Sample records for leukemia stem cell-like

  1. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  2. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells

    PubMed Central

    Somervaille, Tim C. P.; Matheny, Christina J.; Spencer, Gary J.; Iwasaki, Masayuki; Rinn, John L.; Witten, Daniela M.; Chang, Howard Y.; Shurtleff, Sheila A.; Downing, James R.; Cleary, Michael L.

    2009-01-01

    Summary The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional sub-program more akin to that of embryonic stem cells (ESCs) than adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3 and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when co-expressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells to prognosis in human cancer. PMID:19200802

  3. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Mosna, Federico

    2016-01-01

    Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987

  4. Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia

    PubMed Central

    Dickinson, Anne M.; Norden, Jean; Li, Shuang; Hromadnikova, Ilona; Schmid, Christoph; Schmetzer, Helga; Jochem-Kolb, Hans

    2017-01-01

    The success of hematopoietic stem cell transplantation (HSCT) lies with the ability of the engrafting immune system to remove residual leukemia cells via a graft-versus-leukemia effect (GvL), caused either spontaneously post-HSCT or via donor lymphocyte infusion. GvL effects can also be initiated by allogenic mismatched natural killer cells, antigen-specific T cells, and activated dendritic cells of leukemic origin. The history and further application of this GvL effect and the main mechanisms will be discussed and reviewed in this chapter. PMID:28638379

  5. Oxidative stress in normal hematopoietic stem cells and leukemia.

    PubMed

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  6. Recent advances in acute myeloid leukemia stem cell biology.

    PubMed

    Horton, Sarah J; Huntly, Brian J P

    2012-07-01

    The existence of cancer stem cells has long been postulated, but was proven less than 20 years ago following the demonstration that only a small sub-fraction of leukemic cells from acute myeloid leukemia patients were able to propagate the disease in xenografts. These cells were termed leukemic stem cells since they exist at the apex of a loose hierarchy, possess extensive self-renewal and the ability to undergo limited differentiation into leukemic blasts. Acute myeloid leukemia is a heterogeneous condition at both the phenotypic and molecular level with a variety of distinct genetic alterations giving rise to the disease. Recent studies have highlighted that this heterogeneity extends to the leukemic stem cell, with this dynamic compartment evolving to overcome various selection pressures imposed upon it during disease progression. The result is a complex situation in which multiple pools of leukemic stem cells may exist within individual patients which differ both phenotypically and molecularly. Since leukemic stem cells are thought to be resistant to current chemotherapeutic regimens and mediate disease relapse, their study also has potentially profound clinical implications. Numerous studies have generated important recent advances in the field, including the identification of novel leukemic stem cell-specific cell surface antigens and gene expression signatures. These tools will no doubt prove invaluable for the rational design of targeted therapies in the future.

  7. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells.

    PubMed

    Hartwell, Kimberly A; Miller, Peter G; Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2013-12-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.

  8. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

    PubMed Central

    Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2014-01-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone-marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on-target, via inhibition of HMGCoA reductase. These results illustrate the power of merging physiologically-relevant models with high-throughput screening. PMID:24161946

  9. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity.

    PubMed

    Hope, Kristin J; Jin, Liqing; Dick, John E

    2004-07-01

    Emerging evidence suggests cancer stem cells sustain neoplasms; however, little is understood of the normal cell initially targeted and the resultant cancer stem cells. We show here, by tracking individual human leukemia stem cells (LSCs) in nonobese diabetic-severe combined immunodeficiency mice serially transplanted with acute myeloid leukemia cells, that LSCs are not functionally homogeneous but, like the normal hematopoietic stem cell (HSC) compartment, comprise distinct hierarchically arranged LSC classes. Distinct LSC fates derived from heterogeneous self-renewal potential. Some LSCs emerged only in recipients of serial transplantation, indicating they divided rarely and underwent self-renewal rather than commitment after cell division within primary recipients. Heterogeneity in LSC self-renewal potential supports the hypothesis that they derive from normal HSCs. Furthermore, normal developmental processes are not completely abolished during leukemogenesis. The existence of multiple stem cell classes shows the need for LSC-targeted therapies.

  10. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage

    PubMed Central

    Quek, Lynn; Garnett, Catherine; Karamitros, Dimitris; Stoilova, Bilyana; Doondeea, Jessica; Kennedy, Alison; Metzner, Marlen; Ivey, Adam; Sternberg, Alexander; Hunter, Hannah; Price, Andrew; Virgo, Paul; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Mead, Adam

    2016-01-01

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis. PMID:27377587

  11. [Clinical significance of autologous transplantation with hematopoietic stem cells in leukemia and solid tumors].

    PubMed

    Hinterberger, W; Adler, V; Bauer, K; Haberhauer, G; Habertheuer, K H; Höniger, S; Huber, K; Kier, P; Kittel, E; Ruckser, R

    1995-01-01

    Autologous Transplantation of hematopoietic tissue with frozen hematopoietic stem cells is increasingly used for leukemias and lymphomas, but also for some solid tumors. In the past, autotransplants have been performed with bone marrow as the source of hematopoietic stem cells. Circulating, blood derived hematopoietic stem cells, however, allow safe engraftment of all cell lines after supralethal chemo-radiotherapy. This survey describes the role of autologous stem cell transplantation in disorders that are currently in the center of clinical and scientific interest. This estimation is based on the proportion of protocols dealing with, and centering on, autologous stem cell transplantation in the context of treatment for leukemias and solid tumors ("Oncodisc", "PDQ").

  12. A role for GPx3 in activity of normal and leukemia stem cells

    PubMed Central

    Herault, Olivier; Hope, Kristin J.; Deneault, Eric; Mayotte, Nadine; Chagraoui, Jalila; Wilhelm, Brian T.; Cellot, Sonia; Sauvageau, Martin; Andrade-Navarro, Miguel A.; Hébert, Josée

    2012-01-01

    The determinants of normal and leukemic stem cell self-renewal remain poorly characterized. We report that expression of the reactive oxygen species (ROS) scavenger glutathione peroxidase 3 (GPx3) positively correlates with the frequency of leukemia stem cells (LSCs) in Hoxa9+Meis1-induced leukemias. Compared with a leukemia with a low frequency of LSCs, a leukemia with a high frequency of LSCs showed hypomethylation of the Gpx3 promoter region, and expressed high levels of Gpx3 and low levels of ROS. LSCs and normal hematopoietic stem cells (HSCs) engineered to express Gpx3 short hairpin RNA (shRNA) were much less competitive in vivo than control cells. However, progenitor cell proliferation and differentiation was not affected by Gpx3 shRNA. Consistent with this, HSCs overexpressing Gpx3 were significantly more competitive than control cells in long-term repopulation experiments, and overexpression of the self-renewal genes Prdm16 or Hoxb4 boosted Gpx3 expression. In human primary acute myeloid leukemia samples, GPX3 expression level directly correlated with adverse prognostic outcome, revealing a potential novel target for the eradication of LSCs. PMID:22508837

  13. Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    PubMed Central

    Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.

    2011-01-01

    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548

  14. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells

    PubMed Central

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido

    2016-01-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174

  15. Concise review: preleukemic stem cells: molecular biology and clinical implications of the precursors to leukemia stem cells.

    PubMed

    Pandolfi, Ashley; Barreyro, Laura; Steidl, Ulrich

    2013-02-01

    Recent experimental evidence has shown that acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) arise from transformed immature hematopoietic cells following the accumulation of multiple stepwise genetic and epigenetic changes in hematopoietic stem cells and committed progenitors. The series of transforming events initially gives rise to preleukemic stem cells (pre-LSC), preceding the formation of fully transformed leukemia stem cells (LSC). Despite the established use of poly-chemotherapy, relapse continues to be the most common cause of death in AML and MDS. The therapeutic elimination of all LSC, as well as pre-LSC, which provide a silent reservoir for the re-formation of LSC, will be essential for achieving lasting cures. Conventional sequencing and next-generation genome sequencing have allowed us to describe many of the recurrent mutations in the bulk cell populations in AML and MDS, and recent work has also focused on identifying the initial molecular changes contributing to leukemogenesis. Here we review recent and ongoing advances in understanding the roles of pre-LSC, and the aberrations that lead to pre-LSC formation and subsequent LSC transformation.

  16. Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells

    PubMed Central

    Vu, Ly P.; Prieto, Camila; Amin, Elianna M.; Chhangawala, Sagar; Krivtsov, Andrei; Calvo-Vidal, M. Nieves; Chou, Timothy; Chow, Arthur; Minuesa, Gerard; Park, Sun Mi; Barlowe, Trevor S.; Taggart, James; Tivnan, Patrick; Deering, Raquel P.; Chu, Lisa P; Kwon, Jeong-Ah; Meydan, Cem; Perales-Paton, Javier; Arshi, Arora; Gönen, Mithat; Famulare, Christopher; Patel, Minal; Paietta, Elisabeth; Tallman, Martin S.; Lu, Yuheng; Glass, Jacob; Garret-Bakelman, Francine; Melnick, Ari; Levine, Ross; Al-Shahrour, Fatima; Järås, Marcus; Hacohen, Nir; Hwang, Alexia; Garippa, Ralph; Lengner, Christopher J.; Armstrong, Scott A; Cerchietti, Leandro; Cowley, Glenn S; Root, David; Doench, John; Leslie, Christina; Ebert, Benjamin L; Kharas, Michael G.

    2017-01-01

    The identity of the RNA binding proteins (RBPs) that govern cancer stem cell remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomics analysis of the MSI2 interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia and SYNCRIP was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell gene associated program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. We validated SYNCRIP as a novel RBP that controls the myeloid leukemia stem cell program and propose that targeting these functional complexes might provide a novel therapeutic strategy in leukemia. PMID:28436985

  17. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    PubMed

    Sabnis, Amit J; Cheung, Laurene S; Dail, Monique; Kang, Hio Chung; Santaguida, Marianne; Hermiston, Michelle L; Passegué, Emmanuelle; Shannon, Kevin; Braun, Benjamin S

    2009-03-17

    How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D) expression in a highly restricted population enriched for hematopoietic stem cells (HSCs), but not in common myeloid progenitors. Kras(G12D) HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D) expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D) HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D) mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  18. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect

    PubMed Central

    Cruz, C. Russell; Bollard, Catherine M.

    2015-01-01

    Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113

  19. Targeting Leukemia Stem Cells in the Bone Marrow Niche

    PubMed Central

    Bornhäuser, Martin

    2018-01-01

    The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic. PMID:29466292

  20. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  1. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  2. The emerging roles of Notch signaling in leukemia and stem cells

    PubMed Central

    2013-01-01

    The Notch signaling pathway plays a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and is a highly conserved signaling pathway that regulates normal development in a context- and dose-dependent manner. Dysregulation of Notch signaling has been suggested to be key events in a variety of hematological malignancies. Notch1 signaling appears to be the central oncogenic trigger in T cell acute lymphoblastic leukemia (T-ALL), in which the majority of human malignancies have acquired mutations that lead to constitutive activation of Notch1 signaling. However, emerging evidence unexpectedly demonstrates that Notch signaling can function as a potent tumor suppressor in other forms of leukemia. This minireview will summarize recent advances related to the roles of activated Notch signaling in human lymphocytic leukemia, myeloid leukemia, stem cells and stromal microenvironment, and we will discuss the perspectives of Notch signaling as a potential therapeutic target as well. PMID:24252593

  3. A model with competition between the cell lines in leukemia under treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halanay, A.; Cândea, D.; Rădulescu, R.

    2014-12-10

    The evolution of leukemia is modeled with a delay differential equation model of four cell populations: two populations (healthy and leukemic) ) of stem-like cells involving a larger category consisting of proliferating stem and progenitor cells with self-renew capacity and two populations (healthy and leukemic) of mature cells, considering the competition of healthy vs. leukemic cell populations and three types of division that a stem-like cell can exhibit: self-renew, asymmetric division and differentiation. In the model it is assumed that the treatment acts on the proliferation rate of the leukemic stem cells and on the apoptosis of stem and maturemore » cells. The emphasis in this model is on establishing relevant parameters for chronic and acute manifestations of leukemia. Stability of equilibria is investigated and sufficient conditions for local asymptotic stability will be given using a Lyapunov-Krasovskii functional.« less

  4. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia.

    PubMed

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D; Lutz, Christoph

    2017-09-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. Copyright© 2017 Ferrata Storti Foundation.

  5. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  6. Leukemia Cutis Associated with Secondary Plasma Cell Leukemia.

    PubMed

    DeMartinis, Nicole C; Brown, Megan M; Hinds, Brian R; Cohen, Philip R

    2017-05-09

    Plasma cell leukemia is an uncommon, aggressive variant of leukemia that may occur de novo or in association with multiple myeloma. Leukemia cutis is the cutaneous manifestation of leukemia, and indicates an infiltration of the skin by malignant leukocytes or their precursors. Plasma cell leukemia cutis is a rare clinical presentation of leukemia. We present a man who developed plasma cell leukemia cutis in association with multiple myeloma. Cutaneous nodules developed on his arms and legs 50 days following an autologous stem cell transplant. Histopathologic examination showed CD138-positive nodular aggregates of atypical plasma cells with kappa light chain restriction, similar to the phenotype of his myeloma. In spite of systemic treatment of his underlying disease, he died 25 days after the presentation of leukemia cutis. Pub-Med was searched for the following terms: cutaneous plasmacytomas, leukemia cutis, plasma cell leukemia nodules, plasma cell leukemia cutis, and secondary cutaneous plasmacytoma. Papers were reviewed and appropriate references evaluated. Leukemia cutis in plasma cell leukemia patients is an infrequent occurrence. New skin lesions in patients with plasma cell leukemia should be biopsied for pathology and for tissue cultures to evaluate for cancer or infection, respectively. The diagnosis plasma cell leukemia cutis is associated with a very poor prognosis.

  7. [PML-RARα and p21 are key factors for maintaining acute promyelocytic leukemia stem cells survival].

    PubMed

    Ding, Fei; Li, Jun-Min

    2011-10-01

    Tumor stem/progenitor cells are the cells with the characteristics of self-renewal, differentiating to all the other cell populations within tumor, which are also regarded as the source of tumor relapse, drug-resistance and metastasis. As a subtype of acute myeloid leukemia, acute promyelocytic leukemia (APL) represents the target of therapy due to the good response of the oncogenic protein PML-RARα to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). This review summarizes the latest research results of APL as follows: (1) there probably are two APL stem/progenitor cell populations within APL, and self-renewal and survival of APL stem/progenitor cells highly depend on PML-RARα expression, cell cycle inhibitor p21, self-renewal associated molecules and chemokines; and (2) ATRA and ATO eradicate APL stem/progenitor cells mainly by PML-RARα degradation, FOXO3A activation and the inhibition of self-renewal-associated signaling pathway of sonic hedgehog. These findings are helpful to improve other tumor therapy.

  8. mTORC1 is essential for leukemia propagation but not stem cell self-renewal

    PubMed Central

    Hoshii, Takayuki; Tadokoro, Yuko; Naka, Kazuhito; Ooshio, Takako; Muraguchi, Teruyuki; Sugiyama, Naoyuki; Soga, Tomoyoshi; Araki, Kimi; Yamamura, Ken-ichi; Hirao, Atsushi

    2012-01-01

    Although dysregulation of mTOR complex 1 (mTORC1) promotes leukemogenesis, how mTORC1 affects established leukemia is unclear. We investigated the role of mTORC1 in mouse hematopoiesis using a mouse model of conditional deletion of Raptor, an essential component of mTORC1. Raptor deficiency impaired granulocyte and B cell development but did not alter survival or proliferation of hematopoietic progenitor cells. In a mouse model of acute myeloid leukemia (AML), Raptor deficiency significantly suppressed leukemia progression by causing apoptosis of differentiated, but not undifferentiated, leukemia cells. mTORC1 did not control cell cycle or cell growth in undifferentiated AML cells in vivo. Transplantation of Raptor-deficient undifferentiated AML cells in a limiting dilution revealed that mTORC1 is essential for leukemia initiation. Strikingly, a subset of AML cells with undifferentiated phenotypes survived long-term in the absence of mTORC1 activity. We further demonstrated that the reactivation of mTORC1 in those cells restored their leukemia-initiating capacity. Thus, AML cells lacking mTORC1 activity can self-renew as AML stem cells. Our findings provide mechanistic insight into how residual tumor cells circumvent anticancer therapies and drive tumor recurrence. PMID:22622041

  9. Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia

    PubMed Central

    Fiorcari, Stefania; Martinelli, Silvia; Bulgarelli, Jenny; Audrito, Valentina; Zucchini, Patrizia; Colaci, Elisabetta; Potenza, Leonardo; Narni, Franco; Luppi, Mario; Deaglio, Silvia; Marasca, Roberto; Maffei, Rossana

    2015-01-01

    Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14+ mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14+ monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues. PMID:25398834

  10. The Perceived Threat in Adults with Leukemia Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2013-01-01

    Background: Leukemia and hematopoietic stem cell transplantation (HSCT) create physical, psychological, social, and spiritual distresses in patients. Understanding this threatening situation in adults with leukemia undergoing HSCT will assist health care professionals in providing holistic care to the patients. Objectives: The aim of the present study was exploring the perceived threat in adults with leukemia undergoing HSCT. Patients and Methods: This article is part of a longitudinal qualitative study which used the grounded theory approach and was conducted in 2009-2011. Ten adults with acute leukemia scheduled for HSCT were recruited from the Hematology–Oncology Research Center and Stem Cell Transplantation, Shariati Hospital in Tehran, Iran. A series of pre-transplant and post-transplant in-depth interviews were held in the hospital’s HSCT wards. Totally, 18 interviews were conducted. Three written narratives were also obtained from the participants. The Corbin and Strauss approach was used to analyze the data. Results: Perceived threat was one of the main categories that emerged from the data. This category included four subcategories, "inattention to the signs and symptoms", "doubt and anxiety", "perception of danger and time limitation" and "change of life conditions", which occurred in linear progression over time. Conclusion: Suffering from leukemia and experiencing HSCT are events that are uniquely perceived by patients. This threatening situation can significantly effect perception of patients and cause temporary or permanent alterations in patients' lives. Health care professionals can help these patients by deeper understanding of their experiences and effective interventions. PMID:25414863

  11. Auraptene Attenuates Malignant Properties of Esophageal Stem-Like Cancer Cells.

    PubMed

    Saboor-Maleki, Saffiyeh; Rassouli, Fatemeh B; Matin, Maryam M; Iranshahi, Mehrdad

    2017-08-01

    The high incidence of esophageal squamous cell carcinoma has been reported in selected ethnic populations including North of Iran. Low survival rate of esophageal carcinoma is partially due to the presence of stem-like cancer cells with chemotherapy resistance. In the current study, we aimed to determine the effects of auraptene, an interesting dietary coumarin with various biological activities, on malignant properties of stem-like esophageal squamous cell carcinoma, in terms of sensitivity to anticancer drugs and expression of specific markers. To do so, the half maximal inhibitory concentration values of auraptene, cisplatin, paclitaxel, and 5-fluorouracil were determined on esophageal carcinoma cells (KYSE30 cell line). After administrating combinatorial treatments, including nontoxic concentrations of auraptene + cisplatin, paclitaxel, or 5-fluorouracil, sensitivity of cells to chemical drugs and also induced apoptosis were assessed. In addition, quantitative real-time polymerase chain reaction was used to study changes in the expression of tumor suppressor proteins 53 and 21 ( P53 and P21), cluster of differentiation 44 ( CD44), and B cell-specific Moloney murine leukemia virus integration site 1 ( BMI-1) upon treatments. Results of thiazolyl blue assay revealed that auraptene significantly ( P < .05) increased toxicity of cisplatin, paclitaxel, and 5-fluorouracil in KYSE30 cells, specifically 72 hours after treatment. Conducting an apoptosis assay using flow cytometry also confirmed the synergic effects of auraptene. Results of quantitative real-time polymerase chain reaction revealed significant ( P < .05) upregulation of P53 and P21 upon combinatorial treatments and also downregulation of CD44 and BMI-1 after auraptene administration. Current study provided evidence, for the first time, that auraptene attenuates the properties of esophageal stem-like cancer cells through enhancing sensitivity to chemical agents and reducing the expression of CD44 and BMI-1

  12. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment

    PubMed Central

    Greim, Helmut; Kaden, Debra A.; Larson, Richard A.; Palermo, Christine M.; Rice, Jerry M.; Ross, David; Snyder, Robert

    2014-01-01

    Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells, which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within hematopoietic progenitor cells and cells within the bone marrow niche, may lead to the development of strategies for prevention of occupational and cancer therapy–induced disease. PMID:24495159

  13. Visfatin concentrations in children with leukemia before and after stem cell transplantation.

    PubMed

    Skoczen, Szymon; Tomasik, Przemyslaw J; Gozdzik, Jolanta; Fijorek, Kamil; Krasowska-Kwiecien, Aleksandra; Wiecha, Oktawiusz; Czogala, Wojciech; Dluzniewska, Agnieszka; Sztefko, Krystyna; Starzyk, Jerzy; Siedlar, Maciej

    2014-04-01

    Visfatin (VF) is an adipocytokine that performs many functions, including enhancing cell proliferation and biosynthesis of nicotinamide mononucleotides and dinucleotides. It also seems to be involved in the development of glucose metabolism disturbances. The goal of the study was the determination of VF concentrations in children with leukemia who are treated with stem cell transplantation. VF concentrations were measured in plasma before and after oral glucose tolerance test (OGTT; 60 and 120 minutes) in 22 children with leukemia treated with hematopoietic stem cell transplantation (HSCT) and healthy control subjects (n = 24). The HSCT group was studied twice: before HSCT (22 children) and approximately 6 months after HSCT (12 of 22 children). After fasting, concentrations of glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein, and high-sensitivity C-reactive protein (hsCRP) were determined. Significantly lower (p < 0.05) median values of VF concentrations at all time points in the OGTT were found in pre- HSCT children compared with control subjects. The median VF concentration was significantly higher after HSCT compared with before HSCT. The decrease in VF in leukemic children in complete remission may be caused by myelosuppression and immunosuppression after prolong chemotherapy and is beneficial because of the decrease in its antiapoptotic activity. VF can serve as an additional biochemical marker for remission in patients with leukemia. Normalization of plasma VF concentration after HSCT might be caused by a process of immune reconstitution and prolonged inflammation (e.g., infections, graft-versus-host disease), injury to organs (e.g., lungs, gut, liver), and endocrinology deficiencies. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  14. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

    PubMed Central

    Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P

    2013-01-01

    Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297

  15. Biology and relevance of human acute myeloid leukemia stem cells.

    PubMed

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  16. Biology and Clinical Relevance of Acute Myeloid Leukemia Stem Cells.

    PubMed

    Reinisch, Andreas; Chan, Steven M; Thomas, Daniel; Majeti, Ravindra

    2015-07-01

    Evidence for the cancer stem cell model was first demonstrated in xenotransplanted blood and bone marrow samples from patients with acute myeloid leukemia (AML) almost two decades ago, supporting the concept that a rare clonal and mutated leukemic stem cell (LSC) population is sufficient to drive leukemic growth. The inability to eliminate LSCs with conventional therapies is thought to be the primary cause of disease relapse in AML patients, and as such, novel therapies with the ability to target this population are required to improve patient outcomes. An important step towards this goal is the identification of common immunophenotypic surface markers and biological properties that distinguish LSCs from normal hematopoietic stem and progenitor cells (HSPCs) across AML patients. This work has resulted in the development of a large number of potential LSC-selective therapies that target cell surface molecules, intracellular signaling pathways, and the bone marrow microenvironment. Here, we will review the basic biology, immunophenotypic detection, and clinical relevance of LSCs, as well as emerging biological and small-molecule strategies that either directly target LSCs or indirectly target these cells through modulation of their microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia.

    PubMed

    Zhang, Bin; Nguyen, Le Xuan Truong; Li, Ling; Zhao, Dandan; Kumar, Bijender; Wu, Herman; Lin, Allen; Pellicano, Francesca; Hopcroft, Lisa; Su, Yu-Lin; Copland, Mhairi; Holyoake, Tessa L; Kuo, Calvin J; Bhatia, Ravi; Snyder, David S; Ali, Haris; Stein, Anthony S; Brewer, Casey; Wang, Huafeng; McDonald, Tinisha; Swiderski, Piotr; Troadec, Estelle; Chen, Ching-Cheng; Dorrance, Adrienne; Pullarkat, Vinod; Yuan, Yate-Ching; Perrotti, Danilo; Carlesso, Nadia; Forman, Stephen J; Kortylewski, Marcin; Kuo, Ya-Huei; Marcucci, Guido

    2018-05-01

    Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR-ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR-ABL, which led to inhibition of the RAN-exportin-5-RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR-ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML.

  18. Adult T-cell leukemia/lymphoma with EBV-positive Hodgkin-like cells

    PubMed Central

    Venkataraman, Girish; Berkowitz, Jonathan; Morris, John C.; Janik, John E.; Raffeld, Mark A.; Pittaluga, Stefania

    2011-01-01

    SUMMARY Hodgkin-like cells (HLC) have been described in a variety of non-Hodgkin lymphomas (NHL) including chronic lymphocytic leukemia (CLL) and peripheral T-cell lymphoma (PTCL). There have been rare reports in the Japanese population of human T-cell lymphotrophic virus-1 (HTLV-1)-associated adult T-cell leukemia/lymphoma (ATLL) harboring HLC; however, no similar cases have been described in western patients. We report a 53-year-old African-American man that presented with progressive weakness and lethargy, and was found to have generalized lymphadenopathy and hypercalcemia. A lymph node biopsy showed involvement by ATLL with scattered Epstein-Barr virus (EBV)-positive cells, some of which resembled Hodgkin cells that had a B-cell phenotype, consistent with an Epstein-Barr virus-lymphoproliferative disorder (LPD). The patient had stage 4 disease with bone marrow involvement. In light of the associated B-cell lymphoproliferative process, the patient was treated with six cycles of intensive chemotherapy that targeted both the ATLL and the EBV-LPD that resulted in a complete response. An awareness of the association of EBV-LPD with Hodgkin-like cells in the context of ATLL is necessary to avoid potential misdiagnosis and to aid in therapeutic decisions. PMID:21315416

  19. Derivation and characterization of gut-like structures from embryonic stem cells.

    PubMed

    Yamada, Takatsugu; Nakajima, Yoshiyuki

    2006-01-01

    Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages of all three embryonic germ layers in vitro. The hanging drop culture of ES cell suspension in the absence of leukemia inhibitory factor induces aggregation and differentiation of the cells into simple or cystic embryoid bodies (EBs). After 6 d of hanging drop culture, the resulting EBs are plated onto plastic dishes for the outgrowth culture. At d 21 after outgrowth culture, cell populations of EBs can give rise to three-dimensional gut-like structures that exhibit spontaneous contraction and highly coordinated peristalsis. The gut-like structures have large lumens surrounded by three layers: epithelium, lamina propria, and muscularis. Ganglia are scattered along the periphery, and interstitial cells of Cajal are distributed among the smooth muscle cells. The fundamental process of formation of the in vitro organized gut-like structures is similar to embryonic gastrointestinal development in vivo. The EBs at the 6-d egg-cylinder stage may have the potential to regulate developmental programs associated with cell lineage commitment and provide an appropriate microenvironment to differentiate ES cells into enteric derivatives of all three embryonic germ layers and reproduce the gut organization process in vitro.

  20. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  1. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    PubMed

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  2. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Meifang; Ai, Hongmei; Li, Tao

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreasesmore » Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.« less

  3. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  4. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment

    NASA Astrophysics Data System (ADS)

    Rǎdulescu, I. R.; Cândea, D.; Halanay, A.

    2012-11-01

    A mathematical model for the dynamics of leukemic cells during treatment is introduced. Delay differential equations are used to model cells' evolution and are based on the Mackey-Glass approach, incorporating Goldie-Coldman law. Since resistance is propagated by cells that have the capacity of self-renewal, a population of stem-like cells is studied. Equilibrium points are calculated and their stability properties are investigated.

  5. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer

    PubMed Central

    Chavez-Gonzalez, Antonieta; Bakhshinejad, Babak; Pakravan, Katayoon

    2018-01-01

    Background Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. Conclusions A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy. PMID:27678246

  6. Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia.

    PubMed

    Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R

    2009-07-15

    Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.

  7. Discovery of a stem-like multipotent cell fate.

    PubMed

    Paffhausen, Emily S; Alowais, Yasir; Chao, Cara W; Callihan, Evan C; Creswell, Karen; Bracht, John R

    2018-01-01

    Adipose derived stem cells (ASCs) can be obtained from lipoaspirates and induced in vitro to differentiate into bone, cartilage, and fat. Using this powerful model system we show that after in vitro adipose differentiation a population of cells retain stem-like qualities including multipotency. They are lipid (-), retain the ability to propagate, express two known stem cell markers, and maintain the capacity for trilineage differentiation into chondrocytes, adipocytes, and osteoblasts. However, these cells are not traditional stem cells because gene expression analysis showed an overall expression profile similar to that of adipocytes. In addition to broadening our understanding of cellular multipotency, our work may be particularly relevant to obesity-associated metabolic disorders. The adipose expandability hypothesis proposes that inability to differentiate new adipocytes is a primary cause of metabolic syndrome in obesity, including diabetes and cardiovascular disease. Here we have defined a differentiation-resistant stem-like multipotent cell population that may be involved in regulation of adipose expandability in vivo and may therefore play key roles in the comorbidities of obesity.

  8. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation

    PubMed Central

    Ho, Vincent T.; Vanneman, Matthew; Kim, Haesook; Sasada, Tetsuro; Kang, Yoon Joong; Pasek, Mildred; Cutler, Corey; Koreth, John; Alyea, Edwin; Sarantopoulos, Stefanie; Antin, Joseph H.; Ritz, Jerome; Canning, Christine; Kutok, Jeffery; Mihm, Martin C.; Dranoff, Glenn; Soiffer, Robert

    2009-01-01

    Through an immune-mediated graft-versus-leukemia effect, allogeneic hematopoietic stem cell transplantation (HSCT) affords durable clinical benefits for many patients with hematologic malignancies. Nonetheless, subjects with high-risk acute myeloid leukemia or advanced myelodysplasia often relapse, underscoring the need to intensify tumor immunity within this cohort. In preclinical models, allogeneic HSCT followed by vaccination with irradiated tumor cells engineered to secrete GM-CSF generates a potent antitumor effect without exacerbating the toxicities of graft-versus-host disease (GVHD). To test whether this strategy might be similarly active in humans, we conducted a Phase I clinical trial in which high-risk acute myeloid leukemia or myelodysplasia patients were immunized with irradiated, autologous, GM-CSF-secreting tumor cells early after allogeneic, nonmyeloablative HSCT. Despite the administration of a calcineurin inhibitor as prophylaxis against GVHD, vaccination elicited local and systemic reactions that were qualitatively similar to those previously observed in nontransplanted, immunized solid-tumor patients. While the frequencies of acute and chronic GVHD were not increased, 9 of 10 subjects who completed vaccination achieved durable complete remissions, with a median follow-up of 26 months (range 12–43 months). Six long-term responders showed marked decreases in the levels of soluble NKG2D ligands, and 3 demonstrated normalization of cytotoxic lymphocyte NKG2D expression as a function of treatment. Together, these results establish the safety and immunogenicity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic HSCT, and raise the possibility that this combinatorial immunotherapy might potentiate graft-versus-leukemia in patients. PMID:19717467

  9. Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin M; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2012-01-01

    The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

  10. The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia (AML)

    NASA Astrophysics Data System (ADS)

    Raddatz, Andrew; Triantafillu, Ursula; Kim, Yonghyun (John)

    2015-11-01

    Cancer stem cells (CSCs) have recently been identified as the root cause of tumors generated from cancer cell populations. This is because these CSCs are drug-resistant and have the ability to self-renew and differentiate. Current methods of culturing CSCs require much time and money, so cancer cell culture protocols, which maximize yield of CSCs are needed. It was hypothesized that the quantity of Acute myelogenous leukemia stem cells (LSCs) would increase after applying shear stress to the leukemia cells based on previous studies with breast cancer in bioreactors. The shear stress was applied by pumping the cells through narrow tubing to mimic the in vivo bloodstream environment. In support of the hypothesis, shear stress was found to increase the amount of LSCs in a given leukemia population. This work was supported by NSF REU Site Award 1358991.

  11. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression

    PubMed Central

    Ho, Tzu-Chieh; LaMere, Mark; Stevens, Brett M.; Ashton, John M.; Myers, Jason R.; O’Dwyer, Kristen M.; Liesveld, Jane L.; Mendler, Jason H.; Guzman, Monica; Morrissette, Jennifer D.; Zhao, Jianhua; Wang, Eunice S.; Wetzler, Meir; Jordan, Craig T.

    2016-01-01

    Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered. PMID:27421961

  12. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.

    PubMed

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  13. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells

    NASA Astrophysics Data System (ADS)

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  14. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia.

    PubMed

    Zambetti, Noemi A; Ping, Zhen; Chen, Si; Kenswil, Keane J G; Mylona, Maria A; Sanders, Mathijs A; Hoogenboezem, Remco M; Bindels, Eric M J; Adisty, Maria N; Van Strien, Paulina M H; van der Leije, Cindy S; Westers, Theresia M; Cremers, Eline M P; Milanese, Chiara; Mastroberardino, Pier G; van Leeuwen, Johannes P T M; van der Eerden, Bram C J; Touw, Ivo P; Kuijpers, Taco W; Kanaar, Roland; van de Loosdrecht, Arjan A; Vogl, Thomas; Raaijmakers, Marc H G P

    2016-11-03

    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    PubMed Central

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias

  16. Allogeneic stem cell transplantation for acute myeloid leukemia with del(7q) following untreated chronic lymphocytic leukemia.

    PubMed

    DeFilipp, Zachariah; Huynh, Donny V; Fazal, Salman; Sahovic, Entezam

    2012-01-01

    The development of hematologic malignancy in the presence of chronic lymphocytic leukemia (CLL) is rare. We present a case of acute myeloid leukemia (AML) with del(7q) occurring in a patient with a 4-year history of untreated CLL. Application of flow cytometry and immunohistochemistry allowed for characterization of two distinct coexisting malignant cell populations. After undergoing induction and consolidation chemotherapy, the patient achieved complete remission of AML with the persistence of CLL. Allogeneic transplantation was pursued given his unfavorable cytogenetics. Subsequent matched unrelated donor allogeneic stem cell transplantation resulted in full engraftment and complete remission, with no evidence of AML or CLL. Due to a scarcity of reported cases, insight into treatment and prognosis in cases of concurrent AML and CLL is limited. However, prognosis seems dependent on the chemosensitivity of AML. CLL did not have a detrimental effect on treatment or transplant outcome in our case. This is the first reported case of concomitant de novo AML and CLL to undergo allogeneic transplantation. The patient remained in complete hematologic and cytogenetic remission of both malignancies over a year after transplantation.

  17. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data

    PubMed Central

    Hassane, Duane C.; Guzman, Monica L.; Corbett, Cheryl; Li, Xiaojie; Abboud, Ramzi; Young, Fay; Liesveld, Jane L.; Carroll, Martin

    2008-01-01

    Increasing evidence indicates that malignant stem cells are important for the pathogenesis of acute myelogenous leukemia (AML) and represent a reservoir of cells that drive the development of AML and relapse. Therefore, new treatment regimens are necessary to prevent relapse and improve therapeutic outcomes. Previous studies have shown that the sesquiterpene lactone, parthenolide (PTL), ablates bulk, progenitor, and stem AML cells while causing no appreciable toxicity to normal hematopoietic cells. Thus, PTL must evoke cellular responses capable of mediating AML selective cell death. Given recent advances in chemical genomics such as gene expression-based high-throughput screening (GE-HTS) and the Connectivity Map, we hypothesized that the gene expression signature resulting from treatment of primary AML with PTL could be used to search for similar signatures in publicly available gene expression profiles deposited into the Gene Expression Omnibus (GEO). We therefore devised a broad in silico screen of the GEO database using the PTL gene expression signature as a template and discovered 2 new agents, celastrol and 4-hydroxy-2-nonenal, that effectively eradicate AML at the bulk, progenitor, and stem cell level. These findings suggest the use of multicenter collections of high-throughput data to facilitate discovery of leukemia drugs and drug targets. PMID:18305216

  18. Characterization of stem-like cells in a new astroblastoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells andmore » cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.« less

  19. Evidence of B cell immune responses to acute lymphoblastic leukemia in murine allogeneic hematopoietic stem cell transplantation recipients treated with donor lymphocyte infusion and/or vaccination.

    PubMed

    Mullen, Craig A; Campbell, Andrew; Tkachenko, Olena; Jansson, Johan; Hsu, Yu-Chiao

    2011-02-01

    These experiments explored mechanisms of control of acute lymphoblastic leukemia (ALL) following allogeneic hematopoietic stem cell transplantation using a murine model of MHC-matched, minor histocompatibility antigen-mismatched transplantation. The central hypothesis examined was that addition of active vaccination against leukemia cells would substantially increase the effectiveness of allogeneic donor lymphocyte infusion (DLI) against ALL present in the host after transplantation. Although vaccination did increase the magnitude of type I T cell responses against leukemia cells associated with DLI, it did not lead to substantial improvement in long-term survival. Analysis of immunologic mechanisms of leukemia progression demonstrated that the failure of vaccination was not because of antigen loss in leukemia cells. However, analysis of survival provided surprising findings that, in addition to very modest type I T cell responses, a B cell response that produced antibodies that bind leukemia cells was found in long-term survivors. The risk of death from leukemia was significantly lower in recipients that had higher levels of such antibodies. These studies raise the hypothesis that stimulation of B cell responses after transplantation may provide a novel way to enhance allogeneic graft-versus-leukemia effects associated with transplantation. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  20. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia.

    PubMed

    Liu, Jun; Zhang, Xi; Zhong, Jiang F; Zhang, Cheng

    2017-10-01

    Relapsed/refractory acute lymphoblastic leukemia (ALL) has a low remission rate after chemotherapy, a high relapse rate and poor long-term survival even when allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed. Chimeric antigen receptors redirected T cells (CAR-T cells) can enhance disease remission with a favorable outcome for relapsed/refractory ALL, though some cases quickly relapsed after CAR-T cell treatment. Thus, treatment with CAR-T cells followed by allo-HSCT may be the best way to treat relapsed/refractory ALL. In this review, we first discuss the different types of CAR-T cells. We then discuss the treatment of relapsed/refractory ALL using only CAR-T cells. Finally, we discuss the use of CAR-T cells, followed by allo-HSCT, for the treatment of relapsed/refractory ALL.

  1. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression.

    PubMed

    Ho, Tzu-Chieh; LaMere, Mark; Stevens, Brett M; Ashton, John M; Myers, Jason R; O'Dwyer, Kristen M; Liesveld, Jane L; Mendler, Jason H; Guzman, Monica; Morrissette, Jennifer D; Zhao, Jianhua; Wang, Eunice S; Wetzler, Meir; Jordan, Craig T; Becker, Michael W

    2016-09-29

    Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered. © 2016 by The American Society of Hematology.

  2. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.

    PubMed

    Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo

    2018-01-01

    To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  3. Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells.

    PubMed

    Jang, Ji Eun; Eom, Ju-In; Jeung, Hoi-Kyung; Cheong, June-Won; Lee, Jung Yeon; Kim, Jin Seok; Min, Yoo Hong

    2017-04-03

    Bromodomain and extraterminal domain (BET) inhibitors are promising epigenetic agents for the treatment of various subsets of acute myeloid leukemia (AML). However, the resistance of leukemia stem cells (LSCs) to BET inhibitors remains a major challenge. In this study, we evaluated the mechanisms underlying LSC resistance to the BET inhibitor JQ1. We evaluated the levels of apoptosis and macroautophagy/autophagy induced by JQ1 in LSC-like leukemia cell lines and primary CD34 + CD38 - leukemic blasts obtained from AML cases with normal karyotype without recurrent mutations. JQ1 effectively induced apoptosis in a concentration-dependent manner in JQ1-sensitive AML cells. However, in JQ1-resistant AML LSCs, JQ1 induced little apoptosis and led to upregulation of BECN1/Beclin 1, increased LC3 lipidation, formation of autophagosomes, and downregulation of SQSTM1/p62. Inhibition of autophagy by pharmacological inhibitors or knockdown of BECN1 using specific siRNA enhanced JQ1-induced apoptosis in resistant cells, indicating that prosurvival autophagy occurred in these cells. Independent of MTOR signaling, activation of the AMPK (p-Thr172)-ULK1 (p-Ser555) pathway was found to be associated with JQ1-induced autophagy in resistant cells. AMPK inhibition using the pharmacological inhibitor compound C or by knockdown of PRKAA/AMPKα suppressed autophagy and promoted JQ1-induced apoptosis in AML LSCs. These findings revealed that prosurvival autophagy was one of the mechanisms involved in the resistance of AML LSCs to JQ1. Targeting the AMPK-ULK1 pathway or inhibition of autophagy could be an effective therapeutic strategy for combating resistance to BET inhibitors in AML and other types of cancer.

  4. [Allogeneic stem cell transplantation in the management of acute myeloid leukemia].

    PubMed

    Schmid, Christoph; Kolb, Hans-Jochem

    2007-04-15

    Allogeneic stem cell transplantation (SCT) is the most powerful treatment option for acute myeloid leukemia (AML). However, SCT is also complicated by a high risk for treatment-related morbidity and mortality. The antileukemic effect of SCT is based on the radio-/chemotherapy applied for conditioning, as well as on the allogeneic immune reaction, mediated by immunocompetent donor cells, the graft-versus-leukemia effect. The latter effect is of particular importance in the context of reduced-intensity conditioning regimens, that have enabled us to offer allogeneic SCT to a by far bigger part of patients suffering from AML. The indication for allogeneic SCT is based on the patient's individual risk profile. Biological and clinical characteristics of the leukemia contribute to this risk profile, as do extraleukemic conditions such as age and comorbidity. Allogeneic SCT represents the standard of care for all patients with AML < 65 years of age, who are beyond first complete remission (CR) or who have failed to respond to induction chemotherapy. In first CR, allogeneic SCT is a standard for patients with unfavorable karyotype disease or other risk factors, whereas for patients without specific risk factors it is just an option, in particular within clinical trials. In patients with a favorable leukemic karyotype, allogeneic SCT is usually not performed in first CR. Future developments in the field include transplant strategies specifically designed for biological AML subgroups, as well as the integration of new drugs into transplant regimens.

  5. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    PubMed

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  6. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.

    PubMed

    Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman

    2017-04-01

    Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.

  7. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  8. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    PubMed

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  9. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  10. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells.

    PubMed

    van Rhenen, Anna; van Dongen, Guus A M S; Kelder, Angèle; Rombouts, Elwin J; Feller, Nicole; Moshaver, Bijan; Stigter-van Walsum, Marijke; Zweegman, Sonja; Ossenkoppele, Gert J; Jan Schuurhuis, Gerrit

    2007-10-01

    In CD34(+) acute myeloid leukemia (AML), the malignant stem cells reside in the CD38(-) compartment. We have shown before that the frequency of such CD34(+)CD38(-) cells at diagnosis correlates with minimal residual disease (MRD) frequency after chemotherapy and with survival. Specific targeting of CD34(+)CD38(-) cells might thus offer therapeutic options. Previously, we found that C-type lectin-like molecule-1 (CLL-1) has high expression on the whole blast compartment in the majority of AML cases. We now show that CLL-1 expression is also present on the CD34(+)CD38(-) stem- cell compartment in AML (77/89 patients). The CD34(+)CLL-1(+) population, containing the CD34(+)CD38(-)CLL-1(+) cells, does engraft in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with outgrowth to CLL-1(+) blasts. CLL-1 expression was not different between diagnosis and relapse (n = 9). In remission, both CLL-1(-) normal and CLL-1(+) malignant CD34(+)CD38(-) cells were present. A high CLL-1(+) fraction was associated with quick relapse. CLL-1 expression is completely absent both on CD34(+)CD38(-) cells in normal (n = 11) and in regenerating bone marrow controls (n = 6). This AML stem-cell specificity of the anti-CLL-1 antibody under all conditions of disease and the leukemia-initiating properties of CD34(+)CLL-1(+) cells indicate that anti-CLL-1 antibody enables both AML-specific stem-cell detection and possibly antigen-targeting in future.

  11. Amniotic fluid derived stem cells give rise to neuron-like cells without a further differentiation potential into retina-like cells

    PubMed Central

    Hartmann, K; Raabe, O; Wenisch, S; Arnhold, S

    2013-01-01

    Amniotic fluid contains heterogeneous cell types and has become an interesting source for obtaining fetal stem cells. These stem cells have a high proliferative capacity and a good differentiation potential and may thus be suitable for regenerative medicine. As there is increasing evidence, that these stem cells are also able to be directed into the neural lineage, in our study we investigated the neuronal and glial differentiation potential of these cells, so that they may also be applied to cure degenerative diseases of the retina. Mesenchymal stem cells were isolated from routine prenatal amniocentesis at 15 to 18 weeks of pregnancy of human amniotic fluid and expanded in the cell culture. Cells were cultivated according to standard procedures for mesenchymal stem cells and were differentiated along the neural lineage using various protocols. Furthermore, it was also tried to direct them into cell types of the retina as well as into endothelial cells. Cells of more than 72 amniotic fluid samples were collected and characterized. While after induction neural-like phenotypes could actually be detected, which was confirmed using neural marker proteins such as GFAP and ßIII tubulina further differentiation into retinal like cells could not reliably be shown. These data suggest that amniotic fluid derived cells are an interesting cell source, which may also give rise to neural-like cells. However, a more specific differentiation into neuronal and glial cells could not unequivocally be shown, so that further investigations have to becarried out. PMID:23862099

  12. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia.

    PubMed

    Roeder, Ingo; Herberg, Maria; Horn, Matthias

    2009-04-01

    Previously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population. However, this advantage comes at the price of time-consuming simulations if the systems become large. One example in this respect is the modeling of disease and treatment dynamics in patients with chronic myeloid leukemia (CML), where the realistic number of individual cells to be considered exceeds 10(6). To overcome this deficiency, without losing the representation of the inherent heterogeneity of the stem cell population, we here propose to approximate the ABM by a system of partial differential equations (PDEs). The major benefit of such an approach is its independence from the size of the system. Although this mean field approach includes a number of simplifying assumptions compared to the ABM, it retains the key structure of the model including the "age"-structure of stem cells. We show that the PDE model qualitatively and quantitatively reproduces the results of the agent-based approach.

  13. Adoptive T-cell therapy for Leukemia.

    PubMed

    Garber, Haven R; Mirza, Asma; Mittendorf, Elizabeth A; Alatrash, Gheath

    2014-01-01

    Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We

  14. Tax unleashed: fulminant Tax-positive Adult T-cell Leukemia/Lymphoma after failed allogeneic stem cell transplantation.

    PubMed

    Ghez, David; Renand, Amédée; Lepelletier, Yves; Sibon, David; Suarez, Felipe; Rubio, Marie-Thérèse; Delarue, Richard; Buzyn, Agnès; Beljord, Kheira; Tanaka, Yuetsu; Varet, Bruno; Hermine, Olivier

    2009-12-01

    The human retrovirus HTLV-1 causes Adult T-cell Leukemia/Lymphoma (ATLL), a malignant lymphoproliferative disease of CD4+ T cells of dismal prognosis, in 3-5% of the 20 million infected individuals (Proietti et al.(1) and Bazarbachi et al.(2)). Infection with HTLV-1 represents a prototypical model of virus-mediated oncogenesis by virtue of the viral transactivator Tax, a potent oncogenic protein that exerts pleiotropic effects through its ability to deregulate the transcription of various cellular genes and signal transduction pathways and inhibit DNA repair enzymes, which are critical for T-cell homeostasis and genetic stability (Matsuoka and Jeang(3)) (et Boxus Retrovirology 2009). However, the oncogenic potential of Tax remains a conundrum. Tax protein expression is undetectable using conventional methods in freshly harvested ATLL cells and in non-malignant infected CD4+ T cells (Furukawa et al.(4)) but is up regulated after only a few hours of culture in vitro (Hanon et al.(5)). These observations strongly suggest that a host-derived mechanism is able to either actively repress the transcription of viral proteins in vivo or refrain the emergence of Tax-expressing cells, which would have a growth advantage. We report herein a unique case of CD4+ T-cell leukemia highly expressing Tax following rejection of an allogenic peripheral blood stem cell graft for an HTLV-1 associated lymphoma.

  15. Isolated CNS relapse following stem cell transplantation for juvenile myelomonocytic leukemia.

    PubMed

    Wilson, David B; Michalski, Jeff M; Grossman, William J; Hayashi, Robert J

    2003-11-01

    A 1-year-old girl with juvenile myelomonocytic leukemia (JMML) underwent allogeneic bone marrow transplantation (BMT) from her HLA-matched brother. A few months after BMT she experienced a bone marrow relapse that did not respond to withdrawal of immunosuppression. To enhance the graft-versus-leukemia (GVL) effect, she underwent peripheral stem cell transplantation (PSCT) from the same donor, using a nonmyeloablative conditioning regimen. She achieved clinical remission and developed chronic graft-versus-host disease (GVHD), which was treated with prednisone and cyclosporine A. One year after PSCT she experienced an isolated central nervous system (CNS) relapse. She was treated with intrathecal Ara-C followed by craniospinal irradiation and achieved a third clinical remission. While extramedullary relapses have been described in JMML, this is the first report of a CNS relapse. Based on this case and others in the literature, the authors suggest that newer therapies are changing the natural history of JMML. By manipulating the GVL effect it is possible to achieve a prolonged bone marrow remission, but only at the expense of unmasking the risk of late extramedullary relapse.

  16. Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia

    PubMed Central

    Gribben, John G.; Zahrieh, David; Stephans, Katherine; Bartlett-Pandite, Lini; Alyea, Edwin P.; Fisher, David C.; Freedman, Arnold S.; Mauch, Peter; Schlossman, Robert; Sequist, Lecia V.; Soiffer, Robert J.; Marshall, Blossom; Neuberg, Donna; Ritz, Jerome; Nadler, Lee M.

    2005-01-01

    We report here on the long-term follow-up on 162 patients with high-risk chronic lymphocytic leukemia (CLL) who have undergone hematopoietic stem cell transplantation (SCT) at a single center from 1989 to 1999. Twenty-five patients with human leukocyte antigen (HLA)-matched sibling donors underwent T-cell-depleted allogeneic SCT, and 137 patients without HLA-matched sibling donors underwent autologous SCT. The 100-day mortality was 4% for both groups, but later morbidity and mortality were negatively affected on outcome. Progression-free survival was significantly longer following autologous than allogeneic SCT, but there was no difference in overall survival and no difference in the cumulative incidence of disease recurrence or deaths without recurrence between the 2 groups. At a median follow-up of 6.5 years there is no evidence of a plateau of progression-free survival. The majority of patients treated with donor lymphocyte infusions after relapse responded, demonstrating a significant graft-versus-leukemia effect in CLL. From these findings we have altered our approach for patients with high-risk CLL and are currently exploring the role of related and unrelated allogeneic SCT following reduced-intensity conditioning regimens. PMID:16131571

  17. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells.

    PubMed

    Shi, Ying; Liu, Na; Lai, Weiwei; Yan, Bin; Chen, Ling; Liu, Shouping; Liu, Shuang; Wang, Xiang; Xiao, Desheng; Liu, Xiaoli; Mao, Chao; Jiang, Yiqun; Jia, Jiantao; Liu, Yating; Yang, Rui; Cao, Ya; Tao, Yongguang

    2018-05-28

    Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less

  19. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    PubMed Central

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  20. Strongyloides hyperinfection following hematopoietic stem cell transplant in a patient with HTLV-1-associated T-cell leukemia.

    PubMed

    Alpern, Jonathan D; Arbefeville, Sophie S; Vercellotti, Gregory; Ferrieri, Patricia; Green, Jaime S

    2017-02-01

    Strongyloides stercoralis has the potential to cause accelerated autoinfection in immunocompromised hosts. Screening tests for strongyloidiasis may be falsely negative in the setting of immunosuppression. We report a case of Strongyloides hyperinfection syndrome in a patient with human T-lymphotropic virus type 1-associated T-cell leukemia early after hematopoietic stem cell transplant. The diagnosis was made by stool ova and parasite examination, despite a negative screening enzyme-linked immunosorbent assay. Because of anticipated prolonged neutropenia, an extended course of treatment was utilized. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Stem Cell-Like Differentiation Potentials of Endometrial Side Population Cells as Revealed by a Newly Developed In Vivo Endometrial Stem Cell Assay

    PubMed Central

    Miyazaki, Kaoru; Maruyama, Tetsuo; Masuda, Hirotaka; Yamasaki, Akiko; Uchida, Sayaka; Oda, Hideyuki; Uchida, Hiroshi; Yoshimura, Yasunori

    2012-01-01

    Background Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP), but not endometrial main population cells (EMP), exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche) to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. Methodology/Principal Findings ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom), a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. Conclusions/Significance We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue

  2. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.

    PubMed

    Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven

    2017-06-01

    Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.

  3. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    PubMed Central

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  4. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  5. Very small embryonic-like stem cells: implications in reproductive biology.

    PubMed

    Bhartiya, Deepa; Unni, Sreepoorna; Parte, Seema; Anand, Sandhya

    2013-01-01

    The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  6. Fanconi Anemia Mesenchymal Stromal Cells-Derived Glycerophospholipids Skew Hematopoietic Stem Cell Differentiation Through Toll-Like Receptor Signaling.

    PubMed

    Amarachintha, Surya; Sertorio, Mathieu; Wilson, Andrew; Li, Xiaoli; Pang, Qishen

    2015-11-01

    Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids, and their endogenous inhibitor, 5-(tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells. We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (a) limiting-dilution cobblestone area-forming cell assay revealed that TOFA significantly increased cobblestone colonies in Fanca-/- or Fancd2-/- cocultures compared to untreated cocultures. (b) Competitive repopulating assay using output cells collected from cocultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca-/- or Fancd2-/- cocultures. Furthermore, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation. © 2015 AlphaMed Press.

  7. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Shin; Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp; Takikawa, Tetsuya

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression ofmore » pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.« less

  8. [Outcome of 46 children with refractory leukemia treated with unrelated donor hematopoietic stem cell transplantation].

    PubMed

    Chen, Jing; Luo, Cheng-juan; Jiang, Hua; Luo, Chang-ying; Xue, Hui-liang; Tang, Jing-yan; Pan, Ci; Dong, Lu; Zhou, Min; Ye, Qi-dong; Wang, Yao-ping; Gu, Long-jun

    2010-03-01

    To evaluate the efficacy of matched unrelated donor hematopoietic stem cell transplantation (UDT) and influencing factors in children with refractory leukemia. Retrospective analysis was performed on clinical data of 46 consecutive children received UDT between Nov. 2002 and Dec. 2008. A 12-14 GY fractioned total body irradiation (TBI) was given to children with acute lymphoblastic leukemia (ALL). Busulphan based myeloablative regimen was applied to all the other patients. ATG (Fresenius) 15 - 20 mg/kg + low dose cyclosporine A oral [CSA, 8 - 12 mg/(kg * d) with serum trough levels 150 - 200 ng/ml] +/- methotrexate (without methotrexate for cord blood transplant) were administered as graft versus host disease (GVHD) prophylaxis. Mycophenolate mofetil [MMF, 20 - 30 mg/(kg * d)] was added for 13 CML after Jan 1, 2006 because of more severe GVHD was observed in this group. The median age was 8.0 (2 - 17) years with the median follow up period of 23.5 (0.7 - 85) months. The estimated 3 years overall survival (OS) was 63.0%; 23.9% patients died of transplant related mortality, 13.0% patients died of leukemia relapse. Cytomegalovirus (CMV) infection recurred in 50% patients and hemorrhagic cystitis in 15.2% patients; 33.3% patients developed grade III-IV acute GVHD and 55.6% developed chronic GVHD (13.9% with extensive chronic GVHD). The OS was significantly different between the patients older (n = 20) and younger (n = 26) than 10 years (45.0% vs. 76.9%, P = 0.015) and among the patients with ALL (n = 13), CML (n = 18) and AML (n = 15) (38.4%, 66.7% vs.80.0%, P = 0.034). The OS in patient with high risk leukemia (n = 24) was lower than that in the patient with low risk leukemia (n = 22) (45.8% vs. 81.8%, P = 0.012). Except 8 cord blood transplant the OS of patients with HLA 6/6 high resolution completely matched (n = 16) and 1/6 mismatched (n = 16) bone marrow and peripheral blood stem cell transplants was significantly higher than patients with 2/6 mismatched (n = 6

  9. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    PubMed Central

    Dorantes-Acosta, Elisa; Pelayo, Rosana

    2012-01-01

    Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development. PMID:22852088

  10. Pluripotent stem cell derived hepatocyte like cells and their potential in toxicity screening.

    PubMed

    Greenhough, Sebastian; Medine, Claire N; Hay, David C

    2010-12-30

    Despite considerable progress in modelling human liver toxicity, the requirement still exists for efficient, predictive and cost effective in vitro models to reduce attrition during drug development. Thousands of compounds fail in this process, with hepatotoxicity being one of the significant causes of failure. The cost of clinical studies is substantial, therefore it is essential that toxicological screening is performed early on in the drug development process. Human hepatocytes represent the gold standard model for evaluating drug toxicity, but are a limited resource. Current alternative models are based on immortalised cell lines and animal tissue, but these are limited by poor function, exhibit species variability and show instability in culture. Pluripotent stem cells are an attractive alternative as they are capable of self-renewal and differentiation to all three germ layers, and thereby represent a potentially inexhaustible source of somatic cells. The differentiation of human embryonic stem cells and induced pluripotent stem cells to functional hepatocyte like cells has recently been reported. Further development of this technology could lead to the scalable production of hepatocyte like cells for liver toxicity screening and clinical therapies. Additionally, induced pluripotent stem cell derived hepatocyte like cells may permit in vitro modelling of gene polymorphisms and genetic diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Haploidentical stem cell transplantation for children with high-risk leukemia.

    PubMed

    Palma, Julia; Salas, Lucia; Carrión, Flavio; Sotomayor, Cristián; Catalán, Paula; Paris, Claudia; Turner, Victoria; Jorquera, Hugo; Handgretinger, Rupert; Rivera, Gastón K

    2012-11-01

    The Chilean population is ethnically diverse, and more than 50% of children referred for hematopoietic stem cell transplantation (HSCT) lack a suitable donor. To expand the donor pool, we assessed the feasibility, tolerance, and efficacy of using a haploidentical (HI) donor and a reduced-intensity conditioning regimen for high-risk pediatric leukemia. This study was facilitated by technology transfer from St. Jude Children's Research Hospital over the 2 preceding years. Between March 2006 and April 2009, 10 patients (median age, 9.8 years) received T cell-depleted grafts at Calvo Mackenna Hospital in Santiago. Median cell doses were CD34+: 7.45 × 10(6)/kg (range, 4.00-20.20 × 10(6)/kg); CD3+: 0.88 × 10(5)/kg (0.11-1.35 × 10(5)/kg); and CD56+: 71.30 × 10(6)/kg (31.50-131.80 × 10(6)/kg). Nine patients experienced complete engraftment; six of the nine remain alive and clinically well 13-50 months post-HSCT. Three patients died after bone marrow relapse, while only one died of transplant-related causes. Virus reactivation was the main post-transplant complication: 5/10 had positive CMV PCR but none had CMV disease. One patient developed acute GvHD > grade II and only one had chronic GvHD. HI-HSCT is feasible in our setting, offers a rational treatment option, and expands the donor pool significantly for children with high-risk leukemia in a developing country. This information is especially relevant to other ethnically diverse populations that are poorly represented in international donor registries. Copyright © 2012 Wiley Periodicals, Inc.

  12. Distinct Morphology of Human T-Cell Leukemia Virus Type 1-Like Particles

    PubMed Central

    Maldonado, José O.; Cao, Sheng; Zhang, Wei; Mansky, Louis M.

    2016-01-01

    The Gag polyprotein is the main retroviral structural protein and is essential for the assembly and release of virus particles. In this study, we have analyzed the morphology and Gag stoichiometry of human T-cell leukemia virus type 1 (HTLV-1)-like particles and authentic, mature HTLV-1 particles by using cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission electron microscopy (STEM). HTLV-1-like particles mimicked the morphology of immature authentic HTLV-1 virions. Importantly, we have observed for the first time that the morphology of these virus-like particles (VLPs) has the unique local feature of a flat Gag lattice that does not follow the curvature of the viral membrane, resulting in an enlarged distance between the Gag lattice and the viral membrane. Other morphological features that have been previously observed with other retroviruses include: (1) a Gag lattice with multiple discontinuities; (2) membrane regions associated with the Gag lattice that exhibited a string of bead-like densities at the inner leaflet; and (3) an arrangement of the Gag lattice resembling a railroad track. Measurement of the average size and mass of VLPs and authentic HTLV-1 particles suggested a consistent range of size and Gag copy numbers in these two groups of particles. The unique local flat Gag lattice morphological feature observed suggests that HTLV-1 Gag could be arranged in a lattice structure that is distinct from that of other retroviruses characterized to date. PMID:27187442

  13. Embryonic stem-like cells from rabbit blastocysts cultured with melatonin could differentiate into three germ layers in vitro and in vivo.

    PubMed

    Wei, Ruxue; Zhao, Xueming; Hao, Haisheng; Du, Weihua; Zhu, Huabin

    2016-11-01

    The rabbit is considered an important model animal from which to obtain embryonic stem cells because of the utility of this animal in physiology and reproductive research. Here, we derived rabbit ES-like (rES-like) cells from blastocysts of superovulated Japanese white rabbits using culture medium containing 10 -7  M melatonin, 10 ng/mL basic fibroblast growth factor, and 1,000 IU/mL human leukemia inhibitory factor. This concentration of melatonin had the most significant positive effects on the proliferation inner cell mass-derived cells (improving rates from 19.97% to 34.57%) and the longevity of passaging rES-like cells. Melatonin also enhanced the expression of pluripotent genes-including alkaline phosphatase, Pou5f1, Sox2, Klf4, c-Myc, Nanog, Line28a, and surface marker proteins-in fifth-passage rES-like cells. In vitro, these rES-like cells could spontaneously differentiate into some somatic cells, such as beating cardiomyocytes; formed embryoid bodies; expressed markers of the three germ layers after differentiation; and formed teratomas after injection into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice. Thus, melatonin helped coax ES-like cells from rabbit blastocysts, which raises intriguing questions about the relationship between pluripotency and proliferation in rabbit embryonic stem cells. Mol. Reprod. Dev. 83: 1003-1014, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment.

    PubMed

    Snyder, Robert

    2014-03-01

    Detection, treatment, and prevention of bone marrow diseases have long been the aims of experimental and clinical hematologists and mechanistically oriented toxicologists. Among these diseases is aplastic anemia, which manifests as the cessation of normal blood cell production; the leukemias, in contrast, feature the production of excessive hematologic cancer cells. Both diseases are associated with exposure to either industrial chemicals or cancer chemotherapeutic agents. Studies of hematopoietic bone marrow cells in culture have shown that the generation of circulating blood cells requires the interaction of hematopoietic stem cells (HSCs) with supporting marrow stromal cells; yet, isolation of HSCs from bone destroys the unique morphology of the marrow stroma in which the HSCs reside. Imaging techniques and related studies have made it possible to examine specific niches where HSCs may either initiate differentiation toward mature blood cells or reside in a dormant state awaiting a signal to begin differentiation. HSCs and related cells may be highly vulnerable to the mutagenic or toxic effects of drugs or other chemicals early in these processes. Additional studies are required to determine the mechanisms by which drug or chemical exposure may affect these cells and lead to either depression of bone marrow function or to leukemia. © 2014 New York Academy of Sciences.

  15. Leptin enhances the invasive ability of glioma stem-like cells depending on leptin receptor expression.

    PubMed

    Han, Guosheng; Zhao, Wenyuan; Wang, Laixing; Yue, Zhijian; Zhao, Rui; Li, Yanan; Zhou, Xiaoping; Hu, Xiaowu; Liu, Jianmin

    2014-01-16

    Glioma stem-like cells have been demonstrated to have highly invasive activity, which is the major cause of glioma recurrence after therapy. Leptin plays a role in glioma invasion, however, whether and how leptin contributes to the biological properties of glioma stem-like cells, such as invasion, remains to be explored. In the current study, we aimed to explore the role of leptin during glioma stem-like cells invasion as well as the signaling pathway. We found that glioma stem-like cells exhibited high invasive potential, especially in the presence of leptin, Ob-R coexpressed with CD133 in glioma stem-like cells was showed to be responsible for leptin mediated invasion of glioma stem-like cells. Our results indicated that leptin served as a key intermediary linking the accumulation of excess adipokine to the invasion of glioma stem-like cells, which may be a novel therapeutic target for suppressing tumor invasion and recurrence. © 2013 Published by Elsevier B.V.

  16. Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas.

    PubMed

    Würth, Roberto; Barbieri, Federica; Pattarozzi, Alessandra; Gaudenzi, Germano; Gatto, Federico; Fiaschi, Pietro; Ravetti, Jean-Louis; Zona, Gianluigi; Daga, Antonio; Persani, Luca; Ferone, Diego; Vitale, Giovanni; Florio, Tullio

    2017-09-01

    The presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model. Within pituitary adenomas, we identified rare cell populations expressing stem cell markers but not pituitary hormones; we isolated and expanded in vitro these cells, obtaining fibroblast-free, stem-like cultures from 38 pituitary adenoma samples. These cells grow as spheroids, express stem cell markers (Oct4, Sox2, CD133, and nestin), show sustained in vitro proliferation as compared to primary cultures of differentiated pituitary adenoma cells, and are able to differentiate in hormone-expressing pituitary cells. Besides, pituisphere cells, apparently not tumorigenic in mice, engrafted in zebrafish embryos, inducing pro-angiogenic and invasive responses. Finally, pituitary adenoma stem-like cells express regulatory pituitary receptors (D2R, SSTR2, and SSTR5), whose activation by a dopamine/somatostatin chimeric agonist exerts antiproliferative effects. In conclusion, we provide evidence that human pituitary adenomas contain a subpopulation fulfilling biological and phenotypical signatures of tumor stem cells that may represent novel therapeutic targets for therapy-resistant tumors.

  17. Effects of total body irradiation-based conditioning on allogeneic stem cell transplantation for pediatric acute leukemia: a single-institution study

    PubMed Central

    Park, Jongmoo; Choi, Eun Kyung; Kim, Jong Hoon; Lee, Sang-wook; Song, Si Yeol; Yoon, Sang Min; Kim, Young Seok; Kim, Su Ssan; Park, Jin-hong; Park, Jaehyeon

    2014-01-01

    Purpose To evaluate the effects of total body irradiation (TBI), as a conditioning regimen prior to allogeneic stem cell transplantation (allo-SCT), in pediatric acute leukemia patients. Materials and Methods From January 2001 to December 2011, 28 patients, aged less than 18 years, were treated with TBI-based conditioning for allo-SCT in our institution. Of the 28 patients, 21 patients were diagnosed with acute lymphoblastic leukemia (ALL, 75%) and 7 were diagnosed with acute myeloid leukemia (AML, 25%). TBI was completed 4 days or 1 day before stem cell infusion. Patients underwent radiation therapy with bilateral parallel opposing fields and 6-MV X-rays. The Kaplan-Meier method was used to calculate survival outcomes. Results The 2-year event-free survival and overall survival rates were 66% and 56%, respectively (71.4% and 60.0% in AML patients vs. 64.3% and 52.4% in ALL patients, respectively). Treatment related mortality rate were 25%. Acute and chronic graft-versus-host disease was a major complication; other complications included endocrine dysfunction and pulmonary complications. Common complications from TBI were nausea (89%) and cataracts (7.1%). Conclusion The efficacy and toxicity data in this study of TBI-based conditioning to pediatric acute leukemia patients were comparable with previous studies. However, clinicians need to focus on the acute and chronic complications related to allo-SCT. PMID:25324992

  18. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Allogeneic disparities in immunoglobulin-like transcript 5 induce potent antibody responses in hematopoietic stem cell transplant recipients.

    PubMed

    Pfistershammer, Katharina; Lawitschka, Anita; Klauser, Christoph; Leitner, Judith; Weigl, Roman; Heemskerk, Mirjam H M; Pickl, Winfried F; Majdic, Otto; Böhmig, Georg A; Fischer, Gottfried F; Greinix, Hildegard T; Steinberger, Peter

    2009-09-10

    In hematopoietic stem cell transplant (HSCT) recipients, the recognition of polymorphic antigens by the donor-derived immune system is an important mechanism underlying both graft-versus-host disease and graft-versus-leukemia (GVL) effect. Here we show that a subset of HSCT recipients (13.9%, n = 108) have antibodies directed to surface molecules of dendritic cells. We have used one such serum in conjunction with retroviral expression cloning to identify the highly polymorphic surface molecule immunoglobulin-like transcript 5 (ILT5) as one of the targets of dendritic cell-reactive antibodies. ILT5 reactive antibodies were found in 5.4% of HSCT patients but not in solid organ transplantation recipients, patients with collagen diseases, multiparous women, or polytransfused or healthy persons. We show that ILT5-specific antibodies can mediate killing of ILT5-bearing cells and furthermore demonstrate ILT5 expression in some leukemic cells, indicating that it might be a target for GVL effects. Thus, our results represent the first description of potent allogeneic antibody responses to a non-major histocompatibility complex cell surface molecule in hematopoietic stem cell transplanted patients and warrant further studies to elucidate the role of antibodies to polymorphic cell surface molecules in GVL and graft-versus-host responses.

  20. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant

    PubMed Central

    SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN

    2015-01-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937

  1. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    PubMed

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  2. Metabolic syndrome in long-term survivors of childhood acute leukemia treated without hematopoietic stem cell transplantation: an L.E.A. study.

    PubMed

    Saultier, Paul; Auquier, Pascal; Bertrand, Yves; Vercasson, Camille; Oudin, Claire; Contet, Audrey; Plantaz, Dominique; Poirée, Marilyne; Ducassou, Stéphane; Kanold, Justyna; Tabone, Marie-Dominique; Dalle, Jean-Hugues; Lutz, Patrick; Gandemer, Virginie; Sirvent, Nicolas; Thouvenin, Sandrine; Berbis, Julie; Chambost, Hervé; Baruchel, André; Leverger, Guy; Michel, Gérard

    2016-12-01

    Cardiovascular conditions are serious long-term complications of childhood acute leukemia. However, few studies have investigated the risk of metabolic syndrome, a known predictor of cardiovascular disease, in patients treated without hematopoietic stem cell transplantation. We describe the overall and age-specific prevalence, and the risk factors for metabolic syndrome and its components in the L.E.A. (Leucémie de l'Enfant et de l'Adolescent) French cohort of childhood acute leukemia survivors treated without hematopoietic stem cell transplantation. The study included 650 adult patients (mean age at evaluation: 24.2 years; mean follow-up after leukemia diagnosis: 16.0 years). The prevalence of metabolic syndrome was 6.9% (95% CI 5.1-9.2). The age-specific cumulative prevalence at 20, 25, 30 and 35 years of age was 1.3%, 6.1%, 10.8% and 22.4%, respectively. The prevalence of decreased high-density lipoprotein cholesterol, increased triglycerides, increased fasting glucose, increased blood pressure and increased abdominal circumference was 26.8%, 11.7%, 5.8%, 36.7% and 16.7%, respectively. Risk factors significantly associated with metabolic syndrome in the multivariate analysis were male sex (OR 2.64; 95% CI 1.32-5.29), age at last evaluation (OR 1.10; 95% CI 1.04-1.17) and body mass index at diagnosis (OR 1.15; 95% CI 1.01-1.32). The cumulative steroid dose was not a significant risk factor. Irradiated and non-irradiated patients exhibited different patterns of metabolic abnormalities, with more frequent abdominal obesity in irradiated patients and more frequent hypertension in non-irradiated patients. Survivors of childhood acute leukemia are at risk of metabolic syndrome, even when treated without hematopoietic stem cell transplantation or central nervous system irradiation. A preventive approach with regular screening for cardiovascular risk factors is recommended. clinicaltrials.gov identifier:01756599. Copyright© Ferrata Storti Foundation.

  3. Fanconi anemia mesenchymal stromal cells-derived glycerophospholipids skew hematopoietic stem cell differentiation through Toll-like receptor signaling

    PubMed Central

    Amarachintha, Surya; Sertorio, Mathieu; Wilson, Andrew; Li, Xiaoli; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids and their endogenous inhibitor, 5-(Tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells (HSPCs). We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (1) limiting-dilution CAFC assay revealed that TOFA significantly increased cobblestone colonies in Fanca−/− or Fancd2−/− co-cultures compared to untreated co-cultures. (2) Competitive repopulating assay using output cells collected from co-cultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca−/− or Fancd2−/− co-cultures. Further, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting Glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation. PMID:26212365

  4. Mesenchymal stem cells do not suppress lymphoblastic leukemic cell line proliferation.

    PubMed

    Mousavi Niri, Neda; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Ghaderi, Abbas; Habibagahi, Mojtaba

    2009-12-01

    Several studies have demonstrated the immunosuppresive effects of mesenchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this regard. To investigate if adipose derived MSCs could inhibit Jurkat lymphoblastic leukemia T cell proliferation during coculture. Adherent cells with the ability of cellular growth were isolated from normal adipose tissues. Initial characterization of growing cells by flow cytometry suggested their mesenchymal stem cell characteristics. Cells were maintained in culture and used during third to fifth culture passages. Jurkat or allogeneic peripheral blood mononuclear cells (PBMCs) were labeled with carboxy fluorescein diacetate succinimidyl ester and cocultured with increasing doses of MSCs or MSC culture supernatant. Proliferation of PBMCs or Jurkat cells under these conditions was assessed by flow cytometry after 2 and 3 days of coculture, respectively. Results showed the expression of CD105, CD166 and CD44, and the absence of CD45, CD34 and CD14 on the surface of MSC like cells. Moreover, initial differentiation studies showed the potential of cell differentiation into hepatocytes. Comparison of Jurkat cell proliferation in the presence and absence of MSCs showed no significant difference, with 70% of cells displaying signs of at least one cell division. Similarly, the highest concentration of MSC culture supernatant (50% vol/vol) had no significant effect on Jurkat cell proliferation (p>0.6). The same MSC lots significantly suppressed the allogeneic PHA activated PBMCs under similar culture conditions. Using Jurkat cells as a model of leukemia T cells, our results indicated an uncertainty about the suppressive effect of MSCs and their inhibitory metabolites on tumor or leukemia cell proliferation. Additional systematic studies with MSCs of different sources are needed to fully characterize the immunological properties of MSCs

  5. ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia

    PubMed Central

    Weisberg, Stuart P.; Smith-Raska, Matthew R.; Esquilin, Jose M.; Zhang, Ji; Arenzana, Teresita L.; Lau, Colleen M.; Churchill, Michael; Pan, Haiyan; Klinakis, Apostolos; Dixon, Jack E.; Mirny, Leonid A.; Mukherjee, Siddhartha; Reizis, Boris

    2014-01-01

    Summary Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem cell-related genetic regulator. PMID:24485662

  6. Extracellular Matrix from Periodontal Ligament Cells Could Induce the Differentiation of Induced Pluripotent Stem Cells to Periodontal Ligament Stem Cell-Like Cells.

    PubMed

    Hamano, Sayuri; Tomokiyo, Atsushi; Hasegawa, Daigaku; Yoshida, Shinichiro; Sugii, Hideki; Mitarai, Hiromi; Fujino, Shoko; Wada, Naohisa; Maeda, Hidefumi

    2018-01-15

    The periodontal ligament (PDL) plays an important role in anchoring teeth in the bone socket. Damage to the PDL, such as after severe inflammation, can be treated with a therapeutic strategy that uses stem cells derived from PDL tissue (PDLSCs), a strategy that has received intense scrutiny over the past decade. However, there is an insufficient number of PDLSCs within the PDL for treating such damage. Therefore, we sought to induce the differentiation of induced pluripotent stem (iPS) cells into PDLSCs as an initial step toward PDL therapy. To this end, we first induced iPS cells into neural crest (NC)-like cells. We then captured the p75 neurotrophic receptor-positive cells (iPS-NC cells) and cultured them on an extracellular matrix (ECM) produced by human PDL cells (iPS-NC-PDL cells). These iPS-NC-PDL cells showed reduced expression of embryonic stem cell and NC cell markers as compared with iPS and iPS-NC cells, and enrichment of mesenchymal stem cell markers. The cells also had a higher proliferative capacity, multipotency, and elevated expression of PDL-related markers than iPS-NC cells cultured on fibronectin and laminin (iPS-NC-FL cells) or ECM produced by human skin fibroblast cells (iPS-NC-SF cells). Overall, we present a culture method to produce high number of PDLSC-like cells from iPS cells as a first step toward a strategy for PDL regeneration.

  7. Dendritic Cells Pulsed with Leukemia Cell-Derived Exosomes More Efficiently Induce Antileukemic Immunities

    PubMed Central

    Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo

    2014-01-01

    Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345

  8. Hematopoietic stem cell transplantation for chronic lymphocytic leukemia.

    PubMed

    Gladstone, Douglas E; Fuchs, Ephraim

    2012-03-01

    Although hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many aggressive hematologic malignancies, the role of HSCT in chronic lymphocytic leukemia (CLL) has remained controversial. Now in the era of improved conventional treatment and better prognostication of long-term outcome, a review of autologous and allogeneic HSCT in CLL treatment is warranted. Despite an improved disease-free survival in some patients, multiple, prospective, randomized autologous HSCT CLL trials fail to demonstrate an overall survival benefit as compared to conventional therapy. Allogeneic bone marrow transplantation, although limited by donor availability, can successfully eradicate CLL with adverse prognostic features. In the older CLL patients, nonmyeloablative allogeneic transplants are better tolerated than myeloablative transplants. Nonmyeloablative allogeneic transplants are less effective in heavily diseased burdened patients. Outside of a clinical protocol, autologous HSCT for CLL cannot be justified. Nonmyeloablative allogeneic transplantation should be considered in high-risk populations early in the disease process, when disease burden is most easily controlled. Alternative donor selection using haploidentical donors and posttransplantation cyclophosphamide has the potential to vastly increase the availability of curative therapy in CLL while retaining a low treatment-related toxicity.

  9. Haploidentical hematopoietic stem cell transplant with umbilical cord-derived multipotent mesenchymal cell infusion for the treatment of high-risk acute leukemia in children.

    PubMed

    Zhu, Ling; Wang, Zhidong; Zheng, Xiaoli; Ding, Li; Han, Dongmei; Yan, Hongmin; Guo, Zikuan; Wang, Hengxiang

    2015-05-01

    In this study, 25 children with high-risk acute leukemia received haploidentical hematopoietic stem cell transplant (haplo-HSCT) with co-transfusion of umbilical cord multipotent mesenchymal cells (UC-MSCs). Adverse effects, hematopoietic recovery, complications and outcome were observed during a median follow-up of 12.8 months (range: 3-25 months). Myeloid engraftment was rapid, and the median time to neutrophil and platelet recovery was 15.12 days and 20.08 days, respectively. Eight patients developed grade I skin acute graft-versus-host disease (aGVHD) that responded well to standard steroid therapy. Of note, cytomegalovirus viremia was observed in most patients (23/25 cases). Patients died mainly of leukemia relapse and pulmonary complication. Fourteen patients are currently alive and remain with full donor chimerism at the time of reporting. The present results suggest further clinical trials to testify the effectiveness of UC-MSCs to prevent aGVHD in haplo-HSCT for treating children with high-risk leukemia.

  10. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    PubMed

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  11. HA117 endows HL60 cells with a stem-like signature by inhibiting the degradation of DNMT1 via its ability to down-regulate expression of the GGL domain of RGS6

    PubMed Central

    Li, Shuangshuang; Wu, Huan; Wang, Yi; Li, Xiaoqing; Guo, Yuxia; Liang, Shaoyan

    2017-01-01

    All-trans retinoic acid (ATRA) induces complete remission in almost all patients with acute promyelocytic leukemia (APL) via its ability to induce the in vivo differentiation of APL blasts. However, prolonged ATRA treatment can result in drug resistance. In previous studies, we generated a multi-drug-resistant HL60/ATRA cell line and found it to contain a new drug resistance-related gene segment, HA117. In this study, we demonstrate that ATRA induces multi-drug-resistant subpopulations of HL60 cells with a putative stem-like signature by up-regulating the expression of the new gene segment HA117. Western blot analysis and quantitative real-time PCR demonstrated that HA117 causes alternative splicing of regulator of G-protein signaling 6 (RGS6) and down-regulation of the expression of the GGL domain of RGS6, which plays an important role in DNA methyltransferase 1 (DNMT1) degradation. Moreover, DNMT1 expression was increased in multi-drug resistance HL60/ATRA cells. Knockdown of HA117 restored expression of the GGL domain and blocked DNMT1 expression. Moreover, resistant cells displayed a putative stem-like signature with increased expression of cancer steam cell markers CD133 and CD123. The stem cell marker, Nanog, was significantly up-regulated. In conclusion, our study shows that HA117 potentially promotes the stem-like signature of the HL60/ATRA cell line by inhibiting by the ubiquitination and degradation of DNMT1 and by down-regulating the expression of the GGL domain of RGS6. These results throw light on the cellular events associated with the ATRA-induced multi-drug resistance phenotype in acute leukemia. PMID:28665981

  12. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    PubMed

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  13. Generation of Mesenchymal-Like Stem Cells From Urine in Pediatric Patients.

    PubMed

    He, W; Zhu, W; Cao, Q; Shen, Y; Zhou, Q; Yu, P; Liu, X; Ma, J; Li, Y; Hong, K

    2016-01-01

    Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine. Traditionally, the procedures of MSC isolation are usually invasive and time-consuming. Urine is merely a body waste, and recent studies have suggested that urine represents an alternative source of stem cells. We, therefore, determined whether the possibility of isolating mesenchymal-like stem cells was practical from human urine. A total of 16 urine samples were collected from pediatric patients. Urine-derived cells were isolated, expanded, and identified for specific cell surface markers using flow cytometry. Cell morphology was observed by microscopy. Osteogenic and adipogenic differentiation potential were determinded by culturing cells in specific induction medium, and assessed by alkaline phosphatase and oil red O stainings, respectively. Clones were established and passaged successfully from primary cultures of urine cells. Cultured urine-derived cells at passage 3 were fusiform and arranged with certain directionality. Urine-derived cells at passage 5 displayed expressions of cell surface markers (CD29, CD105, CD166, CD90, and CD13). There was no expression of the general hematopoietic cell markers (CD45, CD34, and HLA-DR). Under in vitro induction conditions, urine-derived cells at passage 5 were able to differentiate into osteoblasts, but not adipocytes. Urine may be a noninvasive source for mesenchymal-like stem cells. These cells could potentially provide a new source of autologous stem cells for regenerative medicine and cell therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells

    PubMed Central

    Naudin, Cécile; Hattabi, Aurore; Michelet, Fabio; Miri-Nezhad, Ayda; Benyoucef, Aissa; Pflumio, Françoise; Guillonneau, François; Fichelson, Serge; Vigon, Isabelle; Dusanter-Fourt, Isabelle

    2017-01-01

    RNA-binding proteins (RBPs) have emerged as important regulators of invertebrate adult stem cells, but their activities remain poorly appreciated in mammals. Using a short hairpin RNA strategy, we demonstrate here that the 2 mammalian RBPs, PUMILIO (PUM)1 and PUM2, members of the PUF family of posttranscriptional regulators, are essential for hematopoietic stem/progenitor cell (HSPC) proliferation and survival in vitro and in vivo upon reconstitution assays. Moreover, we found that PUM1/2 sustain myeloid leukemic cell growth. Through a proteomic approach, we identified the FOXP1 transcription factor as a new target of PUM1/2. Contrary to its canonical repressive activity, PUM1/2 rather promote FOXP1 expression by a direct binding to 2 canonical PUM responsive elements present in the FOXP1-3′ untranslated region (UTR). Expression of FOXP1 strongly correlates with PUM1 and PUM2 levels in primary HSPCs and myeloid leukemia cells. We demonstrate that FOXP1 by itself supports HSPC and leukemic cell growth, thus mimicking PUM activities. Mechanistically, FOXP1 represses the expression of the p21−CIP1 and p27−KIP1 cell cycle inhibitors. Enforced FOXP1 expression reverses shPUM antiproliferative and proapoptotic activities. Altogether, our results reveal a novel regulatory pathway, underscoring a previously unknown and interconnected key role of PUM1/2 and FOXP1 in regulating normal HSPC and leukemic cell growth. PMID:28232582

  15. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells.

    PubMed

    Conti, Anastasia; Rota, Federica; Ragni, Enrico; Favero, Chiara; Motta, Valeria; Lazzari, Lorenza; Bollati, Valentina; Fustinoni, Silvia; Dieci, Giorgio

    2016-06-10

    Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    PubMed

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  17. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  18. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  19. The Total Body Irradiation Schedule Affects Acute Leukemia Relapse After Matched T Cell–Depleted Hematopoietic Stem Cell Transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristei, Cynthia, E-mail: cynthia.aristei@unipg.it; Carotti, Alessandra; Palazzari, Elisa

    Purpose: We sought to determine whether the total body irradiation (TBI) schedule affected outcome in patients with acute leukemia in complete remission who received T cell–depleted allogeneic hematopoietic stem cell transplantation from HLA identical siblings. Methods and Materials: The study recruited 55 patients (median age, 48 years; age range, 20-66 years; 30 men and 25 women; 34 with acute myeloid leukemia and 21 with acute lymphoid leukemia). Hyperfractionated TBI (HTBI) (1.2 Gy thrice daily for 4 days [for a total dose of 14.4 Gy] from day −12 to day −9) was administered to 29 patients. Single-dose TBI (STBI) (8 Gy, at a median dose rate of 10.7 cGy/minmore » on day −9) was given to 26 patients. Results: All patients achieved primary, sustained engraftment with full donor-type chimerism. At 10 years, the overall cumulative incidence of transplant-related mortality was 11% (SE, ±0.1%). It was 7% (SE, ±0.2%) after HTBI and 15% (SE, ±0.5%) after STBI (P=.3). The overall cumulative incidence of relapse was 33% (SE, ±0.5). It was 13% (SE, ±0.5%) after HTBI and 46% (SE, ±1%) after STBI (P=.02). The overall probability of disease-free survival (DFS) was 59% (SE, ±7%). It was 67% (SE, ±0.84%) after HTBI and 37% (SE, ±1.4%) after STBI (P=.01). Multivariate analyses showed the TBI schedule was the only risk factor that significantly affected relapse and DFS (P=.01 and P=.03, respectively). Conclusions: In patients with acute leukemia, HTBI is more efficacious than STBI in eradicating minimal residual disease after HLA-matched T cell–depleted hematopoietic stem cell transplantation, thus affecting DFS.« less

  20. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  1. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling

    PubMed Central

    Yang, Jian; Gao, Tian; Simões, Bruno M.; Eyre, Rachel; Guo, Weichun; Clarke, Robert B.

    2016-01-01

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance. PMID:27102300

  2. Fludarabine Phosphate and Total-Body Irradiation Before Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Leukemia

    ClinicalTrials.gov

    2017-12-05

    B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  3. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.

    PubMed

    Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui

    2018-01-10

    Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.

  4. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  5. Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis

    PubMed Central

    Schwede, Matthew; Spentzos, Dimitrios; Bentink, Stefan; Hofmann, Oliver; Haibe-Kains, Benjamin; Harrington, David; Quackenbush, John; Culhane, Aedín C.

    2013-01-01

    Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable

  6. Leukemia cell-rhabdovirus vaccine: personalized immunotherapy for acute lymphoblastic leukemia.

    PubMed

    Conrad, David P; Tsang, Jovian; Maclean, Meaghan; Diallo, Jean-Simon; Le Boeuf, Fabrice; Lemay, Chantal G; Falls, Theresa J; Parato, Kelley A; Bell, John C; Atkins, Harold L

    2013-07-15

    Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.

  7. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL.

    PubMed

    Fransecky, L; Neumann, M; Heesch, S; Schlee, C; Ortiz-Tanchez, J; Heller, S; Mossner, M; Schwartz, S; Mochmann, L H; Isaakidis, K; Bastian, L; Kees, U R; Herold, T; Spiekermann, K; Gökbuget, N; Baldus, C D

    2016-09-22

    . Hypomethylating agents induced reversal of GATA3 silencing, and gene expression profiling revealed downregulation of hematopoietic stem cell genes and upregulation of T cell differentiation. We propose GATA3 low ETP-ALL as a novel stem cell-like leukemia with implications for the use of myeloid-derived therapies.

  8. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase.

    PubMed

    Pandey, Puspa R; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C; Watabe, Kounosuke

    2011-11-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24(-)/CD44(+)/ESA(+)) that were isolated from both ER+ and ER- breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.

  9. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase

    PubMed Central

    Pandey, Puspa R.; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K.; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C.; Watabe, Kounosuke

    2012-01-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, we examined the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24−/CD44+/ESA+) that were isolated from both ER+ and ER− breast cancer cell lines. We found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, our results indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol. PMID:21188630

  10. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri.

    PubMed

    Feng, Dingqing; Peng, Cheng; Li, Cairong; Zhou, Ying; Li, Min; Ling, Bin; Wei, Haiming; Tian, Zhigang

    2009-11-01

    Like many other solid tumors, cervical cancer contains a heterogeneous population of cancer cells. Several investigators have identified putative stem cells from solid tumors and cancer cell lines via the capacity to self renew and drive tumor formation. The aim of this study was to identify and characterize a cancer stem-like cell population from primary carcinoma of the cervix uteri. Cervical carcinoma from 19 patients staged I-II following International Federation of Gynecology and Obstetrics (FIGO) criteria were disaggregated and subjected to growth conditions selective for stem cells. Eight of nineteen tumor-derived cultures encompassed stem-like cells capable of self-renewal, extensive proliferation as clonal non-adherent spherical clusters. Cell markers of spheroid were identified as CD44+CK17+. Cell survival assays showed the sphere-forming cells were only 48% inhibited by doxorubicin whereas 78% inhibited by paclitaxel. Chemo-resistance may partly attribute to the exclusive expression of ABC transporter. To investigate the tumorigenicity of these stem-like cells, xenoengraftment of 10(5) dissociated spheroid cells allowed full recapitulation of the original tumor, whereas the same amount of tumor cells without non-adherent spheroid selection remained non-tumorigenic. Stemness properties of these spheroid cells were further established by reverse transcription-PCR and Western blotting, demonstrating the expression of embryonic and adult stemness-related genes (Oct-4, Piwil2, C-myc, Stat3 and Sox2). Based on these findings, we assert that cervical cancer contain a subpopulation of tumor initiating cells with stem-like properties, thus facilitating the approach to therapeutic strategies aimed at eradicating the tumorigenic subpopulation within cervical cancer.

  11. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less

  12. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    PubMed

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  13. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Hyunju; Kim, Ilsoo; Choi, Heon-Jin; Kim, So Yeon; Yang, Eun Gyeong

    2015-10-01

    The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent.The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal

  14. Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells

    PubMed Central

    Wang, Jueqiong; Lu, Liu; Kok, Chung H.; Saunders, Verity A.; Goyne, Jarrad M.; Dang, Phuong; Leclercq, Tamara M.; Hughes, Timothy P.; White, Deborah L.

    2017-01-01

    Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to BCR-ABL kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; P<0.0001), suggesting that peroxisome proliferator-activated receptor γ activation has a negative impact on the intracellular uptake of imatinib and consequent BCR-ABL kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor γ activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor γ agonist pioglitazone was reported to act synergistically with imatinib, targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in

  15. Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.

    PubMed

    Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.

  16. Intravenous busulfan for autologous stem cell transplantation in adult patients with acute myeloid leukemia: a survey of 952 patients on behalf of the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation

    PubMed Central

    Nagler, Arnon; Labopin, Myriam; Gorin, Norbert-Claude; Ferrara, Felicetto; Sanz, Miguel A; Wu, Depei; Gomez, Antonio Torres; Lapusan, Simona; Irrera, Giuseppe; Guimaraes, Jose E; Sousa, Aida Botelho; Carella, Angelo M.; Vey, Norbert; Arcese, William; Shimoni, Avichai; Berger, Raanan; Rocha, Vanderson; Mohty, Mohamad

    2014-01-01

    Oral busulfan is the historical backbone of the busulfan+cyclophosphamide regimen for autologous stem cell transplantation. However intravenous busulfan has more predictable pharmacokinetics and less toxicity than oral busulfan; we, therefore, retrospectively analyzed data from 952 patients with acute myeloid leukemia who received intravenous busulfan for autologous stem cell transplantation. Most patients were male (n=531, 56%), and the median age at transplantation was 50.5 years. Two-year overall survival, leukemia-free survival, and relapse incidence were 67±2%, 53±2%, and 40±2%, respectively. The non-relapse mortality rate at 2 years was 7±1%. Five patients died from veno-occlusive disease. Overall leukemia-free survival and relapse incidence at 2 years did not differ significantly between the 815 patients transplanted in first complete remission (52±2% and 40±2%, respectively) and the 137 patients transplanted in second complete remission (58±5% and 35±5%, respectively). Cytogenetic risk classification and age were significant prognostic factors: the 2-year leukemia-free survival was 63±4% in patients with good risk cytogenetics, 52±3% in those with intermediate risk cytogenetics, and 37 ± 10% in those with poor risk cytogenetics (P=0.01); patients ≤50 years old had better overall survival (77±2% versus 56±3%; P<0.001), leukemia-free survival (61±3% versus 45±3%; P<0.001), relapse incidence (35±2% versus 45±3%; P<0.005), and non-relapse mortality (4±1% versus 10±2%; P<0.001) than older patients. The combination of intravenous busulfan and high-dose melphalan was associated with the best overall survival (75±4%). Our results suggest that the use of intravenous busulfan simplifies the autograft procedure and confirm the usefulness of autologous stem cell transplantation in acute myeloid leukemia. As in allogeneic transplantation, veno-occlusive disease is an uncommon complication after an autograft using intravenous busulfan. PMID:24816236

  17. The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients.

    PubMed

    Hoang, Van T; Buss, Eike C; Wang, Wenwen; Hoffmann, Isabel; Raffel, Simon; Zepeda-Moreno, Abraham; Baran, Natalia; Wuchter, Patrick; Eckstein, Volker; Trumpp, Andreas; Jauch, Anna; Ho, Anthony D; Lutz, Christoph

    2015-08-01

    To understand the precise disease driving mechanisms in acute myeloid leukemia (AML), comparison of patient matched hematopoietic stem cells (HSC) and leukemia stem cells (LSC) is essential. In this analysis, we have examined the value of aldehyde dehydrogenase (ALDH) activity in combination with CD34 expression for the separation of HSC from LSC in 104 patients with de novo AML. The majority of AML patients (80 out of 104) had low percentages of cells with high ALDH activity (ALDH(+) cells; <1.9%; ALDH-rare AML), whereas 24 patients had relatively numerous ALDH(+) cells (≥1.9%; ALDH-numerous AML). In patients with ALDH-rare AML, normal HSC could be separated by their CD34(+) ALDH(+) phenotype, whereas LSC were exclusively detected among CD34(+) ALDH(-) cells. For patients with ALDH-numerous AML, the CD34(+) ALDH(+) subset consisted mainly of LSC and separation from HSC was not feasible. Functional analyses further showed that ALDH(+) cells from ALDH-numerous AML were quiescent, refractory to ARA-C treatment and capable of leukemic engraftment in a xenogenic mouse transplantation model. Clinically, resistance to chemotherapy and poor long-term outcome were also characteristic for patients with ALDH-numerous AML providing an additional risk-stratification tool. The difference in spectrum and relevance of ALDH activity in the putative LSC populations demonstrates, in addition to phenotypic and genetic, also functional heterogeneity of leukemic cells and suggests divergent roles for ALDH activity in normal HSC versus LSC. By acknowledging these differences our study provides a new and useful tool for prospective identification of AML cases in which separation of HSC from LSC is possible. © 2014 UICC.

  18. Selective T-Cell Depletion to Reduce GVHD (Patients) Receiving Stem Cell Tx to Treat Leukemia, Lymphoma or MDS

    ClinicalTrials.gov

    2016-09-21

    Graft vs Host Disease; Myelodysplastic Syndromes; Leukemia; Leukemia, Myeloid; Leukemia, Myelomonocytic, Chronic; Leukemia, Lymphocytic; Lymphoma; Lymphoma, Mantle-cell; Lymphoma, Non-Hodgkin; Hodgkin Disease

  19. Lymphomatoid hypersensitivity reaction to levofloxacin during autologous stem cell transplantation: a potential diagnostic pitfall in patients treated for lymphoma or leukemia.

    PubMed

    Esparza, Edward M; Takeshita, Junko; George, Evan

    2011-01-01

    Drug-associated cutaneous lymphomatoid hypersensitivity reactions are rare eruptions that can clinically and microscopically mimic a bona fide lymphomatous process. Clinically, the appearance ranges from papulosquamous to purpuric. Histopathologically, these reactions simulate a wide variety of lymphoma subtypes; the most frequently reported examples resemble mycosis fungoides. We report a 61-year-old female who developed a purpuric eruption prior to engraftment of an autologous hematopoietic stem cell transplant for stage IV mantle cell lymphoma. Skin biopsies showed a superficial perivascular and interstitial infiltrate of large, immature-appearing mononuclear cells associated with spongiosis, papillary dermal edema and erythrocyte extravasation. The cells were immunoreactive for T-cell markers and lacked B-cell marker expression, excluding recurrence of the underlying mantle cell lymphoma as a diagnostic possibility. The cutaneous eruption was temporally linked to levofloxacin administration and resolved after discontinuation of this medication. This is the first report of a lymphomatoid hypersensitivity reaction associated with fluoroquinolone use. The histopathologic features presented in this paper underscore the potential for misdiagnosis of such lesions as lymphoma or acute myeloid leukemia, particularly in the setting of hematopoietic stem cell transplantation for underlying lymphoma or leukemia. Clinical correlation, morphologic comparison to the original malignancy and immunohistochemical studies aid the dermatopathologist in rendering the correct diagnosis. Copyright © 2010 John Wiley & Sons A/S.

  20. Metabolic enzymes: key modulators of functionality in cancer stem-like cells.

    PubMed

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-02-21

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.

  1. B cell markers in Ph1-positive acute lymphoblastic leukemia.

    PubMed

    Alimena, G; De Rossi, G; Gastaldi, R; Guglielmi, C; Mandelli, F

    1980-01-01

    A case of acute lymphoblastic leukemia (ALL) where the blast cells had B cell markers and displayed the presence of a typical Ph1 chromosome, originated by a standard t (9;22) translocation, is reported. Cytological and clinical aspects during the entire course of the disease were consistent with the diagnosis of ALL. Evidence of differentiation along a well-defined lymphoid cell line in a Ph1-positive cell confirms the presence of the Ph1 chromosome in conditions other than chronic granulocytic leukemia and shows that it possibly does not occur in an exclusively undifferentiated totipotent stem cell.

  2. Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disease in Japan.

    PubMed

    Sato, Emiko; Ohga, Shouichi; Kuroda, Hiroshi; Yoshiba, Fumiaki; Nishimura, Miki; Nagasawa, Masayuki; Inoue, Masami; Kawa, Keisei

    2008-09-01

    Epstein-Barr virus (EBV)-associated T/NK-cell lymphoproliferative disease (LPD) has been linked to several different disorders. Its prognosis is generally poor and a treatment strategy has yet to be established. There are reports, however, that hematopoietic stem cell transplantation (HSCT) can cure this disease. To clarify the current situation regarding allogeneic hematopoietic stem cell transplantation (allo-HSCT) for EBV-associated T/NK-LPD, a nationwide survey was performed in Japan. Data for 74 patients were collected. There were 42 cases of chronic active EBV infection (CAEBV), 10 cases of EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), and 22 cases of EBV-associated lymphoma/leukemia (EBV-lymphoma/leukemia). Of those with CAEBV, 54% had the EBV-infected T-cell type and 59% with EBV-lymphoma/leukemia had the EBV-infected NK-cell type. Most patients with EBV-HLH and EBV-lymphoma/leukemia received allo-HSCT within 1 year after onset compared to only 14% of patients with CAEBV. The event-free survival (EFS) rate following allo-HSCT was 0.561 +/- 0.086 for CAEBV, 0.614 +/- 0.186 for EBV-HLH, and 0.309 +/- 0.107 for EBV-lymphoma/leukemia. The EFS of allo-HSCT with conventional conditioning was 0.488 +/- 0.074 and with reduced-intensity conditioning was 0.563 +/- 0.124. Thus, in a substantial number of cases, EBV-associated T/NK-LPD can be cured by either allogeneic conventional stem cell transplantation or reduced-intensity stem cell transplantation. Copyright 2008 Wiley-Liss, Inc.

  3. Induction of differentiation of human embryonic stem cells into functional hair-cell-like cells in the absence of stromal cells.

    PubMed

    Ding, Jie; Tang, Zihua; Chen, Jiarong; Shi, Haosong; Chen, Jianling; Wang, Cuicui; Zhang, Cui; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-12-01

    Sensorineural hearing loss and vestibular dysfunction have become the most common forms of sensory defects. Stem cell-based therapeutic strategies for curing hearing loss are being developed. Several attempts to develop hair cells by using chicken utricle stromal cells as feeder cells have resulted in phenotypic conversion of stem cells into inner ear hair-cell-like cells. Here, we induced the differentiation of human embryonic stem cells (hESCs) into otic epithelial progenitors (OEPs), and further induced the differentiation of OEPs into hair-cell-like cells using different substrates. Our results showed that OEPs cultured on the chicken utricle stromal cells with the induction medium could differentiate into hair-cell-like cells with stereociliary bundles. Co-culture with stromal cells, however, may be problematic for subsequent examination of the induced hair-cell-like cells. In order to avoid the interference from stromal cells, we cultured OEPs on laminin with different induction media and examined the effects of the induction medium on the differentiation potentials of OEPs into hair-cell-like cells. The results revealed that the culture of OEPs on laminin with the conditioned medium from chicken utricle stromal cells supplemented with EGF and all-trans retinoic acid (RA) could promote the organization of cells into epithelial clusters displaying hair-cell-like cells with stereociliary bundles. These cells also displayed the expected electrophysiological properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Comparison of Donor Sources in Hematopoietic Stem Cell Transplantation for Childhood Acute Leukemia: A Nationwide Retrospective Study.

    PubMed

    Sakaguchi, Hirotoshi; Watanabe, Nobuhiro; Matsumoto, Kimikazu; Yabe, Hiromasa; Kato, Shunichi; Ogawa, Atsushi; Inagaki, Jiro; Goto, Hiroaki; Koh, Katsuyoshi; Yoshida, Nao; Kato, Keisuke; Cho, Yuko; Kosaka, Yoshiyuki; Takahashi, Yoshiyuki; Inoue, Masami; Kato, Koji; Atsuta, Yoshiko; Miyamura, Koichi

    2016-12-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the best therapeutic option for childhood high-risk acute leukemia. However, which donor source is optimal for children lacking an identical sibling remains unclear. To evaluate the clinical impact of donor source on allo-HSCT in childhood acute leukemia, we analyzed data from 577 children who underwent allo-HSCT after a myeloablative regimen during first or second complete remission from 2005 to 2012, using registry data of the Japan Society for Hematopoietic Cell Transplantation, and we compared outcomes of 7/8 to 8/8 HLA allelic-matched unrelated bone marrow transplantation (UR-BMT, n = 218) and 4/6 to 6/6 HLA allelic-matched unrelated cord blood transplantation (UR-CBT, n = 200) to those of HLA-identical related bone marrow transplantation (ID-BMT, n = 159). The median follow-up of survivors was 40.0 months. Three-year overall survival (OS) and leukemia-free survival (LFS) rates for ID-BMT, UR-BMT, and UR-CBT were 74.8% and 69.0%, 75.0% and 69.6%, and 71.8% and 63.8%, respectively. The multivariate analysis demonstrated that OS and LFS for the 3 groups are comparable, although UR-CBT carries a greater risk of nonrelapse mortality (hazard ratio, 2.20; P = .03, compared to ID-BMT) in the myeloablative setting for childhood high-risk acute leukemia. Copyright © 2016 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.

    PubMed

    Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel

    2013-05-01

    The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.

  6. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  7. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced

  8. MHC class-I associated phosphopeptides are the targets of memory-like immunity in leukemia

    PubMed Central

    Cobbold, Mark; De La Peña, Hugo; Norris, Andrew; Polefrone, Joy; Qian, Jie; English, A. Michelle; Cummings, Kara; Penny, Sarah; Turner, James E.; Cottine, Jennifer; Abelin, Jennifer G; Malaker, Stacy A; Zarling, Angela L; Huang, Hsing-Wen; Goodyear, Oliver; Freeman, Sylvie; Shabanowitz, Jeffrey; Pratt, Guy; Craddock, Charles; Williams, Michael E; Hunt, Donald F; Engelhard, Victor H

    2014-01-01

    Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.. PMID:24048523

  9. Characteristics of Notch2(+) pancreatic cancer stem-like cells and the relationship with centroacinar cells.

    PubMed

    Zhou, Zhu-Chao; Dong, Qiang-Gang; Fu, De-Liang; Gong, Yi-Yi; Ni, Quan-Xing

    2013-08-01

    Notch2, a surface marker in cell lines, is used to isolate, identify and localise pancreatic cancer stem-like cells and is a target for therapy of these cells. Sphere formation was induced in Panc-1 and Bxpc-3 pancreatic cancer cell lines, and Notch2(+) cells were separated from Bxpc-3 and Panc-1 cell lines by magnetic activated cell sorting (MACS). Expression of stem cell-related markers, OCT4, Nanog and PDX1, were measured by immunofluorescent (IF) staining. Expression of Notch2 was also determined immunohistochemically in pancreatic tissues. Notch2(+) cells were transplanted in subcutaneous of mice. AQP1 and AQP5 were also measured by IF in Bxpc-3 cells. The Notch signal pathway inhibitor, Compound E (CE), was used to treat Notch2(+) Bxpc-3 cells, and their vitalities were subsequently measured by the CCK-8 method. Positive expression of OCT4, Nanog and PDX1 was observed in Notch2(+) cells. Notch2(+) cells at centroacinar cell (CAC) and terminal ductal locations expressed AQP1 and AQP5. They were strongly tumourigenic in mice, and CE inhibited proliferation of Notch2(+) Bxpc-3 cells to some degree. OCT4 and Nanog can be used as markers of self-renewal in pancreatic cancer stem cells. Notch2(+) cells in human pancreatic cancer Bxpc-3 and Panc-1 cell lines had the properties of cancer stem cells. The results suggest that Notch2(+) pancreatic cancer stem-like cells had a close relationship with CAC. © 2013 International Federation for Cell Biology.

  10. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    EPA Science Inventory

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  11. JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity.

    PubMed

    Xun, Jing; Wang, Dekun; Shen, Long; Gong, Junbo; Gao, Ruifang; Du, Lingfang; Chang, Antao; Song, Xiangrong; Xiang, Rong; Tan, Xiaoyue

    2017-03-28

    Epigenetic regulator JMJD3 plays an important role in both tumor progression and somatic cell reprogramming. Here, we explored the effect of JMJD3 on the stem cell-like characteristics of breast cancer and its underlying mechanism involving stemness-related transcription factor Oct4. Our data revealed that, in breast cancer cells lines and an orthotopic xenograph mouse model of breast cancer, ectopic overexpression of JMJD3 suppressed stem cell-like characteristics of breast cancer cells, whereas knockdown of JMJD3 promoted these characteristics. Oct4 mediated the suppressive effects of JMJD3 on the stemness of breast cancer cells. The inhibitory effect of JMJD3 on Oct4 was independent of demethylase activity, but mediated via degradation of PHF20. Furthermore, we applied an agonist of the vitamin D receptor, paricalcitol, and found that it induced JMJD3 in breast cancer cells. Our data showed that administration of paricalcitol suppressed stem cell-like characteristics and Oct4 expression. Taken together, JMJD3 inhibits the stem cell-like characteristics in breast cancer by suppression of stemness factor Oct4 in a PHF20-dependent manner. Administration of paricalcitol leads to upregulation of JMJD3 that suppresses Oct4 expression and the stem cell-like characteristics in breast cancer.

  12. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  13. Metabolic enzymes: key modulators of functionality in cancer stem-like cells

    PubMed Central

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-01-01

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs. PMID:28009990

  14. Mutations in epigenetic regulators are involved in acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Lai, Xiaoyu; Li, Caihua; Shi, Jimin; Tan, Yamin; Fu, Shan; Wang, Yebo; Zhu, Ni; He, Jingsong; Zheng, Weiyan; Yu, Xiaohong; Cai, Zhen; Huang, He

    2016-01-01

    Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph− ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph− B-cell ALL (Ph− B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph− B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph− B-ALL. PMID:26527318

  15. Mutations in epigenetic regulators are involved in acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation.

    PubMed

    Xiao, Haowen; Wang, Li-Mengmeng; Luo, Yi; Lai, Xiaoyu; Li, Caihua; Shi, Jimin; Tan, Yamin; Fu, Shan; Wang, Yebo; Zhu, Ni; He, Jingsong; Zheng, Weiyan; Yu, Xiaohong; Cai, Zhen; Huang, He

    2016-01-19

    Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph- ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph- B-cell ALL (Ph- B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph- B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph- B-ALL.

  16. Induction of apoptosis in human promyelocytic leukemia HL60 cells by an extract from Erythrina suberosa stem bark.

    PubMed

    Agrawal, Satyam Kumar; Agrawal, Madhunika; Sharma, Parduman Raj; Gupta, Bishan Datt; Arora, Saroj; Saxena, Ajit Kumar

    2011-01-01

    In this study, the apoptosis-inducing effect of an alcoholic extract from Erythrina suberosa stem bark (ESB) was investigated using human promyelocytic leukemia HL60 cells. Cell viability was estimated by MTT assay. We found that the ESB inhibited cell proliferation in a dose- and time-dependent manner. A series of well-documented morphological changes, such as cell shrinkage, condensation of nuclear chromatin, and nuclear fragmentation, were observed by fluorescence microscopy. The gold standard scanning electron micrographs showed apoptotic bodies and formation of blebs. Cell cycle analysis showed a significant increase in Sub G(0) population of cells above 50 μg/ml. ESB treatment resulted in a dose-dependent increase in annexin V positive cells. Increase in intracellular ROS production up to sixfold was detected in ESB-treated HL60 cells by DCFH-DA assay. Dissipation of mitochondrial membrane potential of intact cells accompanied by increase in cytosolic cytochrome c was observed, which was followed by activation of caspase-9 and -3 but not caspase-8. DNA fragmentation analysis revealed typical ladders as early as 18 h indicative of caspase-3 role in the apoptotic pathway. The overall results suggest that ESB induces mitochondria-mediated intrinsic apoptotic pathway in HL60 cells and might have therapeutic value against human leukemia.

  17. Molecular biological characteristics of the recruitment of hematopoietic stem cells from bone marrow niche in chronic myeloid leukemia

    PubMed Central

    Zhu, Biao; Zhang, Jianbo; Chen, Jiao; Li, Chenglong; Wang, Xiaodong

    2015-01-01

    Chronic myeloid leukemia (CML) can be contextualized as a disease of unregulated self-renewal of stem cells which exist in a quiescent state and are instructed to differentiate and mobilize to circulation under pathologic circumstances leading to tumor invasion and metastasis. Here we found that matrix metalloproteinase-9 (MMP-9), induced by TGF-β1, upregulated s-KitL and s-ICAM-1, permitting the transfer of c-kit+ hematopoietic stem cells (HSCs) from the quiescent to proliferative niche in CML. Further study showed that this MMP-9 production was raised by CML specific BCR/ABL+ oncogene mediated TGF-β1. Besides, phosphatidylinositol-3 kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was evidenced to govern this stem cell recruitment in CML pathogenesis. Overall, our observations defined a novel critical role for TGF-β1 induced PI3K/Akt/NF-κB signaling pathway in the recruitment of the malignant cells in CML by releasing s-KitL and s-ICAM-1 and this was through a distinct PI3K/Akt/NF-κB signaling pathway. PMID:26722450

  18. Salvaged allogeneic hematopoietic stem cell transplantation for pediatric chemotherapy refractory acute leukemia.

    PubMed

    Wang, Jingbo; Yuan, Lei; Cheng, Haoyu; Fei, Xinhong; Yin, Yumin; Gu, Jiangying; Xue, Song; He, Junbao; Yang, Fan; Wang, Xiaocan; Yang, Yixin; Zhang, Weijie

    2018-01-09

    There is an ongoing debate concerning the performance of salvaged allogeneic hematopoietic stem cell transplantation (allo-HSCT) in pediatric patients with acute refractory leukemia, in whom the prognosis is quite dismal. Few studies have ever been conducted on this subject. This may be partly due to missed opportunities by majority of the patients in such situations. To investigate the feasibility, evaluate the efficiency, and identify the prognostic factors of allo-HSCT in this sub-setting, the authors performed a single institution-based retrospective analysis. A total of 44 patients, of whom 28 had acute myeloid leukemia (AML), 13 had acute lymphocytic leukemia (ALL), and 3 had mixed phenotype leukemia (MPL), were enrolled in this study. With a median follow-up of 19 months, the estimated 2-year overall survival (OS) and progression free survival (PFS) were 34.3% (95% CI, 17.9-51.4%) and 33.6% (95% CI, 18.0-50.1%), respectively. The estimated 2-year incidence rates of relapse and non-relapse mortality (NRM) were 43.8% (95% CI 26.4-60.0%) and 19.6% (95% CI 9.1-32.9%), respectively. The estimated 100-day cumulative incidence of acute graft versus host disease (aGvHD) was 43.6% (95% CI 28.7-57.5%), and the 1-year cumulative incidence of chronic GvHD (cGvHD) was 45.5% (95% CI 30.5-59.3%). Compared with the previous studies, the multivariate analysis in this study additionally identified that female donors and cGvHD were associated with lower relapse and better PFS and OS. Male recipients, age younger than 10 years, a diagnosis of ALL, and the intermediate-adverse cytogenetic risk group were associated with increased relapse. On the contrary, extramedullary disease (EMD) and aGvHD were only linked to worse PFS. These data suggested that although only one-third of the patients would obtain PFS over 2 years, salvaged allo-HSCT is still the most reliable and best therapeutic strategy for refractory pediatric acute leukemia. If probable, choosing a female donor, better

  19. Novel therapies and their integration into allogeneic stem cell transplant for chronic lymphocytic leukemia.

    PubMed

    Jaglowski, Samantha M; Byrd, John C

    2012-01-01

    Over the past decade, numerous advances have been made in elucidating the biology of and improving treatment for chronic lymphocytic leukemia (CLL). These studies have led to identification of select CLL patient groups that generally have short survival dating from time of treatment or initial disease relapse who benefit from more aggressive therapeutic interventions. Allogeneic transplantation represents the only potentially curative option for CLL, but fully ablative regimens applied in the past have been associated with significant morbidity and mortality. Reduced-intensity preparative regimens has made application of allogeneic transplant to CLL patients much more feasible and increased the number of patients proceeding to this modality. Arising from this has been establishment of guidelines where allogeneic stem cell transplantation should be considered in CLL. Introduction of new targeted therapies with less morbidity, which can produce durable remissions has the potential to redefine where transplantation is initiated in CLL. This review briefly summarizes the field of allogeneic stem cell transplant in CLL and the interface of new therapeutics with this modality. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells

    PubMed Central

    Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44high (2.8-fold) and CD24low (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 103, whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted. PMID:24058587

  1. Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis

    PubMed Central

    Jacob, Bindya; Yamashita, Namiko; Wang, Chelsia Qiuxia; Taniuchi, Ichiro; Littman, Dan R.; Asou, Norio

    2010-01-01

    The RUNX1/AML1 gene is the most frequently mutated gene in human leukemia. Conditional deletion of Runx1 in adult mice results in an increase of hematopoietic stem cells (HSCs), which serve as target cells for leukemia; however, Runx1−/− mice do not develop spontaneous leukemia. Here we show that maintenance of Runx1−/− HSCs is compromised, progressively resulting in HSC exhaustion. In leukemia development, the stem cell exhaustion was rescued by additional genetic changes. Retroviral insertional mutagenesis revealed Evi5 activation as a cooperating genetic alteration and EVI5 overexpression indeed prevented Runx1−/− HSC exhaustion in mice. Moreover, EVI5 was frequently overexpressed in human RUNX1-related leukemias. These results provide insights into the mechanism for maintenance of pre-leukemic stem cells and may provide a novel direction for therapeutic applications. PMID:20008790

  2. Effect of leukemia inhibitory factor and forskolin on establishment of rat embryonic stem cell lines.

    PubMed

    Hirabayashi, Masumi; Goto, Teppei; Tamura, Chihiro; Sanbo, Makoto; Hara, Hiromasa; Hochi, Shinichi

    2014-03-07

    This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.

  3. Impact of ABO incompatibility on patients' outcome after haploidentical hematopoietic stem cell transplantation for acute myeloid leukemia - a report from the Acute Leukemia Working Party of the EBMT.

    PubMed

    Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-Jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon

    2017-06-01

    A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II-IV acute graft- versus -host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22-4.66; P =0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft- versus -host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II-IV acute graft- versus -host disease rates (HR 2.03; 95% CI: 1.00-4.10; P =0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 - 3.18; P =0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. Copyright© Ferrata

  4. Impact of ABO incompatibility on patients’ outcome after haploidentical hematopoietic stem cell transplantation for acute myeloid leukemia - a report from the Acute Leukemia Working Party of the EBMT

    PubMed Central

    Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon

    2017-01-01

    A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II–IV acute graft-versus-host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22–4.66; P=0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft-versus-host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II–IV acute graft-versus-host disease rates (HR 2.03; 95% CI: 1.00–4.10; P=0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 – 3.18; P=0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. PMID:28255020

  5. Phase I Trial: Cirmtuzumab Inhibits ROR1 Signaling and Stemness Signatures in Patients with Chronic Lymphocytic Leukemia.

    PubMed

    Choi, Michael Y; Widhopf, George F; Ghia, Emanuela M; Kidwell, Reilly L; Hasan, Md Kamrul; Yu, Jian; Rassenti, Laura Z; Chen, Liguang; Chen, Yun; Pittman, Emily; Pu, Minya; Messer, Karen; Prussak, Charles E; Castro, Januario E; Jamieson, Catriona; Kipps, Thomas J

    2018-06-01

    Cirmtuzumab is a humanized monoclonal antibody (mAb) that targets ROR1, an oncoembryonic orphan receptor for Wnt5a found on cancer stem cells (CSCs). Aberrant expression of ROR1 is seen in many malignancies and has been linked to Rho-GTPase activation and cancer stem cell self-renewal. For patients with chronic lymphocytic leukemia (CLL), self-renewing, neoplastic B cells express ROR1 in 95% of cases. High-level leukemia cell expression of ROR1 is associated with an unfavorable prognosis. We conducted a phase 1 study involving 26 patients with progressive, relapsed, or refractory CLL. Patients received four biweekly infusions, with doses ranging from 0.015 to 20 mg/kg. Cirmtuzumab had a long plasma half-life and did not have dose-limiting toxicity. Inhibition of ROR1 signaling was observed, including decreased activation of RhoA and HS1. Transcriptome analyses showed that therapy inhibited CLL stemness gene expression signatures in vivo. Cirmtuzumab is safe and effective at inhibiting tumor cell ROR1 signaling in patients with CLL. Copyright © 2018. Published by Elsevier Inc.

  6. Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells

    PubMed Central

    Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for

  7. Long term impact of hyperleukocytosis in newly diagnosed acute myeloid leukemia patients undergoing allogeneic stem cell transplantation: An analysis from the acute leukemia working party of the EBMT.

    PubMed

    Canaani, Jonathan; Labopin, Myriam; Socié, Gerard; Nihtinen, Anne; Huynh, Anne; Cornelissen, Jan; Deconinck, Eric; Gedde-Dahl, Tobias; Forcade, Edouard; Chevallier, Patrice; Bourhis, Jean H; Blaise, Didier; Mohty, Mohamad; Nagler, Arnon

    2017-07-01

    Up to 20% of acute myeloid leukemia (AML) patients present initially with hyperleukocytosis, placing them at increased risk for early mortality during induction. Yet, it is unknown whether hyperleukocytosis still retains prognostic value for AML patients undergoing hematopoietic stem cell transplantation (HSCT). Furthermore, it is unknown whether hyperleukocytosis holds prognostic significance when modern molecular markers such as FLT3-ITD and NPM1 are accounted for. To determine whether hyperleukocytosis is an independent prognostic factor influencing outcome in transplanted AML patients we performed a retrospective analysis using the registry of the acute leukemia working party of the European Society of Blood and Marrow Transplantation. A cohort of 357 patients with hyperleukocytosis (159 patients with white blood count [WBC] 50 K-100 K, 198 patients with WBC ≥ 100 K) was compared to 918 patients without hyperleukocytosis. Patients with hyperleukocytosis were younger, had an increased rate of favorable risk cytogenetics, and more likely to be FLT3 and NPM1 mutated. In multivariate analysis, hyperleukocytosis was independently associated with increased relapse incidence (hazard ratio [HR] of 1.55, 95% confidence interval [CI], 1.14-2.12; P = .004), decreased leukemia-free survival (HR of 1.38, 95% CI, 1.07-1.78; P = .013), and inferior overall survival (HR of 1.4, 95% CI, 1.07-1.84; P = .013). Hyperleukocytosis retains a significant prognostic role for AML patients undergoing HSCT. © 2017 Wiley Periodicals, Inc.

  8. The nutritional phenome of EMT-induced cancer stem-like cells.

    PubMed

    Cuyàs, Elisabet; Corominas-Faja, Bruna; Menendez, Javier A

    2014-06-30

    The metabolic features of cancer stem (CS) cells and the effects of specific nutrients or metabolites on CS cells remain mostly unexplored. A preliminary study to delineate the nutritional phenome of CS cells exploited the landmark observation that upon experimental induction into an epithelial-to-mesenchymal (EMT) transition, the proportion of CS-like cells drastically increases within a breast cancer cell population. EMT-induced CS-like cells (HMLERshEcad) and isogenic parental cells (HMLERshCntrol) were simultaneously screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput metabolic phenotyping platform comprising >350 wells that were pre-loaded with different carbohydrates/starches, alcohols, fatty acids, ketones, carboxylic acids, amino acids, and bi-amino acids. The generation of "phenetic maps" of the carbon and nitrogen utilization patterns revealed that the acquisition of a CS-like cellular state provided an enhanced ability to utilize additional catabolic fuels, especially under starvation conditions. Crucially, the acquisition of cancer stemness activated a metabolic infrastructure that enabled the vectorial transfer of high-energy nutrients such as glycolysis end products (pyruvate, lactate) and bona fide ketone bodies (β-hydroxybutyrate) from the extracellular microenvironment to support mitochondrial energy production in CS-like cells. Metabolic reprogramming may thus constitute an efficient adaptive strategy through which CS-like cells would rapidly obtain an advantage in hostile conditions such as nutrient starvation following the inhibition of tumor angiogenesis. By understanding how specific nutrients could bioenergetically boost EMT-CS-like phenotypes, "smart foods" or systemic "metabolic nichotherapies" may be tailored to specific nutritional CSC phenomes, whereas high-resolution heavy isotope-labeled nutrient tracking may be developed to monitor the spatiotemporal distribution and functionality

  9. Ovarian-Cell-Like Cells from Skin Stem Cells Restored Estradiol Production and Estrus Cycling in Ovariectomized Mice

    PubMed Central

    Park, Bong-Wook; Pan, Bo; Toms, Derek; Huynh, Evanna; Byun, June-Ho; Lee, Yeon-Mi; Shen, Wei

    2014-01-01

    Reduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells. The ovarian-cell-like cells were transplanted into ovariectomized mice (Cell Trans), whereas control mice were subjected to bilateral ovariectomies without cell transplantation (OVX). Using vaginal cytology analysis, it was revealed that in 13 out of 19 Cell Trans mice, estrus cycles were restored around 8 weeks after cell transplantation and were maintained until 16 weeks post-transplantation, whereas in the OVX group, all mice were arrested at metestrus/diestrus of the estrus cycle. The uterine weight in the Cell Trans group was similar to sham operation mice (Sham OP), while severe uterine atrophy and a decreased uterine weight were observed in the OVX group. Histologically, ectopic follicle-like structures and blood vessels were found within and around the transplants. At 12–14 weeks after cell transplantation, mean serum estradiol level in Cell Trans mice (178.0±35 pg/mL) was comparable to that of the Sham OP group (188.9±29 pg/mL), whereas it was lower in the OVX group (59.0±4 pg/mL). Serum FSH concentration increased in the OVX group (1.62±0.32 ng/mL) compared with the Sham OP group (0.39±0.34 ng/mL). Cell Trans mice had a similar FSH level (0.94±0.23 ng/mL; P<0.05) to Sham OP mice. Our results suggest that ovarian somatic cells differentiated from stem cells are functional in vivo. In addition to providing insights into the function of ovarian somatic cells derived from stem cells, our study may offer potential therapeutic means for patients with hypo-estradiol levels

  10. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation.

    PubMed

    Liu, Hailong; Sun, Qianwen; Sun, Youliang; Zhang, Junping; Yuan, Hongyu; Pang, Shuhuan; Qi, Xueling; Wang, Haoran; Zhang, Mingshan; Zhang, Hongwei; Yu, Chunjiang; Gu, Chunyu

    2017-09-01

    Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients. Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells.

    PubMed

    Zhao, Along; Yang, Leilei; Ma, Kui; Sun, Mengli; Li, Lei; Huang, Jin; Li, Yang; Zhang, Cuiping; Li, Haihong; Fu, Xiaobing

    2016-01-01

    It has been reported that Wnt/β-catenin is critical for dedifferentiation of differentiated epidermal cells. Cyclin D1 (CCND1) is a β-catenin target gene. In this study, we provide evidence that overexpression of CCND1 induces reprogramming of epidermal cells into stem cell-like cells. After introducing CCND1 gene into differentiated epidermal cells, we found that the large flat-shaped cells with a small nuclear-cytoplasmic ratio changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. The expressions of CK10, β1-integrin, Oct4 and Nanog in CCND1 induced cells were remarkably higher than those in the control group (P < 0.01). In addition, the induced cells exhibited a high colony-forming ability and a long-term proliferative potential. When the induced cells were implanted into a wound of laboratory animal model, the wound healing was accelerated. These results suggested that overexpression of CCND1 induced the reprogramming of differentiated epidermal cells into stem cell-like cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.

  13. Congenital leukemoid reaction followed by fatal leukemia. A case with Down's syndrome.

    PubMed

    Lin, H P; Menaka, H; Lim, K H; Yong, H S

    1980-10-01

    A serial clinical, hematologic, and cytogenetic study was done on a baby with Down's syndrome in whom a myeloid leukemoid reaction developed at birth that spontaneously regressed within a month only to relapse two years later to an acute undifferentiated stem cell leukemia. He died 1 1/2 months after onset. The unresolved controversy of the diagnosis of the congenital leukemia-like state is discussed. The importance of following up such patients with apparent remission of their congenital leukemia-like disorder is emphasized.

  14. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary.

    PubMed

    Bhartiya, Deepa

    2015-11-05

    Existing dogma that a female is born with fixed number of eggs was challenged by the detection of stem cells in adult mammalian ovary. Data has accumulated in support of ovarian stem cells (OSCs) proliferation, maintenance in culture, formation of germ cell nests and differentiation into oocytes and primordial follicle assembly using different strategies. Flow cytometry analysis identified >8 μm OSCs which are DDX1 positive and are considered equivalent to spermatogonial stem cells (SSCs) in testis. Analysis of both ovarian and testicular smears obtained after enzymatic digestion has led to the identification of an additional stem cell population termed very small embryonic-like stem cells (VSELs). VSELs and OSCs/SSCs differ from each other in their size and OCT-4 expression. VSELs express pluripotent markers including nuclear OCT-4 whereas OSCs/SSCs express cytoplasmic OCT-4 suggesting a differentiated state. VSELs can be studied by flow cytometry as small sized cells which are LIN-/CD45-/Sca-1+. We have reported 0.02 ± 0.008, 0.03 ± 0.017 and 0.08 ± 0.03 % of total cells as VSELs in normal, chemoablated and after FSH treatment to chemoablated mouse ovary. VSELs have remained poorly studied till now because of their very small size and rare occurrence. Spinning cells obtained after enzymatic digestion of ovarian tissue at a speed of 1000G (rather than 1200 rpm) throughout processing allows reliable detection of the VSELs by flow cytometry. VSELs exist in aged, chemoablated and non-functional ovary and providing a healthy niche to support their function offers an interesting strategy to manage infertility.

  15. HLA-mismatched stem-cell microtransplantation as postremission therapy for acute myeloid leukemia: long-term follow-up.

    PubMed

    Guo, Mei; Hu, Kai-Xun; Liu, Guang-Xian; Yu, Chang-Lin; Qiao, Jian-Hui; Sun, Qi-Yun; Qiao, Jun-Xiao; Dong, Zheng; Sun, Wan-Jun; Sun, Xue-Dong; Zuo, Hong-Li; Man, Qiu-Hong; Liu, Zhi-Qing; Liu, Tie-Qiang; Zhao, Hong-Xia; Huang, Ya-Jing; Wei, Li; Liu, Bing; Wang, Juan; Shen, Xu-Liang; Ai, Hui-Sheng

    2012-11-20

    Despite best current therapies, approximately half of patients with acute myeloid leukemia in first complete remission (AML-CR1) with no HLA-identical donors experience relapse. Whether HLA-mismatched stem-cell microtransplantation as a novel postremission therapy in these patients will improve survival and avoid graft-versus-host disease (GVHD) is still unknown. One hundred one patients with AML-CR1 (9 to 65 years old) from four treatment centers received programmed infusions of G-CSF-mobilized HLA-mismatched donor peripheral-blood stem cells after each of three cycles of high-dose cytarabine conditioning without GVHD prophylaxis. Donor chimerism and microchimerism and WT1+CD8+ T cells were analyzed. The 6-year leukemia-free survival (LFS) and overall survival (OS) rates were 84.4% and 89.5%, respectively, in the low-risk group, which were similar to the rates in the intermediate-risk group (59.2% and 65.2%, respectively; P=.272 and P=.308). The 6-year LFS and OS were 76.4% and 82.1%, respectively, in patients who received a high dose of donor CD3+ T cells (≥1.1×10(8)/kg) in each infusion, which were significantly higher than the LFS and OS in patients who received a lower dose (<1.1×10(8)/kg) of donor CD3+ T cells (49.5% and 55.3%, respectively; P=.091 and P=.041). No GVHD was observed in any of the patients. Donor microchimerism (2 to 1,020 days) was detected in 20 of the 23 female patients who were available for Y chromosome analysis. A significant increase in WT1+CD8+ T cells (from 0.2% to 4.56%) was observed in 33 of 39 patients with positive HLA-A*02:01 antigen by a pentamer analysis. Microtransplantation as a postremission therapy may improve outcomes and avoid GVHD in patients with AML-CR1.

  16. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2more » and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.« less

  17. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells

    PubMed Central

    Niu, N; Mercado-Uribe, I; Liu, J

    2017-01-01

    Our recent perplexing findings that polyploid giant cancer cells (PGCCs) acquired embryonic-like stemness and were capable of tumor initiation raised two important unanswered questions: how do PGCCs acquire such stemness, and to which stage of normal development do PGCCs correspond. Intriguingly, formation of giant cells due to failed mitosis/cytokinesis is common in the blastomere stage of the preimplantation embryo. However, the relationship between PGCCs and giant blastomeres has never been studied. Here, we tracked the fate of single PGCCs following paclitaxel-induced mitotic failure. Morphologically, early spheroids derived from PGCCs were indistinguishable from human embryos at the blastomere, polyploid blastomere, compaction, morula and blastocyst-like stages by light, scanning electron or three-dimensional confocal scanning microscopy. Formation of PGCCs was associated with activation of senescence, while budding of daughter cells was associated with senescence escape. PGCCs showed time- and space-dependent activation of expression of the embryonic stem cell markers OCT4, NANOG, SOX2 and SSEA1 and lacked expression of Xist. PGCCs acquired mesenchymal phenotype and were capable of differentiation into all three germ layers in vitro. The embryonic-like stemness of PGCCs was associated with nuclear accumulation of YAP, a key mediator of the Hippo pathway. Spheroids derived from single PGCCs grew into a wide spectrum of human neoplasms, including germ cell tumors, high-grade and low-grade carcinomas and benign tissues. Daughter cells derived from PGCCs showed attenuated capacity for invasion and increased resistance to paclitaxel. We also observed formation of PGCCs and dedifferentiation in ovarian cancer specimens from patients treated with chemotherapy. Taken together, our findings demonstrate that PGCCs represent somatic equivalents of blastomeres, the most primitive cancer stem cells reported to date. Thus, our studies reveal an evolutionarily conserved

  18. [Expression of c-MPL in leukemic stem cells from acute myeloid leukemia patients].

    PubMed

    Yu, Pei; Qiu, Shao-Wei; Rao, Qing; Lin, Dong; Xing, Hai-Yan; Tang, Ke-Jing; Tian, Zheng; Wang, Min; Wang, Jian-Xiang

    2012-10-01

    This study was aimed to investigate the expression of c-MPL in acute myeloid leukemia (AML) and the correlation of the c-MPL expression with CD34 and CD38, so as to define the expression of c-MPL in leukemic stem cells. The expression levels of CD34, CD38 and c-MPL were detected by flow cytometry in bone marrow cells from 29 newly diagnosed AML patients. The relationship of c-MPL positive cell ratio with clinical parameters and correlation of c-MPL with CD34 and CD38 expression in AML patients were analyzed. The results showed that expression level of c-MPL in AML patients was significantly higher than that of normal controls (P < 0.05), and the expression level of c-MPL did not correlate with age, sex, white blood cell count, AML1-ETO fusion gene and remission after chemotherapy, but the expression of c-MPL in M2 and M5 patients was higher than that of normal control (P < 0.05). Expression of c-MPL in CD34 positive AML patients was obviously higher than that in CD34 negative AML patients (P < 0.01). c-MPL was significantly higher expressed in CD34(+) cells than that in CD34(-) cells (P < 0.001), while c-MPL expression was not significantly different between CD34(+)CD38(-) and CD34(+)CD38(-) cell groups. Positive correlation between c-MPL and CD34 expression was observed (r = 0.380, P = 0.042). It is concluded that expression of c-MPL is higher in AML patients, and positively correlates with the expression level of CD34. The c-MPL expresses in leukemic stem cells.

  19. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.

    PubMed

    Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia

    2016-10-21

    High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete

  20. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment.

    PubMed

    Charpentier, Monica S; Whipple, Rebecca A; Vitolo, Michele I; Boggs, Amanda E; Slovic, Jana; Thompson, Keyata N; Bhandary, Lekhana; Martin, Stuart S

    2014-02-15

    Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the human mammary epithelial (HMLE) cell line presents increased McTNs compared with its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTNs in stem cell reattachment. Moreover, live-cell confocal microscopy showed that McTNs persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. Although exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTNs can mediate attachment and metastasis but might be targeted by curcumin as an antimetastatic strategy. ©2013 AACR.

  1. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment

    PubMed Central

    Charpentier, Monica S.; Whipple, Rebecca A.; Vitolo, Michele I.; Boggs, Amanda E.; Slovic, Jana; Thompson, Keyata N.; Bhandary, Lekhana; Martin, Stuart S.

    2014-01-01

    Cancer stem-like cells (CSC) and circulating tumor cells (CTCs) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTNs), a type of tubulin-based protrusion of the plasma cell membrane which forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the HMLE breast cell line presents increased McTNs compared to its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTN in stem cell reattachment. Moreover, live cell confocal microscopy showed that McTN persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. While exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTN can mediate attachment and metastasis but might be targeted by curcumin as an anti-metastatic strategy. PMID:24371229

  2. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2015-10-01

    The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.

  3. Assessment of Impact of HLA Type on Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Lymphocytic Leukemia.

    PubMed

    Hill, Brian T; Ahn, Kwang Woo; Hu, Zhen-Huan; Aljurf, Mahmoud; Beitinjaneh, Amer; Cahn, Jean-Yves; Cerny, Jan; Kharfan-Dabaja, Mohamed A; Ganguly, Siddhartha; Ghosh, Nilanjan; Grunwald, Michael R; Inamoto, Yoshihiro; Kindwall-Keller, Tamila; Nishihori, Taiga; Olsson, Richard F; Saad, Ayman; Seftel, Matthew; Seo, Sachiko; Szer, Jeffrey; Tallman, Martin; Ustun, Celalettin; Wiernik, Peter H; Maziarz, Richard T; Kalaycio, Matt; Alyea, Edwin; Popat, Uday; Sobecks, Ronald; Saber, Wael

    2018-03-01

    Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy with many highly effective therapies. Chemorefractory disease, often characterized by deletion of chromosome 17p, has historically been associated with very poor outcomes, leading to the application of allogeneic hematopoietic stem cell transplantation (allo-HCT) for medically fit patients. Although the use of allo-HCT has declined since the introduction of novel targeted therapy for the treatment of CLL, there remains significant interest in understanding factors that may influence the efficacy of allo-HCT, the only known curative treatment for CLL. The potential benefit of transplantation is most likely due to the presence of alloreactive donor T cells that mediate the graft-versus-leukemia (GVL) effect. The recognition of potentially tumor-specific antigens in the context of class I and II major histocompatibility complex on malignant B lymphocytes by donor T cells may be influenced by subtle differences in the highly polymorphic HLA locus. Given previous reports of specific HLA alleles impacting the incidence of CLL and the clinical outcomes of allo-HCT for CLL, we sought to study the overall survival and progression-free survival of a large cohort of patients with CLL who underwent allo-HCT from fully HLA-matched related and unrelated donors at Center for International Blood and Marrow Transplant Research transplantation centers. We found no statistically significant association of allo-HCT outcomes in CLL based on previously reported HLA combinations. Additional study is needed to further define the immunologic features that portend a more favorable GVL effect after allo-HCT for CLL. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. CD271 Defines a Stem Cell-Like Population in Hypopharyngeal Cancer

    PubMed Central

    Imai, Takayuki; Tamai, Keiichi; Oizumi, Sayuri; Oyama, Kyoko; Yamaguchi, Kazunori; Sato, Ikuro; Satoh, Kennichi; Matsuura, Kazuto; Saijo, Shigeru; Sugamura, Kazuo; Tanaka, Nobuyuki

    2013-01-01

    Cancer stem cells contribute to the malignant phenotypes of a variety of cancers, but markers to identify human hypopharyngeal cancer (HPC) stem cells remain poorly understood. Here, we report that the CD271+ population sorted from xenotransplanted HPCs possesses an enhanced tumor-initiating capability in immunodeficient mice. Tumors generated from the CD271+ cells contained both CD271+ and CD271− cells, indicating that the population could undergo differentiation. Immunohistological analyses of the tumors revealed that the CD271+ cells localized to a perivascular niche near CD34+ vasculature, to invasive fronts, and to the basal layer. In accordance with these characteristics, a stemness marker, Nanog, and matrix metalloproteinases (MMPs), which are implicated in cancer invasion, were significantly up-regulated in the CD271+ compared to the CD271− cell population. Furthermore, using primary HPC specimens, we demonstrated that high CD271 expression was correlated with a poor prognosis for patients. Taken together, our findings indicate that CD271 is a novel marker for HPC stem-like cells and for HPC prognosis. PMID:23626764

  5. Cytogenetic and clinicobiological features of acute leukemia with stem cell phenotype: study of nine cases.

    PubMed

    Cuneo, A; Ferrant, A; Michaux, J L; Bosly, A; Chatelain, B; Stul, M; Dal Cin, P; Dierlamm, J; Cassiman, J J; Hossfeld, D K; Castoldi, G; Van den Berghe, H

    1996-11-01

    Morphologic, immunologic, cytogenetic, and clinical features were studied in 9 cases of acute undifferentiated leukemia (AUL). These patients were unclassifiable by FAB criteria, they were CD34+ and did not express myeloid- or lymphoid-associated antigens (CD13, CD33, CD14, CD15, CD61, CD19, CD10, CD22, CD7, CD2, CD5, CD3). Clonal abnormalities were seen in 8 of 9 cases. Del(5q) as the sole anomaly was observed in 3 cases; +13 was the primary change in 3 cases, and isolated trisomy 12 was found in 1 patient. A complex karyotype with trisomy 12q, in association with del 17p and trisomy 21q was detected in 1 case. One patient with 5q- relapsed with refractory anemia with excess of blasts; the presence of dysgranulopoiesis and a few blasts with possible monocytoid morphology in the remaining 2 patients point to a "myeloid nature" of these leukemias. Analysis of cytologic features in our 3 patients with +13, in combination with previously reported cases, suggests the occurrence of immature stem cell involvement with limited differentiation potential, possibly more along the myeloid than the lymphoid lineage. The significance of trisomy 12q in this subset of leukemia remains elusive; some clues of minimal differentiation towards the myeloid lineage in our cases are provided by positivity for the CD117 (c-kit) antigen and by relapse with acute myeloid leukemia without maturation (M1) in one patient. We conclude that, with presently available diagnostic techniques, AUL is a rare subset of leukemia, in which cytogenetic changes are confined to a few chromosomes, with prevalent involvement of 5q and of chromosomes 13 and 12. Chromosome findings may be of value in clinical practice, especially in those cases with "myeloid-oriented" karyotype.

  6. The effects and mechanisms of SLC34A2 on maintaining stem cell-like phenotypes in CD147+ breast cancer stem cells.

    PubMed

    Lv, Yonggang; Wang, Ting; Fan, Jing; Zhang, Zhenzhen; Zhang, Juliang; Xu, Cheng; Li, Yongping; Zhao, Ge; He, Chenyang; Meng, Huimin; Yang, Hua; Wang, Zhen; Liu, Jiayun; Chen, Jianghao; Wang, Ling

    2017-04-01

    The cancer stem cell (CSC) hypothesis has gained significant recognition in describing tumorigenesis. Identification of the factors critical to development of breast cancer stem cells (BCSCs) may provide insight into the improvement of effective therapies against breast cancer. In this study, we aim to investigate the biological function of SLC34A2 in affecting the stem cell-like phenotypes in BCSCs and its underlying mechanisms. We demonstrated that CD147 + cells from breast cancer tissue samples and cell lines possessed BCSC-like features, including the ability of self-renewal in vitro, differentiation, and tumorigenic potential in vivo. Flow cytometry analysis showed the presence of a variable fraction of CD147 + cells in 9 of 10 tumor samples. Significantly, SLC34A2 expression in CD147 + BCSCs was enhanced compared with that in differentiated adherent progeny of CD147 + BCSCs and adherently cultured cell line cells. In breast cancer patient cohorts, SLC34A2 expression was found increased in 9 of 10 tumor samples. By using lentiviral-based approach, si-SLC34A2-transduced CD147 + BCSCs showed decreased ability of sphere formation, cell viability in vitro, and tumorigenicity in vivo, which suggested the essential role of SLC34A2 in CD147 + BCSCs. Furthermore, PI3K/AKT pathway and SOX2 were found necessary to maintain the stemness of CD147 + BCSCs by using LY294002 or lentiviral-si-SOX2. Finally, we indicated that SLC34A2 could regulate SOX2 to maintain the stem cell-like features in CD147 + BCSCs through PI3K/AKT pathway. Therefore, our report identifies a novel role of SLC34A2 in BCSCs' state regulation and establishes a rationale for targeting the SLC34A2/PI3K/AKT/SOX2 signaling pathway for breast cancer therapy.

  7. Expression of HER2/Neu in B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Rodriguez-Rodriguez, Sergio; Pomerantz, Alan; Demichelis-Gomez, Roberta; Barrera-Lumbreras, Georgina; Barrales-Benitez, Olga; Aguayo-Gonzalez, Alvaro

    2016-01-01

    The expression of HER2/neu in B-cell acute lymphoblastic leukemia has been reported in previous studies. The objective of this research was to study the expression of HER2/neu on the blasts of patients with acute leukemia from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. From June 2015 to February 2016, a HER2/neu monoclonal antibody was added to the panel of antibodies that we routinely use in patients with acute leukemia. An expression of ≥ 30% was considered positive. We studied 33 patients: 19 had de novo leukemia (57.6%), three (9.1%) were in relapse, and in 11 (33.3%) their status could not be specified. Seventeen patients (51.5%) were classified as B-cell acute lymphoblastic leukemia with a median expression of HER2/neu of 0.3% (range 0-90.2). Three patients with B-cell acute lymphoblastic leukemia were positive for HER2/neu: 89.4%, 90.9%, and 62.4%. The first and third patient had de novo B-cell acute lymphoblastic leukemia. The second patient was in second relapse after allogeneic stem cell transplant. All three patients were categorized as high-risk at the time of diagnosis. In the studied Mexican population, we found a positive expression of HER2/neu in 17% of the B-cell acute lymphoblastic leukemia patients, similar to previous studies in which the expression was found in 15-50%.

  8. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED).

    PubMed

    Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon

    2016-12-13

    Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.

  9. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    PubMed Central

    2012-01-01

    Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma. PMID:22475227

  10. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification.

    PubMed

    Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G

    2011-11-01

    The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.

  11. Pharmacological mimicking of caloric restriction elicits epigenetic reprogramming of differentiated cells to stem-like self-renewal states.

    PubMed

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Menendez, Javier A

    2010-10-01

    Networks of oncogenes and tumor suppressor genes that control cancer cell proliferation also regulate stem cell renewal and possibly stem cell aging. Because (de)differentiation processes might dictate tumor cells to retrogress to a more stem-like state in response to aging-relevant epigenetic and/or environmental players, we recently envisioned that cultured human cancer cells might be used as reliable models to test the ability of antiaging interventions for promoting the initiation and maintenance of self-renewing divisions. Cancer cell lines naturally bearing undetectable amounts of stem/progenitor-like cell populations were continuously cultured in the presence of the caloric restriction mimetic metformin for several months. Microarray technology was employed to profile expression of genes related to the identification, growth, and differentiation of stem cells. Detection of functionally related gene groups using a pathway analysis package provided annotated genetic signatures over- and underexpressed in response to pharmacological mimicking of caloric restriction. By following this methodological approach, we recently obtained data fitting a model in which, in response to chronic impairment of cellular bioenergetics imposed by metformin-induced mitochondrial uncoupling as assessed by the phosphorylation state of cAMP-response element binding protein (CREB), tumor cells can retrogress from a differentiated state to a more CD44(+) stem-like primitive state epigenetically governed by the Polycomb-group suppressor BMI1-a crucial "stemness" gene involved in the epigenetic maintenance of adult stem cells. These findings might provide a novel molecular avenue to investigate if antiaging benefits from caloric restriction mimetics might relate to their ability to epigenetically reprogram stemness while prolonging the capacity of stem-like cell states to proliferate, differentiate, and replace mature cells in adult aging tissues.

  12. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells

    PubMed Central

    Liu, P; Brown, S; Goktug, T; Channathodiyil, P; Kannappan, V; Hugnot, J-P; Guichet, P-O; Bian, X; Armesilla, A L; Darling, J L; Wang, W

    2012-01-01

    Background: Glioblastoma multiforme (GBM) cells are resistant to anticancer drugs. Cancer stem cells (CSCs) are a key mediator of chemoresistance. We have reported that disulfiram (DS), an aldehyde dehydrogenase (ALDH) inhibitor, targets breast CSC-like cells. In this study, the effect of DS and combination of DS and gemcitabine (dFdC) on GBM cells and GBM stem-like cells was investigated. Methods: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)-isobologram, western blot, luciferase reporter gene assay, electrophoretic mobility-shift assay and ALDH analysis were used in this study. Results: Disulfiram is cytotoxic in GBM cell lines in a copper (Cu)-dependent manner. Disulfiram/copper enhances the cytotoxicity of dFdC. Combination index-isobologram analysis indicates a synergistic effect between DS/Cu and dFdC. Disulfiram/copper induces reactive oxygen species (ROS), activates JNK and p38 pathways and inhibits nuclear factor-kappa B activity in GBM cell lines. Disulfiram/copper may trigger intrinsic apoptotic pathway via modulation of the Bcl2 family. Disulfiram/copper abolishes stem-like cell population in GBM cell lines. Conclusion: Our findings indicate that the cytotoxicity of DS/Cu and the enhancing effect of DS/Cu on the cytotoxicity of dFdC in GBM stem-like cells may be caused by induction of ROS and inhibition of both ALDH and the NFkB pathway. Both DS and dFdC can traverse the blood–brain barrier. Further study may lead them into GBM chemotherapy. PMID:23033007

  13. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features

    PubMed Central

    Koivunen, Peppi; Koivunen, Jussi P.

    2014-01-01

    Treatment resistance significantly inhibits the efficiency of targeted cancer therapies in drug-sensitive genotypes. In the current work, we studied mechanisms for rapidly occurring, adaptive resistance in targeted therapy-sensitive lung, breast, and melanoma cancer cell lines. The results show that in ALK translocated lung cancer lines H3122 and H2228, cells with cancer stem-like cell features characterized by high expression of cancer stem cell markers and/or in vivo tumorigenesis can mediate adaptive resistance to oncogene ablative therapy. When pharmacological ablation of ALK oncogene was accompanied with PI3K inhibitor or salinomycin therapy, cancer stem-like cell features were reversed which was accompanied with decreased colony formation. Furthermore, co-targeting was able to block the formation of acquired resistance in H3122 line. The results suggest that cells with cancer stem-like cell features can mediate adaptive resistance to targeted therapies. Since these cells follow the stochastic model, concurrent therapy with an oncogene ablating agent and a stem-like cell-targeting drug is needed for maximal therapeutic efficiency. PMID:25238228

  14. Reprogramming of single-cell derived mesenchymal stem cells into hair cell-like cells

    PubMed Central

    Lin, Zhaoyu; Perez, Philip; Sun, Zhenyu; Liu, Jan-Jan; Shin, June Ho; Hyrc, Krzysztof L.; Samways, Damien; Egan, Terry; Holley, Matthew C.; Bao, Jianxin

    2012-01-01

    Hypothesis Adult mesenchymal stem cells (MSCs) can be converted into hair cell-like cells by transdetermination. Background Given the fundamental role sensory hair cells play in sound detection and the irreversibility of their loss in mammals, much research has focused on developing methods to generate new hair cells as a means of treating permanent hearing loss. Although MSCs can differentiate into multiple cell lineages, no efficient means of reprogramming them into sensory hair cells exists. Earlier work has shown that the transcription factor Atoh1 is necessary for early development of hair cells, but it is not clear whether Atoh1 can be used to convert MSCs into hair cells. Methods Clonal MSC cell lines were established and reprogrammed into hair cell-like cells by a combination of protein transfer, adenoviral based gene transfer and co-culture with neurons. During transdetermination, inner ear molecular markers were analyzed by RT-PCR, and cell structures were examined by immunocytochemistry. Results Atoh1 overexpression in MSCs failed to convert MSCs into hair cell-like cells, suggesting that the ability of Atoh1 to induce hair cell differentiation is context dependent. Because Atoh1 overexpression successfully transforms VOT-E36 cells into hair cell-like cells, we modified the cell context of MSCs by performing a total protein transfer from VOT-E36 cells prior to overexpressing Atoh1. The modified MSCs were transformed into hair cell-like cells and attracted contacts from spiral ganglion neurons in a co-culture model. Conclusion We established a new procedure, consisting of VOT-E36 protein transfer, Atoh1 overexpression, and co-culture with spiral ganglion neurons, which can transform MSCs into hair cell-like cells. PMID:23111404

  15. Leukemia and Benzene

    PubMed Central

    Snyder, Robert

    2012-01-01

    Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While many investigators agree that the array of toxic metabolites, generated in the liver or in the bone marrow, can lead to traumatic bone marrow injury, the more subtle mechanisms leading to leukemia have yet to be critically dissected. This problem appears to have more general interest because of the recognition that so-called “second cancer” that results from prior treatment with alkylating agents to yield tumor remissions, often results in a type of leukemia reminiscent of benzene-induced leukemia. Furthermore, there is a growing literature attempting to characterize the fine structure of the marrow and the identification of so called “niches” that house a variety of stem cells and other types of cells. Some of these “niches” may harbor cells capable of initiating leukemias. The control of stem cell differentiation and proliferation via both inter- and intra-cellular signaling will ultimately determine the fate of these transformed stem cells. The ability of these cells to avoid checkpoints that would prevent them from contributing to the leukemogenic response is an additional area for study. Much of the study of benzene-induced bone marrow damage has concentrated on determining which of the benzene metabolites lead to leukemogenesis. The emphasis now should be directed to understanding how benzene metabolites alter bone marrow cell biology. PMID:23066403

  16. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2015-01-01

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche. PMID:25789504

  17. Identification of CD34+ and CD34− leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    PubMed Central

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  18. Acute Lymphoblastic Leukemia (ALL) (For Parents)

    MedlinePlus

    ... October 2012 More on this topic for: Parents Kids Teens Acute Myeloid Leukemia (AML) Chronic Myelogenous Leukemia (CML) Cancer Center Leukemia Neutropenia Stem Cell Transplants Cancer Center Chemotherapy When Cancer Keeps ...

  19. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma

    PubMed Central

    Wei-Man Lun, Samantha; Cheung, Siu-Tim; Lo, Kwok-Wai

    2014-01-01

    Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed. PMID:25223912

  20. The Meaning of Disease and Spiritual Responses to Stressors in Adults With Acute Leukemia Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Farsi, Zahra

    2015-12-01

    Some studies have shown that patients with cancer may experience significant spiritual distress as well as spiritual growth, that there is a positive association between spirituality and coping, and that positive religious coping predicts enhanced health outcomes. This study was designed to help explain how the meaning of disease and spiritual responses to threatening stressors influence the final experiential outcomes of adults with leukemia undergoing hematopoietic stem cell transplantation in Iran. This grounded theory study conducted in-depth interviews between 2009 and 2011 on 10 adults in Iran with leukemia undergoing hematopoietic stem cell transplantation. Recorded audio interviews were transcribed verbatim in Persian and coded and analyzed using Corbin and Strauss (2008)'s approach. Main categories that emerged from data included "experiencing the meaning of cancer"; "changing perceptions of death, life and health"; and "moving toward perfection and sublimity." "Finding meaning" was the main concept that defined the final outcome of the experience of participants. Understanding the meaning to patients of disease and treatments may help healthcare providers better appreciate the patients' perspective and improve the physician-patient relationship. Nurses are well positioned to play a decisive role in helping patients cope effectively with their treatment process and in helping ensure positive outcomes for treatments through their helping patients find the unique meaning of their experience.

  1. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules

    PubMed Central

    Dressel, Ralf; Guan, Kaomei; Nolte, Jessica; Elsner, Leslie; Monecke, Sebastian; Nayernia, Karim; Hasenfuss, Gerd; Engel, Wolfgang

    2009-01-01

    Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific

  2. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features tomore » cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific

  3. Stem/progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines.

    PubMed

    Wan, Hong; Yuan, Ming; Simpson, Cathy; Allen, Kirsty; Gavins, Felicity N E; Ikram, Mohammed S; Basu, Subham; Baksh, Nuzhat; O'Toole, Edel A; Hart, Ian R

    2007-05-01

    We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.

  4. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  5. From "ES-like" cells to induced pluripotent stem cells: a historical perspective in domestic animals.

    PubMed

    Koh, Sehwon; Piedrahita, Jorge A

    2014-01-01

    Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia

    PubMed Central

    Fujita, Kazutoshi; Ohta, Hiroshi; Tsujimura, Akira; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Matsumiya, Kiyomi; Wakayama, Teruhiko; Okuyama, Akihiko

    2005-01-01

    More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia. PMID:15965502

  7. Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation.

    PubMed

    Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Choi, Eun Young; Min, Chang-Ki

    2015-11-01

    Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2(b)) → B6D2F1 (H-2(b/d)), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type (H-2(d)) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-γ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-γ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.

  8. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia

    PubMed Central

    Minagawa, Kentaro; Jamil, Muhammad O.; AL-Obaidi, Mustafa; Pereboeva, Larisa; Salzman, Donna; Erba, Harry P.; Lamb, Lawrence S.; Bhatia, Ravi; Mineishi, Shin

    2016-01-01

    Background Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. Methods and findings We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85–90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a

  9. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    PubMed

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  10. Purinergic Receptors in Quiescence and Localization of Leukemic Stem Cells

    DTIC Science & Technology

    2011-05-01

    2011. Ewing’s Sarcoma Gene EWS regulates Hematopoietic Stem Cell Senescence. Blood, 117:1156-66. Conclusion How leukemia stem cells gained...findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or...Receptors in Quiescence and Localization of Leukemic Stem Cells 5b. GRANT NUMBER W81XWH-09-1-0364 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d

  11. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    PubMed

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment.

    PubMed

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-06-20

    Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.

  13. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.

    PubMed

    Yamashita, Tomoki; Takayama, Kazuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki

    2018-02-19

    Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells are expected to be utilized in drug screening and regenerative medicine. However, hepatocyte-like cells have not been fully used in such applications because it is difficult to produce such cells on a large scale. In this study, we tried to establish a method to mass produce hepatocyte-like cells using a three-dimensional (3D) cell culture bioreactor called the Rotary Cell Culture System (RCCS). RCCS enabled us to obtain homogenous hepatocyte-like cells on a billion scale (>10 9  cells). The gene expression levels of some hepatocyte markers (alpha-1 antitrypsin, cytochrome (CYP) 1A2, CYP2D6, and hepatocyte nuclear factor 4alpha) were higher in 3D-cultured hepatocyte-like cells than in 2D-cultured hepatocyte-like cells. This result suggests that RCCS could provide more suitable conditions for hepatocyte maturation than the conventional 2D cell culture conditions. In addition, more than 90% of hepatocyte-like cells were positive for albumin and could uptake low-density lipoprotein in the culture medium. We succeeded in the large-scale production of homogenous and functional hepatocyte-like cells from human iPS cells. This technology will be useful in drug screening and regenerative medicine, which require enormous numbers of hepatocyte-like cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  15. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  16. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia.

    PubMed

    Kotini, Andriana G; Chang, Chan-Jung; Chow, Arthur; Yuan, Han; Ho, Tzu-Chieh; Wang, Tiansu; Vora, Shailee; Solovyov, Alexander; Husser, Chrystel; Olszewska, Malgorzata; Teruya-Feldstein, Julie; Perumal, Deepak; Klimek, Virginia M; Spyridonidis, Alexandros; Rampal, Raajit K; Silverman, Lewis; Reddy, E Premkumar; Papaemmanuil, Elli; Parekh, Samir; Greenbaum, Benjamin D; Leslie, Christina S; Kharas, Michael G; Papapetrou, Eirini P

    2017-03-02

    Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Selenium suppresses leukemia through the action of endogenous eicosanoids

    PubMed Central

    Gandhi, Ujjawal H.; Kaushal, Naveen; Hegde, Shailaja; Finch, Emily R.; Kudva, Avinash K.; Kennett, Mary J.; Jordan, Craig T.; Paulson, Robert F.; Prabhu, K. Sandeep

    2014-01-01

    Eradicating cancer stem-like cells (CSC) may be essential to fully eradicate cancer. Metabolic changes in CSC could hold a key to their targeting. Here we report that the dietary micronutrient selenium can trigger apoptosis of CSC derived from chronic or acute myelogenous leukemias when administered at supraphysiological but non-toxic doses. In leukemia CSC, selenium treatment activated ATM-p53-dependent apoptosis accompanied by increased intracellular levels of reactive oxygen species. Importantly, the same treatment did not trigger apoptosis in hematopoietic stem cells. Serial transplantation studies with BCR-ABL-expressing CSC revealed that the selenium status in mice was a key determinant of CSC survival. Selenium action relied upon the endogenous production of the cyclooxygenase-derived prostaglandins Δ12-PGJ2 and 15d-PGJ2. Accordingly, non-steroidal anti-inflammatory drugs and NADPH oxidase inhibitors abrogated the ability of selenium to trigger apoptosis in leukemia CSC. Our results reveal how selenium-dependent modulation of arachidonic acid metabolism can be directed to trigger apoptosis of primary human and murine CSC in leukemia. PMID:24872387

  18. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate

    PubMed Central

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-01-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  19. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    PubMed

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  20. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  1. Human Adipose Tissue Stem Cells Promote the Growth of Acute Lymphoblastic Leukemia Cells in NOD/SCID Mice.

    PubMed

    Lee, Myoung Woo; Park, Yoo Jin; Kim, Dae Seong; Park, Hyun Jin; Jung, Hye Lim; Lee, Ji Won; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2018-06-01

    In this study, the effect of adipose tissue stem cells (ASCs) on the growth of acute lymphoblastic leukemia (ALL) cells was examined in an in vivo model. We established ALL cell lines expressing firefly luciferase (ALL/fLuc) by lentiviral infection that were injected intraperitoneally to NOD/SCID mice. The luciferase activities were significantly higher in mice co-injected with 10 5 ALL/fLuc cells and ASCs than in those injected with ALL/fLuc cells alone. Co-injection of 10 5 ALL/fLuc cells and ASCs in differing ratios into mice gradually increased the bioluminescence intensity in all groups, and mice co-injected with 1 or 2 × 10 6 ASCs showed higher bioluminescence intensity than those receiving lower numbers. Interestingly, in the mice injected with 10 5 or 10 7 ALL/fLuc cells alone, the formation of tumor masses was not observed for at least five weeks. Moreover, co-injection of 10 7 ALL/fLuc cells and 5 × 10 5 ASCs into mice increased the bioluminescence intensity in all groups, and showed significantly higher bioluminescence intensity compared to mice co-injected with human normal fibroblast HS68 cells. Overall, ASCs promote the growth of ALL cells in vivo, suggesting that ASCs negatively influence hematologic malignancy, which should be considered in developing cell therapy using ASCs.

  2. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  3. Feedback regulation in a stem cell model with acute myeloid leukaemia.

    PubMed

    Jiao, Jianfeng; Luo, Min; Wang, Ruiqi

    2018-04-24

    The haematopoietic lineages with leukaemia lineages are considered in this paper. In particular, we mainly consider that haematopoietic lineages are tightly controlled by negative feedback inhibition of end-product. Actually, leukemia has been found 100 years ago. Up to now, the exact mechanism is still unknown, and many factors are thought to be associated with the pathogenesis of leukemia. Nevertheless, it is very necessary to continue the profound study of the pathogenesis of leukemia. Here, we propose a new mathematical model which include some negative feedback inhibition from the terminally differentiated cells of haematopoietic lineages to the haematopoietic stem cells and haematopoietic progenitor cells in order to describe the regulatory mechanisms mentioned above by a set of ordinary differential equations. Afterwards, we carried out detailed dynamical bifurcation analysis of the model, and obtained some meaningful results. In this work, we mainly perform the analysis of the mathematic model by bifurcation theory and numerical simulations. We have not only incorporated some new negative feedback mechanisms to the existing model, but also constructed our own model by using the modeling method of stem cell theory with probability method. Through a series of qualitative analysis and numerical simulations, we obtain that the weak negative feedback for differentiation probability is conducive to the cure of leukemia. However, with the strengthening of negative feedback, leukemia will be more difficult to be cured, and even induce death. In contrast, strong negative feedback for differentiation rate of progenitor cells can promote healthy haematopoiesis and suppress leukaemia. These results demonstrate that healthy progenitor cells are bestowed a competitive advantage over leukaemia stem cells. Weak g 1 , g 2 , and h 1 enable the system stays in the healthy state. However, strong h 2 can promote healthy haematopoiesis and suppress leukaemia.

  4. Human Cytomegalovirus-Infected Glioblastoma Cells Display Stem Cell-Like Phenotypes

    PubMed Central

    Liu, Che; Clark, Paul A.; Kuo, John S.

    2017-01-01

    ABSTRACT Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Human cytomegalovirus (HCMV) genomes are present in GBM tumors, yielding hope that antiviral treatments could prove therapeutic and improve the poor prognosis of GBM patients. We discovered that GBM cells infected in vitro with HCMV display properties of cancer stem cells. HCMV-infected GBM cells grow more slowly than mock-infected controls, demonstrate a higher capacity for self-renewal determined by a sphere formation assay, and display resistance to the chemotherapeutic drug temozolomide. Our data suggest that HCMV, while present in only a minority of the cells within a tumor, could contribute to the pathogenesis of GBMs by promoting or prolonging stem cell-like phenotypes, thereby perpetuating tumors in the face of chemotherapy. Importantly, we show that temozolomide sensitivity is restored by the antiviral drug ganciclovir, indicating a potential mechanism underlying the positive effects observed in GBM patients treated with antiviral therapy. IMPORTANCE A role for HCMV in GBMs remains controversial for several reasons. Some studies find HCMV in GBM tumors, while others do not. Few cells within a GBM may harbor HCMV, making it unclear how the virus could be contributing to the tumor phenotype without infecting every cell. Finally, HCMV does not overtly transform cells in vitro. However, tumors induced by other viruses can be treated with antiviral remedies, and initial results indicate that this may be true for anti-HCMV therapies and GBMs. With such a poor prognosis for GBM patients, any potential new intervention deserves exploration. Our work here describes an evidence-based model for how HCMV could contribute to GBM biology while infecting very few cells and without transforming them. It also illuminates why anti-HCMV treatments may be beneficial to GBM patients. Our observations provide blueprints for future in vitro studies examining how HCMV manipulates stem cell

  5. Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9hi, SSEA-1− Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    PubMed Central

    Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang

    2006-01-01

    Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with

  6. Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state.

    PubMed

    El-Badawy, Ahmed; Ghoneim, Mohamed A; Gabr, Mahmoud M; Salah, Radwa Ayman; Mohamed, Ihab K; Amer, Marwa; El-Badri, Nagwa

    2017-11-07

    Mesenchymal stem cells (MSCs) play different roles in modulating tumor progression, growth, and metastasis. MSCs are recruited to the tumor site in large numbers and subsequently have an important microenvironmental role in modulating tumor progression and drug sensitivity. However, the effect of the tumor microenvironment on MSC plasticity remains poorly understood. Herein, we report a paracrine effect of cancer cells, in which they secrete soluble factors that promote a more stem-like state in bone marrow mesenchymal stem cells (BM-MSCs). The effect of soluble factors secreted from MCF7, Hela, and HepG2 cancer cell lines on BM-MSCs was assessed using a Transwell indirect coculture system. After 5 days of coculture, BM-MSCs were characterized by flow cytometry for surface marker expression, by qPCR for gene expression profile, and by confocal immunofluorescence for marker expression. We then measured the sensitivity of cocultured BM-MSCs to chemotherapeutic agents, their cell cycle profile, and their response to DNA damage. The sphere formation, invasive properties, and in-vivo performance of BM-MSCs after coculture with cancer cells were also measured. Indirect coculture of cancer cells and BM-MSCs, without direct cell contact, generated slow cycling, chemoresistant spheroid stem cells that highly expressed markers of pluripotency, cancer cells, and cancer stem cells (CSCs). They also displayed properties of a side population and enhanced sphere formation in culture. Accordingly, these cells were termed cancer-induced stem cells (CiSCs). CiSCs showed a more mesenchymal phenotype that was further augmented upon TGF-β stimulation and demonstrated a high expression of the β-catenin pathway and ALDH1A1. These findings demonstrate that MSCs, recruited to the tumor microenvironment in large numbers, may display cellular plasticity, acquire a more stem-like state, and acquire some properties of CSCs upon exposure to cancer cell-secreted factors. These acquired

  7. miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1.

    PubMed

    Guo, Xiaodong; Yu, Ling; Zhang, Zhengpei; Dai, Guo; Gao, Tian; Guo, Weichun

    2017-01-01

    Evidence is accumulating to link cancer stem cells to the pathogenesis and progression of osteosarcoma. The aim of this study is to investigate the role of miR-335 in osteosarcoma stem cells. Tumor spheroid culture and flow cytometry were applied to screen out osteosarcoma stem cells. Real-time quantitative PCR was used to detect the expression level of miR-335 in MG63, U2OS and 143B osteosarcoma stem cells. The relationship of miR-335 expression with osteosarcoma stem cells was then analyzed. Transwell assay and transplantation assay were performed to elucidate biological effects of miR-335 on cell invasion and vivo tumor formation. Western Blot and luciferase assays were executed to investigate the regulation of POU5F1 by miR-335. The expression of miR-335 in osteosarcoma stem cells was lower than their differentiated counterparts. Cells expressing miR-335 possessed decreased stem cell-like properties. Gain or loss of function assays were applied to find that miR-335 antagonist promoted stem cell-like properties as well as invasion. Luciferase report and transfection assay showed that POU5F1 was downregulated by miR-335. Pre-miR-335 resulted in tumor enhanced sensitivity to traditional chemotherapy, whereas anti-miR-335 promoted chemoresistance. Finally, the inhibitory effect of miR-335 on in vivo tumor formation showed that combination of pre-miR-335 with cisplatin further reduced the tumor size, and miR-335 brought down the sphere formation capacity induced by cisplatin. The current study demonstrates that miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1, and miR-335 could target CSCs to synergize with traditional chemotherapeutic agents to overcome osteosarcoma.

  8. Purinergic Receptors in Quiescence and Localization of Leukemic Stem Cells

    DTIC Science & Technology

    2013-05-01

    Tagliafico et al., 2006). P2Y14 expression has been shown to be highly upregulated in differentiation-resistant acute myeloid leukemia (AML) cases in...Hystad, M.E., Stubberud, H., Funderud, S., and Rian, E. (2007). Wnt3A activates canonical Wnt signalling in acute lymphoblastic leukaemia (ALL) cells and...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT How leukemia stem cells gained resistance to radiation and chemotheraphy is poorly

  9. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation.

    PubMed

    Nasr, Rihab; Guillemin, Marie-Claude; Ferhi, Omar; Soilihi, Hassan; Peres, Laurent; Berthier, Caroline; Rousselot, Philippe; Robledo-Sarmiento, Macarena; Lallemand-Breitenbach, Valérie; Gourmel, Bernard; Vitoux, Dominique; Pandolfi, Pier Paolo; Rochette-Egly, Cécile; Zhu, Jun; de Thé, Hugues

    2008-12-01

    Retinoic acid and arsenic trioxide target the protein stability and transcriptional repression activity of the fusion oncoprotein PML-RARA, resulting in regression of acute promyelocytic leukemia (APL). Phenotypically, retinoic acid induces differentiation of APL cells. Here we show that retinoic acid also triggers growth arrest of leukemia-initiating cells (LICs) ex vivo and their clearance in PML-RARA mouse APL in vivo. Retinoic acid treatment of mouse APLs expressing the fusion protein PLZF-RARA triggers full differentiation, but not LIC loss or disease remission, establishing that differentiation and LIC loss can be uncoupled. Although retinoic acid and arsenic synergize to clear LICs through cooperative PML-RARA degradation, this combination does not enhance differentiation. A cyclic AMP (cAMP)-dependent phosphorylation site in PML-RARA is crucial for retinoic acid-induced PML-RARA degradation and LIC clearance. Moreover, activation of cAMP signaling enhances LIC loss by retinoic acid, identifying cAMP as another potential APL therapy. Thus, whereas transcriptional activation of PML-RARA is likely to control differentiation, its catabolism triggers LIC eradication and long-term remission of mouse APL. Therapy-triggered degradation of oncoproteins could be a general strategy to eradicate cancer stem cells.

  10. Juvenile Myelomonocytic Leukemia (JMML) (For Parents)

    MedlinePlus

    ... Radiation Chemotherapy Acute Lymphoblastic Leukemia (ALL) Leukemia Neutropenia Stem Cell Transplants Caring for a Seriously Ill Child Acute Myeloid Leukemia (AML) Cancer Center Chemotherapy Some Kinds of Cancer Kids Get When Cancer Keeps You Home Cancer: Readjusting ...

  11. Comparison of survival outcome between donor types or stem cell sources for childhood acute myeloid leukemia after allogenic hematopoietic stem cell transplantation: A multicenter retrospective study of Study Alliance of Yeungnam Pediatric Hematology-oncology.

    PubMed

    Shim, Ye Jee; Lee, Jae Min; Kim, Heung Sik; Jung, Nani; Lim, Young Tak; Yang, Eu Jeen; Hah, Jeong Ok; Lee, Young-Ho; Chueh, Hee Won; Lim, Jae Young; Park, Eun Sil; Park, Jeong A; Park, Ji Kyoung; Park, Sang Kyu

    2018-06-19

    We compared transplant outcomes between donor types and stem cell sources for childhood acute myeloid leukemia (AML). The medical records of children with AML in the Yeungnam region of Korea from January 2000 to June 2017 were reviewed. In all, 76 children with AML (male-to-female ratio = 46:30) received allogenic hematopoietic stem cell transplantation (allo-HSCT). In total, 29 patients received HSCT from either a matched-related donor or a mismatched-related donor, 32 patients received an unrelated donor, and 15 patients received umbilical cord blood. In term of stem cell sources, bone marrow was used in 15 patients and peripheral blood in 46 patients. For all HSCT cases, the 5-year overall survival (OS) was 73.1% (95% CI: 62.7-83.5) and the 5-year event-free survival (EFS) was 66.1% (95% CI: 54.5-77.7). There was no statistical difference in 5-year OS according to the donor types or stem cell sources (P = .869 and P = .911). There was no statistical difference in 5-year EFS between donor types or stem cell sources (P = .526 and P = .478). For all HSCT cases, the 5-year relapse rate was 16.1% (95% CI: 7.3-24.9) and the 5-year non-relapse mortality (NRM) was 13.3% (95% CI: 5.1-21.5). There was no statistical difference in the 5-year relapse rate according to the donor types or stem cell sources (P = .971 and P = .965). There was no statistical difference in the 5-year NRM between donor types or stem cell sources (P = .461 and P = .470). © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro.

    PubMed

    Zhang, Li; Wu, Yenan; Li, Xiang; Wei, Shao; Xing, Yiming; Lian, Zhengxing; Han, Hongbing

    2018-01-01

    Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro . Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro .

  13. Autocrine Semaphorin3A signaling is essential for the maintenance of stem-like cells in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Daisuke; Takahashi, Kensuke; Kawahara, Kohichi

    Cancer stem-like cells (CSCs) exist in tumor tissues composed of heterogeneous cell population and are characterized by their self-renewal capacity and tumorigenicity. Many studies demonstrate that eradication of CSCs prevents development and recurrences of tumor; yet, molecules critical for the maintenance of CSCs have not been completely understood. We previously reported that Semaphorin3A (Sema3a) knockdown suppressed the tumorigenicity and proliferative capacity of Lewis lung carcinoma (LLC) cells. Therefore, we identified Sema3a as an essential factor for the establishment or maintenance of CSCs derived from LLC (LLC-stem cell). shRNA against Sema3a was introduced into LLC cells to establish a LLC-stem cellmore » line and its effects on tumorigenesis, sphere formation, and mTORC1 activity were tested. Sema3a knockdown completely abolished tumorigenicity and the sphere-formation and self-renewal ability of LLC-stem cells. The Sema3a knockdown was also associated with decreased expression of mRNA for stem cell markers. The self-renewal ability abolished by Sema3a knockdown could not be recovered by exogenous addition of recombinant SEMA3A. In addition, the activity of mammalian target of rapamycin complex 1 (mTORC1) and the expression of its substrate p70S6K1 were also decreased. These results demonstrate that Sema3a is a potential therapeutic target in eradication of CSCs. - Highlights: • Sema3a enhances tumorigenic capacity of cancer stem-like cells. • Sema3a is essential for the maintenance of cancer stem-like cells. • Sema3a can be a therapeutic target to eradicate cancer stem-like cells.« less

  14. Haploidentical/mismatched hematopoietic stem cell transplantation without in vitro T cell depletion for T cell acute lymphoblastic leukemia.

    PubMed

    Wang, Yu; Liu, Dai-Hong; Xu, Lan-Ping; Liu, Kai-Yan; Chen, Huan; Chen, Yu-Hong; Han, Wei; Zhang, Xiao-Hui; Huang, Xiao-Jun

    2012-05-01

    The outcome of T cell acute lymphoblastic leukemia (T-ALL) is poorly understood. Allogeneic hematopoietic stem cell transplantation (HSCT) remains 1 of the best options to cure T-ALL. However, many patients cannot find an HLA-matched donor. Our institute established a new protocol for haplo-identical HSCT. Busulfan, cyclophosphamide, cytosine arabinoside, and methyl CCNU plus antithymocyte globulin was used for conditioning therapy. Seventy-two patients diagnosed with T-ALL underwent transplantation from haploidentical donor family members. The incidence rates of grades II to IV acute graft-versus-host disease (aGVHD) and of grades III and IV aGVHD were 49% ± 12% and 19% ± 12%, respectively. The cumulative incidence rate for chronic GVHD (cGVHD) at 2 years after HSCT was 41% ± 12%. After a median follow-up of 12 months, 15 patients had relapsed, 14 died from relapse, and 41 patients were still alive without disease recurrence. The probability of leukemia-free survival (LFS) was 44.2% ± 7.4% at 3 years. Patients transplanted during their first complete remission (CR1) had a lower relapse rate (18.8% versus 37.5%, P = .049, with a relative risk [RR] = 0.247, P = .007), a lower nonrelapse mortality (NRM) rate (16.6% versus 50.0%, P = .046, with an RR = 0.279, P = .024), and better LFS (54.8% versus 12.5%, P = .001, with an RR = 0.315, P = .004) compared with patients transplanted beyond CR1. This study confirmed that haploidentical/mismatched HSCT could be an alternative treatment choice for T-ALL. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation

    PubMed Central

    Wunderlich, Mark; Chou, Fu-Sheng; Mulloy, James C.

    2016-01-01

    Human CD34+ hematopoietic stem and progenitor cells (HSPC) expressing fusion protein AML1-ETO (AE), generated by the t(8;21)(q22;q22) rearrangement, manifest enhanced self-renewal and dysregulated differentiation without leukemic transformation, representing a pre-leukemia stage. Enabling replicative immortalization via telomerase reactivation is a crucial step in cancer development. However, AE expression alone is not sufficient to maintain high telomerase activity to immortalize human HSPC cells, which may hamper transformation. Here, we investigated the cooperativity of telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, and AE in disease progression. Enforced expression of hTERT immortalized human AE pre-leukemia cells in a telomere-lengthening independent manner, and improved the pre-leukemia stem cell function by enhancing cell proliferation and survival. AE-hTERT cells retained cytokine dependency and multi-lineage differentiation potential similar to parental AE clones. Over the short-term, AE-hTERT cells did not show features of stepwise transformation, with no leukemogenecity evident upon initial injection into immunodeficient mice. Strikingly, after extended culture, we observed full transformation of one AE-hTERT clone, which recapitulated the disease evolution process in patients and emphasizes the importance of acquiring cooperating mutations in t(8;21) AML leukemogenesis. In summary, achieving unlimited proliferative potential via hTERT activation, and thereby allowing for acquisition of additional mutations, is a critical link for transition from pre-leukemia to overt disease in human cells. AE-hTERT cells represent a tractable model to study cooperating genetic lesions important for t(8;21) AML disease progression. PMID:27509060

  16. Adult T-Cell Leukemia/Lymphoma

    MedlinePlus

    ... Adult T-Cell Leukemia/Lymphoma Adult T-Cell Leukemia/Lymphoma Adult T-cell A type of white ... immune responses by destroying harmful substances or cells. leukemia Disease generally characterized by the overproduction of abnormal ...

  17. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    PubMed

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  18. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells

    PubMed Central

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097

  19. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells

    PubMed Central

    Gerson, Stanton L.

    2017-01-01

    Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs), creating a preleukemic stem cell (PLSC). Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC). Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM), but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment. PMID:28767666

  20. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells.

    PubMed

    Choi, Seon-A; Choi, Hoon-Sung; Kim, Keun Jung; Lee, Dong-Soo; Lee, Ji Hey; Park, Jie Yeun; Kim, Eun Young; Li, Xiaoxia; Oh, Hyun-Yang; Lee, Dong-Seok; Kim, Min Kyu

    2013-01-01

    Recent findings have demonstrated that amniotic fluid cells are an interesting and potential source of mesenchymal stem cells (MSCs). In this study, we isolated MSCs from canine amniotic fluid and then characterized their multilineage differentiation ability. Canine amniotic fluid stem (cAFS) cells at passage 5 had a fibroblast-like morphology instead of forming colonies and were positive for pluripotent stem cell markers such as OCT4, NANOG, and SOX2. Flow cytometry analysis showed the expression of MSC surface markers CD44, CD29, and CD90 on the cAFS cells. In addition, these cells were cultured under conditions favorable for adipogenic, chondrogenic, and osteogenic induction. The results of this experiment confirmed the mesenchymal nature of cAFS cells and their multipotent potential. Interestingly, although the cells exhibited a fibroblast-like morphology after hepatogenic induction, reverse transcription-polymerase chain reaction revealed that the expression of several hepatic genes, such as albumin, tyrosine aminotransferase, and alpha-1 antiproteinase, increased following maturation and differentiation. These findings indicated that cAFS cells have functional properties similar to those of hepatocytes. Taken together, the results of our study demonstrated that cAFS cells with mesenchymal characteristics can be successfully isolated from canine amniotic fluid and possess functional properties characteristic of hepatocytes. The findings of our work suggest that cAFS cells have the potential to be a resource for cell-based therapies in a canine model of hepatic disease.

  1. Blastocyst-like structures generated solely from stem cells.

    PubMed

    Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels

    2018-05-01

    The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.

  2. Newly identified poor prognostic factors for adult T-cell leukemia-lymphoma treated with allogeneic hematopoietic stem cell transplantation.

    PubMed

    Tokunaga, Masahito; Uto, Hirofumi; Takeuchi, Shogo; Nakano, Nobuaki; Kubota, Ayumu; Tokunaga, Mayumi; Takatsuka, Yoshifusa; Seto, Masao; Ido, Akio; Utsunomiya, Atae

    2017-01-01

    To explore pre-transplantation prognostic factors for adult T-cell leukemia-lymphoma (ATL), we retrospectively analyzed allogeneic hematopoietic stem cell transplantation (allo-HSCT) in 70 patients at our institute (63 acute type and seven lymphoma type patients). Forty-five patients died after HSCT and the three-year overall survival (OS) rate was 35.2%. By univariate analysis, the adverse prognostic factors for OS were performance status ≥2, hematopoietic cell transplantation-specific comorbidity index (HCT-CI) score ≥3, European Group for Blood and Marrow Transplantation (EBMT) risk score ≥5, HSCT from an HLA-mismatched donor, serum soluble interleukin-2 receptor (sIL-2R) level ≥10,000 U/mL, lymphocyte count ≥4000/μL, and hemoglobin <9 g/dL at the time of HSCT. EBMT risk score and sIL-2R were identified as significant adverse prognostic factors using multivariate analysis. This analysis clearly demonstrates for the first time that HCT-CI and EBMT risk scores are reliable prognostic factors for ATL patients receiving allo-HSCT.

  3. Hematopoietic stem cell transplantation in Europe 1998.

    PubMed

    Gratwohl, A; Passweg, J; Baldomero, H; Hermans, J; Urbano-Ispizua, A

    2000-01-01

    Transplantation of hematopoietic stem cells from blood or bone marrow has become accepted therapy for many diseases. Numbers of transplants have increased significantly and stem cell source, donor type and indications have changed during this decade. Information on these changes is essential for interpretation of current data, patient counseling and health care planning. Since 1990, members of the European Group for Blood and Marrow Transplantation and teams known to perform blood or marrow transplants have been invited annually to report their transplant numbers by indication, donor type and stem cell source. Data from these surveys have been used to present data for 1998, to assess current status and to give numbers of transplants per participating country, coefficients of variation between countries for individual indications and changes in indication, stem cell source and donor type over the past decade. In 1998, a total of 20 892 transplants were performed by 528 teams in 31 European countries. Of these transplants 18 400 were first transplants, 5308 (29%) were allogenic, and 13 092 (71%) were autologous. Of the autologous transplants, 809 (6%) were bone marrow derived, and 12 283 (94%) were from peripheral blood stems cells. Of the allogeneic transplants, 3372 (64%) were bone marrow derived, and 1936 (36%) were peripheral blood stem cell transplants. In 1990, the respective figures were 2137 allogeneic (50%) and 2097 (50%) autologous transplants, all exclusively bone marrow derived. Main indications in 1998 were leukemias with 6015 transplants (33%), 68% thereof allogeneic transplants; lymphomas with 7492 transplants (41%), 94% thereof autologous transplants; solid tumors with 4025 transplants (22%), 99% thereof autologous transplants; non-malignant disorders with 868 transplants (5%), 80% thereof allogeneic transplants. Absolute numbers of transplants per year did increase from 4234 in 1990 to 20 892 in 1998. Increase is higher for autologous, than for

  4. Blood use in patients receiving intensive chemotherapy for acute leukemia or hematopoietic stem cell transplantation: the impact of a health system-wide patient blood management program.

    PubMed

    Leahy, Michael F; Trentino, Kevin M; May, Colleen; Swain, Stuart G; Chuah, Hun; Farmer, Shannon L

    2017-09-01

    Little is published on patient blood management (PBM) programs in hematology. In 2008 Western Australia announced a health system-wide PBM program with PBM staff appointments commencing in November 2009. Our aim was to assess the impact this program had on blood utilization and patient outcomes in intensive chemotherapy for acute leukemia or hematopoietic stem cell transplantation. A retrospective study of 695 admissions at two tertiary hospitals receiving intensive chemotherapy for acute leukemia or undergoing hematopoietic stem cell transplantation between July 2010 and December 2014 was conducted. Main outcomes included pre-red blood cell (RBC) transfusion hemoglobin (Hb) levels, single-unit RBC transfusions, number of RBC and platelet (PLT) units transfused per admission, subsequent day case transfusions, length of stay, serious bleeding, and in-hospital mortality. Over the study period, the mean RBC units transfused per admission decreased 39% from 6.1 to 3.7 (p < 0.001), and the mean PLT units transfused decreased 35% from 6.3 to 4.1 (p < 0.001), with mean RBC and PLT units transfused for follow-up day cases decreasing from 0.6 to 0.4 units (p < 0.001). Mean pre-RBC transfusion Hb level decreased from 8.0 to 6.8 g/dL (p < 0.001), and single-unit RBC transfusions increased 39% to 67% (p < 0.001). This reduction represents blood product cost savings of AU$694,886 (US$654,007). There were no significant changes in unadjusted or adjusted length of stay, serious bleeding events, or in-hospital mortality over the study. The health system-wide PBM program had a significant impact, reducing blood product use and costs without increased morbidity or mortality in patients receiving intensive chemotherapy for acute leukemia or hematopoietic stem cell transplantation. © 2017 AABB.

  5. Immunological effects of nilotinib prophylaxis after allogeneic stem cell transplantation in patients with advanced chronic myeloid leukemia or philadelphia chromosome-positive acute lymphoblastic leukemia

    PubMed Central

    Shouval, Roni; Eldror, Shiran; Lev, Atar; Davidson, Jacqueline; Rosenthal, Esther; Volchek, Yulia; Shem-Tov, Noga; Yerushalmi, Ronit; Shimoni, Avichai; Somech, Raz; Nagler, Arnon

    2017-01-01

    Allogeneic stem cell transplantation remains the standard treatment for resistant advanced chronic myeloid leukemia and Philadelphia chromosome–positive acute lymphoblastic leukemia. Relapse is the major cause of treatment failure in both diseases. Post-allo-SCT administration of TKIs could potentially reduce relapse rates, but concerns regarding their effect on immune reconstitution have been raised. We aimed to assess immune functions of 12 advanced CML and Ph+ ALL patients who received post-allo-SCT nilotinib. Lymphocyte subpopulations and their functional activities including T-cell response to mitogens, NK cytotoxic activity and thymic function, determined by quantification of the T cell receptor (TCR) excision circles (TREC) and TCR repertoire, were evaluated at several time points, including pre-nilotib-post-allo-SCT, and up to 365 days on nilotinib treatment. NK cells were the first to recover post allo-SCT. Concomitant to nilotinib administration, total lymphocyte counts and subpopulations gradually increased. CD8 T cells were rapidly reconstituted and continued to increase until day 180 post SCT, while CD4 T cells counts were low until 180−270 days post nilotinib treatment. T-cell response to mitogenic stimulation was not inhibited by nilotinib administration. Thymic activity, measured by TREC copies and surface membrane expression of 24 different TCR Vβ families, was evident in all patients at the end of follow-up after allo-SCT and nilotinib treatment. Finally, nilotinib did not inhibit NK cytotoxic activity. In conclusion, administration of nilotinib post allo-SCT, in attempt to reduce relapse rates or progression of Ph+ ALL and CML, did not jeopardize immune reconstitution or function following transplantation. PMID:27880933

  6. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state.

    PubMed

    Lim, Yat-Yuen; Wright, Josephine A; Attema, Joanne L; Gregory, Philip A; Bert, Andrew G; Smith, Eric; Thomas, Daniel; Lopez, Angel F; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J

    2013-05-15

    The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.

  7. Potential contribution of a novel Tax epitope-specific CD4+ T cells to graft-versus-Tax effect in adult T cell leukemia patients after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Tamai, Yotaro; Hasegawa, Atsuhiko; Takamori, Ayako; Sasada, Amane; Tanosaki, Ryuji; Choi, Ilseung; Utsunomiya, Atae; Maeda, Yasuhiro; Yamano, Yoshihisa; Eto, Tetsuya; Koh, Ki-Ryang; Nakamae, Hirohisa; Suehiro, Youko; Kato, Koji; Takemoto, Shigeki; Okamura, Jun; Uike, Naokuni; Kannagi, Mari

    2013-04-15

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for adult T cell leukemia/lymphoma (ATL) caused by human T cell leukemia virus type 1 (HTLV-1). We previously reported that Tax-specific CD8(+) cytotoxic T lymphocyte (CTL) contributed to graft-versus-ATL effects in ATL patients after allo-HSCT. However, the role of HTLV-1-specific CD4(+) T cells in the effects remains unclear. In this study, we showed that Tax-specific CD4(+) as well as CD8(+) T cell responses were induced in some ATL patients following allo-HSCT. To further analyze HTLV-1-specific CD4(+) T cell responses, we identified a novel HLA-DRB1*0101-restricted epitope, Tax155-167, recognized by HTLV-1-specific CD4(+) Th1-like cells, a major population of HTLV-1-specific CD4(+) T cell line, which was established from an ATL patient at 180 d after allo-HSCT from an unrelated seronegative donor by in vitro stimulation with HTLV-1-infected cells from the same patient. Costimulation of PBMCs with both the identified epitope (Tax155-167) and known CTL epitope peptides markedly enhanced the expansion of Tax-specific CD8(+) T cells in PBMCs compared with stimulation with CTL epitope peptide alone in all three HLA-DRB1*0101(+) patients post-allo-HSCT tested. In addition, direct detection using newly generated HLA-DRB1*0101/Tax155-167 tetramers revealed that Tax155-167-specific CD4(+) T cells were present in all HTLV-1-infected individuals tested, regardless of HSCT. These results suggest that Tax155-167 may be the dominant epitope recognized by HTLV-1-specific CD4(+) T cells in HLA-DRB1*0101(+)-infected individuals and that Tax-specific CD4(+) T cells may augment the graft-versus-Tax effects via efficient induction of Tax-specific CD8(+) T cell responses.

  8. Isolation of stem-like cells from spontaneous feline mammary carcinomas: phenotypic characterization and tumorigenic potential.

    PubMed

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway.

    PubMed

    Gao, Yunhe; Cai, Aizhen; Xi, Hongqing; Li, Jiyang; Xu, Wei; Zhang, Yanmei; Zhang, Kecheng; Cui, Jianxin; Wu, Xiaosong; Wei, Bo; Chen, Lin

    2017-04-26

    Ring finger protein 43 (RNF43) is a member of the transmembrane E3 ubiquitin ligase family that was originally found in stem cells and plays important roles in tumor formation and progression. Our previous study indicated that RNF43 might be a tumor suppressor protein in gastric cancer. Given its antagonistic relationship with leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), one of the gastric cancer stem cell markers, investigation of the potential role of RNF43 in gastric stem cancer cells is necessary. Immunohistochemistry staining, western blot analysis, and quantitative reverse transcription polymerase chain reaction were used to determine the mRNA and protein expression level of RNF43 and other Wnt pathway factors. Gastric cancer stem-like cells were obtained from gastric cancer tumor and cell lines by tumorsphere culture. The adeno-associated virus system was used to upregulate RNF43 expression in cancer cells. Functional experiments including tumorsphere formation, chemotherapy resistance, surface marker detection, and tumor xenograft assay were performed to measure stem-like properties in gastric cancer stem-like cells after RNF43 overexpression. RNF43 loss was significantly associated with TNM stage, distant metastasis, and Lauren classification, and predicted worse prognosis in gastric cancer patients. RNF43 expression was even lower in tumorspheres derived from tumor tissues or cell lines compared with adherent cancer cells and normal gastric cells. Overexpression of RNF43 in gastric cancer cells impaired their stem-like properties, including sphere formation ability, chemoresistance in vitro, and tumorigenicity in vivo. Moreover, Wnt pathway-related proteins were decreased in RNF43-overexpressing cells, while Wnt pathway activators could reverse the trend to some extent. Our findings indicated that RNF43 might not only participate in gastric cancer progression, but also attenuate the stemness of gastric cancer stem-like cells through

  10. Musashi2 sustains the mixed-lineage leukemia–driven stem cell regulatory program

    PubMed Central

    Park, Sun-Mi; Gönen, Mithat; Vu, Ly; Minuesa, Gerard; Tivnan, Patrick; Barlowe, Trevor S.; Taggart, James; Lu, Yuheng; Deering, Raquel P.; Hacohen, Nir; Figueroa, Maria E.; Paietta, Elisabeth; Fernandez, Hugo F.; Tallman, Martin S.; Melnick, Ari; Levine, Ross; Leslie, Christina; Lengner, Christopher J.; Kharas, Michael G.

    2015-01-01

    Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia. PMID:25664853

  11. Generation of diverse neuronal subtypes in cloned populations of stem-like cells

    PubMed Central

    Varga, Balázs V; Hádinger, Nóra; Gócza, Elen; Dulberg, Vered; Demeter, Kornél; Madarász, Emília; Herberth, Balázs

    2008-01-01

    Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish

  12. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    PubMed

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH) 2 D 3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH) 2 D 3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest

  13. MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis

    PubMed Central

    Roden, Christine; Lu, Jun

    2016-01-01

    Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields. PMID:27547713

  14. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  15. Cells Isolated from Human Periapical Cysts Express Mesenchymal Stem Cell-like Properties

    PubMed Central

    Marrelli, Massimo; Paduano, Francesco; Tatullo, Marco

    2013-01-01

    We provide a detailed description of mesenchymal stem cells (MSCs) isolated from human periapical cysts, which we have termed hPCy-MSCs. These cells have a fibroblast-like shape and adhere to tissue culture plastic surfaces. hPCy-MSCs possess high proliferative potential and self-renewal capacity properties. We characterised the immunophenotype of hPCy-MSCs (CD73+, CD90+, CD105+, CD13+, CD29+, CD44+, CD45-, STRO-1+, CD146+) by flow cytometry and immunofluorescence. hPCy-MSCs possess the potential to differentiate into osteoblast- and adipocyte-like cells in vitro. Multi-potentiality was evaluated with culture-specific staining and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis for osteo/odontogenic and adipogenic markers. This is the first report to indicate that human periapical cysts contain cells with MSC-like properties. Taken together, our findings indicate that human periapical cysts could be a rich source of MSCs. PMID:24250252

  16. Cells isolated from human periapical cysts express mesenchymal stem cell-like properties.

    PubMed

    Marrelli, Massimo; Paduano, Francesco; Tatullo, Marco

    2013-01-01

    We provide a detailed description of mesenchymal stem cells (MSCs) isolated from human periapical cysts, which we have termed hPCy-MSCs. These cells have a fibroblast-like shape and adhere to tissue culture plastic surfaces. hPCy-MSCs possess high proliferative potential and self-renewal capacity properties. We characterised the immunophenotype of hPCy-MSCs (CD73(+), CD90(+), CD105(+), CD13(+), CD29(+), CD44(+), CD45(-), STRO-1(+), CD146(+)) by flow cytometry and immunofluorescence. hPCy-MSCs possess the potential to differentiate into osteoblast- and adipocyte-like cells in vitro. Multi-potentiality was evaluated with culture-specific staining and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis for osteo/odontogenic and adipogenic markers. This is the first report to indicate that human periapical cysts contain cells with MSC-like properties. Taken together, our findings indicate that human periapical cysts could be a rich source of MSCs.

  17. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells

    PubMed Central

    Sviderskaya, Elena V.; Easty, David J.; Lawrence, Mark A.; Sánchez, Daniel P.; Negulyaev, Yuri A.; Patel, Ricken H.; Anand, Praveen; Korchev, Yuri E.; Bennett, Dorothy C.

    2009-01-01

    Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.—Sviderskaya, E. V., Easty, D. J., Lawrence, M. A., Sánchez, D. P., Negulyaev, Y. A., Patel, R. H., Anand, P., Korchev, Y. E., Bennett, D. C. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. PMID:19447881

  18. Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells.

    PubMed

    Park, Hwan-Woo; Cho, Jung-Sun; Park, Chul-Kyu; Jung, Sung Jun; Park, Chang-Hwan; Lee, Shin-Jae; Oh, Seog Bae; Park, Young-Seok; Chang, Mi-Sook

    2012-01-01

    Cell replacement using stem cells is a promising therapeutic approach to treat degenerative motor neuron (MN) disorders, such as amyotrophic lateral sclerosis and spinal cord injury. Human bone marrow-derived mesenchymal stem cells (hMSCs) are a desirable cell source for autologous cell replacement therapy to treat nervous system injury due to their plasticity, low immunogenicity, and a lower risk of tumor formation than embryonic stem cells. However, hMSCs are inefficient with regards to differentiating into MN-like cells. To solve this limitation, we genetically engineered hMSCs to express MN-associated transcription factors, Olig2 and Hb9, and then treat the hMSCs expressing Olig2 and Hb9 with optimal MN induction medium (MNIM). This method of induction led to higher expression (>30% of total cells) of MN markers. Electrophysiological data revealed that the induced hMSCs had the excitable properties of neurons and were able to form functional connections with muscle fibers in vitro. Furthermore, when the induced hMSCs were transplanted into an injured organotypic rat spinal cord slice culture, an ex vivo model of spinal cord injury, they exhibited characteristics of MNs. The data strongly suggest that induced Olig2/Hb9-expressing hMSCs were clearly reprogrammed and directed toward a MN-like lineage. We propose that methods to induce Olig2 and Hb9, followed by further induction with MNIM have therapeutic potential for autologous cell replacement therapy to treat degenerative MN disorders.

  19. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    PubMed

    Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E

    2011-01-01

    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  20. Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells

    PubMed Central

    Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L.; Pestell, Richard G.; Martinez-Outschoorn, Ubaldo E.; Clarke, Robert B.; Sotgia, Federica; Lisanti, Michael P.

    2015-01-01

    Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(−) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive

  1. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells

    PubMed Central

    Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Maifrede, Silvia; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Bullinger, Lars; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I.; Muschen, Markus; Dick, John E.; Wang, Jean C.Y.; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D.; Sykes, Stephen M.

    2017-01-01

    Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients. PMID:28481221

  2. FGFR1 promotes the stem cell-like phenotype of FGFR1-amplified non-small cell lung cancer cells through the Hedgehog pathway.

    PubMed

    Ji, Wenxiang; Yu, Yongfeng; Li, Ziming; Wang, Guan; Li, Fan; Xia, Weiliang; Lu, Shun

    2016-03-22

    Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.

  3. 211^At-BC8-B10 Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2018-02-21

    Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Excess Blasts; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  4. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells.

    PubMed

    Hong, Seung Hyun; Gang, Eun Ji; Jeong, Ju Ah; Ahn, Chiyoung; Hwang, Soo Han; Yang, Il Ho; Park, Hwon Kyum; Han, Hoon; Kim, Hoeon

    2005-05-20

    In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.

  5. [Pyoderma gangrenosum following hematopoietic stem cell transplantation].

    PubMed

    Eddou, H; Ennouhi, A; Sina, M; Zinebi, A; El Benaye, J; Moudden, M K; Doghmi, K; Malfuson, J-V; Mikdame, M; El Baaj, M

    2018-05-07

    Pyoderma gangrenosum (PG) is a rare form of neutrophilic dermatosis and is a potential complication in a number of systemic diseases. These include blood diseases, which represent 3.5% of cases, with the main forms being monoclonal gammopathy and acute myeloid leukemia. Herein we report a case of pyoderma gangrenosum in a female patient who had undergone haematopoietic stem cell allograft six months earlier as part of her treatment for acute T-cell leukemia. This condition forms one of the general disorders potentially associated with PG and is a dermatological disorder that can occur in marrow graft patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluatedmore » an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.« less

  7. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  8. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

    PubMed

    Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian

    2018-02-08

    Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.

  9. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    PubMed

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  10. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  11. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia

    PubMed Central

    Kenderian, Saad S.; Shen, Feng; Ruella, Marco; Shestova, Olga; Kozlowski, Miroslaw; Li, Yong; Schrank-Hacker, April; Morrissette, Jennifer J. D.; Carroll, Martin; June, Carl H.; Grupp, Stephan A.; Gill, Saar

    2017-01-01

    We and others previously reported potent antileukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T cells in preclinical human acute myeloid leukemia (AML) models at the cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared 3 CAR T-cell termination strategies: (1) transiently active anti-CD123 messenger RNA–electroporated CART (RNA-CART123); (2) T-cell ablation with alemtuzumab after treatment with lentivirally transduced anti–CD123-4-1BB-CD3ζ T cells (CART123); and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML. PMID:28246194

  12. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  13. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    PubMed

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  14. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  15. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively.

    PubMed

    Mitsutake, Norisato; Iwao, Atsuhiko; Nagai, Kazuhiro; Namba, Hiroyuki; Ohtsuru, Akira; Saenko, Vladimir; Yamashita, Shunichi

    2007-04-01

    There is increasing evidence that cancers contain their own stem-like cells called cancer stem cells (CSCs). A small subset of cells, termed side population (SP), has been identified using flow cytometric analysis. The SP cells have the ability to exclude the DNA binding dye, Hoechst33342, and are highly enriched for stem cells in many kinds of normal tissues. Because CSCs are thought to be drug resistant, SP cells in cancers might contain CSCs. We initially examined the presence of SP cells in several human thyroid cancer cell lines. A small percentage of SP cells were found in ARO (0.25%), FRO (0.1%), NPA (0.06%), and WRO (0.02%) cells but not TPC1 cells. After sorting, the SP cells generated both SP and non-SP cells in culture. The clonogenic ability of SP cells was significantly higher than that of non-SP cells. Moreover, the SP prevalence was dependent on cell density in culture, suggesting that SP cells preferentially survived at lower cell density. Microarray experiment revealed differential gene expression profile between SP and non-SP cells, and several genes related to stemness were up-regulated. However, non-SP population also contained cells that were tumorigenic in nude mice, and non-SP cells generated a small number of SP cells. These results suggest that cancer stem-like cells are partly, but not exclusively, enriched in SP population. Clarifying the key tumorigenic population might contribute to the establishment of a novel therapy for thyroid cancer.

  16. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer.

    PubMed

    Wang, Dongqing; Zhu, Haitao; Zhu, Ying; Liu, Yanfang; Shen, Huiling; Yin, Ruigen; Zhang, Zhijian; Su, Zhaoliang

    2013-05-01

    Pancreatic cancer is an aggressive malignant disease. Owing to the lack of early symptoms, accompanied by extensive metastasis and high resistance to chemotherapy, pancreatic adenocarcinoma becomes the fourth leading cause of cancer-related deaths. In this study, we identified a subpopulation of cells isolated from the Panc-1 cell line and named pancreatic cancer stem-like cells. These Panc-1 stem-like cells expressed high levels of CD133/CD44/Oct4/Nestin. Compared to Panc-1 cells, Panc-1 stem-like cells were resistant to gemcitabine and expressed high levels of MDR1; furthermore, Panc-1 stem-like cells have high anti-apoptotic, but weak proliferative potential. These results indicated that Panc-1 stem-like cells, as a novel group, may be a potential major cause of pancreatic cancer multidrug resistance and extensive metastasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.

    PubMed

    Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J

    2012-10-24

    Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity

  18. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer

    PubMed Central

    Correnti, Margherita; Raggi, Chiara

    2017-01-01

    Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy. PMID:27738343

  19. HA-1 T TCR T Cell Immunotherapy for the Treating of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-04-30

    HLA-A*0201 HA-1 Positive Cells Present; Minimal Residual Disease; Recurrent Acute Biphenotypic Leukemia; Recurrent Acute Undifferentiated Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  20. Niche displacement of human leukemic stem cells uniquely allows their competitive replacement with healthy HSPCs

    PubMed Central

    Boyd, Allison L.; Campbell, Clinton J.V.; Hopkins, Claudia I.; Fiebig-Comyn, Aline; Russell, Jennifer; Ulemek, Jelena; Foley, Ronan; Leber, Brian; Xenocostas, Anargyros; Collins, Tony J.

    2014-01-01

    Allogeneic hematopoietic stem cell (HSC) transplantation (HSCT) is currently the leading strategy to manage acute myeloid leukemia (AML). However, treatment-related morbidity limits the patient generalizability of HSCT use, and the survival of leukemic stem cells (LSCs) within protective areas of the bone marrow (BM) continues to lead to high relapse rates. Despite growing appreciation for the significance of the LSC microenvironment, it has remained unresolved whether LSCs preferentially situate within normal HSC niches or whether their niche requirements are more promiscuous. Here, we provide functional evidence that the spatial localization of phenotypically primitive human AML cells is restricted to niche elements shared with their normal counterparts, and that their intrinsic ability to initiate and retain occupancy of these niches can be rivaled by healthy hematopoietic stem and progenitor cells (HSPCs). When challenged in competitive BM repopulation assays, primary human leukemia-initiating cells (L-ICs) can be consistently outperformed by HSPCs for BM niche occupancy in a cell dose-dependent manner that ultimately compromises long-term L-IC renewal and subsequent leukemia-initiating capacity. The effectiveness of this approach could be demonstrated using cytokine-induced mobilization of established leukemia from the BM that facilitated the replacement of BM niches with transplanted HSPCs. These findings identify a functional vulnerability of primitive leukemia cells, and suggest that clinical development of these novel transplantation techniques should focus on the dissociation of L-IC–niche interactions to improve competitive replacement with healthy HSPCs during HSCT toward increased survival of patients. PMID:25180064

  1. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    PubMed

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  2. Isolation and Characterization of Node/Notochord-Like Cells from Mouse Embryonic Stem Cells

    PubMed Central

    Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2014-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP+ cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen’s node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures. PMID:21351873

  3. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction

    PubMed Central

    Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto

    2010-01-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317

  4. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells.

    PubMed

    Zhang, Daming; Yang, Guang; Chen, Xin; Li, Chunmei; Wang, Lu; Liu, Yaohua; Han, Dayong; Liu, Huailei; Hou, Xu; Zhang, Weiguang; Li, Chenguang; Han, Zhanqiang; Gao, Xin; Zhao, Shiguang

    2014-08-01

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells.

  5. Prognostic Prediction Model for Second Allogeneic Stem-Cell Transplantation in Patients With Relapsed Acute Myeloid Leukemia: Single-Center Report.

    PubMed

    Park, Sung-Soo; Kim, Hee-Je; Min, Kyoung Il; Min, Gi June; Jeon, Young-Woo; Yoon, Jae-Ho; Yahng, Seung-Ah; Shin, Seung-Hwan; Lee, Sung-Eun; Cho, Byung-Sik; Eom, Ki-Seong; Kim, Yoo-Jin; Lee, Seok; Min, Chang-Ki; Cho, Seok-Goo; Kim, Dong-Wook; Lee, Jong Wook; Min, Woo-Sung

    2018-04-01

    To identify factors affecting survival outcomes and to develop a prognostic model for second allogeneic stem-cell transplantation (allo-SCT2) for relapsed acute myeloid leukemia (AML) after the first autologous or allogeneic stem-cell transplantation. Seventy-eight consecutive adult AML patients who received allo-SCT2 were analyzed in this retrospective study. The 4-year overall survival (OS) rate was 28.7%. In multivariate analysis, poor cytogenetic risk at diagnosis, circulating blast ≥ 20% at relapse, duration from first transplantation to relapse < 9 months, and failure to achieve morphologic complete remission after allo-SCT2 were factors associated with poor OS. A prognostic model was developed with the following score system: intermediate and poor cytogenetic risk at diagnosis (0.5 and 1 point), peripheral blast ≥ 20% at relapse (1 point), duration from the first transplantation to relapse < 9 months (1 point), and failure to achieve morphologic complete remission after allo-SCT2 (1 point). The model identified 2 subgroups according to the 4-year OS rate: 51.3% in the low-risk group (score < 2) and 2.8% in the high-risk group (score ≥ 2) (P < .001). This prognostic model might be useful to make an appropriate decision for allo-SCT2 in relapsed AML after the first autologous or allogeneic stem-cell transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells.

    PubMed

    Kumazawa, Shoko; Kajiyama, Hiroaki; Umezu, Tomokazu; Mizuno, Mika; Suzuki, Shiro; Yamamoto, Eiko; Mitsui, Hiroko; Sekiya, Ryuichiro; Shibata, Kiyosumi; Kikkawa, Fumitaka

    2014-05-01

    We aimed to investigate the possibility of an association between a stem-like hallmark and radiotherapeutic sensitivity in human cervical carcinoma cells. Side-population (SP) cells and non-SP (NSP) cells in HeLa cells were isolated using flow cytometry and Hoechst 33342 efflux. We performed Western blot analysis to evaluate the expression of stem cell markers (CXCR4, Oct3/4, CD133, and SOX2) and apoptosis markers after irradiation. In addition, SP and NSP cells were injected into nude mice and we assessed subcutaneous tumor formation. To examine tolerance of irradiation, colony formation and apoptosis change were confirmed in the SP and NSP cells. SP cells showed a higher expression of CXCR4, Oct3/4, CD133, and SOX2 than NSP cells. The colony size of SP cells cultured on non-coated dishes was larger than that of NSP cells, and NSP cells were easily induced to undergo apoptosis. SP cells tended to form spheroids and showed a higher level of tumorigenicity compared with NSP cells. In addition, nude mice inoculated with SP cells showed greater tumor growth compared with NSP cells. SP cells showed a higher tumorigenicity and lower apoptotic potential, leading to enhanced radiotolerance. Tumor SP cells showed higher-level stem-cell-like characters and radioresistance than NSP cells. SP cells may be useful for new therapeutic approaches for radiation-resistant cervical cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  7. Identification of Novel Genes and Candidate Targets in CML Stem Cells

    DTIC Science & Technology

    2009-01-01

    v-myb myeloblastosis viral oncogene homolog (avian) 6q22–q23 12 GATCCTGTGTTTGCAAC 1 FLI1 NM_002017 Friend leukemia virus integration 1 11q24.1–q24.3 3...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chronic myeloid leukemia ... leukemia (CML) is a blood malignancy that is believed to originate in a hematopoietic stem cell as a result of the formation of an abnormal fusion gene

  8. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    PubMed

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  9. Characteristics predicting outcomes of allogeneic stem-cell transplantation in relapsed acute myelogenous leukemia.

    PubMed

    Frazer, J; Couban, S; Doucette, S; Shivakumar, S

    2017-04-01

    Allogeneic hematopoietic stem-cell transplantation (ahsct) is associated with significant morbidity and mortality, but it can cure carefully selected patients with acute myeloid leukemia (aml) in second remission (cr2). In a cohort of patients with aml who underwent ahsct in cr2, we determined the pre-transplant factors that predicted for overall survival (os), relapse, and non-relapse mortality. We also sought to validate the prognostic risk groups derived by Michelis and colleagues in this independent population. In a retrospective chart review, we obtained data for 55 consecutive patients who underwent ahsct for aml in cr2. Hazard ratios were used to describe the independent effects of pre-transplant variables on outcome, and Kaplan-Meier curves were used to assess outcomes in the three prognostic groups identified by Michelis and colleagues. At 1, 3, and 5 years post-transplant, os was 60%, 45.5%, and 37.5% respectively. Statistically significant differences in os, relapse mortality, and non-relapse mortality were not identified between the prognostic risk groups identified by Michelis and colleagues. Women were less likely than men to relapse, and a modified European Society for Blood and Marrow Transplantation (mebmt) score of 3 or less was associated with a lower non-relapse mortality. The 37.5% 5-year os in this cohort suggests that, compared with other options, ahsct offers patients with aml in cr2 a better chance of cure. Our study supports the use of the mebmt score to predict non-relapse mortality in this population.

  10. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer.

    PubMed

    Singh, Sandeep; Trevino, Jose; Bora-Singhal, Namrata; Coppola, Domenico; Haura, Eric; Altiok, Soner; Chellappan, Srikumar P

    2012-09-25

    Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the

  11. Metabolic plasticity during transition to naïve-like pluripotency in canine embryo-derived stem cells.

    PubMed

    Tobias, I C; Isaac, R R; Dierolf, J G; Khazaee, R; Cumming, R C; Betts, D H

    2018-05-16

    Pluripotent stem cells (PSCs) have been described in naïve or primed pluripotent states. Domestic dogs are useful translational models in regenerative medicine, but their embryonic stem cells (cESCs) remain narrowly investigated. Primed-like cESCs expanded in the presence of leukemia inhibitory factor and fibroblast growth factor 2 (LIF-FGF2) acquire features of naïve pluripotency when exposed to chemical inhibitors and LIF (2iL). However, proliferation of cESCs is influenced by the pluripotent state and is comparatively slower than human or mouse PSCs. We propose that different metabolic pathway activities support ATP generation and biomass accumulation necessary for LIF-FGF2 and 2iL cESC proliferation. We found that 2iL cESCs have greater respiratory capacity, altered mitochondrial chain complex stoichiometry and elevated mitochondrial polarization state. Yet, 2iL-enriched cESCs exhibited immature ultrastructure, including previously unrecognized changes to cristae organization. Enhanced ATP level in 2iL cESCs is associated with altered retrograde signalling, whereas LIF-FGF2 cESCs exhibit a lipogenic phenotype. Inhibition of oxidative phosphorylation impaired proliferation and ATP production in 2iL cESCs but not LIF-FGF2 cESCs, which remained sensitive to glycolysis inhibition. Our study reveals distinct bioenergetic mechanisms contributing to steady-state expansion of distinct canine pluripotent states that can be exploited to improve derivation and culture of canine PSCs. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro.

    PubMed

    Anand, Sandhya; Patel, Hiren; Bhartiya, Deepa

    2015-04-18

    Extensive research is ongoing to empower cancer survivors to have biological parenthood. For this, sperm are cryopreserved prior to therapy and in younger children testicular biopsies are cryopreserved with a hope to mature the germ cells into sperm later on for assisted reproduction. In addition, lot of hope was bestowed on pluripotent embryonic and induced pluripotent stem cells to differentiate into sperm and oocytes. However, obtaining functional gametes from pluripotent stem cells still remains a distant dream and major bottle-neck appears to be their inefficient differentiation into primordial germ cells (PGCs). There exists yet another population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) in adult body organs including gonads. We have earlier reported that busulphan (25 mg/Kg) treatment to 4 weeks old mice destroys actively dividing cells and sperm but VSELs survive and differentiate into sperm when a healthy niche is provided in vivo. Mouse testicular VSELs that survived busulphan treatment were cultured for 3 weeks. A mix of surviving cells in seminiferous tubules (VSELs, possibly few spermatogonial stem cells and Sertoli cells) were cultured using Sertoli cells conditioned medium containing fetal bovine serum, follicle stimulating hormone and with no additional growth factors. Stem cells underwent proliferation and clonal expansion in culture and spontaneously differentiated into sperm whereas Sertoli cells attached and provided a somatic support. Transcripts specific for various stages of spermatogenesis were up-regulated by qRT-PCR studies on day 7 suggesting VSELs (Sca1) and SSCs (Gfra) proliferate (Pcna), undergo spermatogenesis (spermatocyte specific marker prohibitin), meiosis (Scp3) and differentiate into sperm (post-meiotic marker protamine). Process of spermatogenesis and spermiogenesis was replicated in vitro starting with testicular cells that survived busulphan treatment. We have earlier reported similar

  13. Systematic computation with functional gene-sets among leukemic and hematopoietic stem cells reveals a favorable prognostic signature for acute myeloid leukemia.

    PubMed

    Yang, Xinan Holly; Li, Meiyi; Wang, Bin; Zhu, Wanqi; Desgardin, Aurelie; Onel, Kenan; de Jong, Jill; Chen, Jianjun; Chen, Luonan; Cunningham, John M

    2015-03-24

    Genes that regulate stem cell function are suspected to exert adverse effects on prognosis in malignancy. However, diverse cancer stem cell signatures are difficult for physicians to interpret and apply clinically. To connect the transcriptome and stem cell biology, with potential clinical applications, we propose a novel computational "gene-to-function, snapshot-to-dynamics, and biology-to-clinic" framework to uncover core functional gene-sets signatures. This framework incorporates three function-centric gene-set analysis strategies: a meta-analysis of both microarray and RNA-seq data, novel dynamic network mechanism (DNM) identification, and a personalized prognostic indicator analysis. This work uses complex disease acute myeloid leukemia (AML) as a research platform. We introduced an adjustable "soft threshold" to a functional gene-set algorithm and found that two different analysis methods identified distinct gene-set signatures from the same samples. We identified a 30-gene cluster that characterizes leukemic stem cell (LSC)-depleted cells and a 25-gene cluster that characterizes LSC-enriched cells in parallel; both mark favorable-prognosis in AML. Genes within each signature significantly share common biological processes and/or molecular functions (empirical p = 6e-5 and 0.03 respectively). The 25-gene signature reflects the abnormal development of stem cells in AML, such as AURKA over-expression. We subsequently determined that the clinical relevance of both signatures is independent of known clinical risk classifications in 214 patients with cytogenetically normal AML. We successfully validated the prognosis of both signatures in two independent cohorts of 91 and 242 patients respectively (log-rank p < 0.0015 and 0.05; empirical p < 0.015 and 0.08). The proposed algorithms and computational framework will harness systems biology research because they efficiently translate gene-sets (rather than single genes) into biological discoveries about

  14. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells

    PubMed Central

    Banerjee, Arindam; Arvinrad, Pardis; Darley, Matthew; Laversin, Stéphanie A.; Parker, Rachel; Rose-Zerilli, Matthew J.J.; Townsend, Paul A.; Cutress, Ramsey I.; Beers, Stephen A.; Houghton, Franchesca D.; Birts, Charles N.; Blaydes, Jeremy P.

    2018-01-01

    Altered glycolysis is a characteristic of many cancers, and can also be associated with changes in stem cell-like cancer (SCLC) cell populations. We therefore set out to directly examine the effect of glycolysis on SCLC cell phenotype, using a model where glycolysis is stably reduced by adapting the cells to a sugar source other than glucose. Restricting glycolysis using this approach consistently resulted in cells with increased oncogenic potential; including an increase in SCLC cells, proliferation in 3D matrigel, invasiveness, chemoresistance, and altered global gene expression. Tumorigenicity in vivo was also markedly increased. SCLC cells exhibited increased dependence upon alternate metabolic pathways. They also became c-KIT dependent, indicating that their apparent state of maturation is regulated by glycolysis. Single-cell mRNA sequencing identified altered networks of metabolic-, stem- and signaling- gene expression within SCLC-enriched populations in response to glycolytic restriction. Therefore, reduced glycolysis, which may occur in niches within tumors where glucose availability is limiting, can promote tumor aggressiveness by increasing SCLC cell populations, but can also introduce novel, potentially exploitable, vulnerabilities in SCLC cells. PMID:29796188

  15. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang

    2007-05-11

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response tomore » SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.« less

  16. Naive-like Conversion Overcomes the Limited Differentiation Capacity of Induced Pluripotent Stem Cells*

    PubMed Central

    Honda, Arata; Hatori, Masanori; Hirose, Michiko; Honda, Chizumi; Izu, Haruna; Inoue, Kimiko; Hirasawa, Ryutaro; Matoba, Shogo; Togayachi, Sumie; Miyoshi, Hiroyuki; Ogura, Atsuo

    2013-01-01

    Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity. PMID:23880763

  17. Ubiquitin B in Cervical Cancer: Critical for the Maintenance of Cancer Stem-Like Cell Characters

    PubMed Central

    Wang, Yingying; Ji, Teng; Sun, Shujuan; Mo, Qingqing; Chen, Pingbo; Fang, Yong; Liu, Jia; Wang, Beibei; Zhou, Jianfeng; Ma, Ding; Wu, Peng

    2013-01-01

    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate. Ubiquitin, which is a small, highly conserved protein expressed in all eukaryotic cells, can be covalently linked to certain target proteins to mark them for degradation by the ubiquitin-proteasome system. Previous studies highlight the essential role of Ubiquitin B (UbB) and UbB-dependent proteasomal protein degradation in histone deacetylase inhibitor (HDACi) -induced tumor selectivity. We hypothesized that UbB plays a critical role in the function of cervical cancer stem cells. We measured endogenous UbB levels in mammospheres in vitro by real-time PCR and Western blotting. The function of UbB in cancer stem-like cells was assessed after knockdown of UbB expression in prolonged Trichostatin A-selected HeLa cells (HeLa/TSA) by measuring in vitro cell proliferation, cell apoptosis, invasion, and chemotherapy resistance as well as by measuring in vivo growth in an orthotopic model of cervical cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human cervical cancer xenografts after UbB silencing. We found that HeLa/TSA were resistant to chemotherapy, highly expressed the UbB gene and the stem cell markers Sox2, Oct4 and Nanog. These cells also displayed induced differentiation abilities, including enhanced migration/invasion/malignancy capabilities in vitro and in vivo. Furthermore, an elevated expression of UbB was shown in the tumor samples of chemotherapy patients. Silencing of UbB inhibited tumorsphere formation, lowered the expression of stem cell markers and decreased cervical xenograft growth. Our results demonstrate that UbB was significantly increased in prolonged Trichostatin A-selected HeLa cells and it played a key role in the maintenance of cervical cancer stem-like cells. PMID:24367661

  18. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  19. Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met Signaling.

    PubMed

    Kim, Boram; Jung, Narae; Lee, Sanghun; Sohng, Jae Kyung; Jung, Hye Jin

    2016-11-01

    Glioblastoma (GBM) is a highly malignant human brain tumor with limited treatment choices. The extremely aggressive characteristics of GBM result from GBM stem cells (GSCs), a subpopulation in tumor having self-renewal potential and resistance to chemotherapy and radiotherapy. Therefore, eliminating GSCs is an effective strategy to treat this fatal disease. In this study, we investigated the therapeutic effects of dietary flavonoids, including apigenin, quercetin, and naringenin, against cancer stem cell-like phenotypes of human GBM cell lines U87MG and U373MG. Among flavonoids studied, apigenin and quercetin significantly suppressed not only the self-renewal capacity such as cell growth and clonogenicity, but also the invasiveness of GBM stem-like cells. Notably, apigenin blocked the phosphorylation of c-Met and its downstream effectors, transducer and activator of transcription 3, AKT (Protein kinase B), and mitogen-activated protein kinase in the GSCs, thereby reducing the expression levels of GSC markers such as CD133, Nanog, and Sox2. These results suggest that the GSC inhibition effect of apigenin may be caused by downregulation of c-Met signaling pathway. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  1. The changing scene of allogeneic stem cell transplantation for chronic myeloid leukemia--a report from the German Registry covering the period from 1998 to 2004.

    PubMed

    Bacher, Ulrike; Klyuchnikov, Evgeny; Zabelina, Tatjana; Ottinger, Hellmut; Beelen, Dietrich W; Schrezenmeier, Hubert; Ehninger, Gerhard; Müller, Carlheinz; Berger, Jürgen; Suttorp, Meinolf; Kolb, Hans-Jochem; Kröger, Nicolaus; Zander, Axel R

    2009-12-01

    Due to the recent changes in the indication to allogeneic stem cell transplantation (SCT) in chronic myeloid leukemia (CML), we retrospectively analyzed 1,716 patients with different CML stages who received an allograft from related (n = 767) or unrelated donors (n = 938) within the German Registry of Stem Cell Transplantation (DRST) from 1998 to 2004. Myeloablative conditioning was performed in 724/871 cases (83%), dose-reduced conditioning in 147/871 (17%). Annual transplantations were decreasing from 357 to 98 (28%) in the period of study, but the proportion of advanced cases was increasing from 32% (112/346) to 53% (50/94) of all SCTs. Stage of disease, intervals from diagnosis, and patients' age were independent prognostic parameters, while peripheral stem cells and unrelated transplantation seemed equal to bone marrow/related transplantation. This study demonstrates that allo-SCT still has an important role in advanced CML, which emphasizes the need for optimized transplantation strategies for these high-risk patients.

  2. Quantitative Dynamics of Proteome, Acetylome, and Succinylome during Stem-Cell Differentiation into Hepatocyte-like Cells.

    PubMed

    Liu, Zekun; Zhang, Qing-Bin; Bu, Chen; Wang, Dawei; Yu, Kai; Gan, Zhixue; Chang, Jianfeng; Cheng, Zhongyi; Liu, Zexian

    2018-06-21

    Stem-cell differentiation is a complex biological process controlled by a series of functional protein clusters and signaling transductions, especially metabolism-related pathways. Although previous studies have quantified the proteome and phosphoproteome for stem-cell differentiation, the investigation of acylation-mediated regulation is still absent. In this study, we quantitatively profiled the proteome, acetylome, and succinylome in pluripotent human embryonic stem cells (hESCs) and differentiated hepatocyte-like cells (HLCs). In total, 3843 proteins, 185 acetylation sites in 103 proteins, and 602 succinylation sites in 391 proteins were quantified. The quantitative proteome showed that in differentiated HLCs the TGF-β, JAK-STAT, and RAS signaling pathways were activated, whereas ECM-related processes such as sulfates and leucine degradation were depressed. Interestingly, it was observed that the acetylation and succinylation were more intensive in hESCs, whereas protein processing in endoplasmic reticulum and the carbon metabolic pathways were especially highly succinylated. Because the metabolism patterns in pluripotent hESCs and the differentiated HLCs were different, we proposed that the dynamic acylations, especially succinylation, might regulate the Warburg-like effect and TCA cycle during differentiation. Taken together, we systematically profiled the protein and acylation levels of regulation in pluripotent hESCs and differentiated HLCs, and the results indicated the important roles of acylation in pluripotency maintenance and differentiation.

  3. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells

    PubMed Central

    Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya

    2015-01-01

    Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356

  4. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells.

    PubMed

    Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide

    2015-07-15

    Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.

  5. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells

    PubMed Central

    Schemionek, Mirle; Elling, Christian; Steidl, Ulrich; Bäumer, Nicole; Hamilton, Ashley; Spieker, Tilmann; Göthert, Joachim R.; Stehling, Martin; Wagers, Amy; Huettner, Claudia S.; Tenen, Daniel G.; Tickenbrock, Lara; Berdel, Wolfgang E.; Serve, Hubert; Holyoake, Tessa L.; Müller-Tidow, Carsten

    2010-01-01

    In a previously developed inducible transgenic mouse model of chronic myeloid leukemia, we now demonstrate that the disease is transplantable using BCR-ABL+ Lin−Sca-1+c-kit+ (LSK) cells. Interestingly, the phenotype is more severe when unfractionated bone marrow cells are transplanted, yet neither progenitor cells (Lin−Sca-1−c-kit+), nor mature granulocytes (CD11b+Gr-1+), nor potential stem cell niche cells (CD45−Ter119−) are able to transmit the disease or alter the phenotype. The phenotype is largely independent of BCR-ABL priming before transplantation. However, prolonged BCR-ABL expression abrogates the potential of LSK cells to induce full-blown disease in secondary recipients and increases the fraction of multipotent progenitor cells at the expense of long-term hematopoietic stem cells (LT-HSCs) in the bone marrow. BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development, probably contributing to the reduced LT-HSC frequency within BCR-ABL+ LSK cells. Reversion of BCR-ABL, or treatment with imatinib, eradicates mature cells, whereas leukemic stem cells persist, giving rise to relapsed chronic myeloid leukemia on reinduction of BCR-ABL, or imatinib withdrawal. Our results suggest that BCR-ABL induces differentiation of LT-HSCs and decreases their self-renewal capacity. PMID:20053753

  6. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts.

    PubMed

    George, Aman; Sharma, Ruchi; Singh, Karn P; Panda, Sudeepta K; Singla, Suresh K; Palta, Prabhat; Manik, Radhaysham; Chauhan, Manmohan S

    2011-06-01

    Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.

  7. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    PubMed

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  8. Where does allogeneic stem cell transplantation fit in the treatment of chronic lymphocytic leukemia?

    PubMed

    Dreger, Peter; Montserrat, Emili

    2015-03-01

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) has been considered as the treatment of choice for patients with high-risk chronic lymphocytic leukemia (CLL) (i.e., refractory to purine analogs, short response (<24 months) to intensive treatments, and/or presence of 17p/TP53 abnormalities). Currently, new and highly effective therapeutic agents targeting BCR-mediated intracellular signal transduction have been incorporated into the CLL treatment armamentarium. These signal transduction inhibitors (STI) will change the algorithms of high-risk CLL (HR-CLL) management. Despite the limited body of evidence, there is sufficient rationale for withholding alloHSCT in patients with 17p-/TP53mut CLL in first remission. In contrast, the perspectives of patients with relapsed 17p-/TP53mut CLL remain uncertain even if responding to STI. The same accounts for patients with HR-CLL progressing under STI. In both scenarios, it is reasonable to consider alloHSCT, ideally after response to alternative STI regimens.

  9. Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network.

    PubMed

    Saxena, Pratik; Bojar, Daniel; Zulewski, Henryk; Fussenegger, Martin

    2017-10-10

    We previously reported novel technology to differentiate induced pluripotent stem cells (IPSCs) into glucose-sensitive insulin-secreting beta-like cells by engineering a synthetic lineage-control network regulated by the licensed food additive vanillic acid. This genetic network was able to program intricate expression dynamics of the key transcription factors Ngn3 (neurogenin 3, OFF-ON-OFF), Pdx1 (pancreatic and duodenal homeobox 1, ON-OFF-ON) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A, OFF-ON) to guide the differentiation of IPSC-derived pancreatic progenitor cells to beta-like cells. In the present study, we show for the first time that this network can also program the expression dynamics of Ngn3, Pdx1 and MafA in human embryonic stem cell (hESC)-derived pancreatic progenitor cells and drive differentiation of these cells into glucose-sensitive insulin-secreting beta-like cells. Therefore, synthetic lineage-control networks appear to be a robust methodology for differentiating pluripotent stem cells into somatic cell types for basic research and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction.

    PubMed

    Zhang, Hua; Zhang, Jingkun; Huang, Xianghua; Li, Yanan

    2018-06-01

    Endothelial cells and smooth muscle cells (SMCs) are important aspects of vascularization in vaginal reconstruction. Research has confirmed that mesenchymal stem cells could differentiate into endothelial-like cells and SMCs. But the methods were more complicated and the mechanism was unknown. In the current study, we induced the bone mesenchymal stem cells (BMSCs) to differentiate into endothelial-like cells and SMCs in vitro by differentiation medium and investigated the effect of Wnt/β-catenin signaling on the differentiation process of BMSCs. Results showed that the hypoxic environment combined with VEGF and bFGF could induce increased expression of endothelial-like cells markers VEGFR1, VEGFR2, and vWF. The SMCs derived from BMSCs induced by TGF-β1 and PDGF-AB significantly expressed SMC markers SMMHC11 and α-SMA. The data also showed that activation of Wnt/β-catenin signaling could promote the differentiation of BMSCs into endothelial-like cells and SMCs. Thus, we established endothelial-like cells and SMCs in vitro by more simple methods, presented the important role of hypoxic environment on the differentiation of BMSCs into endothelial-like cells, and confirmed that the Wnt/β-catenin signaling pathway has a positive impact on the differentiation of BMSCs into endothelial-like cells and SMCs. This is important for vascular reconstruction.

  11. Growth after Hematopoietic Stem Cell Transplantation in Children with Acute Myeloid Leukemia

    PubMed Central

    Chung, Seung Joon; Park, Seung Wan; Kim, Min Kyoung; Kang, Min Jae; Lee, Young Ah; Lee, Seong Yong; Yang, Sei Won; Kang, Hyoung Jin; Park, Kyung Duk; Shin, Hee Young; Ahn, Hyo Seop

    2013-01-01

    Previous studies have shown that hematopoietic stem cell transplantation (HSCT) may result in growth impairment. The purpose of this study was to evaluate the growth during 5 yr after HSCT and to determine factors that influence final adult height (FAH). We retrospectively reviewed the medical records of acute myeloid leukemia (AML) patients who received HSCT. Among a total of 37 eligible patients, we selected 24 patients who began puberty at 5 yr after HSCT (Group 1) and 19 patients who reached FAH without relapse (Group 2). In Group 1, with younger age at HSCT, sex, steroid treatment, hypogonadism and hypothyroidism were not significantly associated with growth impairment 5 yr after HSCT. History of radiotherapy (RT) significantly impaired the 5 yr growth after HSCT. Chronic graft-versus-host disease (cGVHD) only temporarily impaired growth after HSCT. In Group 2, with younger age at HSCT, steroid treatment and hypogonadism did not significantly reduce FAH. History of RT significantly reduced FAH. Growth impairment after HSCT may occur in AML patients, but in patients without a history of RT, growth impairment seemed to be temporary and was mitigated by catch-up growth. PMID:23341720

  12. Acute Myeloid Leukemia (AML) (For Parents)

    MedlinePlus

    ... an inorganic compound) is also used to treat kids with APL. Stem cell transplant (also called bone marrow transplant). This ... Juvenile Myelomonocytic Leukemia (JMML) Neutropenia Childhood Cancer Chemotherapy Stem Cell ... Kinds of Cancer Kids Get When Cancer Keeps You Home Types of ...

  13. A combination of valproic acid sodium salt, CHIR99021, E-616452, tranylcypromine, and 3-Deazaneplanocin A causes stem cell-like characteristics in cancer cells.

    PubMed

    Sha, Shuang; Zhai, Yuanfen; Lin, Chengzhao; Wang, Heyong; Chang, Qing; Song, Shuang; Ren, Mingqiang; Liu, Gentao

    2017-08-08

    Many studies are based on the hypothesis that recurrence and drug resistance in lung carcinoma are due to a subpopulation of cancer stem-like cells (CSLCs) in solid tumors. Therefore it is crucial to screen for and recognize lung CSLCs. In this study, we stimulated non-small cell lung cancer (NSCLC) A549 cells to display stem cell-like characteristics using a combination of five small molecule compounds. The putative A549 stem cells activated an important CSLC marker, CD133 protein, as well multiple CSLC-related genes including ATP-binding cassette transporter G2 (ABCG2), C-X-C chemokine receptor type 4 (CXCR4), NESTIN, and BMI1. The A549 stem-like cells displayed resistance to the chemotherapeutic drugs etoposide and cisplatin, epithelial-to-mesenchymal transition properties, and increased protein expression levels of NOTCH1 and Hes Family bHLH Transcription Factor 1 (HES1). When A549 cells were pretreated with a NOTCH signaling pathway inhibitor before compound induction, expression of the NOTCH1 target gene HES1 was reduced. This demonstrated that the NOTCH signaling pathway in the putative A549 stem-like cells had been activated. Together, the results of our study showed that a combination of five small molecule agents could transform A549 cells into putative stem-like cells, and that these compounds could also elevate CD133 and ABCG2 protein expression levels in H460 cells. This study provides a convenient method for obtaining lung CSLCs, which may be an effective strategy for developing lung carcinoma treatments.

  14. The prognostic role of E2A-PBX1 expression detected by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) in B cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Hong, Yan; Zhao, Xiaosu; Qin, Yazhen; Zhou, Songhai; Chang, Yingjun; Wang, Yu; Zhang, Xiaohui; Xu, Lanping; Huang, Xiaojun

    2018-04-28

    The E2A-PBX1 rearrangement is common in B cell acute lymphoblastic leukemia (B-ALL). However, whether this fusion gene can be used as a reliable marker for minimal residual disease (MRD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unknown. In this study, clinical data were collected from 28 consecutive B-ALL patients who received allo-HSCT. Their MRD was evaluated by E2A-PBX1 and leukemia-associated immunophenotype (LAIP). The median follow-up was 374 days (55-2342 days). Of the enrolled patients, seven (25%) patients died of leukemia relapse. A total of nine (32.1%) patients experienced relapse at a median of 164 days (75-559 days) after transplantation. The median expression level in the first positive sample was 0.14% (0.0071-902.4%). The duration from E2A-PBX1-positive results to hematological relapse was 74 days (30-469 days). E2A-PBX1 expression generally became positive prior to flow cytometry. Patients with positive E2A-PBX1 gene expression pre-transplantation were more likely to have positive E2A-PBX1 expression after transplantation. Taken all together, E2A-PBX1 expression determined by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) could be used to evaluate MRD status after allo-HSCT. Patients with positive E2A-PBX1 expression after transplant will have a poor prognosis.

  15. Natural Killer Cells for Therapy of Leukemia

    PubMed Central

    Suck, Garnet; Linn, Yeh Ching; Tonn, Torsten

    2016-01-01

    Summary Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the third-party NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel ‘off-the-shelf’ product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed. PMID:27226791

  16. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1.

    PubMed

    Darwish, Noureldien H E; Sudha, Thangirala; Godugu, Kavitha; Elbaz, Osama; Abdelghaffar, Hasan A; Hassan, Emad E A; Mousa, Shaker A

    2016-09-06

    Acute myeloid leukemia (AML) patients show high relapse rates and some develop conventional chemotherapy resistance. Leukemia Stem Cells (LSCs) are the main player for AML relapses and drug resistance. LSCs might rely on the B-cell-specific Moloney murine leukemia virus integration site-1 (BMI-1) in promoting cellular proliferation and survival. Growth of LSCs in microenvironments that are deprived of nutrients leads to up-regulation of the signaling pathways during the progression of the disease, which may illustrate the sensitivity of LSCs to inhibitors of those signaling pathways as compared to normal cells. We analyzed the expression of LSC markers (CD34, CLL-1, TIM-3 and BMI-1) using quantitative RT-PCR in bone marrow samples of 40 AML patients of different FAB types (M1, M2, M3, M4, M5, and M7). We also studied the expression of these markers in 2 AML cell lines (Kasumi-1 and KG-1a) using flow cytometry and quantitative RT-PCR. The overexpression of TIM-3, CLL-1, and BMI-1 was markedly correlated with poor prognosis in these patients. Our in vitro findings demonstrate that targeting BMI-1, which markedly increased in the leukemic cells, was associated with marked decrease in leukemic burden. This study also presents results for blocking LSCs' surface markers CD44, CLL-1, and TIM-3. These markers may play an important role in elimination of AML. Our study indicates a correlation between the expression of markers TIM-3, CLL-1, and especially of BMI-1 and the aggressiveness of AML and thus the potential impact of prognosis and therapies that target LSCs on improving the cure rates.

  17. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells.

    PubMed

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A

    2016-01-11

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  18. The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function.

    PubMed

    Mohr, Juliane; Dash, Banaja P; Schnoeder, Tina M; Wolleschak, Denise; Herzog, Carolin; Tubio Santamaria, Nuria; Weinert, Sönke; Godavarthy, Sonika; Zanetti, Costanza; Naumann, Michael; Hartleben, Björn; Huber, Tobias B; Krause, Daniela S; Kähne, Thilo; Bullinger, Lars; Heidel, Florian H

    2018-05-01

    Cell fate determinants influence self-renewal potential of hematopoietic stem cells. Scribble and Llgl1 belong to the Scribble polarity complex and reveal tumor-suppressor function in drosophila. In hematopoietic cells, genetic inactivation of Llgl1 leads to expansion of the stem cell pool and increases self-renewal capacity without conferring malignant transformation. Here we show that genetic inactivation of its putative complex partner Scribble results in functional impairment of hematopoietic stem cells (HSC) over serial transplantation and during stress. Although loss of Scribble deregulates transcriptional downstream effectors involved in stem cell proliferation, cell signaling, and cell motility, these effectors do not overlap with transcriptional targets of Llgl1. Binding partner analysis of Scribble in hematopoietic cells using affinity purification followed by mass spectometry confirms its role in cell signaling and motility but not for binding to polarity modules described in drosophila. Finally, requirement of Scribble for self-renewal capacity also affects leukemia stem cell function. Thus, Scribble is a regulator of adult HSCs, essential for maintenance of HSCs during phases of cell stress.

  19. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo.

    PubMed

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E; Benveniste, Etty N

    2017-03-14

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.

  1. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation.

    PubMed

    Núñez-Toldrà, Raquel; Martínez-Sarrà, Ester; Gil-Recio, Carlos; Carrasco, Miguel Ángel; Al Madhoun, Ashraf; Montori, Sheyla; Atari, Maher

    2017-04-21

    Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation

  2. Dental pulp of the third molar: a new source of pluripotent-like stem cells.

    PubMed

    Atari, Maher; Gil-Recio, Carlos; Fabregat, Marc; García-Fernández, Dani; Barajas, Miguel; Carrasco, Miguel A; Jung, Han-Sung; Alfaro, F Hernández; Casals, Nuria; Prosper, Felipe; Ferrés-Padró, Eduard; Giner, Luis

    2012-07-15

    Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.

  3. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  4. Knockdown of SALL4 Protein Enhances All-trans Retinoic Acid-induced Cellular Differentiation in Acute Myeloid Leukemia Cells*

    PubMed Central

    Liu, Li; Liu, Liang; Leung, Lai-Han; Cooney, Austin J.; Chen, Changyi; Rosengart, Todd K.; Ma, Yupo; Yang, Jianchang

    2015-01-01

    All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy. PMID:25737450

  5. Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells.

    PubMed

    Ke, Jia; Zhao, Zhiju; Hong, Su-Hyung; Bai, Shoumin; He, Zhen; Malik, Fayaz; Xu, Jiahui; Zhou, Lei; Chen, Weilong; Martin-Trevino, Rachel; Wu, Xiaojian; Lan, Ping; Yi, Yongju; Ginestier, Christophe; Ibarra, Ingrid; Shang, Li; McDermott, Sean; Luther, Tahra; Clouthier, Shawn G; Wicha, Max S; Liu, Suling

    2015-02-28

    Increasing evidence suggests that lineage specific subpopulations and stem-like cells exist in normal and malignant breast tissues. Epigenetic mechanisms maintaining this hierarchical homeostasis remain to be investigated. In this study, we found the level of microRNA221 (miR-221) was higher in stem-like and myoepithelial cells than in luminal cells isolated from normal and malignant breast tissue. In normal breast cells, over-expression of miR-221 generated more myoepithelial cells whereas knock-down of miR-221 increased luminal cells. Over-expression of miR-221 stimulated stem-like cells in luminal type of cancer and the miR-221 level was correlated with clinical outcome in breast cancer patients. Epithelial-mesenchymal transition (EMT) was induced by overexpression of miR-221 in normal and breast cancer cells. The EMT related gene ATXN1 was found to be a miR-221 target gene regulating breast cell hierarchy. In conclusion, we propose that miR-221 contributes to lineage homeostasis of normal and malignant breast epithelium.

  6. Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?

    PubMed Central

    Petkova, Rumena; Arabadjiev, Borislav; Chakarov, Stoyan; Pankov, Roumen

    2014-01-01

    The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells. PMID:26019504

  7. [Differentiation of human periodontal ligament stem cells into neuron-like cells in vitro].

    PubMed

    Zhen, Lei; Liu, Hong-Wei

    2009-02-01

    To isolate and purify the human periodontal ligament stem cells (PDLSC) and investigate the differentiation potentials of PDLSC into neuron-like cells in vitro. PDLSC were isolated and cultivated. PDLSC of passage 2 was plated at a density of 5 x 10(3) per mL. At 80% confluence, the PDLSC were preinduced for 24 hours, and were subsequently replaced with an inducing medium containing certain concentration of 13-mercaptoethanal (beta-ME). After 6 hours of induction, the results were evaluated by morphological observation, immunocytochemical staining for neuron specific enolase (NSE), neurofilament (NF) and glial fibrillary acid protein (GFAP) expression and RT-PCR for NSE, NF, GFAP mRNA. Meanwhile, the uninduced PDLSC were used as a negative control. PDLSC could be differentiate into cells with typical neuronal morphology. Immunohisto-chemistry and RT-PCR confirmed that the induced cells expressed NSE and NF, two marked enzymes of neuron cell. PDLSC can be induced into neuron-like cells in vitro. PDLSC have the capability of multilineage differentiations.

  8. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells.

    PubMed

    Kiratipaiboon, Chayanin; Tengamnuay, Parkpoom; Chanvorachote, Pithi

    2015-12-15

    Although the growth of unwanted hair or hirsutism is a harmless condition, many people find it bothersome and embarrassing. Maintaining stem cell features of dermal papilla cells is a critical biological process that keeps the high rate of hair growth. Glycyrrhizic acid has been reported to impair hair growth in some studies; however, its underlying mechanism has not yet been investigated. This study aimed to explore the effect and underlying mechanism of glycyrrhizic acid on stemness of human dermal papilla cells. The stem cell molecular markers, epithelial to mesenchymal markers and Wnt/β-catenin-associated proteins of human dermal papilla cell line and primary human dermal papilla cells were analysed by western blot analysis and immunocytochemistry. The present study demonstrated that glycyrrhizic acid significantly depressed the stemness of dermal papilla cells in dose- and time-dependent manners. Clonogenicity and stem cell markers in the glycyrrhizic acid-treated cells were found to gradually decrease in the culture in a time-dependent manner. Our results demonstrated that glycyrrhizic acid exerted the stem cell suppressing effects through the interruption of ATP-dependent tyrosine kinase/glycogen synthase kinase3β-dependent mechanism which in turn down-regulated the β-catenin signalling pathway, coupled with decreased its down-stream epithelial-mesenchymal transition and self-renewal transcription factors, namely, Oct-4, Nanog, Sox2, ZEB1 and Snail. The effect of glycyrrhizic acid on the reduction of stem cell features was also observed in the primary dermal papilla cells directly obtained from human hair follicles. These results revealed a novel molecular mechanism of glycyrrhizic acid in regulation of dermal papilla cells and provided the evidence supporting the use of this compound in suppressing the growth of unwanted hair. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines

    PubMed Central

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-01-01

    AIM: To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. METHODS: A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44+CD271+ expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. RESULTS: The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44+CD271+ cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE-150 stem-like

  10. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines.

    PubMed

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-12-28

    To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44(+)CD271(+) expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44(+)CD271(+) cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44(+)CD271(+) cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44(+)CD271(+) cell percentage for KYSE-150 stem-like spheres was

  11. Tumor stem cells: A new approach for tumor therapy (Review)

    PubMed Central

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  12. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis

    PubMed Central

    Lee, Won Jun; Kim, Sang Cheol; Yoon, Jung-Ho; Yoon, Sang Jun; Lim, Johan; Kim, You-Sun; Kwon, Sung Won; Park, Jeong Hill

    2016-01-01

    Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological

  13. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus.

    PubMed

    Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark

    2013-01-01

    Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.

  14. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141.

    PubMed

    Xue, Lei; Yu, Xiying; Jiang, Xingran; Deng, Xin; Mao, Linlin; Guo, Liping; Fan, Jinhu; Fan, Qinqxia; Wang, Liuxing; Lu, Shih-Hsin

    2017-03-21

    Cancer stem-like cells have been identified in primary human tumors and cancer cell lines. Previously we found TM4SF1 gene was highly expressed in side population (SP) cells from esophageal squamous cell carcinoma (ESCC) cell lines, but the role and underlying mechanism of TM4SF1 in ESCC remain unclear. In this study, we observed TM4SF1 was up-regulated but miR-141 was down-regulated in SP cells isolated from ESCC cell lines. TM4SF1 could stimulate the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells, and promote cell invasion and migration. In miR-141 overexpression cells, the expression of TM4SF1 was significantly reduced. We also found that overexpression of miR-141 could abolish the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells and decrease cell invasion and migration by suppressing TM4SF1. Consequently, TM4SF1 is a direct target gene of miR-141. The regulation of TM4SF1 by miR-141 may play an important role in controlling self-renewals of esophageal cancer stem-like cells. It may also promote the development of new therapeutic strategies and efficient drugs to target ESCC stem-like cells.

  15. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.

    PubMed

    Wang, Xiaofang; Lazorchak, Adam S; Song, Li; Li, Enqin; Zhang, Zhenwu; Jiang, Bin; Xu, Ren-He

    2016-02-01

    Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency. Here, we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells "T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs, T-MSCs do not have increased expression of inflammatory mediators in response to IFNγ. Moreover, T-MSCs constitutively express a high level of the immune inhibitory ligand PD-L1 and elicit strong and durable efficacy in two distinct animal models of autoimmune disease, dextran sulfate sodium induced colitis, and experimental autoimmune encephalomyelitis, at doses near those approved for clinical trials. Together, we present a simple and fast derivation method to generate MSCs from hESCs, which possess potent immunomodulatory properties in vitro and in vivo and may serve as a novel and ideal candidate for MSC-based therapies. © 2015 AlphaMed Press.

  16. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer

    PubMed Central

    Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin

    2014-01-01

    Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842

  17. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  18. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells.

    PubMed

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs.

  19. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  20. Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction.

    PubMed

    Morena, Francesco; Armentano, Ilaria; Montanucci, Pia; Argentati, Chiara; Fortunati, Elena; Montesano, Simona; Bicchi, Ilaria; Pescara, Teresa; Pennoni, Ilaria; Mattioli, Samantha; Torre, Luigi; Latterini, Loredana; Emiliani, Carla; Basta, Giuseppe; Calafiore, Riccardo; Kenny, Josè Maria; Martino, Sabata

    2017-11-01

    This work shows that the active interaction between human umbilical cord matrix stem cells and Poly (l-lactide)acid (PLLA) and PLLA/Multi Walled Carbon Nanotubes (MWCNTs) nanocomposite films results in the stem cell assembly as a spheroid conformation and affects the stem cell fate transition. We demonstrated that spheroids directly respond to a tunable surface and the bulk properties (electric, dielectric and thermal) of plain and nanocomposite PLLA films by triggering a mechanotransduction axis. This stepwise process starts from tethering of the cells' focal adhesion proteins to the surface, together with the adherens junctions between cells. Both complexes transmit traction forces to F-Actin stress fibres that link Filamin-A and Myosin-IIA proteins, generating a biological scaffold, with increased stiffening conformation from PLLA to PLLA/MWCNTs, and enable the nucleoskeleton proteins to boost chromatin reprogramming processes. Herein, the opposite expression of NANOG and GATA6 transcription factors, together with other lineage specification related proteins, steer spheroids toward an Epiblast-like or Primitive Endoderm-like lineage commitment, depending on the absence or presence of 1 wt% MWCNTs, respectively. This work represents a pioneering effort to create a stem cell/material interface that can model the stem cell fate transition under growth culture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead.

    PubMed

    Bhartiya, Deepa; Shaikh, Ambreen; Anand, Sandhya; Patel, Hiren; Kapoor, Sona; Sriraman, Kalpana; Parte, Seema; Unni, Sreepoorna

    2016-12-01

    Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally

  2. Emodin As an Effective Agent in Targeting Cancer Stem-Like Side Population Cells of Gallbladder Carcinoma

    PubMed Central

    Li, Xin-xing; Dong, Ying; Wang, Wei; Wang, Hao-lu; Chen, Yu-ying; Shi, Gui-ying; Yi, Jing

    2013-01-01

    Side population (SP) cells are previously identified from bone marrow based on their capacity to efflux of the fluorescent dye Hoechst 33342. Recent studies demonstrate that SP cells isolated from various cancer cell lines and primary tumors possess stem-cell-like properties. Thus, targeting tumor SP cells may provide new strategies for treatment in clinic. We previously showed that 1,3,8-trihydroxy-6-methylanthraquinone (emodin), a reactive oxygen species (ROS) generator, enhanced sensitivity of gallbladder cancer SGC-996 cells to cisplatin (CDDP) via generation of ROS and downregulation of multidrug-resistance-associated protein 1 (MRP1). To determine whether emodin also acts effectively on cancer stem cells of gallbladder carcinoma, we use SP cells as a model of cancer stem-cell-like cells. Here, we found that emodin, via ROS-related mechanism and suppressing the function of ATP-binding cassette super-family G member (ABCG2), which is known to be associated with Hoechst dye efflux activity of SP cells, not only reduced the ratio, inhibited clone formation, and eliminated sphere formation of SP cells effectively, but also promoted obviously the intracellular accumulation of doxorubicin, the main substrate of the efflux pump ABCG2. In addition, emodin could sensitize CDDP, via inhibition of expression of ABCG2, to overcome chemoresistance of SP cells. Importantly, similar to the experiment in vitro, emodin/CDDP co-treatment in vivo suppressed the tumor growth derived from SP cells through downregulating ABCG2 expression. Our results suggest that emodin is an effective agent targeting cancer stem-like SP cells of gallbladder carcinoma, either alone or acts as a chemotherapy enhancer. PMID:22974371

  3. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions.

    PubMed

    Guitart, Amelie V; Panagopoulou, Theano I; Villacreces, Arnaud; Vukovic, Milica; Sepulveda, Catarina; Allen, Lewis; Carter, Roderick N; van de Lagemaat, Louie N; Morgan, Marcos; Giles, Peter; Sas, Zuzanna; Gonzalez, Marta Vila; Lawson, Hannah; Paris, Jasmin; Edwards-Hicks, Joy; Schaak, Katrin; Subramani, Chithra; Gezer, Deniz; Armesilla-Diaz, Alejandro; Wills, Jimi; Easterbrook, Aaron; Coman, David; So, Chi Wai Eric; O'Carroll, Donal; Vernimmen, Douglas; Rodrigues, Neil P; Pollard, Patrick J; Morton, Nicholas M; Finch, Andrew; Kranc, Kamil R

    2017-03-06

    Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1 / Hoxa9 -driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation. © 2017 Guitart et al.

  4. Graft-versus-leukemia effects of transplantation and donor lymphocytes.

    PubMed

    Kolb, Hans-Jochem

    2008-12-01

    Allogeneic transplantation of hematopoietic cells is an effective treatment of leukemia, even in advanced stages. Allogeneic lymphocytes produce a strong graft-versus-leukemia (GVL) effect, but the beneficial effect is limited by graft-versus-host disease (GVHD). Depletion of T cells abrogates GVHD and GVL effects. Delayed transfusion of donor lymphocytes into chimeras after T cell-depleted stem cell transplantation produces a GVL effect without necessarily producing GVHD. Chimerism and tolerance provide a platform for immunotherapy using donor lymphocytes. The allogeneic GVL effects vary from one disease to another, the stage of the disease, donor histocompatibility, the degree of chimerism, and additional treatment. Immunosuppressive therapy before donor lymphocyte transfusions may augment the effect as well as concomitant cytokine treatment. Possible target antigens are histocompatibility antigens and tumor-associated antigens. Immune escape of tumor cells and changes in the reactivity of T cells are to be considered. Durable responses may be the result of the elimination of leukemia stem cells or the establishment of a durable immune control on their progeny. Recently, we have learned from adoptive immunotherapy of viral diseases and HLA-haploidentical stem cell transplantation that T-cell memory may be essential for the effective treatment of leukemia and other malignancies.

  5. The differentiation of hepatocyte-like cells from monkey embryonic stem cells.

    PubMed

    Ma, Xiaocui; Duan, Yuyou; Jung, Christine J; Wu, Jian; VandeVoort, Catherine A; Zern, Mark A

    2008-12-01

    Embryonic stem cells (ESC) hold great potential for the treatment of liver diseases. Here, we report the differentiation of rhesus macaque ESC along a hepatocyte lineage. The undifferentiated monkey ESC line, ORMES-6, was cultured in an optimal culture condition in an effort to differentiate them into hepatocyte-like cells in vitro. The functional efficacy of the differentiated hepatic cells was evaluated using RT-PCR for the expression of hepatocyte specific genes, and Western blot analysis and immunocytochemistry for hepatic proteins such as alpha-fetoprotein (AFP), albumin and alpha1-antitrypsin (alpha1-AT). Functional assays were performed using the periodic acid schiff (PAS) reaction and ELISA. The final yield of ESC-derived hepatocyte-like cells was measured by flow cytometry for cells that were transduced with a liver-specific lentivirus vector containing the alpha1-AT promoter driving the expression of green fluorescence protein (GFP). The treatment of monkey ESC with an optimal culture condition yielded hepatocyte-like cells that expressed albumin, alpha1-AT, AFP, hepatocyte nuclear factor 3beta, glucose-6-phophatase, and cytochrome P450 genes and proteins as determined by RT-PCR and Western blot analysis. Immunofluorescent staining showed the cells positive for albumin, AFP, and alpha1-AT. PAS staining demonstrated that the differentiated cells showed hepatocyte functional activity. Albumin could be detected in the medium after 20 days of differentiation. Flow cytometry data showed that 6.5 +/- 1.0% of the total differentiated cells were positive for GFP. These results suggest that by using a specific, empirically determined, culture condition, we were able to direct monkey ESC toward a hepatocyte lineage.

  6. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  7. Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model.

    PubMed

    Lee, Gina; Auffinger, Brenda; Guo, Donna; Hasan, Tanwir; Deheeger, Marc; Tobias, Alex L; Kim, Jeong Yeon; Atashi, Fatemeh; Zhang, Lingjiao; Lesniak, Maciej S; James, C David; Ahmed, Atique U

    2016-12-01

    Increasing evidence exposes a subpopulation of cancer cells, known as cancer stem cells (CSCs), to be critical for the progression of several human malignancies, including glioblastoma multiforme. CSCs are highly tumorigenic, capable of self-renewal, and resistant to conventional therapies, and thus considered to be one of the key contributors to disease recurrence. To elucidate the poorly understood evolutionary path of tumor recurrence and the role of CSCs in this process, we developed patient-derived xenograft glioblastoma recurrent models induced by anti-glioma chemotherapy, temozolomide. In this model, we observed a significant phenotypic shift towards an undifferentiated population. We confirmed these findings in vitro as sorted CD133-negative populations cultured in differentiation-forcing media were found to acquire CD133 expression following chemotherapy treatment. To investigate this phenotypic switch at the single-cell level, glioma stem cell (GSC)-specific promoter-based reporter systems were engineered to track changes in the GSC population in real time. We observed the active phenotypic and functional switch of single non-stem glioma cells to a stem-like state and that temozolomide therapy significantly increased the rate of single-cell conversions. Importantly, we showed the therapy-induced hypoxia-inducible factors (HIF) 1α and HIF2α play key roles in allowing non-stem glioma cells to acquire stem-like traits, as the expression of both HIFs increase upon temozolomide therapy and knockdown of HIFs expression inhibits the interconversion between non-stem glioma cells and GSCs post-therapy. On the basis of our results, we propose that anti-glioma chemotherapy promotes the accumulation of HIFs in the glioblastoma multiforme cells that induces the formation of therapy-resistant GSCs responsible for recurrence. Mol Cancer Ther; 15(12); 3064-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments.

    PubMed

    Horne, Gillian A; Copland, Mhairi

    2017-05-01

    Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.

  9. Diterpenes from Xylopia langsdorffiana inhibit cell growth and induce differentiation in human leukemia cells.

    PubMed

    Castello Branco, Marianna V S; Anazetti, Maristella C; Silva, Marcelo S; Tavares, Josean F; Diniz, Margareth F F Melo; Frungillo, Lucas; Haun, Marcela; Melo, Patrícia S

    2009-01-01

    Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffiana, ent-atisane-7alpha,16alpha-diol (xylodiol) and ent-7alpha-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 microM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 microM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent.

  10. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    PubMed

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Friend or foe? Mogamulizumab in allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia/lymphoma

    PubMed Central

    Shindo, Takero

    2016-01-01

    Adult T-cell leukemia/lymphoma (ATL/ATLL) is a peripheral T-cell neoplasm associated with human T-lymphotropic virus type-1 (HTLV-1). Even the currently most intensive chemotherapy regimen modified LSG15 (mLSG15, VCAP-AMP-VECP) results in a dismal clinical outcome, with a median overall survival of only around 1 year. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) may lead to long-term remission in a proportion of patients with aggressive ATL, the clinical outcome in patients with refractory or relapsed ATL is unsatisfactory. The anti-CCR4 antibody mogamulizumab (moga) has been recently approved for ATL in Japan, and it is effective in a significant proportion of patients with refractory or relapsed ATL. However, there are major concerns about the harmful influences of pretransplant moga on the immune reconstitution after allo-HSCT. Specifically, moga depletes regulatory T cells (Tregs) for at least a few months, which may increase the risk of graft-versus-host disease (GVHD) after allo-HSCT. A recent retrospective study from Japan clearly showed that pretransplant moga increased the risk of severe and steroid-refractory GVHD, which led to increases in non-relapse mortality and overall mortality. To improve the overall clinical outcome in patients with relapsed or refractory ATL, more studies are needed to incorporate moga without increasing adverse effects on the clinical outcome after allo-HSCT. In this review, we aim to provide an updated summary of the research related to moga and allo-HSCT. PMID:27868052

  12. Proteinase-Activated Receptor 1 (PAR1) Regulates Leukemic Stem Cell Functions

    PubMed Central

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E.

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance. PMID:24740120

  13. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    PubMed

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  14. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Cancer.gov

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  15. Mesenchymal stem cell's secretome promotes selective enrichment of cancer stem-like cells with specific cytogenetic profile.

    PubMed

    Jiménez, Gema; Hackenberg, Michael; Catalina, Purificación; Boulaiz, Houria; Griñán-Lisón, Carmen; García, María Ángel; Perán, Macarena; López-Ruiz, Elena; Ramírez, Alberto; Morata-Tarifa, Cynthia; Carrasco, Esther; Aguilera, Margarita; Marchal, Juan Antonio

    2018-08-10

    Cancer stem cells (CSCs) are responsible for tumor initiation, metastasis and cancer recurrence, however the involvement of microenvironment is crucial. Here, we have analyzed how human mesenchymal stem cells (MSCs)-derived conditioned medium (CM) affect colon and melanoma CSCs enrichment and maintenance. Our results strongly suggest that the secretome of CM-MSCs selects and maintains subpopulations with high expression of CSCs markers and ALDH1 activity, low proliferation rates with G1 phase arrest, and notably retain in vivo these properties. Cytogenetic analyses indicated that CM-cultured cells contain alterations in chromosome 17 (17q25). Subsequent SKY-FISH analyses suggested that genes located in 17q25 might be involved in stem-cell maintenance. The characterization of secreted proteins present in CM-MSCs revealed that four cytokines and seven growth factors are directly linked to the CSCs enrichment reported in this study. Further analyses revealed that the combination of just IL6 and HGF is enough to provide cancer cells with better stemness properties. In conclusion, this study demonstrates how specific chromosomal alterations present in CSCs subpopulations might represent an advantage for their in vitro maintenance and in vivo stemness properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    PubMed

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  17. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.

    PubMed

    Chiba, Tetsuhiro; Kita, Kaoru; Zheng, Yun-Wen; Yokosuka, Osamu; Saisho, Hiromitsu; Iwama, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2006-07-01

    Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti-apoptotic properties compared with those of non-SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 x 10(3) SP cells were sufficient for tumor formation, whereas an injection of 1 x 10(6) non-SP cells did not initiate tumors. Re-analysis of SP cell-derived tumors showed that SP cells generated both SP and non-SP cells and tumor-initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non-SP cells, and several so-called "stemness genes" were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy.

  18. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.

    PubMed

    Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji

    2015-04-07

    To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.

  19. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less

  20. Stem cell clinics online: the direct-to-consumer portrayal of stem cell medicine.

    PubMed

    Lau, Darren; Ogbogu, Ubaka; Taylor, Benjamin; Stafinski, Tania; Menon, Devidas; Caulfield, Timothy

    2008-12-04

    Despite the immature state of stem cell medicine, patients are seeking and accessing putative stem cell therapies in an "early market" in which direct-to-consumer advertising via the internet likely plays an important role. We analyzed stem cell clinic websites and appraised the relevant published clinical evidence of stem cell therapies to address three questions about the direct-to-consumer portrayal of stem cell medicine in this early market: What sorts of therapies are being offered? How are they portrayed? Is there clinical evidence to support the use of these therapies? We found that the portrayal of stem cell medicine on provider websites is optimistic and unsubstantiated by peer-reviewed literature.

  1. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells.

    PubMed

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-02-04

    Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.

  2. Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells.

    PubMed

    Saha, Subbroto Kumar; Kim, Kyeongseok; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2018-05-09

    Cytokeratin 19 ( KRT19 ) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1 , CXCR4 , and CD133 , but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers ( ALDH1 , CXCR4 , and CD133 ), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment.

  3. Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells

    PubMed Central

    Kim, Kyeongseok; Yang, Gwang-Mo; Choi, Hye Yeon

    2018-01-01

    Cytokeratin 19 (KRT19) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1, CXCR4, and CD133, but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers (ALDH1, CXCR4, and CD133), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment. PMID:29747452

  4. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines

    PubMed Central

    2010-01-01

    To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406

  5. Alterations of the bone marrow stromal microenvironment in adult patients with acute myeloid and lymphoblastic leukemias before and after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Shipounova, Irina N; Petinati, Nataliya A; Bigildeev, Alexey E; Drize, Nina J; Sorokina, Tamara V; Kuzmina, Larisa A; Parovichnikova, Elena N; Savchenko, Valeri G

    2017-02-01

    Bone marrow (BM) derived adult multipotent mesenchymal stromal cells (MMSCs) and fibroblast colony-forming units (CFU-Fs) of 20 patients with acute myeloid leukemia (AML) and 15 patients with acute lymphoblastic leukemia (ALL) before and during 1 year after receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) were studied. The growth characteristics of MMSCs of all patients before allo-HSCT were not altered; however, relative expression level (REL) of some genes in MMSCs, but not in CFU-Fs, from AML and ALL patients significantly changed. After allo-HSCT, CFU-F concentration and MMSC production were significantly decreased for 1 year; REL of several genes in MMSCs and CFU-F-derived colonies were also significantly downregulated. Thus, chemotherapy that was used for induction of remission did not impair the function of stromal precursors, but gene expression levels were altered. Allo-HSCT conditioning regimens significantly damaged MMSCs and CFU-Fs, and the effect lasted for at least 1 year.

  6. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells.

    PubMed

    Sviderskaya, Elena V; Easty, David J; Lawrence, Mark A; Sánchez, Daniel P; Negulyaev, Yuri A; Patel, Ricken H; Anand, Praveen; Korchev, Yuri E; Bennett, Dorothy C

    2009-09-01

    Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.

  7. Allogeneic stem cell transplant in patients with chronic lymphocytic leukemia with 17p deletion: consult-transplant versus consult- no-transplant analysis.

    PubMed

    Poon, Michelle L; Fox, Patricia S; Samuels, Barry I; O'Brien, Susan; Jabbour, Elias; Hsu, Yvonne; Gulbis, Alison; Korbling, Martin; Champlin, Richard; Abruzzo, Lynne V; Bassett, Roland L; Khouri, Issa F

    2015-03-01

    Allogeneic stem cell transplant (alloSCT) can overcome the adverse prognosis of chronic lymphocytic leukemia with 17p deletion (17p- CLL). However, its applicability remains unclear. Since 2007, our leukemia service has referred patients with 17p- CLL for alloSCT at presentation. In this study, the outcomes of these patients were reviewed retrospectively to determine whether they underwent alloSCT and why patients did not undergo alloSCT. Fifty-two patients with 17p- CLL who were referred to the transplant service from 2007 to 2010 were identified. Of these patients, 32 (62%) did not undergo alloSCT, mainly because of treatment- or disease-related complications (n = 15). The 2-year post-referral overall survival rates of the alloSCT and non-SCT groups were 64% and 25%, respectively (p = 0.001). These findings suggest that while alloSCT is an effective therapy in patients with 17p- CLL, pre-SCT complications may preclude a significant proportion of patients from undergoing the procedure.

  8. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons After Experimental Lesion

    PubMed Central

    Bas, Esperanza; Van De Water, Thomas R.; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M.

    2014-01-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  9. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells.

    PubMed

    Kim, Sun-Jung; Lee, Jae Kyoo; Kim, Jin Won; Jung, Ji-Won; Seo, Kwangwon; Park, Sang-Bum; Roh, Kyung-Hwan; Lee, Sae-Rom; Hong, Yun Hwa; Kim, Sang Jeong; Lee, Yong-Soon; Kim, Sung June; Kang, Kyung-Sun

    2008-08-01

    Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.

  10. Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer

    PubMed Central

    Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A

    2013-01-01

    The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, -2, CDC2, -6) and DNA replication-related genes (MCM4, -5, -6, -7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (>4500%) of ALDHbright cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDHbright cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells

  11. New insights into hematopoietic stem cell transplantation for chronic lymphocytic leukemia: a 2015 perspective.

    PubMed

    McClanahan, Fabienne; Gribben, John

    2015-09-01

    A considerable body of evidence demonstrates that allogeneic hematopoietic stem cell transplantation (HSCT) offers the only potentially curative treatment option for patients with chronic lymphocytic leukemia (CLL). However, this approach is suitable for only a minority of CLL patients, owing to its significant treatment-related mortality and morbidity. Until recently, internationally accepted guidelines suggested that HSCT should be considered in physically fit CLL patients who carry poor-risk features, such as TP53 abnormalities, or who had a short response to previous immunochemotherapy. However, several new agents and alternative treatment strategies are available that demonstrate impressive and durable responses, even in CLL patients who previously might have been candidates for transplant. The decision about which patients merit HSCT therefore remains important, and HSCT must now be considered in light of other less toxic therapies. Until data on the long-term efficacy of novel treatment approaches mature, the choice of HSCT vs alternative strategies must be assessed on a patient-by-patient basis, and treatment in the setting of randomized clinical trials should be pursued whenever possible.

  12. Temporal and spatial changes of cells positive for stem-like markers in different compartments and stages of human colorectal adenoma-carcinoma sequence

    PubMed Central

    Cui, Guanglin; Xu, Gang; Zhu, Li; Pang, Zhigang; Zheng, Wei; Li, Zhenfeng; Yuan, Aping

    2017-01-01

    Considerable evidence supports the idea that stem-like cells may play an essential role during the development of colorectal cancer (CRC). To accomplish this aim, we use immunohistochemistry (IHC) and double IHC with different potential stem-like markers, anti-musashi (Msi), anti-CD133, anti- LGR5 and anti-ALDH1 to examine the presentation of stem-like cells in different compartments including adenoma/CRC epithelium, transitional crypts and tumor stroma in colorectal adenoma and CRC. The results showed that cells positive for stem-like markers were remarkably increased in number and frequently observed in the adenoma/CRC epithelium, transitional crypts and tumor stroma. Notably, the population of cells positive for stem-liker markers was expanded from the base to the middle part of the transitional crypt in both adenoma and CRC tissues, reflecting that stem-like cells are likely involved in the process of colorectal tumorigenesis. Counting results showed that the grading scores of cells positive for LGR5 and ALDH1 in the adenoma/CRC epithelium were significantly increased relative with the control epithelium, and associated with the degree of dysplasia in the adenoma and node involvement in the CRC (all P < 0.05). In addition, the density of cells positive for stem–like markers in the adenomatous/cancerous stroma was also increased and paralleled an increase in the density of proliferative stromal cells labeled by PCNA, which were primarily identified as vimentin positive fibroblasts. Our results have revealed a changed temporal and spatial presentation of stem-like markers in different stages of human colorectal adenoma-carcinoma sequence, which might be a hallmark of the adenoma-carcinoma transition. PMID:28484082

  13. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety ofmore » inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and

  14. Neurotrophically Induced Mesenchymal Progenitor Cells Derived from Induced Pluripotent Stem Cells Enhance Neuritogenesis via Neurotrophin and Cytokine Production

    PubMed Central

    Brick, Rachel M.; Sun, Aaron X.

    2017-01-01

    Abstract Adult tissue‐derived mesenchymal stem cells (MSCs) are known to produce a number of bioactive factors, including neurotrophic growth factors, capable of supporting and improving nerve regeneration. However, with a finite culture expansion capacity, MSCs are inherently limited in their lifespan and use. We examined here the potential utility of an alternative, mesenchymal‐like cell source, derived from induced pluripotent stem cells, termed induced mesenchymal progenitor cells (MiMPCs). We found that several genes were upregulated and proteins were produced in MiMPCs that matched those previously reported for MSCs. Like MSCs, the MiMPCs secreted various neurotrophic and neuroprotective factors, including brain‐derived neurotrophic factor (BDNF), interleukin‐6 (IL‐6), leukemia inhibitory factor (LIF), osteopontin, and osteonectin, and promoted neurite outgrowth in chick embryonic dorsal root ganglia (DRG) cultures compared with control cultures. Cotreatment with a pharmacological Trk‐receptor inhibitor did not result in significant decrease in MiMPC‐induced neurite outgrowth, which was however inhibited upon Jak/STAT3 blockade. These findings suggest that the MiMPC induction of DRG neurite outgrowth is unlikely to be solely dependent on BDNF, but instead Jak/STAT3 activation by IL‐6 and/or LIF is likely to be critical neurotrophic signaling pathways of the MiMPC secretome. Taken together, these findings suggest MiMPCs as a renewable, candidate source of therapeutic cells and a potential alternative to MSCs for peripheral nerve repair, in view of their ability to promote nerve growth by producing many of the same growth factors and cytokines as Schwann cells and signaling through critical neurotrophic pathways. stem cells translational Medicine 2018;7:45–58 PMID:29215199

  15. Mesenchymal Stem Cells Derived from Human Limbal Niche Cells

    PubMed Central

    Li, Gui-Gang; Zhu, Ying-Ting; Xie, Hua-Tao; Chen, Szu-Yu; Tseng, Scheffer C. G.

    2012-01-01

    Purpose. We investigated whether human limbal niche cells generate mesenchymal stem cells. Methods. Limbal niche cells were isolated from the limbal stroma by collagenase alone or following dispase removal of the limbal epithelium (D/C), and cultured on plastic in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS), or coated or three-dimensional Matrigel in embryonic stem cell medium with leukemia inhibitory factor and basic fibroblast growth factor. Expression of cell markers, colony-forming units-fibroblast, tri-lineage differentiation, and ability of supporting limbal epithelial stem/progenitor cells were compared to limbal residual stromal cells. Results. Stromal cells expressing angiogenesis markers were found perivascularly, subjacent to limbal basal epithelial cells, and in D/C and limbal residual stromal cells. When seeded in three-dimensional Matrigel, D/C but not limbal residual stromal cells yielded spheres of angiogenesis progenitors that stabilized vascular networks. Similar to collagenase-isolated cells, D/C cells could be expanded on coated Matrigel for more than 12 passages, yielding spindle cells expressing angiogenesis and mesenchymal stem cells markers, and possessing significantly higher colony-forming units-fibroblast and more efficient tri-lineage differentiation than D/C and limbal residual stromal cells expanded on plastic in DMEM with 10% FBS, of which both lost the pericyte phenotype while limbal residual stromal cells turned into myofibroblasts. Upon reunion with limbal epithelial stem/progenitor cells to form spheres, D/C cells expanded on coated Matrigel maintained higher expression of p63α and lower expression of cytokeratin 12 than those expanded on plastic in DMEM with 10% FBS, while spheres formed with human corneal fibroblasts expressed cytokeratin 12 without p63α. Conclusions. In the limbal stroma, cells subjacent to limbal basal epithelial cells serve as niche cells, and generate progenitors with

  16. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    PubMed

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Lenalidomide With or Without Rituximab in Treating Patients With Progressive or Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, Prolymphocytic Leukemia, or Non-Hodgkin Lymphoma Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-07-24

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  18. KIT D816V Positive Acute Mast Cell Leukemia Associated with Normal Karyotype Acute Myeloid Leukemia.

    PubMed

    Lopes, Marta; Teixeira, Maria Dos Anjos; Casais, Cláudia; Mesquita, Vanessa; Seabra, Patrícia; Cabral, Renata; Palla-García, José; Lau, Catarina; Rodrigues, João; Jara-Acevedo, Maria; Freitas, Inês; Vizcaíno, Jose Ramón; Coutinho, Jorge; Escribano, Luis; Orfao, Alberto; Lima, Margarida

    2018-01-01

    Mast cell (MC) leukemia (MCL) is extremely rare. We present a case of MCL diagnosed concomitantly with acute myeloblastic leukemia (AML). A 41-year-old woman presented with asthenia, anorexia, fever, epigastralgia, and diarrhea. She had a maculopapular skin rash, hepatosplenomegaly, retroperitoneal adenopathies, pancytopenia, 6% blast cells (BC) and 20% MC in the peripheral blood, elevated lactate dehydrogenase, cholestasis, hypoalbuminemia, hypogammaglobulinemia, and increased serum tryptase (184  μ g/L). The bone marrow (BM) smears showed 24% myeloblasts, 17% promyelocytes, and 16% abnormal toluidine blue positive MC, and flow cytometry revealed 12% myeloid BC, 34% aberrant promyelocytes, a maturation blockage at the myeloblast/promyelocyte level, and 16% abnormal CD2-CD25+ MC. The BM karyotype was normal, and the KIT D816V mutation was positive in BM cells. The diagnosis of MCL associated with AML was assumed. The patient received corticosteroids, disodium cromoglycate, cladribine, idarubicin and cytosine arabinoside, high-dose cytosine arabinoside, and hematopoietic stem cell transplantation (HSCT). The outcome was favorable, with complete hematological remission two years after diagnosis and one year after HSCT. This case emphasizes the need of an exhaustive laboratory evaluation for the concomitant diagnosis of MCL and AML, and the therapeutic options.

  19. Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells.

    PubMed

    Brown, Christine E; Starr, Renate; Martinez, Catalina; Aguilar, Brenda; D'Apuzzo, Massimo; Todorov, Ivan; Shih, Chu-Chih; Badie, Behnam; Hudecek, Michael; Riddell, Stanley R; Jensen, Michael C

    2009-12-01

    Solid tumors contain a subset of stem-like cells that are resistant to the cytotoxic effects of chemotherapy/radiotherapy, but their susceptibility to cytolytic T lymphocyte (CTL) effector mechanisms has not been well characterized. Using a panel of early-passage human brain tumor stem/initiating cell (BTSC) lines derived from high-grade gliomas, we show that BTSCs are subject to immunologic recognition and elimination by CD8(+) CTLs. Compared with serum-differentiated CD133(low) tumor cells and established glioma cell lines, BTSCs are equivalent with respect to expression levels of HLA class I and ICAM-1, similar in their ability to trigger degranulation and cytokine synthesis by antigen-specific CTLs, and equally susceptible to perforin-dependent CTL-mediated cytolysis. BTSCs are also competent in the processing and presentation of antigens as evidenced by the killing of these cells by CTL when antigen is endogenously expressed. Moreover, we show that CTLs can eliminate all BTSCs with tumor-initiating activity in an antigen-specific manner in vivo. Current models predict that curative therapies for many cancers will require the elimination of the stem/initiating population, and these studies lay the foundation for developing immunotherapeutic approaches to eradicate this tumor population.

  20. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    PubMed

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  1. Hematopoietic stem cells burn fat to prevent exhaustion.

    PubMed

    Lallemand-Breitenbach, Valerie; de Thé, Hugues

    2012-10-05

    Ito et al. (2012) recently report in Nature Medicine that fatty acid oxidation (FAO) regulated by PPARδ controls asymmetric division in hematopoietic stem cells (HSCs). This metabolic mechanism prevents HSC exhaustion and is downstream of the promyelocytic leukemia protein PML, suggesting therapeutic implications for HSC function and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells.

    PubMed

    Aoki, Hitomi; Hara, Akira; Niwa, Masayuki; Motohashi, Tsutomu; Suzuki, Takashi; Kunisada, Takahiro

    2008-02-01

    An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the

  3. A 54-Year-Old Woman with Donor Cell Origin of Multiple Myeloma after Allogeneic Hematopoietic Stem Cell Transplantation for the Treatment of CML

    PubMed Central

    Maestas, Erika; Jain, Shikha; Stiff, Patrick

    2016-01-01

    Chronic myeloid leukemia is a myeloproliferative disorder that may be treated with hematopoietic stem cell transplantation (HSCT). While posttransplantation relapse of disease resulting from a failure to eradicate the patient's original leukemia could occur, patients may also rarely develop a secondary malignancy or myelodysplastic syndrome (MDS) of donor origin termed donor cell leukemia (DCL). Cases of donor-derived acute myeloid leukemia (AML) or MDS after HSCT or solid tumor transplantation have been published. However, very few cases of donor-derived multiple myeloma (MM) exist. We describe a patient who developed a donor-derived MM following allogeneic HSCT from a sibling donor. PMID:26989529

  4. Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature

    PubMed Central

    Barr, Martin P.; Gray, Steven G.; Hoffmann, Andreas C.; Hilger, Ralf A.; Thomale, Juergen; O’Flaherty, John D.; Fennell, Dean A.; Richard, Derek; O’Leary, John J.; O’Byrne, Kenneth J.

    2013-01-01

    Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing

  5. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal.

    PubMed

    Khalaj, Mona; Woolthuis, Carolien M; Hu, Wenhuo; Durham, Benjamin H; Chu, S Haihua; Qamar, Sarah; Armstrong, Scott A; Park, Christopher Y

    2017-07-21

    The microRNA-99 ( miR-99 ) family comprises a group of broadly conserved microRNAs that are highly expressed in hematopoietic stem cells (HSCs) and acute myeloid leukemia stem cells (LSCs) compared with their differentiated progeny. Herein, we show that miR-99 regulates self-renewal in both HSCs and LSCs. miR-99 maintains HSC long-term reconstitution activity by inhibiting differentiation and cell cycle entry. Moreover, miR-99 inhibition induced LSC differentiation and depletion in an MLL-AF9-driven mouse model of AML, leading to reduction in leukemia-initiating activity and improved survival in secondary transplants. Confirming miR-99 's role in established AML, miR-99 inhibition induced primary AML patient blasts to undergo differentiation. A forward genetic shRNA library screen revealed Hoxa1 as a critical mediator of miR-99 function in HSC maintenance, and this observation was independently confirmed in both HSCs and LSCs. Together, these studies demonstrate the importance of noncoding RNAs in the regulation of HSC and LSC function and identify miR-99 as a critical regulator of stem cell self-renewal. © 2017 Khalaj et al.

  6. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal

    PubMed Central

    Khalaj, Mona; Woolthuis, Carolien M.; Hu, Wenhuo; Durham, Benjamin H.; Chu, S. Haihua; Qamar, Sarah; Armstrong, Scott A.

    2017-01-01

    The microRNA-99 (miR-99) family comprises a group of broadly conserved microRNAs that are highly expressed in hematopoietic stem cells (HSCs) and acute myeloid leukemia stem cells (LSCs) compared with their differentiated progeny. Herein, we show that miR-99 regulates self-renewal in both HSCs and LSCs. miR-99 maintains HSC long-term reconstitution activity by inhibiting differentiation and cell cycle entry. Moreover, miR-99 inhibition induced LSC differentiation and depletion in an MLL-AF9–driven mouse model of AML, leading to reduction in leukemia-initiating activity and improved survival in secondary transplants. Confirming miR-99’s role in established AML, miR-99 inhibition induced primary AML patient blasts to undergo differentiation. A forward genetic shRNA library screen revealed Hoxa1 as a critical mediator of miR-99 function in HSC maintenance, and this observation was independently confirmed in both HSCs and LSCs. Together, these studies demonstrate the importance of noncoding RNAs in the regulation of HSC and LSC function and identify miR-99 as a critical regulator of stem cell self-renewal. PMID:28733386

  7. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules.

    PubMed

    Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry

    2015-11-01

    Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Emerging Cell Biology of Thyroid Stem Cells

    PubMed Central

    Latif, Rauf; Minsky, Noga C.; Ma, Risheng

    2011-01-01

    Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219

  9. In vitro organogenesis of gut-like structures from mouse embryonic stem cells.

    PubMed

    Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S

    2004-04-01

    Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.

  10. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth.

    PubMed

    Kim, Eun-Kyung; Cho, Jae Hee; Kim, EuiJoo; Kim, Yoon Jae

    2017-01-01

    The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells.

  11. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    PubMed Central

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  12. The In Vitro Differentiation of GDNF Gene-Engineered Amniotic Fluid-Derived Stem Cells into Renal Tubular Epithelial-Like Cells.

    PubMed

    Lu, Ying; Wang, Zhuojun; Chen, Lu; Wang, Jia; Li, Shulin; Liu, Caixia; Sun, Dong

    2018-05-01

    Amniotic fluid is an alternative source of stem cells, and human amniotic fluid-derived stem cells (AFSCs) obtained from a small amount of amniotic fluid collected during the second trimester represent a novel source for use in regenerative medicine. These AFSCs are characterized by lower diversity, a higher proliferation rate, and a wider differentiation capability than adult mesenchymal stem cells. AFSCs are selected based on the cell surface marker c-kit receptor (CD117) using immunomagnetic sorting. Glial cell line-derived neurotrophic factor (GDNF) is expressed during early kidney development and regulates the proliferation and differentiation of stem cells in vitro. In this study, c-kit-sorted AFSCs were induced toward osteogenic or adipogenic differentiation. AFSCs engineered via the insertion of GDNF were cocultured with mouse renal tubular epithelial cells (mRTECs), which were preconditioned by hypoxia-reoxygenation in vitro. After coculture for 8 days, AFSCs differentiation into epithelial-like cells was evaluated by performing immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction to identify cells expressing the renal epithelial markers, cytokeratin 18 (CK18), E-cadherin, aquaporin-1 (AQP1), and paired box 2 gene (Pax2). The GDNF gene enhanced AFSCs differentiation into RTECs. AFSCs possess self-renewal ability and multiple differentiation potential and thus represent a new source of stem cells.

  13. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    PubMed

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  14. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo

    PubMed Central

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E.; Benveniste, Etty N.

    2017-01-01

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem–like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells. PMID:28160553

  15. Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype

    PubMed Central

    Zanini, Cristina; Bruno, Stefania; Mandili, Giorgia; Baci, Denisa; Cerutti, Francesco; Cenacchi, Giovanna; Izzi, Leo; Camussi, Giovanni; Forni, Marco

    2011-01-01

    Background Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. Methodology/Principal Findings In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. Conclusions/Significance Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets

  16. Treatment of primary acute myeloid leukemia: results of a prospective multicenter trial including high-dose cytarabine or stem cell transplantation as post-remission strategy.

    PubMed

    Brunet, Salut; Esteve, Jordi; Berlanga, Joan; Ribera, Josep M; Bueno, Javier; Martí, Josep M; Bargay, Joan; Guardia, Ramon; Juliá, Antoni; Granena, Albert; Montserrat, Emili; Sierra, Jorge

    2004-08-01

    To evaluate a regimen of induction and consolidation chemotherapy, followed by a post-remission therapy which depended on age and cytogenetics, in patients with primary acute myeloid leukemia. Two hundred patients up to 60 years old received idarubicin, standard dose cytarabine and etoposide as induction chemotherapy and one consolidation course including intermediate dose cytarabine and mitoxantrone. Subsequently, patients with favorable cytogenetics, [i.e., t(8;21), inv(16)] were scheduled to receive 2 courses of high-dose cytarabine. The remainder were scheduled for allogeneic stem cell transplantation (SCT), if 50 years old or lacking a donor. In patients with favorable cytogenetics the 4-year probabilities of survival and leukemia-free survival (LFS) were 62+/-9% and 41+/-10%, respectively. The results were better in patients with t(8;21). LFS at 4 years in patients 50 years old assigned to auto-SCT had a 4-year LFS of 17+/-9%. Adverse cytogenetics and white blood cell count >or= 20 yen 109/L at diagnosis were associated with lower probability of survival and leukemia-free survival. We confirmed that high-dose cytarabine seems a good option for patients with t(8;21). Autologous and allogeneic SCT led to similar leukemia-free survival in patients cell count at diagnosis, together with new prognostic markers, should be considered in the design of future risk-adapted trials.

  17. Mutation of the NPM1 gene contributes to the development of donor cell-derived acute myeloid leukemia after unrelated cord blood transplantation for acute lymphoblastic leukemia.

    PubMed

    Rodríguez-Macías, Gabriela; Martínez-Laperche, Carolina; Gayoso, Jorge; Noriega, Víctor; Serrano, David; Balsalobre, Pascual; Muñoz-Martínez, Cristina; Díez-Martín, José L; Buño, Ismael

    2013-08-01

    Donor cell leukemia (DCL) is a rare but severe complication after allogeneic stem cell transplantation. Its true incidence is unknown because of a lack of correct recognition and reporting, although improvements in molecular analysis of donor-host chimerism are contributing to a better diagnosis of this complication. The mechanisms of leukemogenesis are unclear, and multiple factors can contribute to the development of DCL. In recent years, cord blood has emerged as an alternative source of hematopoietic progenitor cells, and at least 12 cases of DCL have been reported after unrelated cord blood transplantation. We report a new case of DCL after unrelated cord blood transplantation in a 44-year-old woman diagnosed as having acute lymphoblastic leukemia with t(1;19) that developed acute myeloid leukemia with normal karyotype and nucleophosmin (NPM1) mutation in donor cells. To our knowledge, this is the first report of NPM1 mutation contributing to DCL development. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Serum galactomannan screening for diagnosis of invasive pulmonary aspergillosis in children after stem cell transplantation or with high-risk leukemia.

    PubMed

    Gefen, Aharon; Zaidman, Irina; Shachor-Meyouhas, Yael; Avidor, Israela; Hakim, Fahed; Weyl Ben-Arush, Myriam; Kassis, Imad

    2015-03-01

    Both transplanted and leukemia patients are at high risk (HR) for invasive pulmonary aspergillosis (IPA). Methods for rapid diagnosis are crucial. Our objective was to investigate the impact of serial serum galactomannan assay (GMA) screening on IPA diagnosis in children. Between January 2010 and December 2011, all children following stem cell transplantation (SCT) or with HR leukemia were prospectively included. Serum samples for GMA were taken once-twice weekly. Results >.5 were considered positive. Patients suspected of having IPA were stratified as possible, probable, and definite. Forty-six children (median age, 8 years) were included, 38 after SCT (32 allogeneic), 8 with HR leukemia. A total of 510 samples were taken; screening period was 1-6 months for 34 patients. GMA was negative in 28 patients, all but one without suspicion of IPA. Eighteen patients had positive GMA: while four (22%) were upgraded to probable IPA, fourteen (78%) were considered as false positives (FP), some associated with piperacillin-tazobactam treatment. GMA sensitivity and specificity were 0.8 and 0.66, respectively; positive- and negative-predictive values (PPV, NPV) were 0.22 and 0.96, respectively. GMA may have a role in evaluating HR children for IPA. Both NPV and FP rates are high. The cost benefit of early detection versus over-diagnosis should be further studied.

  19. Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells.

    PubMed

    Feldmann, Friederike; Schenk, Barbara; Martens, Sofie; Vandenabeele, Peter; Fulda, Simone

    2017-09-15

    Induction of necroptosis has emerged as an alternative approach to trigger programmed cell death, in particular in apoptosis-resistant cancer cells. Recent evidence suggests that kinase inhibitors targeting oncogenic B-RAF can also affect Receptor-interacting serine/threonine-protein kinase (RIP)1 and RIP3. Sorafenib, a multi-targeting kinase inhibitor with activity against B-RAF, is used for the treatment of acute leukemia. In the present study, we therefore investigated whether Sorafenib interferes with therapeutic induction of necroptosis in acute leukemia. Here, we report that Sorafenib inhibits necroptotic signaling and cell death in two models of necroptosis in acute leukemia. Sorafenib significantly reduces Second mitochondria-derived activator of caspases (Smac) mimetic-induced necroptosis in apoptosis-resistant acute myeloid leukemia (AML) cells as well as Smac mimetic/Tumor Necrosis Factor (TNF)α-induced necroptosis in FADD-deficient acute lymphoblastic leukemia (ALL) cells. Sub- to low micromolar concentrations of Sorafenib corresponding to its plasma levels reported in cancer patients are sufficient to inhibit necroptosis, emphasizing the clinical relevance of our findings. Furthermore, Sorafenib blocks Smac mimetic-mediated phosphorylation of mixed-lineage kinase domain-like protein (MLKL) that marks its activation, indicating that Sorafenib targets components upstream of MLKL such as RIP1 and RIP3. Intriguingly, Sorafenib reduces the Smac mimetic/TNFα-stimulated interaction of RIP1 with RIP3 and MLKL, demonstrating that it interferes with the assembly of the necrosome complex. Importantly, Sorafenib significantly protects primary, patient-derived AML blasts from Smac mimetic-induced necroptosis. By demonstrating that Sorafenib limits the anti-leukemic activity of necroptosis-inducing drugs in acute leukemia cells, our study has important implications for the use of Sorafenib in the treatment of acute leukemia.

  20. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia

    PubMed Central

    Kharas, Michael G; Lengner, Christopher J; Al-Shahrour, Fatima; Bullinger, Lars; Ball, Brian; Zaidi, Samir; Morgan, Kelly; Tam, Winnie; Paktinat, Mahnaz; Okabe, Rachel; Gozo, Maricel; Einhorn, William; Lane, Steven W; Scholl, Claudia; Fröhling, Stefan; Fleming, Mark; Ebert, Benjamin L; Gilliland, D Gary; Jaenisch, Rudolf; Daley, George Q

    2011-01-01

    RNA-binding proteins of the Musashi (Msi) family are expressed in stem cell compartments and in aggressive tumors, but they have not yet been widely explored in the blood. Here we demonstrate that Msi2 is the predominant form expressed in hematopoietic stem cells (HSCs), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of human MSI2 in a mouse model increases HSC cell cycle progression and cooperates with the chronic myeloid leukemia–associated BCR-ABL1 oncoprotein to induce an aggressive leukemia. MSI2 is overexpressed in human myeloid leukemia cell lines, and its depletion leads to decreased proliferation and increased apoptosis. Expression levels in human myeloid leukemia directly correlate with decreased survival in patients with the disease, thereby defining MSI2 expression as a new prognostic marker and as a new target for therapy in acute myeloid leukemia (AML). PMID:20616797

  1. Hypoxia-inducible factor-1α promotes cell survival during ammonia stress response in ovarian cancer stem-like cells

    PubMed Central

    Kitajima, Shojiro; Lee, Kian Leong; Hikasa, Hiroki; Sun, Wendi; Huang, Ruby Yun-Ju; Yang, Henry; Matsunaga, Shinji; Yamaguchi, Takehiro; Araki, Marito; Kato, Hiroyuki

    2017-01-01

    Ammonia is a toxic by-product of metabolism that causes cellular stresses. Although a number of proteins are involved in adaptive stress response, specific factors that counteract ammonia-induced cellular stress and regulate cell metabolism to survive against its toxicity have yet to be identified. We demonstrated that the hypoxia-inducible factor-1α (HIF-1α) is stabilized and activated by ammonia stress. HIF-1α activated by ammonium chloride compromises ammonia-induced apoptosis. Furthermore, we identified glutamine synthetase (GS) as a key driver of cancer cell proliferation under ammonia stress and glutamine-dependent metabolism in ovarian cancer stem-like cells expressing CD90. Interestingly, activated HIF-1α counteracts glutamine synthetase function in glutamine metabolism by facilitating glycolysis and elevating glucose dependency. Our studies reveal the hitherto unknown functions of HIF-1α in a biphasic ammonia stress management in the cancer stem-like cells where GS facilitates cell proliferation and HIF-1α contributes to the metabolic remodeling in energy fuel usage resulting in attenuated proliferation but conversely promoting cell survival. PMID:29383096

  2. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  3. Identification of cell surface glycoprotein markers for glioblastoma-derived stem-like cells using a lectin microarray and LC-MS/MS approach

    PubMed Central

    He, Jintang; Liu, Yashu; Xie, Xiaolei; Zhu, Thant; Soules, Mary; DiMeco, Francesco; Vescovi, Angelo L.; Fan, Xing; Lubman, David M.

    2010-01-01

    Despite progress in the treatment of glioblastoma, more than 95% of patients suffering from this disease still die within two years. Recent findings support the belief that cancer stem-like cells are responsible for tumor formation and ongoing growth. Here a method combining lectin microarray and LC-MS/MS was used to discover the cell surface glycoprotein markers of a glioblastoma-derived stem-like cell line. Lectin microarray analysis of cell surface glycans showed that two galactose-specific lectins Trichosanthes kirilowii agglutinin (TKA) and Peanut agglutinin (PNA) could distinguish the stem-like glioblastoma neurosphere culture from a traditional adherent glioblastoma cell line. Agarose-bound TKA and PNA were used to capture the glycoproteins from the two cell cultures, which were analyzed by LC-MS/MS. The glycoproteins were quantified by spectral counting, resulting in the identification of 12 and 11 potential glycoprotein markers from the TKA and PNA captured fractions respectively. Almost all of these proteins were membrane proteins. Differential expression was verified by Western blotting analysis of 6 interesting proteins, including the up-regulated Receptor-type tyrosine-protein phosphatase zeta, Tenascin-C, Chondroitin sulfate proteoglycan NG2, Podocalyxin-like protein 1 and CD90, and the down-regulated CD44. An improved understanding of these proteins may be important for earlier diagnosis and better therapeutic targeting of glioblastoma. PMID:20235609

  4. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells.

    PubMed

    Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo

    2017-08-01

    Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.

  5. CD20dim-positive T-cell large granular lymphocytic leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma

    PubMed Central

    Xu, Xiangdong; Broome, Elizabeth H; Rashidi, Hooman H; South, Sarah T; Dell'Aquila, Marie L; Wang, Huan-You

    2010-01-01

    We report a CD20dim- positive T-cell large granular lymphocytic (T-LGL) leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma. This patient was first diagnosed with T-LGL leukemia with dim CD20 expression, which by itself was a rare entity. He received no treatment for T-LGL leukemia. The patient later developed a hairy cell leukemia, which went into complete clinical remission after one cycle of 2-CdA. Five years later, he was diagnosed with a third malignancy, plasma cell myeloma. Complex cytogenetic aberrancies were present at the time when plasma cell myeloma was diagnosed. This is the first report, to the best of our knowledge, in the English literature with the aforementioned three distinct hematopoietic malignancies in one patient. PMID:21151394

  6. Adult Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Acute myeloid leukemia (AML; also called acute myelogenous leukemia, acute nonlymphocytic leukemia) treatment advances have resulted in substantially improved CR rates. Cytogenetic analysis helps predict outcomes of treatment which includes chemotherapy, radiation, and stem cell transplant. Get detailed information about AML in this clinician summary.

  7. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    PubMed

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid

  8. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-04

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling.

    PubMed

    Liao, Jianwei; Liu, Pan-Pan; Hou, Guoxin; Shao, Jiajia; Yang, Jing; Liu, Kaiyan; Lu, Wenhua; Wen, Shijun; Hu, Yumin; Huang, Peng

    2017-02-28

    Cancer stem cells (CSCs) are thought to play an important role in tumor recurrence and drug resistance, and present a major challenge in cancer therapy. The tumor microenvironment such as growth factors, nutrients and oxygen affect CSC generation and proliferation by providing the necessary energy sources and growth signals. The side population (SP) analysis has been used to detect the stem-like cancer cell populations based on their high expression of ABCG2 that exports Hoechst-33342 and certain cytotoxic drugs from the cells. The purpose of this research is to investigate the effect of a main nutrient molecule, glutamine, on SP cells and the possible underlying mechanism(s). Biochemical assays and flow cytometric analysis were used to evaluate the effect of glutamine on stem-like side population cells in vitro. Molecular analyses including RNAi interfering, qRT-PCR, and immunoblotting were employed to investigate the molecular signaling in response to glutamine deprivation and its influence on tumor formation capacity in vivo. We show that glutamine supports the maintenance of the stem cell phenotype by promoting glutathione synthesis and thus maintaining redox balance for SP cells. A deprivation of glutamine in the culture medium significantly reduced the proportion of SP cells. L-asparaginase, an enzyme that catalyzes the hydrolysis of asparagine and glutamine to aspartic acid and glutamate, respectively, mimics the effect of glutamine withdrawal and also diminished the proportion of SP cells. Mechanistically, glutamine deprivation increases intracellular ROS levels, leading to down-regulation of the β-catenin pathway. Glutamine plays a significant role in maintaining the stemness of cancer cells by a redox-mediated mechanism mediated by β-catenin. Inhibition of glutamine metabolism or deprivation of glutamine by L-asparaginase may be a new strategy to eliminate CSCs and overcome drug resistance.

  10. [Experimental study on aging effect of Angelica sinensis polysaccharides combined with cytarabine on human leukemia KG1alpha cell lines].

    PubMed

    Xu, Chun-Yan; Geng, Shan; Liu, Jun; Zhu, Jia-Hong; Zhang, Xian-Ping; Jiang, Rong; Wang, Ya-Ping

    2014-04-01

    The latest findings of our laboratory showed that Angelica sinensis polysaccharide (ASP) showed a definite effect in regulating the aging of hematopoietic stem cells. Leukemia is a type of malignant hematopoietic tumor in hematopoietic stem cells. There have been no relevant reports about ASP's effect in regulating the aging of leukemia cells. In this study, human acute myeloid leukemia (AML) KG1alpha cell lines in logarithmic growth phase were taken as the study object, and were divided into the ASP group, the cytarabine (Ara-C) group, the ASP + Ara-C group and the control group. The groups were respectively treated with different concentration of ASP, Ara-C and ASP + Ara-C for different periods, with the aim to study the effect of ASP combined with Ara-C in regulating the aging of human acute myeloid leukemia KG1alpha cell lines and its relevant mechanism. The results showed that ASP, Ara-C and ASP + Ara-C could obviously inhibit KG1alpha cell proliferation in vitro, block the cells in G0/G1 phase. The cells showed the aging morphological feature. The percentage of positive stained aging cells was dramatically increased, and could significantly up-regulate the expression of aging-related proteins P16 and RB, which were more obvious in the ASP + Ara-C group. In conclusion, the aging mechanism of KG1alpha cell induced by ASP and Ara-C may be related to the regulation of the expression of aging-related proteins, suggesting that the combined administration of ASP and anticancer drugs plays a better role in the treatment of leukemia .

  11. Brain mesenchymal stem cells: The other stem cells of the brain?

    PubMed

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-04-26

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.

  12. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.

    PubMed

    Bagher, Zohreh; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Mirzadeh, Hamid; Solouk, Atefeh; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2016-05-01

    Cell transplantation strategies have provided potential therapeutic approaches for treatment of neurodegenerative diseases. Mesenchymal stem cells from Wharton's jelly (WJMSCs) are abundant and available adult stem cells with low immunological incompatibility, which could be considered for cell replacement therapy in the future. However, MSC transplantation without any induction or support material causes poor control of cell viability and differentiation. In this study, we investigated the effect of the nanoscaffolds on WJMSCs differentiation into motor neuronal lineages in the presence of retinoic acid (RA) and sonic hedgehog (Shh). Surface properties of scaffolds have been shown to significantly influence cell behaviors such as adhesion, proliferation, and differentiation. Therefore, polycaprolactone (PCL) nanofibers were constructed via electrospinning, surface modified by plasma treatment, and grafted by collagen. Characterization of the scaffolds by means of ATR-FTIR, contact angel, and Bradford proved grafting of the collagen on the surface of the scaffolds. WJMSCs were seeded on nanofibrous and tissue culture plate (TCP) and viability of WJMSCs were measured by MTT assay and then induced to differentiate into motor neuron-like cells for 15 days. Differentiated cells were evaluated morphologically, and real-time PCR and immunocytochemistry methods were done to evaluate expression of motor neuron-like cell markers in mRNA and protein levels. Our results showed that obtained cells could express motor neuron biomarkers at both RNA and protein levels, but the survival and differentiation of WJMSCs into motor neuron-like cells on the PCL/collagen scaffold were higher than cultured cells in the TCP and PCL groups. Taken together, WJMSCs are an attractive stem cell source for inducing into motor neurons in vitro especially when grown on nanostructural scaffolds and PCL/collagen scaffolds can provide a suitable, three-dimensional situation for neuronal survival and

  13. Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells*

    PubMed Central

    Mou, Xiao-zhou; Lin, Jian; Chen, Jin-yang; Li, Yi-fei; Wu, Xiao-xing; Xiang, Bing-yu; Li, Cai-yun; Ma, Ju-ming; Xiang, Charlie

    2013-01-01

    Orthotopic liver transplantation (OLT) is the only proven effective treatment for both end-stage and metabolic liver diseases. Hepatocyte transplantation is a promising alternative for OLT, but the lack of available donor livers has hampered its clinical application. Hepatocyte-like cells (HLCs) differentiated from many multi-potential stem cells can help repair damaged liver tissue. Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures. Recently, a novel mesenchymal stem cell derived from human menstrual blood (MenSC) has been discovered and obtained easily and repeatedly. In this study, we examined whether the MenSCs are able to differentiate into functional HLCs in vitro. After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor (HGF), fibroblast growth factor-4 (FGF-4), and oncostain M (OSM), cuboidal HLCs were observed, and cells also expressed hepatocyte-specific marker genes including albumin (ALB), α-fetoprotein (AFP), cytokeratin 18/19 (CK18/19), and cytochrome P450 1A1/3A4 (CYP1A1/3A4). Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis, glycogen storage, and indocyanine green (ICG) uptake. After intrasplenic transplantation into mice with 2/3 partial hepatectomy, the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein. We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals. In conclusion, MenSCs may serve as an ideal, easily accessible source of material for tissue engineering and cell therapy of liver tissues. PMID:24190442

  14. Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.

    PubMed

    Savage, Philip

    2016-11-21

    Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies

  15. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.

    PubMed

    Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K

    2018-01-01

    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.

  16. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment

    PubMed Central

    Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.

    2018-01-01

    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026

  17. Hairy Cell Leukemia Treatment Option Overview

    MedlinePlus

    ... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional Version Key Points ...

  18. A Safety and Tolerability Study of CDX-301 With or Without Plerixafor for Stem Cell Mobilization in Matched Related Allogeneic Donor/Recipient Sibling Transplant Pairs

    ClinicalTrials.gov

    2017-04-06

    For Donors; Related Donors Giving Peripheral Blood Stem Cells (PBSC) to a Sibling; For Recipients; Acute Myelogenous Leukemia (AML); Acute Lymphoblastic Leukemia (ALL); Myelodysplastic Syndrome (MDS); Chronic Myelogenous Leukemia (CML); Non-Hodgkins Lymphoma (NHL); Hodgkins Disease (HD); Chronic Lymphocytic Leukemia (CLL)

  19. Cytomegalovirus retinitis in a patient with secondary acute lymphosarcoma leukemia undergoing allogeneic hematopoietic stem-cell transplantation

    PubMed Central

    Zhao, Ning; Liu, Lei; Xu, Junjie

    2017-01-01

    Abstract Rationale: Cytomegalovirus (CMV) retinitis is a common opportunistic infection in immunocompromised patients, which may lead to blindness. CMV retinitis is not an uncommon infectious disease in patients with immune regulatory abnormalities, for example, human immunodeficiency virus (HIV) patients. However, CMV retinitis in a patient with acute lymphosarcoma leukemia (ALL) undergoing allogeneic hematopoietic stem-cell transplantation (HSCT) phase is very rare. Patient concerns: A case of CMV retinitis in a patient receiving immunosuppressive therapy as a part of ALL allogeneic HSCT is described including the pathogenesis, clinical signs, and therapy. Diagnoses: CMV retinitis. Interventions: Ganciclovir intravitreal injection at weekly intervals for 4 weeks. Outcomes: Patient's vision had improved and the load of CMV deoxyribonucleic acid (DNA) in the aqueous humor declined. The CMV retinitis and perivascular of retina infiltration regressed. Lessons: We propose that the concentration of CMV DNA load in the aqueous humor could be useful in making the diagnosis and in selecting the optimal treatment in this kind of CMV retinitis. PMID:28489788

  20. Registered report: tumour vascularization via endothelial differentiation of glioblastoma stem-like cells.

    PubMed

    Chroscinski, Denise; Sampey, Darryl; Maherali, Nimet

    2015-02-25

    The Nature in 2010 (Ricci-Vitiani et al., 2010). The experiments that will be replicated are those reported in Figure 4B and Supplementary Figure 10B (Ricci-Vitiani et al., 2010), which demonstrate that glioblastoma stem-like cells can derive into endothelial cells, and can be selectively ablated to reduce tumor progression in vivo, and Supplementary Figures S10C and S10D (Ricci-Vitiani et al., 2010), which demonstrate that fully differentiated glioblastoma cells cannot form functionally relevant endothelium. The Reproducibility Project: Cancer Biology is a collaboration between the eLife.

  1. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells.

    PubMed

    Parvari, Soraya; Yazdekhasti, Hossein; Rajabi, Zahra; Gerayeli Malek, Valliollah; Rastegar, Tayebeh; Abbasi, Mehdi

    2016-11-01

    An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.

  2. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    PubMed Central

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  3. PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/β-catenin signaling pathway.

    PubMed

    Li, Qiji; Ye, Liping; Guo, Wei; Wang, Min; Huang, Shuai; Peng, Xinsheng

    2017-06-23

    PHF21B is newly identified to be involved in the tumor progression; however, its biological role and molecular mechanism in prostate cancer have not been defined. This study is aimed to study the role of PHF21B in the progression of prostate cancer. Real-time PCR, immunohistochemistry and western blotting analysis were used to determine PHF21B expression in prostate cancer cell lines and clinical specimens. The role of PHF21B in maintaining prostate cancer stem cell-like phenotype was examined by tumor-sphere formation assay and expression levels of stem cell markers. Luciferase reporter assay, western blot analysis, enzyme-linked immunosorbent assay and ChIP assay were used to determine whether PHF21B activates the Wnt/β-catenin signaling by transcriptionally downregulating SFRP1 and SFRP2. Our results revealed that PHF21B was markedly upregulated in prostate cancer cell lines and tissues. High PHF21B levels predicted poorer recurrence-free survival in prostate cancer patients. Gain-of-function and loss-of-function studies showed that overexpression of PHF21B enhanced, while downregulation suppressed, the cancer stem cell-like phenotype in prostate cancer cells. Xenograft tumor model showed that silencing PHF21B decreased the ability of tumorigenicity in vivo. Notably, Wnt/β-catenin signaling was hyperactivated in prostate cancer cells overexpressing PHF21B, and mediated PHF21B-induced cancer stem cell-like phenotype. Furthermore, PHF21B suppressed repressors of the Wnt/β-catenin signaling cascade, including SFRP1 and SFRP2. These results demonstrated that PHF21B constitutively activated wnt/β-catenin signaling by transcriptionally downregulating SFRP1 and SFRP2, which promotes prostate cancer stem cell-like phenotype. Our results revealed that PHF21B functions as an oncogene in prostate cancer, and may represent a promising prognostic biomarker and an attractive candidate for target therapy of prostate cancer.

  4. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice.

    PubMed

    May, Randal; Riehl, Terrence E; Hunt, Clayton; Sureban, Sripathi M; Anant, Shrikant; Houchen, Courtney W

    2008-03-01

    In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear beta-catenin in normal-appearing intestine. However, beta-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of beta-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents.

  5. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  6. Micelle Delivery of Parthenolide to Acute Myeloid Leukemia Cells

    PubMed Central

    Baranello, Michael P.; Bauer, Louisa; Jordan, Craig T.; Benoit, Danielle S. W.

    2018-01-01

    Parthenolide (PTL) has shown great promise as a novel anti-leukemia agent as it selectively eliminates acute myeloid leukemia (AML) blast cells and leukemia stem cells (LSCs) while sparing normal hematopoietic cells. This success has not yet translated to the clinical setting because PTL is rapidly cleared from blood due to its hydrophobicity. To increase the aqueous solubility of PTL, we previously developed micelles formed from predominantly hydrophobic amphiphilic diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (e.g., PSMA100-b-PS258) that exhibit robust PTL loading (75%efficiency, 11% w/w capacity) and release PTL over 24 h. Here, PTL-loaded PSMA-b-PS micelles were thoroughly characterized in vitro for PTL delivery to MV4-11 AML cells. Additionally, the mechanisms governing micelle-mediated cytotoxicity were examined in comparison to free PTL. PSMA-b-PS micelles were taken up by MV4-11 cells as evidenced by transmission electron microscopy and flow cytometry. Specifically, MV4-11 cells relied on clathrin-mediated endocytosis, rather than caveolae-mediated endocytosis and macropinocytosis. In addition, PTL-loaded PSMA-b-PS micelles exhibited a dose-dependent cytotoxicity towards AML cells and were capable of reducing cell viability by 75% at 10 μM PTL, while unloaded micelles were nontoxic. At 10 μM PTL, the cytotoxicity of PTL-loaded micelles increased gradually over 24 h while free PTL achieved maximal cytotoxicity between 2 and 4 h, demonstrating micelle-mediated delivery of PTL to AML cells and stability of the drug-loaded micelle even in the presence of cells. Both free PTL and PTL-loaded micelles induced NF-κB inhibition at 10 μM PTL doses, demonstrating some mechanistic similarities in cytotoxicity. However, free PTL relied more heavily on exofacial free thiol interactions to induce cytotoxicity than PTL-loaded micelles; free PTL cytotoxicity was reduced by over twofold when cell surface free thiols were depleted, where PTL

  7. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells.

    PubMed

    Huang, Xinxin; Tian, E; Xu, Yanhua; Zhang, Hong

    2009-09-15

    Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.

  8. Hematopoietic Stem Cell Transplantation—50 Years of Evolution and Future Perspectives

    PubMed Central

    Henig, Israel; Zuckerman, Tsila

    2014-01-01

    Hematopoietic stem cell transplantation is a highly specialized and unique medical procedure. Autologous transplantation allows the administration of high-dose chemotherapy without prolonged bone marrow aplasia. In allogeneic transplantation, donor-derived stem cells provide alloimmunity that enables a graft-versus-tumor effect to eradicate residual disease and prevent relapse. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then the field has evolved and expanded worldwide. New indications beside acute leukemia and aplastic anemia have been constantly explored and now include congenital disorders of the hematopoietic system, metabolic disorders, and autoimmune disease. The use of matched unrelated donors, umbilical cord blood units, and partially matched related donors has dramatically extended the availability of allogeneic transplantation. Transplant-related mortality has decreased due to improved supportive care, including better strategies to prevent severe infections and with the incorporation of reduced-intensity conditioning protocols that lowered the toxicity and allowed for transplantation in older patients. However, disease relapse and graft-versus-host disease remain the two major causes of mortality with unsatisfactory progress. Intense research aiming to improve adoptive immunotherapy and increase graft-versus-leukemia response while decreasing graft-versus-host response might bring the next breakthrough in allogeneic transplantation. Strategies of graft manipulation, tumor-associated antigen vaccinations, monoclonal antibodies, and adoptive cellular immunotherapy have already proved clinically efficient. In the following years, allogeneic transplantation is likely to become more complex, more individualized, and more efficient. PMID:25386344

  9. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia.

    PubMed

    Cai, Bo; Guo, Mei; Wang, Yao; Zhang, Yajing; Yang, Jun; Guo, Yelei; Dai, Hanren; Yu, Changlin; Sun, Qiyun; Qiao, Jianhui; Hu, Kaixun; Zuo, Hongli; Dong, Zheng; Zhang, Zechuan; Feng, Mingxing; Li, Bingxia; Sun, Yujing; Liu, Tieqiang; Liu, Zhiqing; Wang, Yi; Huang, Yajing; Yao, Bo; Han, Weidong; Ai, Huisheng

    2016-11-25

    Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T) cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC) following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT02799550.

  10. Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting

    NASA Astrophysics Data System (ADS)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-12-01

    Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.

  11. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.

    PubMed

    Farace, Cristiano; Oliver, Jaime Antonio; Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  12. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  13. Clinical and biological significance of stem-like CD133(+)CXCR4(+) cells in esophageal squamous cell carcinoma.

    PubMed

    Lu, Chunlai; Xu, Fengkai; Gu, Jie; Yuan, Yunfeng; Zhao, Guangyin; Yu, Xiaofang; Ge, Di

    2015-08-01

    Esophageal squamous cell carcinoma is one of the most frequent malignant tumors. Cancer stem cells are considered to be responsible for tumor growth, metastasis, and recurrence. Cluster of differentiation 133 (CD133) and C-X-C chemokine receptor type 4 (CXCR4) are frequently applied markers for the identification and isolation of cancer stem cells. However, few studies have investigated the coexpression of CD133 and CXCR4 in esophageal squamous cell carcinoma. This study aims to explore the clinical and biological role of stem-like CD133(+)CXCR4(+) cells in esophageal squamous cell carcinoma. Immunohistochemical staining was performed to detect the expression of CD133 and CXCR4 in esophageal squamous cell carcinoma tissues of patients. Flow cytometry and fluorescence-activated cell sorting were applied to analyze and isolate each subgroup in esophageal squamous cell carcinoma cell line TE-1. The characteristic differences between each subgroup were assayed in vitro. The association between CD133/CXCR4 expression and patients' prognosis was analyzed by Kaplan-Meier and Cox regression. Among 154 patient tissues, concomitant high CD133-CXCR4 expression accounts for 20.78% (32/154). In vitro, CXCR4(+) cells (CD133(+)CXCR4(+) and CD133(-)CXCR4(+)) showed high invasive potential and CD133(+)CXCR4(+) cells showed high proliferative capacity. Clinically, patients with concomitant high CD133-CXCR4 expression had decreased disease-free survival and overall survival (P < .01). Esophageal squamous cell carcinoma cells coexpressing CD133 and CXCR4 possess the characteristics of cancer stem cells. The concomitant high CD133-CXCR4 expression might be a novel marker for predicting the poor prognosis of patients with esophageal squamous cell carcinoma, and CD133 and CXCR4 may serve as potential therapeutic targets. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells.

    PubMed

    Abdullah, Rafal H; Yaseen, Nahi Y; Salih, Shahlaa M; Al-Juboory, Ahmad Adnan; Hassan, Ayman; Al-Shammari, Ahmed Majeed

    2016-11-01

    The differentiation of mesenchymal stem cells (MSC) into acetylcholine secreted motor neuron-like cells, followed by elongation of the cell axon, is a promising treatment for spinal cord injury and motor neuron cell dysfunction in mammals. Differentiation is induced through a pre-induction step using Beta- mercaptoethanol (BME) followed by four days of induction with retinoic acid and sonic hedgehog. This process results in a very efficient differentiation of BM-MSCs into motor neuron-like cells. Immunocytochemistry showed that these treated cells had specific motor neural markers: microtubule associated protein-2 and acetylcholine transferase. The ability of these cells to function as motor neuron cells was assessed by measuring acetylcholine levels in a culture media during differentiation. High-performance liquid chromatography (HPLC) showed that the differentiated cells were functional. Motor neuron axon elongation was then induced by adding different concentrations of a nerve growth factor (NGF) to the differentiation media. Using a collagen matrix to mimic the natural condition of neural cells in a three-dimensional model showed that the MSCs were successfully differentiated into motor neuron-like cells. This process can efficiently differentiate MSCs into functional motor neurons that can be used for autologous nervous system therapy and especially for treating spinal cord injuries. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells

    PubMed Central

    Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  16. Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming.

    PubMed

    Jeon, Hyojung; Waku, Tsuyoshi; Azami, Takuya; Khoa, Le Tran Phuc; Yanagisawa, Jun; Takahashi, Satoru; Ema, Masatsugu

    2016-01-01

    Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.

  17. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  18. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells

    PubMed Central

    XUE, CHENG; ZHANG, JUN; LV, ZHAN; LIU, HUI; HUANG, CONGXIN; YANG, JING; WANG, TEN

    2015-01-01

    Cardiac stem cells (CSCs) can differentiate into cardiac muscle-like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker-like cells. Mouse CSCs were treated with Ang II from day 3–5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription-polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle-like cells (32.7±4.8% vs. 21.5±4.8%; P<0.05), and inhibition of smooth muscle-like cells (6.2±7.3% vs. 20.5±5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor-specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function-related genes, including hyperpolarization-activated cyclic nucleotide-gated (HCN)2, HCN4, T-box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker-like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac-specific gene expression and resulted in the enhanced formation of pacemaker-like cells. PMID:25572000

  19. IQGAP1 Is Involved in Enhanced Aggressive Behavior of Epithelial Ovarian Cancer Stem Cell-Like Cells During Differentiation.

    PubMed

    Huang, Lu; Xu, Shanshan; Hu, Dongxiao; Lu, Weiguo; Xie, Xing; Cheng, Xiaodong

    2015-05-01

    Wide metastasis is one of characteristics of ovarian cancer. Cancer stem cells, as a source in cancer invasion and metastasis, possess powerful potential of differentiation. Scaffolding IQ domain GTPase-activating protein 1 (IQGAP1) plays a key role in the invasion and metastasis of cancer cells, but IQGAP1's role in cancer stem cells including ovarian cancer was unclear. Spheroid culture with serum-free medium was used for enriching ovarian cancer stem cell-like cells (CSC-LCs) from 3AO cell line, and a medium with 10% fetal bovine serum was used to induce the differentiation of CSC-LCs. Immunofluorescence was for detecting the stem markers OCT4 and SOX2. The quantitative real-time-polymerase chain reaction and Western blotting were performed to determine the messenger RNA and protein expression of IQGAP1, respectively. The capacity of cell invasion was evaluated by transwell chamber assay. Ovarian CSC-LCs obtained through spheroid culture showed irregularly elongated appearance, CD24 negative, and OCT4 and SOX2 positive. IQGAP1 expression was decreased in ovarian CSC-LCs compared with parental 3AO cells, but increased de novo during the differentiation of CSC-LCs. Knockdown of IQGAP1 by specific small interfering RNA remarkably weakened invasion capacity of 2-day differentiated ovarian CSC-LCs. Increased IQGAP1 expression during the differentiation of CSC-LCs is involved in an aggressive cell behavior, which may contribute to metastasis of ovarian cancer.

  20. Elimination of Cancer Stem-Like Cells and Potentiation of Temozolomide Sensitivity by Honokiol in Glioblastoma Multiforme Cells

    PubMed Central

    Lai, I-Chun; Shih, Ping-Hsiao; Yao, Chih-Jung; Yeh, Chi-Tai; Wang-Peng, Jacqueline; Lui, Tai-Ngar; Chuang, Suang-En; Hu, Tsai-Shu; Lai, Tung-Yuan; Lai, Gi-Ming

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O 6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O 6-benzylguanine (O 6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment. PMID:25763821

  1. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg; Zhu Congju; Wong Yinling

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival,more » {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  2. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    PubMed

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  3. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells.

    PubMed

    Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2016-11-29

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

  4. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells

    PubMed Central

    Hurton, Lenka V.; Singh, Harjeet; Najjar, Amer M.; Switzer, Kirsten C.; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials. PMID:27849617

  5. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.

    PubMed

    Wang, Xuanzhi; Dai, Xingliang; Zhang, Xinzhi; Li, Xinda; Xu, Tao; Lan, Qing

    2018-04-15

    Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A comparison between the stability properties in a DDE model for leukemia and the modified fractional counterpart

    NASA Astrophysics Data System (ADS)

    Rǎdulescu, I. R.; Cândea, D.; Kaslik, E.

    2017-01-01

    In this paper, a delay differential equations (DDEs) model of leukemia is introduced and its dynamical properties are investigated in comparison with the modified fractional-order system where the Caputo's derivative is used. The model takes into account three types of division that a stem-like cell can undergo and cell competition between healthy and leukemia cell populations. The action of the immune system on the leukemic cell populations is also considered. The stability properties of the equilibrium points are established through numerical results and the differences between the two types of approaches are discussed. Medical conclusions are drawn in view of the obtained numerical simulations.

  7. Brain mesenchymal stem cells: The other stem cells of the brain?

    PubMed Central

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression. PMID:24772240

  8. General Information About Hairy Cell Leukemia

    MedlinePlus

    ... Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  9. [Chimeric antigen receptors T cells in treatment of a relapsed pediatric acute lymphoblastic leukemia, relapse after allogenetic hematopoietic stem cell transplantation: case report and review of literature review].

    PubMed

    Zuo, Yingxi; Wang, Jingbo; Lu, Aidong; Jia, Yueping; Wu, Jun; Dong, Lujia; Chang, Lungji; Zhang, Leping

    2016-02-01

    To evaluate the safety and efficacy of chimeric antigen receptors T cells (CAR-T) in childhood acute B lymphoblastic leukemia (B-ALL). A relapsed B-ALL child after allogeneic hematopoietic stem cell transplantation (allo-HSCT) was treated with CAR-T, and the related literatures were reviewed. An 11-year-old girl with TEL-AML1 fusion gene positive BALL who suffered a bone marrow relapse 28 months after remission from conventional chemotherapy. During the second remission, the patient received haploidentical allo-HSCT. She relapsed with detectable TEL-AML1 fusion gene even after chemotherapy and donor leukocyte infusions. She received an experimental donor-derived fourth generation CD19 CAR-T therapy. After infusion of 1 × 10(6)/kg CAR-T cells, she experienced only mild or moderate cytokine-release syndrome and the minimal residual disease turned negative. Then three maintenance of CAR-T cell infusions [(0.83-1.65)×10(6)/kg] was administered, and the disease-free survival had lasted for 10 months. However, the TEL-AML1 copies in her blood still increased and she died with leukemia relapse after additional CAR-T cell infusion. Treatment of relapsed B-ALL with the fourth generation CAR-T cells directed against CD19 was effective and safe. CAR-T therapy is a novel therapeutic approach that could be useful for patients with relapsed and refractory B-ALL who have failed all other treatment options.

  10. The immune receptor Trem1 cooperates with diminished DNA damage response to induce preleukemic stem cell expansion.

    PubMed

    Du, W; Amarachintha, S; Wilson, A; Pang, Q

    2017-02-01

    Fanconi anemia (FA) is an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Here we investigate the relationship between DNA damage response (DDR) and leukemogenesis using the Fanca knockout mouse model. We found that chronic exposure of the Fanca -/- hematopoietic stem cells to DNA crosslinking agent mitomycin C in vivo leads to diminished DDR, and the emergence/expansion of pre-leukemia stem cells (pre-LSCs). Surprisingly, although genetic correction of Fanca deficiency in the pre-LSCs restores DDR and reduces genomic instability, but fails to prevent pre-LSC expansion or delay leukemia development in irradiated recipients. Furthermore, we identified transcription program underlying dysregulated DDR and cell migration, myeloid proliferation, and immune response in the Fanca -/- pre-LSCs. Forced expression of the downregulated DNA repair genes, Rad51c or Trp53i13, in the Fanca -/- pre-LSCs partially rescues DDR but has no effect on leukemia, whereas shRNA knockdown of the upregulated immune receptor genes Trem1 or Pilrb improves leukemia-related survival, but not DDR or genomic instability. Furthermore, Trem1 cooperates with diminished DDR in vivo to promote Fanca -/- pre-LSC expansion and leukemia development. Our study implicates diminishing DDR as a root cause of FA leukemogenesis, which subsequently collaborates with other signaling pathways for leukemogenic transformation.

  11. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells.

    PubMed

    Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar

    2015-06-01

    Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.

  12. Spatial and temporal characterization of endometrial mesenchymal stem-like cells activity during the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Xu; Chan, Rachel W.S., E-mail: rwschan@hku.hk; Centre of Reproduction, Development of Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR

    The human endometrium is a highly dynamic tissue with the ability to cyclically regenerate during the reproductive life. Endometrial mesenchymal stem-like cells (eMSCs) located throughout the endometrium have shown to functionally contribute to endometrial regeneration. In this study we examine whether the menstrual cycle stage and the location in the endometrial bilayer (superficial and deep portions of the endometrium) has an effect on stem cell activities of eMSCs (CD140b{sup +}CD146{sup +} cells). Here we show the percentage and clonogenic ability of eMSCs were constant in the various stages of the menstrual cycle (menstrual, proliferative and secretory). However, eMSCs from themore » menstrual endometrium underwent significantly more rounds of self-renewal and enabled a greater total cell output than those from the secretory phase. Significantly more eMSCs were detected in the deeper portion of the endometrium compared to the superficial layer but their clonogenic and self-renewal activities remained similar. Our findings suggest that eMSCs are activated in the menstrual phase for the cyclical regeneration of the endometrium. - Highlights: • The percentages of endometrial mesenchymal-like stem cells (eMSCs) were constant across the menstrual cycle. • Menstruation eMSCs display superior self-renewal and long-term proliferative activities. • More eMSCs reside in the deeper portion of the endometrium than the superficial layer.« less

  13. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and Schwann cell-like cells in a slow-flow microfluidic device

    PubMed Central

    Ramamurthy, Poornapriya; White, Joshua B.; Park, Joong Yull; Hume, Richard I.; Ebisu, Fumi; Mendez, Flor; Takayama, Shuichi; Barald, Kate F

    2016-01-01

    Background To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining Spiral Ganglion Neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived “neurons” could potentially substitute for lost or damaged SGN. mESC-derived “Schwann cells” produce MIF as do all Schwann cells (Huang et al., 2002; Roth et al., 2007, 2008) and could attract SGN to “ cell coated” implant. Results Neuron- and Schwann cell-like cells were produced from a common population of mESC in an ultra-slow flow microfluidic device. As the populations interacted; “neurons” grew over the “Schwann cell” lawn and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing “Schwann cells” were used to “coat” a CI: mouse SGN and MIF-induced “neurons” grew directionally to the CI and to a wild type but not MIF-knock out Organ of Corti explant. Conclusions Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. PMID:27761977

  14. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  15. Akt-mediated phosphorylation of Oct4 is associated with the proliferation of stem-like cancer cells

    PubMed Central

    ZHAO, QING-WEI; ZHOU, YAN-WEN; LI, WEN-XIN; KANG, BO; ZHANG, XIAO-QIAN; YANG, YING; CHENG, JIE; YIN, SHENG-YONG; TONG, YING; HE, JIAN-QIN; YAO, HANG-PING; ZHENG, MIN; WANG, YING-JIE

    2015-01-01

    Oct4 protein encoded by POU5F1 plays a pivotal role in maintaining the self-renewal of pluripotent stem cells; however, its presence in cancer cells remains controversial. In the present study, we provided evidence that the transcripts of authentic OCT4 gene (OCT4A) and its multiple pseudogenes were detected in a variety of cancer cell lines. A few major bands were also detected by western blotting using an anti-Oct4A monoclonal antibody. Moreover, an anti-Oct4-pT235 antibody was used to identify a band in the majority of the tested cancer cell lines that coincided with one of the anti-Oct4A bands which was decreasable by a specific shRNA. The Oct4-pT235 signals were also detected in human glioblastoma and liver cancer specimens by immunofluorescence microscopy and immunohistochemistry. U87 glioblastoma cells were cultured in a neural stem cell medium to induce the formation of neurospheres rich in stem-like cancer cells. The levels of Oct4-pT235 in the sphere cells were markedly increased compared to their monolayer parental cells, a result that was accompanied by upregulation of the PI3K-Akt pathway. Akti-1/2, a specific inhibitor of Akt, effectively reduced the level of Oct4-pT235 and attenuated the proliferation of U87 sphere cells. ITE, an agonist of the aryl hydrocarbon receptor, also significantly attenuated the Akt-mediated phosphorylation of Oct4 in glioblastoma and liver cancer cells, and reduced their tumorigenic potential in a xenograft tumor model. Taken together, we concluded that the Akt-mediated phosphorylation of Oct4A or its homolog protein was associated with the proliferation of stem-like cancer cells that may serve as a novel biomarker and drug target for certain types of cancer. PMID:25625591

  16. Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization

    NASA Astrophysics Data System (ADS)

    Tabata, Yoji; Lutolf, Matthias P.

    2017-03-01

    The combination of microfluidics with engineered three-dimensional (3D) matrices can bring new insights into the fate regulation of stem cells and their self-organization into organoids. Although there has been progress in 3D stem cell culturing, most existing in vitro methodologies do not allow for mimicking of the spatiotemporal heterogeneity of stimuli that drive morphogenetic processes in vivo. To address this, we present a perfusion-free microchip concept for the in vitro 3D perturbation of stem cell fate. Stem cells are encapsulated in a hydrogel compartment that is flanked by open reservoirs for the diffusion-driven generation of biomolecule gradients. Juxtaposing additional compartments bearing supportive cells enables investigating the influence of long range cell-cell communication. We explore the utility of the microchips in manipulating early fate choices and self-organizing characteristics of 3D-cultured mouse embryonic stem cells (mESCs) under neural differentiation conditions and exposure to gradients of leukemia inhibitory factor (LIF). mESCs respond to LIF gradients in a spatially dependent manner. At higher LIF concentrations, multicellular colonies maintain pluripotency in contrast, at lower concentrations, mESCs develop into apicobasally polarized epithelial cysts. This versatile system can help to systematically explore the role of multifactorial microenvironments in promoting self-patterning of various stem cell types.

  17. Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo

    PubMed Central

    Sugata, Kenji; Ueno, Takaharu; Koh, Ki-Ryang; Higuchi, Yusuke; Matsuda, Fumihiko; Melamed, Anat; Bangham, Charles R.

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread

  18. De novo acute leukemia with a sole 5q-: morphological, immunological, and clinical correlations.

    PubMed

    Duchayne, E; Dastugue, N; Kuhlein, E; Huguet, F; Pris, J

    1993-11-01

    The 5 q deletion is frequently found in myelodysplastic syndromes and acute non lymphoid leukemia, but this anomaly is usually found in secondary diseases and associated with many other chromosomal aberrations. This report describes four cases of "de novo" acute leukemia with a sole 5q- anomaly. They had no cytological, genetic or clinical characteristics of secondary disorders. It is important to note that of the four patients studied, three had proliferation of immature blast cells. One case was classified as a MO AML and two as "undifferentiated" acute leukemia. Furthermore, these four cases of acute leukemia showed a deletion of the same portion of the long arm of chromosome 5: q22q33. On the same part of this chromosome many hematopoietic growth factor genes have been located, like IL3 and GM-CSF which have early undifferentiated hematopoietic stem cells as a their target.

  19. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  20. Early wound healing of laser in situ keratomileusis-like flaps after treatment with human corneal stromal stem cells.

    PubMed

    Morgan, Siân R; Dooley, Erin P; Kamma-Lorger, Christina; Funderburgh, James L; Funderburgh, Martha L; Meek, Keith M

    2016-02-01

    To use a well-established organ culture model to investigate the effects of corneal stromal stem cells on the optical and biomechanical properties of corneal wounds after laser in situ keratomileusis (LASIK)-like flap creation. School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom. Experimental study. The LASIK-like flaps were produced in sheep corneas. The flap beds were treated with corneal stromal stem cells and were then replaced and allowed to heal for different periods of up to 3 weeks in organ culture. The optical transmission of the cornea, the force required to detach the flap, and the presence of myofibroblasts near the flap bed were measured. Corneal stromal stem cell-treated flap beds were statistically significantly more transparent after 3 weeks in culture than the untreated controls. At 3 weeks, the mean force necessary to detach the flap was more than twice the force required for the respective control samples. Concurrently, there were 44% activated cells immediately below the flap margin of the controls compared with 29% in the same region of the corneal stromal stem cell-treated flaps. In this system, the presence of corneal stromal stem cells at the wound margin significantly increased the adherence of LASIK-like flaps while maintaining corneal transparency. It is postulated that this is achieved by the deposition of extracellular connective tissue similar to that found in the normal cornea and by the paucity of activated keratocytes (myofibroblasts), which are known to scatter a significant amount of the incident light. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Bone marrow (stem cell) donation

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing features on this page, please enable ... cells are more likely to help patients than stem cells from older people. People who register must either: Use a cotton swab to take a sample of ...

  2. Postinduction Minimal Residual Disease Predicts Outcome and Benefit From Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia With NPM1 Mutation: A Study by the Acute Leukemia French Association Group.

    PubMed

    Balsat, Marie; Renneville, Aline; Thomas, Xavier; de Botton, Stéphane; Caillot, Denis; Marceau, Alice; Lemasle, Emilie; Marolleau, Jean-Pierre; Nibourel, Olivier; Berthon, Céline; Raffoux, Emmanuel; Pigneux, Arnaud; Rodriguez, Céline; Vey, Norbert; Cayuela, Jean-Michel; Hayette, Sandrine; Braun, Thorsten; Coudé, Marie Magdeleine; Terre, Christine; Celli-Lebras, Karine; Dombret, Hervé; Preudhomme, Claude; Boissel, Nicolas

    2017-01-10

    Purpose This study assessed the prognostic impact of postinduction NPM1-mutated ( NPM1m) minimal residual disease (MRD) in young adult patients (age, 18 to 60 years) with acute myeloid leukemia, and addressed the question of whether NPM1m MRD may be used as a predictive factor of allogeneic stem cell transplantation (ASCT) benefit. Patients and Methods Among 229 patients with NPM1m who were treated in the Acute Leukemia French Association 0702 (ALFA-0702) trial, MRD evaluation was available in 152 patients in first remission. Patients with nonfavorable AML according to the European LeukemiaNet (ELN) classification were eligible for ASCT in first remission. Results After induction therapy, patients who did not achieve a 4-log reduction in NPM1m peripheral blood-MRD (PB-MRD) had a higher cumulative incidence of relapse (subhazard ratio [SHR], 5.83; P < .001) and a shorter overall survival (OS; hazard ratio [HR], 10.99; P < .001). In multivariable analysis, an abnormal karyotype, the presence of FLT3-internal tandem duplication (ITD), and a < 4-log reduction in PB-MRD were significantly associated with a higher relapse incidence and shorter OS. In the subset of patients with FLT3-ITD, only age, white blood cell count, and < 4-log reduction in PB-MRD, but not FLT3-ITD allelic ratio, remained of significant prognostic value. In these patients with nonfavorable AML according to European LeukemiaNet, disease-free survival and OS were significantly improved by ASCT in those with a < 4-log reduction in PB-MRD. This benefit was not observed in those with a > 4-log reduction in PB-MRD, with a significant interaction between ASCT effect and PB-MRD response ( P = .024 and .027 for disease-free survival and OS, respectively). Conclusion Our study supports the strong prognostic significance of early NPM1m PB-MRD, independent of the cytogenetic and molecular context. Moreover, NPM1m PB-MRD may be used as a predictive factor for ASCT indication.

  3. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.

    PubMed

    Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew

    2015-12-01

    The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

    PubMed

    Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F

    2017-11-01

    Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Donor Lymphocyte Infusions for Chronic Myeloid Leukemia Relapsing after Allogeneic Stem Cell Transplantation: May We Predict Graft-versus-Leukemia Without Graft-versus-Host Disease?

    PubMed

    Radujkovic, Aleksandar; Guglielmi, Cesare; Bergantini, Stefania; Iacobelli, Simona; van Biezen, Anja; Milojkovic, Dragana; Gratwohl, Alois; Schattenberg, Antonius V M B; Verdonck, Leo F; Niederwieser, Dietger W; de Witte, Theo; Kröger, Nicolaus; Olavarria, Eduardo

    2015-07-01

    Donor lymphocyte infusions (DLI) are an effective treatment for relapsed chronic myeloid leukemia (CML) after allogeneic stem cell transplantation (alloSCT). Leukemia resistance and secondary graft-versus-host disease (GVHD) are major obstacles to success with DLI. The aim of this study was to identify pre-DLI factors associated with prolonged survival in remission without secondary GVHD. We retrospectively analyzed 500 patients treated with DLI for CML relapse (16% molecular, 30% cytogenetic, and 54% hematological) after alloSCT. The overall probabilities of failure- and secondary GVHD-free survival (FGFS) were 29% and 27% at 5 and 10 years after DLI, respectively. The type of relapse was the major factor influencing FGFS (40% for molecular and/or cytogenetic relapse and 20% for hematological relapse at 5 years, P < .001). Chronic GVHD before DLI and an interval <1 year between alloSCT and first DLI were independently associated with inferior FGFS in patients with molecular and/or cytogenetic relapse. Consequently, FGFS was 13%, 35%, to 56% at 5 years in patients with 2, 1, and 0 adverse features, respectively. In patients with hematological relapse, independent adverse prognostic factors for FGFS were initial dose of CD3(+) cells ≥ 50 × 10(6)/kg, donor-recipient sex mismatch, and chronic GVHD before DLI. FGFS was 0%, 17%, 33%, to 37% in patients with 3, 2, 1, and 0 adverse features, respectively. The probability of survival in remission without secondary GVHD was highest (>50% at 5 years) when DLI were given beyond 1 year from alloSCT for molecular and/or cytogenetic CML relapse that was not preceded by chronic GVHD. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells

    PubMed Central

    Zheng, Jinghui; Wan, Yi; Chi, Jianhuai; Shen, Dekai; Wu, Tingting; Li, Weimin; Du, Pengcheng

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. PMID:25806066

  7. Histone h1 depletion impairs embryonic stem cell differentiation.

    PubMed

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  8. Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn's disease.

    PubMed

    Marlicz, Wojciech; Zuba-Surma, Ewa; Kucia, Magda; Blogowski, Wojciech; Starzynska, Teresa; Ratajczak, Mariusz Z

    2012-09-01

    Developmentally early cells, including hematopoietic stem progenitor cells (HSPCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs), are mobilized into peripheral blood (PB) in response to tissue/organ injury. We sought to determine whether these cells are mobilized into PB in patients with Crohn's disease (CD). Twenty-five patients with active CD, 20 patients in clinical remission, and 25 age-matched controls were recruited and PB samples harvested. The circulating CD133+/Lin-/CD45+ and CD34+/Lin-/CD45+ cells enriched for HSPCs, CD105+/STRO-1+/CD45- cells enriched for MSCs, CD34+/KDR+/CD31+/CD45-cells enriched for EPCs, and small CXCR4+CD34+CD133+ subsets of Lin-CD45- cells that correspond to the population of VSELs were counted by fluorescence-activated cell sorting (FACS) and evaluated by direct immunofluorescence staining for pluripotency embryonic markers and by reverse-transcription polymerase chain reaction (RT-PCR) for expression of messenger (m)RNAs for a panel of genes expressed in intestine epithelial stem cells. The serum concentration of factors involved in stem cell trafficking, such as stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) were measured by enzyme-linked immunosorbent assay (ELISA). Our data indicate that cells expressing markers for MSCs, EPCs, and small Oct-4+Nanog+SSEA-4+CXCR4+lin-CD45- VSELs are mobilized into PB in CD. The mobilized cells also expressed at the mRNA level genes playing a role in development and regeneration of gastrointestinal epithelium. All these changes were accompanied by increased serum concentrations of VEGF and HGF. CD triggers the mobilization of MSCs, EPCs, and VSELs, while the significance and precise role of these mobilized cells in repair of damaged intestine requires further study. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.

  9. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin

    PubMed Central

    Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.

    2015-01-01

    Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764

  10. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    PubMed

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. Characterization of Cancer Stem-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Transformed by Tumor-Derived Extracellular Vesicles

    PubMed Central

    Yan, Ting; Mizutani, Akifumi; Chen, Ling; Takaki, Mai; Hiramoto, Yuki; Matsuda, Shuichi; Shigehiro, Tsukasa; Kasai, Tomonari; Kudoh, Takayuki; Murakami, Hiroshi; Masuda, Junko; Hendrix, Mary J. C.; Strizzi, Luigi; Salomon, David S.; Fu, Li; Seno, Masaharu

    2014-01-01

    Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors. PMID:25057308

  12. Microenvironment Determines Lineage Fate in a Human Model of MLL-AF9 Leukemia

    PubMed Central

    Wei, Junping; Wunderlich, Mark; Fox, Catherine; Alvarez, Sara; Cigudosa, Juan C.; Wilhelm, Jamie S.; Zheng, Yi; Cancelas, Jose A.; Gu, Yi; Jansen, Michael; DiMartino, Jorge F.; Mulloy, James C.

    2008-01-01

    Summary Faithful modeling of mixed lineage leukemia in murine cells has been difficult to achieve. We show that expression of MLL-AF9 in human CD34+ cells induces acute myeloid, lymphoid or mixed lineage leukemia in immunodeficient mice. Some leukemia stem cells (LSC) were multipotent and could be lineage directed by altering either the growth factors or the recipient strain of mouse, highlighting the importance of microenviromental cues. Other LSC were strictly lineage committed, demonstrating the heterogeneity of the stem cell compartment in MLL disease. Targeting the Rac signaling pathway by pharmacologic or genetic means resulted in rapid and specific apoptosis of MLL-AF9 cells, suggesting that the Rac signaling pathway may be a valid therapeutic target in MLL-rearranged AML. PMID:18538732

  13. Stem-Like Cell Characteristics from Breast Milk of Mothers with Preterm Infants as Compared to Mothers with Term Infants.

    PubMed

    Briere, Carrie-Ellen; Jensen, Todd; McGrath, Jacqueline M; Young, Erin E; Finck, Christine

    2017-04-01

    Breast milk stem cells are hypothesized to be involved in infant health and development. Our research team is the first known team to enroll mothers of hospitalized preterm infants during the first few weeks of lactation and compare stem cell phenotypes and gene expression to mothers of healthy full-term infants. Participants were recruited from a Level IV Neonatal Intensive Care Unit (preterm dyads) and the community (full-term dyads) in the northeastern United States. Mothers of hospitalized preterm infants (<37 weeks gestational age at birth) and mothers of healthy full-term infants (>39 weeks gestational age at birth). Breast milk stem-like cell populations were identified in both preterm and full-term breast milk samples. The data suggest variability in the proportion of stem cell phenotypes present, as well as statistically significant differential expression (both over- and underexpression) of stem cell-specific genetic markers when comparing mothers' milk for preterm and full-term births. Our findings indicate that (1) stem cells are present in preterm breast milk; (2) differential expression of stem cell-specific markers can be detected in preterm and full-term breast milk samples; and (3) the percentage of cells expressing the various stem cell-specific markers differs when preterm and full-term breast milk samples are compared.

  14. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells.

    PubMed

    Qiu, Caihong; Olivier, Emmanuel N; Velho, Michelle; Bouhassira, Eric E

    2008-02-15

    We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II, the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature, fetal liver-like erythroblasts, that are smaller, express mostly fetal hemoglobin, and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated, and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary, because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.

  15. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation

    PubMed Central

    Baldión, Paula A.; Velandia-Romero, Myriam L.

    2018-01-01

    Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry. PMID:29670655

  16. Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease.

    PubMed

    Kakinuma, Sei; Nakauchi, Hiromitsu; Watanabe, Mamoru

    2009-01-01

    Allogeneic liver transplantation is still the only effective treatment available to patients with liver failure. However, because there is a serious shortage of liver donors, an alternative therapeutic approach is needed. Transplantation of mature hepatocytes has been evaluated in clinical trials, but the long-term efficacy remains unclear and the paucity of donor cells limits this strategy. Stem-cell transplantation is a more promising alternative approach. Several studies have provided information about the mechanism underlying the proliferation and differentiation of hepatic stem/progenitor cells. Moreover, in experimental models of liver disease, transplantation of hepatic stem/progenitor cells or hepatocyte-like cells derived from multipotent stem cells led to donor cell-mediated repopulation of the liver and improved survival rates. However, before stem-cell transplantation can be applied in the clinic to treat liver failure in humans, it will be necessary to overcome several difficulties associated with the technique.

  17. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    PubMed

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  18. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    PubMed

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  19. Pure erythroid leukemia following precursor B-cell lymphoblastic leukemia.

    PubMed

    Xu, Min; Finn, Laura S; Tsuchiya, Karen D; Thomson, Blythe; Pollard, Jessica; Rutledge, Joe

    2012-01-01

    Therapy-related acute myeloid leukemia is an unfortunate sequel to current multimodal intensive chemotherapy. The patient described was diagnosed with pure erythroleukemia, AML-M6b, during therapy for precursor B-cell acute lymphoblastic leukemia. To the best of our knowledge, this is the first report of this unusual association.

  20. Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Churchman, Michelle L; Qian, Maoxiang; Te Kronnie, Geertruy; Zhang, Ranran; Yang, Wenjian; Zhang, Hui; Lana, Tobia; Tedrick, Paige; Baskin, Rebekah; Verbist, Katherine; Peters, Jennifer L; Devidas, Meenakshi; Larsen, Eric; Moore, Ian M; Gu, Zhaohui; Qu, Chunxu; Yoshihara, Hiroki; Porter, Shaina N; Pruett-Miller, Shondra M; Wu, Gang; Raetz, Elizabeth; Martin, Paul L; Bowman, W Paul; Winick, Naomi; Mardis, Elaine; Fulton, Robert; Stanulla, Martin; Evans, William E; Relling, Mary V; Pui, Ching-Hon; Hunger, Stephen P; Loh, Mignon L; Handgretinger, Rupert; Nichols, Kim E; Yang, Jun J; Mullighan, Charles G

    2018-05-14

    Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.9% of presumed sporadic B-ALL, identifying 28 unique variants in 45 children. The majority of variants adversely affected IKZF1 function and drug responsiveness of leukemic cells. These results identify IKZF1 as a leukemia predisposition gene, and emphasize the importance of germline genetic variation in the development of both familial and sporadic ALL. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Krüppel-like factors in mammalian stem cells and development

    PubMed Central

    Bialkowska, Agnieszka B.; Yang, Vincent W.

    2017-01-01

    Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research. PMID:28246209

  2. Efficient collection of peripheral blood stem cells using the Fresenius AS104 in chronic myelocytic leukemia patients with very high numbers of platelets.

    PubMed

    Komatsu, F; Ishida, Y

    1997-04-01

    For chronic myelocytic leukemia patients with very high numbers of platelets, we describe an efficient method for the collection of peripheral blood stem cells (PBSC) using the Fresenius AS104 cell separator. In these patients, it is difficult to collect a sufficient number of PBSC, due to the platelet band interfering with the machine's red cell interface sensor. We, therefore, tried a manual adjustment of the device. The collection phase was set automatically. When the whole blood began to separate into the red cell layer and plasma (plus mononuclear cell) layer, the red cell interface setting of "7:1" was changed to "OFF," and the plasma pump flow rate was controlled manually in order to locate the interface position 1 cm from the outside wall of the centrifuge chamber. After the collection phase, the procedure was returned to the automatic setting. By repeating this procedure, we were able to collect large numbers of PBSC.

  3. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    PubMed Central

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  4. Isolation and culture of rabbit embryonic stem cells.

    PubMed

    Honda, Arata

    2013-01-01

    Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.

  5. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  6. Fish stem cell cultures.

    PubMed

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  7. Anti-thymocyte globulin as graft-versus-host disease prevention in the setting of allogeneic peripheral blood stem cell transplantation: a review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation

    PubMed Central

    Baron, Frédéric; Mohty, Mohamad; Blaise, Didier; Socié, Gérard; Labopin, Myriam; Esteve, Jordi; Ciceri, Fabio; Giebel, Sebastian; Gorin, Norbert Claude; Savani, Bipin N; Schmid, Christoph; Nagler, Arnon

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation is increasingly used as treatment for patients with life-threatening blood diseases. Its curative potential is largely based on immune-mediated graft-versus-leukemia effects caused by donor T cells contained in the graft. Unfortunately, donor T cells are also the cause of graft-versus-host disease. The vast majority of human leukocyte antigen-matched allogeneic hematopoietic stem cell transplants are nowadays carried out with peripheral blood stem cells as the stem cell source. In comparison with bone marrows, peripheral blood stem cells contain more hematopoietic stem/progenitor cells but also one log more T cells. Consequently, the use of peripheral blood stem cells instead of bone marrow has been associated with faster hematologic recovery and a lower risk of relapse in patients with advanced disease, but also with a higher incidence of chronic graft-versus-host disease. These observations have been the basis for several studies aimed at assessing the impact of immunoregulation with anti-thymocyte globulin on transplantation outcomes in patients given human leukocyte antigen-matched peripheral blood stem cells from related or unrelated donors. After a brief introduction on anti-thymocyte globulin, this article reviews recent studies assessing the impact of anti-thymocyte globulin on transplantation outcomes in patients given peripheral blood stem cells from human leukocyte antigen-matched related or unrelated donors as well as in recipients of grafts from human leukocyte antigen haploidentical donors. PMID:27927772

  8. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  9. Biochemistry of epidermal stem cells.

    PubMed

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  11. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration.

    PubMed

    Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael

    2017-04-15

    Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.

  12. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    PubMed

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  13. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    PubMed

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Efficient generation of dopaminergic-like neurons by overexpression of Nurr1 and Pitx3 in mouse induced Pluripotent Stem Cells.

    PubMed

    Salemi, Salemeh; Baktash, Parvaneh; Rajaei, Bahareh; Noori, Mehri; Amini, Hossein; Shamsara, Mehdi; Massumi, Mohammad

    2016-07-28

    Parkinson's disease (PD) is a neurodegenerative disorder, in which the nigro-striatal Dopaminergic (DAergic) neurons are selectively lost. Treatment of neurodegenerative diseases with Pluripotent Stem Cells (PSCs) is a big interest in cell therapy. Here, we used induced Pluripotent Stem Cells (iPSCs) expressing two master Dopaminergic (DAergic) transcription factors, i.e. Nurr1 and Pitx3, to generate functional in vitro DAergic-like neurons. After establishment and characterization of Doxycycline-inducible iPSCs from mouse fibroblasts, the cells were transduced by NURR1- and PITX3-harboring lentiviruses. The Nurr1/Pitx3 -iPSCs were differentiated through a five-stage protocol to generate DAergic-like neurons. The results confirmed the efficient expression of DAergic neuron markers in the end of protocol. Beside, the generated cells could exclusively synthesize and secrete Dopamine in response to secretagogues. In conclusion, overexpression of Nurr1 and Pitx3 in iPSCs could efficiently program iPSCs into functional DAergic-like neurons. This finding may have an impact on future stem cell therapy of PD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells' VEGF production and angiogenesis.

    PubMed

    Bota, Daniela A; Alexandru, Daniela; Keir, Stephen T; Bigner, Darell; Vredenburgh, James; Friedman, Henry S

    2013-12-01

    Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib

  16. Allogeneic hematopoietic stem cell transplant with reduced-intensity conditioning for chronic lymphocytic leukemia in Sweden: does donor T-cell engraftment 3 months after transplant predict survival?

    PubMed

    Machaczka, Maciej; Johansson, Jan-Erik; Remberger, Mats; Hallböök, Helene; Malm, Claes; Lazarevic, Vladimir Lj; Wahlin, Anders; Omar, Hamdy; Juliusson, Gunnar; Kimby, Eva; Hägglund, Hans

    2012-09-01

    Thirty-eight adult patients with chronic lymphocytic leukemia (CLL) underwent reduced-intensity conditioning (RIC) allogeneic stem cell transplant (allo-SCT) in Sweden between 1999 and 2007. The cumulative incidences of acute graft-versus-host disease (GVHD) grades II-IV and chronic GVHD were 29% and 47%, respectively. Rates of non-relapse mortality, progression-free survival (PFS) and overall survival (OS) were 18%, 47% and 74% at 1 year, and 21%, 25% and 45% at 5 years, respectively. T-cell chimerism after transplant was measured in 31 out of 34 patients (91%) surviving beyond day +100. Seventeen patients achieved >90% donor T-cell engraftment at 3 months after allo-SCT and, compared with the 12 patients with ≤90% donor T-cell engraftment, they showed favorable PFS at 1 year (82% vs. 33%, p =0.002) and better long-term PFS and OS (p =0.002 and 0.046, respectively). Donor T-cell engraftment of >90% at 3 months after RIC allo-SCT for CLL seems to predict favorable short-term and long-term outcome.

  17. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination.

    PubMed

    Fuertes Marraco, Silvia A; Soneson, Charlotte; Cagnon, Laurène; Gannon, Philippe O; Allard, Mathilde; Abed Maillard, Samia; Montandon, Nicole; Rufer, Nathalie; Waldvogel, Sophie; Delorenzi, Mauro; Speiser, Daniel E

    2015-04-08

    Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans. Copyright © 2015, American Association for the Advancement of Science.

  18. An update on classification, genetics, and clinical approach to mixed phenotype acute leukemia (MPAL).

    PubMed

    Khan, Maliha; Siddiqi, Rabbia; Naqvi, Kiran

    2018-06-01

    Mixed phenotype acute leukemia (MPAL) is an uncommon diagnosis, representing only about 2-5% of acute leukemia cases. The blast cells of MPAL express multilineage immunophenotypic markers and may have a shared B/T/myeloid phenotype. Due to historical ambiguity in the diagnosis of MPAL, the genetics and clinical features of this disease remain poorly characterized. Based on the 2008 and 2016 World Health Organization classifications, myeloid lineage is best determined by presence of myeloperoxidase, while B and T lymphoid lineages are demonstrated by CD19 and cytoplasmic CD3 expression. MPAL typically carries a worse prognosis than either acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL). Given the rarity of MPAL, there is a lack of prospective trial data to guide therapy; treatment generally relies on ALL-like regimens followed by consolidation chemotherapy or hematopoietic stem cell transplant (HSCT). Here, we review the updated classification, biology, clinical features, and treatment approach to MPAL.

  19. Total Marrow and Lymphoid Irradiation, Fludarabine, and Melphalan Before Donor Stem Cell Transplant in Treating Participants With High-Risk Acute Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2018-06-01

    Acute Lymphoblastic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia; Acute Myeloid Leukemia in Remission; Hematopoietic Cell Transplantation Recipient; Minimal Residual Disease; Myelodysplastic Syndrome; Secondary Acute Myeloid Leukemia

  20. A genetic IFN/STAT1/FAS axis determines CD4 T stem cell memory levels and apoptosis in healthy controls and Adult T-cell Leukemia patients.

    PubMed

    Khouri, Ricardo; Silva-Santos, Gilvanéia; Dierckx, Tim; Menezes, Soraya Maria; Decanine, Daniele; Theys, Kristof; Silva, Aline Clara; Farré, Lourdes; Bittencourt, Achiléa; Mangino, Massimo; Roederer, Mario; Vandamme, Anne-Mieke; Van Weyenbergh, Johan

    2018-01-01

    Adult T-cell leukemia (ATL) is an aggressive, chemotherapy-resistant CD4 + CD25 + leukemia caused by HTLV-1 infection, which usually develops in a minority of patients several decades after infection. IFN + AZT combination therapy has shown clinical benefit in ATL, although its mechanism of action remains unclear. We have previously shown that an IFN-responsive FAS promoter polymorphism in a STAT1 binding site (rs1800682) is associated to ATL susceptibility and survival. Recently, CD4 T stem cell memory (T SCM ) Fas hi cells have been identified as the hierarchical cellular apex of ATL, but a possible link between FAS, apoptosis, proliferation and IFN response in ATL has not been studied. In this study, we found significant ex vivo antiproliferative, antiviral and immunomodulatory effects of IFN-α treatment in short-term culture of primary mononuclear cells from ATL patients (n = 25). Bayesian Network analysis allowed us to integrate ex vivo IFN-α response with clinical, genetic and immunological data from ATL patients, thereby revealing a central role for FAS -670 polymorphism and apoptosis in the coordinated mechanism of action of IFN-α. FAS genotype-dependence of IFN-induced apoptosis was experimentally validated in an independent cohort of healthy controls (n = 20). The same FAS -670 polymorphism also determined CD4 T SCM levels in a genome-wide twin study (p = 7 × 10 -11 , n = 460), confirming a genetic link between apoptosis and T SCM levels. Transcriptomic analysis and cell type deconvolution confirmed the FAS genotype/T SCM link and IFN-α-induced downregulation of CD4 T SCM -specific genes in ATL patient cells. In conclusion, ex vivo IFN-α treatment exerts a pleiotropic effect on primary ATL cells, with a genetic IFN/STAT1/Fas axis determining apoptosis vs. proliferation and underscoring the CD4 T SCM model of ATL leukemogenesis.