Science.gov

Sample records for level spectra electromagnetic

  1. HOT ELECTROMAGNETIC OUTFLOWS. I. ACCELERATION AND SPECTRA

    SciTech Connect

    Russo, Matthew; Thompson, Christopher

    2013-04-20

    The theory of cold, relativistic, magnetohydrodynamic outflows is generalized by the inclusion of an intense radiation source. In some contexts, such as the breakout of a gamma-ray burst (GRB) jet from a star, the outflow is heated to a high temperature at a large optical depth. Eventually it becomes transparent and is pushed to a higher Lorentz factor by a combination of the Lorentz force and radiation pressure. We obtain its profile, both inside and outside the fast magnetosonic critical point, when the poloidal magnetic field is radial and monopolar. Most of the energy flux is carried by the radiation field and the toroidal magnetic field that is wound up close to the rapidly rotating engine. Although the entrained matter carries little energy, it couples the radiation field to the magnetic field. Then the fast critical point is pulled inward from infinity and, above a critical radiation intensity, the outflow is accelerated mainly by radiation pressure. We identify a distinct observational signature of this hybrid outflow: a hardening of the radiation spectrum above the peak of the seed photon distribution, driven by bulk Compton scattering. The non-thermal spectrum-obtained by a Monte Carlo method-is most extended when the Lorentz force dominates the acceleration, and the seed photon beam is wider than the Lorentz cone of the MHD fluid. This effect is a generic feature of hot, magnetized outflows interacting with slower relativistic material. It may explain why some GRB spectra appear to peak at photon energies above the original Amati et al. scaling. A companion paper addresses the case of jet breakout, where diverging magnetic flux surfaces yield strong MHD acceleration over a wider range of Lorentz factor.

  2. Hot Electromagnetic Outflows. I. Acceleration and Spectra

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2013-04-01

    The theory of cold, relativistic, magnetohydrodynamic outflows is generalized by the inclusion of an intense radiation source. In some contexts, such as the breakout of a gamma-ray burst (GRB) jet from a star, the outflow is heated to a high temperature at a large optical depth. Eventually it becomes transparent and is pushed to a higher Lorentz factor by a combination of the Lorentz force and radiation pressure. We obtain its profile, both inside and outside the fast magnetosonic critical point, when the poloidal magnetic field is radial and monopolar. Most of the energy flux is carried by the radiation field and the toroidal magnetic field that is wound up close to the rapidly rotating engine. Although the entrained matter carries little energy, it couples the radiation field to the magnetic field. Then the fast critical point is pulled inward from infinity and, above a critical radiation intensity, the outflow is accelerated mainly by radiation pressure. We identify a distinct observational signature of this hybrid outflow: a hardening of the radiation spectrum above the peak of the seed photon distribution, driven by bulk Compton scattering. The non-thermal spectrum—obtained by a Monte Carlo method—is most extended when the Lorentz force dominates the acceleration, and the seed photon beam is wider than the Lorentz cone of the MHD fluid. This effect is a generic feature of hot, magnetized outflows interacting with slower relativistic material. It may explain why some GRB spectra appear to peak at photon energies above the original Amati et al. scaling. A companion paper addresses the case of jet breakout, where diverging magnetic flux surfaces yield strong MHD acceleration over a wider range of Lorentz factor.

  3. The Teaching of Electromagnetism at University Level

    ERIC Educational Resources Information Center

    Houldin, J. E.

    1974-01-01

    Discusses different kinds of material presentation in the teaching of electromagnetism at the university level, including three "classical" approaches and the Keller personalized proctorial system. Indicates that a general introduction to generators and motors may be useful in an electromagnetism course. (CC)

  4. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  5. New downshifted maximum in stimulated electromagnetic emission spectra

    NASA Astrophysics Data System (ADS)

    Sergeev, Evgeny; Grach, Savely

    A new spectral maximum in spectra of stimulated electromagnetic emission of the ionosphere (SEE, [1]) was detected in experiments at the SURA facility in 2008 for the pump frequencies f0 4.4-4.5 MHz, most stably for f0 = 4.3 MHz, the lowest possible pump frequency at the SURA facility. The new maximum is situated at frequency shifts ∆f -6 kHz from the pump wave frequency f0 , ∆f = fSEE - f0 , somewhat closer to the f0 than the well known [2,3] Downshifted Maximum in the SEE spectrum at ∆f -9 kHz. The detection and detailed study of the new feature (which we tentatively called the New Downshifted Maximum, NDM) became possible due to high frequency resolution in spectral analysis. The following properties of the NDM are established. (i) The NDM appears in the SEE spectra simultaneously with the DM and UM features after the pump turn on (recall that the less intensive Upshifted Maximum, UM, is situated at ∆f +(6-8) kHz [2,3]). The NDM can't be attributed to 1 DM [4] or Narrow Continuum Maximum (NCM, 2 [5]) SEE features, as well as to splitted DM near gyroharmonics [2]. (ii) The NDM is observed as prominent feature for maximum pump power of the SURA facility P ≈ 120 MW ERP, for which the DM is almost covered by the Broad Continuum SEE feature [2,3]. For P ˜ 30-60 MW ERP the DM and NDM have comparable intensities. For the lesser pump power the DM prevails in the SEE spectrum, while the NDM becomes invisible being covered by the thermal Narrow Continuum feature [2]. (iii) The NDM is exactly symmetrical for the UM relatively to f0 when the former one is observed, although the UM frequency offset increases up to ∆fUM ≈ +9 kHz with a decrease of the pump power up to P ≈ 4 MW ERP. The DM formation in the SEE spectrum is attributed to a three-wave interaction between the upper and lower hybrid waves in the ionosphere, and the lower hybrid frequency ( 7 kHz) determines the frequency offset of the DM high frequency flank [2,6]. The detection of the NDM with

  6. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-01

    The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .

  7. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  8. Vibrational spectra of free and intracellular DNA in the weak electromagnetic field

    NASA Astrophysics Data System (ADS)

    Dovbeshko, Galina I.

    1998-09-01

    Vibrational bands of DNA molecules from birds' erythrocytes, as well as Dunaliella viridis alga cells and Escherichia coli bacteria clinical strains in the weak microwave field were investigated with IR spectroscopy. Drastic changes were detected in the intensities and fine structure of C equals O and PL2 bands for polarized spectra of irradiated samples of DNA molecules as compared with the reference samples in the 1700-1000 cm-1 region. No essential changes were detected in the IR spectra in the region of PO2 bands of DNA for the Escherichia coli, irradiated by the weak electromagnetic field, but essential redistribution of intensities and change in halfwidths of the PO2 symmetrical bonds were detected for Dunaliella viridis alga cells.

  9. The Teaching of Electromagnetic Induction at Sixth Form Level

    ERIC Educational Resources Information Center

    Archenhold, W. F.

    1974-01-01

    Presents some ideas about teaching electromagnetic induction at sixth form level, including educational objectives, learning difficulties, syllabus requirements, selection of unit system, and sequence of material presentation. Suggests the Education Group of the Institute of Physics hold further discussions on these aspects before including the…

  10. An Electromagnetic Resonance Circuit for Liquid Level Detection

    ERIC Educational Resources Information Center

    Hauge, B. L.; Helseth, L. E.

    2012-01-01

    Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…

  11. Spectra and electromagnetic transitions of 72–84Kr in the interacting boson model-1

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Li, Xiao-Wei; Lü, Li-Jun; Dong, Hong-Fei; Wang, Yin; Zhang, Jin-Fu

    2016-07-01

    Within the framework of the interacting boson model-1, the energy levels and electromagnetic transitions in 72–84Kr isotopes are calculated. The structures of the eigenstate and Hamiltonian matrix for some low-lying states are also calculated. The calculated results are compared with available experimental data, and the results are generally in good agreement. The present study shows that the 72,74,76,80,82,84Kr isotopes are in the transition from U(5) → SU(3), and 78Kr is in the transition from U(5) → O(6). Supported by NSFC(11465001,11165001) and Natural Science Foundation of Inner Mongolia of China (2013MS0117)

  12. Estimation of vertical sea level muon energy spectra from the latest primary cosmic ray elemental spectra

    NASA Astrophysics Data System (ADS)

    Mitra, M.; Molla, N. H.; Bhattacharyya, D. P.

    The directly measured elemental spectra of primary cosmic rays obtained from Webber et al., Seo et al., Menn et al., Ryan et al. and experiments like JACEE, CRN, SOKOL, RICH on P, He, CNO, Ne-S and Fe have been considered to estimate the vertical sea level muon energy spectra. The primary elemental energy spectra of P, He, CNO, Ne-S and Fe available from the different experimental data duly fitted by power law are given by Np(E)dE = 1.2216E-2.68 dE [cm2 .s.sr.GeV/n]-1 NHe(E)dE = 0.0424E-2.59 dE [cm2 .s.sr.GeV/n]-1 NCNO(E)dE = 0.0026E-2.57 dE[cm2 .s.sr.GeV/n]-1 NNe-S(E)dE = 0.00066E-2.57 dE [cm2 .s.sr.GeV/n]-1 NF e(E)dE = 0.0056E-2.55 dE [cm2 .s.sr.GeV/n]-1 Using the conventional superposition model the all nucleon primary cosmic ray spectrum has been derived which is of the form N(E)dE = 1.42E-2.66 dE [cm2 .s.sr.GeV/n]-1 We have considered all these spectra separately as parents of the secondary mesons and finallty the sea level muon fluxes at 00 from each species have been derived. To evaluate the meson spectra which are the initial air shower interaction products initiated by the primary nucleon air collisions, the hadronic energy moments have been calculated from the CERN LEBCEHS data for pp collisions and FNAL data for πp collisions. Pion production by secondary pions have been taken into account and the final total muon spectrum has been derived from pp rightarrowπ± x, pp → K± x, πp → π± x channels. The Z-factors have been corrected for p-air collisions. We have adopted the constant values of σp-air and σπ-air crosssections which are 273 mb and 213 mb, respectively. The adopted inelastic cross-sections for pp and πp interactions are 35 mb and 22 mb, respectively. The Q-G plasma correction of Z-factors have also been incorporated in the final form. The solution to the standard differential equation for mesons is considered for muon flux estimation from Ngenerations of the parent mesons. By this formulation vertical muon spectra from each element

  13. Electromagnetic Emission from Long-lived Binary Neutron Star Merger Remnants. II. Lightcurves and Spectra

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Ciolfi, Riccardo

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ˜107 s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ˜102-104 s after the BNS merger with luminosities of LX ˜ 1046-1048 erg s-1. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  14. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  15. New Fe ii energy levels from stellar spectra

    NASA Astrophysics Data System (ADS)

    Castelli, F.; Kurucz, R. L.

    2010-09-01

    Aims: The spectra of B-type and early A-type stars show numerous unidentified lines in the whole optical range, especially in the 5100-5400 Å interval. Because Fe ii transitions to high energy levels should be observed in this region, we used semiempirical predicted wavelengths and gf-values of Fe ii to identify unknown lines. Methods: Semiempirical line data for Fe ii computed by Kurucz are used to synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000. Results: We determined a total of 109 new 4f levels for Fe ii with energies ranging from 122 324 cm-1 to 128 110 cm-1. They belong to the Fe ii subconfigurations 3d6(3P)4f (10 levels), 3d6(3H)4f (36 levels), 3d6(3F)4f (37 levels), and 3d6(3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7 levels), and 6d (4 levels) configurations. The new levels have allowed us to identify more than 50% of the previously unidentified lines of HR 6000 in the wavelength region 3800-8000 Å. Tables listing the new energy levels are given in the paper; tables listing the spectral lines with log gf ≥ -1.5 that are transitions to the 4f energy levels are given in the Online Material. These new levels produce 18 000 lines throughout the spectrum from the ultraviolet to the infrared. Tables 6-9 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A57

  16. Temporal buildup of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    NASA Astrophysics Data System (ADS)

    Valente, P.; Failache, H.; Lezama, A.

    2003-01-01

    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expressions for the transient absorption spectra are given for simple model systems and a model for the calculation of the time-dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time-dependent line shape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb D2 line in an atomic beam experiment.

  17. Effects of electromagnetic pulse on serum element levels in rat.

    PubMed

    Li, Kangchu; Ma, Shirong; Ren, Dongqing; Li, Yurong; Ding, Guirong; Liu, Junye; Guo, Yao; Guo, Guozhen

    2014-04-01

    Electromagnetic pulse (EMP) was a potentially harmful factor to the human body, and a biological dosimetry to evaluate effects of EMP is necessary. Little is known about effects of EMP on concentration of macro and trace elements in serum so far. In this study, Sprague-Dawley rats were randomly divided into 50-kV/m EMP-exposed group (n = 10), 100-kV/m EMP-exposed group (n = 10), 200-kV/m EMP-exposed group (n = 40), and the sham-exposed group (n = 20). The macro and trace element concentrations in serum were examined at 6, 12, 24, and 48 h after EMP exposure at different electric field intensities. Compared with the sham-exposed groups, the concentration of sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), selenium (Se), and manganese (Mn) in rat serum was not changed significantly within 48 h after 200 pulses of EMP exposure at electric field intensity of 50, 100, and 200 kV/m although the K level was decreased and the Ca level was increased with the electric field intensity of EMP increasing. In addition, there was a tendency that the Zn level was decreased with the time going on within 48 h after EMP exposure. Under our experimental conditions, EMP exposure cannot affect the concentration of macro and trace elements in rat serum. There was no time-effect or dose-effect relationship between EMP exposure and serum element levels. The macro and trace elements in serum are not suitable endpoints of biological dosimetry of EMP. PMID:24497087

  18. Resonant Spectra of Malignant Breast Cancer Tumors Using the Three-Dimensional Electromagnetic Fast Multipole Model. Part 1

    NASA Technical Reports Server (NTRS)

    El-Shenawee, Magda

    2003-01-01

    An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.

  19. Level density from evaporation spectra for proton rich nuclei

    NASA Astrophysics Data System (ADS)

    Voinov, Alexander

    2005-04-01

    The level density is an important characteristic of atomic nuclei. It tells us about the nuclear structure and is needed to calculate reaction rates. The experimental information about the level density and corresponding model parameter systematics are available for the nuclei close to the stability line but little is known for the nuclei beyond the stability line. It follows from theoretical consideration that several physical effects might give the of Fermi-gas parameter `a' dependence on N and/or Z rather than on simply on A [1]. To study this and other features, the level density from neutron evaporation spectra has been measured for proton-rich nuclei ^60Zn and ^56Ni as well as for corresponding stable nuclei ^60Ni and^ 56Fe of the same A. Targets of ^58Ni, ^54Fe,^ 58Fe, and ^55Mn were bombarded with beams of 3He and deuterium at Ohio University's Edwards Accelerator Laboratory. Neutron energies were determined by the time-of-flight method. The different level density models have been tested in the excitation energy interval up to 8-10 MeV and the best parameters have been found. The results are compared to available systematics as well as to calculations performed on the basis of microscopic model recommended in RIPL data base. [1] S.I. Al-Quraishi, S.M.Grimes, T.N. Massey and D.A.Resler, Phys.Rev. C63, 065803 (2001).

  20. Hydrodynamical description of 200{bold {ital A}} GeV/{ital c} S+Au collisions: Hadron and electromagnetic spectra

    SciTech Connect

    Sollfrank, J.; Huovinen, P.; Kataja, M.; Ruuskanen, P.V.; Prakash, M.; Venugopalan, R.

    1997-01-01

    We study relativistic S+Au collisions at 200A GeV/c using a hydrodynamical approach. We test various equations of state (EOS{close_quote}s), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electromagnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. Only EOS{close_quote}s with a few degrees of freedom up to very high temperatures can be ruled out presently. We deduce an upper bound of about 250 MeV for the initial temperature from the single photon spectra of WA80. With regard to the CERES dilepton data, none of the EOS{close_quote}s considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the {rho} peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS. {copyright} {ital 1997} {ital The American Physical Society}

  1. Density matrix reconstruction of three-level atoms via Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Signoles, A.; Ferreira-Cao, M.; Zürn, G.; Hofmann, C. S.; Günter, G.; Schempp, H.; Robert-de-Saint-Vincent, M.; Whitlock, S.; Weidemüller, M.

    2016-08-01

    We present combined measurements of the spatially resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, while the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.

  2. Evaluation of the electromagnetic field level emitted by medium frequency AM broadcast stations.

    PubMed

    Licitra, G; Bambini, S; Barellini, A; Monorchio, A; Rogovich, A

    2004-01-01

    In order to estimate the level of the electromagnetic field produced by telecommunication systems, different computational techniques can be employed whose complexity depends on the accuracy of the final results. In this paper, we present the validation of a code based on the method of moments that allows us to analyse the electromagnetic field emitted by radio-communication systems operating at medium frequencies. The method is able to provide an accurate estimate of the levels of electromagnetic field produced by this type of device and, consequently, it can be used as a method for verifying the compliance of the system with the safe exposure level regulations and population protection laws. Some numerical and experimental results are shown relevant to an amplitude modulated (AM) radio transmitter, together with the results of a forthcoming system that will be operative in the near future. PMID:15550708

  3. Level structure and electromagnetic properties in S SRa

    SciTech Connect

    Kohno, T.; Adachi, M.; Fukuda, S.; Taya, M.; Fukuda, M.; Taketani, H.; Gono, Y.; Sugawara, M.; Ishikawa, Y.

    1986-01-01

    We report the first study of S SRa by using a variety of in-beam techniques through the SUPb( SC,4 roman n) /sup 212/Ra reaction. The level scheme of S SRa up to a spin of 16 including 14 levels and 15 transitions has been established. Two isomeric states with half-lives of 10.9 s and 0.85 s were found and their g factors were measured by the stroboscopic method. Configurations of the levels up to I/sup / = 13 have been assigned tentatively by the measured g factors, the systematics in the S Rn isotone, and the excitation energies estimated by the weak coupling of two-neutron hole states to the levels in S URa.

  4. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable. PMID:19257272

  5. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  6. Numerical simulation on level fluctuation in bloom casting mold with electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Ni, H. W.; Li, Y.; Zhao, Z. F.

    2016-03-01

    Based on a 380mm × 280mm bloom caster mold, the level fluctuation of steel-slag interface in the mold was simulated by the VOF model of commercial software Fluent. The effects of current intensity and frequency of EMS (electromagnetic stirring) on the level fluctuation in the mold were studied. The results show that whether or not with EMS, the maximum level fluctuation site of the mold occurs in the vicinity of the submerged entry nozzle. Compared with casting without EMS, molten steel flows horizontally rotatably under the action of the electromagnetic force by electromagnetic stirring, so the impact depth of molten steel decreases, then the level fluctuation slightly reduces, and the maximum level fluctuation value in the wide direction and the narrow direction of the mold, reduce from 4.24mm and 4.14mm to 4.04mm and 3.73mm respectively. With increasing intensity and frequency of current, the mold level fluctuation rises and the distribution uniformity of the level fluctuating amplitude worsens. The maximum level fluctuation enlarges by 0.18mm with raising the current intensity from 450A to 550A, but it enlarges by 0.79mm with 600A current intensity. The maximum level fluctuation enlarges by 0.15mm with raising the current frequency from 1.5Hz to 2.0Hz, but it quickly enlarges by 0.78mm with 2.5Hz current frequency. When the current strength and frequency are not more than 550A and 2.0Hz, level fluctuations are 4.00mm or less, which can meet requirements for controlling the bloom surface quality.

  7. Four-wave mixing in a three-level bichromatic electromagnetically induced transparency system

    SciTech Connect

    Yang, G. Q.; Xu, P.; Wang, J.; Zhan, M. S.; Zhu Yifu

    2010-10-15

    We investigate the four-wave mixing (FWM) phenomenon in a three-level bichromatic electromagnetically induced transparency system. Theoretical results predict that the FWM will exhibit a multipeak structure under bichromatic coupling fields. The stronger the coupling fields are, the more FWM the peaks should exhibit. Results of an experiment carried out with cold {sup 87}Rb atoms in a magneto-optical trap agree with the theoretical prediction.

  8. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-03-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  9. Modeling Shallow Core-Level Transitions in the Reflectance Spectra of Gallium-Containing Semiconductors

    NASA Astrophysics Data System (ADS)

    Stoute, Nicholas; Aspnes, David

    2012-02-01

    The electronic structure of covalent materials is typically approached by band theory. However, shallow core level transitions may be better modeled by an atomic-scale approach. We investigate shallow d-core level reflectance spectra in terms of a local atomic-multiplet theory, a novel application of a theory typically used for higher-energy transitions on more ionic type material systems. We examine specifically structure in reflectance spectra of GaP, GaAs, GaSb, GaSe, and GaAs1-xPx due to transitions that originate from Ga3d core levels and occur in the 20 to 25 eV range. We model these spectra as a Ga^+3 closed-shell ion whose transitions are influenced by perturbations on 3d hole-4p electron final states. These are specifically spin-orbit effects on the hole and electron, and a crystal-field effect on the hole, attributed to surrounding bond charges and positive ligand anions. Empirical radial-strength parameters were obtained by least-squares fitting. General trends with respect to anion electronegativity are consistent with expectations. In addition to the spin-orbit interaction, crystal-field effects play a significant role in breaking the degeneracy of the d levels, and consequently are necessary to understand shallow 3d core level spectra.

  10. Electromagnetically induced transparency in an inhomogeneously broadened {Lambda} transition with multiple excited levels

    SciTech Connect

    Mishina, O. S.; Scherman, M.; Lombardi, P.; Ortalo, J.; Bramati, A.; Laurat, J.; Giacobino, E.; Felinto, D.; Sheremet, A. S.; Kupriyanov, D. V.

    2011-05-15

    Electromagnetically induced transparency (EIT) has mainly been modeled for three-level systems. In particular, considerable interest has been dedicated to the {Lambda} configuration, with two ground states and one excited state. However, in the alkali-metal atoms, which are commonly used, the hyperfine interaction in the excited state introduces several levels which simultaneously participate in the scattering process. When the Doppler broadening is comparable with the hyperfine splitting in the upper state, the three-level {Lambda} model does not reproduce the experimental results. Here we theoretically investigate the EIT in a hot vapor of alkali-metal atoms and demonstrate that it can be strongly reduced by the presence of multiple excited levels. Given this model, we also show that well-designed optical pumping enables us to significantly recover the transparency.

  11. Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach

    NASA Astrophysics Data System (ADS)

    Khoa, Dinh Xuan; Van Trong, Pham; Van Doai, Le; Bang, Nguyen Huy

    2016-03-01

    We develop an analytical approach on electromagnetically induced transparency (EIT) in a Doppler broadened medium consisting of five-level cascade systems excited by a strong coupling and weak probe laser fields. In a weak field limit of the probe light, EIT spectrum is interpreted as functions of controllable parameters of the coupling light and temperature of the medium. The theoretical interpretation of EIT spectrum is applied to the case of 85Rb atoms and compared with available experimental observation. Such an analytical interpretation provides quantitative parameters to control properties of the Doppler broadened EIT medium, and it is useful to find related applications.

  12. Dephasing-Induced Control of Interference Nature in Three-Level Electromagnetically Induced Tansparency Systems

    PubMed Central

    Sun, Yong; Yang, Yaping; Chen, Hong; Zhu, Shiyao

    2015-01-01

    The influence of the dephasing on interference is investigated theoretically and experimentally in three-level electromagnetically induced transparency systems. The nature of the interference, constructive, no interference or destructive, can be controlled by adjusting the dephasing rates. This new phenomenon is experimentally observed in meta-atoms. The physics behind the dephasing-induced control of interference nature is the competing between stimulated emission and spontaneous emission. The random phase fluctuation due to the dephasing will result in the correlation and anti-correlation between the two dressed states, which will enhance and reduce the stimulated emission, respectively. PMID:26567708

  13. Improved Experimental and Theoretical Energy Levels of Carbon I from Solar Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Chang, Edward S.; Geller, Murray

    1997-01-01

    We have improved the energy levels in neutral carbon using high resolution infrared solar spectra. The main source is the ATMOS spectrum measured by the Fourier transaform spectroscopy technique from 600 to 4800 cm-1, supplemented by the MARK IV balloon data, covering from 4700 to 5700 cm-1.

  14. Energy spectra and electromagnetic transition rates of {sup 160,162,164}Gd in the projected Hartree-Fock model

    SciTech Connect

    Ghorui, S. K.; Raina, P. K.; Praharaj, C. R.; Patra, S. K.; Naik, Z.

    2014-08-14

    Band structure and electromagnetic properties of bands of {sup 160,162,164}Gd are studied theoretically upto high spin values using self-consisstent mean field theory. Predictions for the band structures are made. A K = 6{sup −} isomer at fairly low energy is predicted. Four quasi-particle bands involving i{sub 13/2} neutron and h{sub 11/2} protons are also studied.

  15. Gravitational radiation as radiation same level of electromagnetic and its generation in pulsed high-current discharge. Theory and experiment.

    NASA Astrophysics Data System (ADS)

    Fisenko, Stanislav; Fisenko, Igor

    2015-04-01

    The notion of gravitational radiation as a radiation of the same level as the electromagnetic radiation is based on theoretically proved and experimentally confirmed fact of existence of stationary states of an electron in its gravitational field characterized by the gravitational constant K = 1042 G (G is the Newtonian gravitational constant) and unrecoverable space-time curvature Λ. This paper gives an overview of the authors' works, which set out the relevant results. Additionally, data is provided on the broadening of the spectra characteristic radiation. The data show that this broadening can be explained only by the presence of excited states of electrons in their gravitational field. What is more, the interpretation of the new line of X-ray emission spectrum according to the results of observation of MOS-camera of XMM-Newton observatory is of interest. The given work contributes into further elaboration of the findings considering their application to dense high-temperature plasma of multiple-charge ions. This is due to quantitative character of electron gravitational radiation spectrum such that amplification of gravitational radiation may take place only in multiple-charge ion high-temperature plasma.

  16. Electromagnetically induced transparency using a superconducting artificial atom with optimized level anharmonicity

    NASA Astrophysics Data System (ADS)

    Shao, Zhu-Lei; Feng, Zhi-Bo

    2016-04-01

    We propose a theoretical scheme to implement electromagnetically induced transparency (EIT) using an artificial atom of superconducting circuit. Allowed by the selection rule, two kinds of interactions between the atom and driving fields can be obtained, in which we focus on the leakage effect. In terms of dark-state mechanism in generating EIT, the leakage could destroy the EIT considerably. By removing the leakage effect in an optimized three-level atom, we consider a realization of EIT through the technique of density matrix. Furthermore, another effective way to optimize the level anharmonicity is analyzed in a dressing-state method. The scheme could provide a promising approach for experimentally improving EIT with the artificial atoms.

  17. NEW Fe I LEVEL ENERGIES AND LINE IDENTIFICATIONS FROM STELLAR SPECTRA

    SciTech Connect

    Peterson, Ruth C.; Kurucz, Robert L.

    2015-01-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations.

  18. Modeling hyperspectral observations of vegetation fluorescence from photosystem level to top-of-atmosphere radiance spectra

    NASA Astrophysics Data System (ADS)

    Verhoef, W.

    2011-12-01

    In support of the candidate ESA mission FLEX, models have been developed to simulate vegetation chlorophyll fluorescence and its observation on the level of single leaves, the canopy and from space. The Fluspect model is based on the PROSPECT leaf model and includes an additional module which calculates the excitation-fluorescence matrix for both sides of the leaf by means of an efficient doubling algorithm. Fluorescence spectra for white incident light, and of course the spectra of reflectance and transmittance, are computed as well. The FluorSAIL model is a numerical variant of SAIL which calculates top-of-canopy fluorescent radiance in the direction of viewing for given incident radiation spectra from the sun and the sky, obtained from the MODTRAN radiative transfer code. In a recent version called FluorSAIL3, high spectral resolution data (0.1 nm) from MODTRAN5 (beta) are used by the model to simulate observations by the candidate FLEX mission. The model computes the directional canopy reflectance with and without fluorescence for the given incident radiation spectra obtained from MODTRAN and the results have been used to evaluate several algorithms for the retrieval of fluorescence from the apparent reflectance signal. In this contribution emphasis will be on the detection of the fluorescence signal, the dependence of fluorescence observations on leaf chlorophyll content and other PROSPECT parameters, canopy structure, and observational conditions, including the properties of the atmosphere. In addition, some attention is paid to the definition of fluorescence quantum efficiencies at photosystem level, leaf level, and canopy level. This is important for the study of the relation between canopy fluorescence and actual photosynthesis. From the simulations it can be concluded that the interpretation of the fluorescence signal is complex, and probably the comparison of actual observations of spectra of fluorescence and reflectance with spectra simulated by a

  19. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  20. Electromagnetic Shifts of Energy Levels of a Hydrogen Atom in Idealized Cavities.

    NASA Astrophysics Data System (ADS)

    Burzan, Dragisa

    Available from UMI in association with The British Library. Requires signed TDF. Energy level shifts are evaluated for the 2p-2s transition for a hydrogen atom in various confining geometries with idealized perfectly conducting metallic boundaries in all cases. The minimal coupling Hamiltonian formalism is employed in the non-relativistic approximation in the Coulomb gauge to calculate the level shifts. Bethe's work for the Lamb shift in free space for the hydrogen atom is used as the model for working out the transverse level shifts in the various confining geometries. The Stark effect arising from the interaction of an atom with its image in the metal is used to evaluate the longitudinal level shift. The analysis is carried out by first quantizing the electro-magnetic field in a general cavity after a discussion is presented in the introduction of the relation of this work to that of other authors on related topics. The theory is then developed in detail in the various special confining geometries starting with case of the parallelopiped and its limiting cases of two plates and one plate respectively. The confining geometries of a finite and infinite cylinder are considered next followed by that of sphere. Detailed numerical results are presented in each of the various special cases with graphs and tables after extensive computation. The conclusions of the thesis are summarized separately.

  1. Spectra of ultracold KRb molecules in near-dissociation vibrational levels

    NASA Astrophysics Data System (ADS)

    Wang, D.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.

    2006-10-01

    We have studied resonance-enhanced two-photon ionization of ultracold 39K85Rb molecules in highly excited long-range vibrational levels of the X 1Σ+ and a 3Σ+ states. These molecules are formed by photoassociation (PA) of ultracold 39K and 85Rb atoms, followed by spontaneous emission to the X 1Σ+ and a 3Σ+ states. In the range 15 500-17 200 cm-1, we observe many intermediate and long-range levels of the previously unobserved 4 3Σ+ and 4 1Σ+ states and evidence for the onset of the previously unobserved 3 3Π state. The observed vibrational spectra of these states are in very good agreement with calculated vibrational levels based on the ab initio potentials of Rousseau, Allouche and Aubert-Frécon. Such experiments illustrate some of the unique advantages of using PA-produced ultracold molecules for investigation of long-range vibrational levels and long-range forces, and for unravelling dense spectra because only a few rotational levels are populated.

  2. Impurity effects on energy levels and far-infrared spectra of nanorings

    NASA Astrophysics Data System (ADS)

    Hui, Pan; Jia-Lin, Zhu

    2003-11-01

    The effects of a positively charged impurity on the energy levels and far-infrared spectra of one and two electrons in semiconductor nanorings under magnetic fields are studied. The effects of the nanoring size and the impurity position are also discussed. It is shown that the electron-electron interaction and electron-impurity one in nanorings are strongly dependent on the nanoring size and the impurity position. Based on the studies of the impurity and field effects, the impurity-induced Aharonov-Bohm oscillations of the far-infrared spectra are found. The results predict a possibility of observing phenomena related to electron-impurity interaction in a nanoring in the future.

  3. Ground level enhancement of cosmic rays on November 6, 1997: Spectra and anisotropy

    NASA Astrophysics Data System (ADS)

    Kravtsova, M. V.; Sdobnov, V. E.

    2016-01-01

    Variations of the rigidity spectrum and anisotropy of cosmic rays in the period of the ground-level enhancement (GLE) of cosmic rays on November 6, 1997, according to the data from the worldwide network of ground-based stations and satellites have been studied by the unique spectrographic global survey method developed at the Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences. Rigidity spectra of cosmic rays in various periods of the event under study have been determined. It has been shown that the acceleration of protons in the period of this GLE event was observed to a rigidity of ~10-12 GV, and neither a power-law nor an exponential function of the rigidity of particles describes the differential rigidity spectra of cosmic rays in the event under consideration. The analysis has indicated that the Earth at the time of the GLE event was in a looplike structure of the interplanetary magnetic field.

  4. Effects of electromagnetic fields on photophasic circulating melatonin levels in American kestrels.

    PubMed Central

    Fernie, K J; Bird, D M; Petitclerc, D

    1999-01-01

    Birds reproduce within electromagnetic fields (EMFs) from transmission lines. Melatonin influences physiologic and behavioral processes that are critical to survival, and melatonin has been equivocally suppressed by EMFs in mammalian species. We examined whether EMFs affect photophasic plasma melatonin in reproducing adult and fledgling American kestrels (Falco sparverius), and whether melatonin was correlated with body mass to explain previously reported results. Captive kestrel pairs were bred under control or EMF conditions for one (short-term) or two (long-term) breeding seasons. EMF exposure had an overall effect on plasma melatonin in male kestrels, with plasma levels suppressed at 42 days and elevated at 70 days of EMF exposure. The similarity in melatonin levels between EMF males at 42 days and controls at 70 days suggests a seasonal phase-shift of the melatonin profile caused by EMF exposure. Melatonin was also suppressed in long-term fledglings, but not in short-term fledglings or adult females. Melatonin levels in adult males were higher than in adult females, possibly explaining the sexually dimorphic response to EMFs. Melatonin and body mass were not associated in American kestrels. It is likely that the results are relevant to wild raptors nesting within EMFs. Images Figure 1 PMID:10544158

  5. Observation of an electromagnetically induced grating in cold sodium atoms

    NASA Astrophysics Data System (ADS)

    Mitsunaga, Masaharu; Imoto, Nobuyuki

    1999-06-01

    We have observed diffraction signals by a grating originating from electromagnetically induced transparency (EIT) in a three-level Λ system of cold sodium atoms. Theoretical and experimental analyses of this phenomenon, called the electromagnetically induced grating (EIG), have revealed that EIG spectra exhibit background-free, Lorentzian signal profiles regardless of the pump frequencies, making a clear contrast to the case of ordinary EIT spectra.

  6. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    ERIC Educational Resources Information Center

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  7. Spectra of solar proton ground level events using neutron monitor and neutron moderated detector recordings

    NASA Technical Reports Server (NTRS)

    Stoker, P. H.

    1985-01-01

    Recordings on relativistic solar flare protons observed at Sanae, Antarctic, show that the percentage increase in counting rates of the neutron moderated detector (4NMD) is larger than the percentage increase in counting rates of the 3NM64 neutron monitor. These relative increases are described by solar proton differential spectra j sub s(P) = AP(beta). The power beta is determined for each event and the hardnesses of the temporal variations of beta, found for the ground level events (GLE) of 7 May, 1978 and 22 November, 1977.

  8. Effects of vibrational motion on core-level spectra of prototype organic molecules

    SciTech Connect

    Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2008-08-21

    A computational approach is presented for prediction and interpretation of core-level spectra of complex molecules. Applications are presented for several isolated organic molecules, sampling a range of chemical bonding and structural motifs. Comparison with gas phase measurements indicate that spectral lineshapes are accurately reproduced both above and below the ionization potential, without resort to ad hoc broadening. Agreement with experiment is significantly improved upon inclusion of vibrations via molecular dynamics sampling. We isolate and characterize spectral features due to particular electronic transitions enabled by vibrations, noting that even zero-point motion is sufficient in some cases.

  9. Magnetic breakdown and Landau level spectra of a tunable double-quantum-well Fermi surface

    SciTech Connect

    Simmons, J.A.; Harff, N.E.; Lyo, S.K.; Klem, J.F.; Boebinger, G.S.; Pfeiffer, L.N.; West, K.W.

    1997-12-31

    By measuring longitudinal resistance, the authors map the Landau level spectra of double quantum wells as a function of both parallel (B{sub {parallel}}) and perpendicular (B{sub {perpendicular}}) magnetic fields. In this continuously tunable highly non-parabolic system, the cyclotron masses of the two Fermi surface orbits change in opposite directions with B{sub {parallel}}. This causes the two corresponding ladders of Landau levels formed at finite B{sub {perpendicular}} to exhibit multiple crossings. They also observe a third set of landau levels, independent of B{sub {parallel}}, which arise from magnetic breakdown of the Fermi surface. Both semiclassical and full quantum mechanical calculations show good agreement with the data.

  10. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  11. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  12. Progress in Identifying Fe I Level Energies and Lines from Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth

    2015-08-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond, the vital input necessary to characterize the spectral absorption and emission of the atomic and molecular systems that pervade stars, stellar nebulae, exploding supernovae, and the interstellar and intergalactic medium, from the local environment to the highest redshifts. Yet measurements of the energies of its high-lying levels remain seriously incomplete, despite extensive efforts incorporating both laboratory sources and the solar spectrum. Peterson & Kurucz (2015, ApJS, 216, 1) reported the first results from a new approach, one which uses the spectra of sharp-lined stars of near-solar temperature to identify level energies. By matching predicted to observed stellar line wavelengths and strengths transition by transition, the upper energies of 66 Fe I levels were established. Many new levels are at higher energies than can be determined in the laboratory, including several that lie above the Fe I ionization energy. However, many more unidentified levels remain, especially those levels whose strongest lines fall in wavelength regions where stellar data is marginal or missing. Here we update the progress in this effort, and outline where new data are most urgently required and why.

  13. GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

  14. Chronic Electromagnetic Exposure at Occupational Safety Level Does Not Affect the Metabolic Profile nor Cornea Healing after LASIK Surgery

    PubMed Central

    Dabouis, Vincent; Gentilhomme, Edgar; Vignal, Rodolphe; Bourbon, Fréderic; Fauvelle, Florence; Debouzy, Jean-Claude

    2014-01-01

    LASIK eye surgery has become a very common practice for myopic people, especially those in the military. Sometimes undertaken by people who need to keep a specific medical aptitude, this surgery could be performed in secret from the hierarchy and from the institute medical staff. However, even though the eyes have been previously described as one of the most sensitive organs to electromagnetic fields in the human body, no data exist on the potential deleterious effects of electromagnetic fields on the healing eye. The consequences of chronic long-lasting radar exposures at power density, in accordance with the occupational safety standards (9.71 GHz, 50 W/m2), were investigated on cornea healing. The metabolic and clinical statuses after experimental LASIK keratotomy were assessed on the different eye segments in a New Zealand rabbit model. The analysis methods were performed after 5 months of exposure (1 hour/day, 3 times/week). Neither clinical or histological examinations, nor experimental data, such as light scattering, 1H-NMR HRMAS metabolomics, 13C-NMR spectra of lipidic extracts, and antioxidant status, evidenced significant modifications. It was concluded that withdrawing the medical aptitude of people working in electromagnetic field environments (i.e., radar operators in the navy) after eye surgery was not justified. PMID:24757560

  15. Level densities and spin cutoff parameters for 60Co and 62Ni from proton evaporation spectra

    NASA Astrophysics Data System (ADS)

    Voinov, Alexander; Grimes, Steven; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann Cecilie; Massey, Tomas; Siem, Sunniva

    2013-10-01

    Prediction of reaction cross sections remains a major problem in applications such as data evaluations or/and astrophysics reaction rate calculations. There is big progress in the development of nuclear reaction codes which now include different reaction mechanisms. However, these codes use many input parameters. The variety of input parameters helps us to describe existing experimental data but it creates problems when it comes to predictions. The uncertainties of the level density and the spin cutoff parameter cause the major concern. The proton spectra from α and lithium induced reactions have been measured and analyzed with the Hauser-Feshbach model. Different input level density models have been tested. The level densities and spin cutoff parameters were obtained with Monte-Carlo technique taking into account known spins of discrete low-lying levels of residual nuclei. It was found that the best description is achieved with the Gilbert and Cameron model functions. Excitation energy dependence of spin cutoff parameters was found to be different for 60Co and 62Ni nuclei. It is inconsistent with Fermi-gas model which is usually used to calculate spin cutoff parameters.

  16. Optical absorption spectra and energy levels of Er3+ ions in glassy lithium tetraborate matrix

    NASA Astrophysics Data System (ADS)

    Danilyuk, P. S.; Popovich, K. P.; Puga, P. P.; Gomonai, A. I.; Primak, N. V.; Krasilinets, V. N.; Turok, I. I.; Puga, G. D.; Rizak, V. M.

    2014-11-01

    The optical absorption spectra of Er:Li2B4O7 glasses are studied in the range 200-800 nm. The lines corresponding to the direct f-f parity-forbidden intraconfigurational transitions from the ground 4 I 15/2 state to the levels of the excited 4 F 9/2, 4 S 3/2, 2 H 9/2, 2 H 11/2, 4 F 7/2, 4 F 5/2, 4 F 3/2, 2 H 9/2, 4 G 11/2, 4 D 3/2, 4 D 1/2, and 2 D 3/2 states are found.

  17. Study the effect of gray component replacement level on reflectance spectra and color reproduction accuracy

    NASA Astrophysics Data System (ADS)

    Spiridonov, I.; Shopova, M.; Boeva, R.

    2013-03-01

    The aim of this study is investigation of gray component replacement (GCR) levels on reflectance spectrum for different overprints of the inks and color reproduction accuracy. The most commonly implemented method in practice for generation of achromatic composition is gray component replacement (GCR). The experiments in this study, have been performed in real production conditions with special test form generated by specialized software. The measuring of reflection spectrum of printed colors, gives a complete conception for the effect of different gray component replacement levels on color reproduction accuracy. For better data analyses and modeling of processes, we have calculated (converted) the CIEL*a*b* color coordinates from the reflection spectra data. The assessment of color accuracy by using different GCR amount has been made by calculation of color difference ΔE* ab. In addition for the specific printing conditions we have created ICC profiles with different GCR amounts. A comparison of the color gamuts has been performed. For a first time a methodology is implemented for examination and estimation of effect of GCR levels on color reproduction accuracy by studying a big number of colors in entire visible spectrum. Implementation in practice of the results achieved in this experiment, will lead to improved gray balance and better color accuracy. Another important effect of this research is reduction of financial costs of printing production by decreasing of ink consumption, indirect reduction of emissions during the manufacture of inks and facilitates the process of deinking during the recycling paper.

  18. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    NASA Astrophysics Data System (ADS)

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-03-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric field induces a magnetic field, and a changing magnetic field induces an electric field." Students' intuition, developed from repeatedly solving simple problems involving Faraday's law in an introductory physics course, can lead them to expect the electric and magnetic waves to be out of phase, in contradiction to physical reality as described by Maxwell's equations. Below, we present the type of common Faraday's law problem that promotes this cognitive pitfall, and we suggest an approach that we believe leads to a deeper, more correct student understanding of electromagnetic waves.

  19. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  20. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits.

    PubMed

    Halgamuge, Malka N

    2013-05-01

    The International Agency for Research on Cancer (IARC) classifies electromagnetic fields (EMFs) as 'possibly carcinogenic' to humans that might transform normal cells into cancer cells. Owing to high utilisation of electricity in day-to-day life, exposure to power-frequency (50 or 60 Hz) EMFs is unavoidable. Melatonin is a natural hormone produced by pineal gland activity in the brain that regulates the body's sleep-wake cycle. How man-made EMFs may influence the pineal gland is still unsolved. The pineal gland is likely to sense EMFs as light but, as a consequence, may decrease the melatonin production. In this study, more than one hundred experimental data of human and animal studies of changes in melatonin levels due to power-frequency electric and magnetic fields exposure were analysed. Then, the results of this study were compared with the International Committee of Non-Ionizing Radiation Protection (ICNIRP) limit and also with the existing experimental results in the literature for the biological effect of magnetic fields, in order to quantify the effects. The results show that this comparison does not seem to be consistent despite the fact that it offers an advantage of drawing attention to the importance of the exposure limits to weak EMFs. In addition to those inconsistent results, the following were also observedfrom this work: (i) the ICNIRP recommendations are meant for the well-known acute effects, because effects of the exposure duration cannot be considered and (ii) the significance of not replicating the existing experimental studies is another limitation in the power-frequency EMFs. Regardless of these issues, the above observation agrees with our earlier study in which it was confirmed that it is not a reliable method to characterise biological effects by observing only the ratio of AC magnetic field strength to frequency. This is because exposure duration does not include the ICNIRP limit. Furthermore, the results show the significance of

  1. Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem.

    PubMed

    Fafin, Alexandre; Cardin, Julien; Dufour, Christian; Gourbilleau, Fabrice

    2013-10-01

    A new algorithm based on auxiliary differential equation and finite difference time domain method (ADE-FDTD method) is presented to model a waveguide whose active layer is constituted of a silica matrix doped with rare-earth and silicon nanograins. The typical lifetime of rare-earth can be as large as some ms, whereas the electromagnetic field in a visible range and near-infrared is characterized by a period of the order of fs. Due to the large difference between these two characteristic times, the conventional ADE-FDTD method is not suited to treat such systems. A new algorithm is presented so that the steady state of rare earth and silicon nanograins electronic levels populations along with the electromagnetic field can be fully described. This algorithm is stable and applicable to a wide range of optical gain materials in which large differences of characteristic lifetimes are present. PMID:24104327

  2. Measurements of gamma radiation levels and spectra in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Lo, B. T.; Brozek, K. P.; Angell, C. T.; Norman, E. B.

    2011-10-01

    Much of the radiation received by an average person is emitted by naturally-occurring radioactive isotopes from the thorium, actinium, and uranium decay series, or potassium. In this study, we have measured gamma radiation levels at various locations in the San Francisco Bay Area and the UC Berkeley campus from spectra taken using an ORTEC NOMAD portable data acquisition system and a large-volume coaxial HPGe detector. We have identified a large number of gamma rays originating from natural sources. The most noticeable isotopes are 214Bi, 40K, and 208Tl. We have observed variations in counting rates by factors of two to five between different locations due to differences in local conditions - such as building, concrete, grass, and soil compositions. In addition, in a number of outdoor locations, we have observed 604-, 662-, and 795-keV gamma rays from 134,137Cs, which we attribute to fallout from the recent Fukushima reactor accident. The implications of these results will be discussed. This work was supported in part by a grant from the U. S. Dept. of Homeland Security.

  3. Calculated in-air leakage spectra and power levels for the ANSI standard minimum accident of concern. Final report

    SciTech Connect

    Lee, B.L. Jr.; Dobelbower, M.C.; Tayloe, R.W. Jr.

    1995-07-01

    This document represents Phase I of a two-phase project. The entire project consists of determining a series of minimum accidents of concern and their associated neutron and photon leakage spectra that may be used to determine Criticality Accident Alarm compliance with ANSI/ANS-8.3. The inadvertent assembly of a critical mass of material presents a multitude of unknown quantities. Depending on the particular process, one can make an educated guess as to fissile material. In a gaseous diffusion cascade, this material is assumed to be uranyl fluoride. However, educated assumptions cannot be readily made for the other variables. Phase I of this project is determining a bounding minimum accident of concern and its associated neutron and photon leakage spectra. To determine the composition of the bounding minimum accident of concern, work was done to determine the effects of geometry, moderation level, and enrichment on the leakage spectra of a critical assembly. The minimum accident of concern is defined as the accident that may be assumed to deliver the equivalent of an absorbed dose in free air of 20 rad at a distance of 2 meters from the reacting material within 60 seconds. To determine this dose, an analyst makes an assumption and choose an appropriate flux to dose response function. The power level required of a critical assembly to constitute a minimum accident of concern depends heavily on the response function chosen. The first step in determining the leakage spectra was to attempt to isolate the effects of geometry, after which all calculations were conducted on critical spheres. The moderation level and enrichment of the spheres were varied and their leakage spectra calculated. These spectra were then multiplied by three different response functions: the Henderson Flux to Dose conversion factors, the ICRU 44 Kerma in Air, and the MCNP Heating Detector. The power level required to produce a minimum accident of concern was then calculated for each combination.

  4. Two-dimensional electromagnetically induced grating via gain and phase modulation in a two-level system

    NASA Astrophysics Data System (ADS)

    Cheng, Guang-Ling; Cong, Lu; Chen, Ai-Xi

    2016-04-01

    A scheme for two-dimensional (2D) electromagnetically induced grating via spatial gain and phase modulation is presented in a two-level atomic system. Based on the interactions of two orthogonal standing-wave fields, the atom could diffract the weak probe beam into high-order directions and a 2D diffraction grating is generated. It is shown that the diffraction efficiency of the grating can be efficiently manipulated by controlling the Rabi frequencies of control fields, the detunings of the control and probe fields, and interaction length. Different from 2D cross-grating via electromagnetically induced transparency in a four-level atomic system, the present scheme results from the spatial modulation of gain and phase in a simple two-level system, which could lead to 2D gain-phase grating with larger diffraction intensities in the diffraction directions. The studies we present may have potential applications in developing photon devices for optical-switching, optical imaging and quantum information processing.

  5. A laboratory investigation of electromagnetic bias in sea level measurements by microwave altimeters

    NASA Technical Reports Server (NTRS)

    Branger, H.; Bliven, L.; Ramamonjiarisoa, A.

    1991-01-01

    To contribute to a better understanding of the electromagnetic bias in radar altimetry, a series of experiments was conducted using a focused beam radar set at 13.5-GHz frequency. For pure wind wave fields, the authors found the bias to be a quadratic function of each of the commonly used parameters, namely, the significant wave height, the wind speed, the water elevation skewness, and significant slope. The bias divided by the significant wave height is a linear function of these parameters. The coefficients in bias representation as a function of either the significant wave height or the wind speed are significantly different from values obtained in field experiments. This led to the conclusion that none of the latter parameters can be taken solely to account for all observed bias variations. Instead, dimensionless parameters such as the wave skewness or a dimensionless wave height are shown to be more appropriate.

  6. Accurate vibrational spectra via molecular tailoring approach: A case study of water clusters at MP2 level

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Gadre, Shridhar R.

    2015-01-01

    In spite of the recent advents in parallel algorithms and computer hardware, high-level calculation of vibrational spectra of large molecules is still an uphill task. To overcome this, significant effort has been devoted to the development of new algorithms based on fragmentation methods. The present work provides the details of an efficient and accurate procedure for computing the vibrational spectra of large clusters employing molecular tailoring approach (MTA). The errors in the Hessian matrix elements and dipole derivatives arising due to the approximation nature of MTA are reduced by grafting the corrections from a smaller basis set. The algorithm has been tested out for obtaining vibrational spectra of neutral and charged water clusters at Møller-Plesset second order level of theory, and benchmarking them against the respective full calculation (FC) and/or experimental results. For (H2O)16 clusters, the estimated vibrational frequencies are found to differ by a maximum of 2 cm-1 with reference to the corresponding FC values. Unlike the FC, the MTA-based calculations including grafting procedure can be performed on a limited hardware, yet take a fraction of the FC time. The present methodology, thus, opens a possibility of the accurate estimation of the vibrational spectra of large molecular systems, which is otherwise impossible or formidable.

  7. Accurate vibrational spectra via molecular tailoring approach: a case study of water clusters at MP2 level.

    PubMed

    Sahu, Nityananda; Gadre, Shridhar R

    2015-01-01

    In spite of the recent advents in parallel algorithms and computer hardware, high-level calculation of vibrational spectra of large molecules is still an uphill task. To overcome this, significant effort has been devoted to the development of new algorithms based on fragmentation methods. The present work provides the details of an efficient and accurate procedure for computing the vibrational spectra of large clusters employing molecular tailoring approach (MTA). The errors in the Hessian matrix elements and dipole derivatives arising due to the approximation nature of MTA are reduced by grafting the corrections from a smaller basis set. The algorithm has been tested out for obtaining vibrational spectra of neutral and charged water clusters at Møller-Plesset second order level of theory, and benchmarking them against the respective full calculation (FC) and/or experimental results. For (H2O)16 clusters, the estimated vibrational frequencies are found to differ by a maximum of 2 cm(-1) with reference to the corresponding FC values. Unlike the FC, the MTA-based calculations including grafting procedure can be performed on a limited hardware, yet take a fraction of the FC time. The present methodology, thus, opens a possibility of the accurate estimation of the vibrational spectra of large molecular systems, which is otherwise impossible or formidable. PMID:25573553

  8. A pilot neighborhood study towards establishing a benchmark for reducing electromagnetic field levels within single family residential dwellings.

    PubMed

    Richman, Russell; Munroe, Alan James; Siddiqui, Yasmeen

    2014-01-01

    Electromagnetic fields (EMF) permeate the built environment in different forms and come from a number of sources including electrical wiring and devices, wireless communication, 'energy-efficient' lighting, and appliances. It can be present in the indoor environment directly from indoor sources, or can be transmitted through building materials from outside sources. Scientists have identified it as an indoor environmental pollutant or toxin that has ubiquitously plagued developed nations causing a variety of adverse health effects such as sick-building syndrome symptoms, asthma, diabetes, multiple sclerosis, leukemia, electro-hypersensitivity (EHS), behavior disorders, and more. There is currently no international consensus on guidelines and exposure limits. This paper presents the results of 29 EMF field audits in single family residential dwellings located within an urban neighborhood in Toronto (Canada). The following EMF spectra were evaluated: radio frequency, power frequency electric fields, power frequency magnetic fields and high frequency voltage transients. The field audits were conducted in order to provide initial baseline statistics to be used in future studies and in order to be compared to a low-cost EMF reduction design incorporated within the Renovation2050 research house - located within the test neighborhood. The results show the low-cost reduction strategy to be effective, on average reducing exposure by 80% for high-intensity EMF metrics. Research of this nature has not been conducted with relation to the built environment and can be used to spark an industry movement to design for low-exposure to EMF in a residential context. PMID:23962434

  9. VizieR Online Data Catalog: New FeI level energies from stellar spectra (Peterson+, 2015)

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Kurucz, R. L.

    2015-02-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations. (3 data files).

  10. Gamma Spectra Resulting From the Annihilation of Positrons with Electrons in Single, Selected Core Levels of Cu, Ag and Au

    SciTech Connect

    Kim, S; Eshed, A; Goktepeli, S; Sterne, P A; Koymen, A R; Chen, W C; Weiss, A H

    2005-07-25

    The {gamma}-ray energy spectra due to positron annihilation with the 3p core-level of Cu, the 4p core-level of Ag, and 5p core level of Au were obtained separately from the total annihilation spectrum by measuring the energies of {gamma}-rays time coincident with Auger electrons emitted as a result of filling the core-hole left by annihilation. The results of these measurements are compared to the total annihilation spectra and with LDA based theoretical calculations. A comparison of area normalized momentum distributions with the individual cores extracted from the Doppler measurements shows good qualitative agreement, however, in all three spectra, the calculated values of the momentum density appears to fall below the measured values as the momentum increases. The discrepancies between theory and experiment are well outside the statistical uncertainties of the experiment and become more pronounced with increasing Z going down the column from Cu to Ag to Au. The comparison with the experimental results clearly indicates that the calculations are not predicting the correct ratio of high momentum to low momentum spectral weight and suggest the need to improve the treatment of many body electron-positron correlation effects in annihilation as they pertain to core levels.

  11. Effect of pulsed electromagnetic field on MMP-9 and TIMP-1 levels in chondrosarcoma cells stimulated with IL-1β.

    PubMed

    Caliskan, Serife Gokce; Bilgin, Mehmet Dincer; Kozaci, Leyla Didem

    2015-01-01

    Chondrosarcoma, the second most common type of bone malignancy, is characterized by distant metastasis and local invasion. Previous studies have shown that treatment by pulsed electromagnetic field (PEMF) has beneficial effects on various cancer cells. In this study, we investigated the effects of PEMF applied for 3 and 7 days on the matrix metalloproteinase (MMP) levels in chondrosarcoma SW1353 cells stimulated with two different doses of IL-1β. SW1353 cells were treated with (0.5 and 5 ng/ml) IL-1β and PEMF exposure was applied either 3 or 7 days. MMP-9 and TIMP-1 levels were measured in conditioned media by enzyme-linked immunosorbent assay. The results were relative to protein levels. Statistical analyses were performed using one-way analysis of variance (ANOVA). P<0.05 was considered significant. PEMF treatment significantly decreased MMP-9 protein levels in human chondrosarcoma cells stimulated with 0.5 ng/ml IL-1β at day 7, whereas it did not show any effect on cells stimulated with 5 ng/ml IL-1β. There was no significant change in TIMP-1 protein levels either by IL-1β stimulation or by PEMF treatment. The results of this study showed that PEMF treatment suppressed IL-1β-mediated upregulation of MMP-9 protein levels in a dual effect manner. This finding may offer new perspectives in the therapy of bone cancer. PMID:25854350

  12. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    NASA Technical Reports Server (NTRS)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred; Takahashi, Yukihiro; Frey, Harald; Mende, Stephen

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  13. Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001)

    PubMed Central

    Lin, He; Brivio, Gian Paolo; Floreano, Luca; Fratesi, Guido

    2015-01-01

    Summary By first-principle simulations we study the effects of molecular deformation on the electronic and spectroscopic properties as it occurs for pentacene adsorbed on the most stable site of Al(001). The rationale for the particular V-shaped deformed structure is discussed and understood. The molecule–surface bond is made evident by mapping the charge redistribution. Upon X-ray photoelectron spectroscopy (XPS) from the molecule, the bond with the surface is destabilized by the electron density rearrangement to screen the core hole. This destabilization depends on the ionized carbon atom, inducing a narrowing of the XPS spectrum with respect to the molecules adsorbed hypothetically undistorted, in full agreement to experiments. When looking instead at the near-edge X-ray absorption fine structure (NEXAFS) spectra, individual contributions from the non-equivalent C atoms provide evidence of the molecular orbital filling, hybridization, and interchange induced by distortion. The alteration of the C–C bond lengths due to the V-shaped bending decreases by a factor of two the azimuthal dichroism of NEXAFS spectra, i.e., the energy splitting of the sigma resonances measured along the two in-plane molecular axes. PMID:26734516

  14. Meson exchange effects in elastic ep scattering at loop level and the electromagnetic form factors of the proton

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Zhou, Hai-Qing

    2014-10-01

    A new form of two-photon exchange (TPE) effect is studied to explain the discrepancy between unpolarized and polarized experimental data in elastic ep scattering. The mechanism is based on a simple idea that apart from the usual TPE effects from box and crossed-box diagrams, the mesons may also be exchanged in elastic ep scattering by two-photon coupling at loop level. The detailed study shows such contributions to reduced unpolarized cross section (σun) and polarized observables (Pt,Pl) at fixed Q2 are only dependent on proton's electromagnetic form factors GE ,M and a new unknown universal parameter g. After combining this contribution with the usual TPE contributions from box and crossed-box diagrams, the ratio μpGE/GM extracted from the recent precise unpolarized and polarized experimental data can be described consistently.

  15. The Effects of Electromagnetic Fields Generated from 1800 MHz Cell Phones on Erythrocyte Rheological Parameters and Zinc Level in Rats

    PubMed Central

    Erken, Gülten; Küçükatay, Melek Bor; Turgut, Sebahat; Erken, Haydar Ali; Çömlekçi, Selçuk; Divrikli, Ümit; Genç, Osman

    2012-01-01

    Objective: The aim of this study was to investigate the effects of the electromagnetic field generated from the 1800 MHz radiofrequency radiation (EF) on erythrocyte rheological parameters and erythrocyte zinc levels. Material and Methods: Twenty-four male Wistar Albino rats were randomly grouped as follows: 1) two control groups and 2) study groups: i) Group A: EF exposed group (2.5 h/day for 30 days, the phone on stand-by), and ii) Group B: EF exposed group (2.5 min/day for 30 days, the phone ringing in silent mode). At the end of the experimental period erythrocyte rheological parameters such as erythrocyte deformability and aggregation were determined by an ectacytometer. Erythrocyte zinc level, which affects hemorheological parameters, was also measured by atomic absorption spectrophotometer. Results: Erythrocyte deformability was decreased in both study groups but the decrease in group A was not statistically significant. Exposure to EF did not have any significant effect on erythrocyte aggregation. On the other hand, erythrocyte zinc level was significantly reduced in both study groups. Conclusion: Exposure to EF may have decreased tissue oxygenation due to reduced erythrocyte deformability. Decrease in erythrocyte zinc level may have caused the impairment in erythrocyte deformability. PMID:25206983

  16. Ab initio study of 3s core-level x-ray photoemission spectra in transition metals

    NASA Astrophysics Data System (ADS)

    Takahashi, Manabu; Igarashi, Jun-Ichi

    2010-01-01

    We calculate the 3s - and 4s -core-level x-ray photoemission spectroscopy (XPS) spectra in the ferromagnetic and nonmagnetic transition metals by developing an ab initio method. We obtain the spectra exhibiting the characteristic shapes as a function of binding energy in good agreement with experimental observations. The spectral shapes are strikingly different between the majority spin channel and the minority spin channel for ferromagnetic metals Ni, Co, and Fe, that is, large intensities appear in the higher binding-energy side of the main peak (satellite) in the majority spin channel. Such satellite or shoulder intensities are also obtained for nonmagnetic metals V and Ru. These behaviors are elucidated in terms of the change of the one-electron states induced by the core-hole potential.

  17. Absorption spectra of two-level atoms interacting with a strong polychromatic pump field and an arbitrarily intense probe field

    NASA Astrophysics Data System (ADS)

    Yoon, Tai Hyun; Chung, Myung Sai; Lee, Hai-Woong

    1999-09-01

    A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

  18. Noise generated by quiet engine fans. 2: Fan A. [measurement of power spectra and sideline perceived noise levels

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.; Schaefer, J. W.; Stakolich, E. G.

    1974-01-01

    A significant effort within the NASA Quiet Engine Program has been devoted to acoustical evaluation at the Lewis Research Center noise test facility of a family of full-scale fans. This report, documents the noise results obtained with fan A - a 1.5-pressure-ratio, 1160-ft/sec-tip-speed fan. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations pertaining to acoustical treatment and over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.

  19. Ground level signal strength of electromagnetic waves generated by pulsed electron beams in space

    NASA Astrophysics Data System (ADS)

    Harker, K. J.; Neubert, T.; Banks, P. M.; Fraser-Smith, A. C.; Donohue, D. J.

    1991-11-01

    A theoretical study has been made of the signal strengths at ground level of waves generated by pulsed electron beams in space. The radiated energy is first calculated by an improved version of a theory based on coherent spontaneous emission. This theory evaluates the electric and magnetic field strengths and power fluxes in the far field by applying asymptotic expansion techniques. The power flowing out within a cone whose apex is located at the gun position is calculated, and the intersection of the rays in this cone with the earth's surface is determined by using Snell's law considerations. Ground signal levels are calculated for typical ionospheric conditions as a function of pulsing frequency for fixed beam voltage and for voltage adjusted for resonance between the waves and the particles. For short beams, the ground level signal strengths are relatively insensitive to the wave particle resonance condition, but for longer beams the associated peaking of the signal level begins to be observed. Finally, these results are compared against ambient noise levels to determine under which circumstances these ground signals can be detected.

  20. Simulation of the single-vibronic-level emission spectra of HAsO and DAsO.

    PubMed

    Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2016-05-14

    The single-vibronic-level (SVL) emission spectra of HAsO and DAsO have been simulated by electronic structure/Franck-Condon factor calculations to confirm the spectral molecular carrier and to investigate the electronic states involved. Various multi-reference (MR) methods, namely, NEVPT2 (n-electron valence state second order perturbation theory), RSPT2-F12 (explicitly correlated Rayleigh-Schrodinger second order perturbation theory), and MRCI-F12 (explicitly correlated multi-reference configuration interaction) were employed to compute the geometries and relative electronic energies for the X̃(1)A(') and Ã(1)A(″) states of HAsO. These are the highest level calculations on these states yet reported. The MRCI-F12 method gives computed T0 (adiabatic transition energy including zero-point energy correction) values, which agree well with the available experimental T0 value much better than previously computed values and values computed with other MR methods in this work. In addition, the potential energy surfaces of the X̃(1)A(') and Ã(1)A(″) states of HAsO were computed using the MRCI-F12 method. Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, were then computed and used to simulate the recently reported SVL emission spectra of HAsO and DAsO [R. Grimminger and D. J. Clouthier, J. Chem. Phys. 135, 184308 (2011)]. Our simulated SVL emission spectra confirm the assignments of the molecular carrier, the electronic states involved, and the vibrational structures observed in the SVL emission spectra but suggest a loss of intensity in the reported experimental spectra at the low emission energy region almost certainly due to a loss of responsivity near the cutoff region (∼800 nm) of the detector used. Computed and experimentally derived re (equilibrium) and/or r0 {the (0,0,0) vibrational level} geometries of the two states of HAsO are discussed. PMID:27179480

  1. Simulation of the single-vibronic-level emission spectra of HAsO and DAsO

    NASA Astrophysics Data System (ADS)

    Mok, Daniel K. W.; Lee, Edmond P. F.; Dyke, John M.

    2016-05-01

    The single-vibronic-level (SVL) emission spectra of HAsO and DAsO have been simulated by electronic structure/Franck-Condon factor calculations to confirm the spectral molecular carrier and to investigate the electronic states involved. Various multi-reference (MR) methods, namely, NEVPT2 (n-electron valence state second order perturbation theory), RSPT2-F12 (explicitly correlated Rayleigh-Schrodinger second order perturbation theory), and MRCI-F12 (explicitly correlated multi-reference configuration interaction) were employed to compute the geometries and relative electronic energies for the X ˜ 1 A ' and A ˜ 1 A ″ states of HAsO. These are the highest level calculations on these states yet reported. The MRCI-F12 method gives computed T0 (adiabatic transition energy including zero-point energy correction) values, which agree well with the available experimental T0 value much better than previously computed values and values computed with other MR methods in this work. In addition, the potential energy surfaces of the X ˜ 1 A ' and A ˜ 1 A ″ states of HAsO were computed using the MRCI-F12 method. Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, were then computed and used to simulate the recently reported SVL emission spectra of HAsO and DAsO [R. Grimminger and D. J. Clouthier, J. Chem. Phys. 135, 184308 (2011)]. Our simulated SVL emission spectra confirm the assignments of the molecular carrier, the electronic states involved, and the vibrational structures observed in the SVL emission spectra but suggest a loss of intensity in the reported experimental spectra at the low emission energy region almost certainly due to a loss of responsivity near the cutoff region (˜800 nm) of the detector used. Computed and experimentally derived re (equilibrium) and/or r0 {the (0,0,0) vibrational level} geometries of the two states of HAsO are discussed.

  2. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure. PMID:21772085

  3. Spectra-structure correlations in solid metal saccharinates. II. Ab initio molecular structures and vibrational spectra of N-substituted saccharins at the HF level

    NASA Astrophysics Data System (ADS)

    Naumov, Panče; Jovanovski, Gligor; Ohashi, Yuji

    2002-02-01

    Ground-state ab initio molecular geometries and vibrational spectra of 24 N-substituted isolated saccharins with small-size B, Br, C, Cl, F, N, O, P or S-groups and the parent molecule are predicted at RHF/6-31G level to examine the molecular structural changes stemming from N-substitution of saccharin (o-sulfobenzimide). Trends in the molecular geometrical parameters of the sulfimide ring and the carbonyl stretching frequency are discussed in relation to the electronic properties of the substituent and the solid state effects. The results are compared with the crystallographic data for N-substituted saccharins and metal saccharinato salts/complexes retrieved from the Cambridge Structural Database. The ability of several theoretical methods to describe the substitution/deprotonation of the conjugated CONHSO 2 structure is summarized. Electronic properties of the substituent affect significantly only the immediate CN and SN bonds by as much as ±0.014 Å, while other bonds are relatively less influenced (±0.004 Å). Combined with the effects of the crystal packing and thermal vibrations, they impose flexibility on the intramolecular lengths up to ±0.02 Å. High correlation ( R=0.966) between the theoretical ν(CO) frequencies and CO distances is predictable for both of these parameters, but is lowered notably in the crystal by both vibrational and solid-state circumstances. From the structural viewpoint, the N sac-X bonds (X = B, Br, C, Cl, F, N, O, P, S; sac denotes saccharin) behave similarly to the purely covalent N sac-metal bonds.

  4. Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: Atomistic level structural information

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun; Chekhovich, E. A.; Tartakovskii, A. I.

    2014-11-01

    A wealth of atomistic information is contained within a self-assembled quantum dot (QD), associated with its chemical composition and the growth history. In the presence of quadrupolar nuclei, as in InGaAs QDs, much of this is inherited to nuclear spins via the coupling between the strain within the polar lattice and the electric quadrupole moments of the nuclei. Here, we present a computational study of the recently introduced inverse spectra nuclear magnetic resonance technique to assess its suitability for extracting such structural information. We observe marked spectral differences between the compound InAs and alloy InGaAs QDs. These are linked to the local biaxial and shear strains, and the local bonding configurations. The cation alloying plays a crucial role especially for the arsenic nuclei. The isotopic line profiles also largely differ among nuclear species: While the central transition of the gallium isotopes have a narrow linewidth, those of arsenic and indium are much broader and oppositely skewed with respect to each other. The statistical distributions of electric field gradient (EFG) parameters of the nuclei within the QD are analyzed. The consequences of various EFG axial orientation characteristics are discussed. Finally, the possibility of suppressing the first-order quadrupolar shifts is demonstrated by simply tilting the sample with respect to the static magnetic field.

  5. The relationship between environmental abundant electromagnetic fields and packaging shape to their effects on the 17O NMR and Raman spectra of H2O-NaCl

    NASA Astrophysics Data System (ADS)

    Abdelsamie, Maher A. A.; Rahman, Russly B. Abdul; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2015-07-01

    In this study, two identical groups of four containers with different packaging shapes made of polymethyl methacrylate (PMMA) were used to store H2O-NaCl solution for seven days at ambient room temperature (25 °C). Faraday shield was used to shield one group. The surrounding electromagnetic fields were measured during the storage period by using R&S®TS-EMF EMF measurement system. Samples of H2O-NaCl were collected at the end of the storage period and examined by 17Oxygene nuclear magnetic resonance spectroscopy (17O NMR) and Raman spectroscopy. Electromagnetic simulation was used to explore the relationship between the packaging shape of H2O-NaCl containers and the environmentally abundant electromagnetic fields to their effects on the cluster size of water. The study showed variations in the cluster size of water stored inside the two groups of containers. It was observed that the cluster size of water stored in the unshielded containers was lower than that of the shielded containers. The cluster size of water stored in the unshielded pyramidal container was lower than the cluster size of water stored in the unshielded rectangular, square, and cylindrical containers. The EM simulation results showed significant variations in the total specific absorption rate SAR and maximum point SAR values induced in the H2O-NaCl solution in the unshielded container models at 2400 MHz for both vertical and horizontal polarization. It can be concluded that the variations in the values of SAR induced in H2O-NaCl solution are directly related to the variations in the cluster size of the stored water.

  6. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra

    NASA Astrophysics Data System (ADS)

    Rhim, Jun-Won; Kim, Yong Baek; Canadian Institute for Advanced Research Collaboration

    We investigate Landau level structures of semimetals with nodal ring dispersions. When the magnetic field is applied parallel to the plane in which the ring lies, there exist almost nondispersive Landau levels at the Fermi level (EF = 0) as a function of the momentum along the field direction inside the ring. We show that the Landau levels at each momentum along the field direction can be described by the Hamiltonian for the graphene bilayer with fictitious interlayer couplings under a tilted magnetic field. Near the center of the ring where the interlayer coupling is negligible, we have Dirac Landau levels which explain the appearance of the zero modes. Although the interlayer hopping amplitudes become finite at higher momenta, the splitting of zero modes is exponentially small and they remain almost flat due to the finite artificial in-plane component of the magnetic field. The emergence of the density of states peak at the Fermi level would be a hallmark of the ring dispersion.

  7. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra

    NASA Astrophysics Data System (ADS)

    Rhim, Jun-Won; Kim, Yong Baek

    2015-07-01

    We investigate Landau level structures of semimetals with nodal ring dispersions. When the magnetic field is applied parallel to the plane in which the ring lies, there exist almost nondispersive Landau levels at the Fermi level (EF=0 ) as a function of the momentum along the field direction inside the ring. We show that the Landau levels at each momentum along the field direction can be described by the Hamiltonian for the graphene bilayer with fictitious interlayer couplings under a tilted magnetic field. Near the center of the ring where the in-terlayer coupling is negligible, we have Dirac Landau levels which explain the appearance of the zero modes. Although the interlayer hopping amplitudes become finite at higher momenta, the splitting of zero modes is exponentially small and they remain almost flat due to the finite artificial in-plane component of the magnetic field. The emergence of the density of states peak at the Fermi level would be a hallmark of the ring dispersion.

  8. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760

  9. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    PubMed

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization. PMID:27140374

  10. Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model

    NASA Astrophysics Data System (ADS)

    Sepehrimanesh, Masood; Saeb, Mehdi; Nazifi, Saeed; Kazemipour, Nasrin; Jelodar, Gholamali; Saeb, Saeedeh

    2014-09-01

    This work analyzes the effects of radiofrequency-electromagnetic field (RF-EMF) exposure on the reproductive system of male rats, assessed by measuring circulating levels of FSH, LH, inhibin B, activin B, prolactin, and testosterone. Twenty adult male Sprague-Dawley rats (180 ± 10 g) were exposed to 900 MHz RF-EMF in four equal separated groups. The duration of exposure was 1, 2, and 4 h/day over a period of 30 days and sham-exposed animals were kept under the same environmental conditions as the exposed group except with no RF-EMF exposure. Before the exposure, at 15 and 30 days of exposure, determination of the abovementioned hormone levels was performed using ELISA. At the end of the experiment, FSH and LH values of the long time exposure (LTE) group were significantly higher than the sham-exposed group ( p < 0.05). Serum activin B and prolactin in the LTE group showed significant increase and inhibin B showed significant decrease than sham and short time exposed (STE) groups after 30 days RF-EMF exposure ( p < 0.05). Also, a significant decrease in serum testosterone levels in the LTE group was found compared to short and moderate time exposed (MTE) groups after 30 days RF-EMF exposure ( p < 0.05). Results suggest that reproductive hormone levels are disturbed as a result of RF-EMF exposure and it may possibly affect reproductive functions. However, testosterone and inhibin B concentrations as a fertility marker and spermatogenesis were decreased significantly.

  11. Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV

    NASA Astrophysics Data System (ADS)

    Hao, Liang-Huan; Kang, Xiao-Ping

    2014-07-01

    The multi-configuration Dirac-Hartree-Fock method is employed to calculate the fine-structure energy levels, wavelengths, transition probabilities, and oscillator strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4 s 24 p and 4 s4 p 2 configurations of W XLIV. The valence-valence and core-valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics (QED) effects are estimated in subsequent relativistic configuration interaction (CI) calculations. The present results are in good agreement with other available theoretical and experimental values, and we predict new data for several levels where no other theoretical and/or experimental results are available, precise measurements are clearly needed here.

  12. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  13. Theoretical predictions of the impact of nuclear dynamics and environment on core-level spectra of organic molecules

    NASA Astrophysics Data System (ADS)

    Prendergast, David; Schwartz, Craig; Uejio, Janel; Saykally, Richard

    2009-03-01

    Core-level spectroscopy provides an element-specific probe of local electronic structure and bonding, but linking details of atomic structure to measured spectra relies heavily on accurate theoretical interpretation. We present first principles simulations of the x-ray absorption of a range of organic molecules both in isolation and aqueous solvation, highlighting the spectral impact of internal nuclear motion as well as solvent interactions. Our approach uses density functional theory with explicit inclusion of the core-level excited state within a plane-wave supercell framework. Nuclear degrees of freedom are sampled using various molecular dynamics techniques. We indicate specific cases for molecules in their vibrational ground state at experimental conditions, where nuclear quantum effects must be included. Prepared by LBNL under Contract DE-AC02-05CH11231.

  14. Analysis the UV-visible Spectra of Neuroglobin Based on Two-Level Model

    NASA Astrophysics Data System (ADS)

    Thao, T. T.; Anh, C. T.; Lan, N. T.; Viet, N. A.

    2015-06-01

    Neuroglobin (Ngb), a novel member of the Globin Group, is recently discovered by Burmester et al. (2000). Its uncertain physiological function makes lots of interest. The existing of a six-coordination heme geometry with proximal and distal histidines directly creates an axis within the heme iron, while the sixth ligand coordination binds to small ligand reversibly. The analysis of UV-visible spectrum of Ngb by the well-known two-level model shows an agreement of the experiment data and theoretical results.

  15. Interaction of a two-level atom with a squeezed vacuum: Photon statistics and spectra

    NASA Astrophysics Data System (ADS)

    Rice, Perry R.; Baird, Christopher A.

    1996-05-01

    We consider the interaction of a two-level atom with a squeezed vacuum, both in free space and in a cavity of moderate Q. In the latter case, only vacuum modes coupled to the cavity are squeezed. In both cases we calculate the following quantities for the fluorescent light fields: the second-order intensity correlation function g(2)(τ), the spectrum of squeezing, the coherent spectrum, and the spectrum obtained in a pump-probe absorption measurement. Nonclassical behavior is discussed and comparison to an ordinary vacuum and thermal fields is made.

  16. Use of pupil size to determine the effect of electromagnetic acupuncture on activation level of the autonomic nervous system.

    PubMed

    Kim, Soo-Byeong; Choi, Woo-Hyuk; Liu, Wen-Xue; Lee, Na-Ra; Shin, Tae-Min; Lee, Yong-Heum

    2014-06-01

    Magnetic fields are widely considered as a method of treatment to increase the therapeutic effect when applied to acupoints. Hence, this study proposes a new method which creates significant stimulation of acupoints by using weak magnetic fields. We conducted this experiment in order to confirm the effect on the activation level of the autonomic nervous system by measuring pupil sizes in cases of stimulation by using manual acupuncture and electromagnetic acupuncture (EMA) at BL15. We selected 30 Hz of biphasic wave form with 570.1 Gauss. To confirm the biopotential by the magnetic flux density occurring in EMA that affected the activation of the autonomic nervous system, we observed the biopotential induced at the upper and the mid left and right trapezius. We observed a significant decrease in pupil size only in the EMA group (p < 0.05), thus confirming that EMA decreased the pupil size through activation of the parasympathetic nerve in the autonomic nervous system. Moreover, we confirmed that the amplitude of the biopotential which was caused by 570.1 Gauss was higher than ±20 μA. Thus, we can conclude that EMA treatment successfully activates the parasympathetic nerve in the autonomic nervous system by inducing a biotransformation by the induced biopotential. PMID:24929456

  17. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats

    PubMed Central

    Jin, Yeung Bae; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil

    2013-01-01

    Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method. PMID:23239176

  18. Assessment of electromagnetic field levels from surrounding high-tension overhead power lines for proposed land use.

    PubMed

    Al-Bassam, E; Elumalai, A; Khan, A; Al-Awadi, L

    2016-05-01

    The surrounding outdoor environment for new development has a big effect on the indoor quality of life. The main aim of this work was to determine the suitability of the area for building new schools with reference to electromagnetic field (EMF) effects. The specific objective of this study was to detect the safe distance from the EMF posed by the high-tension overhead power lines in the vicinity of the specified area. The measurements were taken for both the electric and magnetic fields in different months in order to detect the highest EMF levels during the peak power load season. EMDEX II with E-probe and EMDEX II with Linda were used for the measurements. These instruments were all calibrated by ENERTECH Company in USA. The EMF associated with high tension transmission lines that surrounded the proposed site has to be below 0.2 μT (Italian EMF regulations are the most suitable regulations for the establishment of schools in Kuwait). The safety clearance distance from the existing 300-kV high-tension power line has been assigned as 200 m and from other existing 132-kV high-tension power line was 50 m. The proposed site with its predefined boundaries has a magnetic field below the Italian EMF regulations for the establishment of new schools. PMID:27129598

  19. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats.

    PubMed

    Jin, Yeung Bae; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil

    2013-05-01

    Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method. PMID:23239176

  20. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels

    NASA Astrophysics Data System (ADS)

    Bian, Meng; Skidmore, Andrew K.; Schlerf, Martin; Wang, Tiejun; Liu, Yanfang; Zeng, Rong; Fei, Teng

    2013-04-01

    Some biochemical compounds are closely related with the quality of tea (Camellia sinensis (L.)). In this study, the concentration of these compounds including total tea polyphenols, free amino acids and soluble sugars were estimated using reflectance spectroscopy at three different levels: powder, leaf and canopy, with partial least squares regression. The focus of this study is to systematically compare the accuracy of tea quality estimations based on spectroscopy at three different levels. At the powder level, the average r2 between predictions and observations was 0.89 for polyphenols, 0.81 for amino acids and 0.78 for sugars, with relative root mean square errors (RMSE/mean) of 5.47%, 5.50% and 2.75%, respectively; at the leaf level, the average r2 decreased to 0.46-0.81 and the relative RMSE increased to 4.46-7.09%. Compared to the results yielded at the leaf level, the results from canopy spectra were slightly more accurate, yielding average r2 values of 0.83, 0.77 and 0.56 and relative RMSE of 6.79%, 5.73% and 4.03% for polyphenols, amino acids and sugars, respectively. We further identified wavelength channels that influenced the prediction model. For powder and leaves, some bands identified can be linked to the absorption features of chemicals of interest (1648 nm for phenolic, 1510 nm for amino acids, 2080 nm and 2270 nm for sugars), while more indirectly related wavelengths were found to be important at the canopy level for predictions of chemical compounds. Overall, the prediction accuracies achieved at canopy level in this study are encouraging for future study on tea quality estimated at the landscape scale using airborne and space-borne sensors.

  1. Noise levels, spectra, and operational function of an occupied newborn intensive care unit built to meet recommended permissible noise criteria

    NASA Astrophysics Data System (ADS)

    Philbin, M. Kathleen; Evans, Jack B.

    2003-10-01

    A group of clinical experts developed recommended permissible noise criteria for newly constructed or renovated hospital nurseries [Philbin et al., J. Perinatol. 19, 559-563 (2000); R. White, ibid. 23, S1-22 (2003)]. These criteria are based principally on research regarding wake-up thresholds for term newborns and speech interference levels for adults. These criteria are: The overall continuous A-weighted, slow response, sound level at any bed or patient care area shall not exceed: (1) an hourly Leq of 50 dB, (2) an hourly L10 of 55 dB, and (3) a 1-s Lmax of 70 dB. A new hospital building was designed to meet these criteria by using specific acoustical criteria for the structure and space arrangement [J. B. Evans and M. K. Philbin, J. Perinatol. 20, S105-S112 (2000)]. Acoustical criteria for sound isolation, background NC, structural vibration, and reverberation will be presented along with space arrangements that ensure staff efficiency, clinical safety, and family privacy. Post-occupancy measurements of sound levels and spectra along with photographs of a nursery in operation will be presented to illustrate how an ICU can have a quiet, highly functioning intensive care environment while meeting the operational goals and acoustical criteria.

  2. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  3. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    NASA Astrophysics Data System (ADS)

    Guo, Yu

    2010-05-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ- and σ+ polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field.

  4. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  5. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  6. Electromagnetic fasteners

    SciTech Connect

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  7. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  8. Electromagnetic Fields

    MedlinePlus

    ... cancer. Some people worry that wireless and cellular phones cause cancer. They give off radio-frequency energy (RF), a form of electromagnetic radiation. Scientists need to do more research on this ...

  9. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    SciTech Connect

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water as a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.

  10. Cavity electromagnetically induced transparency of driven-three-level atoms: A transparent window narrowing below a natural width

    NASA Astrophysics Data System (ADS)

    Bentley, Cleo L.; Liu, Jiaren; Liao, Yan

    2000-02-01

    Steady-state dynamics of a Λ atom in a ring cavity driven by two coherent fields are studied for arbitrary detunings, arbitrary incoherent pumping, and coherent driving intensities. Effects of both cavity and effective atom number on electromagnetically induced transparency (EIT) are pointed out. New physical pictures for cavity EIT are given in terms of collective cooperative coefficients and dispersion experienced by the probe. In the regime of smaller collective cooperative coefficients, an absorption-gain profile is reduced to that of a general EIT estimated by the imaginary part of a corresponding dipole moment, and its transparency window is directly proportional to power broadening, if the total Rabi frequency is large enough. But in the region of larger collective cooperative coefficients which means a dense atomic medium, longer optical path, or high-Q cavity, EIT is determined not only by the imaginary part but also by the real part of the corresponding dipole moment, which results in the possibility of observing an EIT central peak with a subnatural width, while there may be nearly no power broadening.

  11. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    DOE PAGESBeta

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less

  12. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    NASA Astrophysics Data System (ADS)

    Kleinert, A.; Friedl-Vallon, F.; Guggenmoser, T.; Höpfner, M.; Neubert, T.; Ribalda, R.; Sha, M. K.; Ungermann, J.; Blank, J.; Ebersoldt, A.; Kretschmer, E.; Latzko, T.; Oelhaf, H.; Olschewski, F.; Preusse, P.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  13. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    NASA Astrophysics Data System (ADS)

    Kleinert, A.; Friedl-Vallon, F.; Guggenmoser, T.; Höpfner, M.; Neubert, T.; Ribalda, R.; Sha, M. K.; Ungermann, J.; Blank, J.; Ebersoldt, A.; Kretschmer, E.; Latzko, T.; Oelhaf, H.; Olschewski, F.; Preusse, P.

    2014-03-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier transform spectrometer that is capable of operating on various high altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable range of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The innovative optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  14. Correlation between N 1s core level x-ray photoelectron and x-ray absorption spectra of amorphous carbon nitride films

    NASA Astrophysics Data System (ADS)

    Quirós, C.; Gómez-García, J.; Palomares, F. J.; Soriano, L.; Elizalde, E.; Sanz, J. M.

    2000-08-01

    This work presents a comparative analysis of the N 1s core level spectra, as measured by x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS), of amorphous CNx films which gives evidence of the existing correlation between the different components that constitute the respective spectra. After annealing, the contribution of XPS at 399.3 eV and the components of XAS at 399.6 and 400.8 eV are clearly enhanced. They are assigned to sp2 with two neighbors and to sp states of nitrogen. In addition, the XPS component at 401.3 eV is related to the XAS feature at 402.0 eV and has been assigned to sp2 nitrogen bonded to three carbon neighbors.

  15. Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods

    NASA Astrophysics Data System (ADS)

    Bahl, Mayank; Zhou, Gui-Rong; Heller, Evan; Cassarly, William; Jiang, Mingming; Scarmozzino, Robert; Gregory, G. Groot; Herrmann, Daniel

    2015-04-01

    Over the last two decades, extensive research has been done to improve light-emitting diodes (LEDs) designs. Increasingly complex designs have necessitated the use of computational simulations which have provided numerous insights for improving LED performance. Depending upon the focus of the design and the scale of the problem, simulations are carried out using rigorous electromagnetic (EM) wave optics-based techniques, such as finite-difference time-domain and rigorous coupled wave analysis, or through ray optics-based techniques such as Monte Carlo ray-tracing (RT). The former are typically used for modeling nanostructures on the LED die, and the latter for modeling encapsulating structures, die placement, back-reflection, and phosphor downconversion. This paper presents the use of a mixed-level simulation approach that unifies the use of EM wave-level and ray-level tools. This approach uses rigorous EM wave-based tools to characterize the nanostructured die and generates both a bidirectional scattering distribution function and a far-field angular intensity distribution. These characteristics are then incorporated into the RT simulator to obtain the overall performance. Such a mixed-level approach allows for comprehensive modeling of the optical characteristic of LEDs, including polarization effects, and can potentially lead to a more accurate performance than that from individual modeling tools alone.

  16. Classical analogs of double electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-03-01

    Double electromagnetically induced transparency (DEIT) in a four-level atomic system with tripod-type energy-level configuration is modeled by using two classical systems. The first is a set of three coupled harmonic oscillators subject to frictional forces and external drives and the second is a set of three coupled RLC circuits with electric resistors and alternating voltage sources. It is shown that both of the two classical systems have absorption spectra of DEIT similar to that of the four-level tripod-type atomic system. These classical analogies provide simple and intuitive physical description of quantum interference processes and can be used to illustrate experimental observations of the DEIT in quantum systems.

  17. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  18. Electromagnetic perturbations in new brane world scenarios

    NASA Astrophysics Data System (ADS)

    Molina, C.; Pavan, A. B.; Medina Torrejón, T. E.

    2016-06-01

    In this work, we consider electromagnetic dynamics in Randall-Sundrum branes. It is derived from a family of four-dimensional spacetimes compatible with Randall-Sundrum brane worlds, focusing on asymptotic flat backgrounds. Maximal extensions of the solutions are constructed, and their causal structures are discussed. These spacetimes include singular, nonsingular, and extreme black holes. Maxwell's electromagnetic field is introduced, and its evolution is studied in an extensive numerical survey. Electromagnetic quasinormal mode spectra are derived and analyzed with time-dependent and high-order WKB methods. Our results indicate that the black holes in the brane are electromagnetically stable.

  19. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  20. The effect of low level radiofrequency electromagnetic radiation on the excretion rates of stress hormones in operators during 24-hour shifts.

    PubMed

    Vangelova, K; Israel, M; Mihaylov, S

    2002-06-01

    The aim of the study was to investigate the effect of long term exposure to low level radiofrequency (RF) electromagnetic (EM) radiation on the excretion rates of stress hormones in satellite station operators during 24-hour shifts. Twelve male operators at a satellite station for TV communications and space research were studied during 24-hour shifts. Dosimetric evaluation of the exposure was carried out and showed low level exposure with specific absorption of 0.1127 J.kg-1. A control group of 12 unexposed male operators with similar job task and the same shift system were studied, too. The 11-oxycorticosteroids (11-OCS), adrenaline and noradrenaline were followed by spectrofluorimetric methods on 3-hour intervals during the 24-hour shifts. The data were analyzed by tests for interindividual analysis, Cosinor analysis and analysis of variance (ANOVA). Significant increase in the 24-hour excretion of 11-OCS and disorders in its circadian rhythm, manifested by increase in the mesor, decrease in the amplitude and shift in the acrophase were found in the exposed operators. The changes in the excretion rates of the catecholamines were significant and showed greater variability of both variables. The long term effect of the exposure to low-level RF EM radiation evoked pronounced stress reaction with changes in the circadian rhythm of 11-OCS and increased variability of catecholamines secretion. The possible health hazards associated with observed alteration in the stress system need to be clarified by identification of their significance and prognostic relevance. PMID:12096679

  1. Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled to the same linearly polarized laser in a four-level atomic system in the W scheme

    SciTech Connect

    Bahrim, Cristian; Nelson, Chris

    2011-03-15

    Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme using a linearly polarized optical field for simultaneously slowing down two {sigma}{sup +} and {sigma}{sup -} circularly polarized optical fields. This four-level atomic system can be set up with a |{sup 1}S{sub 0}> ground state and three Zeeman levels of the |{sup 1}P{sub 1}> excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after solving a density matrix master equation including radiative relaxations from Zeeman states of the |{sup 1}P{sub 1}> multiplet to the |{sup 1}S{sub 0}> ground state. The EIT feature is analyzed using the transit time between the normal dispersive region and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the excited Zeeman states.

  2. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction

    SciTech Connect

    Luppi, Eleonora; Head-Gordon, Martin

    2013-10-28

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model.

  3. Nuclear level densities in {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn from neutron evaporation spectra

    SciTech Connect

    Zhuravlev, B. V. Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2011-03-15

    The spectra of neutrons from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, and {sup 54}Cr nuclei were measured in the proton-energy range 7-11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed within the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.

  4. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  5. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  6. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Lodi, Lorenzo; Mizus, Irina I.

    2013-03-01

    This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system

  7. Electronic energy level and intensity correlations in the spectra of the trivalent actinide aquo ions. III. Bk/sup 3 +/

    SciTech Connect

    Carnall, W.T.; Beitz, J.V.; Crosswhite, H.

    1984-03-15

    The solution absorption spectrum of Bk/sup 3 +/(aquo) was measured and the observed band structure interpreted in terms of a free-ion energy level model. The band intensities were successfully analyzed using the Judd--Ofelt theory for transitions within the f/sup tsN/ configuration. Parameters of the theory were then used to compute fluorescence branching ratios from most probable fluorescing states, and an experimental search was successful in yielding evidence for a transition from one excited state to the ground state in D/sub 2/O solvent. Absorption bands attributed to f ..-->.. d transitions were observed and an interpretation of the electronic structure is presented. Band intensities were compared to those observed for Tb/sup 3 +/(aquo).

  8. Strong permanent magnet-assisted electromagnetic undulator

    SciTech Connect

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  9. Electromagnetic microactuators

    NASA Astrophysics Data System (ADS)

    Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.

    2013-05-01

    High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.

  10. Short-term effects of extremely low-frequency pulsed electromagnetic field and pulsed low-level laser therapy on rabbit model of corneal alkali burn.

    PubMed

    Rezaei Kanavi, Mozhgan; Tabeie, Faraj; Sahebjam, Farzin; Poursani, Nima; Jahanbakhsh, Nazanin; Paymanpour, Pouya; AfsarAski, Sasha

    2016-04-01

    This study was conducted to investigate the effect of combining extremely low frequency-pulsed electromagnetic field (ELF-PEMF) and low-level laser therapy (LLLT) on alkali-burned rabbit corneas. Fifty alkali-burned corneas of 50 rabbits were categorized into five groups: ELF-PEMF therapy with 2 mT intensity (ELF 2) for 2 h daily; LLLT for 30 min twice daily; combined ELF-PEMF and LLLT (ELF + LLLT); medical therapy (MT); and control (i.e., no treatment). Clinical examination and digital photography of the corneas were performed on days 0, 2, 7, and 14. After euthanizing the rabbits, the affected eyes were evaluated by histopathology. The clinical and histopathologic results were compared between the groups. On days 7 and 14, no significant difference in the corneal defect area was evident between the ELF, LLLT, ELF + LLLT, and MT groups. Excluding the controls, none of the study groups demonstrated a significant corneal neovascularization in both routine histopathology and immunohistochemistry for CD31. Keratocyte loss was significantly higher in the MT group than in the ELF, LLLT, and ELF + LLLT groups. Moderate to severe stromal inflammation in the LLLT group was comparable with that in the MT group and was significantly lower than that in the other groups. In conclusion, combining LLLT and ELF was not superior to ELF alone or LLLT alone in healing corneal alkali burns. However, given the lower intensity of corneal inflammation and the lower rate of keratocytes loss with LLLT, this treatment may be superior to other proposed treatment modalities for healing alkali-burned corneas. PMID:26795389

  11. Personal radiofrequency electromagnetic field measurements in The Netherlands: exposure level and variability for everyday activities, times of day and types of area.

    PubMed

    Bolte, John F B; Eikelboom, Tessa

    2012-11-01

    Knowledge of the exposure to radiofrequency electromagnetic fields is necessary for epidemiological studies on possible health effects. The main goal of this study is to determine the exposure level and spatial and temporal variances during 39 everyday activities in 12 frequency bands used in mobile telecommunication and broadcasting. Therefore, 24 h measurements were gathered from 98 volunteers living in or near Amsterdam and Purmerend, The Netherlands. They carried an activity diary to be kept to the minute, a GPS logger sampling at an interval of 1 s, and an EME Spy exposimeter with a detection limit of 0.0066 mW/m(2) sampling at an interval of 10s in 12 frequency bands. The mean exposure over 24 h, excluding own mobile phone use, was 0.180 mW/m(2). During daytime exposure was about the same, but during night it was about half, and in the evening it was about twice as high. The main contribution to environmental exposure (calling by participant not included) is from calling with mobile phones (37.5%), from cordless DECT phones and their docking stations (31.7%), and from the base stations (12.7%). The exposure to mobile phone base stations increases with the percentage of urban ground use, which is an indication for high people density. In agreement, the highest mean exposure relates to the activities with high people density, such as travelling by public transport, visiting social events, pubs or shopping malls. Exposure at home depends mainly on exposure from people calling in the neighbourhood of the participant and thus on the number of persons in a household. In addition just the possession of DECT docking stations leads to exposure as most models transmit continuously in stand-by. Also wireless internet routers continuously transmit in the WiFi band. Though the highest exposure peaks in the WiFi band, up to 0.265 W/m(2), come from stray radiation of microwave ovens. The mean total exposure largely depends on phone calls of a high exposure level and short

  12. Nuclear-level densities in the 49V and 57Co nuclei on the basis of evaporated-neutron spectra in ( p, n) and ( d, n) reactions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, B. V.; Titarenko, N. N.

    2016-03-01

    The spectra of neutrons from the reactions 49Ti( p, n)49V and 57Fe ( p, n)57Co were measured in the range of proton energies between 8 and 11 MeV along with their counterparts from the reactions 48Ti( d, n)49V and 56Fe ( d, n)57Co at the deuteron energies of 2.7 and 3.8 MeV. These measurements were conducted with the aid of a time-of-flight fast-neutron spectrometer on the basis of the EGP-15 pulsed tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). An analysis of measured data was performed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations based on the Hauser-Feshbach formalism of statistical theory were carried out with nuclear-level densities given by the generalized superfluid model of the nucleus, the backshifted Fermi-gas model, and the Gilbert-Cameron composite formula. The nuclear-level densities of 49V and 57Co and their energy dependences were determined. The results were discussed together with available experimental data and data recommended by model systematics.

  13. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Local Control of Two-Photon Absorption in a Six-Level Atomic System by Using a Coherent Perturbation Field

    NASA Astrophysics Data System (ADS)

    Jia, Wen-Zhi; Wang, Shun-Jin

    2009-11-01

    If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast spectral feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.

  14. Electromagnetic radiation generated by arcing in low density plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  15. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  16. Electromagnetic topology - Characterization of internal electromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    This paper presents the main principles of a method dealing with the resolution of electromagnetic internal problems: electromagnetic topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of electromagnetic topology. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  17. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-08-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  18. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  19. Electromagnetic Structure of Few-Nucleon Systems: a Critical Review

    SciTech Connect

    R. Schiavilla

    2000-10-01

    Our current understanding of the structure of nuclei with up to A=8, including energy spectra, electromagnetic form factors, and capture reactions, is critically reviewed within the context of a realistic approach to nuclear dynamics based on two- and three-nucleon interactions and associated electromagnetic currents.

  20. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  1. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  2. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  3. Electromagnetically Induced Entanglement

    NASA Astrophysics Data System (ADS)

    Yang, Xihua; Xiao, Min

    2015-08-01

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  4. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  5. Electromagnetically Induced Entanglement.

    PubMed

    Yang, Xihua; Xiao, Min

    2015-01-01

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing. PMID:26314514

  6. Experimental investigation of the ionospheric hysteresis effect on the threshold excitation level of the Stimulated Electromagnetic Emission (SEE) during heating at the second electron gyro-harmonic frequency

    NASA Astrophysics Data System (ADS)

    Samimi, A.; Scales, W.; Cruz, M.; Isham, B.; Bernhardt, P. A.

    2012-12-01

    Recent experimental observations of the stimulated electromagnetic emission (SEE) spectrum during heating at the second electron gyro-harmonic show structures ordered by ion gyro-frequency. The proposed generation mechanism considers parametric decay of a pump upper hybrid/electron Bernstein (UH/EB) wave into another UH/EB and a group of neutralized ion Bernstein waves. The presumption of the proposed mechanism is that the pump electromagnetic wave is converted into the UH/EB wave. This conversion process generates field aligned irregularity which exhibits hysteresis effect. The predicted ionospheric hysteresis effect is studied during the PARS 2012 at HAARP. The preliminary results are presented for the first time. Also, experimental study of the effects of 1) the transmitter beam angle and 2) the transmitter frequency offset relative to the second electron gyro-harmonic frequency on the ion gyro-harmonic structures in the SEE spectrum are provided. The aforementioned observations are compared to the predictions of the analytical model. Possible connection of the SEE spectral features and artificially generated ionospheric descending layer is also discussed

  7. Electromagnetic induction methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electromagnetic induction geophysical methods are finding greater and greater use for agricultural purposes. Electromagnetic induction methods measure the electrical conductivity (or resistivity) for a bulk volume of soil directly beneath the surface. An instrument called a ground conductivity meter...

  8. Skyglow effects in UV and visible spectra: Radiative fluxes

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  9. The electromagnetic spike solutions

    NASA Astrophysics Data System (ADS)

    Nungesser, Ernesto; Lim, Woei Chet

    2013-12-01

    The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors for gravitational spikes. We present new inhomogeneous solutions which we call the EME and MEM electromagnetic spike solutions.

  10. Lightning electromagnetics

    NASA Technical Reports Server (NTRS)

    Wahid, Parveen

    1995-01-01

    This project involved the determination of the effective radiated power of lightning sources and the polarization of the radiating source. This requires the computation of the antenna patterns at all the LDAR site receiving antennas. The known radiation patterns and RF signal levels measured at the antennas will be used to determine the effective radiated power of the lightning source. The azimuth and elevation patterns of the antennas in the LDAR system were computed using flight test data that was gathered specifically for this purpose. The results presented in this report deal with the azimuth patterns for all the antennas and the elevation patterns for three of the seven sites.

  11. Nonlinear electromagnetic interactions in energetic materials

    DOE PAGESBeta

    Wood, Mitchell Anthony; Dalvit, Diego Alejandro; Moore, David Steven

    2016-01-12

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. Finally, we discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.

  12. Spontaneous Emission of a Two-Level Static Atom Coupling with Electromagnetic Vacuum Fluctuations Outside a High-Dimensional Einstein Gauss-Bonnet Black Hole

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yang, Zhan-Ying; Yue, Rui-Hong

    2014-10-01

    Using the generalized formalism of Dalibard, Dupont-Roc and Cohen-Tannoudji we investigate the spontaneous excitation of a static atom interacting with electromagnetic vacuum fluctuations outside an Einstein Gauss-Bonnet black hole in d-dimensions. It shows that spontaneous excitation does not occur in a Boulware vacuum, while exists in an Unruh vacuum and Hartle-Hawking vacuum. As to the total rate of change of the atomic energy, it does not receive the contribution from the coupling constant of the Gauss-Bonnet term at spatial infinity only the dimensional parameter has the contribution to it. Near the event horizon, both the coupling constant and the dimension p contribute to the total rate of change of the atomic energy in all three kinds of vacuum. We discuss the contribution of the coupling constant and dimensional factor to the results in three different kinds of spacetime lastly.

  13. Action of an electromagnetic pulse on a plasma with a high level of ion-acoustic turbulence. Field diffusion and subdiffusion

    SciTech Connect

    Ovchinnikov, K. N.; Uryupin, S. A.

    2013-09-15

    Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.

  14. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  15. Flame Spectra.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1983-01-01

    When salt (NaCl) is introduced into a colorless flame, a bright yellow light (characteristic of sodium) is produced. Why doesn't the chlorine produce a characteristic color of light? The answer to this question is provided, indicating that the flame does not excite the appropriate energy levels in chlorine. (JN)

  16. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  17. Source energy spectra from demodulation of solar particle data by interplanetary and coronal transport

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.

    1985-01-01

    The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.

  18. Optical-absorption spectra, crystal-field energy levels, and transition line strengths of holmium in trigonal Na3[Ho(C4H4O5)3].2NaClO4.6H2O

    NASA Astrophysics Data System (ADS)

    Moran, D. M.; de Piante, Anne; Richardson, F. S.

    1990-08-01

    Locations and assignments of 105 crystal-field levels are reported for Ho3+ in the trigonal Na3[Ho(oxydiacetate)3].2NaClO4.6H2O system. These levels were located and assigned from transitions observed in axial and σ- and π-polarized orthoaxial absorption spectra obtained on single-crystal samples at temperatures between 5 and 295 K. The absorption measurements spanned the 8000-37 000-cm-1 spectral region, and the assigned energy levels derive from 23 different [SL]J multiplet manifolds of the 4f10 electronic configuration of Ho3+, with principal SL parentages derived from nine different Russell-Saunders terms (5I, 5F, 5S, 3K, 5G,3H, 3L, 3M, and 5D). The empirical energy-level data are analyzed in terms of a parametrized model Hamiltonian for the 4f10 electronic configuration, assumed to be perturbed by a crystal field of trigonal dihedral (D3) symmetry. Parametric fits of calculated-to-empirical energy-level data yield a rms deviation of ~9 cm-1 (between calculated and observed energies). The Hamiltonian parameter values obtained from these energy-level analyses are compared with results obtained from similar analyses of Ho3+ in other crystals and of other lanthanide (M3+) ions in the Na3[M(oxydiacetate)3].2NaClO4.6H2O system. In addition to energy-level locations and assignments, quantitatively determined line strengths are reported for 42 transitions observed in the axial absorption spectra at 10 K, and for 19 transitions observed in the π-polarized orthoaxial absorption spectra at 10 K. Fifty of these transitions originate from the ground crystal-field level of the 5I8 (ground) multiplet, and eleven originate from the second crystal-field level (located 14 cm-1 above ground) of 5I8.

  19. Transient electromagnetic interference in substations

    SciTech Connect

    Wiggins, C.M.; Thomas, D.E.; Nickel, F.S.; Salas, T.M. ); Wright, S.E. )

    1994-10-01

    Electromagnetic interference levels on sensitive electronic equipment are quantified experimentally and theoretically in air and gas insulated substations of different voltages. Measurement techniques for recording interference voltages and currents and electric and magnetic fields are reviewed and actual interference data are summarized. Conducted and radiated interference coupling mechanisms and levels in substation control wiring are described using both measurement results and electromagnetic models validated against measurements. The nominal maximum field and control wire interference levels expected in the switchyard and inside the control house from switching operations, faults, and an average lightning strike are estimated using high frequency transient coupling models. Comparisons with standards are made and recommendations given concerning equipment shielding and surge protection.

  20. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  1. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat

    PubMed Central

    Torres-Duran, Patricia V; Ferreira-Hermosillo, Aldo; Juarez-Oropeza, Marco A; Elias-Viñas, David; Verdugo-Diaz, Leticia

    2007-01-01

    Backgound The effects of extremely low-frequency electromagnetic fields (ELF-EMF) on the blood serum and liver lipid concentrations of male Wistar rats were assessed. Methods Animals were exposed to a single stimulation (2 h) of ELF-EMF (60 Hz, 2.4 mT) or sham-stimulated and thereafter sacrificed at different times (24, 48 or 96 h after beginning the exposure). Results Blood lipids showed, at 48 h stimulated animals, a significant increase of cholesterol associated to high density lipoproteins (HDL-C) than those observed at any other studied time. Free fatty acid serum presented at 24 h significant increases in comparison with control group. The other serum lipids, triacylglycerols and total cholesterol did not show differences between groups, at any time evaluated. No statistical differences were shown on total lipids of the liver but total cholesterol was elevated at 24 h with a significant decrease at 96 h (p = 0.026). The ELF-EMF stimulation increased the liver content of lipoperoxides at 24 h. Conclusion Single exposures to ELF-EMF increases the serum values of HDL-C, the liver content of lipoperoxides and decreases total cholesterol of the liver. The mechanisms for the effects of ELF-EMF on lipid metabolism are not well understand yet, but could be associated to the nitric oxide synthase EMF-stimulation. PMID:18021407

  2. A large-scale measurement, analysis and modelling of electromagnetic radiation levels in the vicinity of GSM/UMTS base stations in an urban area.

    PubMed

    Karadağ, Teoman; Yüceer, Mehmet; Abbasov, Teymuraz

    2016-01-01

    The present study analyses the electric field radiating from the GSM/UMTS base stations located in central Malatya, a densely populated urban area in Turkey. The authors have conducted both instant and continuous measurements of high-frequency electromagnetic fields throughout their research by using non-ionising radiation-monitoring networks. Over 15,000 instant and 13,000,000 continuous measurements were taken throughout the process. The authors have found that the normal electric field radiation can increase ∼25% during daytime, depending on mobile communication traffic. The authors' research work has also demonstrated the fact that the electric field intensity values can be modelled for each hour, day or week with the results obtained from continuous measurements. The authors have developed an estimation model based on these values, including mobile communication traffic (Erlang) values obtained from mobile phone base stations and the temperature and humidity values in the environment. The authors believe that their proposed artificial neural network model and multivariable least-squares regression analysis will help predict the electric field intensity in an environment in advance. PMID:25693600

  3. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  4. Electromagnetic structure of pion

    SciTech Connect

    Mello, Clayton S.; Cruz Filho, Jose P.; Da Silva, Edson O.; El-Bennich, Bruno; De Melo, J. P.; Filho, Victo S.

    2013-03-25

    In this work, we analyze the electromagnetic structure of the pion, an elementary particle composed by a quark-antiquark bound state, by considering the calculation of its electromagnetic radius and its electromagnetic form factor in low and intermediate energy range. Such observables are determined by means of a theoretical model that takes into account the constituent quark and antiquark of the pion, in the formalism of the light-front field theory. In particular, it is considered a nonsymmetrical vertex for such a model, in which we have calculated the electromagnetic form factor of the pion in an optimized way, by varying its regulator mass, so that we can obtain the best value for the pion electromagnetic radius when compared with the experimental one. The theoretical calculations are also compared with the most recent experimental data involving the pion electromagnetic form factor and the results show very good agreement.

  5. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  6. Porous material for protection from electromagnetic radiation

    SciTech Connect

    Kazmina, Olga E-mail: bdushkina89@mail.ru; Dushkina, Maria E-mail: bdushkina89@mail.ru; Suslyaev, Valentin; Semukhin, Boris

    2014-11-14

    It is shown that the porous glass crystalline material obtained by a low temperature technology can be used not only for thermal insulation, but also for lining of rooms as protective screens decreasing harmful effect of electromagnetic radiation as well as to establish acoustic chambers and rooms with a low level of electromagnetic background. The material interacts with electromagnetic radiation by the most effective way in a high frequency field (above 100 GHz). At the frequency of 260 GHz the value of the transmission coefficient decreases approximately in a factor times in comparison with foam glass.

  7. Exposure to high-frequency electromagnetic fields (100 kHz-2 GHz) in Extremadura (Spain).

    PubMed

    Rufo, M Montaña; Paniagua, Jesús M; Jiménez, Antonio; Antolín, Alicia

    2011-12-01

    The last decade has seen a rapid increase in people's exposure to electromagnetic fields. This paper reports the measurements of radiofrequency (RF) total power densities and power density spectra in 35 towns of the region of Extremadura, Spain. The spectra were taken with three antennas covering frequencies from 100 kHz to 2.2 GHz. This frequency range includes AM/FM radio broadcasting, television, and cellular telephone signals. The power density data and transmitting antenna locations were stored in a geographic information system (GIS) as an aid in analyzing and interpreting the results. The results showed the power density levels to be below the reference level guidelines for human exposure and that the power densities are different for different frequency ranges and different size categories of towns. PMID:22048492

  8. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring.

    PubMed

    Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan

    2016-05-01

    We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile

  9. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety. PMID:26643076

  10. Origin of young EAS with E[sub 0]=1--10 PeV at the mountain level

    SciTech Connect

    Adamov, D.S.; Danilova, T.V.; Erlykin, A.D. )

    1993-06-15

    It is shown, that the appearance of young showers with the high concentration of electromagnetic (e.m.) energy in cores of EAS with E[sub 0]=1--10 PeV at the mountain level, different slopes of EAS size and e.m. energy spectra and the rise of [epsilon][sub [ital e][gamma

  11. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra. 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line-of-sight. Simultaneous in-situ observations by the BAsic HALO Measurement And Sensor System (BAHAMAS), the Fast In-Situ Stratospheric Hygrometer (FISH), FAIRO, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in-situ trace gas data, and discrepancies can to a large fraction be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  12. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm-1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  13. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  14. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  15. Electromagnetic mass revisited

    NASA Astrophysics Data System (ADS)

    Schwinger, Julian

    1983-03-01

    Examples of uniformly moving charge distributions that possess conserved electromagnetic stress tensors are exhibited. These constitute stable systems with covariantly characterized electromagnetic mass. This note, on a topic to which Paul Dirac made a significant contribution in 1938, is dedicated to him for his 80th birthday.

  16. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  17. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  18. Megawatt Electromagnetic Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James; Lapointe, Michael; Mikellides, Pavlos

    2003-01-01

    The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive

  19. Optical spectra, energy levels and crystal-field analysis of Sm3 in Na3[Sm(oxydiacetate)3] · 2NaClO4 · 6H2O

    NASA Astrophysics Data System (ADS)

    May, P. Stanley; Reid, Michael F.; Richardson, F. S.

    Locations and assignments of 144 crystal-field energy levels are reported for Sm3+ in the trigonal Na3[Sm(oxydiacetate)3] · 2NaClO4 · 6H2O system. These energy levels span the 0-36 000 cm-1 energy region, and they were located and assigned from optical emission spectra and from axial and orthoaxial (σ- and π-polarized) absorption measurements on single crystals. The principal SL parentages of the assigned levels span at least 20 Russell-Saunders terms within the 4f5 electronic configuration of Sm3+, and these assigned levels represent nearly half the total number of crystal-field energy levels predicted to occur within the 0-36 000 cm-1 region. The assigned levels are analysed in terms of a 26-parameter electronic hamiltonian in which six of the parameters are defined to represent the 4f-electron/crystal-field interactions for Sm3+ located at sites with trigonal dihedral (D3) symmetry. Of the 26 parameters, 22 (including the six crystal-field parameters) are used in fitting calculated energy levels to the experimental data, and excellent calculated-versus-experimental energy level fits are achieved. Fitted values obtained in this study for the Sm3+ 'free-ion' energy parameters are compared to those reported previously for Sm3+ in LaF3 and LaCl3. Quantitatively determined line strengths are reported for 50 (4f → 4f) crystal-field transitions observed in the single-crystal absorption spectra of Na3[Sm(oxydiacetate)3] · 2NaClO4 · 6H2O at 10 K.

  20. Electromagnetic probes of the QGP

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, E. L.; Linnyk, O.; Cassing, W.

    2015-05-01

    We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  1. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    NASA Technical Reports Server (NTRS)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  2. Reflectance spectra of primitive chondrites

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Moyano-Cambero, C. E.; Llorca, J.

    2013-05-01

    We are studying a wide sample of pristine carbonaceous chondrites from the NASA Antarctic collection in order to get clues on the physico-chemical processes occurred in the parent bodies of these meteorites. We are obtaining laboratory reflectance spectra of different groups of carbonaceous chondrites, but here we focus in CM and CI chondrites. We discuss the main spectral features that can be used to identify primitive carbonaceous asteroids by remote sensing techniques. Two different spectrometers were used covering the entire 0.3 to 30 μm electromagnetic window. Only a handful of Near Earth Objects (NEOs) exhibit bands or features clearly associated with aqueous alteration. Among them are the target asteroids of Osiris Rex and Marco Polo-R missions.

  3. Nuclear level densities in {sup 208}Bi and {sup 209}Po from the neutron spectra in the (p, n) reactions on {sup 208}Pb and {sup 209}Bi nuclei

    SciTech Connect

    Zhuravlev, B. V. Lychagin, A. A. Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2010-07-15

    The spectra of neutrons from the (p, n) reactions on the {sup 208}Pb and {sup 209}Bi nuclei were measured in the proton-energy range 8-11 MeV. These measurements were performed by using a time-of-flight spectrometer of fast neutrons on the basis of the pulsed tandem accelerator EGP-15 of the Institute of Physics and Power Engineering (Obninsk, Russian Federation). A high resolution and stability of the time-of-flight spectrometermade it possible to identify reliably low-lying discrete levels alongwith the continuum section of the neutron spectra. The measured data were analyzed on the basis of the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed by using the precise formalism of Hauser-Feshbach statistical theory together with the generalized model of a superfluid nucleus and the back-shifted Fermi gas model for the nuclear-level density. The nuclear-level densities in {sup 208}Bi and {sup 209}Po were determined along with their energy dependencies and model parameters. Our results are discussed together with available experimental data and recommendations of model systematics.

  4. Some Statistical Properties for Interacting Between a Two Two-Level Atoms and the Electromagnetic Fields in Present of Converter Terms

    NASA Astrophysics Data System (ADS)

    Ali, S. I.

    2016-01-01

    Two two-level atoms interacting with a finite dimensional four-mode of radiation field is presented. The interaction of the field-field and the atom-field are considered. By using some canonical transformation, an exact solution of the wave function in the Schrodinger picture is obtained. The atomic inversion, the entropy squeezing, variance squeezing and scaled atomic Wehrl entropy phenomena are investigated. All theses phenomena are been controlled by finite state parameters and photon number operators.

  5. High frequency electromagnetic tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Ueng, T.; Latorre, R.

    1989-09-01

    An experiment was conducted in G Tunnel at the Nevada Test Site to evaluate high frequency electromagnetic tomography as a candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Tomographs of 200 MHz electromagnetic permittivity were made for several planes between boreholes. Data were taken before the heater was turned on, during heating and during cooldown of the rockmass. This data is interpreted to yield maps of changes in water content of the rockmass as a function of time. This interpretation is based on laboratory measurement of electromagnetic permittivity as a function of water content for densely welded tuff. 8 refs., 6 figs.

  6. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  7. Experimental investigation of the hyperfine spectra of Pr I-lines: Discovery of new fine structure levels with high angular momentum

    NASA Astrophysics Data System (ADS)

    Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius

    2014-05-01

    We present 66 even and 58 odd parity newly discovered fine structure levels of Pr I with high angular momentum: J = 15/2, 17/2 and 19/2 and 21/2. Spectral lines in the range 4200 Å to 7500 Å were experimentally investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The levels were discovered by analysis of the recorded hyperfine patterns of the investigated transitions. More than 800 spectral lines could be classified with help of these levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50025-7

  8. EMC (electromagnetic compatibility) system test and analysis interface

    NASA Astrophysics Data System (ADS)

    Ball, E. F.; Knutson, L.; Carlson, B. L.

    1983-05-01

    One of the major problems in ensuring the electromagnetic compatibility (ECM) of a system is the efficient utilization of equipment level measurements and system level analysis tools. The contents of this report present an indepth evaluation of MIL-STD-461 and the United States Air Force's system level analysis tool, Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP). Recommended changes to improve system level ECM predictions based on equipment and system level test results are presented along with recommended changes to IEMCAP.

  9. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  10. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  11. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  12. Hot water emission spectra: Rotational energy levels of the (0 0 0) and (0 1 0) states of HD17O

    NASA Astrophysics Data System (ADS)

    Mellau, Georg Ch.; Mikhailenko, Semen N.; Tyuterev, Vladimir G.

    2015-02-01

    The rotational transitions of the HD17O water isotopologue have been assigned in a high temperature emission spectrum between 320 and 520 cm-1 of water vapor enriched by deuterium and 17O. We assigned 169 emission lines to 189 partly overlapping transitions of pure rotational and the ν2-ν2 rotational bands. A new extended set of 390 rotational energy levels for the (0 0 0) and (0 1 0) vibration states of HD17O up to J = 17 and Ka = 13 was obtained by combination of the new line transitions with those reported in previous studies. We constructed an effective rotational Hamiltonian based on the generation function approach. For this Hamiltonian the deviation between calculated and measured eigenenergies is in the order of 0.001 cm-1. We report a new calculated linelist based on our new energy level list. Our linelist supersedes the IUPAC linelist for the HD17O water isotopologue as it is based on a substantially extended set of accurate transition wavenumbers.

  13. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  14. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  15. The influence of oxygen adsorption on the NEXAFS and core-level XPS spectra of the C{sub 60} derivative PCBM

    SciTech Connect

    Brumboiu, Iulia Emilia Eriksson, Olle; Brena, Barbara; Ericsson, Leif; Hansson, Rickard; Moons, Ellen

    2015-02-07

    Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C{sub 60}-butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C{sub 60}. One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C{sub 60} molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate.

  16. Towards the understanding at the molecular level of the structured-water absorption and fluorescence spectra: a fingerprint of π-stacked water

    NASA Astrophysics Data System (ADS)

    Segarra-Martí, Javier; Coto, Pedro B.; Rubio, Mercedes; Roca-Sanjuán, Daniel; Merchán, Manuela

    2013-07-01

    An intriguing absorption peak around ∼270 nm (4.59 eV) has been recurrently recorded in aqueous solutions of salts, sugars, amino acids, in the free-solute zone (exclusion zone) adjacent to various hydrophilic surfaces, as well as a transient in the conversion process of ice to water. The corresponding associated fluorescence has been observed in the interval 480-490 nm (2.58-2.53 eV). The spectroscopic features have been related to the presence of structured water but its nature remains incompletely understood. On the basis of high-level ab initio computations, the main absorption feature of structured water is assigned to the presence of two π-stacked ground-state water molecules, preferably non-hydrogen bonded, at relatively short intermolecular distances (around 2 Å). The lowest singlet excited state is characterised by an equilibrium distance of around 2 Å with a vertical absorption transition predicted at 4.5 eV. The excited π-stacked dimer has a large binding energy (∼1 eV). Therefore, near-ultraviolet light may favour the formation of structured water. Two relaxed side-hydrated π-stacked water molecules (a relaxed tetramer) constitute the smallest unique excimer-type fluorescent moiety consistent with the available experimental data.

  17. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Dénes, Nóra; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Hu, Shui-Ming; Szidarovszky, Tamás; Vasilenko, Irina A.

    2014-07-01

    This paper is the fourth of a series of papers reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D216O, D217O, and D218O. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-14 016, 0-7969, and 0-9108 cm-1 for D216O, D217O, and D218O, respectively. For D216O, D217O, and D218O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D216O, D217O, and D218O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm-1, from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved.

  18. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  19. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  20. Electromagnetic energy sink

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, C. A.; Vehmas, J.; Simovski, C. R.; Tretyakov, S. A.; Maslovski, S. I.

    2015-12-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. A known idealized realization of the black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields that exists near any finite-size source, and the energy stored in these fields cannot be harvested. Here, we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs the energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  1. Aircraft electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  2. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  3. Electromagnetic properties of baryons

    SciTech Connect

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.

    2011-10-21

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  4. EMACK electromagnetic launcher commissioning

    NASA Astrophysics Data System (ADS)

    Deis, D. W.; Scherbarth, D. W.; Ferrentino, G. L.

    1984-03-01

    The Laboratory Demonstration Electromagnetic Launcher Program (EMACK) was initiated in April 1979, with the objective to design, construct, and demonstrate a complete electromagnetic launcher (EML) system capable of accelerating projectiles of substantial mass to velocities significantly greater than those achievable with conventional chemical systems. The last hardware was installed in late 1981. During February 1982, a series of five test shots was made to evaluate the system's performance. Particular attention is given to the parameters of the final, as-built hardware, and the results of the commissioning tests. The results of these tests have demonstrated the viability of the components required for large scale electromagnetic launchers. It has been shown that large projectiles with velocities significantly greater than those achievable by chemical systems can be accelerated intact.

  5. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995

  6. Response to ``Comment on `Spectra and energy levels of Er3+(4f11) in NaBi(WO4)2' '' [J. Appl. Phys. 96, 4656 (2004)

    NASA Astrophysics Data System (ADS)

    Gruber, John B.

    2004-10-01

    We present a reply to the preceding comment made by C. Cascales and C. Zaldo concerning an analysis of the "Spectra and energy levels of Er3+(4f11) in NaBi(WO4)2" [J. Appl. Phys. 94, 7128 (2003)] by J. B. Gruber, Department of Physics, San José State University, San Jose, CA 95192-0106; D. K. Sardar, C. C. Russell III, and R. M. Yow, Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249-0063, B. Zandi, ARL/Adelph Laboratory Center, 2800 Powder Mill Road, Adelphi, Maryland 20783-1197; and E. P. Kokanyan, Institute for Physical Research, Armenian National Academy of Sciences, Ashtarak, Armenia 378410.

  7. Low dielectric electromagnetic absorbing material in 18-40 GHz using large scale photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Narita, T.; Matsumura, K.; Kagawa, Y.

    2007-02-01

    The interaction behavior between a monolithic low dielectric block with unidirectionally aligned through holes and an electromagnetic wave at a frequency range from 18to40GHz has been studied. Hexagonally aligned through holes, whose diameters are 8.0, 9.0, and 10.0mm, are introduced to a polymethylmethacrylate block. The electromagnetic wave reflection and transmission spectra perpendicular to the hole axis show a unique structure dependence, which is related to the diameter of the hole and its arrangement. A large decrease in the reflectance and transmittance appears in the spectra, which originates from the interference effect between the electromagnetic wave and material. It is concluded that the material has a potential for controlling the electromagnetic wave at a tailored target frequency and is expected to be usable as monolithic low dielectric electromagnetic wave absorbing material.

  8. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  9. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  10. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  11. Introducing electromagnetic field momentum

    NASA Astrophysics Data System (ADS)

    Yu-Kuang Hu, Ben

    2012-07-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional analysis and without using vector calculus identities or the need to evaluate integrals. I use this result to show that linear and angular momenta are conserved for a charge in the presence of a magnetic dipole when the dipole strength is changed.

  12. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  13. Seismic electromagnetic study in China

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  14. Charging Ahead: An Introduction to Electromagnetism.

    ERIC Educational Resources Information Center

    Shafer, Larry E.

    This guide explores the connection between electricity and magnetism with middle level and high school students. The phenomenon of electromagnetism is broken down into four lesson plans that provide students and teachers with a carefully constructed yet easy way to learn about their history. All four activities prompt students to use inexpensive,…

  15. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  16. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  17. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  18. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  19. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  20. Superconductive electromagnet apparatus

    SciTech Connect

    Mine, S.

    1982-12-14

    Disclosed is a superconductive electromagnet apparatus having a coil with a coiled conductor with a channel between adjacently disposed the paths of the coil conductor of which width is selected in accordance with amounts of heat produced at the corresponding portions of the coil section as viewed in cross section.

  1. The CMS Electromagnetic Calorimeter

    SciTech Connect

    Paramatti, Riccardo

    2005-10-12

    The electromagnetic calorimeter of the CMS experiment at LHC will consist of about 76000 Lead Tungstate crystals. Its main purpose is the very precise energy measurement of electrons and photons produced at 14 TeV centre-of-mass energy. A review of its performances and its construction status is given. Then the calibration strategy is described in details.

  2. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  3. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  4. ALIEN: A nebular spectra analysis software

    NASA Astrophysics Data System (ADS)

    Cook, R.; Vazquez, R.

    2000-11-01

    A new C-coded software, designed to analyze nebular spectra, is presented. T his software is able to read the fluxes of the most important ions directly from IRAF's output file (splot.log). Spectra can be dereddened using the Balmer lines ratio and the Seaton's extinction law. Electron temperature and density, as well as ionic abundances by number are estimated by means of numeric calculations based on the five-level atom model. The dereddened spectra and the table containing the ionic abundances can be saved in a LaTex formatted file. This software has been initially designed to work with a low dispersion spectra.

  5. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  6. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  7. Electromagnetic structure of light nuclei

    DOE PAGESBeta

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  8. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  9. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  10. Electromagnetic pulse standards development for military aircraft

    NASA Astrophysics Data System (ADS)

    McClendon, Harold M.; Rodriguez, Manuel J.

    Concepts involved in the system-level standard philosophy adopted by the US Air Force's Aeronautical System Division (ASD) for hardening aircraft systems are presented. ASD's approach is to develop a totally new system-level military electromagnetic pulse (EMP) standard, which will be imposed on prime airframe contractors, and to modify existing electromagnetic interference (EMI) standards (MIL-STD-461 and MIL-STD-462), for subsystem/equipment-level requirements. The system-level standard is in the early stages of development and is scheduled for release in 1989. The changes to MIL-STD-461 and MIL-STD-462 are in the final stages of preparation and should be available for use in late 1987. It is noted that these changes are generic in that they do not specifically reference EMP due to their applicability to other transient environments such as lightning.

  11. Electromagnetic Environment of Grounding Systems

    NASA Astrophysics Data System (ADS)

    Lefouili, M.; Hafsaoui, I.; Kerroum, K.; Drissi, K. El Khamlichi

    Electromagnetic compatibility (EMC) and lightning protection studies in large installations require knowledge of spatial and temporal distribution of electromagnetic fields in case of lightning and power system faults. A new hybrid method for modeling electromagnetic environment of grounding systems is developed in this work. The electromagnetic fields in the surrounding soil are determined from the previously calculated current distribution using dipoles theory with analytical formulas. The model can be used to predict the EM environment of grounding systems because it can calculate electromagnetic fields in any points of interest.

  12. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  13. Wavelet and Higher order statistics as a tool for revealing Electromagnetic precursors of Earthquakes

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kumar, Sushil

    2016-07-01

    In recent years a number of scientists have reported correlations between observations of electromagnetic radiation and earthquakes. These observation of seismo-electromagnetic waves have been made both on the ground in the earthquake regions and by spacecraft over earthquake regions. In this work an attempt to develop a complex approach to the problem of searching for electromagnetic earthquake precursor signatures is made on the basis of DEMETER satellite observation.The main focus is concerned with the analysis of electric field data in Very Low Frequency (VLF) range using wavelet transform and higher order statistics. We observed electromagnetic turbulence in VLF range resulting from three earthquakes occurred at Keplulauan, Talud, Indonesia form 2009-2011.It is probably due to generation of electric field in a forthcoming earthquake's epicentral zone and penetrating in to the ionosphere. Large value of kurtosis shows the higher level of intermittence in the VLF signal before earthquake. It is possible to conjecture that the sources of this intermittence are the Coherent Structure (CS). For the better understanding of this behavior skewness parameter are used. The high energy at the large scales of the VLF turbulence due the earthquake preparation process contributes to creation of CS in the VLF signal. The results discussed were obtained during a very quiet time and therefore no ionospheric and magnetospheric sources of perturbation were expected. The statistical behavior of the signal (intermittent) and the shape of the spectra suggest that turbulence observed during this event is of the Kolmogorov type. Keywords: Turbulence, Higher order statistics and wave-wave interaction

  14. Evolution Characteristics of Electromagnetic Power Radiated in Lightning Discharge Processes.

    PubMed

    Zhao, Jin-cui; Yuan, Ping; Cen, Jian-yong; Li, Ya-jun; Wang, Jie

    2015-06-01

    Combining the spectra of could-to-ground lightning discharge processes obtained by a slit-less spectrograph with synchronous electric field information, the temperature, the conductivity, the current peak, electromagnetic power peak and the luminance of the discharge channel are calculated. The values are in a normal range reported by references. The correlation among cut-off time before a subsequent return stroke, the luminance and electromagnetic power peak of the channel is discussed. The change trends of the conductivity, the current peak and electromagnetic power peak are also investigated. The results show when cut-off time is long, neutralized charges will grow, the current will rise and electromagnetic power radiated from the channel will increase. When the conductivity and the peak of the electric field change increase simultaneously, the current in the channel will rise and electromagnetic power radiated from the channel will be greater. This work will provide some references for calculating optical and electromagnetic energy radiated by lightning discharge processes. PMID:26601350

  15. Laser frequency locking based on Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Yuechun, Jiao; Jingkui, Li; Limei, Wang; Hao, Zhang; Linjie, Zhang; Jianming, Zhao; Suotang, Jia

    2016-05-01

    We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency (EIT) spectra in a room-temperature cesium vapor cell. Cesium levels 6S1/2, 6P3/2, and the nD5/2 state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ∼0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10‑11. This kind of locking method can be used to stabilize the laser frequency to the excited transition. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grants Nos. 11274209, 61475090, 61378039, and 61378013), and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-009).

  16. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected. PMID:27102909

  17. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core–shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron–electron Coulomb repulsion is neglected.

  18. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  19. Electromagnetic radiation as a probe of the initial state and of viscous dynamics in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2016-07-01

    The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).

  20. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  1. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C C

    1998-01-01

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; and (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.

  2. Electromagnetic targeting of guns

    SciTech Connect

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  3. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  4. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  5. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  6. Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.

    1980-01-01

    Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.

  7. Electromagnetically Activated Hypersonic Ducts

    NASA Astrophysics Data System (ADS)

    MacLeod, C.

    This paper explores the use of Electromagnetic Radiation as an alternative to combustion in Scramjet-like hypersonic engines. The radiation is absorbed by the flow, heating it and thereby providing an alternative to the heat derived from combustion in the Scramjet. The advantages and disadvantages of this system are explored and theoretical results are presented illustrating typical radiation pathlengths at different frequencies. Suggestions for further theoretical and practical work are also made.

  8. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  9. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  10. Electromagnetically coupled microstrip dipoles

    NASA Astrophysics Data System (ADS)

    Oltman, H. G.; Huebner, D. A.

    1981-01-01

    A new class of printed circuit radiator consisting of a microstrip dipole electromagnetically coupled to a microstrip feed line is described. Several configurations which differ in bandwidth, efficiency, and construction simplicity are presented. A geometry which has been found to be optimum for many applications is noted. Radiation characteristics of both isolated elements and arrays of elements are examined. Experimental and theoretical results are presented.