronic phase of CML. PMID:20153920

  20. Microenvironmental cues for T-cell acute lymphoblastic leukemia development.

    PubMed

    Passaro, Diana; Quang, Christine Tran; Ghysdael, Jacques

    2016-05-01

    Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia. PMID:27088913

  1. Stem cell niche as a prognostic factor in leukemia.

    PubMed

    Lee, Ga-Young; Kim, Jin-A; Oh, Il-Hoan

    2015-08-01

    Despite high interests on microenvironmental regulation of leukemic cells, little is known for bone marrow (BM) niche in leukemia patients. Our recent study on BMs of acute myeloid leukemia (AML) patients showed that the mesenchymal stromal cells (MSCs) are altered during leukemic conditions in a clinical course-dependent manner. Leukemic blasts caused reprogramming of transcriptomes in MSCs and remodeling of niche cross-talk, selectively suppressing normal primitive hematopoietic cells while supporting leukemogenesis and chemo- resistance. Notably, differences in BM stromal remodeling were correlated to heterogeneity in subsequent clinical courses of AML, i.e., low numbers of mesenchymal progenitors at initial diagnosis were correlated to complete remission for 5-8 years, and high contents of mesenchymal progenitor or MSCs correlated to early or late relapse, respectively. Thus, stromal remodeling by leukemic cell is an intrinsic part of leukemogenesis that can contribute to the clonal dominance of leukemic cells over normal hematopoietic cells, and can serve as a biomarker for prediction of prognosis. PMID:26198094

  2. [Plasma cell leukemia: three case-reports and review of literature].

    PubMed

    Eddou, Hicham; Mahtat, El Mehdi; Zahid, Hamid; Maaroufi, Hicham El; Jennane, Selim; Messaoudi, Nezha; Doghmi, Kamal; Mikdame, Mohamed

    2013-01-01

    Plasma cell leukemia (LP) is a rare hematologic malignancy. Its prognosis is very derogatory. It is defined by the presence in circulating blood of more than 2 G/L plasmocytes or greater than 20% of the total leukocytes. It comes in two forms: secondary plasma cell leukemia complicating multiple myeloma (MM) and primary setting. Its incidence is estimated at 0.9% of patients with acute leukemia and 2-4% of patients with MM. We report, through three observations, the clinical presentation of the plasma cell leukemia, its cytological features, immunophenotypic, physiopathological and therapeutic care. PMID:24342791

  3. Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2016-06-13

    Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  4. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia

    PubMed Central

    Lang, Fabian; Wojcik, Bartosch; Rieger, Michael A.

    2015-01-01

    Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL. PMID:26236346

  5. Genetic landscape of adult T-cell leukemia/lymphoma.

    PubMed

    Kataoka, Keisuke; Ogawa, Seishi

    2016-04-01

    Adult T-cell leukemia/lymphoma (ATL) is a peripheral T-cell malignancy associated with HTLV-1 infection. To decipher the genetic landscape of ATL, we performed an integrated molecular analysis, which included whole-genome, whole-exome, transcriptome and targeted sequencing, as well as array-based copy number and methylation analyses. The somatic alterations are highly enriched for T-cell receptor/NF-κB signaling, the G-protein coupled receptor associated with T-cell migration, and other T-cell-related pathways as well as immune surveillance related genes. Among these, PLCG1, PRKCB, CARD11, VAV1, IRF4, CCR4, and CCR7 activating mutations and CTLA4-CD28 and ICOS-CD28 fusion genes have been identified. In addition, these genes significantly overlap with HTLV-1 Tax interactome. These results provide an important basis for the development of new ATL diagnostics and therapeuticsregimens. PMID:27169444

  6. Bioactive actions of pomegranate fruit extracts on leukemia cell lines in vitro hold promise for new therapeutic agents for leukemia.

    PubMed

    Dahlawi, Haytham; Jordan-Mahy, Nicola; Clench, Malcolm R; Le Maitre, Christine L

    2012-01-01

    Studies suggest that pomegranates contain bioactive chemicals with potential for treatment and prevention of cancer. Pomegranate juice extracts (PJE) have been shown to inhibit cellular proliferation and tumor growth and induce cell death via apoptosis in a number of cancer cell lines. However, to date, few studies have investigated the potential of PJE in the treatment of leukemia. We investigated the potential effect of PJE on induction of apoptosis and inhibition of cellular proliferation in 8 leukemia cell lines (4 lymphoid and 4 myeloid) and nontumor hematopoietic stem cells (control cells). Apoptosis was assessed by 2 methods: Annexin V-FITC/propidium iodide staining with flow cytometric analysis and 4'-6-diamidino-2-phenylindole (DAPI) morphological assessment. Cell cycle stage was investigated using propidum iodide staining of DNA content and flow cytometric analysis. Live cell counts were also performed using a trypan exclusion assay. PJE significantly induced apoptosis in all cell lines, including nontumor control cells, although lymphoid cells and 2 of the myeloid cell lines were more sensitive. Furthermore, PJE induced cell cycle arrest. These results were confirmed by DAPI analysis and viable cell counts using trypan blue exclusion assay. Our results provide evidence that PJE contain bioactive compounds that could be used in the treatment of leukemia. PMID:22098126

  7. Crown Gall Disease and Hairy Root Disease 1

    PubMed Central

    Gelvin, Stanton B.

    1990-01-01

    The neoplastic diseases crown gall and hairy root are incited by the phytopathogenic bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes, respectively. Although the molecular mechanism of T-DNA transfer to the plant most likely is the same for both species, the physiological basis of tumorigenesis is fundamentally different. Crown gall tumors result from the over-production of the phytohormones auxin and cytokinin specified by A. tumefaciens T-DNA genes. Although the T-DNA of some Riplasmids of A. rhizogenes contains auxin biosynthetic genes, these loci are not always necessary for hairy root formation. Recent experiments suggest that hairy root tumors result from the increased sensitivity of transformed cells to endogenous auxin levels. An understanding of hairy root tumorigenesis will likely result in an increased knowledge of plant developmental processes. Images Figure 1 PMID:16667272

  8. Obatoclax, Fludarabine, and Rituximab in Treating Patients With Previously Treated Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  9. Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia.

    PubMed

    Molina-Arcas, Míriam; Bellosillo, Beatriz; Casado, F Javier; Montserrat, Emili; Gil, Joan; Colomer, Dolors; Pastor-Anglada, Marçal

    2003-03-15

    Nucleoside derivatives are currently used in the treatment of hematologic malignancies. Although intracellular events involved in the pharmacologic action of these compounds have been extensively studied, the role of plasma membrane transporters in nucleoside-derived drug bioavailability and action in leukemia cells has not been comprehensively addressed. We have monitored the amounts of mRNA for the 5 nucleoside transporter isoforms cloned so far (CNT1, CNT2, CNT3, ENT1, and ENT2) in several human cell types and in normal human leukocytes. We then examined the expression patterns of these plasma membrane proteins in patients with chronic lymphocytic leukemia (CLL) and correlated them with in vitro fludarabine cytotoxicity. Despite a huge individual variability in the mRNA amounts for every transporter gene expressed in CLL cells (CNT2, CNT3, ENT1, and ENT2), no relationship between mRNA levels and in vitro fludarabine cytotoxicity was observed. Fludarabine accumulation in CLL cells was mostly, if not exclusively, mediated by ENT-type transporters whose biologic activity was clearly correlated with fludarabine cytotoxicity, which reveals a role of ENT-mediated uptake in drug responsiveness in patients with CLL. PMID:12411296

  10. Selected epidemiological observations of cell-specific leukemia mortality in the USA, 1969-1977

    SciTech Connect

    Selvin, S.; Levin, L.I.; Merrill, D.W.; Winkelstein, W. Jr.

    1982-03-01

    Utilizing a newly available data set which includes for the first time cell-specific leukemia mortality rates for the USA during the period 1969-1977, age and sex distributions, time trends and geographic patterns have been analyzed. Four major cell types of leukemia were considered. Acute lymphatic leukemia had a bimodal distribution with the first peak in the 5 to 9 year age group and lowest rates in age group 35 to 44 after which rates rose geometrically. Acute myeloid leukemia had only a very small childhood peak with a low in the age group 5 to 9, after which the rates also rose geometrically. For both chronic lymphatic and myeloid leukemia the rates rose geometrically after age 15. Rates among females were consistently lower for each age group. The highest sex ratio was found for chronic lymhatic leukemia and is proposed to be the result of a lag period between male and female rates. During the period under study acute lymphatic leukemia mortality in adults declined by almost 10% while acute myeloid leukemia mortality increased by almost 20%. Analysis of the geographic variation of the four major cell types revealed a geographic association between acute lymphatic and acute myeloid leukemia in children, a lack of association between childhood and adult cell types and an association of acute and chronic cell types in adults.

  11. Selected epidemiologic observations of cell-specific leukemia mortality in the United States, 1969-1977

    SciTech Connect

    Selvin, S.; Levin, L.I.; Merrill, D.W.; Winkelstein, W. Jr.

    1983-01-01

    Utilizing a newly available data set which includes for the first time cell-specific leukemia mortality rates for the United States during 1969-1977, age and sex distributions, time trends and geographic patterns were analyzed. Four major cell types of leukemia were considered. Acute lymphatic leukemia had a bimodal distribution with the first peak in the 5-9-year age group and lowest rates in age group 35-44, after which rates rose geometrically. Acute myeloid leukemia had only a very small childhood peak with a low in the age group 5-9, after which the rates also rose geometrically. For both chronic lymphatic and myeloid leukemia the rates rose geometrically after age 15. Rates among females were consistently lower for each age group. The highest sex ratio was found for chronic lymphatic leukemia and is proposed to be the result of a lag period between male and female rates. During the period under study acute lymphatic leukemia mortality in adults declined by almost 10% while acute myeloid leukemia mortality increased by almost 20%. Analysis of the geographic variation of the four major cell types revealed a geographic association between acute lymphatic and acute myeloid leukemia in children, a lack of association between childhood and adult cell types, and an association of acute and chronic cell types in adults.

  12. Leukemia induction by a new strain of Friend mink cell focus-inducing virus: synergistic effect of Friend ecotropic murine leukemia virus.

    PubMed Central

    Chesebro, B; Wehrly, K; Nishio, J; Evans, L

    1984-01-01

    A new strain of Friend recombinant mink cell focus-inducing retrovirus, FMCF -1-E, was found to induce leukemias in NFS and IRW mice. Although the isolate was obtained from a stock of FMCF -1 ( Troxler et al., J. Exp. Med. 148:639-653, 1978), FMCF -1-E was distinguishable from FMCF -1 by oligonucleotide fingerprinting and antigenic analysis, using monoclonal antibodies. These analyses suggested that FMCF -1-E is a distinct FMCF isolate rather than a simple variant of FMCF -1. After neonatal inoculation, the latency for leukemia induction was 3 to 8 months. A similar long latency was also seen when Friend murine leukemia virus 57 was inoculated into adult (6-week-old) IRW mice. However, sequential inoculation of FMCF -1-E at birth followed by Friend murine leukemia 57 at 6 weeks of age led to a shortened latency period (2.5 to 4 months). Only neonatal inoculation of Friend murine leukemia virus 57 was able to induce a more rapid appearance of leukemia. The leukemia cell type in the majority of cases, regardless of virus inoculation protocol, was erythroid, but occasional myeloid, lymphoid, and mixed leukemias were also observed. In contrast to NFS and IRW mice, BALB/c mice were resistant to leukemia induction by FMCF -1-E and also showed some transient resistance to leukemia induction by Friend murine leukemia virus 57. Images PMID:6202886

  13. Ovarian Reserve in Women Treated for Acute Lymphocytic Leukemia or Acute Myeloid Leukemia with Chemotherapy, but Not Stem Cell Transplantation

    PubMed Central

    Rossi, Brooke V.; Missmer, Stacey; Correia, Katharine F.; Wadleigh, Martha; Ginsburg, Elizabeth S.

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation. PMID:23050166

  14. Blocking p55PIK signaling inhibits proliferation and induces differentiation of leukemia cells.

    PubMed

    Wang, G; Deng, Y; Cao, X; Lai, S; Tong, Y; Luo, X; Feng, Y; Xia, X; Gong, J; Hu, J

    2012-11-01

    p55PIK, a regulatory subunit of phosphatidylinositol 3-kinases, promotes cell cycle progression by interacting with cell cycle modulators such as retinoblastoma protein (Rb) via its unique amino-terminal 24 amino-acid residue (N24). Overexpression of N24 specifically inhibits these interactions and leads to cell cycle arrest. Herein, we describe the generation of a fusion protein (Tat transactivator protein (TAT)-N24) that contains the protein transduction domain and N24, and examined its effects on the proliferation and differentiation of leukemia cells. TAT-N24 not only blocks cell proliferation but remarkably induces differentiation of leukemia cells in vitro and in vivo. Systemically administered TAT-N24 also significantly decreases growth of leukemia cell tumors in animal models. Furthermore, overexpression of p55PIK in leukemia cells leads to increased proliferation; however, TAT-N24 blocks this effect and concomitantly induces differentiation. There is significant upregulation of p55PIK mRNA and protein expression in leukemia cells from patients. TAT-N24 inhibits cell cycle progression and induces differentiation of bone marrow cells derived from patients with several different types of leukemia. These results show that cell-permeable N24 peptide induces leukemia cell differentiation and suggest that p55PIK may be a novel drug target for the treatment of hematopoetic malignancies. PMID:22722333

  15. [Biomarker for Hematopoietic Tumors--Aiming for Personalized Diagnosis of Leukemia Stem Cells].

    PubMed

    Tohda, Shuji

    2015-09-01

    Biomarkers are defined as characteristics that are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Biomarkers obtained by PCR or flow cytometry are used for the diagnosis and subtyping of hematopoietic tumor cases. They are also used to predict the effectiveness of molecular-targeted therapies and detect minimal residual leukemia cells. In order to cure leukemia, it is necessary to eradicate leukemia stem cells. For that purpose, biomarkers to identify and characterize the leukemia stem cells in each case are needed. Therefore, we examined molecules involved in various stemness-related signaling pathways, especially NOTCH signaling in acute leukemia cells. In T-lymphoblastic leukemia cells, which often have activating NOTCH1 mutations, NOTCH works in oncogenic signaling. Although acute myeloid leukemia (AML) cells express NOTCH and NOTCH ligands, it is still controversial whether NOTCH is oncogenic or tumor-suppressive. To utilize the expression and activation of NOTCH as a leukemia stem cell biomarker, further investigation is required. Other stemness-related signaling molecules such as WNT, HEDGEHOG, HIF, and mTOR are also under investigation to assess whether they can be used as stem cell biomarkers in a clinical setting. PMID:26731901

  16. Acute Myeloid Leukemia Complicated by Giant Cell Arteritis.

    PubMed

    Tsunemine, Hiroko; Umeda, Ryosuke; Nohda, Yasuhiro; Sakane, Emiko; Akasaka, Hiroshi; Itoh, Kiminari; Izumi, Mayuko; Tsuji, Goh; Kodaka, Taiichi; Itoh, Tomoo; Takahashi, Takayuki

    2016-01-01

    Giant cell arteritis (GCA), a type of systemic arteritis, is rare in Japan. We herein report a case of acute myeloid leukemia (AML) complicated by GCA that manifested during chemotherapy for AML. A 77-year-old woman with severe back pain was diagnosed with AML. She achieved complete remission with the resolution of her back pain following induction chemotherapy. However, she developed a headache and fever after consolidation chemotherapy. A diagnosis of GCA was made based on a biopsy of the temporal artery and arterial imaging. GCA should therefore be included in the differential diagnosis in AML patients complicated with a headache and fever of unknown origin. PMID:26831026

  17. The Newly Identified T Helper 22 Cells Lodge in Leukemia

    PubMed Central

    Azizi, Gholamreza; Rastegar Pouyani, Mohsen; Navabi, Shadi sadat; Yazdani, Reza; Kiaee, Fatemeh; Mirshafiey, Abbas

    2015-01-01

    Leukemia is a hematological tumor in which the malignant myeloid or lymphoid subsets play a pivotal role. Newly identified T helper cell 22 (Th22) is a subset of CD4+ T cells with distinguished gene expression, function and specific properties apart from other known CD4+ T cell subsets.Th22 cells are characterized by production of a distinct profile of effector cytokines, including interleukin (IL)-22, IL-13, and tumor necrosis factor-α (TNF-α). The levels of Th22 and cytokine IL-22 are increased and positively related to inflammatory and autoimmune disorders. Recently, several studies have reported the changes in frequency and function of Th22 in acute leukemic disorders as AML and ALL. This review discusses the role of Th22 and its cytokine IL-22 in the immunopathogenesis of leukemic disease. PMID:26261700

  18. Advanced lymphoblastic clones detection in T-cell leukemia.

    PubMed

    Minervina, A A; Komkov, A Y; Mamedov, I Z; Lebedev, Y B

    2016-03-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant neoplasm of the lymphocyte precursors that suffered malignant transformation arresting the lymphoid cell differentiation. Clinical studies revealed monoor, more rarely, oligoclonal nature of the disease. A precise identification of malignant clone markers is both the crucial stage of early diagnostics and the essential prognostic factor for therapeutic treatment. Here we present an improved system for unbiased detection of lymphoblastic clones in bone marrow aspirates of T-ALL patients. The system based on multiplex PCR of rearranged T-cell receptor locus (TRB) and straightforward sequencing of the resulted PCR fragments. Testing of the system on genomic DNA from Jurkat cell line and four clinical bone marrow aspirates revealed a set of unique TRB rearrangements that precisely characterize each of tested samples. Therefore, the outcome of the system produces highly informative molecular genetic markers for further monitoring of minimal residual disease in T-ALL patients. PMID:27193704

  19. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-08-24

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  20. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

    PubMed

    Höckendorf, Ulrike; Yabal, Monica; Herold, Tobias; Munkhbaatar, Enkhtsetseg; Rott, Stephanie; Jilg, Stefanie; Kauschinger, Johanna; Magnani, Giovanni; Reisinger, Florian; Heuser, Michael; Kreipe, Hans; Sotlar, Karl; Engleitner, Thomas; Rad, Roland; Weichert, Wilko; Peschel, Christian; Ruland, Jürgen; Heikenwalder, Mathias; Spiekermann, Karsten; Slotta-Huspenina, Julia; Groß, Olaf; Jost, Philipp J

    2016-07-11

    Since acute myeloid leukemia (AML) is characterized by the blockade of hematopoietic differentiation and cell death, we interrogated RIPK3 signaling in AML development. Genetic loss of Ripk3 converted murine FLT3-ITD-driven myeloproliferation into an overt AML by enhancing the accumulation of leukemia-initiating cells (LIC). Failed inflammasome activation and cell death mediated by tumor necrosis factor receptor caused this accumulation of LIC exemplified by accelerated leukemia onset in Il1r1(-/-), Pycard(-/-), and Tnfr1/2(-/-) mice. RIPK3 signaling was partly mediated by mixed lineage kinase domain-like. This link between suppression of RIPK3, failed interleukin-1β release, and blocked cell death was supported by significantly reduced RIPK3 in primary AML patient cohorts. Our data identify RIPK3 and the inflammasome as key tumor suppressors in AML. PMID:27411587

  1. RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia.

    PubMed

    Podgornik, Helena; Debeljak, Marusa; Zontar, Darja; Cernelc, Peter; Prestor, Veronika Velensek; Jazbec, Janez

    2007-10-01

    Amplification of RUNX1 (alias AML1) is a recurrent karyotypic abnormality in childhood acute lymphoblastic leukemia (ALL) that is generally associated with a poor outcome. It does not occur with other primary chromosomal abnormalities in acute ALL. AML1 amplification in acute myelogenous leukemia (AML) is a rare secondary event described mainly in therapy-related cases. AML1 amplification was found in a 13-year-old patient with AML M4/M5 leukemia that occurred 5 years after she had been diagnosed with common B-cell ALL. Conventional cytogenetic, fluorescent in situ hybridization (FISH), and polymerase chain reaction methods revealed no other chromosomal change expected to occur in a disease that we assumed to be a secondary leukemia. Due to the lack of cytogenetic data from the diagnostic sample, we developed a new approach to analyze the archived bone marrow smear, which had been stained previously with May-Grünwald-Geimsa by the FISH method. This analysis confirmed that in addition to t(12;21), AML1 amplification and overexpression existed already at the time the diagnosis was made. The chromosomal changes, however, were found in different clones of bone marrow cells. While the first course of chemotherapy successfully eradicated the cell line with the t(12;21), the second cell line with AML1 amplification remained latent during the time of complete remission and reappeared with a different immunophenotype. PMID:17889714

  2. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells.

    PubMed

    Sugimori, Naomi; Espinoza, J Luis; Trung, Ly Quoc; Takami, Akiyoshi; Kondo, Yukio; An, Dao Thi; Sasaki, Motoko; Wakayama, Tomohiko; Nakao, Shinji

    2015-01-01

    Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential. PMID:25849583

  3. Paraptosis Cell Death Induction by the Thiamine Analog Benfotiamine in Leukemia Cells

    PubMed Central

    Takami, Akiyoshi; Kondo, Yukio; An, Dao Thi; Sasaki, Motoko; Wakayama, Tomohiko; Nakao, Shinji

    2015-01-01

    Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential. PMID:25849583

  4. Clonal evolution enhances leukemia propagating cell frequency in T-cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation

    PubMed Central

    Blackburn, Jessica S.; Liu, Sali; Wilder, Jayme L.; Dobrinski, Kimberly P.; Lobbardi, Riadh; Moore, Finola E.; Martinez, Sarah A.; Chen, Eleanor Y.; Lee, Charles; Langenau, David M.

    2014-01-01

    SUMMARY Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T-cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection. PMID:24613413

  5. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  6. Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line.

    PubMed

    Jha, Pamela; Jobby, Renitta; Desai, N S

    2016-07-01

    Bioremediation has proven to be the most desirable and cost effective method to counter textile dye pollution. Hairy roots (HRs) of Ipomoea carnea J. were tested for decolourization of 25 textile azo dyes, out of which >90% decolourization was observed in 15 dyes. A diazo dye, Acid Red 114 was decolourized to >98% and hence, was chosen as the model dye. A significant increase in the activities of oxidoreductive enzymes was observed during decolourization of AR114. The phytodegradation of AR114 was confirmed by HPLC, UV-vis and FTIR spectroscopy. The possible metabolites were identified by GCMS as 4- aminobenzene sulfonic acid 2-methylaniline and 4- aminophenyl 4-ethyl benzene sulfonate and a probable pathway for the biodegradation of AR114 has been proposed. The nontoxic nature of the metabolites and toxicity of AR114 was confirmed by cytotoxicity tests on human keratinocyte cell line (HaCaT). When HaCaT cells were treated separately with 150 μg mL(-1) of AR114 and metabolites, MTT assay showed 50% and ≈100% viability respectively. Furthermore, flow cytometry data showed that, as compared to control, the cells in G2-M and death phase increased by 2.4 and 3.6 folds respectively on treatment with AR114 but remained unaltered in cells treated with metabolites. PMID:26971029

  7. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth

    PubMed Central

    Polet, Florence; Corbet, Cyril; Pinto, Adan; Rubio, Laila Illan; Martherus, Ruben; Bol, Vanesa; Drozak, Xavier; Grégoire, Vincent; Riant, Olivier; Feron, Olivier

    2016-01-01

    Leukemia cells are described as a prototype of glucose-consuming cells with a high turnover rate. The role of glutamine in fueling the tricarboxylic acid cycle of leukemia cells was however recently identified confirming its status of major anaplerotic precursor in solid tumors. Here we examined whether glutamine metabolism could represent a therapeutic target in leukemia cells and whether resistance to this strategy could arise. We found that glutamine deprivation inhibited leukemia cell growth but also led to a glucose-independent adaptation maintaining cell survival. A proteomic study revealed that glutamine withdrawal induced the upregulation of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT), two enzymes of the serine pathway. We further documented that both exogenous and endogenous serine were critical for leukemia cell growth and contributed to cell regrowth following glutamine deprivation. Increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the upregulation of PHGDH. Finally, we showed that PHGDH silencing in vitro and the use of serine-free diet in vivo inhibited leukemia cell growth, an effect further increased when glutamine metabolism was blocked. In conclusion, this study identified serine as a key pro-survival actor that needs to be handled to sensitize leukemia cells to glutamine-targeting modalities. PMID:26625201

  8. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells.

    PubMed

    Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua

    2015-04-10

    All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266

  9. Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia

    PubMed Central

    Fiorcari, Stefania; Martinelli, Silvia; Bulgarelli, Jenny; Audrito, Valentina; Zucchini, Patrizia; Colaci, Elisabetta; Potenza, Leonardo; Narni, Franco; Luppi, Mario; Deaglio, Silvia; Marasca, Roberto; Maffei, Rossana

    2015-01-01

    Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14+ mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14+ monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues. PMID:25398834

  10. Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia.

    PubMed

    Fiorcari, Stefania; Martinelli, Silvia; Bulgarelli, Jenny; Audrito, Valentina; Zucchini, Patrizia; Colaci, Elisabetta; Potenza, Leonardo; Narni, Franco; Luppi, Mario; Deaglio, Silvia; Marasca, Roberto; Maffei, Rossana

    2015-02-01

    Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14(+) mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14(+) monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues. PMID:25398834

  11. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells

    PubMed Central

    Kumar, Sanjay; Tchounwou, Paul B.

    2015-01-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytototoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL. PMID:26486083

  12. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Exome Sequencing in Classic Hairy Cell Leukaemia Reveals Widespread Variation in Acquired Somatic Mutations between Individual Tumours Apart from the Signature BRAF V(600)E Lesion

    PubMed Central

    Weston-Bell, Nicola J.; Tapper, Will; Gibson, Jane; Bryant, Dean; Moreno, Yurany; John, Melford; Ennis, Sarah; Kluin-Nelemans, Hanneke C.; Collins, Andrew R.; Sahota, Surinder S.

    2016-01-01

    In classic Hairy cell leukaemia (HCLc), a single case has thus far been interrogated by whole exome sequencing (WES) in a treatment naive patient, in which BRAF V(600)E was identified as an acquired somatic mutation and confirmed as occurring near-universally in this form of disease by conventional PCR-based cohort screens. It left open however the question whether other genome-wide mutations may also commonly occur at high frequency in presentation HCLc disease. To address this, we have carried out WES of 5 such typical HCLc cases, using highly purified splenic tumour cells paired with autologous T cells for germline. Apart from BRAF V(600)E, no other recurrent somatic mutation was identified in these HCLc exomes, thereby excluding additional acquired mutations as also prevalent at a near-universal frequency in this form of the disease. These data then place mutant BRAF at the centre of the neoplastic drive in HCLc. A comparison of our exome data with emerging genetic findings in HCL indicates that additional somatic mutations may however occur recurrently in smaller subsets of disease. As mutant BRAF alone is insufficient to drive malignant transformation in other histological cancers, it suggests that individual tumours utilise largely differing patterns of genetic somatic mutations to coalesce with BRAF V(600)E to drive pathogenesis of malignant HCLc disease. PMID:26871591

  14. Increased NK Cell Maturation in Patients with Acute Myeloid Leukemia

    PubMed Central

    Chretien, Anne-Sophie; Granjeaud, Samuel; Gondois-Rey, Françoise; Harbi, Samia; Orlanducci, Florence; Blaise, Didier; Vey, Norbert; Arnoulet, Christine; Fauriat, Cyril; Olive, Daniel

    2015-01-01

    Understanding immune alterations in cancer patients is a major challenge and requires precise phenotypic study of immune subsets. Improvement of knowledge regarding the biology of natural killer (NK) cells and technical advances leads to the generation of high dimensional dataset. High dimensional flow cytometry requires tools adapted to complex dataset analyses. This study presents an example of NK cell maturation analysis in Healthy Volunteers (HV) and patients with Acute Myeloid Leukemia (AML) with an automated procedure using the FLOCK algorithm. This procedure enabled to automatically identify NK cell subsets according to maturation profiles, with 2D mapping of a four-dimensional dataset. Differences were highlighted in AML patients compared to HV, with an overall increase of NK maturation. Among patients, a strong heterogeneity in NK cell maturation defined three distinct profiles. Overall, automatic gating with FLOCK algorithm is a recent procedure, which enables fast and reliable identification of cell populations from high-dimensional cytometry data. Such tools are necessary for immune subset characterization and standardization of data analyses. This tool is adapted to new immune cell subsets discovery, and may lead to a better knowledge of NK cell defects in cancer patients. Overall, 2D mapping of NK maturation profiles enabled fast and reliable identification of NK cell subsets. PMID:26594214

  15. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  16. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells.

    PubMed

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-12-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells. PMID:27299653

  17. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    SciTech Connect

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development.

  18. Prolonged treatment response in aggressive natural killer cell leukemia.

    PubMed

    Osuji, N; Matutes, E; Morilla, A; Del Giudice, I; Wotherspoon, A; Catovsky, D

    2005-05-01

    We describe a case of natural killer (NK) cell leukemia with acute presentation, systemic symptoms and hepatosplenomegaly. The uniform and aberrant phenotype of NK cells with infiltration of bone marrow and spleen was in keeping with a malignant diagnosis. Aggressive presentation was demonstrated by marked constitutional symptoms and significant tumor burden (liver, spleen, blood, bone marrow). The subsequent clinical course has been indolent, but this may have been influenced by treatment. Treatment consisted sequentially of splenectomy, intravenous pentostatin and the combination of cyclosporine A and recombinant human erythropoietin and has resulted in survival of over 48 months. We discuss the difficulties in the diagnosis of this condition, explore possible causes of cytopenia(s), and highlight the role of immunosuppression in controlling disease manifestations in large granular lymphocyte proliferative disorders. PMID:16019515

  19. Identification of H7 as a novel peroxiredoxin I inhibitor to induce differentiation of leukemia cells

    PubMed Central

    Qin, Dongjun; Chen, Yingyi; Liu, Chuanxu; Xia, Li; Wang, Tongdan; Lei, Hu; Yu, Yun; Huang, Min; Tong, Yin; Xu, Hanzhang; Gao, Fenghou

    2016-01-01

    Identifying novel targets to enhance leukemia-cell differentiation is an urgent requirment. We have recently proposed that inhibiting the antioxidant enzyme peroxiredoxin I (Prdx I) may induce leukemia-cell differentiation. However, this concept remains to be confirmed. In this work, we identified H7 as a novel Prdx I inhibitor through virtual screening, in vitro activity assay, and surface plasmon resonance assay. Cellular thermal shift assay showed that H7 directly bound to Prdx I but not to Prdxs II–V in cells. H7 treatment also increased reactive oxygen species (ROS) level and cell differentiation in leukemia cells, as reflected by the upregulation of the cell surface differentiation marker CD11b/CD14 and the morphological maturation of cells. The differentiation-induction effect of H7 was further observed in some non-acute promyelocytic leukemia (APL) and primary leukemia cells apart from APL NB4 cells. Moreover, the ROS scavenger N-acetyl cysteine significantly reversed the H7-induced cell differentiation. We demonstrated as well that H7-induced cell differentiation was associated with the activation of the ROS-Erk1/2-C/EBPβ axis. Finally, we showed H7 treatment induced cell differentiation in an APL mouse model. All of these data confirmed that Prdx I was novel target for inducing leukemia-cell differentiation and that H7 was a novel lead compound for optimizing Prdx I inhibition. PMID:26716647

  20. Replication of the Moloney murine sarcoma-leukemia virus in XC cells.

    PubMed

    Trowbridge, S T; Benyesh-Melnick, M; Biswal, N

    1973-01-01

    The XC rat cell line was found to support the replication of a strain of the Moloney murine sarcoma-leukemia virus. In growth curve experiments cytopathology was paralleled by the production of murine sarcoma virus and leukemia virus progeny having the biologic, antigenic, and biophysical properties of the infecting virus. PMID:4346280

  1. What Is Chronic Myeloid Leukemia?

    MedlinePlus

    ... leukemia? Next Topic Normal bone marrow and blood What is chronic myeloid leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  2. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  3. Black hairy tongue syndrome

    PubMed Central

    Gurvits, Grigoriy E; Tan, Amy

    2014-01-01

    Black hairy tongue (BHT) is a benign medical condition characterized by elongated filiform lingual papillae with typical carpet-like appearance of the dorsum of the tongue. Its prevalence varies geographically, typically ranging from 0.6% to 11.3%. Known predisposing factors include smoking, excessive coffee/black tea consumption, poor oral hygiene, trigeminal neuralgia, general debilitation, xerostomia, and medication use. Clinical presentation varies but is typically asymptomatic, although aesthetic concerns are common. Differential diagnosis includes pseudo-BHT, acanthosis nigricans, oral hairy leukoplakia, pigmented fungiform papillae of the tongue, and congenital melanocytic/melanotic nevi/macules. Clinical diagnosis relies on visual observation, detailed history taking, and occasionally microscopic evaluation. Treatment involves identification and discontinuation of the offending agent, modifications of chronic predisposing factors, patient’s re-assurance to the benign nature of the condition, and maintenance of adequate oral hygiene with gentle debridement to promote desquamation. Complications of BHT (burning mouth syndrome, halitosis, nausea, gagging, dysgeusia) typically respond to therapy. Prognosis is excellent with treatment of underlying medical conditions. BHT remains an important medical condition which may result in additional burden on the patient and health care system and requires appropriate prevention, recognition and treatment. PMID:25152586

  4. T-cell/Natural killer-cell neoplasms presenting as leukemia- Case series from single tertiary care center

    PubMed Central

    Naseem, Shano; Kaur, Maninderbir; Sachdeva, Manupdesh Singh; Ahluwalia, Jasmina; Das, Reena; Varma, Neelam; Varma, Subhash

    2016-01-01

    Background: Mature T/ NK-cell neoplasms are a rare group of disorders and their presentation as leukemia is even rarer. Most of the previous studies have focused on mature B-cell lineage leukemias and there is a paucity of data on mature T/NK-cell lineage leukemias. We, therefore, planned this study to analyze their spectrum, frequency, morphology and immunophenotypic features. Subjects and Methods: All cases of lymphomas presenting as leukemia over a period of two and a half years were evaluated. Detailed analysis of cases with T/NK-cell lineage was done for their clinical, hematological and immunophenotypic features. Results: A total of 262 cases of mature lymphoid neoplasms presented as leukemia during the study period. Of whom, only 8 (3.1%) cases were of T /NK-cell lineage and the remaining (96.9%) were of B-cell lineage. Of 8 cases, 4 (50%) had T-prolymphocytic leukemia, 2 (25%) had chronic lymphoproliferative disorder- natural killer cell and 1 (12.5%) case of each T-large granular lymphocytic leukemia and hepatosplenic γ/δ T-NHL. Conclusion: T/NK-cell leukemias are rare. Along with clinical and morphological features, pattern of immunophenotypic markers is vital for their diagnosis and subcategorization. PMID:27047646

  5. Hematopoietic Cell Transplantation for Acute Lymphoblastic Leukemia in Adults.

    PubMed

    Speziali, Craig; Paulson, Kristjan; Seftel, Matthew

    2016-06-01

    The majority of adults with acute lymphoblastic leukemia will achieve a first complete remission (CR). However relapse is the most common cause of treatment failure. Outcomes after relapse remain poor, with long-term survival in the order of 10 %. Treatment decisions made at the time of first complete remission are thus critical to ensuring long-term survival. Allogeneic hematopoietic cell transplant (HCT) is effective at preventing relapse in many transplant recipients but is also associated with significant treatment related morbidity and mortality. Alternatively, ongoing systemic chemotherapy offers lower toxicity at the expense of increased relapse rates. Over the past decades, both the safety of transplant and the efficacy of non-transplant chemotherapy have improved. Emerging data show substantially improved outcomes for young adults treated with pediatric-inspired chemotherapy regimens that question the role of HCT in the upfront setting. In this review, we review the data supporting the role of allogeneic transplantation in adult acute lymphoblastic leukemia (ALL), and we propose a therapeutic algorithm for upfront therapy of adults with ALL. PMID:26984203

  6. What You Need to Know about Leukemia

    MedlinePlus

    ... Publications Reports What You Need To Know About™ Leukemia This booklet is about leukemia. Leukemia is cancer of the blood and bone marrow ( ... This book covers: Basics about blood cells and leukemia Types of doctors who treat leukemia Treatments for ...

  7. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.

    PubMed

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B; Bailey-Serres, Julia; Brady, Siobhan M

    2014-10-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032

  8. Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model1[W][OPEN

    PubMed Central

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.

    2014-01-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032

  9. MLL leukemia induction by genome editing of human CD34+ hematopoietic cells

    PubMed Central

    Buechele, Corina; Breese, Erin H.; Schneidawind, Dominik; Lin, Chiou-Hong; Jeong, Johan; Duque-Afonso, Jesus; Wong, Stephen H. K.; Smith, Kevin S.; Negrin, Robert S.; Porteus, Matthew

    2015-01-01

    Chromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene occur in primary and treatment-related leukemias and confer a poor prognosis. Studies based primarily on mouse models have substantially advanced our understanding of MLL leukemia pathogenesis, but often use supraphysiological oncogene expression with uncertain implications for human leukemia. Genome editing using site-specific nucleases provides a powerful new technology for gene modification to potentially model human disease, however, this approach has not been used to re-create acute leukemia in human cells of origin comparable to disease observed in patients. We applied transcription activator-like effector nuclease–mediated genome editing to generate endogenous MLL-AF9 and MLL-ENL oncogenes through insertional mutagenesis in primary human hematopoietic stem and progenitor cells (HSPCs) derived from human umbilical cord blood. Engineered HSPCs displayed altered in vitro growth potentials and induced acute leukemias following transplantation in immunocompromised mice at a mean latency of 16 weeks. The leukemias displayed phenotypic and morphologic similarities with patient leukemia blasts including a subset with mixed phenotype, a distinctive feature seen in clinical disease. The leukemic blasts expressed an MLL-associated transcriptional program with elevated levels of crucial MLL target genes, displayed heightened sensitivity to DOT1L inhibition, and demonstrated increased oncogenic potential ex vivo and in secondary transplant assays. Thus, genome editing to create endogenous MLL oncogenes in primary human HSPCs faithfully models acute MLL-rearranged leukemia and provides an experimental platform for prospective studies of leukemia initiation and stem cell biology in a genetic subtype of poor prognosis leukemia. PMID:26311362

  10. Quantitative immunocytofluorometry--new parameters for the definition of leukemia cells.

    PubMed

    Babusíková, O; Glasová, M; Stasáková, J; Kusenda, J; Koníková, E

    1997-01-01

    In our study we used for definition of leukemia/lymphoma cells a new parameter which allows the enumeration of mean fluorescence intensity expressed by the number of antigen molecules per cell. Quantitative immunofluorescence using calibration microbeads was performed in 36 patients with different acute and chronic lymphoid and myeloid leukemia and in 19 healthy volunteers. We showed that quantitative immunophenotyping allowed the definition of aberrant marker densities on neoplastic cells. We demonstrated under- and overexpression of CD8 marker in CD3/CD4/CD8 complex in T acute lymphatic leukemia and T non-Hodgkin's lymphoma and T leukemia of large granular lymphocytes as compared to normal counterparts. We pointed out that certain antigens (e. g. CD10, CD4, CD24) were expressed at different levels on different cell subsets (CD10 in early B-acute lymphatic leukemia and coexpressed in T-acute lymphatic leukemia, CD4 on T cells and monocytes, CD24 on B cells and granulocytes in chronic myeloid leukemia). We showed that quantitative immune fluorescence could provide new data contributing to a more precise definition of cell differentiation. We documented the significant difference between antigen density of early and late markers in B-cell and myeloid malignancies. Further, we demonstrated that quantitative immune phenotyping could help in determination of exact definition of pathologic clone in morphologically immature leukemia population and showed that parameters of this method are also convenient for cytoplasmic marker evaluation. In our study we were able to demonstrate that CD45 quantitative expression appeared to be a more informative parameter than its percentage of antigen-positive cells as a measure of antigen expression only and we pointed out that low and high CD45 densities enabled to differentiate between pathological clone and residual healthy population in examined sample. We showed that quantitative immune phenotyping could be another important

  11. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    SciTech Connect

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.

  12. Fludarabine Phosphate and Total-Body Radiation Followed by Donor Peripheral Blood Stem Cell Transplant and Immunosuppression in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2015-12-01

    Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  13. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient. PMID:25674158

  14. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells.

    PubMed

    Glait-Santar, Chen; Desmond, Ronan; Feng, Xingmin; Bat, Taha; Chen, Jichun; Heuston, Elisabeth; Mizukawa, Benjamin; Mulloy, James C; Bodine, David M; Larochelle, Andre; Dunbar, Cynthia E

    2015-12-01

    Hematopoietic stem and progenitor cells (HSPCs) reside in a specialized niche that regulates their proliferative capacity and their fate. There is increasing evidence for similar roles of marrow niches on controlling the behavior of leukemic cells; however, whether normal hematopoietic stem cell (HSC) and leukemic cells reside in or functionally compete for the same marrow niche is unclear. We used the mixed lineage leukemia-AF9 (MLL-AF9) murine acute myeloid leukemia (AML) in a competitive repopulation model to investigate whether normal HSPC and leukemic cells functionally compete for the same marrow niches. Irradiated recipient mice were transplanted with fixed numbers of MLL-AF9 cells mixed with increasing doses of normal syngeneic whole bone marrow (WBM) or with purified HSPC (LSK). Survival was significantly increased and leukemic progression was delayed proportional to increasing doses of normal WBM or normal LSK cells in multiple independent experiments, with all doses of WBM or LSK cells studied above the threshold for rapid and complete hematopoietic reconstitution in the absence of leukemia. Confocal microscopy demonstrated nests of either leukemic cells or normal hematopoietic cells but not both in the marrow adjacent to endosteum. Early following transplantation, leukemic cells from animals receiving lower LSK doses were cycling more actively than in those receiving higher doses. These results suggest that normal HSPC and AML cells compete for the same functional niche. Manipulation of the niche could impact on response to antileukemic therapies, and the numbers of normal HSPC could impact on leukemia outcome, informing approaches to cell dose in the context of stem cell transplantation. PMID:26388434

  15. Discrimination and classification of acute lymphoblastic leukemia cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; De Luca, Anna Chiara

    2015-05-01

    Currently, a combination of technologies is typically required to identify and classify leukemia cells. These methods often lack the specificity and sensitivity necessary for early and accurate diagnosis. Here, we demonstrate the use of Raman spectroscopy to identify normal B cells, collected from healthy patients, and three ALL cell lines (RS4;11, REH and MN60 at different differentiation level, respectively). Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for leukemia cell identification. Principal Component Analysis was finally used to confirm the significance of these markers for identify leukemia cells and classifying the data. The obtained results indicate a sorting accuracy of 96% between the three leukemia cell lines.

  16. Enhancement of anti-leukemia activity of NK cells in vitro and in vivo by inhibition of leukemia cell-induced NK cell damage

    PubMed Central

    Arriga, Roberto; Caratelli, Sara; Coppola, Andrea; Spagnoli, Giulio Cesare; Venditti, Adriano; Amadori, Sergio; Lanzilli, Giulia; Lauro, Davide; Palomba, Patrizia; Sconocchia, Tommaso; Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Capuani, Barbara; Ferrone, Soldano; Sconocchia, Giuseppe

    2016-01-01

    Acute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37°C. LTNK cells displayed a significantly enhanced ability to damage AML cells in vitro and inhibited the subcutaneous growth of ML-2 cells grafted into CB17 SCID mice. Actinomycin D restored the susceptibility of LTNK cells to NKCAs while TAPI-0, a functional analog of the tissue inhibitor of metalloproteinase (TIMP) 3, inhibits ML-2 cell-induced NKCAs suggesting that the generation of NK cell resistance to NKCAs involves RNA transcription and metalloproteinase (MPP) inactivation. This conclusion is supported by the reduced susceptibility to AML cell-induced NKCAs of LTNK cells in which TIMP3 gene and protein are over-expressed. This information may contribute to the rational design of targeted strategies to enhance the efficacy of NK cell-based-immunotherapy of AML with haploidentical NK cells. PMID:26655503

  17. Hemophagocytosis by Leukemic Blasts in T Cell Acute Lymphoblastic Leukemia: An Unusual Finding.

    PubMed

    Harrison, Aradhana; Chandra, Dinesh; Kakkar, Naveen; Das, Sheila; John, M Joseph

    2016-06-01

    Hemophagocytosis shows engulfment of hematopoietic cells by histiocytes and is a property generally associated with cells of the histiocytic lineage. It can be familial or is seen in a wide spectrum of acquired disorders. Hemophagocytosis by leukemic blasts is an uncommon phenomenon and has been reported mainly in acute myeloid leukemia. Its association with acute lymphoblastic leukemia is rare. We present a case of hemophagocytosis by blasts in the bone marrow in a 11 year old boy with T cell-acute lymphoblastic leukemia. PMID:27408348

  18. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    SciTech Connect

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  19. P53 protein expression in human leukemia and lymphoma cells.

    PubMed

    Koníková, E; Kusenda, J

    2001-01-01

    The purpose of this study was to determine the value of p53 protein overexpression in human leukemia and lymphoma cells. We examined PB and/or BM samples on a series of 111 patients with immunophenotypically defined hematological malignancies at diagnosis, in remission and in relapsed disease comparing to 20 control samples of healthy individuals. p53 protein has been studied by flow cytometry using three monoclonal antibodies specific for epitopes on N-terminus (Bp53-12, DO-1) and central region (DO-11) of p53 protein. Our findigs showed, that p53 expression may contribute to phenotype of leukemic cells and that overexpression of this protein is often associated with progression of disease. All samples of early B-ALL patients and samples of patients with immunophenotypically defined T- cell disorders examined at diagnosis of disease were p53 positive. Eleven of 19 patient samples from AML at diagnosis showed also increased expression of p53 protein. The cells of all patients who responded to therapy with complete immunophenotypically defined remission were p53 negative. Relapsed T-, B- ALL and AML develop p53 alteration. We reported positive p53 expression in cells of patients with advanced stages of CLL in comparison to them with initial stage of disease at examination. As well as in the group of B- cell lymphomas only samples of patients with generalized FCC lymphoma at diagnosis were p53 positive. We detected p53 positive cells in immunologically defined myeloid blast crisis of CML opposite to p53 negativity in chronic phase of disease. The finding of p53 positive BM cells without immunophenotypic blast markers in two of followed cases documented the contributing value of p53 detection in their characterization. On the basis of above findings we conclude, that cytofluorometric determination of p53 expression may contribute to the better definition of leukemic phenotype. Loss of the normal p53 function may be important in the genesis of some leukemias

  20. Flavopiridol in Treating Patients With Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-01-16

    B-cell Chronic Lymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  1. Mast cell leukemia with prolonged survival on PKC412/midostaurin.

    PubMed

    Xu, Xiangdong; Kreisel, Friederike H; Frater, John L; Hassan, Anjum

    2014-01-01

    Mast cell leukemia (MCL) is a rare and aggressive form of systemic mastocytosis. There are approximately 50 reported cases since 1950s. MCL is refractory to cytoreduction chemotherapy and the average survival is only six months. We report a MCL case in a 71 year-old woman with high tumor load at the initial presentation in 2005, who did not respond to either interleukin-2 or dasatinib therapy. After enrolled in a clinical trial of PKC412 (or Midostaurin) with a daily dose of 100 mg, the patient responded well to PKC412 and became transfusion independent in three months. Since then, her disease had been stably controlled. This is the first report of a high-tumor-load MCL case which achieved prolonged survival (101 months) by PKC 412. The 101-month overall survival is the longest among reported MCL cases in the English literature. PMID:25031773

  2. The Ring Finger Protein RNF6 Induces Leukemia Cell Proliferation as a Direct Target of Pre-B-cell Leukemia Homeobox 1.

    PubMed

    Xu, Xin; Han, Kunkun; Tang, Xiaowen; Zeng, Yuanying; Lin, Xu; Zhao, Yun; Zhang, Zubin; Cao, Biyin; Wu, Depei; Mao, Xinliang

    2016-04-29

    RNF6 is a little-studied ring finger protein. In the present study, we found that RNF6 was overexpressed in various leukemia cells and that it accelerated leukemia cell proliferation, whereas knockdown of RNF6 delayed tumor growth in xenografts. To find out the mechanism of RNF6 overexpression in leukemia, we designed a series of truncated constructs of RNF6 regulatory regions in the luciferase reporter system. The results revealed that the region between -144 and -99 upstream of the RNF6 transcription start site was critical and that this region contained a PBX1 recognition element (PRE). PBX1 modulated RNF6 expression by binding to the specific PRE. When PRE was mutated, RNF6 transcription was completely abolished. Further studies showed that PBX1 collaborated with PREP1 but not MEIS1 to modulate RNF6 expression. Moreover, RNF6 expression could be suppressed by doxorubicin, a major anti-leukemia agent, via down-regulating PBX1. This study thus suggests that RNF6 overexpression in leukemia is under the direction of PBX1 and that the PBX1/RNF6 axis can be developed as a novel therapeutic target of leukemia. PMID:26971355

  3. Aspects of hairy black holes

    SciTech Connect

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  4. CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2016-07-26

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  5. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang

    PubMed Central

    Zhou, Hong-Sheng; Carter, Bing Z.; Andreeff, Michael

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of circulating immature blasts that exhibit uncontrolled growth, lack the ability to undergo normal differentiation, and have decreased sensitivity to apoptosis. Accumulating evidence shows the bone marrow (BM) niche is critical to the maintenance and retention of hematopoietic stem cells (HSC), including leukemia stem cells (LSC), and an increasing number of studies have demonstrated that crosstalk between LSC and the stromal cells associated with this niche greatly influences leukemia initiation, progression, and response to therapy. Undeniably, stromal cells in the BM niche provide a sanctuary in which LSC can acquire a drug-resistant phenotype and thereby evade chemotherapy-induced death. Yin and Yang, the ancient Chinese philosophical concept, vividly portrays the intricate and dynamic interactions between LSC and the BM niche. In fact, LSC-induced microenvironmental reprogramming contributes significantly to leukemogenesis. Thus, identifying the critical signaling pathways involved in these interactions will contribute to target optimization and combinatorial drug treatment strategies to overcome acquired drug resistance and prevent relapse following therapy. In this review, we describe some of the critical signaling pathways mediating BM niche-LSC interaction, including SDF1/CXCL12, Wnt/β-catenin, VCAM/VLA-4/NF-κB, CD44, and hypoxia as a newly-recognized physical determinant of resistance, and outline therapeutic strategies for overcoming these resistance factors. PMID:27458532

  6. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    SciTech Connect

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose; Leon, Francisco; Estevez, Francisco

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  7. BCL6 enables Ph+ acute lymphoblastic leukemia cells to survive BCR-ABL1 kinase inhibition

    PubMed Central

    Duy, Cihangir; Hurtz, Christian; Shojaee, Seyedmehdi; Cerchietti, Leandro; Geng, Huimin; Swaminathan, Srividya; Klemm, Lars; Kweon, Soo-mi; Nahar, Rahul; Braig, Melanie; Park, Eugene; Kim, Yong-mi; Hofmann, Wolf-Karsten; Herzog, Sebastian; Jumaa, Hassan; Koeffler, H Phillip; Yu, J. Jessica; Heisterkamp, Nora; Graeber, Thomas G.; Wu, Hong; Ye, B. Hilda; Melnick, Ari; Müschen, Markus

    2011-01-01

    Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL11 and other oncogenic tyrosine kinases2,3. Recent efforts focused on the development of more potent TKI that also inhibit mutant tyrosine kinases4,5. However, even effective TKI typically fail to eradicate leukemia-initiating cells6–8, which often cause recurrence of leukemia after initially successful treatment. Here we report on the discovery of a novel mechanism of drug-resistance, which is based on protective feedback signaling of leukemia cells in response to TKI-treatment. We identified BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukemia-initiating subclones. BCL6 is a known proto-oncogene that is often translocated in diffuse large B cell lymphoma (DLBCL)9. In response to TKI-treatment, BCR-ABL1 acute lymphoblastic leukemia (ALL) cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in DLBCL (Fig. 1a). Upregulation of BCL6 in response to TKI-treatment represents a novel defense mechanism, which enables leukemia cells to survive TKI-treatment: Previous work suggested that TKI-mediated cell death is largely p53-independent. Here we demonstrate that BCL6 upregulation upon TKI-treatment leads to transcriptional inactivation of the p53 pathway. BCL6-deficient leukemia cells fail to inactivate p53 and are particularly sensitive to TKI-treatment. BCL6−/− leukemia cells are poised to undergo cellular senescence and fail to initiate leukemia in serial transplant recipients. A combination of TKI-treatment and a novel BCL6 peptide inhibitor markedly increased survival of NOD/SCID mice xenografted with patient-derived BCR-ABL1 ALL cells. We propose that dual targeting of oncogenic tyrosine kinases and BCL6-dependent feedback (Supplementary Fig. 1) represents a novel strategy to eradicate drug-resistant and leukemia-initiating subclones in

  8. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.

    PubMed

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P; Balys, Marlene; Ashton, John M; Neering, Sarah J; Lagadinou, Eleni D; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L; O'Dwyer, Kristen M; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K; Munger, Joshua; Crooks, Peter A; Becker, Michael W; Jordan, Craig T

    2013-11-22

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  9. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  10. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  11. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.

    PubMed

    Spencer, A; Granter, N

    1999-09-01

    Improvement in diagnostic cytogenetic techniques has led to the recognition of an increasing number of leukemia-associated chromosomal translocations and inversions. These genetic lesions frequently are associated with the disruption of putative transcription factors and the production of hybrid transcripts that are implicated in leukemogenesis. Epidemiologic evidence suggests that some, but not all, individuals with a history of gamma-irradiation exposure are at increased risk of developing chronic myeloid leukemia (CML). CML is characterized by the Philadelphia chromosome and transcription of the resulting hybrid BCR-ABL gene. Utilizing the leukemia-associated BCR-ABL p210 transcript as a marker, we sought differences in the induction of illegitimate genetic recombination following high-dose gamma-irradiation of karyotypically normal lymphoblastoid cell lines (LCL) derived from individuals with and without a history of myeloid leukemias. Six LCL [4 leukemia patient derived [2 acute myeloid leukemia and 2 CML] and 2 from normal individuals were analyzed with reverse transcriptase polymerase chain reaction for BCR-ABL under stringent conditions following exposure to 0, 50, or 100 Gy of LET gamma-irradiation delivered via a Varian linear accelerator at 4 MV. Transcripts identical to disease-associated b2a2 and b3a2 transcripts were detected both spontaneously (background illegitimate genetic recombination) and following gamma-irradiation. Background BCR-ABL positivity was demonstrable in 4 of the 6 LCL, with no significant difference in detection between leukemic- and nonleukemic-derived LCL. Overall, increasing gamma-irradiation dose resulted in an increased frequency of BCR-ABL transcript detection (0 Gy vs 50 Gy vs 100 Gy,p = 0.0023, Chi-square test). Within the leukemic- but not the nonleukemic-derived LCL there was significantly greater BCR-ABL positivity after gamma-irradiation compared to unirradiated equivalents. Furthermore, the BCR-ABL positivity of both

  12. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  13. Potential role of natural killer cells in controlling tumorigenesis by human T-cell leukemia viruses.

    PubMed Central

    Feuer, G; Stewart, S A; Baird, S M; Lee, F; Feuer, R; Chen, I S

    1995-01-01

    Human T-cell leukemia virus (HTLV) is the etiologic agent of adult T-cell leukemia (ATL), a malignancy of T lymphocytes that is characterized by a long latency period after virus exposure. Intraperitoneal inoculation of severe combined immunodeficient (SCID) mice with HTLV-transformed cell lines and ATL tumor cells was employed to investigate the tumorigenic potential of HTLV type I (HTLV-I)-infected cells. In contrast to inoculation of ATL (RV-ATL) cells into SCID mice, which resulted in the formation of lymphomas, inoculation of HTLV-I- and HTLV-II-transformed cell lines (SLB-I and JLB-II cells, respectively) did not result in tumor formation. Immunosuppression of SCID mice, either by whole-body irradiation or by treatment with an antiserum, anti-asialo GM1 (alpha-AGM1), which transiently abrogates natural killer cell activity in vivo, was necessary to establish the growth of tumors derived from HTLV-transformed cell lines. PCR and flow cytometric studies reveal that HTLV-I-transformed cells are eliminated from the peritoneal cavities of inoculated mice by 3 days postinoculation; in contrast, RV-ATL cells persist and are detected until the mice succumb to lymphoma development. The differing behaviors of HTLV-infected cell lines and ATL tumor cells in SCID mice suggest that ATL cells have a higher tumorigenic potential in vivo than do HTLV-infected cell lines because of their ability to evade natural killer cell-mediated cytolysis. PMID:7815516

  14. Spontaneous rupture of the spleen in primary plasma cell leukemia. Scintigraphic-pathologic correlation

    SciTech Connect

    Kienzle, G.D.; Stern, J.; Cooperberg, A.; Osborne, C.A.

    1985-09-01

    A rare case of spontaneous rupture of the spleen occurring in a patient with primary plasma cell leukemia is presented. The scintigraphic-pathologic correlation is presented together with a review of the literature.

  15. Combination Chemotherapy With or Without Rituximab in Treating Younger Patients With Stage III-IV Non-Hodgkin Lymphoma or B-Cell Acute Leukemia

    ClinicalTrials.gov

    2015-10-20

    Childhood B Acute Lymphoblastic Leukemia; Childhood Burkitt Leukemia; Childhood Diffuse Large Cell Lymphoma; Mediastinal (Thymic) Large B-Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma

  16. [Induction of polyploid in hairy roots of Nicotiana tabacum and its plant regeneration].

    PubMed

    Hou, Lili; Shi, Heping; Yu, Wu; Tsang, Po Keung Eric; Chow, Cheuk Fai Stephen

    2014-04-01

    By genetic transformation with Agrobacterum rhizogenes and artificial chromosome doubling techniques, we studied the induction of hairy roots and their polyploidization, and subsequent plant regeneration and nicotine determination to enhance the content of nicotine in Nicotiana tabacum. The results show that hairy roots could be induced from the basal surface of leaf explants of N. tabacum 8 days after inoculation with Agrobacterium rhizogenes ATCC15834. The percentage of the rooting leaf explants was 100% 15 days after inoculation. The hairy roots could grow rapidly and autonomously on solid or liquid phytohormones-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and paper electrophoresis of opines from N. tabacum hairy roots. The highest rate of polyploidy induction, more than 64.71%, was obtained after treatment of hairy roots with 0.1% colchicine for 36 h. The optimum medium for plant regeneration from polyploid hairy roots was MS+2.0 mg/L 6-BA +0.2 mg/L NAA. Compared with the control diploid plants, the hairy roots-regenerated plants had weak apical dominance, more axillary buds and more narrow leaves; whereas the polyploid hairy root-regenerated plants had thicker stems, shorter internodes and the colour, width and thickness of leaves were significantly higher than that of the control. Observation of the number of chromosomes in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 96 (4n = 96) chromosomes. Pot-grown experiments showed compared to the control, the flowering was delayed by 21 days in diploid hairy roots-regenerated plants and polyploid hairy root-regenerated plants. GC-MS detection shows that the content of nicotine in polyploid plants was about 6.90 and 4.57 times the control and the diploid hairy roots-regenerated plants, respectively. PMID:25195248

  17. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression.

    PubMed

    Saha, Tusar T; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S

    2016-02-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box-like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  18. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression

    PubMed Central

    Saha, Tusar T.; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S.

    2016-01-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box–like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  19. Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia

    ClinicalTrials.gov

    2016-02-20

    Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)

  20. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase.

    PubMed

    Li, Yubin; Zeng, Xian; Wang, Shaofei; Fan, Jiajun; Wang, Ziyu; Song, Ping; Mei, Xiaobin; Ju, Dianwen

    2016-05-01

    Recombinant human arginase (rhArg) is an arginine-degrading enzyme that has been evaluated as effective therapeutics for varieties of malignant tumors and is in clinical trials for hepatocellular carcinoma (HCC) treatment nowadays. Our previous studies have reported that rhArg could induce autophagy and apoptosis in lymphoma cells and inhibiting autophagy could enhance the efficacy of rhArg on lymphoma. However, whether rhArg could induce autophagy and what roles autophagy plays in leukemia cells are unclear. In this study, we demonstrated that rhArg treatment could lead to the formation of autophagosomes and the upregulation of microtubule-associated protein light chain 3 II (LC3-II) in human promyelocytic leukemia HL-60 cells and human acute T cell leukemia Jurkat cells. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) could significantly enhance rhArg-induced cell growth inhibition and apoptosis. Taken together, these findings indicated that rhArg induced autophagy in leukemia cells and inhibiting autophagy enhanced anti-leukemia effect of rhArg, which might encourage the treatment of leukemia by targeting arginine depletion and autophagy in clinics. PMID:26643895

  1. Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles

    PubMed Central

    Jaetao, Jason E.; Butler, Kimberly S.; Adolphi, Natalie L.; Lovato, Debbie M.; Bryant, Howard C.; Rabinowitz, Ian; Winter, Stuart S.; Tessier, Trace E.; Hathaway, Helen J.; Bergemann, Christian; Flynn, Edward R.; Larson, Richard S.

    2009-01-01

    Acute leukemia is a hematopoietic malignancy for which the accurate measurement of minimal residual disease is critical to determining prognosis and treatment. While bone marrow aspiration and light microscopy remain the current standard of care for detecting residual disease, these approaches cannot reliably discriminate less than 5% lymphoblast cells. To improve the detection of leukemia cells in the marrow, we developed a novel apparatus that employs antibodies conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) and directed against the acute leukemia antigen CD34, coupled with a “magnetic needle” biopsy. Leukemia cell lines expressing high or minimal CD34 were incubated with anti-CD34-conjugated SPIONs. Three separate approaches including microscopy, Superconducting Quantum Interference Device (SQUID) magnetometry, and in vitro magnetic needle extraction were then employed to assess cell sampling. We found that CD34-conjugated nanoparticles preferentially bind high CD34-expressing cell lines. Furthermore, the magnetic needle enabled identification of both cell line and patient leukemia cells diluted into normal blood at concentrations below those normally found in remission marrow samples. Finally, the magnetic needle enhanced the percentage of lymphoblasts detectable by light microscopy by ten-fold in samples of fresh bone marrow aspirate approximating minimal residual disease. These data suggest that bone marrow biopsy using antigen-targeted magnetic nanoparticles and a magnetic needle for the evaluation of minimal residual disease in CD34-positive acute leukemias can significantly enhance sensitivity compared to the current standard of care. PMID:19808954

  2. Playing musical chairs with bone marrow transplantation to eliminate leukemia stem cells

    PubMed Central

    Boyd, Allison L; Bhatia, Mickie

    2015-01-01

    Increasing attention has been focused on the interactions between leukemia cells and their bone marrow (BM) microenvironment. We have recently shown that leukemic stem cells (LSCs) share common BM “niches” with their healthy counterparts. As a result of these shared niche requirements, human LSCs can be mobilized using existing pharmacological agents that facilitate competitive healthy reconstitution, leading to eradication of leukemia during BM transplantation. PMID:27308468

  3. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    PubMed

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia. PMID:25900577

  4. Successful Hematopoietic Cell Transplantation in a Patient With X-linked Agammaglobulinemia and Acute Myeloid Leukemia

    PubMed Central

    Abu-Arja, Rolla F.; Chernin, Leah R.; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D.; Torgerson, Troy R.; Lopez-Guisa, Jesus; Hostoffer, Robert W.; Tcheurekdjian, Haig; Cooke, Kenneth R.

    2016-01-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19+ B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient’s leukemia. PMID:25900577

  5. Preclinical activity of the novel B-cell-specific Moloney murine leukemia virus integration site 1 inhibitor PTC-209 in acute myeloid leukemia: Implications for leukemia therapy.

    PubMed

    Nishida, Yuki; Maeda, Aya; Chachad, Dhruv; Ishizawa, Jo; Qiu, Yi Hua; Kornblau, Steven M; Kimura, Shinya; Andreeff, Michael; Kojima, Kensuke

    2015-12-01

    Curing patients with acute myeloid leukemia (AML) remains a therapeutic challenge. The polycomb complex protein B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is required for the self-renewal and maintenance of leukemia stem cells. We investigated the prognostic significance of BMI-1 in AML and the effects of a novel small molecule selective inhibitor of BMI-1, PTC-209. BMI-1 protein expression was determined in 511 newly diagnosed AML patients together with 207 other proteins using reverse-phase protein array technology. Patients with unfavorable cytogenetics according to Southwest Oncology Group criteria had higher levels of BMI-1 compared to those with favorable (P = 0.0006) or intermediate cytogenetics (P = 0.0061), and patients with higher levels of BMI-1 had worse overall survival (55.3 weeks vs. 42.8 weeks, P = 0.046). Treatment with PTC-209 reduced protein level of BMI-1 and its downstream target mono-ubiquitinated histone H2A and triggered several molecular events consistent with the induction of apoptosis, this is, loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. PTC-209 induced apoptosis in patient-derived CD34(+)CD38(low/-) AML cells and, less prominently, in CD34(-) differentiated AML cells. BMI-1 reduction by PTC-209 directly correlated with apoptosis induction in CD34(+) primary AML cells (r = 0.71, P = 0.022). However, basal BMI-1 expression was not a determinant of AML sensitivity. BMI-1 inhibition, which targets a primitive AML cell population, might offer a novel therapeutic strategy for AML. PMID:26450753

  6. Mesenchymal stem cells derived from low risk acute lymphoblastic leukemia patients promote NK cell antitumor activity.

    PubMed

    Entrena, Ana; Varas, Alberto; Vázquez, Miriam; Melen, Gustavo J; Fernández-Sevilla, Lidia M; García-Castro, Javier; Ramírez, Manuel; Zapata, Agustín G; Vicente, Ángeles

    2015-07-28

    Mesenchymal stem cells (MSCs) are key components of the bone marrow microenvironment which contribute to the maintenance of the hematopoietic stem cell niche and exert immunoregulatory functions in innate and adaptive immunity. We analyze the immunobiology of MSCs derived from acute lymphoblastic leukemia (ALL) patients and their impact on NK cell function. In contrast to the inhibitory effects on the immune response exerted by MSCs from healthy donors (Healthy-MSCs), we demonstrate that MSCs derived from low/intermediate risk ALL patients at diagnosis (ALL-MSCs) promote an efficient NK cell response including cytokine production, phenotypic activation and most importantly, cytotoxicity. Longitudinal studies indicate that these immunostimulatory effects of ALL-MSCs are progressively attenuated. Healthy-MSCs adopt ALL-MSC-like immunomodulatory features when exposed to leukemia cells, acquiring the ability to stimulate NK cell antitumor function. The mechanisms underlying to these functional changes of ALL-MSCs include reduced production of soluble inhibitory factors, differential expression of costimulatory and coinhibitory molecules, increased expression of specific TLRs and Notch pathway activation. Collectively our findings indicate that, in response to leukemia cells, ALL-MSCs could mediate a host beneficial immunomodulatory effect by stimulating the antitumor innate immune response. PMID:25917077

  7. Nucleotide composition analysis of tRNA from leukemia patient cell samples and human cell lines.

    PubMed Central

    Agris, P F

    1975-01-01

    A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells. PMID:1057159

  8. Chronic Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  9. Chronic Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  10. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  11. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  12. T-cell chronic lymphocytic leukemia or small-cell variant of T-cell prolymphocytic leukemia: a historical perspective and search for consensus.

    PubMed

    Rashidi, Armin; Fisher, Stephen I

    2015-09-01

    There is a rich history behind the extinct entity 'T-cell chronic lymphocytic leukemia (T-CLL)' and the now-established replacement, small-cell variant of T-cell prolymphocytic leukemia (T-PLL-sv). Herein, we review the history of the events, observations, and discussions that led to this replacement. We also provide a systematic analysis of all previously reported cases of T-PLL-sv as well as our four new additional cases. Despite the higher frequency of a normal karyotype and perhaps an overrepresented CD4(-) CD8(-) immunophenotype among these patients (compared to T-PLL in general) as well as bland morphology (that makes them superficially appear more similar to B-CLL), we argue that the current World Health Organization (WHO)-based classification as T-PLL-sv is adequate and should continue for the time being. Morphologically, T-PLL-sv represents approximately one-fifth of all T-PLL cases. However, morphology alone does not determine the clinical course and should not be the basis for clinical decision making and prognostication. We propose a clonal evolution model in which mature T-cell leukemias classified in the past as T-CLL are perhaps T-PLL diagnosed early in the course of the disease. Future research using next-generation sequencing, comparative genomic hybridization, and molecular array studies, including serial analyses of individual cases over time, is needed to better identify this rarely diagnosed, inherently controversial form of T-cell leukemia. PMID:25846234

  13. Resistance to cyclopentenylcytosine in murine leukemia L1210 cells.

    PubMed

    Zhang, H; Cooney, D A; Zhang, M H; Ahluwalia, G; Ford, H; Johns, D G

    1993-12-01

    Cyclopentenyl cytosine (CPEC) exhibits oncological activity in murine and human tumor cells and has now entered Phase I clinical trials. Its mode of action as an antitumor agent appears to be inhibition by its triphosphate (CPEC-TP) of CTP synthase, the enzyme which converts UTP to CTP. In an attempt to elucidate the mechanism of resistance to CPEC, a murine leukemia cell line resistant to CPEC (L1210/CPEC) was developed by N-methyl-N-nitro-N-nitrosoguanidine-induced mutagenesis and subsequent selection by cultivation of the L1210 cells in the presence of 2 microM CPEC. Resistant clones were maintained in CPEC-free medium for 6 generations before biochemical studies were performed. The resistant clone selected for further studies was approximately 13,000-fold less sensitive to growth inhibition by CPEC than the parental cells, and the concentration of CPEC required to deplete CTP in the resistant cells was 50-fold higher than in the sensitive cells. A comparison of the kinetic properties of CTP synthase from sensitive and resistant cells indicated alteration in the properties of the enzyme from the latter; the median inhibitory concentration for CPEC-TP increased from 2 to 14 microM, Km for UTP decreased from 126 to 50 microM, and Vmax increased 12-fold from 0.2 to 2.3 nmol/mg/min. Northern blot analyses of polyadenylated RNA from the resistant and sensitive cells indicated a 3-fold increase in transcripts of the CTP synthase gene in the resistant line. Consistent with these alterations in the properties of the enzyme, the resistant cells exhibited significantly expanded CTP and dCTP pools (4- 5-fold) when compared with the sensitive cells. No change was observed, however, in the properties of uridine-cytidine kinase, the enzyme responsible for the initial phosphorylation of CPEC; despite this, however, cellular uptake of CPEC was greatly decreased, and phosphorylation of CPEC and its incorporation into RNA were 10-fold less than in the parental cells. These latter

  14. A Case of Aggressive NK/T-cell Lymphoma/Leukemia with Cutaneous Involvement in Adolescence

    PubMed Central

    Kim, Soo Ho; Ko, Woo Tae; Ha, Gyoung Yim; Kim, Jung Ran

    2008-01-01

    NK/T-cell lymphoma (NKTCL) is characterized by the expression of the NK-cell antigen CD56. Non-nasal NK/T-cell lymphomas are subdivided into primary cutaneous and 4 subtypes of secondary cutaneous lymphomas; nasal type, aggressive, blastic (blastoid), and other specific NK-like cell lymphoma. Aggressive NK/T-cell lymphoma/leukemia is a rare leukemic variant of nasal type NKTCL. We herein report a rare case of aggressive NK/T-cell lymphoma/leukemia with cutaneous involvement in adolescence. PMID:27303165

  15. Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces.

    PubMed

    Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui

    2013-06-01

    The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment. PMID:23621478

  16. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    PubMed Central

    Eriksson, A; Österroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Fryknäs, M; Höglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis. PMID:25885427

  17. Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia.

    PubMed

    Hasanali, Zainul S; Saroya, Bikramajit Singh; Stuart, August; Shimko, Sara; Evans, Juanita; Vinod Shah, Mithun; Sharma, Kamal; Leshchenko, Violetta V; Parekh, Samir; Loughran, Thomas P; Epner, Elliot M

    2015-06-24

    T cell prolymphocytic leukemia (T-PLL) is a rare, mature T cell neoplasm with distinct features and an aggressive clinical course. Early relapse and short overall survival are commonplace. Use of the monoclonal anti-CD52 antibody alemtuzumab has improved the rate of complete remission and duration of response to more than 50% and between 6 and 12 months, respectively. Despite this advance, without an allogeneic transplant, resistant relapse is inevitable. We report seven complete and one partial remission in eight patients receiving alemtuzumab and cladribine with or without a histone deacetylase inhibitor. These data show that administration of epigenetic agents can overcome alemtuzumab resistance. We also report epigenetically induced expression of the surface receptor protein CD30 in T-PLL. Subsequent treatment with the anti-CD30 antibody-drug conjugate brentuximab vedotin overcame organ-specific (skin) resistance to alemtuzumab. Our findings demonstrate activity of combination epigenetic and immunotherapy in the incurable illness T-PLL, particularly in the setting of previous alemtuzumab therapy. PMID:26109102

  18. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells

    PubMed Central

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-01-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  19. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    PubMed

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  20. Anti-Leukemia Activity of In Vitro-Expanded Human Gamma Delta T Cells in a Xenogeneic Ph+ Leukemia Model

    PubMed Central

    Siegers, Gabrielle M.; Felizardo, Tania C.; Mathieson, A. Mark; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Keating, Armand

    2011-01-01

    Gamma delta T cells (GDTc) lyse a variety of hematological and solid tumour cells in vitro and in vivo, and are thus promising candidates for cellular immunotherapy. We have developed a protocol to expand human GDTc in vitro, yielding highly cytotoxic Vgamma9/Vdelta2 CD27/CD45RA double negative effector memory cells. These cells express CD16, CD45RO, CD56, CD95 and NKG2D. Flow cytometric, clonogenic, and chromium release assays confirmed their specific cytotoxicity against Ph+ cell lines in vitro. We have generated a fluorescent and bioluminescent Ph+ cell line, EM-2eGFPluc, and established a novel xenogeneic leukemia model. Intravenous injection of EM-2eGFPluc into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice resulted in significant dose-dependent bone marrow engraftment; lower levels engrafted in blood, lung, liver and spleen. In vitro-expanded human GDTc injected intraperitoneally were found at higher levels in blood and organs compared to those injected intravenously; GDTc survived at least 33 days post-injection. In therapy experiments, we documented decreased bone marrow leukemia burden in mice treated with GDTc. Live GDTc were found in spleen and bone marrow at endpoint, suggesting the potential usefulness of this therapy. PMID:21304898

  1. Glycosylation Status of CD43 Protein Is Associated with Resistance of Leukemia Cells to CTL-Mediated Cytolysis

    PubMed Central

    Hasegawa, Kana; Tanaka, Satomi; Fujiki, Fumihiro; Morimoto, Soyoko; Nakano, Katsuhiko; Kinoshita, Hiroko; Okumura, Atsushi; Fujioka, Yuka; Urakawa, Rika; Nakajima, Hiroko; Tatsumi, Naoya; Nakata, Jun; Takashima, Satoshi; Nishida, Sumiyuki; Tsuboi, Akihiro; Oka, Yoshihiro; Oji, Yusuke; Miyoshi, Eiji; Hirata, Takako; Kumanogoh, Atsushi; Sugiyama, Haruo; Hosen, Naoki

    2016-01-01

    To improve cancer immunotherapy, it is important to understand how tumor cells counteract immune-surveillance. In this study, we sought to identify cell-surface molecules associated with resistance of leukemia cells to cytotoxic T cell (CTL)-mediated cytolysis. To this end, we first established thousands of monoclonal antibodies (mAbs) that react with MLL/AF9 mouse leukemia cells. Only two of these mAbs, designated R54 and B2, bound preferentially to leukemia cells resistant to cytolysis by a tumor cell antigen–specific CTLs. The antigens recognized by these mAbs were identified by expression cloning as the same protein, CD43, although their binding patterns to subsets of hematopoietic cells differed significantly from each other and from a pre-existing pan-CD43 mAb, S11. The epitopes of R54 and B2, but not S11, were sialidase-sensitive and expressed at various levels on leukemia cells, suggesting that binding of R54 or B2 is associated with the glycosylation status of CD43. R54high leukemia cells, which are likely to express sialic acid-rich CD43, were highly resistant to CTL-mediated cytolysis. In addition, loss of CD43 in leukemia cells or neuraminidase treatment of leukemia cells sensitized leukemia cells to CTL-mediated cell lysis. These results suggest that sialic acid-rich CD43, which harbors multiple sialic acid residues that impart a net negative surface charge, protects leukemia cells from CTL-mediated cell lysis. Furthermore, R54high or B2high leukemia cells preferentially survived in vivo in the presence of adaptive immunity. Taken together, these results suggest that the glycosylation status of CD43 on leukemia is associated with sensitivity to CTL-mediated cytolysis in vitro and in vivo. Thus, regulation of CD43 glycosylation is a potential strategy for enhancing CTL-mediated immunotherapy. PMID:27011118

  2. Donor cell leukemia after allogeneic peripheral blood stem cell transplantation: a case report and literature review.

    PubMed

    Murata, Makoto; Ishikawa, Yuichi; Ohashi, Haruhiko; Terakura, Seitaro; Ozeki, Kazutaka; Kiyoi, Hitoshi; Naoe, Tomoki

    2008-07-01

    A 49-year-old male developed recurrent acute myeloid leukemia 27 months after allogeneic peripheral blood stem cell transplantation (PBSCT) from an HLA-identical brother. The immunophenotype of the blastic cell population was incompatible with that of the pre-transplant blast cells; a mutation in C/EBPA gene was found in the pre-transplant blast cells that was not present in the post-transplant blast cells, and short tandem repeat analysis of marrow cells, which included 71% blasts, showed complete donor chimera. Thus, this recipient developed donor cell leukemia (DCL). The donor was healthy when DCL developed in the recipient as well as before donation of the peripheral blood stem cells. Only five cases of DCL after PBSCT have been reported in the literature. As a mechanism for the development of DCL, a vigorous proliferative demand on the donor cells, which often correlates with a higher likelihood of replication error or mutation, has been proposed. Peripheral blood stem cells might have an advantage in that they are associated with a low incidence of DCL development because PBSCT recipients receive a higher total cell dose than recipients of bone marrow or cord blood cells. PMID:18470599

  3. Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells.

    PubMed

    Wu, Ching-Fen; Klauck, Sabine M; Efferth, Thomas

    2016-09-01

    Cryptotanshinone, a well-known diterpene quinone from a widely used traditional Chinese herb named Salvia miltiorrhiza, has been reported for its therapeutical potentials on diverse activities. In this study, pharmacological effects of cryptotanshinone on acute lymphoblastic leukemia cells were investigated. IC50 values of 5.0 and 4.8 were obtained in CEM/ADR5000 and CCRF-CEM. Microarray-based mRNA expression revealed that cryptotanshinone regulated genes associated with cell cycle, DNA damage, reactive oxygen species (ROS), NFκB signaling and cellular movement. The involvement of these pathways in the mode of action of cryptotanshinone was subsequently validated by additional independent in vitro studies. Cryptotanshinone stimulated ROS generation and induced DNA damage. It arrested cells in G2/M phase of the cell cycle and induced apoptosis as measured by annexin V-FITC-conjugating fluorescence. The induction of the intrinsic apoptotic pathway by cryptotanshinone was proved by loss of mitochondrial membrane potential and increased cleavage of caspase 3/7, caspase 9 and poly ADP ribose polymerase (PARP). DNA-binding motif analysis of the microarray-retrieved deregulated genes in the promoter region revealed NFκB as potential transcription factor involved in cryptotanshinone's mode of action. Molecular docking and Western blotting provided supportive evidence, suggesting that cryptotanshinone binds to IKK-β and inhibits the translocation of p65 from the cytosol to the nucleus. In addition, cryptotanshinone inhibited cellular movement as shown by a fibronectin-based cellular adhesion assay, indicating that this compound exerts anti-invasive features. In conclusion, cryptotanshinone exerts profound cytotoxicity, which is caused by multispecific modes of actions, including G2/M arrest, apoptosis and inhibition of cellular movement. The inhibitory activities of this compound may be explained by inhibition of NFκB, which orchestrates all these mechanisms. PMID

  4. Circulating endothelial cells and their progenitors in acute myeloid leukemia

    PubMed Central

    Zahran, Asmaa Mohammed; Aly, Sanaa Shaker; Altayeb, Hanan Ahmed; Ali, Arwa Mohammed

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by the accumulation of immature myeloid progenitor cells in the bone marrow. Studies are required to investigate the prognostic and predictive value of surrogate biomarkers. Given the importance of angiogenesis in oncology in terms of pathogenesis as well as being a target for treatment, circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising candidates to serve as such markers. The aim of the present study was to quantify CECs and EPCs in patients with AML at initial diagnosis and following induction chemotherapy, and to correlate these findings with the response to treatment in AML patients. The present study included 40 patients with de novo AML and 20 age- and gender-matched healthy controls. CECs and EPCs were evaluated by flow cytometry at initial diagnosis and after induction chemotherapy (3+7 protocol for AML other than M3 and all-trans-retinoic acid plus anthracycline for M3 disease). CECs and EPCs were significantly higher in AML patients at diagnosis and after induction chemotherapy than in controls. After induction chemotherapy, CECs and EPCs were significantly decreased compared with the levels at initial diagnosis. Patients who achieved complete response (n=28) had lower initial CEC and EPC levels compared with patients who did not respond to treatment. These results suggest that CEC levels are higher in AML patients and may correlate with disease status and treatment response. Further investigations are required to better determine the predictive value and implication of these cells in AML management. PMID:27602121

  5. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

    PubMed Central

    Maude, Shannon L.; Frey, Noelle; Shaw, Pamela A.; Aplenc, Richard; Barrett, David M.; Bunin, Nancy J.; Chew, Anne; Gonzalez, Vanessa E.; Zheng, Zhaohui; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, Jan J.; Rheingold, Susan R.; Shen, Angela; Teachey, David T.; Levine, Bruce L.; June, Carl H.; Porter, David L.; Grupp, Stephan A.

    2014-01-01

    BACKGROUND Relapsed acute lymphoblastic leukemia (ALL) is difficult to treat despite the availability of aggressive therapies. Chimeric antigen receptor–modified T cells targeting CD19 may overcome many limitations of conventional therapies and induce remission in patients with refractory disease. METHODS We infused autologous T cells transduced with a CD19-directed chimeric antigen receptor (CTL019) lentiviral vector in patients with relapsed or refractory ALL at doses of 0.76×106 to 20.6×106 CTL019 cells per kilogram of body weight. Patients were monitored for a response, toxic effects, and the expansion and persistence of circulating CTL019 T cells. RESULTS A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the anti–interleukin-6 receptor antibody tocilizumab. CONCLUSIONS Chimeric antigen receptor–modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by

  6. Knockdown of WAVE1 enhances apoptosis of leukemia cells by downregulating autophagy.

    PubMed

    Zhang, Zhaoxia; Wu, Benqing; Chai, Wenwen; Cao, Lizhi; Wang, Yangping; Yu, Yan; Yang, Liangchun

    2016-06-01

    Chemoresistance of leukemia constitutes a great challenge for successful treatment of leukemia. Autophagy has recently attracted increasing attention for its role in conferring resistance to various conventional anti-neoplastic regiments. In the present study, the authors showed that WAVE1, a member of WASP family verprolin-homologous proteins, is a critical regulator of chemoresistance during autophagy. It is positively correlated with clinical status in pediatric acute myeloblastic leukemia (AML) and leukemia cell lines. The knockdown of WAVE1 expression decreased autophagy was accompanied by an upregulation of autophagic marker microtubule-associated protein light chain 3 (LC3)-Ⅱ, a degradation of SQSTM1/sequestosome 1 (p62) and the formation of autophagosomes. Moreover, a suppression of WAVE1 expression increased the sensitivity of leukemia cells to chemotherapy and apoptosis, and depletion of WAVE1 expression promoted the translocation of Bcl-2 from mitochondria into the cytoplasm. In addition, a knockdown of PI3K-Ⅲ expression significantly inhibited WAVE1-mediated autophagy. Furthermore, suppression of WAVE1 expression blocked the interactions between Beclin1 and PI3K-Ⅲ and the disassociation of Beclin1-Bcl-2 during enhanced autophagy. The above results suggested that WAVE1 is a critical pro-autophagic protein capable of enhancing cell survival and regulating chemoresistance in leukemia cells potentially through the Beclin1/Bcl-2 and Beclin1/PI3K-Ⅲ complex-dependent pathways. PMID:27035872

  7. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  8. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    SciTech Connect

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  9. YM155 suppresses cell proliferation and induces cell death in human adult T-cell leukemia/lymphoma cells.

    PubMed

    Sasaki, Ryousei; Ito, Shigeki; Asahi, Maki; Ishida, Yoji

    2015-12-01

    Adult T-cell leukemia (ATL) is an aggressive malignancy of peripheral T cells infected with human T-cell leukemia virus type 1 (HTLV-1). The prognosis of patients with aggressive ATL remains poor because ATL cells acquire resistance to conventional cytotoxic agents. Therefore, development of novel agents is urgently needed. We examined the effects of YM155, sepantronium bromide, on cell proliferation and survival of ATL or HTLV-1-infected T-cell lines, S1T, MT-1, and MT-2. We found that YM155 suppressed cell proliferation in these cells and induced cell death in S1T and MT-1 cells. Both real-time quantitative polymerase chain reaction and immunoblot analyses showed suppression of survivin expression in S1T, MT-1, and MT-2 cells. In addition, we observed the cleavage of caspase-3 and poly(ADP-ribose) polymerase in YM155-treated S1T and MT-1 cells, indicating that YM155 induces caspase-dependent apoptosis in these cells. To clarify the mechanism of drug tolerance of MT-2 cells in terms of YM155-induced cell death, we examined intracellular signaling status in these cells. We found that STAT3, STAT5, and AKT were constitutively phosphorylated in MT-2 cells but not in S1T and MT-1 cells. Treatment with YM155 combined with the STAT3 inhibitor S3I-201 significantly suppressed cell proliferation compared to that with either YM155 or S3I-201 in MT-2 cells, indicating that STAT3 may play a role in tolerance of MT-2 cells to YM155 and that STAT3 may therefore be a therapeutic target for YM155-resistant ATL cells. These results suggest that YM155 presents potent antiproliferative and apoptotic effects via suppression of survivin in ATL cells in which STAT3 is not constitutively phosphorylated. YM155 merits further investigation as a potential chemotherapeutic agent for ATL. PMID:26547260

  10. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia.

    PubMed

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  11. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    PubMed Central

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  12. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  13. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  14. Acute Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  15. Stereotyped B-cell receptors in chronic lymphocytic leukemia.

    PubMed

    Agathangelidis, Andreas; Vardi, Anna; Baliakas, Panagiotis; Stamatopoulos, Kostas

    2014-10-01

    Over the last decade, immunogenetic analysis of B-cell receptor immunoglobulins (BcR IGs) has proved to be a particularly fruitful field in chronic lymphocytic leukemia (CLL), not only for understanding disease pathogenesis but also for discriminating clinical subgroups with markedly distinct course and outcome. Of utmost importance was the identification of quasi-identical BcR IGs among unrelated patients with CLL, fittingly coined as "stereotypy," that set the wheels in motion for unraveling the role of antigen(s) in the selection and expansion of the leukemic clones. The categorization of CLL clones into "subsets" according to shared BcR IG structural characteristics provided a compartmentalized view of this otherwise heterogeneous disease, which eventually led to defining strikingly homogeneous groups of patients in terms of: (i) functional properties of the clonal BcR IGs, e.g. BcR reactivity and signaling; (ii) clonal genetic landscape, e.g. genomic aberrations, gene expression/methylation profiles, microRNA signatures; and (iii) clinical course and outcome. The remarkable restriction of the CLL IG gene repertoire, resulting to a great degree from the high impact of BcR IG stereotypy, may also prompt speculations regarding CLL ontogenesis. Overall, the BcR IG molecule justifiably lies at the heart of CLL clinical research, holding the promise of subset-tailored therapies. PMID:24397617

  16. Stem cell transplantation for indolent lymphoma and chronic lymphocytic leukemia

    PubMed Central

    Gribben, John G; Hosing, Chitra; Maloney, David G.

    2012-01-01

    The indolent lymphomas, including chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) remain incurable with standard therapy. Autologous hematopoietic stem cell transplantation (HSCT[JHA1]) is feasible and has low treatment related mortality in follicular lymphoma, but there are questions relating to optimal timing of the procedure, conditioning regimen and late effects. Myeloablative allogeneic HSCT is associated with high treatment related morbidity and mortality, few late relapses, but is applicable to only a small number of patients. The major focus of HSCT in these lymphomas has been with reduced intensity conditioning (RIC) allogeneic HSCT, which is applicable to the age distribution of these diseases and which exploit the graft versus lymphoma effect in these diseases. Steps to further decrease the morbidity and mortality of the RIC HSCT and in particular to reduce the incidence of chronic extensive graft versus host disease while maintaining tumor control remain the major focus. Many potential treatments are available for indolent lymphomas and CLL, and appropriate patient selection and the timing of HSCT remain controversial. The use of HSCT must always be weighed against the risk of the underlying disease, particularly in a setting where improvements in treatment are leading to improved outcome. PMID:21195313

  17. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    SciTech Connect

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-15

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL.

  18. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells

    PubMed Central

    Fei, Fei; Lim, Min; George, Aswathi A.; Kirzner, Jonathan; Lee, Dean; Seeger, Robert; Groffen, John; Abdel-Azim, Hisham; Heisterkamp, Nora

    2014-01-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-BAFF-R mAb-stimulated ADCC activity against autologous ALL cells, which could be further enhanced by IL15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B-ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants. PMID:25134458

  19. Ibrutinib in Treating Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma in Patients With HIV Infection

    ClinicalTrials.gov

    2015-08-18

    Adult B Acute Lymphoblastic Leukemia; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; HIV Infection; Intraocular Lymphoma; Multicentric Angiofollicular Lymphoid Hyperplasia; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Plasma Cell Myeloma; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  20. Autologous Peripheral Blood Stem Cell Transplant Followed by Donor Bone Marrow Transplant in Treating Patients With High-Risk Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Multiple Myeloma, or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-06-17

    B-Cell Prolymphocytic Leukemia; Plasma Cell Leukemia; Progression of Multiple Myeloma or Plasma Cell Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Non-Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia

  1. p27kip1 Maintains a Subset of Leukemia Stem Cells in the Quiescent State in Murine MLL-Leukemia

    PubMed Central

    Zhang, Jun; Seet, Christopher; Sun, Clare; Li, Jing; You, Dewen; Volk, Andrew; Breslin, Peter; Li, Xingyu; Wei, Wei; Qian, Zhijian; Zeleznik-Le, Nancy J.; Zhang, Zhou; Zhang, Jiwang

    2013-01-01

    MLL (mixed-lineage leukemia)-fusion genes induce the development of leukemia through deregulation of normal MLL target genes, such as HOXA9 and MEIS1. Both HOXA9 and MEIS1 are required for MLL-fusion gene-induced leukemogenesis. Co-expression of HOXA9 and MEIS1 induces acute myeloid leukemia (AML) similar to that seen in mice in which MLL-fusion genes are over-expressed. p27kip1 (p27 hereafter), a negative regulator of the cell cycle, has also been defined as an MLL target, the expression of which is up-regulated in MLL leukemic cells (LCs). To investigate whether p27 plays a role in the pathogenesis of MLL-leukemia, we examined the effects of p27 deletion (p27-/-) on MLL-AF9 (MA9)-induced murine AML development. HOXA9/MEIS1 (H/M)-induced, p27 wild-type (p27+/+) and p27-/- AML were studied in parallel as controls. We found that LCs from both MA9-AML and H/M-AML can be separated into three fractions, a CD117-CD11bhi differentiated fraction as well as CD117+CD11bhi and CD117+CD11blo, two less differentiated fractions. The CD117+CD11blo fraction, comprising only 1-3% of total LCs, expresses higher levels of early hematopoietic progenitor markers but lower levels of mature myeloid cell markers compared to other populations of LCs. p27 is expressed and is required for maintaining the quiescent and drug-resistant states of the CD117+CD11blo fraction of MA9-LCs but not of H/M-LCs. p27 deletion significantly compromises the leukemogenic capacity of CD117+CD11blo MA9-LCs by reducing the frequency of leukemic stem cells (LSCs) but does not do so in H/M-LCs. In addition, we found that p27 is highly expressed and required for cell cycle arrest in the CD117-CD11bhi fraction in both types of LCs. Furthermore, we found that c-Myc expression is required for maintaining LCs in an undifferentiated state independently of proliferation. We concluded that p27 represses the proliferation of LCs, which is specifically required for maintaining the quiescent and drug-resistant states of a

  2. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS)

    PubMed Central

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I.; Anis, Hanan

    2015-01-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells. PMID:26601021

  3. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    PubMed

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells. PMID:26601021

  4. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  5. Genetic features of B-cell chronic lymphocytic leukemia.

    PubMed

    Stilgenbauer, S; Lichter, P; Döhner, H

    2000-03-01

    The genetic features of B-cell chronic lymphocytic leukemia (CLL) are currently being reassessed by molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH). Conventional cytogenetic studies by chromosome banding are difficult in CLL mainly because of the low in vitro mitotic activity of the tumor cells, which leads to poor quantity and quality of metaphase spreads. Molecular genetic analyses are limited because candidate genes are known for only a few chromosomal aberrations that are observed in CLL. FISH was found to be a powerful tool for the genetic analysis of CLL as it overcomes both the low mitotic activity of the CLL cells and the lack of suitable candidate genes for analysis. Using FISH, the detection of chromosomal aberrations can be performed at the single cell level in both dividing and non-dividing cells, thus circumventing the need of metaphase preparations from tumor cells. Probes for the detection of trisomies, deletions and translocation breakpoints can be applied to the regions of interest with the growing number of clones available from genome-wide libraries. Using the interphase cytogenetic FISH approach with a disease specific set of probes, chromosome aberrations can be found in more than 80% of CLL cases. The most frequently observed abnormalities are losses of chromosomal material, with deletions in band 13q14 being the most common, followed by deletions in 11q22-q23, deletions in 17p13 and deletions in 6q21. The most common gains of chromosomal material are trisomies 12q, 8q and 3q. Translocation breakpoints, in particular involving the immunoglobulin heavy chain locus at 14q32, which are frequently observed in other types of non-Hodgkin's lymphoma, are rare events in CLL. Genes affected by common chromosome aberrations in CLL appear to be p53 in cases with 17p deletion and ataxia telangiectasia mutated (ATM), which is mutated in a subset of cases with 11q22-q23 aberrations. However, for the other frequently

  6. Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2015-10-28

    Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Severe Combined Immunodeficiency; Severe Congenital Neutropenia; Shwachman-Diamond Syndrome; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia; Wiskott-Aldrich Syndrome

  7. Animals Models of Human T Cell Leukemia Virus Type I Leukemogenesis.

    PubMed

    Niewiesk, Stefan

    2016-03-31

    Infection with human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in a minority of infected individuals after long periods of viral persistence. The various stages of HTLV-I infection and leukemia development are studied by using several different animal models: (1) the rabbit (and mouse) model of persistent HTLV-I infection, (2) transgenic mice to model tumorigenesis by HTLV-I specific protein expression, (3) ATL cell transfers into immune-deficient mice, and (4) infection of humanized mice with HTLV-I. After infection, virus replicates without clinical disease in rabbits and to a lesser extent in mice. Transgenic expression of both the transactivator protein (Tax) and the HTLV-I bZIP factor (HBZ) protein have provided insight into factors important in leukemia/lymphoma development. To investigate factors relating to tumor spread and tissue invasion, a number of immune-deficient mice based on the severe combined immunodeficiency (SCID) or non-obese diabetic/SCID background have been used. Inoculation of adult T cell leukemia cell (lines) leads to lymphoma with osteolytic bone lesions and to a lesser degree to leukemia development. These mice have been used extensively for the testing of anticancer drugs and virotherapy. A recent development is the use of so-called humanized mice, which, upon transfer of CD34(+)human umbilical cord stem cells, generate human lymphocytes. Infection with HTLV-I leads to leukemia/lymphoma development, thus providing an opportunity to investigate disease development with the aid of molecularly cloned viruses. However, further improvements of this mouse model, particularly in respect to the development of adaptive immune responses, are necessary. PMID:27034390

  8. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  9. Characterization of miRNomes in Acute and Chronic Myeloid Leukemia Cell Lines

    PubMed Central

    Xiong, Qian; Yang, Yadong; Wang, Hai; Li, Jie; Wang, Shaobin; Li, Yanming; Yang, Yaran; Cai, Kan; Ruan, Xiuyan; Yan, Jiangwei; Hu, Songnian; Fang, Xiangdong

    2014-01-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias. PMID:24755403

  10. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    PubMed Central

    Dorantes-Acosta, Elisa; Pelayo, Rosana

    2012-01-01

    Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development. PMID:22852088

  11. Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2016-07-20

    Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  12. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  13. Inverse relationship of tumors and mononuclear cell leukemia infiltration in the lungs of F344 rats

    SciTech Connect

    Lundgren, D.L.; Griffith, W.C.; Hahn, F.F.

    1995-12-01

    In 1970 and F344 rat, along with the B6C3F{sub 1} mouse, were selected as the standard rodents for the National Cancer Institute Carcinogenic Bioassay program for studies of potentially carcinogenic chemicals. The F344 rat has also been used in a variety of other carcinogenesis studies, including numerous studies at ITRI. A major concern to be considered in evaluating carcinogenic bioassay studies using the F344 rat is the relatively high background incidence of mononuclear cell leukemia (MCL) (also referred to as large granular lymphocytic leukemia, Fischer rat leukemia, or monocytic leukemia). Incidences of MCL ranging from 10 to 72% in male F344 rats to 6 to 31% in female F344 rats have been reported. Gaining the understanding of the mechanisms involved in the negative correlations noted should enhance our understanding of the mechanisms involved in the development of lung cancer.

  14. Natural History Study of Monoclonal B Cell Lymphocytosis (MBL), Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL), Lymphoplasmacytic Lymphoma (LPL)/Waldenstrom Macroglobulinemia (WM), and Splenic Marginal Zone Lymphoma (SMZL)

    ClinicalTrials.gov

    2016-08-31

    B-Cell Chronic Lymphocytic Leukemia; Monoclonal B-Cell Lymphocytosis; Lymhoma, Small Lymphocytic; Chronic Lymphocytic Leukemia; Lymphoplasmacytic Lymphoma; Waldenstrom Macroglobulinemia; Splenic Marginal Zone Lymphoma

  15. Exploitation of natural killer cells for the treatment of acute leukemia.

    PubMed

    Handgretinger, Rupert; Lang, Peter; André, Maya C

    2016-06-30

    Natural killer (NK) cells play an important role in surveillance and elimination of malignant cells. Their spontaneous cytotoxicity was first demonstrated in vitro against leukemia cell lines, and NK cells might play a crucial role in the therapy of leukemia. NK cell activity is controlled by an array of germ line-encoded activating and inhibitory receptors, as well as modulating coreceptors. This biologic feature can be exploited in allogeneic cell therapy, and the recognition of "missing-self" on target cells is crucial for promoting NK cell-mediated graft-versus-leukemia effects. In this regard, NK cells that express an inhibitory killer immunoglobulin-like receptor (iKIR) for which the respective major histocompatibility complex class I ligand is absent on leukemic target cells can exert alloreactivity in vitro and in vivo. Several models regarding potential donor-patient constellations have been described that have demonstrated the clinical benefit of such alloreactivity of the donor-derived NK cell system in patients with adult acute myeloid leukemia and pediatric B-cell precursor acute lymphoblastic leukemia after allogeneic stem cell transplantation. Moreover, adoptive transfer of mature allogeneic NK cells in the nontransplant or transplant setting has been shown to be safe and feasible, whereas its effectivity needs further evaluation. NK cell therapy can be further improved by optimal donor selection based on phenotypic and genotypic properties, by adoptive transfer of NK cells with ex vivo or in vivo cytokine stimulation, by the use of antibodies to induce antibody-dependent cellular cytotoxicity or to block iKIRs, or by transduction of chimeric antigen receptors. PMID:27207791

  16. A112, a tamibarotene dimethylaminoethyl ester, may inhibit human leukemia cell growth more potently than tamibarotene.

    PubMed

    Yuan, Chao; Zhang, Yu-Sheng; Cheng, Yan-Na; Xue, Xia; Xu, Wen-Fang; Qu, Xian-Jun

    2012-02-01

    A112 is a tamibarotene dimethylaminoethyl ester considered a candidate compound for the treatment of acute promyelocytic leukemia (APL) and acute myeloid leukemia (AML). Our goal in this study was to evaluate the efficacy of anti-cancer activity, beginning by studying its inhibitory effects on leukemia cells and then comparing it to tamibarotene. A112 effectively inhibited the growth of HL-60 and NB4 cells as estimated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The inhibitory effect of A112 was confirmed in mice in which A112 delayed the growth of HL-60 xenografts after 3 weeks' injection. The efficacy of A112 on leukemia cell growth was stronger than that of tamibarotene at the same dosage. The detection of A112 and tamibarotene in plasma of rats showed that A112 might sustain release of its hydrolysate tamibarotene, and the concentration was maintained at a higher level and for a longer time than that of tamibarotene injection. We studied the differentiation morphologies of leukemic cells exposed to A112 or tamibarotene. The number of differentiated NB4 cells was increased, suggesting that A112 possessed differentiation activity in the inhibition of leukemia growth. Further studies showed that the expression of CD11b, a marker of terminal granulocyte differentiation, was increased as estimated by flow cytometry with a direct immunofluorescence assay. A112 was found to induce the activation of CCAAT/enhancer-binding protein β (C/EBPβ) and cyclin-dependent kinase (CDK) inhibitors p21(Waf1/cip1) and p27(Kip1) while cell growth was inhibited. These activities of A112 were greater than those of tamibarotene. The higher efficacy of A112 was also evidenced by induction of apoptosis in leukemia cells. A112 induced a greater number of annexin V-positive cells than did tamibarotene as measured by flow cytometry analysis. Treatment of mice with A112 resulted in stronger terminal deoxynucleotidyl transferase dUTP nick end labeling

  17. Potentiation of Acute Promyelocytic Leukemia Cell Differentiation and Prevention of Leukemia Development in Mice by Oleanolic Acid.

    PubMed

    Rawendra, Reynetha D S; Lin, Ping-Yuan; Chang, Ching-Dong; Hsu, Jue-Liang; Huang, Tzou-Chi; Shih, Wen-Ling

    2015-12-01

    Although differentiation therapy with all-trans retinoic acid (ATRA) induces complete remission in most acute promyelocytic leukemia (APL) patients, it is associated with organ toxicity. The present study focused on investigating the effects of the natural compounds oleanolic acid (OA) and ursolic acid (UA) on proliferation and differentiation of human APL HL-60 cells in vitro and murine APL WEHI-3 cells in vivo. Results demonstrated that OA and UA significantly inhibited cellular proliferation of HL-60 in a concentration- and time-dependent manner. Non-cytotoxic concentration of OA exhibited a marked differentiation-inducing effect on HL-60 and enhanced ATRA-induced HL-60 differentiation. In contrast, UA showed only a moderate effect. Activation of MAPK/NF-κB signaling pathway was likely found to be involved in the mechanism. Moreover, OA increased survival duration of WEHI-3 transplanted BALB/c mice, and decreased leukemia cells infiltration in the liver and spleen. Thus, these results may provide new insight for developing alternative therapy in APL patients. PMID:26637873

  18. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus

    PubMed Central

    Aida, Yoko; Murakami, Hironobu; Takahashi, Masahiko; Takeshima, Shin-Nosuke

    2013-01-01

    Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265. PMID:24265629

  19. Occupational exposure to formaldehyde, hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells

    PubMed Central

    Zhang, Luoping; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Ji, Zhiying; Shen, Min; Qiu, Chuangyi; Guo, Weihong; Liu, Songwang; Reiss, Boris; Laura Beane, Freeman; Ge, Yichen; Hubbard, Alan E.; Hua, Ming; Blair, Aaron; Galvan, Noe; Ruan, Xiaolin; Alter, Blanche P.; Xin, Kerry X.; Li, Senhua; Moore, Lee E.; Kim, Sungkyoon; Xie, Yuxuan; Hayes, Richard B.; Azuma, Mariko; Hauptmann, Michael; Xiong, Jun; Stewart, Patricia; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Fraumeni, Joseph F.; Smith, Martyn T.; Lan, Qing

    2010-01-01

    There are concerns about the health effects of formaldehyde exposure, including carcinogenicity, in light of elevated indoor air levels in new homes and occupational exposures experienced by workers in health care, embalming, manufacturing and other industries. Epidemiological studies suggest that formaldehyde exposure is associated with an increased risk of leukemia. However, the biological plausibility of these findings has been questioned because limited information is available on formaldehyde’s ability to disrupt hematopoietic function. Our objective was to determine if formaldehyde exposure disrupts hematopoietic function and produces leukemia-related chromosome changes in exposed humans. We examined the ability of formaldehyde to disrupt hematopoiesis in a study of 94 workers in China (43 exposed to formaldehyde and 51 frequency-matched controls) by measuring complete blood counts and peripheral stem/progenitor cell colony formation. Further, myeloid progenitor cells, the target for leukemogenesis, were cultured from the workers to quantify the level of leukemia-specific chromosome changes, including monosomy 7 and trisomy 8, in metaphase spreads of these cells. Among exposed workers, peripheral blood cell counts were significantly lowered in a manner consistent with toxic effects on the bone marrow and leukemia-specific chromosome changes were significantly elevated in myeloid blood progenitor cells. These findings suggest that formaldehyde exposure can have an adverse impact on the hematopoietic system and that leukemia induction by formaldehyde is biologically plausible, which heightens concerns about its leukemogenic potential from occupational and environmental exposures. PMID:20056626

  20. Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-05-27

    Treated Myelodysplastic Syndromes; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Lymphoblastic Lymphoma

  1. CD52 expression in T-cell large granular lymphocyte leukemia--implications for treatment with alemtuzumab.

    PubMed

    Osuji, N; Del Giudice, I; Matutes, E; Morilla, A; Owusu-Ankomah, K; Morilla, R; Dunlop, A; Catovksy, D

    2005-05-01

    Few reports on the successful treatment of T-cell large granular lymphocyte (LGL) leukemia with the humanized anti-CD52 monoclonal antibody alemtuzumab are emerging in the literature. The expression of CD52 by LGLs has not been previously investigated. Using semi-quantitative 2- and 3-color flow cytometry, we documented the expression of CD52 in 100% of abnormal cells in T-cell LGL leukemia (n = 11) and natural killer (NK) cell LGL leukemia (n = 2), and showed no significant difference in CD52 expression between T-cell prolymphocytic leukemia (PLL) and T-cell LGL leukemia. Higher CD52 expression has been noted in responders to alemtuzumab in T-cell PLL and in chronic lymphocytic leukemia (CLL), a B-cell disorder. The strong and consistent expression of CD52 shown here highlights the potential role of alemtuzumab in the treatment of refractory T-cell LGL leukemia and possibly aggressive NK cell leukemia. PMID:16019510

  2. Cell size variations of large granular lymphocyte leukemia: Implication of a small cell subtype of granular lymphocyte leukemia with STAT3 mutations.

    PubMed

    Tanahashi, Takahiro; Sekiguchi, Nodoka; Matsuda, Kazuyuki; Takezawa, Yuka; Ito, Toshiro; Kobayashi, Hikaru; Ichikawa, Naoaki; Nishina, Sayaka; Senoo, Noriko; Sakai, Hitoshi; Nakazawa, Hideyuki; Ishida, Fumihiro

    2016-06-01

    Large granular lymphocyte leukemia (LGL-L) has been morphologically defined as a group of lymphoproliferative disorders, including T-cell large granular lymphocytic leukemia (T-LGL-L), chronic lymphoproliferative disorders of NK cells (CLPD-NK) and aggressive NK cell leukemia. We investigated the morphological features of LGL leukemic cells in 26 LGL-L patients in order to elucidate relationships with current classifications and molecular backgrounds. LGL-L cells were mostly indistinguishable from normal LGL. Patients with STAT3 SH2 domain mutations showed significantly smaller cells compared with patients without STAT3 mutations. Four patients with T-LGL-L showed smaller granular lymphocytes with a median diameter of less than 13μm, which were rarely seen in normal subjects. This small subtype of T-LGL-L was recognized among rather young patients and was associated with D661Y mutations in the STAT3 gene SH2 domain. In addition, all of them showed anemia including two cases with pure red cell aplasia. These results suggest the heterogeneity of T-LGL-L and a specific subtype with small variants of T-LGL-L. PMID:27064362

  3. Systemic mastocytosis in association with chronic lymphocytic leukemia and plasma cell myeloma

    PubMed Central

    Du, Shouying; Rashidi, Hooman H; Le, Dzung T; Kipps, Thomas J; Broome, H Elizabeth; Wang, Huan-You

    2010-01-01

    Systemic mastocytosis with associated clonal haematological non-mast cell lineage disease (SM-AHNMD) is a heterogeous group of mast cell disorders with different clinical, pathologic and underlying molecular characteristics. While myelomonocytic/myeloid neoplasia overwhelmingly predominates the AHNMD component, lymphoproliferative disorders rarely occur as an AHNMD component of SM-AHNMD. Here we report two cases of SM-AHNMD, in which the AHNMD component is chronic lymphocytic leukemia in one case, and concurrent chronic lymphocytic leukemia as well as plasma cell myeloma in another case. To the best of our knowledge, this is the first case report of SM-AHNMD with chronic lymphocytic leukemia and plasma cell dyscrasia simultaneously. PMID:20490336

  4. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance

    PubMed Central

    Pitt, Lauren A.; Tikhonova, Anastasia N.; Hu, Hai; Trimarchi, Thomas; King, Bryan; Gong, Yixiao; Sanchez-Martin, Marta; Tsirigos, Aris; Littman, Dan R.; Ferrando, Adolfo; Morrison, Sean J.; Fooksman, David R.

    2015-01-01

    SUMMARY The role of the microenvironment in T cell acute lymphoblastic leukemia (T-ALL), or any acute leukemia, is poorly understood. Here we demonstrate that T-ALL cells are in direct, stable contact with CXCL12-producing bone marrow stroma. Cxcl12 deletion from vascular endothelial, but not perivascular, cells impeded tumor growth, suggesting a vascular niche for T-ALL. Moreover, genetic targeting of CXCR4 in murine T-ALL after disease onset led to rapid, sustained disease remission, and CXCR4 antagonism suppressed human T-ALL in primary xenografts. Loss of CXCR4 targeted key T-ALL regulators, including the MYC pathway, and decreased leukemia initiating cell activity in vivo. Our data identify a T-ALL niche, and suggest targeting CXCL12/CXCR4 signaling as a powerful therapeutic approach for T-ALL. PMID:26058075

  5. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia

    PubMed Central

    Zhang, Bin; Ho, Yin Wei; Huang, Qin; Maeda, Takahiro; Lin, Allen; Lee, Sung-uk; Hair, Alan; Holyoake, Tessa L.; Huettner, Claudia; Bhatia, Ravi

    2012-01-01

    Summary We characterized leukemia stem cells (LSC) in chronic phase chronic myelogenous leukemia (CML) using a transgenic mouse model. LSC were restricted to cells with long-term hematopoietic stem cell (LTHSC) phenotype. CML LTHSC demonstrated reduced homing and retention in the bone marrow (BM), related to decreased CXCL12 expression in CML BM, resulting from increased G-CSF production by leukemia cells. Altered cytokine expression in CML BM was associated with selective impairment of normal LTHSC growth and a growth advantage to CML LTHSC. Imatinib (IM) treatment partially corrected abnormalities in cytokine levels and LTHSC growth. These results were validated using human CML samples and provide improved understanding of microenvironmental regulation of normal and leukemic LTHSC and their response to IM in CML. PMID:22516264

  6. Differential mechanisms of cell death induction via delivery of therapeutic nanoliposomal ceramide in leukemias

    NASA Astrophysics Data System (ADS)

    Ryland, Lindsay K.

    Large granular lymphocyte (LGL) leukemia is a rare lymphoproliferative malignancy that involves blood, bone marrow and spleen infiltration. Clinically, LGL leukemia can manifest as a chronic lymphocytosis or as an aggressive leukemia that is fatal within a short period of time. A segment of LGL leukemia patients are unresponsive to immunosuppressive therapy and currently there is no known curative treatment for this disease. Another hematological malignancy, chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in adults in Western countries and accounts for approximately 30% of all diagnosed leukemia cases. Around 95% of all CLL cases involve clonal expansion and abnormal proliferation of neoplastic B lymphocytes in lymphoid organs, bone marrow and peripheral blood. Similar to LGL leukemia, CLL is also incurable with current therapies. Therefore, this represents a need for new therapeutic approaches for treatment of these diseases. Recent advances in nanotechnology have illustrated the feasibility of generating nanoliposomes that encapsulate hydrophobic compounds, like ceramide, to facilitate treatment of LGL leukemia and CLL. Ceramide is an anti-proliferative sphingolipid metabolite that has been shown to selectively induce cell death in cancer cells. However, the use of ceramide as a chemotherapeutic agent is limited due to hydrophobicity. While it is understood how nanoliposomal ceramide induces cell death in several types of cancers and hematological malignancies, the effect of nanoliposomal ceramide treatment in LGL leukemia and CLL remains unclear. In this study, we investigate the differential mechanisms of cell death induction following nanoliposomal C6-ceramide treatment in both LGL leukemia and CLL. We show that nanoliposomal C6-ceramide displays minimal cytotoxicity in normal donors. peripheral blood mononuclear cells (PBMCs) and is a well-tolerated therapy during in vivo treatment in these leukemia models. To further examine this mechanism

  7. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells

    PubMed Central

    Cerutti, Andrea; Kim, Edmund C.; Shah, Shefali; Schattner, Elaine J.; Zan, Hong; Schaffer, András; Casali, Paolo

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is associated with impaired immunoglobulin (Ig) class-switching from IgM to IgG and IgA, a defect that leads to recurrent infections. When activated in the presence of leukemic CLL B cells, T cells rapidly up-regulate CD30 through an OX40 ligand and interleukin 4 (IL-4)–dependent mechanism. These leukemia-induced CD30+ T cells inhibit CD40 ligand (CD40L)-mediated Sµ→Sγ and Sµ→Sα class-switch DNA recombination (CSR) by engaging CD30 ligand (CD30L), a molecule that interferes with the assembly of the CD40–tumor necrosis factor receptor–associated factor (TRAF) complex in nonmalignant IgD+ B cells. In addition, engagement of T cell CD30 by CD30L on neoplastic CLL B cells down-regulates the CD3-induced expression of CD40L. These findings indicate that, in CLL, abnormal CD30-CD30L interaction impairs IgG and IgA production by interfering with the CD40-mediated differentiation of nonmalignant B cells. PMID:11175813

  8. PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation

    PubMed Central

    Kong, Y; Zhang, J; Claxton, D F; Ehmann, W C; Rybka, W B; Zhu, L; Zeng, H; Schell, T D; Zheng, H

    2015-01-01

    Prognosis of leukemia relapse post allogeneic stem cell transplantation (alloSCT) is poor and effective new treatments are urgently needed. T cells are pivotal in eradicating leukemia through a graft versus leukemia (GVL) effect and leukemia relapse is considered a failure of GVL. T-cell exhaustion is a state of T-cell dysfunction mediated by inhibitory molecules including programmed cell death protein 1 (PD-1) and T-cell immunoglobulin domain and mucin domain 3 (TIM-3). To evaluate whether T-cell exhaustion and inhibitory pathways are involved in leukemia relapse post alloSCT, we performed phenotypic and functional studies on T cells from peripheral blood of acute myeloid leukemia patients receiving alloSCT. Here we report that PD-1hiTIM-3+ cells are strongly associated with leukemia relapse post transplantation. Consistent with exhaustion, PD-1hiTIM-3+ T cells are functionally deficient manifested by reduced production of interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). In addition, these cells demonstrate a phenotype consistent with exhausted antigen-experienced T cells by losing TN and TEMRA subsets. Importantly, increase of PD-1hiTIM-3+ cells occurs before clinical diagnosis of leukemia relapse, suggesting their predictive value. Results of our study provide an early diagnostic approach and a therapeutic target for leukemia relapse post transplantation. PMID:26230954

  9. PD-1(hi)TIM-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation.

    PubMed

    Kong, Y; Zhang, J; Claxton, D F; Ehmann, W C; Rybka, W B; Zhu, L; Zeng, H; Schell, T D; Zheng, H

    2015-01-01

    Prognosis of leukemia relapse post allogeneic stem cell transplantation (alloSCT) is poor and effective new treatments are urgently needed. T cells are pivotal in eradicating leukemia through a graft versus leukemia (GVL) effect and leukemia relapse is considered a failure of GVL. T-cell exhaustion is a state of T-cell dysfunction mediated by inhibitory molecules including programmed cell death protein 1 (PD-1) and T-cell immunoglobulin domain and mucin domain 3 (TIM-3). To evaluate whether T-cell exhaustion and inhibitory pathways are involved in leukemia relapse post alloSCT, we performed phenotypic and functional studies on T cells from peripheral blood of acute myeloid leukemia patients receiving alloSCT. Here we report that PD-1(hi)TIM-3(+) cells are strongly associated with leukemia relapse post transplantation. Consistent with exhaustion, PD-1(hi)TIM-3(+) T cells are functionally deficient manifested by reduced production of interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). In addition, these cells demonstrate a phenotype consistent with exhausted antigen-experienced T cells by losing TN and TEMRA subsets. Importantly, increase of PD-1(hi)TIM-3(+) cells occurs before clinical diagnosis of leukemia relapse, suggesting their predictive value. Results of our study provide an early diagnostic approach and a therapeutic target for leukemia relapse post transplantation. PMID:26230954

  10. Metabolic Effects of Acute Thiamine Depletion Are Reversed by Rapamycin in Breast and Leukemia Cells

    PubMed Central

    Liu, Shuqian; Miriyala, Sumitra; Keaton, Mignon A.; Jordan, Craig T.; Wiedl, Christina; Clair, Daret K. St.; Moscow, Jeffrey A.

    2014-01-01

    Thiamine-dependent enzymes (TDEs) control metabolic pathways that are frequently altered in cancer and therefore present cancer-relevant targets. We have previously shown that the recombinant enzyme thiaminase cleaves and depletes intracellular thiamine, has growth inhibitory activity against leukemia and breast cancer cell lines, and that its growth inhibitory effects were reversed in leukemia cell lines by rapamycin. Now, we first show further evidence of thiaminase therapeutic potential by demonstrating its activity against breast and leukemia xenografts, and against a primary leukemia xenograft. We therefore further explored the metabolic effects of thiaminase in combination with rapamycin in leukemia and breast cell lines. Thiaminase decreased oxygen consumption rate and increased extracellular acidification rate, consistent with the inhibitory effect of acute thiamine depletion on the activity of the TDEs pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes; these effects were reversed by rapamycin. Metabolomic studies demonstrated intracellular thiamine depletion and the presence of the thiazole cleavage product in thiaminase-treated cells, providing validation of the experimental procedures. Accumulation of ribose and ribulose in both cell lines support the thiaminase-mediated suppression of the TDE transketolase. Interestingly, thiaminase suppression of another TDE, branched chain amino ketoacid dehydrogenase (BCKDH), showed very different patterns in the two cell lines: in RS4 leukemia cells it led to an increase in BCKDH substrates, and in MCF-7 breast cancer cells it led to a decrease in BCKDH products. Immunoblot analyses showed corresponding differences in expression of BCKDH pathway enzymes, and partial protection of thiaminase growth inhibition by gabapentin indicated that BCKDH inhibition may be a mechanism of thiaminase-mediated toxicity. Surprisingly, most of thiaminase-mediated metabolomic effects were also reversed by rapamycin

  11. Enhancement of fludarabine sensitivity by all-trans-retinoic acid in chronic lymphocytic leukemia cells

    PubMed Central

    Fernández-Calotti, Paula X.; Lopez-Guerra, Mónica; Colomer, Dolors; Pastor-Anglada, Marçal

    2012-01-01

    Background A subset of patients with fludarabine-resistant chronic lymphocytic leukemia has previously been shown to express elevated intracellular levels of the concentrative high-affinity fludarabine transporter hCNT3, without any detectable related activity. We have recently shown that all-trans-retinoic acid is capable of inducing hCNT3 trafficking to plasma membrane in the MEC1 cell line. We, therefore, evaluated the effect of all-trans-retinoic acid on hCNT3 in primary chronic lymphocytic leukemia cells as a suitable mechanism to improve fludarabine-based therapy of chronic lymphocytic leukemia. Design and Methods Cells from 23 chronic lymphocytic leukemia patients wild-type for P53 were analyzed for ex vivo sensitivity to fludarabine. hCNT3 activity in chronic lymphocytic leukemia cell samples was evaluated by measuring the uptake of [8-3H]-fludarabine. The amounts of transforming growth factor-β1 and hCNT3 messenger RNA were analyzed by real-time polymerase chain reaction. The effect of all-trans-retinoic acid on hCNT3 subcellular localization was analyzed by confocal microscopy and its effect on fludarabine-induced apoptosis was evaluated by flow cytometry analysis using annexin V staining. Results Chronic lymphocytic leukemia cases showing higher ex vivo basal sensitivity to fludarabine also had a greater basal hCNT3-associated fludarabine uptake capacity compared to the subset of patients showing ex vivo resistance to the drug. hCNT3 transporter activity in chronic lymphocytic leukemia cells from the latter patients was either negligible or absent. Treatment of the fludarabine-resistant subset of chronic lymphocytic leukemia cells with all-trans-retinoic acid induced increased fludarabine transport via hCNT3 which was associated with a significant increase in fludarabine sensitivity. Conclusions Improvement of ex vivo fludarabine sensitivity in chronic lymphocytic leukemia cells is associated with increased hCNT3 activity after all-trans-retinoic acid

  12. Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine, Mycophenolate Mofetil, Donor Lymphocyte Infusion in Treating Patients With Hematopoietic Cancer

    ClinicalTrials.gov

    2016-08-01

    ; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  13. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  14. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    PubMed Central

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  15. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines.

    PubMed

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  16. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    PubMed Central

    2014-01-01

    Background Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. Methods CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Results Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Conclusions Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA. PMID:24742042

  17. A tumor suppressor function of the Msr1 gene in leukemia stem cells of chronic myeloid leukemia

    PubMed Central

    Chen, Yaoyu; Sullivan, Con; Peng, Cong; Shan, Yi; Hu, Yiguo; Li, Dongguang

    2011-01-01

    We have shown that Alox5 is a critical regulator of leukemia stem cells (LSCs) in a BCR-ABL–induced chronic myeloid leukemia (CML) mouse model, and we hypothesize that the Alox5 pathway represents a major molecular network that regulates LSC function. Therefore, we sought to dissect this pathway by comparing the gene expression profiles of wild type and Alox5−/− LSCs. DNA microarray analysis revealed a small group of candidate genes that exhibited changes in the levels of transcription in the absence of Alox5 expression. In particular, we noted that the expression of the Msr1 gene was upregulated in Alox5−/− LSCs, suggesting that Msr1 suppresses the proliferation of LSCs. Using CML mouse model, we show that Msr1 is downregulated by BCR-ABL and this down-regulation is partially restored by Alox5 deletion, and that Msr1 deletion causes acceleration of CML development. Moreover, Msr1 deletion markedly increases LSC function through its effects on cell cycle progression and apoptosis. We also show that Msr1 affects CML development by regulating the PI3K-AKT pathway and β-Catenin. Together, these results demonstrate that Msr1 suppresses LSCs and CML development. The enhancement of the tumor suppressor function of Msr1 may be of significance in the development of novel therapeutic strategies for CML. PMID:21596859

  18. Quantitation, in vitro propagation, and characterization of preleukemic cells induced by radiation leukemia virus

    SciTech Connect

    Yefenof, E.; Epszteyn, S.; Kotler, M. )

    1991-04-15

    Intrathymic (i.t.) inoculation of radiation leukemia virus into C57BL/6 mice induces a population of preleukemic (PL) cells that can progress into mature thymic lymphomas upon transfer into syngeneic recipients. A minimum of 10(3) PL thymic cells are required to induce lymphomas in the recipient. Most of the individual lymphomas developed in mice which were inoculated with cells of a single PL thymus, derived from different T-cell precursors. PL thymic cells could be grown in vitro on a feeder layer consisting of splenic stromal cells. Growth medium was supplemented with supernatant harvested from an established radiation leukemia virus-induced lymphoma cell line (SR4). The in vitro-grown PL cells were characterized as Thy-1+, CD4+, CD8- T-cells, most of which expressed radiation leukemia virus antigens. Cultured PL cells were found to be nontumorigenic, based on their inability to form s.c. tumors. However, these cells could develop into thymic lymphomas if inoculated i.t. into syngeneic recipients. A culture of PL cells, maintained for 2 mo, showed clonal T-cell receptor arrangement. Lymphomas which developed in several recipient mice upon injection with these PL cells were found to possess the same T-cell receptor arrangement. These results indicate that PL cells can be adapted for in vitro growth while maintaining their preleukemic character.

  19. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells.

    PubMed

    Kozako, Tomohiro; Soeda, Shuhei; Yoshimitsu, Makoto; Arima, Naomichi; Kuroki, Ayako; Hirata, Shinya; Tanaka, Hiroaki; Imakyure, Osamu; Tone, Nanako; Honda, Shin-Ichiro; Soeda, Shinji

    2016-05-01

    Adult T-cell leukemia/lymphoma (ATL), an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukemia virus (HTLV-1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator-activated receptor-γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV-1 carriers (ACs) or via caspase-independent cell death in acute-type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase-dependent and -independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth-inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients. PMID:27419050

  20. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePlus

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  1. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene.

    PubMed

    Raabe, G K; Wong, O

    1996-12-01

    Workers in the petroleum industry are potentially exposed to a variety of petrochemicals, including benzene or benzene-containing liquids. Although a large number of studies of petroleum workers have been conducted to examine leukemia and other cancer risks, few existing studies have investigated cell-type-specific leukemias. One of the major reasons for the lack of cell-type-specific analysis was the small number of deaths by cell type in individual studies. In the present investigation, all cohort studies of petroleum workers in the United States and the United Kingdom were combined into a single database for cell-type-specific leukemia analysis. The majority of these workers were petroleum refinery employees, but production, pipeline, and distribution workers in the petroleum industry were also included. The combined cohort consisted of more than 208,000 petroleum workers, who contributed more than 4.6 million person-years of observation. Based on a meta-analysis of the combined data, cell-type-specific leukemia risks were expressed in terms of standardized mortality ratios (meta-SMRs). The meta-SMR for acute myeloid leukemia was 0.96. The lack of an increase of acute myeloid leukemia was attributed to the low levels of benzene exposure in the petroleum industry, particularly in comparison to benzene exposure levels in some previous studies of workers in other industries, who had been found to experience an increased risk of acute myeloid leukemia. Similarly, no increase in chronic myeloid, acute lymphocytic, or chronic lymphocytic leukemias was found in petroleum workers (meta-SMRs of 0.89, 1.16, and 0.84, respectively). Stratified meta-analyses restricted to refinery studies or to studies with at least 15 years of follow-up yielded similar results. The findings of the present investigation are consistent with those from several recent case-control studies of cell-type-specific leukemia. Patterns and levels of benzene exposure in the petroleum industry are

  2. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene.

    PubMed Central

    Raabe, G K; Wong, O

    1996-01-01

    Workers in the petroleum industry are potentially exposed to a variety of petrochemicals, including benzene or benzene-containing liquids. Although a large number of studies of petroleum workers have been conducted to examine leukemia and other cancer risks, few existing studies have investigated cell-type-specific leukemias. One of the major reasons for the lack of cell-type-specific analysis was the small number of deaths by cell type in individual studies. In the present investigation, all cohort studies of petroleum workers in the United States and the United Kingdom were combined into a single database for cell-type-specific leukemia analysis. The majority of these workers were petroleum refinery employees, but production, pipeline, and distribution workers in the petroleum industry were also included. The combined cohort consisted of more than 208,000 petroleum workers, who contributed more than 4.6 million person-years of observation. Based on a meta-analysis of the combined data, cell-type-specific leukemia risks were expressed in terms of standardized mortality ratios (meta-SMRs). The meta-SMR for acute myeloid leukemia was 0.96. The lack of an increase of acute myeloid leukemia was attributed to the low levels of benzene exposure in the petroleum industry, particularly in comparison to benzene exposure levels in some previous studies of workers in other industries, who had been found to experience an increased risk of acute myeloid leukemia. Similarly, no increase in chronic myeloid, acute lymphocytic, or chronic lymphocytic leukemias was found in petroleum workers (meta-SMRs of 0.89, 1.16, and 0.84, respectively). Stratified meta-analyses restricted to refinery studies or to studies with at least 15 years of follow-up yielded similar results. The findings of the present investigation are consistent with those from several recent case-control studies of cell-type-specific leukemia. Patterns and levels of benzene exposure in the petroleum industry are

  3. Pro-survival role of p62 during granulocytic differentiation of acute myeloid leukemia cells

    PubMed Central

    Ségal-Bendirdjian, Evelyne; Tschan, Mario P; Reiffers, Josy; Djavaheri-Mergny, Mojgan

    2014-01-01

    p62 regulates key signaling pathways including those that control cell death and autophagy. Recently, we reported that p62 is upregulated during all-trans retinoic acid (ATRA)-induced terminal differentiation of acute myeloid leukemia (AML) cells. This response reduces levels of ubiquitinated protein aggregates in mature cells and protects these cells against ATRA treatment. Thus, p62 confers a survival advantage to mature AML cells. PMID:27308379

  4. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity

    PubMed Central

    Velu, Chinavenmeni S.; Chaubey, Aditya; Phelan, James D.; Horman, Shane R.; Wunderlich, Mark; Guzman, Monica L.; Jegga, Anil G.; Zeleznik-Le, Nancy J.; Chen, Jianjun; Mulloy, James C.; Cancelas, Jose A.; Jordan, Craig T.; Aronow, Bruce J.; Marcucci, Guido; Bhat, Balkrishen; Gebelein, Brian; Grimes, H. Leighton

    2013-01-01

    Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML. PMID:24334453

  5. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells

    SciTech Connect

    Sumi, Daigo; Shinkai, Yasuhiro; Kumagai, Yoshito

    2010-05-01

    Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APL patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.

  6. Induction of apoptosis in acute lymphoblastic leukemia cells by isolated fractions from strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries contain phytochemicals that have anti-inflammatory and anti-cancer activity. We investigated the ability of isolated fractions from strawberry extracts to induce apoptotic cell death in three pre-B acute lymphoblastic leukemia (ALL) lines, including SEM and RS4;11 cell lines derived fr...

  7. Establishment and characterization of a human monocytoid leukemia cell line, CTV-1.

    PubMed

    Chen, P; Chiu, C; Chiou, T; Maeda, S; Chiang, H; Tzeng, C; Sugiyama, T; Chiang, B N

    1984-08-01

    A new human monocytoid leukemic cell line, CTV-1, was established from a patient with relapsed acute monoblastic leukemia. The characteristics of this cell line were evaluated by morphologic and cytochemical analyses, electron-microscopy, chromosome study, surface marker analysis and a study of differentiation potential with tumor-promoting agents. PMID:6593267

  8. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Naive Donor NK Cell Repertoires Associated with Less Leukemia Relapse after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Björklund, Andreas T; Clancy, Trevor; Goodridge, Jodie P; Béziat, Vivien; Schaffer, Marie; Hovig, Eivind; Ljunggren, Hans-Gustaf; Ljungman, Per T; Malmberg, Karl-Johan

    2016-02-01

    Acute and latent human CMV cause profound changes in the NK cell repertoire, with expansion and differentiation of educated NK cells expressing self-specific inhibitory killer cell Ig-like receptors. In this study, we addressed whether such CMV-induced imprints on the donor NK cell repertoire influenced the outcome of allogeneic stem cell transplantation. Hierarchical clustering of high-resolution immunophenotyping data covering key NK cell parameters, including frequencies of CD56(bright), NKG2A(+), NKG2C(+), and CD57(+) NK cell subsets, as well as the size of the educated NK cell subset, was linked to clinical outcomes. Clusters defining naive (NKG2A(+)CD57(-)NKG2C(-)) NK cell repertoires in the donor were associated with decreased risk for relapse in recipients with acute myeloid leukemia and myelodysplastic syndrome (hazard ratio [HR], 0.09; 95% confidence interval [CI]: 0.03-0.27; p < 0.001). Furthermore, recipients with naive repertoires at 9-12 mo after hematopoietic stem cell transplantation had increased disease-free survival (HR, 7.2; 95% CI: 1.6-33; p = 0.01) and increased overall survival (HR, 9.3; 95% CI: 1.1-77, p = 0.04). Conversely, patients with a relative increase in differentiated NK cells at 9-12 mo displayed a higher rate of late relapses (HR, 8.41; 95% CI: 6.7-11; p = 0.02), reduced disease-free survival (HR, 0.12; 95% CI: 0.12-0.74; p = 0.02), and reduced overall survival (HR, 0.07; 95% CI: 0.01-0.69; p = 0.02). Thus, our data suggest that naive donor NK cell repertoires are associated with protection against leukemia relapse after allogeneic HSCT. PMID:26746188

  10. Allogeneic stem cell transplantation for patients harboring T315I BCR-ABL mutated leukemias

    PubMed Central

    Basak, Grzegorz W.; Soverini, Simona; Martinelli, Giovanni; Mauro, Michael J.; Müller, Martin C.; Hochhaus, Andreas; Chuah, Charles; Dufva, Inge H.; Rege-Cambrin, Giovanna; Saglio, Giuseppe; Michallet, Mauricette; Labussière, Hélène; Morisset, Stéphane; Hayette, Sandrine; Etienne, Gabriel; Olavarria, Eduardo; Zhou, Wei; Peter, Senaka; Apperley, Jane F.; Cortes, Jorge

    2011-01-01

    T315I+ Philadelphia chromosome–positive leukemias are inherently resistant to all licensed tyrosine kinase inhibitors, and therapeutic options remain limited. We report the outcome of allogeneic stem cell transplantation in 64 patients with documented BCR-ABLT315I mutations. Median follow-up was 52 months from mutation detection and 26 months from transplantation. At transplantation, 51.5% of patients with chronic myeloid leukemia were in the chronic phase and 4.5% were in advanced phases. Median overall survival after transplantation was 10.3 months (range 5.7 months to not reached [ie, still alive]) for those with chronic myeloid leukemia in the blast phase and 7.4 months (range 1.4 months to not reached [ie, still alive]) for those with Philadelphia chromosome–positive acute lymphoblastic leukemia but has not yet been reached for those in the chronic and accelerated phases of chronic myeloid leukemia. The occurrence of chronic GVHD had a positive impact on overall survival (P = .047). Transplant-related mortality rates were low. Multivariate analysis identified only blast phase at transplantation (hazard ratio 3.68, P = .0011) and unrelated stem cell donor (hazard ratio 2.98, P = .011) as unfavorable factors. We conclude that allogeneic stem cell transplantation represents a valuable therapeutic tool for eligible patients with BCR-ABLT315I mutation, a tool that may or may not be replaced by third-generation tyrosine kinase inhibitors. PMID:21926354

  11. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    NASA Astrophysics Data System (ADS)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  12. Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin-like receptor-negative natural killer cells after NKG2A and LIR-1 blockade.

    PubMed

    Godal, Robert; Bachanova, Veronika; Gleason, Michelle; McCullar, Valarie; Yun, Gong H; Cooley, Sarah; Verneris, Michael R; McGlave, Philip B; Miller, Jeffrey S

    2010-05-01

    Although the study of natural killer (NK) cell alloreactivity has been dominated by studies of killer cell immunoglobulin-like receptors (KIRs), we hypothesized that NKG2A and LIR-1, present on 53% +/- 13% and 36% +/- 18% of normal NK cells, respectively, play roles in the NK cell killing of primary leukemia targets. KIR(-) cells, which compose nearly half of the circulating NK cell population, exhibit tolerance to primary leukemia targets, suggesting signaling through other inhibitory receptors. Both acute myelogenous leukemia and acute lymphoblastic leukemia targets were rendered susceptible to lysis by fresh resting KIR(-) NK cells when inhibitory receptor-major histocompatibility class I interactions were blocked by pan-HLA antibodies, demonstrating that these cells are functionally competent. Blockade of a single inhibitory receptor resulted in slightly increased killing, whereas combined LIR-1 and NKG2A blockade consistently resulted in increased NK cell cytotoxicity. Dual blockade of NKG2A and LIR-1 led to significant killing of targets by resting KIR(-) NK cells, demonstrating that this population is not hyporesponsive. Together these results suggest that alloreactivity of a significant fraction of KIR(-) NK cells is mediated by NKG2A and LIR-1. Thus strategies to interrupt NKG2A and LIR-1 in combination with anti-KIR blockade hold promise for exploiting NK cell therapy in acute leukemias. PMID:20139023

  13. Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia

    PubMed Central

    Somasundaram, Rajesh; Prasad, Mahadesh A. J.; Ungerbäck, Jonas

    2015-01-01

    B-lymphocyte development in the bone marrow is controlled by the coordinated action of transcription factors creating regulatory networks ensuring activation of the B-lymphoid program and silencing of alternative cell fates. This process is tightly connected to malignant transformation because B-lineage acute lymphoblastic leukemia cells display a pronounced block in differentiation resulting in the expansion of immature progenitor cells. Over the last few years, high-resolution analysis of genetic changes in leukemia has revealed that several key regulators of normal B-cell development, including IKZF1, TCF3, EBF1, and PAX5, are genetically altered in a large portion of the human B-lineage acute leukemias. This opens the possibility of directly linking the disrupted development as well as aberrant gene expression patterns in leukemic cells to molecular functions of defined transcription factors in normal cell differentiation. This review article focuses on the roles of transcription factors in early B-cell development and their involvement in the formation of human leukemia. PMID:25990863

  14. Enkephalins stimulate leukemia cell migration and surface expression of CD9.

    PubMed Central

    Heagy, W; Duca, K; Finberg, R W

    1995-01-01

    Opioid peptides have been implicated in the regulation of tumor growth and biology; however, little attention has been given to the mechanisms that are involved. In this study we show that physiological concentrations of the endogenous opioid neuropeptide methionine-enkephalin (MET-ENK) and the synthetic enkephalins D-Ala2, Me-Phe4, Gly(ol)5 and D-Ala2, D-Leu5 are stimulants for the in vitro migration of pre-B acute lymphoblastoid leukemia (ALL) cells. Activation of the human pre-B ALL cell lines NALM 6 and LAZ 221 with MET-ENK resulted in both an increase in their migration and an augmentation in the surface expression of the leukemia cell marker CD9. The opiate receptor antagonist naloxone reversed these enkephalin-induced effects on the leukemia cells. When the pre-B ALL cells were preincubated with an anti-CD9 mAb before challenge with MET-ENK their migration to the enkephalin was markedly reduced. These studies show that endogenous and synthetic opioid peptides are stimulants for pre-B ALL cell migration and suggest that CD9 is important in the regulation of leukemia cell motility. Images PMID:7657811

  15. What Is Chronic Lymphocytic Leukemia?

    MedlinePlus

    ... blood, and lymphoid tissue What is chronic lymphocytic leukemia? Cancer starts when cells in the body begin ... the lymph nodes, liver, and spleen. What is leukemia? Leukemia is a cancer that starts in the ...

  16. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  17. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents

    PubMed Central

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T.; Zeh, Herbert J.; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  18. A model with competition between the cell lines in leukemia under treatment

    SciTech Connect

    Halanay, A.; Cândea, D.; Rădulescu, R.

    2014-12-10

    The evolution of leukemia is modeled with a delay differential equation model of four cell populations: two populations (healthy and leukemic) ) of stem-like cells involving a larger category consisting of proliferating stem and progenitor cells with self-renew capacity and two populations (healthy and leukemic) of mature cells, considering the competition of healthy vs. leukemic cell populations and three types of division that a stem-like cell can exhibit: self-renew, asymmetric division and differentiation. In the model it is assumed that the treatment acts on the proliferation rate of the leukemic stem cells and on the apoptosis of stem and mature cells. The emphasis in this model is on establishing relevant parameters for chronic and acute manifestations of leukemia. Stability of equilibria is investigated and sufficient conditions for local asymptotic stability will be given using a Lyapunov-Krasovskii functional.

  19. A model with competition between the cell lines in leukemia under treatment

    NASA Astrophysics Data System (ADS)

    Halanay, A.; Cândea, D.; Rǎdulescu, R.

    2014-12-01

    The evolution of leukemia is modeled with a delay differential equation model of four cell populations: two populations (healthy and leukemic) ) of stem-like cells involving a larger category consisting of proliferating stem and progenitor cells with self-renew capacity and two populations (healthy and leukemic) of mature cells, considering the competition of healthy vs. leukemic cell populations and three types of division that a stem-like cell can exhibit: self-renew, asymmetric division and differentiation. In the model it is assumed that the treatment acts on the proliferation rate of the leukemic stem cells and on the apoptosis of stem and mature cells. The emphasis in this model is on establishing relevant parameters for chronic and acute manifestations of leukemia. Stability of equilibria is investigated and sufficient conditions for local asymptotic stability will be given using a Lyapunov-Krasovskii functional.

  20. Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience

    PubMed Central

    Strati, Paolo; Nasr, Samih H.; Leung, Nelson; Hanson, Curtis A.; Chaffee, Kari G.; Schwager, Susan M.; Achenbach, Sara J.; Call, Timothy G.; Parikh, Sameer A.; Ding, Wei; Kay, Neil E.; Shanafelt, Tait D.

    2015-01-01

    While the renal complications of plasma cell dyscrasia have been well-described, most information in patients with chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis is derived from case reports. This is a retrospective analysis of patients with chronic lymphocytic leukemia or monoclonal B-cell lymphocytosis who underwent kidney biopsy for renal insufficiency and/or nephrotic syndrome. Between January 1995 and June 2014, 49 of 4,024 (1.2%) patients with chronic lymphocytic leukemia (n=44) or monoclonal B-cell lymphocytosis (n=5) had a renal biopsy: 34 (69%) for renal insufficiency and 15 (31%) for nephrotic syndrome. The most common findings on biopsy were: membranoproliferative glomerulonephritis (n=10, 20%), chronic lymphocytic leukemia interstitial infiltration as primary etiology (n=6, 12%), thrombotic microangiopathy (n=6, 12%), and minimal change disease (n=5, 10%). All five membranoproliferative glomerulonephritis patients treated with rituximab, cyclophosphamide and prednisone-based regimens had recovery of renal function compared to 0/3 patients treated with rituximab with or without steroids. Chronic lymphocytic leukemia infiltration as the primary cause of renal abnormalities was typically observed in relapsed/refractory patients (4/6). Thrombotic microangiopathy primarily occurred as a treatment-related toxicity of pentostatin (4/6 cases), and resolved with drug discontinuation. All cases of minimal change disease resolved with immunosuppressive agents only. Renal biopsy plays an important role in the management of patients with chronic lymphocytic leukemia or monoclonal B-cell lymphocytosis who develop renal failure and/or nephrotic syndrome. PMID:26088927

  1. Effect of dietary polyphenols on K562 leukemia cells: a Foodomics approach.

    PubMed

    Valdés, Alberto; Simó, Carolina; Ibáñez, Clara; Rocamora-Reverte, Lourdes; Ferragut, José Antonio; García-Cañas, Virginia; Cifuentes, Alejandro

    2012-08-01

    In this work, a global Foodomics strategy has been applied to study the antiproliferative effect of dietary polyphenols from rosemary on two human leukemia lines, one showing a drug-sensitive phenotype (K562), and another exhibiting a drug-resistant phenotype (K562/R). To this aim, whole-transcriptome microarray together with an MS-based nontargeted analytical approach (via CE-TOF MS and UPLC-TOF MS) have been employed to carry out transcriptomics and metabolomics analyses, respectively. Functional enrichment analysis was done using ingenuity pathway analysis (IPA) software as a previous step for a reliable interpretation of transcriptomic and metabolomic profiles. Rosemary polyphenols altered the expression of approximately 1% of the genes covered by the whole transcriptome microarray in both leukemia cell lines. Overall, differences in the transcriptional induction of a number of genes encoding phase II detoxifying and antioxidant genes, as well as differences in the metabolic profiles observed in the two leukemia cell lines suggest that rosemary polyphenols may exert a differential chemopreventive effect in leukemia cells with different phenotypes. IPA predictions on transcription factor analysis highlighted inhibition of Myc transcription factor function by rosemary polyphenols, which may explain the observed antiproliferative effect of rosemary extract in the leukemia cells. Metabolomics analysis suggested that rosemary polyphenols affected differently the intracellular levels of some metabolites in two leukemia cell sublines. Integration of data obtained from transcriptomics and metabolomics platforms was attempted by overlaying datasets on canonical (defined) metabolic pathways using IPA software. This strategy enabled the identification of several differentially expressed genes in the metabolic pathways modulated by rosemary polyphenols providing more evidences on the effect of these compounds. PMID:22887152

  2. Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience.

    PubMed

    Strati, Paolo; Nasr, Samih H; Leung, Nelson; Hanson, Curtis A; Chaffee, Kari G; Schwager, Susan M; Achenbach, Sara J; Call, Timothy G; Parikh, Sameer A; Ding, Wei; Kay, Neil E; Shanafelt, Tait D

    2015-09-01

    While the renal complications of plasma cell dyscrasia have been well-described, most information in patients with chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis is derived from case reports. This is a retrospective analysis of patients with chronic lymphocytic leukemia or monoclonal B-cell lymphocytosis who underwent kidney biopsy for renal insufficiency and/or nephrotic syndrome. Between January 1995 and June 2014, 49 of 4,024 (1.2%) patients with chronic lymphocytic leukemia (n=44) or monoclonal B-cell lymphocytosis (n=5) had a renal biopsy: 34 (69%) for renal insufficiency and 15 (31%) for nephrotic syndrome. The most common findings on biopsy were: membranoproliferative glomerulonephritis (n=10, 20%), chronic lymphocytic leukemia interstitial infiltration as primary etiology (n=6, 12%), thrombotic microangiopathy (n=6, 12%), and minimal change disease (n=5, 10%). All five membranoproliferative glomerulonephritis patients treated with rituximab, cyclophosphamide and prednisone-based regimens had recovery of renal function compared to 0/3 patients treated with rituximab with or without steroids. Chronic lymphocytic leukemia infiltration as the primary cause of renal abnormalities was typically observed in relapsed/refractory patients (4/6). Thrombotic microangiopathy primarily occurred as a treatment-related toxicity of pentostatin (4/6 cases), and resolved with drug discontinuation. All cases of minimal change disease resolved with immunosuppressive agents only. Renal biopsy plays an important role in the management of patients with chronic lymphocytic leukemia or monoclonal B-cell lymphocytosis who develop renal failure and/or nephrotic syndrome. PMID:26088927

  3. Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells.

    PubMed

    Pizzo, Russell J; Azadniv, Mitra; Guo, Naxin; Acklin, Joshua; Lacagnina, Kimberly; Coppage, Myra; Liesveld, Jane L

    2016-05-01

    In addition to participation in homing, egress, and transmigration of hematopoietic cells, marrow endothelium also contributes to cell proliferation and survival. Endothelial cells from multiple vascular beds are able to prevent spontaneous or therapy-induced apoptosis in acute myelogenous leukemia (AML) blasts. Marrow-derived endothelial cells from leukemia patients have not been well-characterized, and in this work, endothelial cells were purified from marrow aspirates from normal subjects or from newly diagnosed AML patients to compare these cells phenotypically and functionally. By reverse transcription polymerase chain reaction, these cells express CD31, Tie-2, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS), supporting endothelial origin. They take up acetyl low-density lipoprotein and are able to form tubular structures. Culture of AML cells with endothelial cells from both normal and AML subjects supported adhesion, transmigration, and leukemia colony-forming unit outgrowth. RNA-sequencing analysis revealed 130 genes significantly up- or downregulated in AML-derived endothelial cells as compared with those derived from normal marrow. The genes differentially expressed (p < 0.001) were included in biological function categories involving cancer, cell development, cell growth and proliferation, cell signaling, inflammatory response, and cell death and survival. Further pathway analysis revealed upregulation of c-Fos and genes involved in chemotaxis such as CXCL16. AML-derived endothelial cells are similar in phenotype and function to their normal marrow-derived counterparts, but genomic analysis suggests a differential signature with altered expression of genes, which could play a role in leukemogenesis or leukemia cell maintenance in the marrow microenvironment. PMID:26851308

  4. Adrenomedullin in the growth modulation and differentiation of acute myeloid leukemia cells.

    PubMed

    Di Liddo, Rosa; Bridi, Deborah; Gottardi, Michele; De Angeli, Sergio; Grandi, Claudio; Tasso, Alessia; Bertalot, Thomas; Martinelli, Giovanni; Gherlinzoni, Filippo; Conconi, Maria Teresa

    2016-04-01

    Adrenomedullin (ADM) is a regulatory peptide endowed with multiple biological effects, including the regulation of blood pressure, cell growth and innate host defence. In the present study, we demonstrated that ADM signaling could be involved in the impaired cellular differentiation of myeloid leukemia cells to mature granulocytes or monocytes by modulating RAMPs/CRLR expression, PI3K/Akt cascade and the ERK/MAPK signaling pathway. When exogenously administered to in vitro cultures of HL60 promyelocytic leukemia cells, ADM was shown to exert a strong proliferative effect with minimal upregulation in the expression level of monocyte antigen CD14. Notably, the experimental inhibition of ADM signaling with inhibitor ADM22-52 promoted a differentiative stimulation towards monocytic and granulocytic lineages. Moreover, based on the expression of CD31 relative to CD38, we hypothesized that an excess of ADM in bone marrow (BM) niche could increase the transendothelial migration of leukemia cells while any inhibitory event of ADM activity could raise cell retention in hyaluronate matrix by upregulating CD38. Taken into consideration the above evidence, we concluded that ADM and ADM22-52 could differently affect the growth of leukemia cells by autocrine/paracrine mechanisms and may have clinical relevance as biological targets for the intervention of tumor progression. PMID:26847772

  5. LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding

    PubMed Central

    Layer, Justin H.; Alford, Catherine E.; McDonald, W. Hayes

    2015-01-01

    LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R320LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens. PMID:26598604

  6. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death.

    PubMed

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  7. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    PubMed Central

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M.; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  8. Bevacizumab potentiates chemotherapeutic effect on T-leukemia/lymphoma cells by direct action on tumor endothelial cells

    PubMed Central

    Wang, Li; Shi, Wen-Yu; Yang, Fan; Tang, Wei; Gapihan, Guillaume; Varna, Mariana; Shen, Zhi-Xiang; Chen, Sai-Juan; Leboeuf, Christophe; Janin, Anne; Zhao, Wei-Li

    2011-01-01

    Vascular endothelial growth factor-A, an angiogenesis stimulator expressed on both tumor endothelial and malignant T cells, is involved in tumor progression in T-leukemia/lymphoma. Here, we assessed the impact of therapeutic vascular endothelial growth factor-A blockade on tumor-endothelial cell interaction and on tumor progression. In a murine xenograft T-leukemia/lymphoma model, combined bevacizumab (monoclonal antibody against vascular endothelial growth factor-A) with doxorubicin, compared with doxorubicin alone, significantly delayed tumor growth and induced prevalence of tumor cell apoptosis over mitosis. More importantly, the combined treatment induced endothelial cell swelling, microvessel occlusions, and tumor necrosis. In vitro, co-culture of endothelial cells with T-leukemia/lymphoma cells showed that doxorubicin induced expression of intracellular cell adhesion molecule-1, provided endothelial and malignant T cells were in direct contact. This was abrogated by bevacizumab treatment with doxorubicin. Taken together, bevacizumab enhances the chemotherapeutic effect on T-leukemia/lymphoma cells. Directly targeting tumor endothelial cells might be a promising therapeutic strategy to counteract tumor progression in T-cell malignancies. PMID:21330328

  9. TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells.

    PubMed

    Lelaidier, Martin; Dìaz-Rodriguez, Yildian; Cordeau, Martine; Cordeiro, Paulo; Haddad, Elie; Herblot, Sabine; Duval, Michel

    2015-10-01

    Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL. PMID:26320191

  10. TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells

    PubMed Central

    Lelaidier, Martin; Dìaz-Rodriguez, Yildian; Cordeau, Martine; Cordeiro, Paulo; Haddad, Elie; Herblot, Sabine; Duval, Michel

    2015-01-01

    Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL. PMID:26320191

  11. The Perceived Threat in Adults with Leukemia Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2013-01-01

    Background: Leukemia and hematopoietic stem cell transplantation (HSCT) create physical, psychological, social, and spiritual distresses in patients. Understanding this threatening situation in adults with leukemia undergoing HSCT will assist health care professionals in providing holistic care to the patients. Objectives: The aim of the present study was exploring the perceived threat in adults with leukemia undergoing HSCT. Patients and Methods: This article is part of a longitudinal qualitative study which used the grounded theory approach and was conducted in 2009-2011. Ten adults with acute leukemia scheduled for HSCT were recruited from the Hematology–Oncology Research Center and Stem Cell Transplantation, Shariati Hospital in Tehran, Iran. A series of pre-transplant and post-transplant in-depth interviews were held in the hospital’s HSCT wards. Totally, 18 interviews were conducted. Three written narratives were also obtained from the participants. The Corbin and Strauss approach was used to analyze the data. Results: Perceived threat was one of the main categories that emerged from the data. This category included four subcategories, "inattention to the signs and symptoms", "doubt and anxiety", "perception of danger and time limitation" and "change of life conditions", which occurred in linear progression over time. Conclusion: Suffering from leukemia and experiencing HSCT are events that are uniquely perceived by patients. This threatening situation can significantly effect perception of patients and cause temporary or permanent alterations in patients' lives. Health care professionals can help these patients by deeper understanding of their experiences and effective interventions. PMID:25414863

  12. Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

    ClinicalTrials.gov

    2016-07-12

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  13. The AF4-mimetic peptide, PFWT, induces necrotic cell death in MV4-11 leukemia cells

    PubMed Central

    Palermo, Christine M.; Bennett, Cecily A.; Winters, Amanda C.; Hemenway, Charles S.

    2008-01-01

    Despite ongoing success in the treatment of childhood acute lymphoblastic leukemia, patients harboring translocations involving the MLL gene at chromosome 11q23 remain resistant to treatment. To improve outcomes, novel therapeutics designed to target the unusual biology of these leukemias need to be developed. Previously, we identified an interaction between the two most common MLL fusion proteins, AF4 and AF9, and designed a synthetic peptide (PFWT) capable of disrupting this interaction. PFWT induced cell death in leukemia cells expressing MLL-AF4 with little effect on the colony forming potential of hematopoietic progenitor cells, suggesting the AF4–AF9 complex is an important pharmacological target for leukemia therapy and PFWT is a promising chemotherapeutic prototype. In these studies, we demonstrate that PFWT induces death by necrosis in MV4-11 cells. Cell death is characterized by rapid loss of plasma membrane integrity with maintenance of nuclear membrane integrity, and is independent of caspase activation, DNA fragmentation, and mitochondrial membrane depolarization. PFWT-mediated necrosis is inhibited by the serine protease inhibitor TLCK, suggesting this death pathway is regulated. Given the resistance of t(4;11) leukemias to conventional chemotherapeutic agents that induce apoptosis, further identification of the molecular events mediating this death process should uncover new avenues for therapeutic intervention. PMID:17875318

  14. Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells.

    PubMed

    Kadioglu, Onat; Efferth, Thomas

    2016-08-01

    Bioinformatics screening and molecular docking analyses were utilized to select high affinity peptides targeting translationally controlled tumor protein (TCTP). Selected peptide aptamers were tested towards cancer cell lines with different levels of TCTP expression. One peptide (WGQWPYHC) revealed specific cytotoxicity according to the TCTP expression in tumor cells without affecting normal cells. Western blot analysis showed peptide-induced down-regulation of TCTP as primary target as well as of cell-cycle related downstream proteins (CDK2, CDK6, Cyclin D3) in MOLT-4 leukemia cells. "WGQWPYHC" deserves further analysis for targeted therapy of TCTP-expressing tumor cells. Graphical abstract Molecular docking on TCTP, cytotoxicity toward MOLT-4 leukemia cell line and downregulation of CDK2, CDK6, CyclinD3 and TCTP proteins. PMID:26972431

  15. Hemorrhagic Skin Nodules and Plaques: A Diagnostic Clue to Underlying Primary Plasma Cell Leukemia

    PubMed Central

    Gupta, Ranjan; Nath, Amiya Kumar; Subbian, Murugavel; Basu, Debdatta; Hamide, Abdoul; D'Souza, Mariette

    2016-01-01

    Plasma cell leukemia (PCL) is a rare lymphoproliferative disorder characterized by a malignant proliferation of plasma cells (PC) in blood and marrow. Cutaneous involvement is very rare in PCL. We present the case of a 45-year-old lady who presented with multiple hemorrhagic nodules and plaques in the skin. Her total leucocyte count was 2,00,200/cmm with 85% abnormal plasmacytoid cells in peripheral smear. Biopsy of the skin lesions revealed diffuse infiltration by plasma cells with ‘choked’ blood vessels. A diagnosis of plasma cell leukemia with cutaneous involvement was made. On the second day of admission, the patient expired probably because of intracranial bleed due to thrombocytopenia. Post-mortem bone marrow and liver biopsy also showed diffuse infiltration by plasma cells. Monoclonality of the cells was proven by demonstrating the production of only kappa light chains. PMID:27057024

  16. Hemorrhagic Skin Nodules and Plaques: A Diagnostic Clue to Underlying Primary Plasma Cell Leukemia.

    PubMed

    Gupta, Ranjan; Nath, Amiya Kumar; Subbian, Murugavel; Basu, Debdatta; Hamide, Abdoul; D'Souza, Mariette

    2016-01-01

    Plasma cell leukemia (PCL) is a rare lymphoproliferative disorder characterized by a malignant proliferation of plasma cells (PC) in blood and marrow. Cutaneous involvement is very rare in PCL. We present the case of a 45-year-old lady who presented with multiple hemorrhagic nodules and plaques in the skin. Her total leucocyte count was 2,00,200/cmm with 85% abnormal plasmacytoid cells in peripheral smear. Biopsy of the skin lesions revealed diffuse infiltration by plasma cells with 'choked' blood vessels. A diagnosis of plasma cell leukemia with cutaneous involvement was made. On the second day of admission, the patient expired probably because of intracranial bleed due to thrombocytopenia. Post-mortem bone marrow and liver biopsy also showed diffuse infiltration by plasma cells. Monoclonality of the cells was proven by demonstrating the production of only kappa light chains. PMID:27057024

  17. Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties.

    PubMed

    Huang, Xiaoxing; Xiong, Meng; Jin, Yujie; Deng, Chaohua; Xu, Hui; An, Changqing; Hao, Ling; Yang, Xiangyong; Deng, Xinzhou; Tu, Zhenbo; Li, Xinran; Xiao, Ruijing; Zhang, Qiuping

    2016-07-01

    Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells. PMID:27210806

  18. Rituximab in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant for Relapsed or Refractory B-cell Lymphoma

    ClinicalTrials.gov

    2015-11-23

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  19. Frequency of monoclonal B-cell lymphocytosis in relatives of patients with chronic lymphocytic leukemia

    PubMed Central

    Franco Alzate, Catalina; Rendón Henao, Javier; Torres Hernández, José Domingo; Jaramillo Arbelaez, Patricia Elena

    2016-01-01

    Introduction: Monoclonal B-cell lymphocytosis is a symptom free condition characterized by the circulation of small clonal population of B lymphocytes in peripheral blood (less than 5x109/L) expressing an immunophenotype similar to chronic lymphocytic leukemia. Different studies based on big hospital series have manifested a higher risk in subjects with monoclonal B-cell lymphocytosis to progress to a chronic lymphocytic leukemia. The behavior of this hematologic entity is unknown therefore its frequency in sporadic chronic lymphocytic leukemia patient relatives was determined. Methods: Transversal descriptive study, 8 color flow cytometry was performed using two of the tubes of the Euro Flow recommended panel, with modifications, for the diagnose of chronic lymphoproliferative disorders of B lymphocytes; besides, a fluorescence in situ hybridization was performed. univariate and bivariate analyses of the information were performed. Results: Monoclonal B-cell lymphocytosis frequency found in 51 analyzed relatives was 2%, it was a female participant, 59 years old, with a total leukocyte count of 7.7x109/L and a B lymphocyte count of 0.124x109/L; from these, 0.04x109/L were clonal cells with restrictions of the kappa light chain. Rearrangements of the IGH gene (14q32) were found. Conclusion: Monoclonal B-cell lymphocytosis was detected in one relative of a patient with sporadic chronic lymphocytic leukemia in a frequency similar to the one reported in general population. PMID:27546929

  20. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells

    PubMed Central

    Rui, Kang; Daolin, Tang; Yan, Yu; Zhuo, Wang; Ting, Hu; Haichao, Wang; Lizhi, Cao

    2010-01-01

    Bcl-2 proteins are over-expressed in many tumors, and are critically important for cell survival. Their anti-apoptotic activities are determined by intracellular localization and post-translational modifications (such as phosphorylation). Here we showed that WAVE1, a member of the Wiskott-Aldrich syndrome protein family, was over-expressed in blood cancer cell lines, and functioned as a negative regulator of apoptosis. Further enhanced expression of WAVE1 by gene transfection rendered leukemia cells more resistant to anti-cancer drug-induced apoptosis; whereas suppression of WAVE1 expression by RNA interference restored leukemia cells' sensitivity to anti-drug-induced apoptosis. WAVE1 was found to be associated with mitochondrial Bcl-2, and its depletion led to mitochondrial release of Bcl-2, and phosphorylation of ASK1/JNK and Bcl-2. Furthermore, depletion of WAVE1 expression increased anti-cancer drug-induced production of reactive oxygen species in leukemia cells. Taken together, these results suggest WAVE1 as a novel regulator of apoptosis, and potential drug target for therapeutic intervention of leukemia. PMID:19890377

  1. Role of caspase-10 in the death of acute leukemia cells

    PubMed Central

    Guo, Wenjian; Dong, Aishu; Pan, Xiahui; Lin, Xiaoji; Lin, Ying; He, Muqing; Zhu, Baoling; Jin, Liming; Yao, Rongxing

    2016-01-01

    Autophagy can protect cells from stress, but can also induce cancer cell death. Caspase-10 is now considered to be a factor that is associated with autophagy in cancer. The present study therefore investigated whether caspase-10 affects autophagy in acute leukemia cells. The rates of survival vs. apoptosis in acute leukemia HL-60 and Jurkat cells treated with drugs were tested using cell viability assays and flow cytometry, and the levels of caspase-3 and −10 were tested by western blotting. In HL-60 cells that were treated with chemotherapy drugs combined with a caspase-10 inhibitor, the rate of survival decreased significantly compared with HL-60 cells treated with chemotherapy drugs alone. In contrast, the rate of survival of Jurkat cells treated with chemotherapy drugs combined with the caspase-10 inhibitor increased significantly compared with Jurkat cells treated with chemotherapy drugs alone. The results of the flow cytometry and western blotting showed that the changes in the survival rate may be caused by a change in the amount of apoptosis occurring in the Jurkat cells treated with chemotherapy drugs combined with the caspase-10 inhibitor. However, in HL-60 cells undergoing this combination treatment, the change in the survival rate was not caused by a change in the rate of apoptosis. When HL-60 cells were treated with the chemotherapy drugs combined with the caspase-10 inhibitor and the autophagy inhibitor 3-methyl adenine, the survival rate increased, whereas the rate of apoptosis did not change. These results show that caspase-10 may be associated with autophagy in acute myeloid leukemia cells, but not in acute lymphatic leukemia cells. PMID:27446483

  2. Genetically Engineered Lymphocyte Therapy in Treating Patients With B-Cell Leukemia or Lymphoma That is Resistant or Refractory to Chemotherapy

    ClinicalTrials.gov

    2015-07-31

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  3. Polydatin Induces Apoptosis and Inhibits Growth of Acute Monocytic Leukemia Cells.

    PubMed

    Wang, Chunmei; Luo, Yuan; Lu, Jie; Wang, Yingchao; Sheng, Guangyao

    2016-04-01

    Polydatin (PD), a component isolated from Polygonum cuspidatum, has various activities such as inhibiting platelet aggregation, lowering level of blood lipid, reducing lipid peroxidation, and so on. However, the antitumor activity of PD has been poorly reported. In the present study, effect of PD on cell proliferation was evaluated by Cell Counting Kit-8, and cell cycle and apoptosis were investigated by flow cytometry. Meanwhile, the protein expression level of Bc1-2, Bax, cyclin A, cyclin B, and cyclin D1, which associated with apoptosis and cell cycle were analyzed by Western blotting. Results show that PD could effectively inhibit the growth, arrest cells in S phase, and induce apoptosis of acute monocytic leukemia cell line THP-1; meanwhile, expression of cyclin D1 and Bc1-2 decreased significantly, and expression of Bax and cyclin A increased notably. All results suggest that PD maybe a potential therapeutic strategy for acute monocytic leukemia. PMID:26616494

  4. Modes of Human T Cell Leukemia Virus Type 1 Transmission, Replication and Persistence

    PubMed Central

    Carpentier, Alexandre; Barez, Pierre-Yves; Hamaidia, Malik; Gazon, Hélène; de Brogniez, Alix; Perike, Srikanth; Gillet, Nicolas; Willems, Luc

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes cancer (Adult T cell Leukemia, ATL) and a spectrum of inflammatory diseases (mainly HTLV-associated myelopathy—tropical spastic paraparesis, HAM/TSP). Since virions are particularly unstable, HTLV-1 transmission primarily occurs by transfer of a cell carrying an integrated provirus. After transcription, the viral genomic RNA undergoes reverse transcription and integration into the chromosomal DNA of a cell from the newly infected host. The virus then replicates by either one of two modes: (i) an infectious cycle by virus budding and infection of new targets and (ii) mitotic division of cells harboring an integrated provirus. HTLV-1 replication initiates a series of mechanisms in the host including antiviral immunity and checkpoint control of cell proliferation. HTLV-1 has elaborated strategies to counteract these defense mechanisms allowing continuous persistence in humans. PMID:26198240

  5. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  6. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-29

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  7. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death. PMID:26774450

  8. Mobilization of CD34+CD38- hematopoietic stem cells after priming in acute myeloid leukemia

    PubMed Central

    Plesa, Adriana; Chelghoum, Youcef; Mattei, Eve; Labussière, Hélène; Elhamri, Mohamed; Cannas, Giovanna; Morisset, Stéphane; Tagoug, Inès; Michallet, Mauricette; Dumontet, Charles; Thomas, Xavier

    2013-01-01

    AIM: To evaluate quantitatively and qualitatively the different CD34+ cell subsets after priming by chemotherapy granulocyte colony-stimulating factor (± G-CSF) in patients with acute myeloid leukemia. METHODS: Peripheral blood and bone marrow samples were harvested in 8 acute myeloid leukemia patients during and after induction chemotherapy. The CD34/CD38 cell profile was analyzed by multi-parameter flow cytometry. Adhesion profile was made using CXC chemokine receptor 4 (CXCR4) (CD184), VLA-4 (CD49d/CD29) and CD47. RESULTS: Chemotherapy ± G-CSF mobilized immature cells (CD34+CD38− population), while the more mature cells (CD34+CD38low and CD34+CD38+ populations) decreased progressively after treatment. Circulating CD34+ cells tended to be more sensitive to chemotherapy after priming with G-CSF. CD34+ cell mobilization was correlated with a gradual increase in CXCR4 and CD47 expression, suggesting a role in cell protection and the capacity of homing back to the marrow. CONCLUSION: Chemotherapy ± G-CSF mobilizes into the circulation CD34+ bone marrow cells, of which, the immature CD34+CD38– cell population. Further manipulations of these interactions may be a means with which to control the trafficking of leukemia stem cells to improve patients’ outcomes. PMID:24179607

  9. Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells

    PubMed Central

    Wang, Na-Na; Li, Zhi-Heng; Zhao, He; Tao, Yan-Fang; Xu, Li-Xiao; Lu, Jun; Cao, Lan; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Wen-Li; Xiao, Pei-Fang; Fang, Fang; Su, Guang-Hao; Li, Yan-Hong; Li, Gang; Li, Yi-Ping; Xu, Yun-Yun; Zhou, Hui-Ting; Wu, Yi; Jin, Mei-Fang; Liu, Lin; Ni, Jian; Wang, Jian; Hu, Shao-Yan; Zhu, Xue-Ming; Feng, Xing; Pan, Jian

    2015-01-01

    Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined. PMID:25574601

  10. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal.

    PubMed

    Valent, P; Sotlar, K; Sperr, W R; Escribano, L; Yavuz, S; Reiter, A; George, T I; Kluin-Nelemans, H C; Hermine, O; Butterfield, J H; Hägglund, H; Ustun, C; Hornick, J L; Triggiani, M; Radia, D; Akin, C; Hartmann, K; Gotlib, J; Schwartz, L B; Verstovsek, S; Orfao, A; Metcalfe, D D; Arock, M; Horny, H-P

    2014-09-01

    Mast cell leukemia (MCL), the leukemic manifestation of systemic mastocytosis (SM), is characterized by leukemic expansion of immature mast cells (MCs) in the bone marrow (BM) and other internal organs; and a poor prognosis. In a subset of patients, circulating MCs are detectable. A major differential diagnosis to MCL is myelomastocytic leukemia (MML). Although criteria for both MCL and MML have been published, several questions remain concerning terminologies and subvariants. To discuss open issues, the EU/US-consensus group and the European Competence Network on Mastocytosis (ECNM) launched a series of meetings and workshops in 2011-2013. Resulting discussions and outcomes are provided in this article. The group recommends that MML be recognized as a distinct condition defined by mastocytic differentiation in advanced myeloid neoplasms without evidence of SM. The group also proposes that MCL be divided into acute MCL and chronic MCL, based on the presence or absence of C-Findings. In addition, a primary (de novo) form of MCL should be separated from secondary MCL that typically develops in the presence of a known antecedent MC neoplasm, usually aggressive SM (ASM) or MC sarcoma. For MCL, an imminent prephase is also proposed. This prephase represents ASM with rapid progression and 5%-19% MCs in BM smears, which is generally accepted to be of prognostic significance. We recommend that this condition be termed ASM in transformation to MCL (ASM-t). The refined classification of MCL fits within and extends the current WHO classification; and should improve prognostication and patient selection in practice as well as in clinical trials. PMID:24675021

  11. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal

    PubMed Central

    Valent, P.; Sotlar, K.; Sperr, W. R.; Escribano, L.; Yavuz, S.; Reiter, A.; George, T. I.; Kluin-Nelemans, H. C.; Hermine, O.; Butterfield, J. H.; Hägglund, H.; Ustun, C.; Hornick, J. L.; Triggiani, M.; Radia, D.; Akin, C.; Hartmann, K.; Gotlib, J.; Schwartz, L. B.; Verstovsek, S.; Orfao, A.; Metcalfe, D. D.; Arock, M.; Horny, H.-P.

    2014-01-01

    Mast cell leukemia (MCL), the leukemic manifestation of systemic mastocytosis (SM), is characterized by leukemic expansion of immature mast cells (MCs) in the bone marrow (BM) and other internal organs; and a poor prognosis. In a subset of patients, circulating MCs are detectable. A major differential diagnosis to MCL is myelomastocytic leukemia (MML). Although criteria for both MCL and MML have been published, several questions remain concerning terminologies and subvariants. To discuss open issues, the EU/US-consensus group and the European Competence Network on Mastocytosis (ECNM) launched a series of meetings and workshops in 2011–2013. Resulting discussions and outcomes are provided in this article. The group recommends that MML be recognized as a distinct condition defined by mastocytic differentiation in advanced myeloid neoplasms without evidence of SM. The group also proposes that MCL be divided into acute MCL and chronic MCL, based on the presence or absence of C-Findings. In addition, a primary (de novo) form of MCL should be separated from secondary MCL that typically develops in the presence of a known antecedent MC neoplasm, usually aggressive SM (ASM) or MC sarcoma. For MCL, an imminent prephase is also proposed. This prephase represents ASM with rapid progression and 5%–19% MCs in BM smears, which is generally accepted to be of prognostic significance. We recommend that this condition be termed ASM in transformation to MCL (ASM-t). The refined classification of MCL fits within and extends the current WHO classification; and should improve prognostication and patient selection in practice as well as in clinical trials. PMID:24675021

  12. Celastrol and an EGCG pro-drug exhibit potent chemosensitizing activity in human leukemia cells.

    PubMed

    Davenport, Andrew; Frezza, Michael; Shen, Min; Ge, Yubin; Huo, Congde; Chan, Tak Hang; Dou, Q Ping

    2010-03-01

    Chemotherapy remains the staple of treatment for many types of leukemia. Despite the positive impact on extending overall survival in patients with hematological malignancies, new treatment strategies are needed to reduce the nonspecific toxicity and improve the efficacy of treatment. Celastrol, derived from the 'Thunder God Vine' and Pro-EGCG, a pre-drug version of green tea polyphenol EGCG have shown potent biological activity in vitro and in vivo. Whether these natural products augment the efficacy of conventional chemotherapy in the treatment of leukemia cells has yet to be demonstrated. Here we demonstrate that these natural products could sensitize the effect of chemotherapy in both K-562 and Jurkat T human leukemia cells. Accordingly, this potent biological activity was associated with increased levels of leukemia cell killing, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, the higher levels of apoptotic indices were associated with decreased levels of Bcr-Abl oncoprotein in K-562 cells. Taken together, our findings present a compelling rationale for the development of combination strategies using natural products in the treatment of hematological malignancies. PMID:20127053

  13. Elicitation Approaches for Withanolide Production in Hairy Root Culture of Withania somnifera (L.) Dunal.

    PubMed

    Sivanandhan, Ganeshan; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2016-01-01

    Withania somnifera (L.) Dunal is a versatile medicinal plant extensively utilized for production of phytochemical drug preparations. The roots and whole plants are traditionally used in Ayurveda, Unani, and Siddha medicines, as well as in homeopathy. Several studies provide evidence for an array of pharmaceutical properties due to the presence of steroidal lactones named "withanolides." A number of research groups have focused their attention on the effects of biotic and abiotic elicitors on withanolide production using cultures of adventitious roots, cell suspensions, shoot suspensions, and hairy roots in large-scale bioreactor for producing withanolides. This chapter explains the detailed procedures for induction and establishment of hairy roots from leaf explants of W. somnifera, proliferation and multiplication of hairy root cultures, estimation of withanolide productivity upon elicitation with salicylic acid and methyl jasmonate, and quantification of major withanolides by HPLC. The protocol herein described could be implemented for large-scale cultivation of hairy root biomass to improve withanolide production. PMID:26843160

  14. Coping strategies of adults with leukemia undergoing hematopoietic stem cell transplantation in Iran: a qualitative study.

    PubMed

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2010-12-01

    Hematopoietic stem cell transplantation (HSCT) causes significant physical, social, psychological, and emotional stress in patients with leukemia. This qualitative study using semi-structured interviews explored the coping strategies of 10 adults with acute leukemia who were undergoing this form of treatment in transplantation units in a major hospital in Tehran, Iran, from 2009 to 2010. A content analysis identified eight themes and 13 subthemes that described the participants' coping strategies. The major themes were: attribution, denial and avoidance, connection with divine purpose, organizing treatment, seeking social support, modifying, reflection, and patience and resignation. A deeper understanding of the coping strategies that are used by patients with leukemia undergoing HSCT can help healthcare providers to encourage patients to use strategies that are likely to be more effective. Such coping strategies also can help patients to achieve a greater sense of empowerment. PMID:21210928

  15. Molecular approach to human leukemia: Isolation and characterization of the first human retrovirus HTLV-1 and its impact on tumorigenesis in Adult T-cell Leukemia

    PubMed Central

    Yoshida, Mitsuaki

    2010-01-01

    Molecular biology of mouse and chicken retroviruses had identified oncogenes and provided a revolutionary concept in understanding of cancers. A human retrovirus was established during 1980–1982 in linkage with a unique human leukemia, concurrently in Japan and USA. This review covers our efforts on the discovery of new retrovirus, Human T-cell Leukemia Virus Type 1 (HTLV-1), first introducing to a new class of retroviruses with a unique regulatory factors, Tax and Rex. Then it is followed by analyses of molecular interaction of the vial Tax with cellular machineries involved in the pathogenesis of Adult T-cell Leukemia (ATL). And then a probable mechanism of pathogenesis of ATL is proposed including recent findings on HBZ after our efforts. PMID:20154469

  16. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.

    PubMed

    Fimognari, Carmela; Lenzi, Monia; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2009-08-01

    Depending on the nature of chemical structures, different bile acids exhibit distinct biological effects. Their therapeutic efficacy has been widely demonstrated in various liver diseases, suggesting that they might protect hepatocytes against common mechanisms of liver damage. Although it has been shown to prevent apoptotic cell death in certain cell lines, bile acids significantly inhibited cell growth and induced apoptosis in cancer cells. To better understand the pharmacological potential of bile acids in cancer cells, we investigated and compared the effects of deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and their taurine-derivatives [taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA), respectively] on the induction of apoptosis and inhibition of cell proliferation of a human T leukemia cell line (Jurkat cells). All the bile acids tested induced a delay in cell cycle progression. Moreover, DCA markedly increased the fraction of apoptotic cells. The effects of TDCA, UDCA, and TUDCA were different from those observed for DCA. Their primary effect was the induction of necrosis. These distinctive features suggest that the hydrophobic properties of DCA play a role in its cytotoxic potential and indicate that it is possible to create new drugs useful for cancer therapy from bile acid derivatives as lead compounds. PMID:19723064

  17. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    PubMed

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-01

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. PMID:26903243

  18. Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice.

    PubMed

    Liu, X; Barrett, D M; Jiang, S; Fang, C; Kalos, M; Grupp, S A; June, C H; Zhao, Y

    2016-01-01

    Despite the impressive clinical efficacy of T cells engineered to express chimeric antigen receptors (CAR-Ts), the current applications of CAR-T cell therapy are limited by major treatment-related toxicity. Thus, safer yet effective alternative approaches must be developed. In this study, we compared CD19 bispecific T-cell engager (BiTE)-transferred T cells that had been transfected by RNA electroporation with CD19 CAR RNA-transferred T cells both in vitro and in an aggressive Nalm6 leukemia mouse model. BiTEs were secreted from the transferred T cells and enabled both the transferred and bystander T cells to specifically recognize CD19(+) cell lines, with increased tumor killing ability, prolonged functional persistence, increased cytokine production and potent proliferation compared with the CAR-T cells. More interestingly, in comparison with CD3/CD28 bead-stimulated T cells, T cells that were expanded by a rapid T-cell expansion protocol (REP) showed enhanced anti-tumor activities for both CAR and BiTE RNA-electroporated T cells both in vitro and in a Nalm6 mouse model (P<0.01). Furthermore, the REP T cells with BiTE RNAs showed greater efficacy in the Nalm6 leukemia model compared with REP T cells with CAR RNA (P<0.05) and resulted in complete leukemia remission. PMID:27258611

  19. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.

    2013-10-01

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.

  20. p53 causes butein-mediated apoptosis of chronic myeloid leukemia cells

    PubMed Central

    WOO, SANG-MI; CHOI, YOUN KYNUG; KIM, AH JEONG; CHO, SUNG-GOOK; KO, SEONG-GYU

    2016-01-01

    Progression of chronic myeloid leukemia, marked by the oncogenic Bcr-Abl mutation, is tightly associated with an alteration of the p53 pathway. It is known that butein extracted from various plants represses cancer growth. Although the anticancer effects of butein are widely accepted, the mechanisms by which butein induces apoptosis of chronic myeloid leukemia cells remains to be elucidated. The present study demonstrated that butein-induced apoptosis was mediated by p53. KBM5 chronic myeloid leukemia (CML) cells expressing wild-type p53 were more sensitive to butein compared with p53-null K562 CML cells in terms of apoptotic cell death. In addition, butein arrested KBM5 cells at S-phase and altered the expression levels of certain cyclins and the p53-downstream targets, MDM2 and p21. In addition, while butein reduced the protein expression of MDM2 in the KBM5 and K562 cells, it resulted in proteasome-independent MDM2 degradation in p53-expressing KBM5 cells, however, not in p53-null K562 cells. Therefore, the present study suggested that p53 causes the butein-mediated apoptosis of leukemic cells. PMID:26676515

  1. Acute Lymphocytic Leukemia

    MedlinePlus

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  2. Cell Cycle-Dependent Mechanisms Underlie Vincristine-Induced Death of Primary Acute Lymphoblastic Leukemia Cells.

    PubMed

    Kothari, Anisha; Hittelman, Walter N; Chambers, Timothy C

    2016-06-15

    Microtubule-targeting agents (MTA), such as the taxanes and vinca alkaloids, are used to treat a variety of cancers due to their ability to perturb microtubule dynamics. In cell culture, MTAs exert their anticancer effects primarily by causing mitotic arrest and cell death. However, accumulating indirect evidence suggests that MTAs may exert their cytotoxicity in human tumors by interfering with interphase microtubules. In this study, we sought to develop and characterize an experimental system in which to test the hypothesis that MTAs induce cell death during interphase. Primary adult acute lymphoblastic leukemia (ALL) cells treated with vincristine only weakly exhibited colocalization between mitotic and apoptotic markers and major characteristics of mitotic death, such as an increase in cells with 4N DNA content before the appearance of cells with <2N DNA content, suggesting a mixed response. Therefore, we separated ALL cells into distinct phases of the cell cycle by centrifugal elutriation, labeled cells with 5-ethynyl-2'-deoxyuridine (EdU), and then treated each population with vincristine. Cells isolated during G1 underwent cell death without evidence of EdU uptake, indicating that the cytotoxic effects of vincristine took place during G1 Conversely, cells isolated during S or G2-M phases underwent death following mitotic arrest. Thus, vincristine induces distinct death programs in primary ALL cells depending on cell-cycle phase, and cells in G1 are particularly susceptible to perturbation of interphase microtubules. Primary ALL cells may therefore provide a powerful model system in which to study the multimodal mechanisms underlying MTA-induced cell death. Cancer Res; 76(12); 3553-61. ©2016 AACR. PMID:27197148

  3. Systemic mastocytosis in a patient with ovarian germ cell carcinoma and mast cell leukemia

    SciTech Connect

    Sun, G.; Hajianpour, M.J.; Hajianpour, A.K.

    1994-09-01

    We report a 12-year-old female with a history of mixed germ cell carcinoma of the right ovary who developed a generalized skin rash after oophorectomy and chemotherapy. She also presented with periodic episodes of flushing, anemia, tachycardia, shortness of breath, high fever, hepatosplenomegaly, nausea, abdominal cramping with diarrhea, and a papuloerythematous skin rash. There was no evidence of secondary carcinoma. Skin biopsy revealed nonspecific inflammatory cells with negative staining for mast cells. Peripheral blood smear showed an increased number of mast cells, thrombocytopenia and normal white cells count. Bone marrow showed hypercellularity with 38% of the nucleated cells being mast cells. Bone marrow chromosome analysis revealed hyperdiploidy in 30% of the cells: 58-64,XX, +1, +2, +5, +6, +7, +8, +14, +16, +18, +19, +19, +20, +21, +22. She expired two months after the occurrence of systemic mastocytosis. Systemic mastocytosis has been reported in association with hematopoietic disorders and with germ cell tumors. The association between mediastinal germ cell tumors and hematological malignancies has also been observed. To our knowledge, combination of most cell leukemia, systemic mastocytosis, and ovarian germ cell carcinoma has not been observed. It is know that mutations at the locus of either proto-oncogene c-kit receptor or its ligand, mast/stem cell factor (SCF) may impair the development of three stem cell populations: hematopoietic stem cells, germ cells and melanoblasts. There have been also extensive investigations on the expression and modulation of the SCF/c-kit interaction in various malignancies. Further molecular studies in patients with germ cell tumor/hematopoietic malignancy syndrome are required to delineate underlying mechanisms.

  4. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome

    PubMed Central

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H.; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H.; Benito, Juliana M.; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M.; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S.; Volinia, Stefano; Whitman, Susan P.; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N.; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J.; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A.; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D.; Marcucci, Guido

    2014-01-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML. PMID:24590286

  5. Escin sodium induces apoptosis of human acute leukemia Jurkat T cells.

    PubMed

    Zhang, Zhenzhen; Gao, Jian; Cai, Xueting; Zhao, Youlong; Wang, Yafei; Lu, Wuguang; Gu, Zhenhua; Zhang, Shuangquan; Cao, Peng

    2011-12-01

    Escin sodium has been used in the clinic as an antioedematous, antiexudative and vasoprotective agent for many years and has shown excellent tolerability. However, little is known about its anticancer activity. This is a report for the first time that escin sodium exerts a cytotoxic effect on human acute leukemia Jurkat T cells via the induction of apoptosis rather than cell cycle arrest. Escin sodium activated the initiator caspase-8, -9, and the effector caspase-3, degraded poly (ADP-ribose) polymerase (PARP) and attenuated the expression of Bcl-2. In addition, escin sodium inhibited the growth of cancer cells in a selective manner with Jurkat cells most sensitive to it. Taken together, the data show that escin sodium possesses potent apoptogenic activity toward human acute leukemia Jurkat T cells. PMID:21452372

  6. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells

    PubMed Central

    Torelli, Giovanni F.; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S.; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-01-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL+ blasts, regardless of patient age. Accordingly, BCR-ABL+ blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL+, are worth pursuing further. PMID:24658822

  7. Human ether-a-go-go-related gene K+ channels regulate shedding of leukemia cell-derived microvesicles.

    PubMed

    Zheng, Fang; Li, Juanjuan; Du, Wen; Wang, Ningfang; Li, Huiyu; Huang, Shiang

    2012-08-01

    Microvesicles (MVs) are released by various cancer cells, including leukemia cells. They can "hijack" membrane components from their parental cells and exert pleiotropic effects on tumor progression. Human ether-a-go-go-related gene (hERG1) K(+) channels are highly expressed in cancer cells and appear of exceptional importance in favoring cancer development. Given the attributes of MVs and hERG1 K(+) channels in disease progression, we investigated the putative relationship between hERG1 K(+) channels and MVs in leukemia. The protein content of MVs isolated from K562 cell supernatants was significantly higher than that from HL-60 cells. The molecular profile of these MVs showed that in addition to the myeloid lineage antigen (CD11b), MVs contained hERG1 K(+) channels. Interestingly, inhibition of hERG1 K(+) channels rapidly reduced MV fractions in supernatants. Furthermore, MVs created positive feedback loops to facilitate leukemogenesis. Upon exposure to MVs, the plasma membrane expression of hERG1 protein was in turn up-regulated, the migration of leukemia cells was significantly increased, and the adhesion of leukemia cells to human umbilical vein endothelial cells (HUVECs) was markedly enhanced. Importantly, hERG1 K(+) channel inhibitor E-4031 impaired these effects. We conclude that leukemia cell-derived MVs can "hijack" the plasma membrane hERG1 K(+) channels, which regulate the release of MVs and their biological effects upon leukemia cells. PMID:22292854

  8. A preliminary study on epigenetic regulation of Acanthopanax senticosus in leukemia cell lines.

    PubMed

    Wang, Qing-Yuan; Zhong, Hua; Chen, Fang-Yuan; Zhang, Min-Yue; Cai, Jia-Yi; Zhong, Ji-Hua

    2016-06-01

    Conventional chemotherapy for leukemia inevitably causes systemic toxicity. Acanthopanax senticosus, a naturally occurring herb used in traditional Chinese medicine, has been found to be a multipotent bioflavonoid with great potential in the prevention and treatment of malignant diseases. However, the mechanism underlying the action of A. senticosus in epigenetic regulation is poorly understood. In the study described here, we focused on the efficacy of A. senticosus in inducing apoptosis of leukemia cells and a possible mechanism. By evaluating the inhibition ratio and morphologic changes, we found that A. senticosus can inhibit growth and induce apoptosis of human leukemia HL-60 and HL60/ADM cells in a dose- and time-dependent manner. Furthermore, A. senticosus induced Fas ligand (FasL) expression and blocked the cell cycle in S phase. In addition, A. senticosus exhibited a potential for inhibition of histone deacetylase (HADC), which contributes to histone acetylation. It possibly resulted in the promotion of the expression of FasL. It is suggested that A. senticosus could be recognized as a new HDAC inhibitor which was able to reactivate aberrantly silenced genes. We discuss the clinical aspects of using A. senticosus for treatment of leukemia. PMID:26992299

  9. [Induction of polyploid hairy roots and its plant regeneration in Pogostemon cablin].

    PubMed

    Shi, Heping; Yu, Wu; Zhang, Guopeng; Tsang, Pokeung Eric; Chow, Cheuk Fai Stephen

    2014-08-01

    Abstract: In order to enhance the content of secondary metabolites patchouli alcohol in Pogostemon cablin, we induced polyploid hairy roots and their plant regeneration, and determined the content of patchouli alcohol through artificial chromosome doubling with colchicine. The highest rate of polyploidy induction was more than 40% when hairy roots were treated with 0.05% colchicine for 36 h. The obtained polyploid hairy roots formed adventitious shoots when cultured in an MS medium with 6-BA 0.2 mg/L and NAA 0.1 mg/L for 60 d. Compared with the control diploid plants, the polyploid hairy root-regenerated plants of P. cablin had more developed root systems, thicker stems, shorter internodes and longer, wider and thicker leaves. Observation of the chromosome number in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 128 (4n = 128) chromosomes. The leaves contained around twice as many stomatal guard cells and chloroplasts as the controls, but the stomatal density declined with increasing ploidy. The stomatal density in diploid plants was around 1.67 times of that in polyploid plants. GC-MS analysis shows that the content of patchouli alcholol in the hairy root-derived polyploid plants was about 4.25 mg/g dry weight, which was 2.3 times of that in diploid plants. The present study demonstrates that polyploidization of hairy roots can stimulate the content of patchouli alcholol in medicinal plant of P. cablin. PMID:25507476

  10. [Induction of polyploid hairy roots and its plant regeneration in Pogostemon cablin].

    PubMed

    Shi, Heping; Yu, Wu; Zhang, Guopeng; Tsang, Pokeung Eric; Chow, Cheuk Fai Stephen

    2014-08-01

    Abstract: In order to enhance the content of secondary metabolites patchouli alcohol in Pogostemon cablin, we induced polyploid hairy roots and their plant regeneration, and determined the content of patchouli alcohol through artificial chromosome doubling with colchicine. The highest rate of polyploidy induction was more than 40% when hairy roots were treated with 0.05% colchicine for 36 h. The obtained polyploid hairy roots formed adventitious shoots when cultured in an MS medium with 6-BA 0.2 mg/L and NAA 0.1 mg/L for 60 d. Compared with the control diploid plants, the polyploid hairy root-regenerated plants of P. cablin had more developed root systems, thicker stems, shorter internodes and longer, wider and thicker leaves. Observation of the chromosome number in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 128 (4n = 128) chromosomes. The leaves contained around twice as many stomatal guard cells and chloroplasts as the controls, but the stomatal density declined with increasing ploidy. The stomatal density in diploid plants was around 1.67 times of that in polyploid plants. GC-MS analysis shows that the content of patchouli alcholol in the hairy root-derived polyploid plants was about 4.25 mg/g dry weight, which was 2.3 times of that in diploid plants. The present study demonstrates that polyploidization of hairy roots can stimulate the content of patchouli alcholol in medicinal plant of P. cablin. PMID:25423753

  11. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-08-10

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  12. Vitamin D3 potentiates the antitumorigenic effects of arsenic trioxide in human leukemia (HL-60) cells

    PubMed Central

    2014-01-01

    Background Arsenic trioxide (ATO) is a novel form of therapy that has been found to aid acute promyelocytic leukemia (APL) patients. Our laboratory has demonstrated that ATO-induced cytotoxicity in human leukemia (HL-60) cells is mediated by oxidative stress. Pro-oxidants have been known to play a role in free radical-mediated oxidative stress. Vitamin D3, (Vit D3) an active metabolite of vitamin D has been reported to inhibit the growth of number neoplasms such as prostate, breast, colorectal, leukemia, and skin cancers. The goal of the present research was to use (HL-60) cells as an in vitro test model to evaluate whether low doses of Vit D3 potentiate the toxicity of ATO and whether this toxic action is mediated via apoptotic mechanisms. Method HL-60 cells were treated either with a pharmacologic dose of ATO alone and with several low doses of Vit D3. Cell survival was determined by MTT assay. Cell apoptosis was measured both by flow cytometry assessment, and DNA laddering assay. Results MTT assay indicated that Vit D3 co-treatment potentiates ATO toxicity in HL-60 cells in a dose dependent manner. A statistically significant and dose-dependent increase (p <0.05) was recorded in annexin V positive cells (apoptotic cells) with increasing doses of Vit D3 in ATO-treated cells. This finding was confirmed by the result of DNA laddering assay showing clear evidence of nucleosomal DNA fragmentation in vitamin and ATO co-treated cells. Conclusion The present study indicates that Vit D3 potentiates the antitumor effects of ATO. This potentiation is mediated at least in part, through induction of phosphatidylserine externalization and nucleosomal DNA fragmentation. These findings highlight the potential impact of Vit D3 in promoting the pharmacological effect of ATO, suggesting a possible future role of Vit D3/ATO combination therapy in patients with acute promyelocytic leukemia (APL). PMID:24661615

  13. Apoptosis-induced structural changes in leukemia cells identified by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, K.-Z.; Mantsch, H. H.

    2001-05-01

    Apoptotic changes induced in the leukemia cell line CEM by treatment with the chemical etoposide were investigated by IR spectroscopy. Characteristic band alterations were identified in the apoptotic cells arising from cellular protein, lipid and DNA. Besides general changes such as an increase in lipid content and a decrease in the amount of detectable DNA, there were specific changes that affected the secondary structure of proteins in the apoptotic leukemia cells, i.e. the dominant protein structure shifts from β-sheet in the control cells to unordered coil in the apoptotic cells. The student's t-test was applied to the spectral range 1500-1700 cm -1 in order to determine the significant differences of protein structure between control and etoposide treated cells at various time points. A temporal relationship was found between the spectrally significant differences of the protein structure in the apoptotic cells and the severity of apoptosis. The IR spectral changes of protein structure also correlate well with the activity of caspase-3, an important proteolytic enzyme in apoptosis. This preliminary study suggests that IR spectroscopy could possibly be used to monitor and quantitate apoptosis in leukemia cells.

  14. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532.

    PubMed

    El-Daly, Hesham; Kull, Miriam; Zimmermann, Stefan; Pantic, Milena; Waller, Cornelius F; Martens, Uwe M

    2005-02-15

    Telomerase represents an attractive target for a mechanism-based therapeutic approach because its activation has been associated with unlimited proliferation in most cancer cells. Recently, a nonnucleosidic small molecule inhibitor, BIBR1532 (2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid), has been identified that is highly selective for inhibition of telomerase, resulting in delayed growth arrest of tumor cells. Here we examined the effects of BIBR1532 in different leukemia cell lines as well as in primary cells from patients with acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) in short-term culture assays. We observed a dose-dependent direct cytotoxicity in concentrations ranging from 30 to 80 microM. Interestingly, cell death was not dependent on the catalytic activity of telomerase but was delayed in cells with very long telomeres. We observed time-dependent individual telomere erosion, which was associated with loss of telomeric repeat binding factor 2 (TRF2) and increased phosphorylation of p53. Importantly, the proliferative capacity of normal CD34(+) cells from cord blood and leukapheresis samples was not affected by treatment with BIBR1532. We conclude that using this class of telomerase inhibitor at higher concentrations exerts a direct cytotoxic effect on malignant cells of the hematopoietic system, which appears to derive from direct damage of the structure of individual telomeres and must be dissected from telomerase-suppressed overall telomere shortening. PMID:15507522

  15. Donor-Derived T-Cell Large Granular Lymphocytic Leukemia in a Patient With Peripheral T-Cell Lymphoma.

    PubMed

    Lopez, Juliana E Hidalgo; Yabe, Mariko; Carballo-Zarate, Adrian A; Wang, Sa A; Jorgensen, Jeffrey L; Ahmed, Sairah; Lee, John; Li, Shaoying; Schlette, Ellen; McDonnell, Timothy; Miranda, Roberto N; Medeiros, L Jeffrey; Bueso-Ramos, Carlos E; Yin, C Cameron

    2016-08-01

    T-cell large granular lymphocytic (T-LGL) leukemia after hematopoietic stem cell transplantation (SCT) is rare and its natural history and clinical outcome have not been well described. We report the clinical, morphologic, immunophenotypic, and molecular features of a case of donor-derived T-LGL leukemia in a 16-year-old man who received allogeneic SCT for peripheral T-cell lymphoma not otherwise specified (PTCL-NOS). The patient presented with persistent neutropenia and splenomegaly 9 months after SCT when the chimerism study showed a 100% donor pattern. A splenectomy revealed T-LGL leukemia. Flow cytometric analysis showed an aberrant T-cell population positive for CD3, CD5 (dim, subset), CD7, CD8, CD16 (subset), CD57, CD94 (dim, partial), and T-cell receptor (TCR) αβ, and negative for CD4, CD26, CD56, and TCRγδ. Molecular studies showed monoclonal TCRβ and TCRγ gene rearrangements. Both the immunophenotype and molecular profile of the T-LGL leukemia were different from the pre-SCT PTCL. Sequencing analysis for STAT3 exon 21 did not reveal any mutation in both pre-SCT and post-SCT specimens. The patient did not receive any treatment for T-LGL leukemia; however, his count progressively increased after splenectomy, despite the presence of persistent T-LGL leukemia in the bone marrow. There was no evidence of recurrent PTCL. We propose an algorithm to diagnose this rare post-SCT neoplasm. PMID:27496109

  16. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells

    PubMed Central

    Ruggeri, Loredana; Urbani, Elena; André, Pascale; Mancusi, Antonella; Tosti, Antonella; Topini, Fabiana; Bléry, Mathieu; Animobono, Lucia; Romagné, François; Wagtmann, Nicolai; Velardi, Andrea

    2016-01-01

    Natural killer cells are key cells of the innate immune system. Natural killer cell receptor repertoires are diversified by a stochastic expression of killer-cell-immunoglobulin-like receptors and lectin-like receptors such as NKG2 receptors. All individuals harbor a subset of natural killer cells expressing NKG2A, the inhibitory checkpoint receptor for HLA-E. Most neoplastic and normal hematopoietic cells express HLA-E, the inhibitory ligand of NKG2A. A novel anti-human NKG2A antibody induced tumor cell death, suggesting that the antibody could be useful in the treatment of cancers expressing HLA-E. We found that immunodeficient mice, co-infused with human primary leukemia or Epstein-Barr virus cell lines and NKG2A+ natural killer cells, pre-treated with anti-human NKG2A, were rescued from disease progression. Human NKG2A+ natural killer cells reconstituted in immunodeficient mice after transplantation of human CD34+ cells. These natural killer cells are able to kill engrafted human primary leukemia or Epstein-Barr virus cell lines by lysis after intraperitoneal administration of anti-human NKG2A. Thus, this anti-NKG2A may exploit the anti-leukemic action of the wave of NKG2A+ natural killer cells recovering after hematopoietic stem cell transplants or adoptive therapy with natural killer cell infusions from matched or mismatched family donors after chemotherapy for acute leukemia, without the need to search for a natural killer cell alloreactive donor. PMID:26721894

  17. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells.

    PubMed

    Ruggeri, Loredana; Urbani, Elena; André, Pascale; Mancusi, Antonella; Tosti, Antonella; Topini, Fabiana; Bléry, Mathieu; Animobono, Lucia; Romagné, François; Wagtmann, Nicolai; Velardi, Andrea

    2016-05-01

    Natural killer cells are key cells of the innate immune system. Natural killer cell receptor repertoires are diversified by a stochastic expression of killer-cell-immunoglobulin-like receptors and lectin-like receptors such as NKG2 receptors. All individuals harbor a subset of natural killer cells expressing NKG2A, the inhibitory checkpoint receptor for HLA-E. Most neoplastic and normal hematopoietic cells express HLA-E, the inhibitory ligand of NKG2A. A novel anti-human NKG2A antibody induced tumor cell death, suggesting that the antibody could be useful in the treatment of cancers expressing HLA-E. We found that immunodeficient mice, co-infused with human primary leukemia or Epstein-Barr virus cell lines and NKG2A(+) natural killer cells, pre-treated with anti-human NKG2A, were rescued from disease progression. Human NKG2A(+) natural killer cells reconstituted in immunodeficient mice after transplantation of human CD34(+) cells. These natural killer cells are able to kill engrafted human primary leukemia or Epstein-Barr virus cell lines by lysis after intraperitoneal administration of anti-human NKG2A. Thus, this anti-NKG2A may exploit the anti-leukemic action of the wave of NKG2A(+) natural killer cells recovering after hematopoietic stem cell transplants or adoptive therapy with natural killer cell infusions from matched or mismatched family donors after chemotherapy for acute leukemia, without the need to search for a natural killer cell alloreactive donor. PMID:26721894

  18. Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway.

    PubMed

    Tian, Hongying; Yu, Zhongcui

    2015-01-01

    To explore the effects of resveratrol in a human myelogenous leukemia cell line K562 and its potential molecular mechanisms. The anti-proliferation effect of resveratrol-induced apoptosis on K562 cells were detected using MTT assay. Western blotting was performed for detecting changes of SphK1 expression in total cell protein and membrane/cytosol protein in K562 cells respectively after exposure to resveratrol. A biochemical assay was used to measure the activity of SphK after treatment of resveratrol, and then S1P and ceramide levels were examined using ELISA kits. Hochest 33258 staining and flow cytometry were applied to detect the apoptosis condition of K562 cells treated with resveratrol. Resveratrol inhibited the proliferation and induced apoptosis in K562 cells in a dose and time-dependent manner. Western blotting revealed that resveratrol did not affect total SphK1 expression level in K562 cells, but significantly changed the translocation of SphK1, the membrane SphK1 was decreased while cytosol SphK1 level was elevated. The activity of SphK1 in resveratrol treated groups was decreased compared to control group with a significant decrease of S1P and increase of ceramide level. Furthermore, Hoechst 33258 staining and Annexin V-FITC analysis confirmed the notable apoptotic effect of resveratrol in its anti-leukemia process. Resveratrol-induced proliferation inhibition of K562 cells might be mediated through its modulation activity of SphK1 pathway by regulating S1P and ceramide levels, which then affected the proliferation and apoptosis process of leukemia cells. SphK1/S1P pathway represents a target of resveratrol in human leukemia. PMID:26045781

  19. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

    PubMed

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca(2+) release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  20. Cytoplasmic and surface membrane phenotypic markers in cells of B cell chronic lymphocytic leukemia.

    PubMed

    Koníková, E; Babusíková, O; Mesárosová, A; Kusenda, J; Glasová, M

    1994-01-01

    Peripheral blood cells of twenty-six patients with B cell chronic lymphocytic leukemia (B-CLL) were characterized for their surface membrane and cytoplasmic marker profiles using flow cytometry and fluorescence microscopy. According to surface membrane marker analysis three distinct immunophenotypic subgroups of B-CLL were identified: group I (SIg+, MR+, CD5+, B Ag+, T Ag-; 19 cases), group II (SIg+, MR+, CD5+, B Ag+, TAg+; 3 cases), group III (SIg-, MR+, CD5+, B Ag+, T Ag-; 4 cases). Cells from all patients were positive for the CD19 antigen and at least one of other B cell antigens. Cells from all patients expressed also CD5 and HLA-DR antigens and formed mouse rosettes (MR). Great heterogeneity was found in the membrane and cytoplasmic marking by anti-CD22 MoAb. In four of 23 patients tested, CD22 antigen was expressed in the cytoplasm of CLL cells while it was absent on surface membrane of these cells. This finding was discussed from the point of certain cell heterogeneity in the followed B-CLL cases. Cytoplasmic immunoglobulin (CyIg) detection showed to be very important especially in group III of followed B-CLL cases with undetectable surface immunoglobulins (SIg). Cytoplasmic antigens and immunoglobulin determinations are useful in phenotyping every B-CLL patient, as well as in the immunological study of different maturation stages of B lymphocytes. PMID:8208317

  1. Inactivation of SAG E3 Ubiquitin Ligase Blocks Embryonic Stem Cell Differentiation and Sensitizes Leukemia Cells to Retinoid Acid

    PubMed Central

    Yang, Ruiguo; Xi, Ning; Sun, Yi

    2011-01-01

    Sensitive to Apoptosis Gene (SAG), also known as RBX2 (RING box protein-2), is the RING component of SCF (SKP1, Cullin, and F-box protein) E3 ubiquitin ligase. Our previous studies have demonstrated that SAG is an anti-apoptotic protein and an attractive anti-cancer target. We also found recently that Sag knockout sensitized mouse embryonic stem cells (mES) to radiation and blocked mES cells to undergo endothelial differentiation. Here, we reported that compared to wild-type mES cells, the Sag−/− mES cells were much more sensitive to all-trans retinoic acid (RA)-induced suppression of cell proliferation and survival. While wild-type mES cells underwent differentiation upon exposure to RA, Sag−/− mES cells were induced to death via apoptosis instead. The cell fate change, reflected by cellular stiffness, can be detected as early as 12 hrs post RA exposure by AFM (Atomic Force Microscopy). We then extended this novel finding to RA differentiation therapy of leukemia, in which the resistance often develops, by testing our hypothesis that SAG inhibition would sensitize leukemia to RA. Indeed, we found a direct correlation between SAG overexpression and RA resistance in multiple leukemia lines. By using MLN4924, a small molecule inhibitor of NEDD8-Activating Enzyme (NAE), that inactivates SAG-SCF E3 ligase by blocking cullin neddylation, we were able to sensitize two otherwise resistant leukemia cell lines, HL-60 and KG-1 to RA. Mechanistically, RA sensitization by MLN4924 was mediated via enhanced apoptosis, likely through accumulation of pro-apoptotic proteins NOXA and c-JUN, two well-known substrates of SAG-SCF E3 ligase. Taken together, our study provides the proof-of-concept evidence for effective treatment of leukemia patients by RA-MLN4924 combination. PMID:22110742

  2. Sensitization of K562 Leukemia Cells to Doxorubicin by the Viscum album Extract.

    PubMed

    Srdic-Rajic, Tatjana; Tisma-Miletic, Nevena; Cavic, Milena; Kanjer, Ksenija; Savikin, Katarina; Galun, Danijel; Konic-Ristic, Aleksandra; Zoranovic, Tamara

    2016-03-01

    Toxicity of conventional chemotherapeutics highlights the requirement for complementary or alternative medicines that would reduce side effects and improve their anticancer effectiveness. European mistletoe (Viscum album) has long been used as a complementary and alternative medicine supporting cancer therapy. The aim of this study was to investigate synergistic antitumor action of V. album extract and doxorubicin during co-treatment of chemoresistant chronic myelogenic leukemia K562 cells. Combined treatment of leukemia cells led to inhibitory synergism at sub-apoptotic doxorubicin concentrations and multifold reduction of cytotoxic effects in healthy control cells. Prolonged co-treatment was associated with reduced G2/M accumulation and increased expression of early and late apoptotic markers. Our data indicate that V. album extract increases antileukemic effectiveness of doxorubicin against resistant K562 cells by preventing G2/M arrest and inducing apoptosis. PMID:26692465

  3. Recent Advances in Therapeutic Approaches for Adult T-cell Leukemia/Lymphoma

    PubMed Central

    Kato, Koji; Akashi, Koichi

    2015-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell lymphoma caused by human T-cell leukemia/lymphoma virus type 1 (HTLV-1). ATLL occurs in approximately 3%–5% of HTLV-1 carriers during their lifetime and follows a heterogeneous clinical course. The Shimoyama classification has been frequently used for treatment decisions in ATLL patients, and antiviral therapy has been reportedly promising, particularly in patients with indolent type ATLL; however, the prognosis continues to be dismal for patients with aggressive-type ATLL. Recent efforts to improve treatment outcomes have been focused on the development of prognostic stratification and improved dosage, timing, and combination of therapeutic modalities, such as antiviral therapy, chemotherapy, allogeneic hematopoietic stem cell transplantation, and molecular targeted therapy. PMID:26694446

  4. HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment

    PubMed Central

    Valsecchi, Roberta; Coltella, Nadia; Belloni, Daniela; Ponente, Manfredi; ten Hacken, Elisa; Scielzo, Cristina; Scarfò, Lydia; Bertilaccio, Maria Teresa Sabrina; Brambilla, Paola; Lenti, Elisa; Martinelli Boneschi, Filippo; Brendolan, Andrea; Ferrero, Elisabetta; Ferrarini, Marina; Ghia, Paolo; Tonon, Giovanni; Ponzoni, Maurilio; Caligaris-Cappio, Federico

    2016-01-01

    Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL), HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and, in turn, is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis, we found that in CLL cells, HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma, reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models, and prolongs survival in mice. Of interest, we found that in CLL cells, HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore, HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes, including CXCR4, thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis. PMID:26825709

  5. Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts.

    PubMed

    Chamorro, Sonia; Vela, Maria; Franco-Villanueva, Ana; Carramolino, Laura; Gutiérrez, Julio; Gómez, Lucio; Lozano, María; Salvador, Beatriz; García-Gallo, Mónica; Martínez-A, Carlos; Kremer, Leonor

    2014-01-01

    Tumor expression of certain chemokine receptors is associated with resistance to apoptosis, migration, invasiveness and metastasis. Because CCR9 chemokine receptor expression is very restricted in healthy tissue, whereas it is present in tumors of distinct origins including leukemias, melanomas, prostate and ovary carcinomas, it can be considered a suitable candidate for target-directed therapy. Here, we report the generation and characterization of 91R, a mouse anti-human CCR9 IgG2b monoclonal antibody that recognizes an epitope within the CCR9 N-terminal domain. This antibody inhibits the growth of subcutaneous xenografts from human acute T lymphoblastic leukemia MOLT-4 cells in immunodeficient Rag2(-/-) mice. Tumor size in 91R-treated mice was reduced by 85% compared with isotype-matched antibody-treated controls. Tumor reduction in 91R-treated mice was concomitant with an increase in the apoptotic cell fraction and tumor necrotic areas, as well as a decrease in the fraction of proliferating cells and in tumor vascularization. In the presence of complement or murine natural killer cells, 91R promoted in vitro lysis of MOLT-4 leukemia cells, indicating that this antibody might eliminate tumor cells via complement- and cell-dependent cytotoxicity. The results show the potential of the 91R monoclonal antibody as a therapeutic agent for treatment of CCR9-expressing tumors. PMID:24870448

  6. HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment.

    PubMed

    Valsecchi, Roberta; Coltella, Nadia; Belloni, Daniela; Ponente, Manfredi; Ten Hacken, Elisa; Scielzo, Cristina; Scarfò, Lydia; Bertilaccio, Maria Teresa Sabrina; Brambilla, Paola; Lenti, Elisa; Martinelli Boneschi, Filippo; Brendolan, Andrea; Ferrero, Elisabetta; Ferrarini, Marina; Ghia, Paolo; Tonon, Giovanni; Ponzoni, Maurilio; Caligaris-Cappio, Federico; Bernardi, Rosa

    2016-04-21

    Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL), HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and, in turn, is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis, we found that in CLL cells, HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma, reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models, and prolongs survival in mice. Of interest, we found that in CLL cells, HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore, HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes, including CXCR4, thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis. PMID:26825709

  7. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults

    PubMed Central

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  8. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults.

    PubMed

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  9. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia.

    PubMed

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; Deryckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  10. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia

    PubMed Central

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  11. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  12. Polydatin-induced cell apoptosis and cell cycle arrest are potentiated by Janus kinase 2 inhibition in leukemia cells.

    PubMed

    Cao, Wei-Jie; Wu, Ke; Wang, Chong; Wan, Ding-Ming

    2016-04-01

    Polydatin (PD), a natural precursor of resveratrol, has a variety of biological activities, including anti‑tumor effects. However, the underlying molecular mechanisms of the anti-cancer activity of PD has not been fully elucidated. The present study demonstrated that PD significantly inhibited the proliferation of the MOLT-4 leukemia cell line in a dose‑ and time-dependent manner by using Cell Counting Kit‑8 assay. PD also dose-dependently increased the apoptotic rate and caused cell cycle arrest in S phase in MOLT‑4 cells, as revealed by flow cytometry. In addition, PD dose-dependently decreased the mitochondrial membrane potential and led to the generation of reactive oxygen species in MOLT-4 cells. Western blot analysis revealed that the expression of anti‑apoptotic protein B-cell lymphoma 2 (Bcl-2) was decreased, whereas that of pro‑apoptotic protein Bcl‑2‑associated X was increased by PD. Furthermore, the expression of two cell cycle regulatory proteins, cyclin D1 and cyclin B1, was suppressed by PD. Of note, the pro‑apoptotic and cell cycle‑inhibitory effects of PD were potentiated by Janus kinase 2 (JAK2) inhibition. In conclusion, the results of the present study strongly suggested that PD is a promising therapeutic compound for the treatment of leukemia, particularly in combination with JAK inhibitors. PMID:26934953

  13. Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias.

    PubMed

    Reta, Carolina; Altamirano, Leopoldo; Gonzalez, Jesus A; Diaz-Hernandez, Raquel; Peregrina, Hayde; Olmos, Ivan; Alonso, Jose E; Lobato, Ruben

    2015-01-01

    Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes. PMID:26107374

  14. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib

    PubMed Central

    Sharman, Jeff; Di Paolo, Julie

    2016-01-01

    The B-cell receptor signaling pathway has emerged as an important therapeutic target in chronic lymphocytic leukemia and other B-cell malignancies. Novel agents have been developed targeting the signaling enzymes spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase, and phosphoinositide 3-kinase delta. This review discusses the rationale for targeting these enzymes, as well as the preclinical and clinical evidence supporting their role as therapeutic targets, with a particular focus on SYK inhibition with entospletinib. PMID:27247756

  15. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib.

    PubMed

    Sharman, Jeff; Di Paolo, Julie

    2016-06-01

    The B-cell receptor signaling pathway has emerged as an important therapeutic target in chronic lymphocytic leukemia and other B-cell malignancies. Novel agents have been developed targeting the signaling enzymes spleen tyrosine kinase (SYK), Bruton's tyrosine kinase, and phosphoinositide 3-kinase delta. This review discusses the rationale for targeting these enzymes, as well as the preclinical and clinical evidence supporting their role as therapeutic targets, with a particular focus on SYK inhibition with entospletinib. PMID:27247756

  16. Therapeutic potential and functional interaction of carfilzomib and vorinostat in T-cell leukemia/lymphoma.

    PubMed

    Gao, Minjie; Chen, Gege; Wang, Houcai; Xie, Bingqian; Hu, Liangning; Kong, Yuanyuan; Yang, Guang; Tao, Yi; Han, Ying; Wu, Xiaosong; Zhang, Yiwen; Dai, Bojie; Shi, Jumei

    2016-05-17

    We previously showed that the proteasome inhibitor carfilzomib and the histone deacetylase inhibitor (HDACI) vorinostat cooperated to induce cell apoptosis in one T-cell leukemia cell line in vitro, implying the possibility of the combination treatment of carfilzomib and vorinostat as a potential therapeutic strategy in human T-cell leukemia/lymphoma. Here we report that combination treatment of carfilzomib and vorinostat enhanced cell apoptosis and induced a marked increase in G2-M arrest, reactive oxygen species (ROS) generation, and activated the members of mitogen-activated protein kinases (MAPK) family, including the stress-activated kinases JNK, p38MAPK, and ERK1/2. Carfilzomib/vorinostat-mediated apoptosis was blocked by the ROS scavenger N-acetylcysteine (NAC). The JNK inhibitor SP600125 and the p38MAPK inhibitor SB203580 but not the MEK1/2 inhibitor U0126 significantly attenuated carfilzomib/vorinostat-induced apoptosis, suggesting that p38MAPK and JNK activation contribute to carfilzomib and vorinostat-induced apoptosis. This was further confirmed via short hairpin (shRNA) RNA knockdown of p38MAPK and JNK. Interestingly, the ROS scavenger NAC attenuated carfilzomib/vorinostat-mediated activation of p38MAPK and JNK. However, p38MAPK shRNA but not JNK shRNA diminished carfilzomib/vorinostat-mediated ROS generation. In contrast, overexpression of p38MAPK significantly increased carfilzomib/vorinostat-mediated ROS generation, suggesting that an amplification loop exists between ROS and p38MAPK pathway. Combination treatment of carfilzomib and vorinostat enhanced their individual antitumor activity in both a human xenograft model as well as human primary T-cell leukemia/lymphoma cells. These data suggest the potential clinical benefit and underlying molecular mechanism of combining carfilzomib with vorinostat in the treatment of human T-cell leukemia/lymphoma. PMID:27074555

  17. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma.

    PubMed

    Rosewick, Nicolas; Momont, Mélanie; Durkin, Keith; Takeda, Haruko; Caiment, Florian; Cleuter, Yvette; Vernin, Céline; Mortreux, Franck; Wattel, Eric; Burny, Arsène; Georges, Michel; Van den Broeke, Anne

    2013-02-01

    Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation. PMID:23345446

  18. Early T-Cell Precursor Acute Lymphoblastic Leukemia in an Infant With an NRAS Q61R Mutation and Clinical Features of Juvenile Myelomonocytic Leukemia.

    PubMed

    Raikar, Sunil S; Scarborough, John D; Sabnis, Himalee; Bergsagel, John; Wu, David; Cooper, Todd M; Keller, Frank G; Wood, Brent L; Bunting, Silvia T

    2016-09-01

    Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a subtype of T-acute lymphoblastic leukemia (T-ALL) arising from a primitive precursor. We present a unique case of an infant with ETP-ALL with a missense NRAS mutation in codon 61 (c.182A>G, p.Q61R). The patient also had a minor population of non-ETP T-ALL blasts and clinical features typically associated with juvenile myelomonocytic leukemia (JMML), namely, absolute monocytosis, splenomegaly, and elevated hemoglobin F. The treatment was initiated with chemotherapy, followed by cord blood transplantation. The patient achieved remission, but unfortunately died from transplant-related complications. This case highlights an NRAS mutation in ETP-ALL with JMML-like phenotype. PMID:27145535

  19. Efficient induction of human T-cell leukemia virus-1-specific CTL by chimeric particle without adjuvant as a prophylactic for adult T-cell leukemia.

    PubMed

    Kozako, Tomohiro; Fukada, Katsuhiko; Hirata, Shinya; White, Yohann; Harao, Michiko; Nishimura, Yasuharu; Kino, Youichiro; Soeda, Shinji; Shimeno, Hiroshi; Lemonnier, François; Sonoda, Shunro; Arima, Naomichi

    2009-12-01

    Adult T-cell leukemia-lymphoma (ATL) is an aggressive peripheral T-cell neoplasm that develops after long-term infection with the human T-cell leukemia virus-1 (HTLV-1). HTLV-1-specific cytotoxic T lymphocytes (CTLs) play an important role in suppressing proliferation of HTLV-1-infected or transformed T-cells in vitro. Efficient induction of antigen-specific CTLs is important for immunologic suppression of oncogenesis, but has evaded strategies utilizing poorly immunogenic free synthetic peptides. In the present study, we examined the efficient induction of HTLV-1-specific CD8+ T-cell response by an HTLV-1/hepatitis B virus core (HBc) chimeric particle incorporating the HLA-A*0201-restricted HTLV-1 Tax-epitope. The immunization of HLA-A*0201-transgenic mice with the chimeric particle induced antigen-specific gamma-interferon reaction, whereas immunization with epitope peptide only induced no reaction as assessed by enzyme-linked immunospot assay. Immunization with the chimeric particle also induced HTLV-1-specific CD8+ T-cells in spleen and inguinal lymph nodes. Furthermore, upon exposure of dendritic cells from HLA-A*0201-transgenic mice to the chimeric particle, the expression of CD86, HLA-A02, TLR4 and MHC class II was increased. Additionally, our results show that HTLV-1-specific CD8+ T-cells can be induced by peptide with HTLV-1/HBc particle from ATL patient, but not by peptide only and these HTLV-1-specific CD8+ T-cells were able to lyse cells presenting the peptide. These results suggest that HTLV-1/HBc chimeric particle is capable of inducing strong cellular immune responses without adjuvants via effective maturation of dendritic cells and is potentially useful as an effective carrier for therapeutic vaccines in tumors, or in infectious diseases by substituting the epitope peptide. PMID:19889459

  20. AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: pre-clinical evidence for its association with chronic lymphocytic leukemia treatments

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Pieters, Karlien; Mineur, Philippe; Le Roy, Christine; Saint-Georges, Stéphane; Varin-Blank, Nadine; Cymbalista, Florence; Bron, Dominique; Lagneaux, Laurence

    2012-01-01

    Background Interactions with the microenvironment, such as bone marrow mesenchymal stromal cells and nurse-like cells, protect chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis. This protection is partially mediated by the chemokine SDF-1α (CXCL12) and its receptor CXCR4 (CD184) present on the chronic lymphocytic leukemia cell surface. Design and Methods Here, we investigated the ability of AMD3100, a CXCR4 antagonist, to sensitize chronic lymphocytic leukemia cells to chemotherapy in a chronic lymphocytic leukemia/mesenchymal stromal cell based or nurse-like cell based microenvironment co-culture model. Results AMD3100 decreased CXCR4 expression signal (n=15, P=0.0078) and inhibited actin polymerization/migration in response to SDF-1α (n=8, P<0.01) and pseudoemperipolesis (n=10, P=0.0010), suggesting that AMD3100 interferes with chronic lymphocytic leukemia cell trafficking. AMD3100 did not have a direct effect on apoptosis when chronic lymphocytic leukemia cells were cultured alone (n=10, P=0.8812). However, when they were cultured with SDF-1α, mesenchymal stromal cells or nurse-like cells (protecting them from apoptosis, P<0.001), chronic lymphocytic leukemia cell pre-treatment with AMD3100 significantly inhibited these protective effects (n=8, P<0.01) and decreased the expression of the anti-apoptotic proteins MCL-1 and FLIP. Furthermore, combining AMD3100 with various drugs (fludarabine, cladribine, valproïc acid, bortezomib, flavopiridol, methylprednisolone) in our mesenchymal stromal cell co-culture model enhanced drug-induced apoptosis (n=8, P<0.05) indicating that AMD3100 could mobilize chronic lymphocytic leukemia cells away from their protective microenvironment, making them more accessible to conventional therapies. Conclusions Taken together, these data demonstrate that interfering with the SDF-1α/CXCR4 axis by using AMD3100 inhibited chronic lymphocytic leukemia cell trafficking and microenvironment

  1. Allogeneic peripheral blood stem cell transplantation for standard risk leukemia: experience of Ibni Sina Hospital.

    PubMed

    Arslan, O; Coşkun, H; Arat, M; Celebi, H; Ozcan, M; Gürman, G; Ustün, C; Demirer, T; Akan, H; Ilhan, O; Konuk, N; Beksaç, M; Uysal, A; Koç, H

    2000-06-01

    Fifty-three patients with standard risk leukemia who underwent allogeneic peripheral blood stem cell transplantation (alloPBSCT) from their HLA-identical siblings were analyzed for engraftment, incidence and severity of GVHD, and relapse rate. Standard risk leukemia was defined as AML in first complete remission or CML in first chronic phase within the first year after diagnosis. The median age was 34.5 years (range 13-47). Stem cells were mobilized by using 10 microg/kg G-CSF subcutaneously for 5 days. A median of 5. 7 (2.1-21.4) x 106/kg CD34+ cells was collected over a median of 2 (range 1-5) apheresis procedures. Cyclosporin A (CsA) plus short-course MTX were used for GVHD prophylaxis. Recovery to granulocytes >0.5 x 109/l and platelets >20 x 109/l occurred at a median of day +13 (range 8-32) and +13 (range 8-51), respectively. Day +100 transplant-related mortality was 13.2% (7/53). Acute GVHD occurred in 20 of 49 (41%) evaluable patients and only six (12.3%) of them had severe disease (grade III-IV). Chronic GVHD occurred in 30 of 42 (71.4%) evaluable patients. Relapse rate at 2 years was 7. 5%. The median overall and leukemia-free survivals were 22 (4-44) and 20 (3-44) months, respectively. Estimated 4 year leukemia-free and overall survival rates were 60% and 62%, respectively. In conclusion, alloPBSCT in standard risk leukemia seems to be associated with a low relapse rate and no increased risk of acute GVHD, but there is a trend for higher incidence of cGVHD. Bone Marrow Transplantation (2000) 25, 1229-1232. PMID:10871726

  2. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    SciTech Connect

    Okabe, Seiichi Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  3. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    SciTech Connect

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  4. Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells

    PubMed Central

    Fan, Jiajun; Li, Yubin; Zeng, Xian; Wang, Ziyu; Wang, Shaofei; Zhang, Guoping; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2015-01-01

    The antitumor enzyme asparaginase, which targets essential amino acid L-asparagine and catalyzes it to L-aspartic acid and ammonia, has been used for years in the treatment of acute lymphoblastic leukemia (ALL), subtypes of myeloid leukemia and T-cell lymphomas, whereas the anti-chronic myeloid leukemia (CML) effect of asparaginase and its underlying mechanism has not been completely elucidated. We have shown here that asparaginase induced significant growth inhibition and apoptosis in K562 and KU812 cells. Apart from induction of apoptosis, we reported for the first time that asparaginase induced autophagic response in K562 and KU812 cells as evidenced by the formation of autophagosome, microtubule-associated protein light chain 3 (LC3)-positive autophagy-like vacuoles, and the upregulation of LC3-II. Further study suggested that the Akt/mTOR (mammalian target of rapamycin) and Erk (extracellular signal-regulated kinase) signaling pathway were involved in asparaginase-induced autophagy in K562 cells. Moreover, blocking autophagy using pharmacological inhibitors LY294002, chloroquine (CQ) and quinacrine (QN) enhanced asparaginase-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in asparaginase-treated K562 and KU812 cells. Together, these findings provide a rationale that combination of asparaginase anticancer activity and autophagic inhibition might be a promising new therapeutic strategy for CML. PMID:25738356

  5. Monocytoid leukemia cell line CTV-1: morphological, immunological and isoenzymatic characteristics.

    PubMed

    Drexler, H G; Gaedicke, G; Maeda, S; Chen, P M; Minowada, J

    1986-01-01

    The human leukemia cell line CTV-1 was established from a case of acute monoblastic leukemia (AMoL). We analyzed the phenotypic marker profile of the CTV-1 cells in their original, untreated state and during induction of differentiation with the phorbolester 12-0-tetradecanoylphorbol 13-acetate (TPA). TPA led to morphological changes with signs of differentiation. Cell proliferation decreased in a dose-dependent fashion during exposure to TPA. In the surface marker analysis using a panel of 45 monoclonal antibodies (MoAbs) and several polyclonal antisera, CTV-1 cells were negative for markers of the T- and B-cell lineages, and were positive for several, but not all, myelomonocytic markers. Although the cells were reactive with the MoAb Leu-7 which identifies natural killer (NK) T-cells, no NK activity was detected. In the isoenzyme analysis of the four enzymes carboxylic esterase, acid phosphatase, hexosaminidase and lactate dehydrogenase (LDH) performed by isoelectric focusing on polyacrylamide gels, CTV-1 cells displayed isoenzyme profiles of immature myeloid cells. The overall marker profile of CTV-1 cells demonstrated cells of monocytoid origin arrested at a very early stage of differentiation, possibly close to the stage of precursor cells. As compared to other myelomonocytic cell lines, CTV-1 cells showed unusual morphological, immunological, functional and biochemical features and appeared to be relatively insensitive to treatment with TPA, although some alterations of the phenotype could be induced. PMID:3458274

  6. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells

    SciTech Connect

    Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.

    2008-11-28

    The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but not with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.

  7. Protein kinase C-gamma is present in adriamycin resistant HL-60 leukemia cells.

    PubMed

    Aquino, A; Warren, B S; Omichinski, J; Hartman, K D; Glazer, R I

    1990-01-30

    The isoform pattern of protein kinase C (PKC) was examined in wild-type and Adriamycin-resistant (HL-60/AR) HL-60 leukemia cells. Analyses were carried out by immunoblotting with mouse monoclonal antibodies against PKC-alpha and PKC-beta and a rabbit polyclonal antibody against the variable (V3) region of PKC-gamma. HL-60/AR cells contained an equivalent level of PKC-alpha and a lower amount of PKC-beta than HL-60 cells. In contrast, only HL-60/AR cells contained PKC-gamma. These results indicate that the regulation of this family of isoenzymes is altered in drug-resistant cells. PMID:2302237

  8. Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy

    PubMed Central

    Pramanik, Rocky; Sheng, Xia; Ichihara, Brian; Heisterkamp, Nora; Mittelman, Steven D.

    2013-01-01

    Obesity is associated with an increased risk of acute lymphoblastic leukemia (ALL) relapse. Using mouse and cell co-culture models, we investigated whether adipose tissue attracts ALL to a protective microenvironment. Syngeneically implanted ALL cells migrated into adipose tissue within ten days. In vitro, murine ALL cells migrated towards adipose tissue explants and 3T3-L1 adipocytes. Human and mouse ALL cells migrated toward adipocyte conditioned media, which was mediated by SDF-1α. In addition, adipose tissue explants protected ALL cells against daunorubicin and vincristine. Our findings suggest that ALL migration into adipose tissue could contribute to drug resistance and potentially relapse. PMID:23332453

  9. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation

    PubMed Central

    Kunz, Joachim B.; Rausch, Tobias; Bandapalli, Obul R.; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M.; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O.; Muckenthaler, Martina U.; Kulozik, Andreas E.

    2015-01-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, ‘type 1’ relapse derives from the primary leukemia whereas ‘type 2’ relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  10. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation.

    PubMed

    Kunz, Joachim B; Rausch, Tobias; Bandapalli, Obul R; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O; Muckenthaler, Martina U; Kulozik, Andreas E

    2015-11-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, 'type 1' relapse derives from the primary leukemia whereas 'type 2' relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  11. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells.

    PubMed

    Zhong, Wenjing; Sit, Wai Hung; Wan, Jennifer M F; Yu, Alfred C H

    2011-12-01

    Despite being a transient biophysical phenomenon, sonoporation is known to disturb the homeostasis of living cells. This work presents new evidence on how sonoporation may lead to antiproliferation effects including cell-cycle arrest and apoptosis through disrupting various cell signaling pathways. Our findings were obtained from sonoporation experiments conducted on HL-60 human promyelocytic leukemia cells (with 1% v/v microbubbles; 1 MHz ultrasound; 0.3 or 0.5MPa peak negative pressure; 10% duty cycle; 1 kHz pulse repetition frequency; 1 min exposure period). Membrane resealing in these sonoporated cells was first verified using scanning electron microscopy. Time-lapse flow cytometry analysis of cellular deoxyribonucleic acid (DNA) contents was then performed at four post-sonoporation time points (4 h, 8 h, 12 h and 24 h). Results indicate that an increasing trend in the apoptotic cell population can be observed for at least 12 h after sonoporation, whilst viable sonoporated cells are found to temporarily accumulate in the G(2)/M (gap-2/mitosis) phase of the cell cycle. Further analysis using western blotting reveals that sonoporation-induced apoptosis involves cleavage of poly adenosine diphosphate ribose polymerase (PARP) proteins: a pro-apoptotic hallmark related to loss of DNA repair functionality. Also, mitochondrial signaling seems to have taken part in triggering this cellular event as the expression of two complementary regulators for mitochondrial release of pro-apoptotic molecules, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2-associated X), are seen to be imbalanced in sonoporated cells. Furthermore, sonoporation is found to induce cell-cycle arrest through perturbing the expression of various cyclin and Cdk (cyclin-dependent kinase) checkpoint proteins that play an enabling role in cell-cycle progression. These bioeffects should be taken into account when using sonoporation for therapeutic purposes. PMID:22033133

  12. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  13. [Expression of erythropoietin receptor in leukemia cells and relation of erythropoietin level with leukemic anemia].

    PubMed

    Feng, Mei; Li, Yu-Cui

    2008-12-01

    This study was purposed to investigate the expression of erythropoietin receptor (EPOR) in leukemic cells and the relationship of serum erythropoietin level with anemia in acute leukemia patients, so as to provide a new theoretical basis for the cytokine therapy in acute leukemia with anemia. The EPOR in 30 AL patients was detected by using reverse transcription polymerase chain reaction (RT-PCR), the level of serum erythropoietin was detected by chemiluminescence analysis, the hemoglobin level was assayed by automatic blood counting instrument. The results indicated that EPOR was expressed in 18 out of 30 AL patients, the expression rate of EPOR in AL patients was 60%, however, but the EPOR expression rate in AML was 61.9% (13/21) and 55.6% (5/9) in ALL, the EPOR expression rate was no significant difference between AML and ALL. The EPOR expression rate was significantly lower than that in control group (86.7%) (p<0.05). The relative level of EPOR expression in AML was higher than that in ALL (p<0.05), the average level of EPOR expression in AL was significantly lower than that in control group (p<0.01). The level of sEPO in 30 AL patients was significantly higher than that in control group (p<0.01), and there was negative correlation between the levels of sEPO and Hb (p<0.01). It is concluded that the EPOR is expressed in cells of AL, but the expressive level is low. The EPOR expression rate shows no significant difference between AML and ALL. The mechanism of negative feedback to anemia in acute leukemia is intact. Anemia of acute leukemia is not completely associated with inadequate erythropoietin production and relates to hemopoiesis defect that considered as the main reason. Recombinant human erythropoietin is widely used in treatment of anemia caused by acute leukemia. Whether the treatment with rh-EPO for acute leukemia with anemia will enhance the proliferation of leukemia cells, this problem should be explored further. PMID:19099624

  14. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells

    PubMed Central

    Zhang, Feng; Zhu, Fang-Bing; Li, Jia-Jia; Zhang, Ping-Ping; Zhu, Jun-Feng

    2015-01-01

    Hyperoside (Hyp) is the chief component of some Chinese herbs which has anticancer effect and the present study is to identify whether it could enhance the anti leukemic properties of arsenic trioxide (As2O3) in acute myeloid leukemia (AML). We provide evidence on the concomitant treatment of HL-60 human AML cells with hyperoside potentiates As2O3-dependent induction of apoptosis. The activation of caspase-9, Bcl-2-associated agonist of cell death (BAD), p-BAD, p27 was assessed by Western blot. Results showed that hyperoside inhibited BAD from phosphorylating, reactivated caspase-9, and increased p27 levels. Importantly, hyperoside demonstrated its induction of autophagy effect by upregulation of LC-II in HL-60 AML cell line. Taken together, hyperoside may serve as a great candidate of concomitant treatment for leukemia; these effects were probably related to induction of autophagy and enhancing apoptosis-inducing action of As2O3. PMID:26629016

  15. Adult T-cell leukemia-lymphoma associated with follicular mucinosis.

    PubMed

    Ballester, Leomar Y; Cowen, Edward W; Lee, Chyi-Chia Richard

    2014-11-01

    Follicular mucinosis is frequently associated with follicular mycosis fungoides, but its association with adult T-cell leukemia-lymphoma (ATLL) is extremely rare. We report a case of a 50-year-old female patient with a history of ATLL, after multiple treatments, with residual/recurrent skin tumors in the forehead and legs. Biopsy of a skin tumor from the forehead revealed a perifollicular and intrafollicular atypical lymphoid infiltrate with abundant mucin deposition. Immunohistochemical stains showed that the atypical cells were positive for CD3, CD4, and CD25. Reverse transcription polymerase chain reaction performed on the tissue sections confirmed the presence of human T-cell leukemia virus in the biopsies of skin tumors. To our knowledge, this is only the third reported case of a follicular mucinosis in the setting of ATLL. PMID:24614206

  16. T-cell chronic lymphocytic leukemia in a double yellow-headed Amazon parrot (Amazona ochrocephala oratrix).

    PubMed

    Osofsky, Anna; Hawkins, Michelle G; Foreman, Oded; Kent, Michael S; Vernau, William; Lowenstine, Linda J

    2011-12-01

    An adult, male double yellow-headed Amazon parrot (Amazona ochrocephala oratrix) was diagnosed with chronic lymphocytic leukemia based on results of a complete blood cell count and cytologic examination of a bone marrow aspirate. Treatment with oral chlorambucil was attempted, but no response was evident after 40 days. The bird was euthanatized, and the diagnosis of chronic lymphocytic leukemia was confirmed on gross and microscopic examination of tissues. Neoplastic lymphocytes were found in the bone marrow, liver, kidney, testes, and blood vessels. Based on CD3-positive immunocytochemical and immunohistochemical immunophenotyping, the chronic lymphocytic leukemia was determined to be of T-cell origin. PMID:22458185

  17. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  18. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo.

    PubMed

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Karpiniec, Samuel S; Dickinson, Joanne L

    2016-03-01

    Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia. PMID:26241708

  19. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species

    PubMed Central

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia

  20. Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death

    PubMed Central

    Robert, Guillaume; Ben Sahra, Issam; Puissant, Alexandre; Colosetti, Pascal; Belhacene, Nathalie; Gounon, Pierre; Hofman, Paul; Bost, Fréderic; Cassuto, Jill-Patrice; Auberger, Patrick

    2009-01-01

    CML is an hematopoietic stem cell disease characterized by the t(9;22) (q34;q11) translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL) was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients. PMID:19924252

  1. Myeloid cell leukemia-1 regulates the cell growth and predicts prognosis in gastric cancer.

    PubMed

    Lee, Wan-Sik; Park, Young-Lan; Kim, Nuri; Oh, Hyung-Hoon; Son, Dong-Jun; Kim, Mi-Young; Oak, Chan-Young; Chung, Cho-Yun; Park, Hyung-Chul; Kim, Jong-Sun; Myung, Dae-Seong; Cho, Sung-Bum; Joo, Young-Eun

    2015-05-01

    The expression of myeloid cell leukemia-1 (Mcl‑1), a member of the anti-apoptotic Bcl-2 protein family, has been associated with tumor progression and adverse patient outcome. The aims of current study were to evaluate whether Mcl-1 affects the survival or death of gastric cancer cells, and to investigate the prognostic value of its expression in gastric cancer. PcDNA3.1-Mcl-1 expression and Mcl-1 siRNA vectors were used to overexpress and silence Mcl-1 expression in gastric cancer cell lines including SNU638 and TMK1, respectively. Immunohistochemistry was used to determine the expression of Mcl-1 in gastric cancer tissues. Apoptosis was determined by the TUNEL assay, and cell proliferation was determined by immunostaining with a Ki-67 antibody. Mcl-1 knockdown induced apoptosis through the upregulation of caspase-3, and -7, and PARP activity, and the release of Smac/DIABLO and Omi/HtrA2 into the cytoplasm. Additionally, cell cycle arrest occurred due to decrease of cyclin D1, cell division cycle gene 2 (cdc2), and cyclin-dependent kinase 4 and 6. In contrast, overexpression of Mcl-1 inhibited apoptosis and cell cycle arrest. Mcl-1 knockdown did not suppress tumor cell proliferation in gastric cancer cells, whereas overexpression of Mcl-1 enhanced tumor cell proliferation. The JAK2 and STAT3 signaling cascades were significantly blocked by Mcl-1 knockdown. The mean Ki-67 labeling index (KI) value of Mcl-1 positive tumors was significantly lower than that of Mcl-1 negative tumors. However, there was no significant difference between Mcl-1 expression and the apoptotic index (AI). Mcl-1 expression was significantly increased in gastric cancer tissues compared to normal gastric mucosa tissues, and was associated with age, tumor size, stage, depth of invasion, lymph node metastasis and poor survival. Our study showed that Mcl-1 regulates the cell growth and might be a potential prognostic marker for gastric cancer. PMID:25672320

  2. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

    PubMed Central

    Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2014-01-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone-marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on-target, via inhibition of HMGCoA reductase. These results illustrate the power of merging physiologically-relevant models with high-throughput screening. PMID:24161946

  3. Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway

    PubMed Central

    Zhang, Jian-Ye; Lin, Min-Ting; Tung, Ho-Yi; Tang, Si-Li; Yi, Tao; Zhang, Ya-Zhou; Tang, Yi-Na; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2016-01-01

    Chronic myeloid leukemia (CML), an acquired malignant myeloproliferative disorder of hematopoietic stem cells, is one of the three most common forms of leukemia. In this study, we investigated the effects of bruceine D, which have been isolated from Brucea javanica (L.) Merr. on human chronic myeloid leukemia K562 cells. MTT assay was used to evaluate cell growth inhibition. Flow cytometry was performed to analyze mitochondrial membrane potential (ΔΨm). Western blot was applied to detect expression of cytochrome c, caspases-9, -3, PARP and other proteins. Bruceine D exhibited potent cytotoxicity to K562 cells with IC50 of 6.37 ± 0.39 μM. It led to loss of ΔΨm, release of cytochrome c, activation of caspases-9, -3 and cleavage of PARP, which suggested that bruceine D induced apoptosis of K562 cells through mitochondrial pathway. In addition, bruceine D inhibited the phosphorylation of AKT and ERK. It’s indicative that the potent anticancer activity of bruceine D be related to MAPK and PI3K pathways. PMID:27186433

  4. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy

    PubMed Central

    Misaghian, N; Ligresti, G; Steelman, LS; Bertrand, FE; Bäsecke, J; Libra, M; Nicoletti, F; Stivala, F; Milella, M; Tafuri, A; Cervello, M; Martelli, AM

    2008-01-01

    Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemo-therapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with small-molecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance—a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy. PMID:18800146

  5. Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers

    PubMed Central

    Zhang, Luoping; Lan, Qing; Ji, Zhiying; Li, Guilan; Shen, Min; Vermeulen, Roel; Guo, Weihong; Hubbard, Alan E.; McHale, Cliona M.; Rappaport, Stephen M.; Hayes, Richard B.; Linet, Martha S.; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2012-01-01

    Benzene exposure causes acute myeloid leukemia, and hematotoxicity, shown as suppression of mature blood and myeloid progenitor cell numbers. As the leukemia-related aneuploidies monosomy 7 and trisomy 8 previously had been detected in the mature peripheral blood cells of exposed workers, we hypothesized that benzene could cause leukemia through the induction of these aneuploidies in hematopoietic stem and progenitor cells. We measured loss and gain of chromosomes 7 and 8 by fluorescence in situ hybridization in interphase colony-forming unit-granulocyte-macrophage (CFU-GM) cells cultured from otherwise healthy benzene-exposed (n=28) and unexposed (n=14) workers. CFU-GM monosomy 7 and 8 levels (but not trisomy) were significantly increased in subjects exposed to benzene overall, compared to levels in the control subjects (p=0.0055 and p=0.0034, respectively). Levels of monosomy 7 and 8 were significantly increased in subjects exposed to <10 ppm (20%, p=0.0419 and 28%, p=0.0056, respectively) and ≥10 ppm (48%, p=0.0045 and 32%, p=0.0354) benzene, compared with controls, and significant exposure-response trends were detected (ptrend=0.0033 and 0.0057). These data show that monosomies 7 and 8 are produced in a dose-dependent fashion in the blood progenitor cells of workers exposed to benzene and may be mechanistically relevant biomarkers of early effect for benzene and other leukemogens. PMID:22643707

  6. Variant Human T-cell Lymphotropic Virus Type 1c and Adult T-cell Leukemia, Australia

    PubMed Central

    Cassar, Olivier; Bardy, Peter; Kearney, Daniel; Gessain, Antoine

    2013-01-01

    Human T-cell lymphotropic virus type 1 is endemic to central Australia among Indigenous Australians. However, virologic and clinical aspects of infection remain poorly understood. No attempt has been made to control transmission to indigenous children. We report 3 fatal cases of adult T-cell leukemia/lymphoma caused by human T-cell lymphotropic virus type 1 Australo-Melanesian subtype c. PMID:24047544

  7. Hyaluronan oligomers sensitize chronic myeloid leukemia cell lines to the effect of Imatinib.

    PubMed

    Lompardía, Silvina Laura; Díaz, Mariángeles; Papademetrio, Daniela Laura; Mascaró, Marilina; Pibuel, Matías; Álvarez, Elida; Hajos, Silvia Elvira

    2016-04-01

    Chronic myeloid leukemia is a myeloproliferative syndrome characterized by the presence of the Philadelphia chromosome (Ph), generated by a reciprocal translocation occurring between chromosomes 9 and 22 [t(9;22)(q34;q11)]. As a consequence, a fusion gene (bcr-abl) encoding a constitutively active kinase is generated. The first-line treatment consists on BCR-ABL inhibitors such as Imatinib, Nilotinib and Dasatinib. Nevertheless, such treatment may lead to the selection of resistant cells. Therefore, finding molecules that enhance the anti-proliferative effect of first-line drugs is of value. Hyaluronan oligomers (oHA) are known to be able to sensitize several tumor cells to chemotherapy. We have previously demonstrated that oHA can revert Vincristine resistance in mouse lymphoma and human leukemia cell lines. However, little is known about the role of oHA in hematological malignancies. The aim of this work was to determine whether oHA are able to modulate the anti-proliferative effect of Imatinib in chronic myeloid leukemia (CML) cell lines. The effect on apoptosis and senescence as well as the involvement of signaling pathways were also evaluated. For this purpose, the human CML cell lines K562 and Kv562 (resistant) were used. We demonstrated that oHA sensitized both cell lines to the anti-proliferative effect of Imatinib increasing apoptosis and senescence. Moreover, this effect would be accomplished through the down-regulation of the PI3K signaling pathway. These findings highlight the potential of oHA when used as a co-adjuvant therapy for chronic myeloid leukemia. PMID:26582603

  8. Rituximab, Rasburicase, and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Advanced B-Cell Leukemia or Lymphoma

    ClinicalTrials.gov

    2014-09-10

    Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Untreated Childhood Acute Lymphoblastic Leukemia

  9. CCI-779 in Treating Patients With Recurrent or Refractory B-Cell Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2014-05-07

    B-cell Chronic Lymphocytic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Malignant Neoplasm; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  10. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling.

    PubMed

    Lewis, Huw D; Leveridge, Matthew; Strack, Peter R; Haldon, Christine D; O'neil, Jennifer; Kim, Hellen; Madin, Andrew; Hannam, Joanne C; Look, A Thomas; Kohl, Nancy; Draetta, Giulio; Harrison, Timothy; Kerby, Julie A; Shearman, Mark S; Beher, Dirk

    2007-02-01

    In this report, inhibitors of the gamma-secretase enzyme have been exploited to characterize the antiproliferative relationship between target inhibition and cellular responses in Notch-dependent human T cell acute lymphoblastic leukemia (T-ALL) cell lines. Inhibition of gamma-secretase led to decreased Notch signaling, measured by endogenous NOTCH intracellular domain (NICD) formation, and was associated with decreased cell viability. Flow cytometry revealed that decreased cell viability resulted from a G(0)/G(1) cell cycle block, which correlated strongly to the induction of apoptosis. These effects associated with inhibitor treatment were rescued by exogenous expression of NICD and were not mirrored when a markedly less active enantiomer was used, demonstrating the gamma-secretase dependency and specificity of these responses. Together, these data strengthen the rationale for using gamma-secretase inhibitors therapeutically and suggest that programmed cell death may contribute to reduction of tumor burden in the clinic. PMID:17317574

  11. Impact of prior imatinib mesylate on the outcome of hematopoietic cell transplantation for chronic myeloid leukemia

    PubMed Central

    Kukreja, Manisha; Wang, Tao; Giralt, Sergio A.; Szer, Jeffrey; Arora, Mukta; Woolfrey, Ann E.; Cervantes, Francisco; Champlin, Richard E.; Gale, Robert Peter; Halter, Joerg; Keating, Armand; Marks, David I.; McCarthy, Philip L.; Olavarria, Eduardo; Stadtmauer, Edward A.; Abecasis, Manuel; Gupta, Vikas; Khoury, H. Jean; George, Biju; Hale, Gregory A.; Liesveld, Jane L.; Rizzieri, David A.; Antin, Joseph H.; Bolwell, Brian J.; Carabasi, Matthew H.; Copelan, Edward; Ilhan, Osman; Litzow, Mark R.; Schouten, Harold C.; Zander, Axel R.; Horowitz, Mary M.; Maziarz, Richard T.

    2008-01-01

    Imatinib mesylate (IM, Gleevec) has largely supplanted allogeneic hematopoietic cell transplantation (HCT) as first line therapy for chronic myeloid leukemia (CML). Nevertheless, many people with CML eventually undergo HCT, raising the question of whether prior IM therapy impacts HCT success. Data from the Center for International Blood and Marrow Transplant Research on 409 subjects treated with IM before HCT (IM+) and 900 subjects who did not receive IM before HCT (IM−) were analyzed. Among patients in first chronic phase, IM therapy before HCT was associated with better survival but no statistically significant differences in treatment-related mortality, relapse, and leukemia-free survival. Better HLA-matched donors, use of bone marrow, and transplantation within one year of diagnosis were also associated with better survival. A matched-pairs analysis was performed and confirmed a higher survival rate among first chronic phase patients receiving IM. Among patients transplanted with advanced CML, use of IM before HCT was not associated with treatment-related mortality, relapse, leukemia-free survival, or survival. Acute graft-versus-host disease rates were similar between IM+ and IM− groups regardless of leukemia phase. These results should be reassuring to patients receiving IM before HCT. PMID:18664621

  12. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  13. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine. PMID:17882653

  14. Typhonium flagelliforme inhibits the proliferation of murine leukemia WEHI-3 cells in vitro and induces apoptosis in vivo.

    PubMed

    Mohan, Syam; Abdul, Ahmad Bustamam; Abdelwahab, Siddig Ibrahim; Al-Zubairi, Adel S; Aspollah Sukari, Mohamed; Abdullah, Rasedee; Taha, Manal Mohamed Elhassan; Beng, Ng Kuan; Isa, Nurbaity Mohd

    2010-11-01

    Typhonium flagelliforme (TF) is a tropical plant, traditionally used by the ethnic population of Malaysia for the cure of various cancers. This plant had shown to induce antiproliferative effect as well as apoptosis in cancer cells. However, there is no available information to address that TF affects murine leukemia cells in vitro and in vivo. Here, we investigated in vitro and in vivo effects of TF on murine leukemia WEHI-3 cells. It was found that the growth of leukemia cells in vitro was inhibited by the various extracts of TF. Among these fractions, the dichloromethane (DCM) tuber extracts of TF showed the lowest IC(50) (24.0 ± 5.2 μg/ml) and had demonstrated apoptogenic effect when observed under fluorescent microscope. We investigated the in vivo effects of DCM tuber extracts of TF on murine leukemia cells, and the results showed that the counts of immature granulocytes and monocytes were significantly decreased in peripheral blood of BALB/c leukemia mice after the oral administration of DCM tuber extracts of TF for 28 days with three doses (200, 400 and 800 mg/kg). These results were confirmed by observing the spleen histopathology and morphology of enlarged spleen and liver in leukemia mice when compared with the control. Furthermore, the cell death mechanism in the spleen tissue of treated mice was found via apoptosis. PMID:20569984

  15. Effect of arsenic trioxide on different cell lines derived from chronic myeloid leukemia.

    PubMed

    Jing, Hong-Mei; Yukihiro, Shimizu; Ke, Xiao-Yan; Yoshiro, Kashii; Akiharu, Watanabe

    2002-10-01

    The objective is to explore the effect and the mechanism of arsenic trioxide, As(2)O(3), on different cell lines of chronic myeloid leukemia (CML). Different concentrations of As(2)O(3) (0.2, 2 and 10 micro mol/L) were added to CML cell lines KU812 and MEG-01 and other leukemia cell lines U937 and PL21, the cell numbers were counted at different times, TUNEL and DNA ladder were assayed. Different antibodies, CD34, CD13, CD33, CD19, CD11b, CD14 and CD7, were added to detect the change of the molecules on cell surface, the change of bcr-abl by RT-PCR and the activity of caspase-3 were assayed. The results showed that different concentrations of As(2)O(3) had different effects on the survival of the 4 cell lines. After culture for 24 hours with As(2)O(3), there was no significant increase in CD11b in all the four cell lines. There were no changes of bcr-abl in the two CML cell lines treated and untreated with As(2)O(3) by RT-PCR. Activities of caspase-3 were all increased. It is concluded that As(2)O(3) can induce apoptosis in CML cell lines, the concentration to induce apoptosis is different, CML cell lines are more sensitive than the other 2 leukemia cell lines. As(2)O(3) induced apoptosis may have some relation with the activation of caspase-3. PMID:12513739

  16. Diversity and Complexity of Ceramide Generation After Exposure of Jurkat Leukemia Cells to Irradiation

    SciTech Connect

    Ardail, Dominique Maalouf, Mira; Boivin, Anthony; Chapet, Olivier; Bodennec, Jacques; Rousson, Robert; Rodriguez-Lafrasse, Claire

    2009-03-15

    Purpose: To define which intracellular pools of sphingomyelin and ceramide are involved in the triggering of apoptosis of Jurkat leukemia cells in response to {gamma}-ray exposure. Methods and Materials: We examined the kinetics of ceramide generation at the whole-cell level and in different subcellular compartments (plasma membrane rafts, mitochondria, and endoplasmic reticulum) after irradiation with photons. Ceramide was measured by high-performance liquid chromatography or after pulse labeling experiments, and the presence of sphingomyelinase within mitochondria was assessed by electron microscopy. Results: Irradiation of Jurkat leukemia cells resulted in the sequential triggering of sphingomyelin hydrolysis, followed by de novo synthesis that led to a late ceramide response (from 24 h) correlated with the triggering of apoptosis. At the subcellular level, pulse-label experiments, using [{sup 3}H]-palmitate as a precursor, strengthened the involvement of the radiation-induced sphingomyelin breakdown and revealed a very early peak (15 min) of ceramide in plasma membrane rafts. A second peak in mitochondria was measured 4 h after irradiation, resulting from an increase of the sphingomyelin content relating to the targeting of acid sphingomyelinase toward this organelle. Conclusion: These data confirm that ceramide is a major determinant in the triggering of radiation-induced apoptosis and highlight the complexity of the sequential compartment-specific ceramide-mediated response of Jurkat leukemia cells to {gamma}-rays.

  17. Highly sensitive detection of leukemia cells based on aptamer and quantum dots.

    PubMed

    Yu, Yating; Duan, Siliang; He, Jian; Liang, Wei; Su, Jing; Zhu, Jianmeng; Hu, Nan; Zhao, Yongxiang; Lu, Xiaoling

    2016-08-01

    Detection of leukemia at the early stage with high sensitivity is a significant clinical challenge for clinicians. In the present study, we developed a sensitive detector consisting of the product of oligonucleotides hybridized with semiconductor quantum dots (QDs) to generate a stronger fluorescent signal so that leukemic cells can be captured. In the present study, a biotin-modified Sgc8 aptamer was used to identify CCRF-CEM cells, and then biotin-appended QDs were labeled with the aptamer via streptavidin and biotin amplification interactions. We described the complex as QDs-bsb-apt. CEM and Ramos cells were used to assess the specificity and sensitivity of the novel complex. These results revealed that the complex could be more effective in diagnosing leukemia at the early stage. In conclusion, an innovative structure based on aptamer and QDs for leukemia diagnosis was provided. It has the potential to image tumor cells in vitro or in vivo and to realize the early diagnosis of disease. Furthermore, it may be used to provide guidance for clinicians to implement individualized patient therapy. PMID:27375197

  18. Understanding Leukemia

    MedlinePlus

    ... a second cancer, including melanoma, sarcoma, colorectal cancer, lung cancer, basal cell cancer, squamous cell skin cancer or myeloma. {{ See your primary care doctor to keep up with other healthcare needs. Understanding Leukemia I page 21 {{ Talk with family and friends about how ...

  19. Antiproliferative and proapoptotic effects of proteasome inhibitors and their combination with histone deacetylase inhibitors on leukemia cells.

    PubMed

    Fuchs, Ota; Provaznikova, Dana; Marinov, Iuri; Kuzelova, Katerina; Spicka, Ivan

    2009-03-01

    New chemotherapeutic agents are still required to further optimise treatment of leukemia patients. Proteasome inhibition by bortezomib, PR-171 (carfilzomib) and NPI-0052 (salinosporamide A) has been successfully used for the treatment of multiple myeloma and mantle cell lymphoma and is considered also as novel treatment strategy in leukemia. Combination of proteasome inhibitors bortezomib and NPI-0052 induces synergistic anti-multiple myeloma activity both in vitro using multiple myeloma cells and in vivo in a human plasmacytoma xenograft mouse model. Cell death resulting from proteasome inhibition requires caspase activation and increased levels of reactive oxygen species. While bortezomib induces several caspases, NPI-0052 activates predominantly caspase-8-dependent pathway. We studied the effect of bortezomib (10 nM) on DNA synthesis and apoptosis in human acute myeloid cell lines KASUMI-1, ML-1, ML-2 and CTV-1 cells. Bortezomib was potent inhibitor of DNA synthesis in all four types of leukemia cells and induced apoptosis in KASUMI-1, ML-2 and CTV-1 cells but not in ML-1 cells. Other research groups showed that histone deacetylase inhibitors (valproic acid or benzamide derivative MS-275) in combination with NPI-0052 or PR-171 induced greater levels of acute leukemia cell death than in combination with bortezomib. Proteasome inhibition as monotherapy and its combination with many conventional therapies as novel treatment strategies in leukemia are promising. Malignant cells are more sensitive to this treatment than normal hematopoietic cells. PMID:19275578

  20. Good syndrome presenting with CD8+ T-Cell large granular lymphocyte leukemia

    PubMed Central

    Caperton, Caroline; Agrawal, Sudhanshu; Gupta, Sudhir

    2015-01-01

    Good Syndrome is an adult-onset combined immunodeficiency defined by hypogammaglobulinemia, low or absent number of B cells, T cell deficiency and thymic tumor. We have characterized CD8+ T cells from a patient with Good syndrome that presented with CD8+T-cell large granular lymphocytic leukemia (LGL). Characterization of peripheral blood CD8+ T cells revealed that majority of CD8+ T cells were terminally differentiated effector memory phenotype (TEMRA; CD8+CCR7-CD45RA+), and were PD-1high (CD279), ICOSlow (CD278), and granzymehigh. Almost all CD8+ T cells were IFN-γ+. CD8 Treg (CD8+CD183+CCR7+CD45RA-) were decreased. TEMRA phenotype along with CD279high, demonstrates that these are exhausted CD8+ T cells. This phenotype along with CD278low may also explain severe T cell functional deficiency in our patient. In the present patient, T-LGL appears to be a clonal expansion of CD279+granzyme+IFN-γ+CD8+TEMRA cells. To best of our knowledge this is the first case of CD8+T-cell LGL leukemia associated with Good syndrome. PMID:26429871

  1. Abacavir, an anti–HIV-1 drug, targets TDP1-deficient adult T cell leukemia

    PubMed Central

    Tada, Kohei; Kobayashi, Masayuki; Takiuchi, Yoko; Iwai, Fumie; Sakamoto, Takashi; Nagata, Kayoko; Shinohara, Masanobu; Io, Katsuhiro; Shirakawa, Kotaro; Hishizawa, Masakatsu; Shindo, Keisuke; Kadowaki, Norimitsu; Hirota, Kouji; Yamamoto, Junpei; Iwai, Shigenori; Sasanuma, Hiroyuki; Takeda, Shunichi; Takaori-Kondo, Akifumi

    2015-01-01

    Adult T cell leukemia (ATL) is an aggressive T cell malignancy caused by human T cell leukemia virus type 1 (HTLV-1) and has a poor prognosis. We analyzed the cytotoxic effects of various nucleoside analog reverse transcriptase inhibitors (NRTIs) for HIV-1 on ATL cells and found that abacavir potently and selectively kills ATL cells. Although NRTIs have minimal genotoxicities on host cells, the therapeutic concentration of abacavir induced numerous DNA double-strand breaks (DSBs) in the chromosomal DNA of ATL cells. DSBs persisted over time in ATL cells but not in other cell lines, suggesting impaired DNA repair. We found that the reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1), a repair enzyme, is attributable to the cytotoxic effect of abacavir on ATL cells. We also showed that TDP1 removes abacavir from DNA ends in vitro. These results suggest a model in which ATL cells with reduced TDP1 expression are unable to excise abacavir incorporated into genomic DNA, leading to irreparable DSBs. On the basis of the above mechanism, we propose abacavir as a promising chemotherapeutic agent for ATL. PMID:26601161

  2. Constitutive activation of Pim1 kinase is a therapeutic target for adult T-cell leukemia.

    PubMed

    Bellon, Marcia; Lu, Ling; Nicot, Christophe

    2016-05-19

    Human T-cell leukemia virus type 1 (HTLV-1)-associated adult T-cell leukemia and T-cell lymphoma (ATL) are aggressive diseases with poor prognoses, limited therapeutic options, and no curative treatment. In this study, we used a mouse model of ATL and restored expression of the microRNA, miR-124a, to identify in vivo downstream effectors responsible for its tumor-suppressive functions in ATL cells. Our results revealed that STAT3, a direct target of miR-124a, is constitutively activated in HTLV-I-transformed cells and ATL cells, and activating STAT3 mutations were detected in 25.5% of primary ATL patients. Interestingly, we found that the STAT3 downstream kinase effector, Pim1, is constitutively activated in ATL cells. The dependence of ATL cells to Pim1 activity was demonstrated using 2 Pim1 small inhibitors, SMI-4a and AZD1208. These studies indicated that HTLV-I-transformed and ATL cells, but not normal peripheral blood mononuclear cells, are highly sensitive to AZD1208, and the inhibition of Pim1 signaling triggers an apoptotic signal in leukemic cells. Finally, preclinical testing of AZD1208 in a mouse model of ATL resulted in significant prevention of tumor growth in vivo. In conclusion, our studies suggest that constitutive activation of the STAT3-Pim1 pathway represents a novel therapeutic target for the treatment of ATL. PMID:26813676

  3. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  4. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  5. Geometric optics and the "hairy ball theorem"

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Kazachkov, Alexander

    Applications of the hairy ball theorem to the geometrical optics are discussed. When the ideal mirror, topologically equivalent to a sphere, is illuminated at every point, the "hairy ball theorem" prescribes the existence of at least one point at which the incident light will be normally reflected. For the more general case of the surface, topologically equivalent to a sphere, which is both reflecting and refracting the "hairy ball theorem" predicts the existence of at least one point, at which the incident light will be normally reflected and also normally refracted.

  6. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease

    SciTech Connect

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander

    2010-09-28

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  7. Crystal Structures of Inhibitir Complexes of Human T-Cell Leukemia Virus (HTLV-1) Protease

    SciTech Connect

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander

    2010-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  8. Efficient Expression and Rapid Purification of Human T-Cell Leukemia Virus Type 1 Protease

    PubMed Central

    Ding, Y. Shirley; Owen, Sherry M.; Lal, Renu B.; Ikeda, Richard A.

    1998-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncovirus that is clinically associated with adult T-cell leukemia. We report here the construction of a pET19-based expression clone containing HTLV-1 protease fused to a decahistidine-containing leader peptide. The recombinant protein is efficiently expressed in Escherichia coli, and the fusion protein can be easily purified by affinity chromatography. Active mature protease in yields in excess of 3 mg/liter of culture can then be obtained by a novel two-step refolding and autoprocessing procedure. The purified enzyme exhibited Km and Kcat values of 0.3 mM and 0.143 sec−1 at pH 5.3 and was inhibited by pepstatin A. PMID:9525666

  9. Infectious complications of human T cell leukemia/lymphoma virus type I infection.

    PubMed

    Marsh, B J

    1996-07-01

    Infection with human T cell leukemia/lymphoma virus type I (HTLV-I) has been etiologically associated with two diseases: adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. Increasing evidence suggests that HTLV-I infection may be associated with immunosuppression and, as a consequence, affect the risk and expression of several other infectious diseases, of which the best studied are strongyloidiasis, tuberculosis, and leprosy. In strongyloidiasis, coinfection with HTLV-I appears to result in a higher rate of chronic carriage, an increased parasite load, and a risk of more severe infection. In tuberculosis, a decrease in delayed-type hypersensitivity to Mycobacterium tuberculosis has been established, but whether this decrease is clinically significant has yet to be determined. In leprosy, an increased risk of disease is suggested, but the published studies are all too poorly controlled to draw definite conclusions. PMID:8816143

  10. Cytotoxic Indole Alkaloids against Human Leukemia Cell Lines from the Toxic Plant Peganum harmala

    PubMed Central

    Wang, Chunhua; Zhang, Zhenxue; Wang, Yihai; He, Xiangjiu

    2015-01-01

    Bioactivity-guided fractionation was used to determine the cytotoxic alkaloids from the toxic plant Peganum harmala. Two novel indole alkaloids, together with ten known ones, were isolated and identified. The novel alkaloids were elucidated to be 2-(indol-3-yl)ethyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucop